Krasheninnikov, Sergei
2015-11-01
The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.
Energy Technology Data Exchange (ETDEWEB)
Lehnen, M.; Adbullaev, S.; Biel, W.; Bock, M. F. M.; Brezinsek, S.; Busch, C.; Classen, I.; Finken, K. H.; Hartin, D.; Hellermann, M. von; Jachmich, S.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kramer-Flecken, A.; Kikuchi, Y.; Liang, Y.; Loozen, X.; Pospieszczyk, A.; Rompuy, T. van; Reiter, D.; Samm, U.; Schmitz, O.; Sergienko, G.; Tokar, M.; Unterberg, B.; Wolf, R.; Zimmermann, O.
2005-07-01
The concept of the Dynamic Ergodic Divertor (DED) is based on plasma edge ergodisation by a resonant perturbation. Such a divertor concept is closely related to helical or island divertors in stellarators. The base mode of the DED perturbation field can be m/n = 12 /4, 6/2 or 3/1. The 3/1 base mode with its deep penetration of the perturbation field provides the excitation of tearing modes. This topic was presented elsewhere. In this contribution we concentrate on the divertor properties of the DED. We report on the characterisation of the topology, transport properties in ergodic fields, divertor regimes, impurity transport and density limit behaviour. The 12/4 base mode where the perturbation is restricted to the plasma edge is suitable for divertor operation. With increasing perturbation field island chains are built up at the resonance layers. Overlapping islands lead to ergodisation. The plasma is guided in the laminar region via open field lines of short connection length to the divertor target. The magnetic topology is not only controlled by the coil current but especially by the edge safety factor. For appropriate edge safety factor we observe a strong temperature drop in the plasma edge, indicating an expanding laminar region, which is necessary to decouple the divertor plasma from the core plasma. This temperature drop is accompanied by a redistribution of the heat and particle flux on the divertor target which is measured by thermography, visible spectroscopy and Langmuir probes. The modifications of the magnetic topology by the DED are reflected in the distribution of the plasma edge density and temperature measured by atomic beams and can be directly seen for example from carbon emission lines. The magnetic structure is calculated by the ATLAS code and shows good agreement with the experimental findings. The particle and energy transport is modelled with the EMC3-EIRENE code package and is in qualitative agreement with the measured densities and
Upgraded divertor Thomson scattering system on DIII-D
Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.
2016-11-01
A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.
Advanced divertor configurations with large flux expansion
Soukhanovskii, V. A.; R.E. Bell,; Diallo, A.; S. Gerhardt,; S. Kaye,; E. Kolemen,; B.P. LeBlanc,; McLean, A.; Menard, J. E.; S.F. Paul,; Podesta, M.; Raman, R.; D.D. Ryutov,; F. Scotti,; Kaita, R.; Maingi, R.; D.M. Mueller,; Roquemore, A. L.; Reimerdes, H.; G.P. Canal,; Labit, B.; Vijvers, W.; Coda, S.; Duval, B. P.; Morgan, T.; Zielinski, J.; De Temmerman, G.; Tal, B.
2013-01-01
Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effecti
Detached divertor plasmas in JET
Energy Technology Data Exchange (ETDEWEB)
Horton, L.D.; Borrass, K.; Corrigan, G.; Gottardi, N.; Lingertat, J.; Loarte, A.; Simonini, R.; Stamp, M.F.; Taroni, A. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Stangeby, P.C. [Toronto Univ., ON (Canada). Inst. for Aerospace Studies
1994-07-01
In simulations with high radiated power fractions, it is possible to produce the drop in ion current to the divertor targets typical of detached plasmas. Despite the fact that these experiments are performed on beryllium target tiles, radiation from deuterium and beryllium cannot account for the measured power losses. The neutral deuterium levels in the SOL in these plasmas are higher than the model predicts. This may be due to leakage from the divertor or to additional wall sources related to the non-steady nature of these plasmas. In contrast, a surprisingly high level of carbon is present in these discharges; higher even than would be predicted are the divertor target tiles pure carbon. This level may well be large enough to produce the measured radiation. (authors). 6 refs., 2 figs., 1 tab.
Actively convected liquid metal divertor
Shimada, Michiya; Hirooka, Yoshi
2014-12-01
The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.
Advanced divertor configurations with large flux expansion
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V.A., E-mail: vlad@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); McLean, A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Menard, J.E.; Paul, S.F.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Raman, R. [University of Washington, Seattle, WA (United States); Ryutov, D.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Scotti, F.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mueller, D.M.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Reimerdes, H.; Canal, G.P. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, Association Euratom Confédération Suisse, Lausanne (Switzerland); and others
2013-07-15
Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3–7 MW/m{sup 2} to 0.5–1 MW/m{sup 2} was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L–H power threshold, enhanced stability of the peeling–ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2–3) Type I ELM frequency and slightly increased (20–30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX
Magnetic Geometry and Physics of Advanced Divertors: The X-Divertor and the Snowflake
Kotschenreuther, Mike; Covele, Brent; Mahajan, Swadesh
2013-01-01
Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust - the Scrape-Off Layer (SOL). A primary result of our analysis is the emergence of a physical "metric", the Divertor Index DI, that quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics - the Standard Divertor (SD, DI = 1), and two advanced geometries: the X-Divertor (XD, DI > 1) and the Snowflake (SFD, DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent NSTX and DIIID experiments are X-Divertors, not Snowflakes.
Simulation Analysis of Divertor Performance in EAST
Institute of Scientific and Technical Information of China (English)
Zhu Sizheng; Zha Xuejun
2005-01-01
A detailed study of the divertor performance in the EAST has been conducted for both its double null and single null configurations. The results of the application of the SOLPS (B2/Eirene) code package to the analysis of the EAST divertor are summarized. Here we concentrate on the effects of the increased geometrical closure and variation in the magnetic topology on the behavior of divertor plasmas. The results of numerical predictions for the EAST divertor's operational window are also described in this paper.
A large divertor manipulator for ASDEX Upgrade
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Albrecht, E-mail: albrecht.herrmann@ipp.mpg.de; Jaksic, Nikola; Leitenstern, Peter; Greuner, Henri; Krieger, Karl; Marné, Pascal de; Oberkofler, Martin; Rohde, Volker; Schall, Gerd
2015-10-15
Highlights: • A large divertor manipulator for ASDEX Upgrade is developed and tested. • It allows replacing a relevant part of the divertor by dedicated targets and probes. • Modified solid standard targets. • Electrical and mechanical probes for dedicated investigations. • Test of actively cooled component. - Abstract: In 2013 a new bulk tungsten divertor, Div-III, was installed in ASDEX Upgrade (AUG). During the concept and design phase of Div-III the option of adaptable divertor instrumentation and divertor modification as contribution for divertor investigations in preparation of ITER was given a high priority. To gain flexibility for the test of divertor modifications without affecting the operational space of AUG, the large divertor manipulator, DIM-II, was designed and installed. DIM-II allows to retract 2 out of 128 outer divertor target tiles including the water cooled support structure into a target exchange box and to replace these targets without breaking the vacuum of the AUG vessel. DIM-II is based on a carriage-rail system with a driving rod pushing a front-end with the target module into the divertor position for plasma operation. Three types of front-ends are foreseen for physics investigations: (i) modified standard targets clamped to the standard cooling structure, (ii) dedicated front-ends making use of the whole available volume of about 230 × 160 × 80 mm{sup 3} and (iii) actively cooled/heated targets for cooling water temperatures up to 230 °C. This paper presents the DIM-II design including the FEM calculations for the modified divertor support structure and the front-end options, as well as the test procedure and operation mode.
Engineering conceptual design of CFETR divertor
Energy Technology Data Exchange (ETDEWEB)
Peng, Xuebing, E-mail: pengxb@ipp.cas.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Mao, Xin [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Chen, Peiming; Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China)
2015-10-15
Highlights: • Three divertor structures for two plasma configurations, ITER-like and snowflake. • Property of enlarging wet area for all three divertors is analyzed. • The divertor accommodating with both the plasma configurations is unfeasible. • Divertor cooling system is developed. - Abstract: The China Fusion Engineering Test Reactor (CFETR), which is in conceptual design phase, aims at producing fusion power of 50–200 MW with tritium breeding ratio of ∼1.2 and duty cycle time of 0.3–0.5. Its designed main parameters are major/minor radii of 5.7 m/1.6 m and plasma current of 10 MA. Although the fusion power is lower than the one of ITER, the relative smaller machine dimensions and planed much higher auxiliary heating power of 100–140 MW make that the power exhausting for the CFETR divertor is a very critical issue. To solve this issue, the divertor should be better designed with advanced physical operation mode, advanced configuration/geometry or high efficient cooling structure. In the paper, much effort was put on the divertor configuration and geometry. With designed magnet system, three divertor configurations can be realized, ITER-like, snowflake and super-X. However, considering structural design feasibility and remote handling compatibility, only the first two configurations were selected for the first step of engineering design. Three divertors were designed. They have different first wall geometries to accommodate with different plasma configurations, one for the ITER-like, one for the snowflake and the third one for both the configurations. All three divertors employ the same cassette body as the support and the cooling water manifold for the first wall. This feature simplifies the interface of the divertor to other components in the vacuum vessel. Besides, the cooling structure and the remote maintenance concept are also introduced in the paper.
Moving Divertor Plates in a Tokamak
Energy Technology Data Exchange (ETDEWEB)
S.J. Zweben, H. Zhang
2009-02-12
Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.
Rapidly Moving Divertor Plates In A Tokamak
Energy Technology Data Exchange (ETDEWEB)
S. Zweben
2011-05-16
It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.
Institute of Scientific and Technical Information of China (English)
Zhuo CHEN; Zhang Ju LIU; Yun He SHENG
2014-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
Chen, Zhuo; Liu, Zhangju; Sheng, Yunhe
2011-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
Septum assessment of the JET gas box divertor
Rapp, J.; Fundamenski, W.; Ingesson, L. C.; Jachmich, S.; Huber, A.; Matthews, G. F.; Morgan, P.; Stamp, M. F.
2008-01-01
The influence of the physical isolation of inner and outer divertor volumes by a septum plate of the Mk-II gas box divertor, thus increasing divertor closure and neutral compression, on the plasma and divertor performance has been studied at the Joint European Torus (JET). The septum plate was insta
Principal noncommutative torus bundles
DEFF Research Database (Denmark)
Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve
2008-01-01
In this paper we study continuous bundles of C*-algebras which are non-commutative analogues of principal torus bundles. We show that all such bundles, although in general being very far away from being locally trivial bundles, are at least locally trivial with respect to a suitable bundle version...... of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...... action) and give necessary and sufficient conditions for any non-commutative principal torus bundle being RKK-equivalent to a commutative one. As an application of our methods we shall also give a K-theoretic characterization of those principal torus-bundles with H-flux, as studied by Mathai...
First Divertor Operation on the HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
YANG Qing-Wei; CAO Zeng; LI Xiao-Dong; MAO Wei-Cheng; ZHOU Cai-Pin; WANG En-Yao; YAN Jian-Cheng; LIU Yong; HL-2A team; DING Xuan-Tong; YAN Long-Wen; XUAN Wei-Min; LIU De-Quan; CHEN Liao-Yuan; SONG Xian-Ming; YUAN Bao-Shan; ZHANG Jin-Hua
2004-01-01
@@ HL-2A device is the first divertor tokamak in China. One of its main subjects is to study the features of the divertor plasma. In the last campaign, the first divertor configuration has been achieved and sustained on the HL-2A tokamak. Here we give a brief description about the HL-2A tokamak, diagnostics arrangements, and the equilibrium analysis results on divertor configuration. The main results of divertor experiments are also presented.
MAST-Upgrade Divertor Facility and Assessing Performance of Long-Legged Divertors
Fishpool, G; Cunningham, G; Harrison, J; Katramados, I; Kirk, A; Kovari, M; Meyer, H; Scannell, R
2013-01-01
A potentially important feature in a divertor design for a high-power tokamak is an extended and expanded divertor leg. The upgrade to MAST will allow a wide range of such divertor leg geometries to be produced, and hence will allow the roles of greatly increased connection length and flux expansion to be experimentally tested. This will include testing the potential of the Super-X configuration [1]. The design process for the upgrade has required analysis of producing and controlling the magnetic configurations, and has included consideration of the roles that divertor closure and increasing magnetic connection length will play.
ARIES-III divertor engineering design
Energy Technology Data Exchange (ETDEWEB)
Wong, C.P.C.; Schultz, K.R. [General Atomics, San Diego, CA (United States); Cheng, E.T. [TSI Research, Solana Beach, CA (United States); Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering; Brooks, J.N.; Ehst, D.A.; Sze, D.K. [Argonne National Lab., IL (United States); Herring, J.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Valenti, M.; Steiner, D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Plasma Dynamics Lab.
1992-01-01
This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.
Snowflake divertor configuration studies in National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V. A.; McLean, A. G.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; Menard, J. E.; Paul, S. F.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Battaglia, D.; Bell, M. G.; Gates, D. A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); and others
2012-08-15
Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4-6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width {lambda}{sub q} was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flattened and decreased to 0.5-1 MW/m{sup 2} (from 4-7 MW/m{sup 2} in the standard divertor) indicative of radiative heating. An up to 50% increase in divertor, P{sub rad} in the snowflake divertor was accompanied by broadening of the intrinsic C III and C IV radiation zones, and a nearly order of magnitude increase in divertor high-n Balmer line emission indicative of volumetric recombination onset. Magnetic reconstructions showed that the x-point connection length, divertor plasma-wetted area and divertor volume, all critical parameters for geometric reduction of deposited heat flux, and increased volumetric divertor losses were significantly increased in the snowflake divertor, as expected from theory.
Atomic and molecular processes in JT-60U divertor plasmas
Energy Technology Data Exchange (ETDEWEB)
Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others
1997-01-01
Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)
Snowflake divertor configuration studies for NSTX-Upgrade
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V A
2011-11-12
Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.
First results from the dynamic ergodic divertor at TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Lehnen, M. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, 52425 Juelich (Germany)]. E-mail: m.lehnen@fz-juelich.de; Abdullaev, S.S.; Biel, W.; Brezinsek, S.; Finken, K.H.; Harting, D.; Hellermann, M. von; Jakubowski, M.; Jaspers, R.; Kobayashi, M.; Koslowski, H.R.; Kraemer-Flecken, A.; Matsunaga, G.; Pospieszczyk, A.; Reiter, D.; Van Rompuy, T.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Zimmermann, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, 52425 Juelich (Germany)
2005-03-01
Experimental results from the dynamic ergodic divertor (DED) at TEXTOR are given, describing the complex structure of the edge plasma and the properties of the divertor as well as its influence on the plasma rotation.
Impurity-induced divertor plasma oscillations
Energy Technology Data Exchange (ETDEWEB)
Smirnov, R. D., E-mail: rsmirnov@ucsd.edu; Krasheninnikov, S. I.; Pigarov, A. Yu. [University of California, San Diego, La Jolla, California 92093 (United States); Kukushkin, A. S. [NRC “Kurchatov Institute”, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
2016-01-15
Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.
Impurity-induced divertor plasma oscillations
Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.
2016-01-01
Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.
Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas
Jaervinen, A. E.; Brezinsek, S.; Giroud, C.; Groth, M.; Guillemaut, C.; Belo, P.; Brix, M.; Corrigan, G.; Drewelow, P.; Harting, D.; Huber, A.; Lawson, K. D.; Lipschultz, B.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Stamp, M. F.; Wiesen, S.; Contributors, JET
2016-04-01
Radiative divertor operation in JET high confinement mode plasmas with the ITER-like wall has been experimentally investigated and simulated with EDGE2D-EIRENE in horizontal and vertical low field side (LFS) divertor configurations. The simulations show that the LFS divertor heat fluxes are reduced with N2-injection in similar fashion in both configurations, qualitatively consistent with experimental observations. The simulations show no substantial difference between the two configurations in the reduction of the peak LFS heat flux as a function of divertor radiation, nitrogen concentration, or pedestal Zeff. Consistently, experiments show similar divertor radiation and nitrogen injection levels for similar LFS peak heat flux reduction in both configurations. Nevertheless, the LFS strike point is predicted to detach at 20% lower separatrix density in the vertical than in the horizontal configuration. However, since the peak LFS heat flux in partial detachment in the vertical configurations is shifted towards the far scrape-off layer (SOL), the simulations predict no benefit in the reduction of LFS peak heat flux for a given upstream density in the vertical configuration relative to a horizontal one. A factor of 2 reduction of deuterium ionization source inside the separatrix is observed in the simulations when changing to the vertical configuration. The simulations capture the experimentally observed particle and heat flux reduction at the LFS divertor plate in both configurations, when adjusting the impurity injection rate to reproduce the measured divertor radiation. However, the divertor D α -emissions are underestimated by a factor of 2-5, indicating a short-fall in radiation by the fuel species. In the vertical configuration, detachment is experimentally measured and predicted to start next to the strike point, extending towards the far SOL with increasing degree of detachment. In contrast, in the horizontal configuration, the entire divertor particle flux
Biswas, Indranil
2011-01-01
We construct projectivization of a parabolic vector bundle and a tautological line bundle over it. It is shown that a parabolic vector bundle is ample if and only if the tautological line bundle is ample. This allows us to generalize the notion of a k-ample bundle, introduced by Sommese, to the context of parabolic bundles. A parabolic vector bundle $E_*$ is defined to be k-ample if the tautological line bundle ${\\mathcal O}_{{\\mathbb P}(E_*)}(1)$ is $k$--ample. We establish some properties of parabolic k-ample bundles.
Designing divertor targets for uniform power load
Dekeyser, W.; Reiter, D.; Baelmans, M.
2015-08-01
Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.
DEFF Research Database (Denmark)
Liu, S. C.; Guo, H. Y.; Xu, Guandong
2012-01-01
Divertor asymmetry and its dependence on the ion del B direction has been investigated in the Experimental Advanced Superconducting Tokamak by changing the divertor configuration from lower single null (LSN), via double null (DN), to upper single null (USN) during one single discharge. Divertor p...
Examining Innovative Divertor and Main Chamber Options for a National Divertor Test Tokamak
Labombard, B.; Umansky, M.; Brunner, D.; Kuang, A. Q.; Marmar, E.; Wallace, G.; Whyte, D.; Wukitch, S.
2016-10-01
The US fusion community has identified a compelling need for a National Divertor Test Tokamak. The 2015 Community Planning Workshop on PMI called for a national working group to develop options. Important elements of a NDTT, adopted from the ADX concept, include the ability to explore long-leg divertor `solutions for power exhaust and particle control' (Priority Research Direction B) and to employ inside-launch RF actuators combined with double-null topologies as `plasma solution for main chamber wall components, including tools for controllable sustained operation' (PRD-C). Here we examine new information on these ideas. The projected performance of super-X and X-point target long-leg divertors is looking very promising; a stable fully-detached divertor condition handling an order-of-magnitude increase in power handling over conventional divertors may be possible. New experiments on Alcator C-Mod are addressing issues of high-field side versus low-field side heat flux sharing in double-null topologies and the screening of impurities that might originate from RF actuators placed in the high-field side - both with favorable results. Supported by USDoE Awards DE-FC02-99ER54512 and DE-AC52-07NA27344.
ITER tungsten divertor design development and qualification program
Energy Technology Data Exchange (ETDEWEB)
Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)
2013-10-15
Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.
Development of the NSTX-U Advanced Divertor Control
Vail, Patrick; Kolemen, Egemen
2016-10-01
Advanced magnetic divertor configurations such as the snowflake (SF) divertor are being investigated at NSTX-U for reducing the peak heat flux onto plasma-facing components. Initial efforts include development of plasma scenarios incorporating SF configurations using an upgraded set of divertor coils as well as implementation of a feedback control system for real-time detection and manipulation of two closely-spaced magnetic null points. Closed-loop plasma simulations are performed to demonstrate precise control of various SF configurations. The simulations are then used to demonstrate that the controller can be enhanced to regulate additional parameters such as strike point location and divertor flux expansion. The advanced divertor control will be used in the coming years to enable experiments investigating the physics of advanced divertors at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.
Subtleties Concerning Conformal Tractor Bundles
Graham, C Robin
2012-01-01
The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.
Neutral recirculation—the key to control of divertor operation
Kukushkin, A. S.; Pacher, H. D.
2016-12-01
Interaction of the plasma with neutral gas in the divertor affects virtually all aspects of divertor functionality (power loading of the targets, pumping and fuelling, sustaining the operational conditions of the core plasma). In the course of ITER design development, this interaction has been the subject of intense modelling analysis, supported by experiments on various tokamaks. Neutral gas puffing is found to be the most effective means of divertor control. The results of those studies are summarized and assessed in the paper.
NSTX Plasma Response to Lithium Coated Divertor
Energy Technology Data Exchange (ETDEWEB)
H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team
2011-01-21
NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.
Module of lithium divertor for KTM tokamak
Energy Technology Data Exchange (ETDEWEB)
Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)
2012-10-15
Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of
Divertor Heat Flux Mitigation in the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D
2008-08-04
Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.
Divertor E X B Plasma Convection in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Boedo, J.A.; Schaffer, M.J.; Maingi, M.; Lasnier, C.J.; Watkins, J.G.
1999-07-01
Extensive two-dimensional measurements of plasma potential in the DIII-D tokamak divertor region are reported for standard (ion VB{sub T} drift toward divertor X-point) and reversed B{sub T} directions; for low (L) and high (H) confinement modes; and for partially detached divertor mode. The data are consistent with recent computational modeling identifying E x B{sub T} circulation, due to potentials sustained by plasma gradients, as the main cause of divertor plasma sensitivity to B{sub T} direction.
ADX - Advanced Divertor and RF Tokamak Experiment
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
DEFF Research Database (Denmark)
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly.......60-1.62). The presence of IRBBB was not associated with any adverse outcome.ConclusionIn this cohort study, RBBB and IRBBB were two to three times more common among men than women. Right bundle branch block was associated with increased cardiovascular risk and all-cause mortality, whereas IRBBB was not. Contrary...
Directory of Open Access Journals (Sweden)
J. W. Kitchen
1994-01-01
Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.
Principal -bundles on Nodal Curves
Indian Academy of Sciences (India)
Usha N Bhosle
2001-08-01
Let be a connected semisimple affine algebraic group defined over . We study the relation between stable, semistable -bundles on a nodal curve and representations of the fundamental group of . This study is done by extending the notion of (generalized) parabolic vector bundles to principal -bundles on the desingularization of and using the correspondence between them and principal -bundles on . We give an isomorphism of the stack of generalized parabolic bundles on with a quotient stack associated to loop groups. We show that if is simple and simply connected then the Picard group of the stack of principal -bundles on is isomorphic to ⊕ , being the number of components of .
On projective space bundle with nef normalized tautological line bundle
Yasutake, Kazunori
2011-01-01
In this paper, we study the structure of projective space bundles whose relative anti-canonical line bundle is nef. As an application, we get a characterization of abelian varieties up to finite etale covering.
Directory of Open Access Journals (Sweden)
Iosif DUMITRESCU
2015-05-01
Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.
DEFF Research Database (Denmark)
Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads
2011-01-01
In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...
Sepe, D.
2013-01-01
The obstruction to construct a Lagrangian bundle over a fixed integral affine manifold was constructed by Dazord and Delzant (J Differ Geom 26:223–251, 1987) and shown to be given by ‘twisted’ cup products in Sepe (Differ GeomAppl 29(6): 787–800, 2011). This paper uses the topology of universal Lagr
Overview of experiments with the dynamic ergodic divertor on TEXTOR
Finken, K.H.; Abdullaev, S.; Biel, W.; de Bock, M. F. M.; Brezinsek, S.; Busch, C.; Classen, I.; Harting, D.; von Hellermann, M.; Jachmich, S.; Jakubowski, M.; R. Jaspers,; Koslowski, H. R.; Kramer-Flecken, A.; Kikuchi, Y.; Lehnen, M.; Liang, Y.; Kobayashi, M.; Nicolai, A.; Pospieszczyk, A.; Reiter, D.; Van Rompuy, T.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Westerhof, E.; R C Wolf,; Zimmermann, O.
2006-01-01
The Dynamic Ergodic Divertor (DED) has recently been taken into operation on TEXTOR. The device is rather flexible and allows the investigation of very different questions. In the present context we concentrate on the divertor aspect and on results of the m/n=12/4 base mode. The DED-field generates
Divertor plasma physics experiments on the DIII-D tokamak
Energy Technology Data Exchange (ETDEWEB)
Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others
1996-10-01
In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.
Power distribution in the snowflake divertor in TCV
Reimerdes, H.; G.P. Canal,; Duval, B. P.; Labit, B.; Lunt, T.; Vijvers, W. A. J.; Coda, S.; De Temmerman, G.; Morgan, T. W.; Nespoli, F.; Tal, B.; the TCV Team,
2013-01-01
TCV experiments demonstrate the basic power exhaust properties of the snowflake (SF) plus and SF minus divertor configurations by measuring the heat fluxes at each of their four divertor legs. The measurements indicate an enhanced transport into the private flux region and a reduction of peak heat f
RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Popov, Emilian L [ORNL; Yoder Jr, Graydon L [ORNL; Kim, Seokho H [ORNL
2010-08-01
This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.
Comparison of ELM heat loads in snowflake and standard divertors
Energy Technology Data Exchange (ETDEWEB)
Rognlien, T D; Cohen, R H; Ryutov, D D; Umansky, M V
2012-05-08
An analysis is given of the impact of the tokamak divertor magnetic structure on the temporal and spatial divertor heat flux from edge localized modes (ELMs). Two configurations are studied: the standard divertor where the poloidal magnetic field (B{sub p}) varies linearly with distance (r) from the magnetic null and the snowflake where B{sub p} varies quadratrically with r. Both one and two-dimensional models are used to analyze the effect of the longer magnetic field length between the midplane and the divertor plate for the snowflake that causes a temporal dilation of the ELM divertor heat flux. A second effect discussed is the appearance of a broad region near the null point where the poloidal plasma beta can substantially exceed unity, especially for the snowflake configuration during the ELM; such a condition is likely to drive additional radial ELM transport.
Researches on the Neutral Gas Pressure in the Divertor Chamber of the HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
WANGMingxu; LIBo; YANGZhigang; YANLongwen; HONGWenyu; YUANBaoshan; LIULi; CAOZeng; CUIChenghe; LIUYong; WANGEnyao; ZHANGNianman
2003-01-01
The neutral gas pressure in divertor chamber is a very basic and important physics parameter because it determines the temperature of charged particles, the thermal flux density onto divertor plates, the erosion of divertor plates, impurity retaining and exhausting, particle transportation and confinement performance of plasma in tokamaks. Therefore, the pressure measurement in divertor chamber is taken into account in many large tokamaks.
Deformation quantization of principal bundles
Aschieri, Paolo
2016-01-01
We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles, and more in general to the deformation of Hopf-Galois extensions. First we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next we twist deform a subgroup of the group of authomorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations we obtain noncommutative principal bundles with noncommutative fiber and base space as well.
Extinguishing ELMs in detached radiative divertor plasmas
Pigarov, Alexander; Krasheninnikov, Sergei; Rognlien, Thomas
2016-10-01
In order to avoid deleterious effects of ELMs on PFCs in next-step fusion devices it has been suggested to operate with small-sized ELMs naturally extinguishing in the divertor. Our modeling effort is focusing at extinguishing type-I ELMs: conditions for expelled plasma dissipation; efficiency of ELM power handling by detached radiative divertors; and the ELM impact on detachment state. Here time-dependent modeling of a sequence of many ELMs was performed with 2-D edge plasma transport code UEDGE-MB-W which incorporates the Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. Three cases were modeled, in which extinguishing ELMs are achieved due to: (i) intrinsic impurities via graphite sputtering, (ii) extrinsic impurity gas puff (Ne), and (iii) =(i) +(ii). For each case, we performed a series of UEDGE-MB-W runs scanning the deuterium and impurity inventories, pedestal losses and ELM frequency. Temporal variations of the degree of detachment, ionization front shape, recombination sink strength, radiated fraction, peak power loads, OSP, impurity charge states, and in/out asymmetries were analyzed. We discuss the onset of extinguishing ELMs, conditions for not burning through and enhanced plasma recombination as functions of scanned parameters. Efficiencies of intrinsic and extrinsic impurities in ELM extinguishing are compared.
Photon trapping effects in DEMO divertor plasma
Energy Technology Data Exchange (ETDEWEB)
Hoshino, K.; Tokunaga, S.; Asakura, N. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Sawada, K.; Idei, R. [Faculty of Engineering, Shinshu Univ., Nagano (Japan); Shimizu, K. [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Ohno, N. [Graduate School of Engineering, Nagoya Univ, Aichi (Japan)
2016-08-15
In the DEMO divertor, the neutral density becomes high to produce the full detachment and therefore the photon trapping can become important. In this paper, effects of the photon trapping on the DEMO divertor plasma has been studied. The pre-evaluation of the photon trapping effects on the fixed background plasma profile was carried out by using an iterative self-consistent collisional radiative model. The recombining plasma near the inner target and the private region changed to the ionizing plasma by the photon-excitation. Based on the preevaluation result, the database of the effective ionization rate coefficient including the photon transport inside a 2 mm sphere. Advantage of the 2 mm sphere approximation is that the extra calculation cost is not necessary. Iterative calculation of the SONIC including the photon trapping effects was carried out. While the electron density increased and the neutral density decreased in the wide region, the electron density decreases close to the inner strike point. This may be due to decrease in the ionization rate by decrease in the neutral density. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Rudakov, A N
1990-01-01
This volume is devoted to the use of helices as a method for studying exceptional vector bundles, an important and natural concept in algebraic geometry. The work arises out of a series of seminars organised in Moscow by A. N. Rudakov. The first article sets up the general machinery, and later ones explore its use in various contexts. As to be expected, the approach is concrete; the theory is considered for quadrics, ruled surfaces, K3 surfaces and P3(C).
Bundling harvester; Nippukorjausharvesteri
Energy Technology Data Exchange (ETDEWEB)
Koponen, K. [Eko-Log Oy, Kuopio (Finland)
1996-12-31
The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy
Draper, Andrew
2011-04-01
Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.
Divertor IR thermography on Alcator C-Moda)
Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.
2010-10-01
Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.
Numerical analysis of divertor plasma for demo-CREST
Energy Technology Data Exchange (ETDEWEB)
Ishida, M.; Maeki, K.; Hatayama, A. [Graduate School of Fundamental Science and Technology, Keio University, Yokohama (Japan); Hiwatari, R. [Central Research Institute of Electric Power Industry (CRIEPI), Tokyo (Japan); Bonnin, X. [LIMHP-CNRS, Universite Paris 13, Villetaneuse (France); Zhu, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Schneider, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany); Coster, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)
2010-05-15
The numerical analysis of the demonstration fusion reactor Demo-CREST has been carried out; this analysis focuses on impurity seeding. Several design activities for DEMO have been carried out; however, its detailed divertor plasma analysis remains to be carried out. Therefore, in this study, we discuss the possibility of neon puffing in demo-CREST to decrease the power load to the divertor plate by using the B2-EIRENE code. It has been shown that the radiation power loss by neon increases with upstream plasma density and that the peak power load to the divertor plate comes close to the allowable level by using the preliminary divertor configuration (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Thermal Fatigue Study on the Divertor Plate Materials
Institute of Scientific and Technical Information of China (English)
吴继红; 张斧; 许增裕; 严建成
2002-01-01
Thermal fatigue property of the divertor plate is one of the key issues that governs the lifetime of the divertor plate. Taking tungsten as surface material, a small-mock-up divertor plate was made by hot isostatic press welding (HIP). A thermal cycling experiment for divertor mock-up was carried out in the vacuum, where a high-heat-flux electronic gun was used as the thermal source. A cyclic heat flux of 9 MW/m2 was loaded onto the mock-up, a heating duration of 20 s was selected, the cooling water flow rate was 80 ml/s. After 1000 cycles, the surface and the W/Cu joint of the mock-up did not show any damage. The SEM was used to analyze the microstructure of the welding joint, where no cracks were found also.
Compatibility of detached divertor operation with robust edge pedestal performance
Energy Technology Data Exchange (ETDEWEB)
Leonard, A.W., E-mail: leonard@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M.A.; McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Osborne, T.H.; Snyder, P.B. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)
2015-08-15
The compatibility of detached radiative divertor operation with a robust H-mode pedestal is examined in DIII-D. A density scan produced low temperature plasmas at the divertor target, T{sub e} ⩽ 2 eV, with high radiation leading to a factor of ⩾4 drop in peak divertor heat flux. The cold radiative plasma was confined to the divertor and did not extend across the separatrix in X-point region. A robust H-mode pedestal was maintained with a small degradation in pedestal pressure at the highest densities. The response of the pedestal pressure to increasing density is reproduced by the EPED pedestal model. However, agreement of the EPED model with experiment at high density requires an assumption of reduced diamagnetic stabilization of edge Peeling–Ballooning modes.
Evaluation of helium cooling for fusion divertors
Energy Technology Data Exchange (ETDEWEB)
Baxi, C.B.
1993-09-01
The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m{sup 2} at an average heat flux of 2 MW/m{sup 2}. The divertors have a requirement of both minimum temperature (100{degrees}C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m{sup 2}. This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m{sup 2}. The pumping power required was less than 1% of the power removed. These results verified the design prediction.
Differential calculi on noncommutative bundles
Pflaum, Markus J.; Schauenburg, Peter
1996-01-01
We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra.
Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework
Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou
2015-11-01
China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.
Nille, Dirk; Eich, Thomas
2016-01-01
Topic is the divertor broadening $S$, being a result of perpendicular transport in the scrape-off layer and resulting in a better distribution of the power load onto the divertor target. Recent studies show a scaling of the divertor broadening with an inverse power law to the target temperature $T_t$, promising its reduction to be a way of distributing the power entering the divertor volume onto a large surface area. It is shown that for pure conductive transport in the divertor region the suggested inverse power law scaling to $T_t$ is only valid for high target electron temperatures. For decreasing target temperatures ($T_t < 20\\,$eV) the increase of $S$ stagnates and the conductive model results in a finite value of $S$ even for zero target temperature. It is concluded that the target temperature is no valid parameter for a power law scaling, as it is not representative for the entire divertor volume. This is shown in simulations solving the 2D heat diffusion equation, which is used as reference for an ...
Bundle Security Protocol for ION
Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher
2011-01-01
This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.
Bundle Formation in Biomimetic Hydrogels
Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J
2016-01-01
Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and
Friedman, R; Witten, Edward
1997-01-01
To understand in detail duality between heterotic string and F theory compactifications, it is important to understand the construction of holomorphic G bundles over elliptic Calabi-Yau manifolds, for various groups G. In this paper, we develop techniques to describe these bundles, and make several detailed comparisons between the heterotic string and F theory.
Friedman, Robert; Morgan, John; Witten, Edward
1997-01-01
To understand in detail duality between heterotic string and F theory compactifications, it is important to understand the construction of holomorphic G bundles over elliptic Calabi-Yau manifolds, for various groups G. In this paper, we develop techniques to describe the bundles, and make several detailed comparisons between the heterotic string and F theory.
Fiber bundle phase conjugate mirror
Ward, Benjamin G.
2012-05-01
An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.
Twisted Vector Bundles on Pointed Nodal Curves
Indian Academy of Sciences (India)
Ivan Kausz
2005-05-01
Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich’s and Vistoli’s twisted bundles and Gieseker vector bundles.
Spectroscopic investigations of divertor detachment in TCV
Verhaegh, K; Duval, B P; Harrison, J R; Reimerdes, H; Theiler, C; Labit, B; Maurizio, R; Marini, C; Nespoli, F; Sheikh, U; Tsui, C K; Vianello, N; Vijvers, W A J
2016-01-01
The aim of this work is to provide an understanding of detachment at TCV with emphasis on analysis of the Balmer line emission. A new Divertor Spectroscopy System has been developed for this purpose. Further development of Balmer line analysis techniques has allowed detailed information to be extracted on free-free and three-body recombination. During density ramps, the plasma at the target detaches as inferred from a drop in density at, and ion current to, the target. At the same time the Balmer $6\\rightarrow2$ and $7\\rightarrow2$ line emission near the target is dominated by recombination, indicating that the ionization region has also detached from the target to be replaced by a recombining region with densities more than a factor 2 higher than at the target. As the core density increases further, the density and recombination rate are rising all along the outer leg to the x-point while remaining highest at the target. Even at the highest core densities accessed (Greenwald fraction 0.7) the peaks in recomb...
Initial Development of the NSTX-U Snowflake Divertor Control
Vail, Patrick; Kolemen, Egemen; Welander, Anders; Lanctot, Matthew
2015-11-01
A feedback control system has been implemented at NSTX-U for real-time detection and manipulation of snowflake divertor (SFD) magnetic configurations. The SFD is an alternative magnetic divertor concept that is characterized by a second-order null formed by two x-points in close proximity. The SFD is an attractive option for heat flux mitigation for NSTX-U in which unmitigated peak heat fluxes in standard divertor operation near 20 MW/m2 may compromise plasma-facing components. The real-time control system at NSTX-U is capable of simultaneous control of multiple SFD parameters, such as the separation between the two x-points in the divertor region and their orientation. Control of SFD configurations in NSTX-U has been simulated in TOKSYS using the upgraded sets of poloidal field coils in both the upper and lower divertor regions. Performance of the real-time control system and its effect on plasma performance will be assessed experimentally as an initial step toward the development of the SFD concept at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.
Semiflexible Biopolymers in Bundled Arrangements
Directory of Open Access Journals (Sweden)
Jörg Schnauß
2016-07-01
Full Text Available Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
Evaluating big deal journal bundles.
Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A
2014-07-01
Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish.
The Atiyah Bundle and Connections on a Principal Bundle
Indian Academy of Sciences (India)
Indranil Biswas
2010-06-01
Let be a ∞ manifold and a Lie a group. Let $E_G$ be a ∞ principal -bundle over . There is a fiber bundle $\\mathcal{C}(E_G)$ over whose smooth sections correspond to the connections on $E_G$. The pull back of $E_G$ to $\\mathcal{C}(E_G)$ has a tautological connection. We investigate the curvature of this tautological connection.
Hydrogen recycling and transport in the helical divertor of TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Clever, Meike
2010-07-01
The aim of this thesis was to investigate the hydrogen recycling at the target plates of the helical divertor in TEXTOR and by this the capability of this divertor configuration to access such favourable operational regimes. In order to study the different divertor density regimes in TEXTOR, discharges were performed in which the total plasma density was increased continuously up to the density limit. The recycling was investigated in a fixed helical divertor structure where four helical strike points with a poloidal width of about 8-10 cm are created at the divertor target plates. The experimental investigation of the hydrogen recycling was carried out using mainly spectroscopic methods supplemented by Langmuir probe, interferometric and atomic beam measurements. In the framework of this thesis a spectroscopic multi camera system has been built that facilitates the simultaneous observation of four different spectral lines, recording images of the divertor target plates and the plasma volume close to the target. The system facilitates the simultaneous measurement of the poloidal and toroidal pattern of the recycling flux at the divertor target without the need for sweeping the plasma structure. The simultaneous observation of different spectral lines reduces the uncertainty in the analysis based on several lines, as the contribution from uncertainties in the reproducibility of plasma parameters in different discharges are eliminated and only the uncertainty of the measurement method limits the accuracy. The spatial resolution of the system in poloidal and toroidal direction (0.8 mm{+-}0.01 mm) is small compared to the separation of the helical strike points, the capability of the measurement method to resolve these structures is therefore limited by the line-of-sight integration and the penetration depth of the light emitting species. The measurements showed that the recycling flux increases linearly with increasing plasma density, a high recycling regime is not
Radiative divertor plasmas with convection in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Leornard, A.W. [General Atomics, San Diego, CA (United States); Porter, G.D.; Wood, R.D. [Lawrence Livermore National Lab., CA (United States)] [and others
1998-01-01
The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features.
A novel approach to magnetic divertor configuration design
Blommaert, M.; Baelmans, M.; Dekeyser, W.; Gauger, N. R.; Reiter, D.
2015-08-01
Divertor exhaust system design and analysis tools are crucial to evolve from experimental fusion reactors towards commercial power plants. In addition to material research and dedicated vessel geometry design, improved magnetic configurations can contribute to sustaining the diverted heat loads. Yet, computational design of the magnetic divertor is a challenging process involving a magnetic equilibrium solver, a plasma edge grid generator and a computationally demanding plasma edge simulation. In this paper, an integrated approach to efficient sensitivity calculations is discussed and applied to a set of slightly reduced divertor models. Sensitivities of target heat load performance to the shaping coil currents are directly evaluated. Using adjoint methods, the cost for a sensitivity evaluation is reduced to about two times the simulation cost of one specific configuration. Further, the use of these sensitivities in an optimal design framework is illustrated by a case with realistic Joint European Torus (JET) configurational parameters.
Plasma transport in a simulated magnetic-divertor configuration
Energy Technology Data Exchange (ETDEWEB)
Strawitch, C. M.
1981-03-01
The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.
TECXY study of a liquid lithium divertor for DEMO
Energy Technology Data Exchange (ETDEWEB)
Pelka, G.; Chmielewski, P.; Zagorski, R. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pericoli-Ridolfini, V.; Viola, B. [ENEA C.R. Frascati, Roma (Italy)
2016-08-15
Divertor targets made out of a capillary porous system (CPS) filled with liquid lithium, have been proposed as an alternative to standard, solid state plates. In the current work we simulate the DEMO edge plasma in either a standard single-null or snowflake divertor configuration. Our tool is the 2D code TECXY. Lithium ablated from the target plate surface and released into the plasma is shown here to partially screen the incoming heat flux. Lithium's moderate SOL radiation levels suggest additional seeding to be beneficial. Very high heat fluxes to the divertor need to be avoided, as intensive lithium evaporation might unacceptably pollute the plasma. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Vector bundles on toric varieties
Gharib, Saman
2011-01-01
Following Sam Payne's work, we study the existence problem of nontrivial vector bundles on toric varieties. The first result we prove is that every complete fan admits a nontrivial conewise linear multivalued function. Such functions could potentially be the Chern classes of toric vector bundles. Then we use the results of Corti\\~nas, Haesemeyer, Walker and Weibel to show that the (non-equivariant) Grothendieck group of the toric 3-fold studied by Payne is large, so the variety has a nontrivial vector bundle. Using the same computation, we show that every toric 3-fold X either has a nontrivial line bundle, or there is a finite surjective toric morphism from Y to X, such that Y has a large Grothendieck group.
Bundling ecosystem services in Denmark
DEFF Research Database (Denmark)
Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith;
2014-01-01
We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...
DEFF Research Database (Denmark)
Risum, Niels; Strauss, David; Sogaard, Peter;
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
Fabrication of electrospun nanofibers bundles
Ye, Junjun; Sun, Daoheng
2007-12-01
Aligned nanofibers, filament bundle composed of large number of nanofibers have potential applications such as bio-material, composite material etc. A series of electrospinning experiments have been conducted to investigate the electrospinning process,in which some parameters such as polymer solution concentration, bias voltage, distance between spinneret and collector, solution flow rate etc have been setup to do the experiment of nanofibers bundles construction. This work firstly reports electrospun nanofiber bundle through non-uniform electrical field, and nanofibers distributed in different density on electrodes from that between them. Thinner nanofibers bundle with a few numbers of nanofiber is collected for 3 seconds; therefore it's also possible that the addressable single nanofiber could be collected to bridge two electrodes.
Reconnection of superfluid vortex bundles.
Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F
2008-11-21
Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.
Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process
Energy Technology Data Exchange (ETDEWEB)
Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL
2011-02-01
A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.
Divertor performance on carbon and beryllium targets in JET
Energy Technology Data Exchange (ETDEWEB)
Janeschitz, G.; Koenig, R.; Lauro-Taroni, L.; Lingertat, J.; Matthews, G.; Stamp, M.; Vlases, G.; Campbell, D.; Clement, S.; De Kock, L.; Ehrenberg, J.; Gottardi, N.; Harbour, P.; Horton, L.; Jaeckel, H.; Lesourd, M.; Loarte, A.; Lowry, C.; Saibene, G.; Summers, D.; Tagle, J.A.; Thomas, P.R.; Von Hellerman, M. (JET Joint Undertaking, Abingdon (United Kingdom)); Eckstein, W.; Roth, J. (Max Planck Inst. fuer Plasmaphysik, Garching (Germany))
1992-12-01
The dependence of impurity production and retention on the divertor density, on the power flow into this region as well as on the X-point to target distance are investigated. Model predictions suggest a good impurity retention above a certain divertor (scrape-off) density threshold, which is dependent on heating power. In our experiments pre-programmed midplane or X-point gas puffs were used to scan the density, as well as to avoid the depletion of particles from the divertor and the scrape-off during H-models. The gas puffs reduce T[sub e] and increase N[sub e] in particular at the outer strike zone. In general the Be as well as the C influx increases with density, which is understood from the T[sub e] (T[sub i]) dependence of the sputtering yields. The impurity retention shows the expected improvement with increasing scrape-off (divertor) density as well as with increasing X-point to target distance (connection length). (orig.).
Taming the plasma-material interface with the snowflake divertor.
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V A
2015-04-24
Experiments in several tokamaks have provided increasing support for the snowflake configuration as a viable tokamak heat exhaust concept. This white paper summarizes the snowflake properties predicted theoretically and studied experimentally, and identifies outstanding issues to be resolved in existing and future facilities before the snowflake divertor can qualify for the reactor interface.
Overview of experiments with the dynamic ergodic divertor on TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Finken, K.H.; Abdullaev, S.; Biel, W.; Brezinsek, S.; Busch, C.; Harting, D.; Jakubowski, M.; Koslowski, H.R.; Kraemer-Flecken, A.; Kikuchi, Y.; Lehnen, M.; Liang, Y.; Nicolai, A.; Pospieszczyk, A. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Bock, M.F.M. de; Classen, I.; Hellermann, M. von; Jaspers, R. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box: 1207, NL-3430 BE Nieuwegein (Netherlands); Jachmich, S. [Laboratory for Plasma Physics, Association EURATOM - Belgian State, KMS - ERM, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Kobayashi, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-52 Toki (Japan); Reiter, D.; Rompuy, T. van; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Westerhof, E.; Wolf, R.C.; Zimmermann, O.
2006-09-15
The Dynamic Ergodic Divertor (DED) has recently been taken into operation on TEXTOR. The device is rather flexible and allows the investigation of very different questions. In the present context we concentrate on the divertor aspect and on results of the m/n=12/4 base mode. The DED-field generates the proper ergodic zone and an area of open magnetic field lines, the laminar zone and the tangle structure. The properties of the laminar zone resemble the divertor region of a poloidal divertor. However, the distribution of the density and temperature is highly 3D and strongly related to the structure of the laminar and ergodic zones. The structures of the heat and particle fluxes to the wall agree well with the predicted patterns. A prominent feature of the ergodization is the creation of an edge electric field which results in a rotation of the plasma. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Bundle Formation in Biomimetic Hydrogels.
Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J
2016-08-08
Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks.
Principal bundles the classical case
Sontz, Stephen Bruce
2015-01-01
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
Divertor remote handling for DEMO: Concept design and preliminary FMECA studies
Energy Technology Data Exchange (ETDEWEB)
Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Di Gironimo, G. [ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)
2015-10-15
Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor mover: hydraulic telescopic boom concept design. • An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • FMECA studies started on the DEMO divertor mover. - Abstract: The paper describes a concept design of a remote handling (RH) system for replacing divertor cassettes and cooling pipes in future DEMO fusion power plant. In DEMO reactor design important considerations are the reactor availability and reliable maintenance operations. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative designs of the end effector to grip and manipulate the divertor cassette are presented in this work. Both concepts are hydraulically actuated, based on ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. Taking advantage of the ITER RH background and experience, the proposed hydraulic RH system is compared with the rack and pinion system currently designed for ITER and is an object of simulations at Divertor Test Platform (DTP2) in VTT's Labs of Tampere, Finland. Pros and cons will be put in evidence.
Diagnostic options for radiative divertor feedback control on NSTX-U
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.
2012-10-01
A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ≤ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20–30 MW/m^{2}, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic “security” monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).
Diagnostic options for radiative divertor feedback control on NSTX-U.
Soukhanovskii, V A; Gerhardt, S P; Kaita, R; McLean, A G; Raman, R
2012-10-01
A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q(peak) ≤ 15 MW/m(2)), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D(2) or CD(4) gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m(2), are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).
Creep rupture of fiber bundles
DEFF Research Database (Denmark)
Linga, G.; Ballone, P.; Hansen, Alex
2015-01-01
The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40000 particles arranged on Nc=4...
Vector Bundles over Elliptic Fibrations
Friedman, R; Witten, Edward; Friedman, Robert; Morgan, John W.; Witten, Edward
1997-01-01
This paper gives various methods for constructing vector bundles over elliptic curves and more generally over families of elliptic curves. We construct universal families over generalized elliptic curves via spectral cover methods and also by extensions, and then give a relative version of the construction in families. We give various examples and make Chern class computations.
Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor
Takizuka, T.
2017-03-01
Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.
The control of convection by fuelling and pumping in the JET pumped divertor
Energy Technology Data Exchange (ETDEWEB)
Harbour, P.J.; Andrew, P.; Campbell, D.; Clement, S.; Davies, S.; Ehrenberg, J.; Erents, S.K.; Gondhalekar, A.; Gadeberg, M.; Gottardi, N.; Von Hellermann, M.; Horton, L.; Loarte, A.; Lowry, C.; Maggi, C.; McCormick, K.; O`Brien, D.; Reichle, R.; Saibene, G.; Simonini, R.; Spence, J.; Stamp, M.; Stork, D.; Taroni, A.; Vlases, G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
Convection from the scrape-off layer (SOL) to the divertor will control core impurities, if it retains them in a cold, dense, divertor plasma. This implies a high impurity concentration in the divertor, low at its entrance. Particle flux into the divertor entrance can be varied systematically in JET, using the new fuelling and pumping systems. The convection ratio has been estimated for various conditions of operation. Particle convection into the divertor should increase thermal convection, decreasing thermal conduction, and temperature and density gradients along the magnetic field, hence increasing the frictional force and decreasing the thermal force on impurities. Changes in convection in the SOL, caused by gaseous fuelling, have been studied, both experimentally in the JET Mk I divertor and with EDGE2/NIMBUS. 1 ref., 4 figs., 1 tab.
Quantum principal bundles and corresponding gauge theories
Durdevic, M
1995-01-01
A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.
Strategic and welfare implications of bundling
DEFF Research Database (Denmark)
Martin, Stephen
1999-01-01
A standard oligopoly model of bundling shows that bundling by a firm with a monopoly over one product has a strategic effect because it changes the substitution relationships between the goods among which consumers choose. Bundling in appropriate proportions is privately profitable, reduces rival......' profits and overall welfare, and may drive rivals from the market...
Spectroscopic Characterizations of the DIII--D Divertor
Isler, R. C.; Klepper, C. C.; Wood, R. D.; Fenstermacher, M. E.; Leonard, A. W.
1996-11-01
Radiative losses from the DIII--D divertor have been characterized for various types of discharges by making extensive use of vacuum ultraviolet spectral lines in conjunction with a collisional-radiative model. Carbon and hydrogen account for essentially all the emission with the carbon fraction usually between 50% and 80% of the total. Ion densities are estimated from a simplified approach to modeling using a one-dimensional transport code. The concentrations range from 2%--6% of the electron density in partially detached plasmas, but it appears that carbon may supply most of the electrons in the divertor in attached plasmas. Ion temperatures are measured from Doppler broadening of spectral lines after accounting precisely for the Zeeman/Paschen-Back effect. In general, the ion temperatures agree well with the electron temperatures at the location of the radiating ions as deduced from spectral line ratio measurements and from the modeling.
Preparation of the liquid lithium divertor plates for NSTX
Nygren, R. E.; McKee, G. R.; Fordham, J. A.; Lewis, S. A.; Kugel, H.; Ellis, R. A.; Viola, M. E.; O'Dell, J. S.
2011-10-01
Each of the four toroidal panels of the liquid lithium divertor being installed in NSTX for operation in the 2010 campaign is a conical section inclined at 22° like the previous graphite divertor tiles. Each panel is a copper plate clad with stainless steel and a surface layer of porous plasma sprayed molybdenum (Mo) that will host lithium deposited from an evaporator. This paper describes the processes in fabrication; these include cutting to rough shape, die pressing into conical sections, machining to near final shape with holes for electrical heaters, thermocouples and a groove for a cooling tube, brazing of the 0.25-mm cladding and vacuum plasma spraying of the Mo coating.
An automated approach to magnetic divertor configuration design
Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.
2015-01-01
Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.
Progress of ITER full tungsten divertor technology qualification in Japan
Energy Technology Data Exchange (ETDEWEB)
Ezato, K., E-mail: ezato.koichiro@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyma, Naka-shi, Ibaraki (Japan); Suzuki, S.; Seki, Y.; Mohri, K.; Yokoyama, K. [Japan Atomic Energy Agency, 801-1, Mukoyma, Naka-shi, Ibaraki (Japan); Escourbiac, F.; Hirai, T. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Kuznetcov, V. [NIIEFA, 3 doroga na Metallostroy, Metallostroy, St. Petersburg 196641 (Russian Federation)
2015-10-15
Highlights: • JAEA has demonstrated tungsten monoblock technology for ITER divertor that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2}. This includes as follows; • Bonding technologies between W and Cu interlayer, and between Cu interlayer and CuCrZr tube. • Non-destructive examination techniques, especially, ultrasonic testing method, and. • Load carrying capability of W monoblock attachment to support structure of ITER divertor. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology qualification toward full-tungsten (W) ITER divertor outer vertical target (OVT), especially, tungsten monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2}. To demonstrate the armor heat sink bonding technology and heat removal capability, 6 small-scale W monoblock mock-ups manufactured by different bonding technologies using different W materials in addition to 4 full-scale prototype plasma-facing units (PFUs). After non-destructive test, the W components were tested under high heat flux (HHF) in ITER Divertor Test Facility (IDTF) at NIIEFA. Consequently, all of the W monoblocks endured the repetitive heat load at 20 MW/m{sup 2} for 1000 cycles (requirements 20 MW/m{sup 2} for 300 cycles) without any failure. In addition to the armor to heat sink joints, the load carrying capability test on the W monoblock with a leg attachment was carried out. In uniaxial tensile test, all of the W monoblock attachments with different bonding technologies such as brazing and HIPping withstand the tensile load exceeding 20 kN that is the value more than twice the design value. The failures occurred at the leg attachments or the W monoblocks, rather than the bonding interface of the W monoblocks to the leg attachment.
The effect of the magnetic topology on particle recycling in the ergodic divertor of TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Lehnen, M. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany)]. E-mail: m.lehnen@fz-juelich.de; Abdullaev, S.S. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Brezinsek, S. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Finken, K.H. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Harting, D. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Hellermann, M. von [FOM-Rijnhuizen, Association EURATOM-FOM (Netherlands); Jakubowski, M.W. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Jaspers, R. [FOM-Rijnhuizen, Association EURATOM-FOM (Netherlands); Kirschner, A. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Pospieszczyk, A. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Reiter, D. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Samm, U. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Schmitz, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Sergienko, G. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Unterberg, B. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Wolf, R. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany)
2007-06-15
The influence of the divertor geometry of the dynamic ergodic divertor (DED) in TEXTOR on particle recycling is discussed. The geometry can be varied by the choice of the base mode, the edge safety factor and the divertor coil current. The divertor volume is split into the upstream and the downstream area. Strong plasma flows in the downstream area, essential for high screening efficiency, are predicted. The source strength of deuterium and carbon in the downstream area is estimated by using the two-dimensional distribution of D{sub {alpha}} and CIII emission in front of the target. The results are compared to EMC3 and ERO-code calculations.
L-H power threshold studies with tungsten/carbon divertor on the EAST tokamak
DEFF Research Database (Denmark)
Chen, L.; Xu, G. S.; Gao, W.
2016-01-01
The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full...... configuration, with the ion grad-B drift direction away from the primary X-point, a lower normalized power threshold is observed in EAST with the tungsten/carbon divertor, compared to the carbon divertor after intensive lithium wall coating. A newly installed cryopump increasing the pumping efficiency also...
Higher order jet prolongations type gauge natural bundles over vector bundles
Directory of Open Access Journals (Sweden)
Jan Kurek
2004-05-01
Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.
Hybrid formulation of radiation transport in optically thick divertor plasmas
Energy Technology Data Exchange (ETDEWEB)
Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)
2016-08-15
Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)
Multipath packet switch using packet bundling
DEFF Research Database (Denmark)
Berger, Michael Stubert
2002-01-01
The basic concept of packet bundling is to group smaller packets into larger packets based on, e.g., quality of service or destination within the packet switch. This paper presents novel applications of bundling in packet switching. The larger packets created by bundling are utilized to extend...... switching capacity by use of parallel switch planes. During the bundling operation, packets will experience a delay that depends on the actual implementation of the bundling and scheduling scheme. Analytical results for delay bounds and buffer size requirements are presented for a specific scheduling...
Energy Technology Data Exchange (ETDEWEB)
Groth, M., E-mail: mathias.groth@aalto.fi [Aalto University, Association EURATOM-Tekes, Otakaari 4, Espoo (Finland); Brezinsek, S. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Belo, P. [Institute of Plasmas and Nuclear Fusion, Association EURATOM/IST, Lisbon (Portugal); Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Brix, M. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Calabro, G. [Association EURATOM-ENEA, Frascati (Italy); Chankin, A. [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Clever, M.; Coenen, J.W. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Corrigan, G. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Drewelow, P. [Max-Planck-Institute for Plasma Physics, EURATOM Association, Greifswald (Germany); Guillemaut, C. [Association EURATOM CEA, CEA/DSM/IRFM, Cadarache (France); Harting, D. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Huber, A. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Jachmich, S. [Association ‘Euratom-Belgian state’, Ecole Royale Militaire, Brussels (Belgium); Järvinen, A. [Aalto University, Association EURATOM-Tekes, Otakaari 4, Espoo (Finland); Kruezi, U.; Lawson, K.D. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Lehnen, M. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); ITER Organisation, 13115 Saint-Paul-Lez-Durance (France); and others
2015-08-15
Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.
Mathematical modelling for nanotube bundle oscillators
Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.
2009-07-01
This paper investigates the mechanics of a gigahertz oscillator comprising a nanotube oscillating within the centre of a uniform concentric ring or bundle of nanotubes. The study is also extended to the oscillation of a fullerene inside a nanotube bundle. In particular, certain fullerene-nanotube bundle oscillators are studied, namely C60-carbon nanotube bundle, C60-boron nitride nanotube bundle, B36N36-carbon nanotube bundle and B36N36-boron nitride nanotube bundle. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the fullerene and the nanotube bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques which provides considerable insight into the underlying mechanisms. The paper presents a synopsis of the major results derived in detail by the present authors in [1, 2].
Dimensional Measurements of Fresh CANDU Fuel Bundle
Energy Technology Data Exchange (ETDEWEB)
Jun, Ji Su; Jo, Chang Keun; Jung, Jong Yeob; Koo, Dae Seo; Cho, Moon Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
This paper intends to provide the dimensional measurements of fresh CANDU fuel (37-element) bundle for the estimation of deformation of post-irradiated (PI) bundle. It is expensive and difficult to measure the fretting wear of bearing pad, the element bowing and the waviness of endplate at the two-phase high flow condition (above 24 kg/s) of out-of-reactor test. So, it is recommended to compare the geometry of fresh bundle with that of PI bundle to estimate the integrity of fuel bundle in the CANDU-6 fuel channel with two-phase flow condition. The measurement system has been developed to provide the visual inspection and the dimensional measurements within the accuracy of 10 {mu}m. It is applicable in-air and underwater to the CANDU bundle as well as the CANFLEX bundle. The in-air measurements of the 36 fresh CANDU bundles (S/N: B400892 {approx} B400927) are done by this system from February 2004 to March 2004 in the PHWR fresh fuel storage building of KNFC. These bundles are produced by KNFC manufacturing procedure and are waiting for the delivery to the Wolsong-3 plant, and are planned to load into the proposed test channels. The detail measurements contain the outer rod profile (including the bearing pad), the diameter of bundle, the bowing of bundle, the rod length and the surface profile of end plate (waviness)
Investigations on the heat flux and impurity for the HL-2M divertor
Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.
2016-12-01
The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}} = 0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}} = 2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better
Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode
Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team
2016-05-01
Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.
Particle and power deposition on divertor targets in EAST H-mode plasmas
DEFF Research Database (Denmark)
Wang, L.; Xu, G.S.; Guo, H.Y.
2012-01-01
The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons w...
Design study of JT-60SA divertor for high heat and particle controllability
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)], E-mail: kawashima.hisato@jaea.go.jp; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)
2008-12-15
The modification of JT-60 to a fully superconducting coil tokamak, JT-60SA (JT-60 Super Advanced) device, has been programmed to contribute and supplement ITER toward to DEMO. Lower divertor design with the ITER-like lower single null divertor configuration is studied to obtain high heat and particle controllability using SOLDOR/NEUT2D code. With anticipated total power flux into SOL of 37 MW (90% of input power), the peak heat load on outer divertor target can be reduced to 5.8 MW/m{sup 2} at the detached condition by gas puffing in the vertical divertor target with the 'V-shaped corner'. It is {approx}2/5 of the allowable level of 15 MW/m{sup 2}. On the other hand, particle controllability such as control of detached to attached condition by divertor pumping is improved by increase the strike point distance from 20 to 120 mm with above divertor geometry, suggesting that recover from severe detachment at the small distance case can be achieving by elevation of the strike point locations. Optimization of upper divertor design is in progress for high {beta} steady-state operation using upper single null divertor configuration.
General frame structures on quantum principal bundles
Durdevic, M
1996-01-01
A noncommutative-geometric generalization of the classical formalism of frame bundles is developed, incorporating into the theory of quantum principal bundles the concept of the Levi-Civita connection. The construction of a natural differential calculus on quantum principal frame bundles is presented, including the construction of the associated differential calculus on the structure group. General torsion operators are defined and analyzed. Illustrative examples are presented.
ACM Bundles on Del Pezzo surfaces
Directory of Open Access Journals (Sweden)
Joan Pons-Llopis
2009-11-01
Full Text Available ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface X of degree less or equal than six and for any n ≥ 2 we construct a family of dimension ≥ n − 1 of non-isomorphic simple ACM bundles of rank n on X.
Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism
Institute of Scientific and Technical Information of China (English)
SUN; Weniang(孙文祥)
2002-01-01
ALiao hyperbolic diffeomorphism has equal measure entropy and topological entropy to that ofits induced systems on frame bundles and Grassmann bundles. This solves a problem Liao posed in 1996 forLiao hyperbolic diffeomorphisms.
Hydraulic characteristics of HANARO fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)
Thermal Hydraulic Performance of Tight Lattice Bundle
Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki
Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.
Principal $G$-bundles over elliptic curves
Friedman, R; Witten, Edward; Friedman, Robert; Morgan, John W.; Witten, Edward
1997-01-01
Let $G$ be a simple and simply connected complex Lie group. We discuss the moduli space of holomorphic semistable principal $G$-bundles over an elliptic curve $E$. In particular, we give a new proof of a theorem of Looijenga and Bernshtein-Shvartsman, that the moduli space is a weighted projective space. The method of proof is to study the deformations of certain unstable bundles coming from special maximal parabolic subgroups of $G$. We also discuss the associated automorphism sheaves and universal bundles, as well as the relation between various universal bundles and spectral covers.
Statistical Constitutive Equation of Aramid Fiber Bundles
Institute of Scientific and Technical Information of China (English)
熊杰; 顾伯洪; 王善元
2003-01-01
Tensile impact tests of aramid (Twaron) fiber bundles were carried om under high strain rates with a wide range of 0. 01/s～1000/s by using MTS and bar-bar tensile impact apparatus. Based on the statistical constitutive model of fiber bundles, statistical constitutive equations of aramid fiber bundles are derived from statistical analysis of test data at different strain rates. Comparison between the theoretical predictions and experimental data indicates statistical constitutive equations fit well with the experimental data, and statistical constitutive equations of fiber bundles at different strain rates are valid.
Jacobi Structures on Affine Bundles
Institute of Scientific and Technical Information of China (English)
J. GRABOWSKI; D. IGLESIAS; J. C. MARRERO; E. PADR(O)N; P. URBA(N)SKI
2007-01-01
We study affine Jacobi structures (brackets) on an affine bundle π: A→M, i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to- one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A+=∪p∈M Aff(Ap, R) of affine functionals. In the case rank A = 0, it is shown that there is a one-to-one correspondence between affins Jacobi structures on A and local Lie algebras on A+. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited (strongly-affine or affine-homogeneous Jacobi structures) over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These afline Jacobi structures can be viewed as an analog of the Kostant-Arnold-LiouviUe linear Poisson structure on the dual space of a real finite-dimensional Lie algebra.
SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D
Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; Leonard, A. W.; Covele, B.; Lao, L. L.; Moser, A. L.; Thomas, D. M.
2017-02-01
Scrape-off layer plasma simulation modeling has been carried out to assess the effect of tightly closing the lower divertor in DIII-D, which at present is almost fully open, on the achievement of cold dissipative/detached divertor conditions. To isolate the impact of other factors on the divertor plasma solution and to make direct comparisons, most of the parameters including the meshes were kept as similar as possible. Only the neutral baffling was modified to compare a fully open divertor with a tightly closed one. The modeling shows that the tightly closed divertor greatly improves trapping of recycling neutrals, thereby increasing radiative and charge exchange losses in the divertor and reducing the electron temperature T et and deposited power density q dep at the target plate. Furthermore, the closed structure enables the divertor plasma to enter into highly dissipative and detached divertor conditions at a significantly lower upstream density. The effects of divertor closure on the neutral density and pressure, and their correlation with the divertor plasma conditions are also demonstrated. The effect of molecular D2-ion D+ elastic collisions and neutral-neutral collisions on the divertor plasma solution are assessed.
On the W7-X divertor performance under detached conditions
Feng, Y.; Beidler, C. D.; Geiger, J.; Helander, P.; Hölbe, H.; Maassberg, H.; Turkin, Y.; Reiter, D.; W7-X Team
2016-12-01
We present a theoretical/numerical predictive analysis of the performance of the W7-X island divertor under conditions of detachment characterized by intensive radiation. The analysis is based on EMC3-Eirene simulations and the earlier W7-AS experimental and numerical experience. Carbon is employed as a representative radiator. The associated drawbacks, i.e. core contamination and recycling degradation (reduced recycling flux), are evaluated by determining the carbon density at the last closed flux surface (LCFS) and the neutral pressure in the divertor chamber. Optimum conditions are explored in both configuration and plasma parameter space. This study aims to identify the key geometric/magnetic and plasma parameters that affect the performance of detached plasmas in W7-X. Emphasis is placed on what occurs when the islands are enlarged far beyond the maximum size available in W7-AS and whether an island size limit for optimal detachment operation exists, and why. Further issues addressed are the power removal ability of the W7-X edge islands, potentially limiting factors, compatibility between particle and power exhaust, and particle refueling capability of the recycling neutrals.
Spectroscopic characterization of the DIII-D divertor
Isler, R. C.; Wood, R. W.; Klepper, C. C.; Brooks, N. H.; Fenstermacher, M. E.; Leonard, A. W.
1997-02-01
Radiative losses along a fixed view into the divertor chamber of the DIII-D tokamak [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol I, p. 159] have been characterized for attached and partially detached discharges by analyzing line-integrated vacuum ultraviolet (VUV) signals. Essentially all the emission can be ascribed to carbon and deuterium. Because the majority of the most intense lines, which lie at wavelengths above 1100 Å, are not accessible to the present instrumentation, extensive use has been made of collisional-radiative (CR) calculations for level populations of the important ions in order to relate the total radiated power to shorter wavelength transitions. In beam-heated plasmas, the fraction of radiation detected from carbon along the VUV spectrometer view is usually between 50% and 80% of the total. Carbon densities are estimated from a simplified approach to modelling the emission using a one-dimensional transport code. For partially detached plasmas the concentrations range from 2%-6% of the electron density; but in attached plasmas it appears that carbon may supply most of the electrons in the divertor region just below the X point. Ion temperatures are measured from Doppler broadening of spectral lines by fitting measured profiles to theoretical lineshapes, which account precisely for atomic sublevel splitting caused by the Zeeman/Paschen-Back effect in the tokamak magnetic field.
Anatomic Double-bundle ACL Reconstruction
V.M. Schreiber; C.F. van Eck; F.H. Fu
2010-01-01
Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely r
The Verlinde formula for Higgs bundles
Andersen, Jørgen Ellegaard; Pei, Du
2016-01-01
We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of $SU(n)$ proposed previously by the second and third author. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks.
Principal Bundles on the Projective Line
Indian Academy of Sciences (India)
V B Mehta; S Subramanian
2002-08-01
We classify principal -bundles on the projective line over an arbitrary field of characteristic ≠ 2 or 3, where is a reductive group. If such a bundle is trivial at a -rational point, then the structure group can be reduced to a maximal torus.
Motivation and goals of the new heated outer divertor for Alcator C-Mod
Lipschultz, B.; Doody, J.; Ellis, R.; Granetz, R.; Harrison, S.; Labombard, B.; Vieira, R.; Zhang, H.; Zhou, L.
2012-10-01
A precision-aligned, high-temperature outer divertor is being developed for Alcator C-Mod to enhance heatflux handling and to advance our knowledge and experience with high-Z Plasma Facing Components (PFCs) in a reactor-level power density environment. Several departures from the design of the current divertor will be implemented: Instead of 10 toroidal divertor segments that expand toroidally as they heat up, the divertor plate will be toroidally continuous, with no openings or leading edges in the high-heat flux region. It will expand in the radial direction when heated while maintaining good alignment with shallow field line angles (˜ 2 degrees), a requirement for future divertors. Those characteristics will reduce both impurity sources and disruption forces. A second design goal is to be able to control the divertor temperature up to 600^oC by installing heaters in the structure. Given the Arrhenius relation between hydrogen diffusivity and temperature in tungsten (and molybdenum) this will open up a new area of study for tokamaks - exploration of the effect of PFC temperature on fuel retention. Temperature control may also open up a new area of study into the effect of changes in divertor recycling on fueling and core confinement.
Improvement of the divertor bolometer diagnostic in the ASDEX Upgrade tokamak
Energy Technology Data Exchange (ETDEWEB)
Sehmer, Till; Meister, Hans; Bernert, Matthias; Koll, Juergen; Reimold, Felix; Wischmeier, Marco; Fantz, Ursel [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: ASDEX Upgrade Team
2015-05-01
For future fusion devices such as ITER, the radiation balance in the divertor region will have a significant impact on the power exhaust balance. Therefore, scenarios with strongly localized radiation, like radiation in the high field side high density (HFSHD) region, X-Point radiation or radiation in the divertor legs during detachment, will be investigated in the next ASDEX Upgrade (AUG) operation campaign 2015. To obtain accurately the absolute divertor radiation out of these measurements, the AUG foil bolometer diagnostic system in the divertor region has been enhanced; two new cameras have been designed and manufactured. One will be mounted below the roof baffle and contains 28 lines of sight (LOS), which will observe the mentioned regions of particular physical interest. The second camera consists of 4 LOS and will be mounted at the high field side above the inner divertor nose. It will observe radiation arising from the X-Point region and from the outer divertor. The data will be analysed with a tomographic reconstruction algorithm to localize and quantify the divertor radiation.
Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing
Park, Jin-Woo; Na, Yong-Su; Hong, Sang Hee; Ahn, Joon-Wook; Kim, Deok-Kyu; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June
2012-08-01
Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D α emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m2 in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, ˜1.0 × 1020 /s and ˜5.0 × 1018 /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.
Line bundle embeddings for heterotic theories
Nibbelink, Stefan Groot
2016-01-01
In heterotic theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E_8 x E_8 or SO(32) for the supersymmetric heterotic theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
Line bundle embeddings for heterotic theories
Nibbelin, Stefan Groot; Ruehle, Fabian
2016-04-01
In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E8 × E8 or SO(32) for the supersymmetric heterotic string theories and SO(16) × SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
Line bundle embeddings for heterotic theories
Energy Technology Data Exchange (ETDEWEB)
Groot Nibbelink, Stefan [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Ruehle, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-03-15
In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E{sub 8} x E{sub 8} or SO(32) for the supersymmetric heterotic string theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
Composite spinor bundles in gravitation theory
Sardanashvily, G
1995-01-01
In gravitation theory, the realistic fermion matter is described by spinor bundles associated with the cotangent bundle of a world manifold X. In this case, the Dirac operator can be introduced. There is the 1:1 correspondence between these spinor bundles and the tetrad gravitational fields represented by sections of the quotient \\Si of the linear frame bundle over X by the Lorentz group. The key point lies in the fact that different tetrad fields imply nonequivalent representations of cotangent vectors to X by the Dirac's matrices. It follows that a fermion field must be regarded only in a pair with a certain tetrad field. These pairs can be represented by sections of the composite spinor bundle S\\to\\Si\\to X where values of tetrad fields play the role of parameter coordinates, besides the familiar world coordinates.
Requirements for disordered actomyosin bundle contractility
Lenz, Martin
2011-01-01
Actomyosin contractility is essential for biological force generation, and is well understood in highly ordered structures such as striated muscle. In vitro experiments have shown that non-sarcomeric bundles comprised only of F-actin and myosin thick filaments can also display contractile behavior, which cannot be described by standard muscle models. Here we investigate the microscopic symmetries underlying this process in large non-sarcomeric bundles with long actin filaments. We prove that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. A simple disordered bundle model demonstrates a contraction mechanism based on these assumptions and predicts realistic bundle deformations. Recent experimental observations of F-actin buckling in in vitro contractile bundles support our model.
Double Fell bundles and Spectral triples
Martins, Rachel A D
2007-01-01
As a natural and canonical extension of Kumjian's Fell bundles over groupoids \\cite{fbg}, we give a definition for a double Fell bundle (a double category) over a double groupoid. We show that finite dimensional double category Fell line bundles tensored with their dual with $S^o$-reality satisfy the finite real spectral triples axioms but not necessarily orientability. This means that these product bundles with noncommutative algebras can be regarded as noncommutative compact manifolds more general than real spectral triples as they are not necessarily orientable. By construction, they unify the noncommutative geometry axioms and hence provide an algebraic enveloping structure for finite spectral triples to give the Dirac operator $D$ new algebraic and geometric structures that are otherwise missing in the transition from Fredholm operator to Dirac operator. The Dirac operator in physical applications as a result becomes less ad hoc. The new noncommutative space we present is a complex line bundle over a dou...
Energy Technology Data Exchange (ETDEWEB)
Costanzo, L
2001-10-01
The control of power deposition onto plasma facing components in tokamaks is a determining factor for future thermonuclear fusion reactors. Plasma surface interaction can be performed using limiters or divertors. The ergodic divertor installed on Tore Supra is an atypical example of a magnetic divertor. It consists in applying a magnetic perturbation which establishes a particular topology of the plasma in contact with the wall (edge plasma). We carried out dedicated experiments in order to study parallel heat flux which strike the divertor neutralizers. This quantitative and qualitative analysis of heat flux as a function of experimental conditions allows to determine the profiles of power deposition along the neutralizers. The influence of plasma electron density, additional heating, impurities and injected gas was established. An experimental study of the sheath heat transmission factor {gamma} was carried out by correlating measurements made with Langmuir probes and infrared imaging. This study gave rise to a major conclusion: for ohmic discharges with deuterium injection and most of the time with helium, it was experimentally confirmed that {gamma}=7 in agreement with classical sheath theory. However, an increase of this factor with additional power has been shown. Detached plasma, which is an attractive regime in order to reduce the power deposition, requires an optimized control. A new measurement of the detachment onset has been developed. It is based on the variation of heat flux onto the plates derived from infrared measurements. A detachment cartography with the determination of a new 2D 'IR' Degree of Detachment was carried out allowing to locate the zone where the detachment starts. We can apply this concept both to other tokamaks such as JET and ITER. A comparison between the axisymmetric divertor and the ergodic divertor is also presented concerning the power deposition in the two configurations. Low heat flux with the ergodic divertor is a
On Harder–Narasimhan Reductions for Higgs Principal Bundles
Indian Academy of Sciences (India)
Arijit Dey; R Parthasarathi
2005-05-01
The existence and uniqueness of – reduction for the Higgs principal bundles over nonsingular projective variety is shown. We also extend the notion of – reduction for (, )-bundles and ramified -bundles over a smooth curve.
Functional bundles of the medial patellofemoral ligament.
Kang, Hui Jun; Wang, Fei; Chen, Bai Cheng; Su, Yan Ling; Zhang, Zhan Chi; Yan, Chang Bao
2010-11-01
The purpose of this study was to explore the anatomy and evaluate the function of the medial patellofemoral ligament (MPFL). Anatomical dissection was performed on 12 fresh-frozen knee specimens. The MPFL is a condensation of capsular fibers, which originates at the medial femoral condyle. It runs transversely and inserts to the medial edge of the patella. With the landmark of the medial femur epicondyle (MFE), the femoral origination was located: just 8.90 ± 3.27 mm proximally and 13.47 ± 3.68 mm posteriorly to the MFE. The most interesting finding in present study was functional bundles of its patellar insertion. Approximately from the femoral origination point, fibers of the MPFL form two relatively concentrated fiber bundles: the inferior-straight bundle and the superior-oblique bundle. The whole length of each was 71.78 ± 5.51 and 73.67 ± 5.40 mm, respectively. The included angle between bundles was 15.1° ± 2.1°. Although the superior-oblique bundle and the inferior-straight bundle run on the patellar MPFL inferiorly and superiorly, respectively, as their name indicates, the two bundles are not entirely separated, which make MPFL one intact structure. The inferior-straight bundle is the main static soft tissue restraints where the superior-oblique bundle associated with vastus medialis obliquus (VMO) is to serve as the main dynamic soft tissue restraints. So this finding may provide the theoretical foundation for the anatomical reconstruction of the MPFL and shed lights on the future researchers.
Terry, J. L.; Reinke, M. L.
2017-04-01
Some of the key aspects of divertor detachment that are addressed by bolometry, impurity spectroscopy, hydrogen spectroscopy, and measurements of divertor target heat-flux are reviewed. Measurement requirements for these diagnostic areas are defined, and brief descriptions of the techniques used for these diagnostics are given. Examples from the literature of measurements using these tools applied to detachment are presented. Feedback control of detachment using some of these diagnostics as the ‘sensors’ is reviewed. Challenges and some future directions for these diagnostics in the context of studying divertor detachment are described.
A new approach to scaling of the scrape-off layer and divertor plasma in JET
Energy Technology Data Exchange (ETDEWEB)
Harbour, P.J.; Loarte, A.; Clement, S.; De Kock, L.; Jaeckel, H.J.; Lesourd, M.; O' Brien, D.P.; Summers, D.D.R.; Tagle, J.A. (JET Joint Undertaking, Abingdon (United Kingdom))
1992-12-01
An analytical model of the SOL/divertor magnetic geometry is applied to JET. Exponential decay lengths, [lambda], are related to differences in magnetic fluxes and are expressed in terms of [lambda] at midplane. Consistent values of [lambda] are usually obtained from Langmuir probes in the SOL or in the divertor, and with Lyman-[alpha] and Balmer-[alpha] profiles in the divertor. Scaling of [lambda] is presented: It is only slightly affected by
Stability and heating of a poloidal divertor tokamak
Energy Technology Data Exchange (ETDEWEB)
Biddle, A. P.; Dexter, R. N.; Holly, D. T.; Lipschultz, B.; Osborne, T. H.; Prager, S. C.; Shepard, D.A., Sprott, J.C.; Witherspoon, F. D.
1980-06-01
Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a Tokamak with a four node poloidal divertor. First, discharges have been attained with safety factor q as low as 0.6 over most of the column without degradation of confinement, and correlation of helical instability onset with current profile shape is being studied. Second, the axisymmetric instability has been investigated in detail for various noncircular cross-sectional shapes, and results have been compared with a numerical stability code adapted to the Tokapole machine. Third, application of high power fast wave ion cyclotron resonance heating doubles the ion temperature and permits observation of heating as a function of harmonic number and spatial location of the resonance. Fourth, low power shear Alfven wave propagation is underway to test the applicability of this heating method to tokamaks. Fifth, preionization by electron cyclotron heating has been employed to reduce the startup loop voltage by approx. 60%.
Higgs bundles and the real symplectic group
Gothen, Peter B
2011-01-01
We give an overview of the work of Corlette, Donaldson, Hitchin and Simpson leading to the non-abelian Hodge theory correspondence between representations of the fundamental group of a surface and the moduli space of Higgs bundles. We then explain how this can be generalized to a correspondence between character varieties for representations of surface groups in real Lie groups G and the moduli space of G-Higgs bundles. Finally we survey recent joint work with Bradlow, Garc\\'ia-Prada and Mundet i Riera on the moduli space of maximal Sp(2n,R)-Higgs bundles.
Comparison of JET main chamber erosion with dust collected in the divertor
Widdowson, A; Booth, S; Coad, J P; Hakola, A; Heinola, K; Ivanova, S; Koivuranta, S; Likonen, J; Mayer, M; Stamp, M; Contributors, JET-EFDA
2013-01-01
A complete global balance for carbon in JET requires knowledge of the net erosion in the main chamber, net deposition in the divertor and the amount of dust and flakes collecting in the divertor region. This paper describes a number of measurements on aspects of this global picture. Profiler measurements and cross section microscopy on tiles that were removed in the 2009 JET intervention are used to evaluate the net erosion in the main chamber and net deposition in the divertor. In addition the mass of dust and flakes collected from the JET divertor during the same intervention is also reported and included as part of the balance. Spectroscopic measurements of carbon erosion from the main chamber are presented and compared with the erosion measurements for the main chamber.
One dimensional simulation on stability of detached plasma in a tokamak divertor
Energy Technology Data Exchange (ETDEWEB)
Nakazawa, Shinji; Nakajima, Noriyoshi; Okamoto, Masao; Ohyabu, Nobuyoshi [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-06-01
The stability of radiation front in the Scrape-Off-Layer (SOL) of a tokamak is studied with a one dimensional fluid code; the time-dependent transport equations are solved in the direction parallel to a magnetic field line. The simulation results show that stable detached solutions exist, where the plasma temperature near the divertor target is {approx}2 eV. It is found that whenever such stable detached states are attained, the strong radiation front is contact with or at a small distance from the divertor target. When the energy externally injected into the SOL is decreased below a critical value, the radiation front starts to move towards the X-point, cooling the SOL plasma. In such cases, no stationary solutions such that the radiation front rests in the divertor channel are observed in our parameter space. This qualitatively corresponds to the results of tokamak divertor experiments which show the movement of radiation front. (author)
A snowflake divertor: a possible solution to the power exhaust problem for tokamaks
Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.
2012-12-01
This paper summarizes recent progress in the theory of a snowflake divertor, a possible path to reduce both steady-state and intermittent heat loads on the divertor plates to an acceptable level. The most important feature of a SF divertor is the presence of a large zone of a very weak poloidal magnetic field around the poloidal field (PF) null. Qualitative explanation of a variety of new features characteristic of a SF divertor is provided based on simple scaling relations. The main part of the paper is focused on the concept of spreading of the heat flux by curvature-driven convection near the PF null. References to experimental results from the NSTX and TCV tokamaks are provided.
Numerical optimization of tungsten monoblock tile in EAST divertor
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiahua [Harbin Engineering University, Harbin 150001 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ding, Fang, E-mail: fding@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Mao, Hongmin; Luo, Guangnan; Hu, Zhenhua; Xu, Feng; Niu, Guojian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2016-10-15
Highlights: • A method based on Kriging model and Uniform Design is developed and applied to the geometry optimization of EAST W tile. • An optimized chamfering geometry is obtained and significantly reduces the maximum temperature on W monoblock. • The incident angle of plasma flux has a strong impact on the optimized chamfering geometry. - Abstract: The ITER-like tungsten divertor with toroidally symmetric 1 mm × 1 mm chamfers on monoblock tiles has been installed in EAST in 2014. Hot spots were experimentally observed mostly along the toridial facing gaps between two columns of W/Cu monoblock units, which are often aggravated by installation misalignment. These hot spots can significantly degrade the power handling capability of W divertor and need to be alleviated. A numerical optimization model for tile chamfering design is built based on the finite element method (FEM), in which the numerical experiments are designed by the uniform table. The calculation results in ANSYS for these experiments are then processed employing the code Design and Analysis of Computer Experiments (DACE) in which the Kriging method is adopted to reconstruct a response surface. The optimum geometry can be derived from the minimum point on the surface. The results show that, under 200 MW/m{sup 2} parallel heat flux with an inclination angle of 3° with respect to tile surface, the maximum temperature on W tile with a 0.5 mm misalignment can be decreased to 2084 °C by adopting an optimized single-sided chamfer, 1.8 times lower than 1 mm × 1 mm symmetrically chamfered tile. The optimum chamfering geometry has a strong dependence on the inclination angle of plasma flux to tile surface. As a result, the monoblock tiles in a flat cassette module need to be chamfered differently to adapt to the varied inclination angles.
Design study of JT-60SA divertor for high heat and particle controllability
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H.; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency (Japan)
2007-07-01
In steady-state high performance plasma over 41 MW/100 s in the JT-60SA tokamak, the heat and particle flux density on the divertor targets are considerably higher than those of existing devices such as JT-60U. A divertor modeling code, SOLDOR/NEUT2D, has been applied in order to optimiz the JT-60SA divertor design in such conditions. The heat load q{sub heat} on divertor target is estimated for a conceptual divertor design as the first step. Simulation of SOL/divertor plasmas is carried out at lower single null divertor (LSN) configuration with I{sub p}/B{sub t}=3.5 MA/2.5 T. For the present calculation, anticipated SOL power flux of Q{sub total}=35 MW and particle fuelling flux of G{sub ion}=5.10{sup 21}/s (n{sub e-dege}=3.10{sup 19}/m) are applied. The pumping speed (S{sub pump}=50 m{sup 3}/s) is specified by an albedo for neutrals in front of the cryopump set bottom of exhaust chamber. The recycling of deuterium is assumed to be 100% at the first wall. For the first simulation, the carbon contamination in SOL/divertor regions is set to 2% of electron density uniformly. Gas puff flux G{sub puff}=0.5.10{sup 21}/s is introduced from outside midplane. We assume particle diffusion coefficient D=0.3 m{sup 2}/s and thermal diffusivity of electron and ion X{sub e}=X{sub i}=1 m{sup 2}/s. As a result, attached and detached plasma conditions are simulated on outer and inner divertor regions, respectively. The heat load around the outer strike point reaches 31 MW/m{sup 2}, which largely exceeds the allowable range of 15 MW/m{sup 2} for CFC materials. Reduction of heat load must be achieved somehow. An effect of the radiation cooling is simulated to reduce such a large heat load as the second step. To enlarge the radiative cooling, we increased the gas puff flux by a factor of ten and the carbon contamination partly in the outer divertor region from 2% to 4%. It gives a favorable result that the peak heat load is reduced to 12 MW/m{sup 2} with radiation enhancement by a
Beznosov, A. V.; Sherbakov, R. V.; Karatushina, I. V.; Romanov, P. V.
1996-10-01
Experimental investigation of electroinsulating coatings stability on the samples made of stainless stell, vanadium alloy and beryllium has been conducted at 80-350°C. The impact of gas pressure upon the liquid gallium open surface was studied. The stability of electroinsulating film parameters on divertor structure materials was confirmed for the divertor with open liquid metal coolant surface in the vacuum chamber.
Magnetic field models and their application in optimal magnetic divertor design
Energy Technology Data Exchange (ETDEWEB)
Blommaert, M.; Reiter, D. [Institute of Energy and Climate Research (IEK-4), FZ Juelich GmbH, Juelich (Germany); Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Leuven (Belgium); Heumann, H. [TEAM CASTOR, INRIA Sophia Antipolis (France); Marandet, Y.; Bufferand, H. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Gauger, N.R. [TU Kaiserslautern, Chair for Scientific Computing, Kaiserslautern (Germany)
2016-08-15
In recent automated design studies, optimal design methods were introduced to successfully reduce the often excessive heat loads that threaten the divertor target surface. To this end, divertor coils were controlled to improve the magnetic configuration. The divertor performance was then evaluated using a plasma edge transport code and a ''vacuum approach'' for magnetic field perturbations. Recent integration of a free boundary equilibrium (FBE) solver allows to assess the validity of the vacuum approach. It is found that the absence of plasma response currents significantly limits the accuracy of the vacuum approach. Therefore, the optimal magnetic divertor design procedure is extended to incorporate full FBE solutions. The novel procedure is applied to obtain first results for the new WEST (Tungsten Environment in Steady-state Tokamak) divertor currently under construction in the Tore Supra tokamak at CEA (Commissariat a l'Energie Atomique, France). The sensitivities and the related divertor optimization paths are strongly affected by the extension of the magnetic model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Evaluation of heat and particle controllability on the JT-60SA divertor
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H., E-mail: kawashima.hisato@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m{sup 2}. Dependence of the heat flux mitigation on a D{sub 2} gas-puff is evaluated by SONIC simulations for high density (n{sub e{_}ave} {approx} 1 x 10{sup 20} m{sup -3}) high current plasmas. It is found that the peak heat load 10 MW/m{sup 2} with dense (n{sub ed} > 4 x 10{sup 20} m{sup -3}) and cold (T{sub ed}, T{sub id} {<=} 1 eV) divertor plasmas are obtained at a moderate gas-puff of {Gamma}{sub puff} = 15 x 10{sup 21} s{sup -1}. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m{sup 3}/s. In full non-inductive current drive plasmas with low density (n{sub e{_}ave} {approx} 5 x 10{sup 19} m{sup -3}), the reduction of divertor heat load is achieved with the Ar injection.
Favorable effects of turbulent plasma mixing on the performance of innovative tokamak divertors
Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.
2013-10-01
The problem of reducing the heat load on plasma-facing components is one of the most demanding issues for MFE devices. The general approach to the solution of this problem is the use of a specially configured poloidal magnetic field, so called magnetic divertors. In recent years, novel divertors possessing the 2-nd and 3-rd order nulls of the poloidal field (PF) have been proposed. They are called a ``snowflake'' (SF) and a ``cloverleaf'' (CL) divertor, respectively, due to characteristic shape of the magnetic separatrix. Among several beneficial features of such divertors is an effect of strong turbulent plasma mixing that is intrinsic to the zone of weak PF near the null-point. The turbulence spreads the heat flux between multiple divertor exhaust channels and increases the heat flux width within each channel. Among physical processes affecting the onset of convection the curvature-driven mode of axisymmetric rolls is most prominent. The effect is quite significant for the SF and is even stronger for the CL divertor. Projections to future ITER-scale facilities are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
Critical need for MFE: the Alcator DX advanced divertor test facility
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.
2013-10-01
Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.
Institute of Scientific and Technical Information of China (English)
YU Wei-dong; YAN Hao-jing; Ron Postle; Yang Shouren
2002-01-01
Due to the effects of samples and testing conditions on fibre-bundle tensile behaviour, it is necessary to investigate the relationships between experimental factors and tensile properties for the fibre-bumdle tensile tester (TENSOR). The effects of bundle sample preparation, fibre bundle mass and fibre alignment have been tested. The experimental results indicated that (1) the low damage in combing and no free-end fibres in the cut bundle are most important for the sample preparation; (2) the reasonable bundle mass is 400- 700tex, but the tensile properties measured should bemodified with the bundle mass because a small amount of bundle mass causes the scatter results, while the larger is the bundle mass, the more difficult to comb fibres parallel and to clamp fibre evenly; and (3) the fibre irregular arrangement forms a slack bundle resulting in interaction between fibres, which will affect the reproducibility and accuracy of the tensile testing.
Liquid Flow in Shaped Fiber Bundle
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; WANG Hua-ping; CHEN Yue-hua
2006-01-01
By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is introduced to investigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.
Bundled Hybrid Offset Riser Global Strength Analysis
Institute of Scientific and Technical Information of China (English)
William C.Webster; Zhuang Kang; Wenzhou Liang; Youwei Kang; Liping Sun
2011-01-01
Bundled hybrid offset riser(BHOR)global strength analysis,which is more complex than single line offset riser global strength analysis,was carried out in this paper.At first,the equivalent theory is used to deal with BHOR,and then its global strength in manifold cases was analyzed,along with the use of a three-dimensional nonlinear time domain finite element program.So the max bending stress,max circumferential stress,and max axial stress in the BHOR bundle main section(BMS)were obtained,and the values of these three stresses in each riser were obtained through the "stress distribution method".Finally,the Max Von Mises stress in each riser was given and a check was made whether or not they met the demand.This paper provides a reference for strength analysis of the bundled hybrid offset riser and some other bundled pipelines.
Noncommutative principal bundles through twist deformation
Aschieri, Paolo; Pagani, Chiara; Schenkel, Alexander
2016-01-01
We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf-Galois extensions as twists of Hopf-Galois extensions. A sheaf approach is also considered, and examples presented.
Mobility of Taxol in Microtubule Bundles
Ross, J.
2003-06-01
Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching (FRAP) on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With > 63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k_{off}. It was found that 10*k_{off} (GMPCPP) ~ k_{off} (GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With taxol along the microtubule interior is hindered by rebinding events when open sites are within ~7 nm of each other.
Energy deposition onto HL-2A divertor plates in ELMy H-mode discharges using infrared thermography
Energy Technology Data Exchange (ETDEWEB)
Gao, J.M., E-mail: gaojm@swip.ac.cn; Li, W.; Liu, Y.; Ji, X.Q.; Cheng, J.; Dong, Y.B.; Chen, C.Y.; Feng, B.B.; Lu, J.; Yi, P.; Yang, Q.W.
2015-08-15
Using infrared (IR) thermography, power loads onto the divertor plates have been investigated in ELMy H-mode plasmas on HL-2A. In the ELMy H-mode discharges, ELMs are the largest contributors to the divertor target energy load. Analysis of energy balance shows that up to 45% of the energy losses are deposited onto the divertor targets during ELMs and about 30% are found as plasma radiation. Moreover, divertor heat flux mitigation has been achieved during an ELMy H-mode phase by using Supersonic Molecular Beam Injection (SMBI), characterized by a sharp increase of ELM frequency and a reduction in peak heat flux. The increased plasma radiation energy losses, especially the doubled plasma radiation in the divertor region, should be responsible for the reduction of integrated energy deposition onto divertor targets.
Supporting the Secure Deployment of OSGi Bundles
Parrend, Pierre; Frénot, Stéphane
2007-01-01
International audience; The OSGi platform is a lightweight management layer over a Java virtual machine that makes runtime extensi- bility and multi-application support possible in mobile and constraint environments. This powerfull capability opens a particular attack vector against mobile platforms: the in- stallation of malicious OSGi bundles. The first countermea- sure is the digital signature of the bundles. We developed a tool suite that supports the signature, the publication and the va...
A Geometric Approach to Noncommutative Principal Bundles
Wagner, Stefan
2011-01-01
From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.
Is It Complete Left Bundle Branch Block? Just Ablate the Right Bundle.
Ali, Hussam; Lupo, Pierpaolo; Foresti, Sara; De Ambroggi, Guido; Epicoco, Gianluca; Fundaliotis, Angelica; Cappato, Riccardo
2017-03-01
Complete left bundle branch block (LBBB) is established according to standard electrocardiographic criteria. However, functional LBBB may be rate-dependent or can perpetuate during tachycardia due to repetitive concealed retrograde penetration of impulses through the contralateral bundle "linking phenomenon." In this brief article, we present two patients with basal complete LBBB in whom ablating the right bundle unmasked the actual antegrade conduction capabilities of the left bundle. These cases highlight intriguing overlap between electrophysiological concepts of complete block, linking, extremely slow, and concealed conduction.
Twisted Bundle on Noncommutative Space and U(1) Instanton
Ho, P M
2000-01-01
We study the notion of twisted bundles on noncommutative space. Due to theexistence of projective operators in the algebra of functions on thenoncommutative space, there are twisted bundles with non-constant dimension.The U(1) instanton solution of Nekrasov and Schwarz is such an example. As amathematical motivation for not excluding such bundles, we find gaugetransformations by which a bundle with constant dimension can be equivalent toa bundle with non-constant dimension.
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.
2016-12-01
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.
LWR nuclear fuel bundle data for use in fuel bundle handling
Energy Technology Data Exchange (ETDEWEB)
Weihermiller, W.B.; Allison, G.S.
1979-09-01
Although increasing numbers of spent light water reactor (LWR) fuel bundles are moved into storage, no handling equipment is set up to manipulate all of the various types of fuel bundles. This report summarizes fuel bundle information of interest to the designer of such handling equipment. Dimensional descriptions are included with discussions of assembly procedure and manufacturer provisions for handling equipment. No attempt is made to make a complete compilation of dimensional information; the number of fuel bundle designs and design revisions makes it impractical. Because the fuel bundle designs are so varied, any equipment intended for handling all types of bundles will have to be designed with flexibility in mind. Besides the ability to manipulate fuel bundles in space, handling equipment may be required to locate an external surface or to position a cutting operation to avoid breaking a fuel rod pressure boundary. Even with the most sophisticated and flexible handling equipment, some situations will require use of the manufacturers' as-built descriptions of individual fuel bundles.
The histology of retinal nerve fiber layer bundles and bundle defects.
Radius, R L; Anderson, D R
1979-05-01
The fiber bundle striations recognized clinically in normal monkey eyes appear to be bundles of axons compartmentalized within glial tunnels formed by Müller's-cell processes, when viewed histologically. The dark boundaries that separate individual bundles are the broadened foot endings of these cells near the inner surface of the retina. Within one week after focal retinal photocoagulation, characteristic fundus changes could be seen in experimental eyes. In histologic sections of the involved retina, there was marked cystic degeneration of the retinal nerve fiber layer. Within one month, atrophy of distal axon segments was complete. With the drop-out of damaged axons and thinning of individual fiber bundles, retinal striations became less prominent. The resulting fundus picture in these experimental eyes is similar to fiber bundle defects that can be seen clinically in various neuro-ophthalmic disorders.
Current understanding of divertor detachment: experiments and modelling
Energy Technology Data Exchange (ETDEWEB)
Wischmeier, W; Groth, M; Kallenbach, A; Chankin, A; Coster, D; Dux, R; Herrmann, A; Muller, H; Pugno, R; Reiter, D; Scarabosio, A; Watkins, J; Team, T D; Team, A U
2008-05-23
A qualitative as well as quantitative evaluation of experimentally observed plasma parameters in the detached regime proves to be difficult for several tokamaks. A series of ohmic discharges have been performed in ASDEX Upgrade and DIII-D at similar as possible plasma parameters and at different line averaged densities, {bar n}{sub e}. The experimental data represent a set of well diagnosed discharges against which numerical simulations are compared. For the numerical modeling the fluid-code B2.5 coupled to the Monte Carlo neutrals transport code EIRENE is used. Only the combined enhancement of effects, such as geometry, drift terms, neutral conductance, increased radial transport and divertor target composition, explains a significant fraction of the experimentally observed asymmetries of the ion fluxes as a function of {bar n}{sub e} to the inner and outer target plates in ASDEX Upgrade. The relative importance of the mechanisms leading to detachment are different in DIII-D and ASDEX Upgrade.
Tokamak edge Er studies by turbulence and divertor simulations
Nishimura, Y.; Coster, D.; Scott, B.
2002-11-01
Numerical coupling of the divertor code B2(B. J. Braams, Next European Torus Technical Report 68 (1987).) and the turbulence code DALF(B. D. Scott, Phys. Fluids B 4), 2468 (1992). is pursued. Within this model, space and time dependent transport coefficients (D and i) respond to the dynamics of drift wave turbulence. The Braginskii transport model of the B2 code incorporates guiding-center plasma drifts self-consistently and generate Er shear in the presence of steep pressure gradients. This Braginskii type Er can enter the turbulence model as a background E × B shear flow which suppresses the radial flux together with Reynolds stress induced electric fields. As an example of L-H transition, influx at the core boundary is controlled to produce steepening of the edge gradients. ( Y.Hamada et al.), in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA-F1-CN-69/PD, 1998) reveals heat pulse induced L-H transitions after sawtooth events.
Response of NSTX liquid lithium divertor to high heat loads
Energy Technology Data Exchange (ETDEWEB)
Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)
2013-07-15
Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.
Pulse plasma sintering of a tungsten/steel divertor module
Energy Technology Data Exchange (ETDEWEB)
Kruszewski, Mirosław J., E-mail: m.kruszewski@inmat.pw.edu.pl; Ciupiński, Łukasz; Rosiński, Marcin; Michalski, Andrzej; Kurzydłowski, Krzysztof J.
2013-10-15
Highlights: • W/WL10 and WL10/steel joints were fabricated via pulse plasma sintering. • Fe interlayer successfully compensated thermal stresses at the WL10/steel joint. • Maximum temperature of a single stage sintering of the module was established. • Better accuracy in machining of W and WL10 elements is needed. -- Abstract: The paper presents the preliminary evaluation of the potential of a pulse plasma sintering (PPS) technique for the fabrication of a He-cooled modular divertor with a multiple-jet cooling module. In this work the W and WL10 elements were directly bonded by PPS. Examination of the microstructure revealed some minor defects at the interface, but the overall quality of the joint was good with no cracks or delamination being detected. To reduce the thermal stress gradient a thin transition layer of iron was used at the WL10/steel interface. In addition an attempt was made to fabricate the complete module by a single sintering process. The microstructures of the fabricated modules were examined and the findings were reported.
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
Copper matrix composites as heat sink materials for water-cooled divertor target
Directory of Open Access Journals (Sweden)
Jeong-Ha You
2015-12-01
Full Text Available According to the recent high heat flux (HHF qualification tests of ITER divertor target mock-ups and the preliminary design studies of DEMO divertor target, the performance of CuCrZr alloy, the baseline heat sink material for DEMO divertor, seems to only marginally cover the envisaged operation regime. The structural integrity of the CuCrZr heat sink was shown to be affected by plastic fatigue at 20 MW/m². The relatively high neutron irradiation dose expected for the DEMO divertor target is another serious concern, as it would cause significant embrittlement below 250 °C or irradiation creep above 350 °C. Hence, an advanced design concept of the divertor target needs to be devised for DEMO in order to enhance the HHF performance so that the structural design criteria are fulfilled for full operation scenarios including slow transients. The biggest potential lies in copper-matrix composite materials for the heat sink. In this article, three promising Cu-matrix composite materials are reviewed in terms of thermal, mechanical and HHF performance as structural heat sink materials. The considered candidates are W particle-reinforced, W wire-reinforced and SiC fiber-reinforced Cu matrix composites. The comprehensive results of recent studies on fabrication technology, design concepts, materials properties and the HHF performance of mock-ups are presented. Limitations and challenges are discussed.
Characterizing the DIII-D divertor conditions during the tungsten ring experiment
Barton, J. L.; Watkins, J. G.; Wang, H. Q.; Nygren, R. E.; McLean, A.; Makowski, M.; Unterberg, E.; Thomas, D. M.; Guo, H. Y.; Guterl, J.; Buchenauer, B.
2016-10-01
Tungsten (W) is the leading divertor material in tokamaks, but the core W impurity fraction must be kept below 5 ×10-5 in a reactor. The DIII-D tokamak, having all graphite PFCs, has done a series of experiments with two W-coated molybdenum rings in the lower divertor to track W migration after plasma exposure. We characterize the divertor plasma conditions at the DIII-D target plate in L- and ELMing H-mode, and ELM suppressed plasmas. We will present data from an array of Langmuir probes in the divertor and divertor Thomson-scattering. We also compare the heat flux from fast thermocouples (7.5 mm below the surface of the metal tile inserts) and IRTV heat flux profiles from graphite tiles. The plasma conditions will be used to benchmark ERO modeling to aid in understanding the migration of sputtered W onto other plasma facing surfaces and will be compared to post exposure W distribution measured on the graphite tiles. Supported by US DOE under DE-AC04-94AL85000, DE-FC02-04ER54698, DE-AC05-000R22725, and DE-AC52-07NA27344.
Investigation of power spreading in a tokamak divertor using numerical tools
Energy Technology Data Exchange (ETDEWEB)
Hoppe, Felix; Scarabosio, Andrea; Wischmeier, Marco [Max-Planck Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: ASDEX Upgrade Team
2013-07-01
Divertors are widely used in today's fusion devices in order to reduce plasma core impurities and improve energy confinement. As the divertor targets are exposed to the largest part of the particle and heat loads reaching the wall, these loads must be reduced to prevent material damage. An enhancement of the plasma-wetted area on the targets is one approach. In low density plasmas, the plasma-wetted area is mainly given by the width of the scrap-off-layer (SOL) plasma at the divertor entrance, modified by heat diffusion into the private flux region (PFR) in the divertor. The heat diffusion broadens the heat flux profile at the targets. This can be approximated by a convolution of the upstream profile with a Gaussian of width S. The SOLPS5.0 code package is used to study the influence of divertor geometry and neutral pressure on S. The code is then validated by comparing the numerical results to the experimental findings in the ASDEX Upgrade tokamak.
Numerical analyses of JT-60SA tokamak with tungsten divertor by COREDIV code
Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Zagórski, R.; Neu, R.; Romanelli, M.; Nakano, T.
2017-04-01
An analysis of radiative power exhaust for the JT-60SA tokamak with a tungsten divertor is performed with the help of the self-consistent, core-edge integrated COREDIV code. Two scenarios of operation (low and high density) were investigated in the scope of different parameters (electron density at the separatrix and the perpendicular transport in the scrape-off layer) with impurity seeding (Ne and Kr). The calculations show that in the case of the tungsten divertor the power load to the divertor plate is mitigated and the central plasma dilution is smaller compared to the carbon divertor. In the most cases the energy flux through the separatrix is above the L–H transition threshold. For the high density case with neon seeding operation in full detachment mode is observed. Changing the diffusion coefficient in the SOL has a strong influence on the result of the calculations as increased radial transport causes stronger screening effect. Also by changing the electron density on the separatrix the influx of heavy impurities (W, Kr) into the core region can be reduced. The results demonstrate that it is easier to achieve sustainable conditions in the divertor region for the high density scenario, whereas for the low density one reducing the auxiliary heating power seems unavoidable to prevent damaging of the target plate, even for strong seeding gas influx.
Divertor ExB and Parallel Flows on the DIII-D Tokamak
Boedo, J.; Rudakov, D.
2016-10-01
E ×B convection is an important particle transport mechanism responsible for up to 50 % of the total particle flux into the divertor, changing direction with B, and playing a role in divertor asymmetries. The gradient of the plasma potential, Vp =Vf + 2.5Te , reaches 5 kV/m across the SOL-private boundary, causing a poloidal particle flux, calculated as, Γθ = 2 πRne (Vp 1 -Vp 2) /BT , (along flux surfaces) of about 1022 s-1 , comparable to the target flow of 2 ×1022 s-1 , and consistent with previous work. Floating potential Vf, temperature Te, density Ne, and D+ flow were measured in the DIII-D divertor. The data will be compared to simulations by SOLPS and UEDGE. The D+ parallel flow velocity, V ∥ , calculated by multiplying the Mach number by the local sound speed cs =(γ ZkTe /mi) 1 / 2 show increasing velocity towards the plate in attached conditions and bulk sonic flows over the whole detached region in detached conditions. We compare measurements in the divertor to similar measurements made at the midplane to show how divertor conditions reflect upstream. Supported under USDOE Grant DE-FC02-04ER54698.
Tangent bundle formulation of a charged gas
Sarbach, Olivier
2013-01-01
We discuss the relativistic kinetic theory for a simple, collisionless, charged gas propagating on an arbitrary curved spacetime geometry. Our general relativistic treatment is formulated on the tangent bundle of the spacetime manifold and takes advantage of its rich geometric structure. In particular, we point out the existence of a natural metric on the tangent bundle and illustrate its role for the development of the relativistic kinetic theory. This metric, combined with the electromagnetic field of the spacetime, yields an appropriate symplectic form on the tangent bundle. The Liouville vector field arises as the Hamiltonian vector field of a natural Hamiltonian. The latter also defines natural energy surfaces, called mass shells, which turn out to be smooth Lorentzian submanifolds. A simple, collisionless, charged gas is described by a distribution function which is defined on the mass shell and satisfies the Liouville equation. Suitable fibre integrals of the distribution function define observable fie...
Twistor bundle theory and its application
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Over an oriented even dimensional Riemannian manifold (M2m, ds2), in terms of the Levi-Civita connection form Ω and the canonical form Θ on the bundle of positive or→ J+(M, ds2) → M. The integrability on an almost complex structure J compatible with the metric and the orientation, is shown to be equivalent to the fact that the corresponding cross section of the twistor bundle is holomorphic with respect to J and the canonical almost complex structure J1 on J+(M, ds2), by using moving frame theory. Moreover, for various metrics and a fixed orientation on M, a canonical bundle isomorphism is established. As a consequence, we generalize a celebrated theorem of LeBrun.
Abelian conformal field theory and determinant bundles
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Ueno, K.
2007-01-01
Following [10], we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [14, 16]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections...... are up to a scale the same as the curvature of the connections constructed in [14, 16]. We study the sewing construction for nodal curves and its explicit relation to the constructed connections. Finally we construct preferred holomorphic sections of these line bundles and analyze their behaviour near...
Classical Higgs fields on gauge gluon bundles
Directory of Open Access Journals (Sweden)
Palese Marcella
2016-01-01
Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.
Elmore, S; Kirk, A; Thornton, A J; Harrison, J R; Tamain, P; Kocan, M; Bradley, J W
2013-01-01
Knowledge of the ion temperature (Ti) is of key importance for determining heat fluxes to the divertor and plasma facing components, however data regarding this is limited compared to electron temperature (Te) data. Ti measurements at the divertor target, between edge-localised modes (inter-ELM) H-mode, have been made using a novel retarding field energy analyser (RFEA).
Design and optimization of W/Cu divertor mock-ups
Institute of Scientific and Technical Information of China (English)
Qiong Li; Weiping Shen
2007-01-01
Tungsten is a promising candidate for plasma-facing materials to cover the surface of the divertor plate in the design of an international thermonuclear experimental reactor (ITER). Copper as a heat sink material serves to transfer heat excellently. Divertor mock-ups with W/Cu graded interlayers were designed to reduce thermal stresses. Thermally induced stresses and temperature in a W/Cu divertor mock-up were analyzed using the finite element method. The graded structures with different exponents p and thicknesses were designed and discussed. The conclusions drawn from these analyses are that thermal stresses reach the minimum and the temperature is suitable when exponent p is 1.5 and the thickness of five graded interlayers is 5 mm.
Analysis of FAST snowflake divertor by EDGE2D/EIRENE
Energy Technology Data Exchange (ETDEWEB)
Viola, B., E-mail: bruno.viola@enea.it [ENEA Unità Tecnica Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Pericoli Ridolfini, V. [Consorzio CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Visona, N. [Consorzio RFX, C.so Stati Uniti 4, Padova 35127 (Italy); Corrigan, G.; Harting, D. [Culham Centre of Fusion Energy, OX14 3DB Abingdon (United Kingdom); Maddaluno, G. [ENEA Unità Tecnica Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Zagórski, R. [Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw (Poland)
2015-08-15
The snowflake [1,2] divertor is a proposal for solving the heat and particle exhaust problem in fusion grade plasmas. Turning the X-point into a second order null gives the possibility of radially expanding the poloidal flux in the divertor region much more than in a SD, increasing the connection length, redistributing the power load on a larger area and enhancing radiative losses. Since the efforts associated to the design of reactor-relevant configurations, like the snowflake, are large, ENEA is studying this configuration using efficient and flexible numerical tools to design and optimise tokamak equilibrium configurations. Such studies are applied to the Divertor Test Tokamak FAST, a satellite tokamak proposed for the European roadmap towards fusion.
Divertor with a third-order null of the poloidal field
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
2013-09-15
A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, the configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.
Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR
Energy Technology Data Exchange (ETDEWEB)
Bak, J.G., E-mail: jgbak@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, H.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Bae, M.K. [Hanyang University, Seoul (Korea, Republic of); Juhn, J.W.; Seo, D.C.; Bang, E.N. [National Fusion Research Institute, Daejeon (Korea, Republic of); Shim, S.B. [Pusan National University, Pusan (Korea, Republic of); Chung, K.S. [Hanyang University, Seoul (Korea, Republic of); Lee, H.J. [Pusan National University, Pusan (Korea, Republic of); Hong, S.H. [National Fusion Research Institute, Daejeon (Korea, Republic of)
2015-08-15
The upstream scrape-off layer (SOL) profiles and downstream particle fluxes are measured with a fast reciprocating Langmuir probe assembly (FRLPA) at the outboard mid-plane and a fixed edge Langmuir probe array (ELPA) at divertor region, respectively in the KSTAR. It is found that the SOL has a two-layer structure in the outboard wall-limited (OWL) ohmic and L-mode: a near SOL (∼5 mm zone) with a narrow feature and a far SOL with a broader profile. The near SOL width evaluated from the SOL profiles in the OWL plasmas is comparable to the scaling for the L-mode divertor plasmas in the JET and AUG. In the SOL profiles and the divertor particle flux profile during the ELMy H-modes, the characteristic e-folding lengths of electron temperature, plasma density and particle flux during an ELM phase are about two times larger than ones at the inter ELM.
Fast Identification of Recycling Properties of Wall-Released Hydrogenic Neutrals in Divertor Plasma
Institute of Scientific and Technical Information of China (English)
LI Chengyue; DENG Baiquan; YAN Jiancheng; G. A. EMMERT
2007-01-01
A new bipartition neutral transport model was developed for quick identification of the recycling properties of the wall-released hydrogenic neutral particles in the vicinity of the divertor target plate. Based on this model, the numerical calculation results are fairly consistent with the results obtained with the 'multi-generation method'. This model can not only be utilized to provide a source term from neutral transport calculations for the B2 edge plasma transport code, which has been used to simulate edge plasma transport of an HL-2A divertor configuration, but can also be specifically applied for fast classification of the divertor plasma as high recycling or low recycling. Our results also show that the transmissivity is lower in the high-recycling regime.
New bipartition model of neutral particle transport in the HL-2A divertor region
Institute of Scientific and Technical Information of China (English)
DENG Bai-quan; YAN Jian-cheng; PENG Li-lin
2005-01-01
A new bipartition neutral transport model has been developed for simulation of the hydrogenic neutral particle transport in the vicinity of HL-2A divertor target plate. The numerical calculation results on the basis of this model are fairly consistent with the results obtained with the "multi-generation method". One possible application of this model is to provide a source term originating from neutral transport calculation for any other edge plasma transport code, for instance, B-2 code, which has been used to simulate edge plasma transport of the HL-2A divertor configuration. Especially it can be utilized to quickly classify the plasma in divertor region as high or low recycling regime.
Energy Technology Data Exchange (ETDEWEB)
Di Gironimo, Giuseppe, E-mail: giuseppe.digironimo@unina.it [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Cacace, Maurizio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Crescenzi, Fabio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Labate, Carmelenzo [CREATE, University of Naples Parthenope, Via Acton 38, 80133 Napoli (Italy); Lanzotti, Antonio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Lucca, Flavio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Marzullo, Domenico; Mozzillo, Rocco [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Pagani, Irene [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, Giuseppe; Roccella, Selanna [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Viganò, Fabio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)
2015-10-15
Highlights: • The conceptual design of FAST divertor has been carried out through a continuous process of requirements refinement and design optimization (V-model approach), in order to achieve a design suited to the needs, RH compatible and ITER-like. • Thermal, structural and electromagnetic analyses have been performed, resulting in requirements refinement. • FAST divertor is now characterized by more realistic, reliable and functional features, satisfying thermo-mechanical capabilities and the remote handling (RH) compatibility. - Abstract: Divertor is a crucial component in Tokamaks, aiming to exhaust the heat power and particles fluxes coming from the plasma during discharges. This paper focuses on the optimization process of FAST divertor, aimed at achieving required thermo-mechanical capabilities and the remote handling (RH) compatibility. Divertor RH system final layout has been chosen between different concept solutions proposed and analyzed within the principles of Theory of Inventive Problem Solving (TRIZ). The design was aided by kinematic simulations performed using Digital Mock-Up capabilities of Catia software. Considerable electromagnetic (EM) analysis efforts and top-down CAD approach enabled the design of a final and consistent concept, starting from a very first dimensioning for EM loads. In the final version here presented, the divertor cassette supports a set of tungsten (W) actively cooled tiles which compose the inner and outer vertical targets, facing the plasma and exhausting the main part of heat flux. W-tiles are assembled together considering a minimum gap tolerance (0.1–0.5 mm) to be mandatorily respected. Cooling channels have been re-dimensioned to optimize the geometry and the layout of coolant volume inside the cassette has been modified as well to enhance the general efficiency.
Design of a diagnostic residual gas analyzer for the ITER divertor
Energy Technology Data Exchange (ETDEWEB)
Klepper, C.C., E-mail: kleppercc@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Biewer, T.M.; Graves, V.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Andrew, P. [ITER Organisation, Route de Vinon-sur-Verdon, 13067 St. Paul-lez-Durance (France); Lukens, P.C. [US ITER Project Office, 1055 Commerce Park Dr #1, Oak Ridge, TN 37830 (United States); Marcus, C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Shimada, M., E-mail: shimada.michiya@jaea.go.jp [ITER Organisation, Route de Vinon-sur-Verdon, 13067 St. Paul-lez-Durance (France); Hughes, S.; Boussier, B. [ITER Organisation, Route de Vinon-sur-Verdon, 13067 St. Paul-lez-Durance (France); Johnson, D.W. [US ITER Diagnostics Office, Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); Gardner, W.L. [US ITER Project Office, 1055 Commerce Park Dr #1, Oak Ridge, TN 37830 (United States); Hillis, D.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Vayakis, G.; Walsh, M. [ITER Organisation, Route de Vinon-sur-Verdon, 13067 St. Paul-lez-Durance (France)
2015-10-15
Highlights: • The divertor DRGA for ITER will measure neutral gas composition in the pumping ducts during plasma. • System must respond in timescales relevant to compositional changes in the divertor plasma. • It is shown that times can vary from 1 to 6 s for fuel (H2, D2, T2) up to 50 s for He (fusion reaction ash). • It is shown that present design delivers ∼ 1 s response even via an 8m long sampling pipe sampling. • Response time validated with VacTran{sup ®} over anticipated the 0.1–10 Pa pressure range in the ducts. - Abstract: One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (mainly in the form of diatomic molecules of H, D, and T). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N{sub 2}), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (∼8 m long, ∼110 mm diameter) sampling pipe originating from a pressure reducing orifice, confirm that the desired response time (∼1 s for He or D{sub 2}) is achieved with the present design.
Status of design and experimental activity on module of lithium divertor for KTM tokamak
Energy Technology Data Exchange (ETDEWEB)
Lyublinski, Igor E., E-mail: lyublinski@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Vertkov, Alexey V.; Zharkov, Mikhail Yu.; Semenov, Vladimir V. [JSC “Red Star”, Moscow (Russian Federation); Mirnov, Sergey V.; Lazarev, Vladimir B. [GSC RF TRINITI, Troitsk, Moscow Region (Russian Federation); Tazhibayeva, Irina L.; Shapovalov, Gennadiy V.; Kulsartov, Timur V.; D’yachenko, Alexandr V. [IAE of National Nuclear Center, Kurchatov (Kazakhstan); Mazzitelli, Giuseppe [Associazione EURATOM-ENEA sulla Fusione, C.R. ENEA Frascati, Rome (Italy); Agostini, Pietro [ENEA Brasimone, Camugnano, BO (Italy)
2013-10-15
Highlights: • Lithium divertor module based on capillary-porous system is created for KTM tokamak. • The hydraulic tests of lithium divertor module were conducted. • The results were compared with the calculation data. • The analysis of results’ discrepancies was conducted. • The lithium divertor module is ready for tests on KTM tokamak. -- Abstract: The projects of ITER and DEMO reactors showed that there are serious difficulties with solving the issues of plasma facing elements (PFE) based on the solid materials. Problems of PFE can be overcome by the use of liquid lithium. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) – new material, in which liquid lithium fills a solid matrix from porous material. The progress in development of lithium technology and also lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, LTX, HT-7 and stellarator TJ II is a good basis for development of the project of steady-state operating lithium divertor module for Kazakhstan tokamak. At present the lithium divertor module for KTM tokamak is development and manufacturing. The paper describes main design features of the module of lithium divertor (MLD). The first step of the hydraulic tests of MLD with fully assembled external thermo-stabilization system, which was connected to in-vessel lithium unit, were performed using ethanol as a model heat transfer media. Test results of MLD have shown that operating parameters of designed and manufactured system for thermo-stabilization are sufficient for proper operation; basic hydraulic characteristics of the system are close to expected values.
Design study of ITER-like divertor target for DEMO
Energy Technology Data Exchange (ETDEWEB)
Crescenzi, Fabio, E-mail: fabio.crescenzi@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bachmann, C. [EFDA, Power Plant Physics and Technology, Boltzmannstraße 2, 85748 Garching (Germany); Richou, M. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Roccella, S.; Visca, E. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)
2015-10-15
Highlights: • ‘DEMO’ is a near-term Power Plant Conceptual Study (PPCS). • The ITER-like design concept represents a promising solution also for DEMO plasma facing units. • The optimization of PFUs aims to enhance the thermo-mechanical behaviour of the component. • The optimized geometry was evaluated by ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). - Abstract: A near-term water-cooled target solution has to be evaluated together with the required technologies and its power exhaust limit under ‘DEMO’ conditions. The ITER-like design concept based on the mono-block technology using W as armour material and the CuCrZr-IG as structural material with an interlayer of pure copper represents a promising solution also for DEMO. This work reports the design study of an “optimized” ITER-like Water Cooled Divertor able to withstand a heat flux of 10 MW m{sup −2}, as requested for DEMO operating conditions. The optimization of plasma facing unit (PFU) aims to enhance the thermo-mechanical behaviour of the component by varying some geometrical parameters (monoblock size, interlayer thickness and, tube diameter and thickness). The optimization was performed by means of the multi-variable optimization algorithms using the FEM code ANSYS. The coolant hydraulic conditions (inlet pressure, temperature and velocity) were fixed for simplicity. This study is based on elastic analysis and 3 dimensional modelling. The resulting optimized geometry was evaluated on the basis of the ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). The margin to the critical heat flux (CHF) was also estimated. Further design study (taking into account the effect of neutron radiation on the material properties) together with mock-up fabrication and high-heat-flux (HHF) tests are foreseen in next work programmes.
Optimization of tungsten castellated structures for the ITER divertor
Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M.; De Temmerman, G.; Rudakov, D.; Ding, F.; Luo, G.-N.; Krieger, K.; Sugiyama, K.; Pitts, R. A.; Petersson, P.
2015-08-01
In ITER, the plasma-facing components (PFCs) of the first wall and the divertor armor will be castellated to improve their thermo-mechanical stability and to limit forces due to induced currents. The fuel accumulation in the gaps may significantly contribute to the in-vessel fuel inventory. Castellation shaping may be the most straightforward way to minimize the fuel inventory and to alleviate the thermal loads onto castellations. A new castellation shape was proposed and comparative modeling of conventional (rectangular) and shaped castellation was performed for ITER conditions. Shaped castellation was predicted to be capable to operate under stationary heat load of 20 MW/m2. An 11-fold decrease of beryllium (Be) content in the gaps of the shaped cells alone with a 7-fold decrease of carbon content was predicted. In order to validate the predictive capabilities of modeling tools used for ITER conditions, the dedicated modeling with the same codes was made for existing tokamaks and benchmarked with the results of multi-machine experiments. For the castellations exposed in TEXTOR and DIII-D, the carbon amount in the gaps of shaped cells was 1.9-2.3 times smaller than that of rectangular ones. Modeling for TEXTOR conditions yielded to 1.5-fold decrease of carbon content in the gaps of shaped castellation outlining fair agreement with the experiment. At the same time, a number of processes, like enhanced erosion of molten layer yet need to be implemented in the codes in order to increase the accuracy of predictions for ITER.
Lazarsfeld-Mukai bundles and applications
Aprodu, Marian
2012-01-01
We survey the development of the notion of Lazarsfeld-Mukai bundles together with various applications, from the classification of Mukai manifolds to Brill-Noether theory and syzygies of $K3$ sections. To see these techniques at work, we present a short proof of a result of M. Reid on the existence of elliptic pencils.
The Hodge bundle on Hurwitz spaces
van der Geer, G.; Kouvidakis, A.
2011-01-01
In 2009 Kokotov, Korotkin and Zograf gave in [7] a formula for the class of the Hodge bundle on the Hurwitz space of admissible covers of genus g and degree d of the projective line. They gave an analytic proof of it. In this note we give an algebraic proof and an extension of the result.
η-Invariant and Flat Vector Bundles
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We present an alternate definition of the mod Z component of the AtiyahPatodi-Singer η invariant associated to (not necessary unitary) fiat vector bundles, which identifies explicitly its real and imaginary parts. This is done by combining a deformation of flat connections introduced in a previous paper with the analytic continuation procedure appearing in the original article of Atiyah, Parodi and Singer.
Meromorphic Higgs bundles And Related Geometries
Dalakov, Peter
2016-01-01
The present note is mostly a survey on the generalised Hitchin integrable system and moduli spaces of meromorphic Higgs bundles. We also fill minor gaps in the existing literature, outline a calculation of the infinitesimal period map and review briefly some related geometries.
Meromorphic Higgs bundles and related geometries
Dalakov, Peter
2016-11-01
The present note is mostly a survey on the generalised Hitchin integrable system and moduli spaces of meromorphic G-Higgs bundles. We also fill minor gaps in the existing literature, outline a calculation of the infinitesimal period map and review some related geometries.
Computations in intersection rings of flag bundles
Grayson, Daniel R; Stillman, Michael E
2012-01-01
Intersection rings of flag varieties and of isotropic flag varieties are generated by Chern classes of the tautological bundles modulo the relations coming from multiplicativity of total Chern classes. In this paper we describe the Groebner bases of the ideals of relations and give applications to computation of intersections, as implemented in Macaulay2.
Capacity efficiency of recovery request bundling
DEFF Research Database (Denmark)
Ruepp, Sarah Renée; Dittmann, Lars; Berger, Michael Stübert
2010-01-01
This paper presents a comparison of recovery methods in terms of capacity efficiency. In particular, a method where recovery requests are bundled towards the destination (Shortcut Span Protection) is evaluated against traditional recovery methods. Our simulation results show that Shortcut Span...
Spectroscopic measurements of impurity temperatures and parallel ion flows in the DIII-D divertor
Isler, R. C.; Brooks, N. H.; West, W. P.; Leonard, A. W.; McKee, G. R.; Porter, G. D.
Impurity ion temperatures and parallel flow velocities in the DIII-D divertor have been measured from the shapes and shifts of visible spectral lines of C II, C III, and B II. Spectral multiplet patterns are analyzed by fitting them to theoretical profiles that incorporate exact calculations for the Zeeman/Paschen-Back effect. Both normal flows toward the target plate and reversed flows away from the target plate are observed in the outer divertor leg; only flows toward the plate are detected in the inner leg.
Transport studies in boundary and divertor plasmas of JT-60U
Energy Technology Data Exchange (ETDEWEB)
Kumagai, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1999-03-01
This thesis describes an investigation on transport of plasma, neutral particle and impurity in the boundary and divertor of the JT-60U tokamak to provide a better understanding of plasma-surface interactions and divertor physics. The asymmetry between the inboard and outboard divertor on plasma parameters (in-out asymmetry) are usually observed in tokamaks with the divertor. In this study, the in-out asymmetry was investigated under various plasma conditions and discharge parameters. The observed results were discussed with several mechanisms that can produce the in-out asymmetry. It was confirmed experimentally that the importance of each mechanism depends on the plasma parameters and discharge conditions. The current flowing in the scrape-off layer (SOL) due to the in-out asymmetry was observed. The SOL currents in the high density plasma with the occurrence of the plasma detachment were investigated for the first time in this study. The ion temperature in the divertor region is one of the most important factors for both generation and transport of impurity. However, the background ion temperature in the divertor region has not been measured in any tokamak so far. The ion temperature in the divertor region has been measured for the first time with the Doppler broading of the C{sup 3+} ion emission line. The measured temperature was analyzed by an impurity particle transport code. The code calculation showed that the measured temperature reflects the low temperature at the outside of the separatrix in the inboard region. The spectral profile of Balmer-{alpha} (D{sub {alpha}}) line emitted from the deuterium atoms reflects the velocity distribution of neutral particles by the Doppler effect and is effective for investigating the detailed neutral behavior and recycling process. The spatial variation of the D{sub {alpha}} line spectral profile in the divertor region has been measured for the first time in this study. The observed results were compared with the
Spectroscopic measurements of impurity temperatures and parallel ion flows in the DIII-D divertor
Energy Technology Data Exchange (ETDEWEB)
Isler, R.C. [Oak Ridge National Lab., TN (United States); Brooks, N.H.; West, W.P.; Leonard, A.W. [General Atomics, San Diego, CA (United States); McKee, G.R. [Univ. of Wisconsin, Madison, WI (United States); Porter, G.D. [Lawrence Livermore National Lab., CA (United States)
1998-06-01
Impurity ion temperatures and parallel flow velocities in the DIII-D divertor have been measured from the shapes and shifts of visible spectral lines of C II, C III, and B II. Spectral multiplet patterns are analyzed by fitting them to theoretical profiles that incorporate exact calculations for the Zeeman/Paschen-Back effect. Ion temperatures range from 4--20 eV. Both normal flows toward the target plate and reversed flows away from the target plate are observed in the outer divertor leg; only flows toward the plate are detected in the inner leg.
Baelmans, M.; Blommaert, M.; Dekeyser, W.; Van Oevelen, T.
2017-03-01
Plasma edge transport codes play a key role in the design of future divertor concepts. Their long simulation times in combination with a large number of control parameters turn the design into a challenging task. In aerodynamics and structural mechanics, adjoint-based optimization techniques have proven successful to tackle similar design challenges. This paper provides an overview of achievements and remaining challenges with these techniques for complex divertor design. It is shown how these developments pave the way for fast sensitivity analysis and improved design from different perspectives.
Development of divertor tungsten coatings for the JET ITER-like wall
Matthews, G. F.; Coad, P.; Greuner, H.; Hill, M.; Hirai, T.; Likonen, J.; Maier, H.; Mayer, M.; Neu, R.; Philipps, V.; Pitts, R.; Riccardo, V.; JET EFDA Contributors
2009-06-01
The main objectives of the JET ITER-like Wall Project are to provide a beryllium main wall and tungsten divertor with at least a 4 year lifetime to allow full evaluation of the materials and related plasma scenarios for ITER. Tungsten coatings will be used over most of the divertor area and this paper describes the latest developments in the coating technology and an analysis of the implications for the coating lifetime and machine operation. Both steady state and transient heat loads are assessed.
Active Hair-Bundle Motility by the Vertebrate Hair Cell
Tinevez, J.-Y.; Martin, P.; Jülicher, F.
2009-02-01
The hair bundle is both a mechano-sensory antenna and a force generator that might help the vertebrate hair cell from the inner ear to amplify its responsiveness to small stimuli. To study active hair-bundle motility, we combined calcium iontophoresis with mechanical stimulation of single hair bundles from the bullfrog's sacculus. A hair bundle could oscillate spontaneously, or be quiescent but display non-monotonic movements in response to abrupt force steps. Extracellular calcium changes or static biases to the bundle's position at rest could affect the kinetics of bundle motion and evoke transitions between the different classes of motility. The calcium-dependent location of a bundle's operating point within its nonlinear force-displacement relation controlled the type of movements observed. A unified theoretical description, in which mechanical activity stems from myosin-based adaptation and electro-mechanical feedback by Ca2+, could account for the fast and slow manifestations of active hair-bundle motility.
Institute of Scientific and Technical Information of China (English)
LIULUOFEI
1996-01-01
The author proves several embedding theorems for finite covering maps,principal G-bundies into bundles.The main results are 1. Let π：E→X be a finite covering map, and X a connected locally path-connected paracompact space. If cat X≤k, then the finite covering space π:E→X can be embedded into the trivial real k-plane bundle. 2. Let π：E→X be a principal G-bundle over a paracompact space. If there exists a linera action of Gon F(F=R or C)and cat X≤k ,then π：E→X can be embedded into ξ1 … ξn for any F-vector bundles ξi,i=1,…k.
Holomorphic Vector Bundle on Hopf Manifolds with Abelian Fundamental Groups
Institute of Scientific and Technical Information of China (English)
Xiang Yu ZHOU; Wei Ming LIU
2004-01-01
Let X be a Hopf manifolds with an Abelian fundamental group. E is a holomorphic vector bundle of rank r with trivial pull-back to W = Cn - {0}. We prove the existence of a non-vanishing section of L(×) E for some line bundle on X and study the vector bundles filtration structure of E. These generalize the results of D. Mall about structure theorem of such a vector bundle E.
Yoo, Yon-Sik; Song, Si Young; Yang, Cheol Jung; Ha, Jong Mun; Kim, Yoon Sang
2016-01-01
Purpose The purpose of this study was to compare the clinical outcomes of arthroscopic anatomical double bundle (DB) anterior cruciate ligament (ACL) reconstruction with either selective anteromedial (AM) or posterolateral (PL) bundle reconstruction while preserving a relatively healthy ACL bundle. Materials and Methods The authors evaluated 98 patients with a mean follow-up of 30.8±4.0 months who had undergone DB or selective bundle ACL reconstructions. Of these, 34 cases underwent DB ACL reconstruction (group A), 34 underwent selective AM bundle reconstruction (group B), and 30 underwent selective PL bundle reconstructions (group C). These groups were compared with respect to Lysholm and International Knee Documentation Committee (IKDC) score, side-to-side differences of anterior laxity measured by KT-2000 arthrometer at 30 lbs, and stress radiography and Lachman and pivot shift test results. Pre- and post-operative data were objectively evaluated using a statistical approach. Results The preoperative anterior instability measured by manual stress radiography at 90° of knee flexion in group A was significantly greater than that in groups B and C (all pACL tears offers comparable clinical results to DB reconstruction in complete ACL tears. PMID:27401652
QTLs analysis of rice peduncle vascular bundle and panicle traits
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
@@The vascular bundle in plants plays an important role in transportation of photosynthetic products, mineral nutrients, water, and so on. Significant positive correlations were found between grain yield, panicle traits and the No. Of peduncle vascular bundles. So, it is very important to study the inheritance of peduncle vascular bundle, which is a quantitative trait.
VECTOR BUNDLE, KILLING VECTOR FIELD AND PONTRYAGIN NUMBERS
Institute of Scientific and Technical Information of China (English)
周建伟
1991-01-01
Let E be a vector bundle over a compact Riemannian manifold M. We construct a natural metric on the bundle space E and discuss the relationship between the killing vector fields of E and M. Then we give a proof of the Bott-Baum-Cheeger Theorem for vector bundle E.
Heat exchanger with helical bundles of finned tubes
Energy Technology Data Exchange (ETDEWEB)
Eyking, H.J.
1975-01-23
The invention applies to a heat exchanger with helical bundles of tubes consisting of finned tubes separated by spacers. The spacers are designed as closed holding cylinders with holding devices for the tube bundles, each ot which surrounds a bundle of tubes. This construction serves to simplify the production process and to enable the use of the heat exchanger at higher loads.
Stability of Picard Bundle Over Moduli Space of Stable Vector Bundles of Rank Two Over a Curve
Indian Academy of Sciences (India)
Indranil Biswas; Tomás L Gómez
2001-08-01
Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.
Energy Technology Data Exchange (ETDEWEB)
Kaipainen, H.; Seppaenen, V.; Rinne, S.
1996-12-31
The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable
Optical design study for divertor observation at the stellarator W7-X
König, R.; Hildebrandt, D.; Hübner, T.; Klinkhamer, J.F.F.; Moddemeijer, K.; Vliegenthart, W.A.
2006-01-01
The stellarator W7-X will be capable of running in a quasicontinuous operating mode with 10 MW of electron cyclotron heating (ECRH) heating for 30 min, the duration only being limited by the capacity of the available cooling reservoir. The integrated ten discrete water cooled divertor modules need t
The Influence of Filaments in the Private Flux Region on Divertor Particle and Power Deposition
Harrison, J R; Thornton, A J; Walkden, N R
2015-01-01
The transport of particles via intermittent filamentary structures in the private flux region of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggests that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the private flux region (PFR) of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1-2cm in diameter. The most probable toroidal mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a sp...
SPIRAL field mapping on NSTX for comparison to divertor RF heat deposition
Hosea, J. C.; Perkins, R.; Jaworski, M. A.; Kramer, G. J.; Ahn, J.-W.; Bertelli, N.; Gerhardt, S.; Gray, T. K.; LeBlanc, B. P.; Maingi, R.; Phillips, C. K.; Roquemore, L.; Ryan, P. M.; Sabbagh, S.; Taylor, G.; Tritz, K.; Wilson, J. R.; NSTX Team
2014-02-01
Field-aligned losses of HHFW power in the SOL of NSTX have been studied with IR cameras and probes, but the interpretation of the data depends somewhat on the magnetic equilibrium reconstruction. Both EFIT02 and LRDFIT04 magnetic equilibria have been used with the SPIRAL code to provide field mappings in the scrape off layer (SOL) on NSTX from the midplane SOL in front of the HHFW antenna to the divertor regions, where the heat deposition spirals are measured. The field-line mapping spiral produced at the divertor plate with LRDFIT04 matches the HHFW-produced heat deposition best, in general. An independent method for comparing the field-line strike patterns on the outer divertor for the two equilibria is provided by measuring Langmuir probe characteristics in the vicinity of the outer vessel strike radius (OVSR) and observing the effect on floating potential, saturation current, and zero-probe-voltage current (IV=0) with the crossing of the OVSR over the probe. Interestingly, these comparisons also reveal that LRDFIT04 gives the more accurate location of the predicted OVSR, and confirm that the RF power flow in the SOL is essentially along the magnetic field lines. Also, the probe characteristics and IV=0 data indicate that current flows under the OVSR in the divertor tiles in most cases studied.
Melt damage to the JET ITER-like Wall and divertor
Matthews, G. F.; Bazylev, B.; Baron-Wiechec, A.; Coenen, J.; Heinola, K.; Kiptily, V.; Maier, H.; Reux, C.; Riccardo, V.; Rimini, F.; Sergienko, G.; Thompson, V.; Widdowson, A.; Contributors, JET
2016-02-01
In October 2014, JET completed a scoping study involving high power scenario development in preparation for DT along with other experiments critical for ITER. These experiments have involved intentional and unintentional melt damage both to bulk beryllium main chamber tiles and to divertor tiles. This paper provides an overview of the findings of concern for machine protection in JET and ITER, illustrating each case with high resolution images taken by remote handling or after removal from the machine. The bulk beryllium upper dump plate tiles and some other protection tiles have been repeatedly flash melted by what we believe to be mainly fast unmitigated disruptions. The flash melting produced in this way is seen at all toroidal locations and the melt layer is driven by j × B forces radially outward and upwards against gravity. In contrast, the melt pools caused while attempting to use MGI to mitigate deliberately generated runaway electron beams are localized to several limiters and the ejected material appears less influenced by j × B forces and shows signs of boiling. In the divertor, transient melting of bulk tungsten by ELMs was studied in support of the ITER divertor material decision using a specially prepared divertor module containing an exposed edge. Removal of the module from the machine in 2015 has provided improved imaging of the melt and this confirms that the melt layers are driven by ELMs. No other melt damage to the other 9215 bulk tungsten lamellas has yet been observed.
Design and concept validation of the new solid tungsten divertor for ASDEX Upgrade
Energy Technology Data Exchange (ETDEWEB)
Herrmann, A., E-mail: albrecht.herrmann@ipp.mpg.de; Greuner, H.; Jaksic, N.; Böswirth, B.; Reimold, F.; Scarabosio, A.; Vorbrugg, S.; Wischmeier, M.
2013-10-15
Div-III, a divertor with solid tungsten target tiles for ASDEX Upgrade is designed and tested and will be installed in 2013. It is a further step in exploring tungsten as material for plasma facing components. It avoids the restrictions of tungsten coatings on graphite and realizes an operation range up to 50 MJ energy removing capability in the outer divertor. In addition, it allows physics investigation such as erosion and deuterium retention as well as effects of castellation and target tilting. The design of the target itself and the attachment was optimized with FE-analysis and was intensively high heat tested up to a double overload. Cyclic tests reveal that the target and the attachment can be operated with the design load of 50 MJ without any damage. Even a twofold overload results in local recrystallization and minor cracks but the targets did not fail during operation. The redesign of the divertor structure was used to increase the conductance between the cryo-pump and the divertor region. The impact of the changed pumping efficiency was investigated with SOLPS/Eirene modeling. The modeling results are an indication for an easier access to lower SOL densities as expected for a higher pumping efficiency in the main chamber.
Evaluation of copper alloys for fusion reactor divertor and first wall components
DEFF Research Database (Denmark)
Fabritsiev, S.A.; Zinkle, S.J.; Singh, B.N.
1996-01-01
This paper presents a critical analysis of the main factors of radiation damage limiting the possibility to use copper alloys in the ITER divertor and first wall structure. In copper alloys the most significant types of radiation damage in the proposed temperature-dose operation range are swellin...
Enhanced -->E*-->B drift effects in the TCV snowflake divertor
G.P. Canal,; Lunt, T.; Reimerdes, H.; Duval, B. P.; Labit, B.; Vijvers, W. A. J.; TCV team,
2015-01-01
Measurements of various plasma parameters at the divertor targets of snowflake (SF) and conventional single-null configurations indicate an enhanced effect of the -->E*-->B drift in the scrape-off layer of plasmas in the SF configuration. Plasma boundary transport simulations using the EMC3-Ei
Lesson from Tungsten Leading Edge Heat Load Analysis in KSTAR Divertor
Hong, Suk-Ho; Pitts, Richard Anthony; Lee, Hyeong-Ho; Bang, Eunnam; Kang, Chan-Soo; Kim, Kyung-Min; Kim, Hong-Tack; ITER Organization Collaboration; Kstar Team Team
2016-10-01
An important design issue for the ITER tungsten (W) divertor and in fact for all such components using metallic plasma-facing elements and which are exposed to high parallel power fluxes, is the question of surface shaping to avoid melting of leading edges. We have fabricated a series of tungsten blocks with a variety of leading edge heights (0.3, 0.6, 1.0, and 2.0 mm), from the ITER worst case to heights even beyond the extreme value tested on JET. They are mounted into adjacent, inertially cooled graphite tile installed in the central divertor region of KSTAR, within the field of view of an infra-red (IR) thermography system with a spatial resolution to 0.4 mm/pixel. Adjustment of the outer divertor strike point position is used to deposit power on the different blocks in different discharges. The measured power flux density on flat regions of the surrounding graphite tiles is used to obtain the parallel power flux, q|| impinging on the various W blocks. Experiments have been performed in Type I ELMing H-mode with Ip = 600 kA, BT = 2 T, PNBI = 3.5 MW, leading to a hot attached divertor with typical pulse lengths of 10 s. Three dimensional ANSYS simulations using q|| and assuming geometric projection of the heat flux are found to be consistent with the observed edge loading. This research was partially supported by Ministry of Science, ICT, and Future Planning under KSTAR project.
The impact of divertor detachment on carbon sources in JET L-mode discharges
Brezinsek, S.; Meigs, A. G.; Jachmich, S.; Stamp, M. F.; Rapp, J.; Felton, R.; Pitts, R.A.; Philipps, V.; Huber, A.; Pugno, R.; Sergienko, G.; Pospieszczyk, A.
2009-01-01
Hydrocarbon injection experiments have been performed to investigate the chemical sputtering yield of carbon-fibre composites at elevated temperatures (T-surface similar or equal to 500 K) and detached plasma conditions in the JET outer divertor. A plasma scenario in L-mode with the outer strike-poi
Flow Field and Thermal Analysis of the Divertor Target Plate for HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles.A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D)and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2,the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor.
Muñoz, C Sánchez; Del Valle, E; Tudela, A González; Müller, K; Lichtmannecker, S; Kaniber, M; Tejedor, C; Finley, J J; Laussy, F P
2014-07-01
Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.
Care bundles reduce readmissions for COPD.
Matthews, Healther; Tooley, Cathy; Nicholls, Carol; Lindsey-Halls, Anna
In 2011, the respiratory nursing team at the James Paget University Hospital Foundation Trust were considering introducing a discharge care bundle for patients admitted with an acute exacerbation of chronic obstructive pulmonary disease. At the same time, the trust was asking for applications for Commissioning for Quality and Innovation schemes (CQUINs). These are locally agreed packages of quality improvement goals and indicators, which, if achieved in total, enable the provider to earn its full CQUIN payment. A CQUIN scheme should address the three domains of quality, safety and effectiveness, patient experience and also show innovation. This article discusses how the care bundle was introduced and how, over a 12-month period, it showed tangible results in improving the care pathway for COPD patients as well as reducing readmissions and saving a significant amount of money.
Phase Slips in Oscillatory Hair Bundles
Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores
2013-01-01
Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040
Client Provider Collaboration for Service Bundling
Directory of Open Access Journals (Sweden)
LETIA, I. A.
2008-04-01
Full Text Available The key requirement for a service industry organization to reach competitive advantages through product diversification is the existence of a well defined method for building service bundles. Based on the idea that the quality of a service or its value is given by the difference between expectations and perceptions, we draw the main components of a frame that aims to support the client and the provider agent in an active collaboration meant to co-create service bundles. Following e3-value model, we structure the supporting knowledge around the relation between needs and satisfying services. We deal with different perspectives about quality through an ontological extension of Value Based Argumentation. The dialog between the client and the provider takes the form of a persuasion whose dynamic object is the current best configuration. Our approach for building service packages is a demand driven approach, allowing progressive disclosure of private knowledge.
Deformations of Fell bundles and twisted graph algebras
Raeburn, Iain
2016-11-01
We consider Fell bundles over discrete groups, and the C*-algebra which is universal for representations of the bundle. We define deformations of Fell bundles, which are new Fell bundles with the same underlying Banach bundle but with the multiplication deformed by a two-cocycle on the group. Every graph algebra can be viewed as the C*-algebra of a Fell bundle, and there are are many cocycles of interest with which to deform them. We thus obtain many of the twisted graph algebras of Kumjian, Pask and Sims. We demonstate the utility of our approach to these twisted graph algebras by proving that the deformations associated to different cocycles can be assembled as the fibres of a C*-bundle.
Quantum principal bundles and their characteristic classes
Durdevic, M
1996-01-01
A brief exposition of the general theory of characteristic classes of quantum principal bundles is given. The theory of quantum characteristic classes incorporates ideas of classical Weil theory into the conceptual framework of non-commutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a standard geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is described. Some quantum phenomena appearing in the formalism are discussed.
On Complex Supermanifolds with Trivial Canonical Bundle
Groeger, Josua
2016-01-01
We give an algebraic characterisation for the triviality of the canonical bundle of a complex supermanifold in terms of a certain Batalin-Vilkovisky superalgebra structure. As an application, we study the Calabi-Yau case, in which an explicit formula in terms of the Levi-Civita connection is achieved. Our methods include the use of complex integral forms and the recently developed theory of superholonomy.
Uncontrolled inexact information within bundle methods
Malick, Jérôme; Welington De Oliveira, ·; Zaourar-Michel, Sofia
2016-01-01
International audience; We consider convex nonsmooth optimization problems where additional information with uncontrolled accuracy is readily available. It is often the case when the objective function is itself the output of an optimization solver, as for large-scale energy optimization problems tackled by decomposition. In this paper, we study how to incorporate the uncontrolled linearizations into (proximal and level) bundle algorithms in view of generating better iterates and possibly acc...
Uncovering ecosystem service bundles through social preferences.
Directory of Open Access Journals (Sweden)
Berta Martín-López
Full Text Available Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis. We found a clear trade-off among provisioning services (and recreational hunting versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.
In-pile thermocycling testing and post-test analysis of beryllium divertor mockups
Energy Technology Data Exchange (ETDEWEB)
Giniatulin, R.; Mazul, I. [Efremov Inst., St. Petersburg (Russian Federation); Melder, R.; Pokrovsky, A.; Sandakov, V.; Shiuchkin, A.
1998-01-01
The main damaging factors which impact the ITER divertor components are neutron irradiation, cyclic surface heat loads and hydrogen environment. One of the important questions in divertor mockups development is the reliability of beryllium/copper joints and the beryllium resistance under neutron irradiation and thermal cycling. This work presents the experiment, where neutron irradiation and thermocyclic heat loads were applied simultaneously for two beryllium/copper divertor mockups in a nuclear reactor channel to simulate divertor operational conditions. Two mockups with different beryllium grades were mounted facing each other with the tantalum heater placed between them. This device was installed in the active zone of the nuclear reactor SM-2 (Dimitrovgrad, Russia) and the tantalum block was heated by neutron irradiation up to a high temperature. The main part of the heat flux from the tantalum surface was transported to the beryllium surface through hydrogen, as a result the heat flux loaded two mockups simultaneously. The mockups were cooled by reactor water. The device was lowered to the active zone so as to obtain the heating regime and to provide cooling lifted. This experiment was performed under the following conditions: tantalum heater temperature - 1950degC; hydrogen environment -1000 Pa; surface heat flux density -3.2 MW/m{sup 2}; number of thermal cycles (lowering and lifting) -101; load time in each cycle - 200-5000 s; dwell time (no heat flux, no neutrons) - 300-2000 s; cooling water parameters: v - 1 m/s, Tin - 50degC, Pin - 5 MPa; neutron fluence -2.5 x 10{sup 20} cm{sup -2} ({approx}8 years of ITER divertor operation from the start up). The metallographic analysis was performed after experiment to investigate the beryllium and beryllium/copper joint structures, the results are presented in the paper. (author)
Development of Strengthened Bundle High Temperature Superconductors
Energy Technology Data Exchange (ETDEWEB)
Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)
1997-12-31
In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.
Bundling harvester; Harvennuspuun automaattisen nippukorjausharvesterin kehittaeminen
Energy Technology Data Exchange (ETDEWEB)
Koponen, K. [Eko-Log Oy, Kuopio (Finland)
1997-12-01
The starting point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automating of the harvester, and automated loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilisation of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilised without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilisation of wood-energy. (orig.)
An analytical fiber bundle model for pullout mechanics of root bundles
Cohen, D.; Schwarz, M.; Or, D.
2011-09-01
Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases
Sankararamakrishnan, R; Sansom, M S
1995-11-01
The transbilayer pore of the nicotinic acetylcholine receptor (nAChR) is formed by a pentameric bundle of M2 helices. Models of pentameric bundles of M2 helices have been generated using simulated annealing via restrained molecular dynamics. The influence of: (a) the initial C alpha template; and (b) screening of sidechain electrostatic interactions on the geometry of the resultant M2 helix bundles is explored. Parallel M2 helices, in the absence of sidechain electrostatic interactions, pack in accordance with simple ridges-in-grooves considerations. This results in a helix crossing angle of ca. +12 degrees, corresponding to a left-handed coiled coil structure for the bundle as a whole. Tilting of M2 helices away from the central pore axis at their C-termini and/or inclusion of sidechain electrostatic interactions may perturb such ridges-in-grooves packing. In the most extreme cases right-handed coiled coils are formed. An interplay between inter-helix H-bonding and helix bundle geometry is revealed. The effects of changes in electrostatic screening on the dimensions of the pore mouth are described and the significance of these changes in the context of models for the nAChR pore domain is discussed.
Energy Technology Data Exchange (ETDEWEB)
Bucalossi, J., E-mail: jerome.bucalossi@cea.fr; Missirlian, M.; Moreau, P.; Samaille, F.; Tsitrone, E.; Houtte, D. van; Batal, T.; Bourdelle, C.; Chantant, M.; Corre, Y.; Courtois, X.; Delpech, L.; Doceul, L.; Douai, D.; Dougnac, H.; Faïsse, F.; Fenzi, C.; Ferlay, F.; Firdaouss, M.; Gargiulo, L.; and others
2014-10-15
The WEST project recently launched at Cadarache consists in transforming Tore Supra in an X-point divertor configuration while extending its long pulse capability, in order to test the ITER divertor technology. The implementation of a full tungsten actively cooled divertor with plasma facing unit representative of ITER divertor targets will allow addressing risks both in terms of industrial-scale manufacturing and operation of such components. Relevant plasma scenarios are foreseen for extensive testing under high heat load in the 10–20 MW/m{sup 2} range and ITER-like fluences (1000 s pulses). Plasma facing unit monitoring and development of protection strategies will be key elements of the WEST program. WEST is scheduled to enter into operation in 2016, and will provide a key facility to prepare and be prepared for ITER.
The first results of divertor discharge and supersonic molecular beam injection on the HL-2A tokamak
Institute of Scientific and Technical Information of China (English)
Yao Liang-Hua; Yuan Bau-Shan; Feng Bei-Bin; Chen Cheng-Yuan; Hong Wen-Yu; Li Ying-Liang
2007-01-01
HL-2A tokamak is the first tokamak with divertors in China. The plasma boundary and the position of the striking point on the target plates of the HL-2A closed divertor were simulated by the current filament code and they were in agreement with the diagnostic results in the divertor. Supersonic molecular beam injection (SMBI) system was first installed and tested on the HL-2A tokamak in 2004. In the present experiment low pressure SMBI fuelling on the HL-2A and during the period of SMB pulse injection into the HL-2A plasma the power density convected at the target plate surfaces was 0.4 times of that before or after the beam injection. It is a useful fuelling method for decreasing the heat load on the neutralizer plates of the divertor.
Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.
2016-08-01
In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.
DTT: a divertor tokamak test facility for the study of the power exhaust issues in view of DEMO
Albanese, R.; WPDTT2 Team; DTT Project Proposal Contributors, the
2017-01-01
In parallel with the programme to optimize the operation with a conventional divertor based on detached conditions to be tested on the ITER device, a project has been launched to investigate alternative power exhaust solutions for DEMO, aimed at the definition and the design of a divertor tokamak test facility (DTT). The DTT project proposal refers to a set of parameters selected so as to have edge conditions as close as possible to DEMO, while remaining compatible with DEMO bulk plasma performance in terms of dimensionless parameters and given constraints. The paper illustrates the DTT project proposal, referring to a 6 MA plasma with a major radius of 2.15 m, an aspect ratio of about 3, an elongation of 1.6-1.8, and a toroidal field of 6 T. This selection will guarantee sufficient flexibility to test a wide set of divertor concepts and techniques to cope with large heat loads, including conventional tungsten divertors; liquid metal divertors; both conventional and advanced magnetic configurations (including single null, snow flake, quasi snow flake, X divertor, double null); internal coils for strike point sweeping and control of the width of the scrape-off layer in the divertor region; and radiation control. The Poloidal Field system is planned to provide a total flux swing of more than 35 Vs, compatible with a pulse length of more than 100 s. This is compatible with the mission of studying the power exhaust problem and is obtained using superconducting coils. Particular attention is dedicated to diagnostics and control issues, especially those relevant for plasma control in the divertor region, designed to be as compatible as possible with a DEMO-like environment. The construction is expected to last about seven years, and the selection of an Italian site would be compatible with a budget of 500 M€.
Energy Technology Data Exchange (ETDEWEB)
Rimza, Sandeep, E-mail: sandeepr@ipr.res.in [Divertor and First Wall Technology Development Division, Institute for Plasma Research (IPR), Bhat – 382428, Gandhinagar, Gujarat (India); Satpathy, Kamalakanta, E-mail: satpathy@ipr.res.in [Divertor and First Wall Technology Development Division, Institute for Plasma Research (IPR), Bhat – 382428, Gandhinagar, Gujarat (India); Khirwadkar, Samir, E-mail: sameer@ipr.res.in [Divertor and First Wall Technology Development Division, Institute for Plasma Research (IPR), Bhat – 382428, Gandhinagar, Gujarat (India); Velusamy, Karupanna, E-mail: kvelu@igcar.gov.in [Mechanics and Hydraulics Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India)
2015-11-15
Highlights: • Effect of design variables in enhancing heat removal potential with pumping power assessed. • The optimization objective is to minimize the thimble temperature. • Investigation of optimum design parameters for various Reynolds number. • Practicability of the optimum designs is verified through structural analysis. • Benchmark validation of divertor finger mock-up against in-house experiment and good agreement is achieved. - Abstract: Cooling of fusion reactor divertor by helium is widely accepted due to its chemical and neutronic inertness and superior safety aspect. However, its poor thermo physical characteristics need high pressure to remove large heat flux encountered in fusion power plant (DEMO). In the perspective of DEMO, it is desirable to explore efficient cooling technology for divertor that can handle high heat flux. Toward this, a novel sectorial extended surface (SES) was proposed by the authors Rimza et al. (2014) [2]. The present work focuses on design optimization of divertor finger mock-up with SES to enhance the thermal hydraulic performance. The maximum thimble temperature is considered as the vital design constraint. Various non-dimensional design variables, viz., relative pitch, thickness, jet diameter, the ratio of height of SES to jet diameter and circumferential position of the SES are considered for the present optimization study. The effects of design variables on thermal performance of the divertor are evaluated in the Reynolds number (Re) range of 7.5 × 10{sup 4}–1.2 × 10{sup 5}. The analysis reveals that, the heat transfer performance of divertor finger mock-up with SES is improved for two optimum designs having relative pitch and thickness of 0.30 and 0.56, respectively. Also, it is observed that finger mock-up heat sink with SES performs better, when the ratio of SES height to jet diameter, reduces to 0.75 at the cost of marginally higher pumping power. The effects of jet diameter and circumferential
A Tannakian approach to dimensional reduction of principal bundles
Álvarez-Cónsul, Luis; García-Prada, Oscar
2016-01-01
Let $P$ be a parabolic subgroup of a connected simply connected complex semisimple Lie group $G$. Given a compact K\\"ahler manifold $X$, the dimensional reduction of $G$-equivariant holomorphic vector bundles over $X\\times G/P$ was carried out by the first and third authors. This raises the question of dimensional reduction of holomorphic principal bundles over $X\\times G/P$. The method used for equivariant vector bundles does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of $G$-equivariant principal bundles over $X\\times G/P$, and to establish a Hitchin--Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that $X$ is a complex projective manifold.
Monopoles and Modifications of Bundles over Elliptic Curves
Directory of Open Access Journals (Sweden)
Andrey M. Levin
2009-06-01
Full Text Available Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve. This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
Amplitude death of coupled hair bundles with stochastic channel noise
Kim, Kyung-Joong
2014-01-01
Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles(stereocilia) can be spontaneously oscillating or quiescent. Recently, the amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, {\\bf 10}, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between non-identical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as inter-bundle coupling str...
The avalanche process of the fiber bundle model with defect
Hao, Da-Peng; Tang, Gang; Xia, Hui; Xun, Zhi-Peng; Han, Kui
2017-04-01
In order to explore the impacts of defect on the tensile fracture process of materials, the fiber bundle model with defect is constructed based on the classical fiber bundle model. In the fiber bundle model with defect, the two key parameters are the mean size and the density of defects. In both uniform and Weibull threshold distributions, the mean size and density all bring impacts on the threshold distribution of fibers. By means of analytical approximation and numerical simulation, we show that the two key parameters of the model have substantial effects on the failure process of the bundle. From macroscopic view, the defect described by the altering of threshold distribution of fibers will has a significant impact on the mechanical properties of the bundle. While in microscopic scale, the statistical properties of the model are still harmonious with the classical fiber bundle model.
Vector bundles on complex projective spaces
Okonek, Christian; Spindler, Heinz
1980-01-01
This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems.
Bundling Products and Services Through Modularization Strategies
DEFF Research Database (Denmark)
Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi;
2012-01-01
Modularity has been recognized as a powerful tool in improving the efficiency and management of product design and manufacturing. However, the integrated view on covering both, product and service modularity for product-service systems (PSS), is under researched. Therefore, in this paper our...... objective is to contribute to the PSS modularity. Thus, we describe configurations of PSSs and the bundling of products and services through modularization strategies. So far there have not been tools to analyze and determine the correct combinations of degrees of product and service modularities....
Higher order mechanics on graded bundles
Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz
2015-05-01
In this paper we develop a geometric approach to higher order mechanics on graded bundles in both, the Lagrangian and Hamiltonian formalism, via the recently discovered weighted algebroids. We present the corresponding Tulczyjew triple for this higher order situation and derive in this framework the phase equations from an arbitrary (also singular) Lagrangian or Hamiltonian, as well as the Euler-Lagrange equations. As important examples, we geometrically derive the classical higher order Euler-Lagrange equations and analogous reduced equations for invariant higher order Lagrangians on Lie groupoids.
Compression of a bundle of light rays.
Marcuse, D
1971-03-01
The performance of ray compression devices is discussed on the basis of a phase space treatment using Liouville's theorem. It is concluded that the area in phase space of the input bundle of rays is determined solely by the required compression ratio and possible limitations on the maximum ray angle at the output of the device. The efficiency of tapers and lenses as ray compressors is approximately equal. For linear tapers and lenses the input angle of the useful rays must not exceed the compression ratio. The performance of linear tapers and lenses is compared to a particular ray compressor using a graded refractive index distribution.
Differential geometry of complex vector bundles
Kobayashi, Shoshichi
2014-01-01
Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeto
Cosmic multimuon bundles detected by DELPHI
Rídky, J
2004-01-01
The DELPHI detector located at LEP accelerator has been used also to measure multimuon bundles originated from cosmic ray interactions. Two subdetectors-hadron calorimeter and time projection chamber, are used for this purpose. The 1999 and 2000 data are analyzed over wide range of multiplicities. The multiplicity distribution is compared with prediction of Monte Carlo simulation based on CORSIKA/QGSJET. The Monte-Carlo does not describe the large multiplicity part of data. Even the extreme assumption on the cosmic ray composition (pure iron nuclei) hardly predicts comparable number of high-multiplicity events.
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Coolability of ballooned VVER bundles with pellet relocation
Energy Technology Data Exchange (ETDEWEB)
Hozer, Z.; Nagy, I.; Windberg, P.; Vimi, A. [AEKI, P.O.box 49, Budapest, H-1525 (Hungary)
2009-06-15
During a LOCA incident the high pressure in the fuel rods can lead to clad ballooning and the debris of fuel pellets can fill the enlarged volume. The evaluation of the role of these two effects on the coolability of VVER type fuel bundles was the main objective of the experimental series. The tests were carried out in the modified configuration of the CODEX facility. 19-rod electrically heated VVER type bundle was used. The test section was heated up to 600 deg. C in steam atmosphere and the bundle was quenched from the bottom by cold water. Three series of tests were performed: 1. Reference bundle with fuel rods without ballooning, with uniform power profile. 2. Bundle with 86% blockage rate and with uniform power profile. The blockage rate was reached by superimposing hollow sleeves on all 19 fuel rods. 3. Bundle with 86% blockage rate and with local power peak in the ballooned area. The local power peak was produced by the local reduction the cross section of the internal heater bar inside of the fuel rods. In all three bundle configurations three different cooling water flow-rates were applied. The experimental results confirmed that a VVER bundle with even 86% blockage rate remains coolable after a LOCA event. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. Earlier tests on the coolability of ballooned bundles were performed only with Western type bundles with square fuel lattice. The present test series was the first confirmation of the coolability of VVER type bundles with triangular lattice. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front. The first tests indicated that the effect of local power peak was less significant on the delay of cooling down than the effect of ballooning. (authors)
Heat transfer in bundles of finned tubes in crossflow
Energy Technology Data Exchange (ETDEWEB)
Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.
1986-01-01
This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.
Enthalpy and void distributions in subchannels of PHWR fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)
Isothermal microcalorimetry, a tool for probing SWNT bundles.
Marquis, Renaud; Greco, Carla; Schultz, Patrick; Meunier, Stéphane; Mioskowski, Charles
2009-11-01
The bundling state of several dry single-walled carbon nanotube (SWNT) samples is compared using isothermal microcalorimetry (IMC). So as to get different dry samples with various bundling states, the pristine SWNTs were pretreated with a solution of an aromatic amphiphile with or without sonication, washed and dried before being studied by IMC. The bundling state of the different SWNT samples, which was first analyzed by TEM, was then correlated to the obtained IMC data thanks to the interpretation of the observed energy transfer phenomena. From our results, IMC appears to be an interesting technique for the surface probing of dry SWNT samples, and herein for the evaluation of the bundling state.
Restriction Theorem for Principal bundles in Arbitrary Characteristic
DEFF Research Database (Denmark)
Gurjar, Sudarshan
2015-01-01
The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...
The development of in-situ calibration method for divertor IR thermography in ITER
Energy Technology Data Exchange (ETDEWEB)
Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K. [Japan Atomic Energy Agency (Japan)
2014-08-21
For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.
Free-boundary ideal MHD stability of W7-X divertor equilibria
Nührenberg, C.
2016-07-01
Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.
In-out divertor flow asymmetries during ELMs in ASDEX Upgrade H-mode plasmas
Energy Technology Data Exchange (ETDEWEB)
Tsalas, M. [NCSR ' Demokritos' , Institute of Nuclear Technology - Radiation Protection, 153 10 Aghia Paraskevi, Attica (Greece) and EDFA-JET CSU, Abingdon OX14 3DB, Oxon (United Kingdom)]. E-mail: maximos@ipta.demokritos.gr; Coster, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Fuchs, C. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Herrmann, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Kallenbach, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Mueller, H.W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Neuhauser, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Rohde, V. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Tsois, N. [NCSR ' Demokritos' , Institute of Nuclear Technology - Radiation Protection, 153 10 Aghia Paraskevi, Attica (Greece)
2007-06-15
In ASDEX Upgrade, a fast reciprocating probe positioned in the lower divertor, capable of accessing the low-field side (LFS) and high-field side (HFS) scrape-off layer (SOL) just below the x-point, as well as the private flux region, was equipped with a Mach head and used to investigate fast flow fluctuations and in-out divertor flow asymmetries during ELMs. We compare the flow behaviour during ELMs in the three separate regions. Flow enhancement is observed in the HFS SOL, with Mach number values reaching or exceeding M = 2, flow reversal in the LFS SOL, and complex fluctuating behaviour in the private flux region (which includes flow reversal). We discuss the possible mechanisms that could drive these observations.
End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode
Griswold, M. E.; Korepanov, S.; Thompson, M. C.
2016-11-01
An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor of 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.
Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor.
Balboa, I; Arnoux, G; Eich, T; Sieglin, B; Devaux, S; Zeidner, W; Morlock, C; Kruezi, U; Sergienko, G; Kinna, D; Thomas, P D; Rack, M
2012-10-01
For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 μm and up to sampling frequencies of ∼20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.
Development boiling to sprinkled tube bundle
Directory of Open Access Journals (Sweden)
Kracík Petr
2016-01-01
Full Text Available This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes’ interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.
Development boiling to sprinkled tube bundle
Kracík, Petr; Pospíšil, Jiří
2016-03-01
This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.
Bundled capillary electrophoresis using microstructured fibres.
Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D
2011-01-01
Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.
HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units
Energy Technology Data Exchange (ETDEWEB)
Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)
2015-10-15
Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.
Impurity profiles at the JET divertor targets compared with the DIVIMP code
Energy Technology Data Exchange (ETDEWEB)
Matthews, G.F.; Gottardi, N.A.C.; Harbour, P.J.; Horton, L.D.; Jackel, H.J.; De Kock, L.; Loarte, A.; Maggi, C.F.; O' Brien, D.P.J.; Simonini, R.; Spence, J.; Stamp, M.F.; Stott, P.E.; Summers, H.P.; Tagle, J.; Von Hellerman, M. (JET Joint Undertaking, Abingdon (United Kingdom)); Stangeby, P.C.; Elder, J.D. (Univ. Toronto, Inst. for Aerospace Studies, Downsview, Ontario (Canada))
1992-12-01
In this paper we describe the simulation of edge diagnostics in JET using the DIVIMP (divertor impurity) Monte Carlo code. We concentrate on two ohmic pulses and show how the results are influenced by a variety of modeling assumptions. Our results show that a wall source must be included to explain the diagnostic signals. The wall source is shown to be a significant source of impurity in the discharges studied and more generally. (orig.).
Infrared thermography inspection for monoblock divertor target in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Shigetoshi, E-mail: nakamura.shigetoshi@jaea.go.jp; Sakurai, Shinji; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Sakasai, Akira; Tsuru, Daigo
2014-10-15
Highlights: • Infrared thermography inspection is modified to inspect JT-60SA divertor targets. • Infrared thermography inspection is effective to detect joining defects of targets. • Numerical analysis is in good agreement with inspection results of mock-up targets. • Database for setting screening criteria has been constructed by numerical analysis. - Abstract: Carbon fiber composite (CFC) monoblock divertor target is required for power handling in JT-60SA. Quality of the targets depends on a joining technology in manufacturing process. To inspect the quality of more than 900 target pieces, efficient non-destructive inspection is needed. An infrared thermography inspection (IR inspection), has been proposed by ITER and IRFM, where the quality between CFC and a cooling tube is examined by a use of transient thermal response at a rapid switch from hot to cold water flow. In JT-60SA divertor target, a screw tube will be employed to obtain high heat transfer efficiency with simple structure. Since the time response of the screw tube is much faster than that of smooth tube, it is required to confirm the feasibility of this IR inspection. Thus, the effect of joining defects on transient thermal response of the targets has been investigated experimentally by using the mock-up targets containing defects which are artificially made. It was found that the IR inspection can detect the defects. Moreover, screening criteria of IR inspection for acceptable monoblock target is discussed.
Experience gained with the 3D machining of the W7-X HHF divertor target elements
Energy Technology Data Exchange (ETDEWEB)
Junghanns, P. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Peacock, A. [Max Planck Institute for Plasma Physics, Garching (Germany)
2015-10-15
Highlights: • The Wendelstein 7-X surface of the actively cooled divertor is built up of 890 individually 3D machined target elements. • To date 300 target elements have been 3D machined with an accuracy of ±0.015 mm. • Copper discovered on the surface of few elements is no risk to operation. - Abstract: The high heat flux (HHF) divertor of W7-X consists of 100 target modules assembled from 890 actively water-cooled target elements protected with CFC tiles. The divertor surface will be built up of individually 3D machined target elements with 89 individual element types. To date 300 of the 890 target elements have been 3D machined with a very good accuracy. To achieve this successful result, a prototyping phase has been conducted to qualify the manufacturing route and to define the acceptance criteria with measures taken to minimize the risk of unacceptable damage during the manufacturing. After the 3D-machining, during the incoming inspection, copper infiltration from the interface between the CFC tiles and the CuCrZr heat sink to the plasma facing surface was detected in a small number of elements.
Study of power load pattern on EAST divertor using PFCFlux code
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bin, E-mail: binzhang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Firdaouss, Mehdi [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Gong, Xianzu [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ekedahl, Annika [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Peng, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, Xiaodong, E-mail: xdzhang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2016-06-15
Highlights: • This paper demonstrates the modeling result of power load pattern on EAST graphite divertor by using the PFCFlux code. • The grazing angle varies both poloidally and toroidally, changing by half a degree over the distance of 50 mm away from the strike point. • The correlation between both grazing angle and flux expansion and the magnetic equilibrium parameters are found by using the linear regression method. • The modeling result indicates that the edges of graphite tiles of EAST divertor are perfectly shadowed. - Abstract: The power load pattern on an EAST divertor component, spanning six tiles in the poloidal direction, has been studied with the PFCFlux code. A total of 49 different EAST plasma equilibria in lower single null configuration are used in the study. It is found that the incidence angle, or grazing angle, varies both toroidally and poloidally on the target, changing by approximately half a degree over a distance of 50 mm from the strike point. Strong correlations between the triangularity of the magnetic equilibrium and both the grazing angle and the flux expansion are found by using linear regression. A smaller value of triangularity gives wider plasma-wetted region on the target in lower-outer configuration, and a narrower plasma-wetted region in lower-inner configuration.
The snowflake divertor, physics of a new concept for power exhaust of fusion plasmas
Energy Technology Data Exchange (ETDEWEB)
Lunt, Tilmann; Feng, Yuehe [Max-Planck-Institut fuer Plasmaphysik, Garching/Greifswald (Germany); Canal, Gustavo; Reimerdes, Holger [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)
2014-07-01
Fusion reactors based on the tokamak design will have to deal with very high heat loads on the divertor plates. One of the approaches to solve this heat load problem is the so called 'snowflake divertor', a magnetic configuration with two nearby x-points and two additional divertor legs. In this contribution we report on 'EMC3-Eirene' simulations of the plasma- and neutral particle transport in the scrape-off layer of the swiss tokamak TCV of a series of snowflake equilibria with different values of σ, the distance between the x-points normalized to the minor radius of the plasma. The constant anomalous transport coefficients were chosen such that the power- and particle deposition profiles at the primary inner strike point match the Langmuir probe measurements for the σ=0.1 case. At one of the secondary strike points, however, a significantly larger power flux than that predicted by the simulation was measured by the probes, indicating the presence of an enhanced transport across the primary separatrix. We discuss the possible reason for this enhanced transport as well as its scaling with machine size. Another prediction from the simulation is that the density as well as the radiation maximum are moving from the recycling region in front of the plates upwards to the x-point.
Plasma convection near the magnetic null of a snowflake divertor during an ELM event
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D.D.; Cohen, R.H.; Rognlien, T.D.; Umansky, M.V. [Lawrence Livermore National Laboratory, Livermore, CA (United States)
2012-06-15
A snowflake magnetic configuration is created in a tokamak when the poloidal magnetic field and its first spatial derivatives become zero at a certain point. The separatrix then acquires a characteristic hexagonal shape reminiscent of a snowflake. We study new features of the plasma macroscopic equilibrium and stability in the vicinity of the snowflake null. We note that, compared to the standard X-point divertor, the zone of weak poloidal magnetic field is much larger. The weak poloidal field leads to development of intense plasma convection over the expanded area around the null-point during the ejection phase of an edge localized mode (ELM) event when the plasma pressure in the scrape-off layer increases compared to its inter-ELM value. Intense convection may lead to a roughly-equal splitting of the heat flux between the 4 snowflake divertor legs and to a broadening of the plasma wetted area in each leg, thereby mitigating damage to divertor plates (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
A numerical study of plasma detachment conditions in JET divertor plasmas
Energy Technology Data Exchange (ETDEWEB)
Simonini, R.; Corrigan, G.; Radford, G.; Spence, J.; Taroni, A.; Weber, S. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
Simulation results obtained with the EDGE2D/U code confirm that for a given particle inventory in the SOL (including the divertor), the main parameter determining whether or not particle, momentum and energy detachment occurs, is the residual power P - P{sub lost}, where P is the total power entering the SOL and P{sub lost} is the power lost by transport to walls and by volume losses in the SOL outside the region where detachment takes place. For particle contents leading to reasonable values of the separatrix mid-plane density, detachment is found if the residual power is low enough. Typically the residual power must be inferior to 3 MW for good detachment, with the exact value depending on the geometry of the divertor, the transport assumptions and the neutral recirculation scheme. The results show that divertor plasma conditions relevant for the study of power exhaust and impurity control problems are possible in JET. 9 refs., 2 figs., 1 tab.
Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-11-01
The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)
Directory of Open Access Journals (Sweden)
Masataka Deie
2015-01-01
Full Text Available Background. Posterior cruciate ligament (PCL injuries are not rare in acute knee injuries, and several recent anatomical studies of the PCL and reconstructive surgical techniques have generated improved patient results. Now, we have evaluated PCL reconstructions performed by either the single-bundle or double-bundle technique in a patient group followed up retrospectively for more than 10 years. Methods. PCL reconstructions were conducted using the single-bundle (27 cases or double-bundle (13 cases method from 1999 to 2002. The mean age at surgery was 34 years in the single-bundle group and 32 years in the double-bundle group. The mean follow-up period was 12.5 years. Patients were evaluated by Lysholm scoring, the gravity sag view, and knee arthrometry. Results. The Lysholm score after surgery was 89.1±5.6 points for the single-bundle group and 91.9±4.5 points for the double-bundle group. There was no significant difference between the methods in the side-to-side differences by gravity sag view or knee arthrometer evaluation, although several cases in both groups showed a side-to-side difference exceeding 5 mm by the latter evaluation method. Conclusions. We found no significant difference between single- and double-bundle PCL reconstructions during more than 10 years of follow-up.
Coherent hollow-core waveguide bundles for thermal imaging.
Gal, Udi; Harrington, James; Ben-David, Moshe; Bledt, Carlos; Syzonenko, Nicholas; Gannot, Israel
2010-09-01
There has been very little work done in the past to extend the wavelength range of fiber image bundles to the IR range. This is due, in part, to the lack of IR transmissive fibers with optical and mechanical properties analogous to the oxide glass fibers currently employed in the visible fiber bundles. Our research is aimed at developing high-resolution hollow-core coherent IR fiber bundles for transendoscopic infrared imaging. We employ the hollow glass waveguide (HGW) technology that was used successfully to make single-HGWs with Ag/AgI thin film coatings to form coherent bundles for IR imaging. We examine the possibility of developing endoscopic systems to capture thermal images using hollow waveguide fiber bundles adjusted to the 8-10?mum spectral range and investigate the applicability of such systems. We carried out a series of measurements in order to characterize the optical properties of the fiber bundles. These included the attenuation, resolution, and temperature response. We developed theoretical models and simulation tools that calculate the light propagation through HGW bundles, and which can be used to calculate the optical properties of the fiber bundles. Finally, the HGW fiber bundles were used to transmit thermal images of various heated objects; the results were compared with simulation results. The experimental results are encouraging, show an improvement in the resolution and thermal response of the HGW fiber bundles, and are consistent with the theoretical results. Nonetheless, additional improvements in the attenuation of the bundles are required in order to be able to use this technology for medical applications.
Energy Technology Data Exchange (ETDEWEB)
Huang, Yan [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034 (China); Sun, Jizhong, E-mail: jsun@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Hu, Wanpeng; Sang, Chaofeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2016-01-15
Highlights: • Thermal performance of three edge-shaped divertor tiles was assessed numerically. • All the divertor tiles exposed to type-I ELMs like ITER's will melt. • The rounded edge tile thermally performs the best in all tiles of interest. • The incident energy flux density was evaluated with structural effects considered. - Abstract: Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m{sup 2} in a duration of 600 μs. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion.
Thermo-mechanical and damage analyses of EAST carbon divertor under type-I ELMy H-mode operation
Energy Technology Data Exchange (ETDEWEB)
Li, W.X. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Ye, M.Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, S.T. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Qian, X.Y.; Zhu, C.C. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China)
2016-04-15
Highlights: • Type-I ELMy H-mode is one of the most severe operating environment in tokamak. • An actual time-history heat load has been used in thermo-mechanical analysis. • The analysis results are time-dependent during the whole discharge process. • The analysis could be very useful in evaluating the operational capability of the divertor. - Abstract: The lower carbon divertor has been used since 2008 in EAST, and many significant physical results, like the 410 s long pulse discharge and the 32 s H-mode operation, have been achieved. As the carbon divertor will still be used in the next few years while the injected auxiliary heating power would be increased gradually, it’s necessary to evaluate the operational capability of the carbon divertor under the heat loads during future operation. In this paper, an actual time-history heat load during type-I ELMy H-mode from EAST experiment, as one of the most severe operating environment in tokamak, has been used in the calculation and analysis. The finite element (FE) thermal and mechanical calculations have been carried out to analysis the stress and deformation of the carbon divertor during the heat loads. According to the results, the main impact on the overall temperature comes from the relative stable phase before and after the type-I ELMs and local peak load, and the transient thermal load such as type-I ELMy only has a significant effect on the surface temperature of the graphite tiles. The carbon divertor would work with high stress near the screw bolts in the current operational conditions, because of high preload and conservative frictional coefficient between the bolts and heatsink. For the future operation, new plasma facing materials (PFM) and divertor technology should be developed.
Design, fabrication, and testing of a helium-cooled module for the ITER divertor
Energy Technology Data Exchange (ETDEWEB)
Baxi, C.B.; Smith, J.P.; Youchison, D.
1994-08-01
The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m{sup 2}. The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m{sup 2} applied over a surface area of 20 cm{sup 2}. The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power.
ADX: a high field, high power density, advanced divertor and RF tokamak
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept
On the general elephant conjecture for Mori conic bundles
Prokhorov, Yu G
1996-01-01
Let $f:X\\to S$ be an extremal contraction from a threefolds with terminal singularities onto a surface (so called Mori conic bundle). We study some particular cases of such contractions: quotients of usual conic bundles and index two contractions. Assuming Reid's general elephants conjecture we also obtain a rough classification. We present many examples.
Lexical Bundles in L1 and L2 Academic Writing
Chen, Yu-Hua; Baker, Paul
2010-01-01
This paper adopts an automated frequency-driven approach to identify frequently-used word combinations (i.e., "lexical bundles") in academic writing. Lexical bundles retrieved from one corpus of published academic texts and two corpora of student academic writing (one L1, the other L2), were investigated both quantitatively and qualitatively.…
An integral Riemann-Roch theorem for surface bundles
DEFF Research Database (Denmark)
Madsen, Ib Henning
2010-01-01
This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles.......This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles....
Parabolic stable Higgs bundles over complete noncompact Riemann surfaces
Institute of Scientific and Technical Information of China (English)
李嘉禹; 王友德
1999-01-01
Let M be an open Riemann surface with a finite set of punctures, a complete Poincar(?)-like metric is introduced near the punctures and the equivalence between the stability of an indecomposable parabolic Higgs bundle, and the existence of a Hermitian-Einstein metric on the bundle is established.
Moduli of Parabolic Higgs Bundles and Atiyah Algebroids
DEFF Research Database (Denmark)
Logares, Marina; Martens, Johan
2010-01-01
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundles...
On the Classification of Complex Vector Bundles of Stable Rank
Indian Academy of Sciences (India)
Constantin Bǎnicǎ; Mihai Putinar
2006-08-01
One describes, using a detailed analysis of Atiyah–Hirzebruch spectral sequence, the tuples of cohomology classes on a compact, complex manifold, corresponding to the Chern classes of a complex vector bundle of stable rank. This classification becomes more effective on generalized flag manifolds, where the Lie algebra formalism and concrete integrability conditions describe in constructive terms the Chern classes of a vector bundle.
Presenting Lexical Bundles for Explicit Noticing with Schematic Linguistic Representation
Thomson, Haidee Elizabeth
2016-01-01
Lexical bundles are essential for fluency, but their incompleteness is a stumbling block for learners. In this study, two presentation methods to increase awareness of lexical bundles through explicit noticing are explored and compared with incidental exposure. The three conditions in this study were as follows: noticing with schematic linguistic…
Smooth Bundling of Large Streaming and Sequence Graphs
Hurter, C.; Ersoy, O.; Telea, A.
2013-01-01
Dynamic graphs are increasingly pervasive in modern information systems. However, understanding how a graph changes in time is difficult. We present here two techniques for simplified visualization of dynamic graphs using edge bundles. The first technique uses a recent image-based graph bundling met
Helical twist controls the thickness of F-actin bundles
Claessens, M.M.A.E.; Semmrich, C.; Ramos, L.; Bausch, A.R.
2008-01-01
In the presence of condensing agents such as nonadsorbing polymer, multivalent counter ions, and specific bundling proteins, chiral biopolymers typically form bundles with a finite thickness, rather than phase-separating into a polymer-rich phase. Although short-range repulsive interactions or geome
Subanalytic Bundles and Tubular Neighbourhoods of Zero-Loci
Indian Academy of Sciences (India)
Vishwambhar Pati
2003-08-01
We introduce the natural and fairly general notion of a subanalytic bundle (with a finite dimensional vector space of sections) on a subanalytic subset of a real analytic manifold , and prove that when is compact, there is a Baire subset of sections in whose zero-loci in have tubular neighbourhoods, homeomorphic to the restriction of the given bundle to these zero-loci.
Non-abelian higher gauge theory and categorical bundle
Viennot, David
2012-01-01
A gauge theory is associated with a principal bundle endowed with a connection permitting to define horizontal lifts of paths. The horizontal lifts of surfaces cannot be defined into a principal bundle structure. An higher gauge theory is an attempt to generalize the bundle structure in order to describe horizontal lifts of surfaces. A such attempt is particularly difficult for the non-abelian case. Some structures have been proposed to realize this goal (twisted bundle, gerbes with connection, bundle gerbe, 2-bundle). Each of them uses a category in place of the total space manifold of the usual principal bundle structure. Some of them replace also the structure group by a category (more precisely a Lie crossed module viewed as a category). But the base space remains still a simple manifold (possibly viewed as a trivial category with only identity arrows). We propose a new principal categorical bundle structure, with a Lie crossed module as structure groupoid, but with a base space belonging to a bigger clas...
Habibi, Somayeh
2011-01-01
Let $G$ be a reductive algebraic group over a perfect field $k$ and $\\mathcal{G}$ a $G$-bundle over a scheme $X/k$. The main aim of this article is to study the motive associated with $\\mathcal{G}$, inside the Veovodsky Motivic categories. We consider the case that $\\charakt k=0$ (resp. $\\charakt k\\geq 0$), the motive associated to $X$ is geometrically mixed Tate (resp. geometrically cellular) and $\\mathcal{G}$ is locally trivial for the Zariski (resp. \\'etale) topology on $X$ and show that the motive of $\\mathcal{G}$ is a geometrically mixed Tate motive. Moreover for a general $X$ we construct a filtration on the motive associated to $\\mathcal{G}$ in terms of weight polytopes. Along the way we give some applications and examples.
Bundled automobile insurance coverage and accidents.
Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang
2013-01-01
This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents.
Bundles over Quantum RealWeighted Projective Spaces
Directory of Open Access Journals (Sweden)
Tomasz Brzeziński
2012-09-01
Full Text Available The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (coactions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.
The 2-Hilbert Space of a Prequantum Bundle Gerbe
Bunk, Severin; Szabo, Richard J
2016-01-01
We construct a prequantum 2-Hilbert space for any line bundle gerbe whose Dixmier-Douady class is torsion. Analogously to usual prequantisation, this 2-Hilbert space has the category of sections of the line bundle gerbe as its underlying 2-vector space. These sections are obtained as certain morphism categories in Waldorf's version of the 2-category of line bundle gerbes. We show that these morphism categories carry a monoidal structure under which they are semisimple and abelian. We introduce a dual functor on the sections, which yields a closed structure on the morphisms between bundle gerbes and turns the category of sections into a 2-Hilbert space. We discuss how these 2-Hilbert spaces fit various expectations from higher prequantisation. We then extend the transgression functor to the full 2-category of bundle gerbes and demonstrate its compatibility with the additional structures introduced. We discuss various aspects of Kostant-Souriau prequantisation in this setting, including its dimensional reductio...
[Bundle-branch block depending on the heart rate].
Apostolov, L
1975-01-01
Five patients are reported, admitted to the hospital, with diseases predominantly of the cardio-vascular system. During the electrocardiographic examinations bundle branch block was established, depending on heart rate. It fluctuated within the physiological limits from 50 to 90/min. In three of the patients, the bundle branch block appeared with the quickening of the heart rate (tachycardia-depending bundle branch block) and in two of the patients--the bundle branch block appeared during the slowing down of the heart action and disappeared with its quickening (bradicardia-depending bundle branch block). A brief literature review is presented and attention is paid to the possible diagnostic errors and the treatment mode of those patients with cardiac tonic and antiarrhythmic medicaments.
Voltage- and calcium-dependent motility of saccular hair bundles
Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores
2015-12-01
Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.
A geometric approach to noncommutative principal torus bundles
DEFF Research Database (Denmark)
Wagner, Stefan
2013-01-01
for noncommutative algebras and say that a dynamical system (A, 핋n,α) is called a noncommutative principal 핋n-bundle, if localization leads to a trivial noncommutative principal 핋n-bundle. We prove that this approach extends the classical theory of principal torus bundles and present a bunch of (nontrivial......A (smooth) dynamical system with transformation group 핋n is a triple (A, 핋n,α), consisting of a unital locally convex algebra A, the n-torus 핋n and a group homomorphism α:핋n→Aut(A), which induces a (smooth) continuous action of 핋n on A. In this paper, we present a new, geometrically oriented...... approach to the noncommutative geometry of principal torus bundles based on such dynamical systems. Our approach is inspired by the classical setting: In fact, after recalling the definition of a trivial noncommutative principal torus bundle, we introduce a convenient (smooth) localization method...
Morse theory for the space of Higgs G-bundles
Biswas, Indranil
2010-01-01
Fix a $C^\\infty$ principal $G$--bundle $E^0_G$ on a compact connected Riemann surface $X$, where $G$ is a connected complex reductive linear algebraic group. We consider the gradient flow of the Yang--Mills--Higgs functional on the cotangent bundle of the space of all smooth connections on $E^0_G$. We prove that this flow preserves the subset of Higgs $G$--bundles, and, furthermore, the flow emanating from any point of this subset has a limit. Given a Higgs $G$--bundle, we identify the limit point of the integral curve passing through it. These generalize the results of the second named author on Higgs vector bundles.
HORIZONTAL LAPLACE OPERATOR IN REAL FINSLER VECTOR BUNDLES
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles.An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and h-harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.
Artificial ciliary bundles with nano fiber tip links
Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael
2015-01-01
Mechanosensory ciliary bundles in fishes are the inspiration for carefully engineered artificial flow sensors. We report the development of a new class of ultrasensitive MEMS flow sensors that mimic the intricate morphology of the ciliary bundles, including the stereocilia, tip links, and the cupula, and thereby achieve threshold detection limits that match the biological example. An artificial ciliary bundle is achieved by fabricating closely-spaced arrays of polymer micro-pillars with gradiating heights. Tip links that form the fundamental sensing elements are realized through electrospinning aligned PVDF piezoelectric nano-fibers that link the distal tips of the polymer cilia. An optimized synthesis of hyaluronic acid-methacrylic anhydride hydrogel that results in properties close to the biological cupula, together with drop-casting method are used to form the artificial cupula that encapsulates the ciliary bundle. In testing, fluid drag force causes the ciliary bundle to slide, stretching the flexible nan...
Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes
Directory of Open Access Journals (Sweden)
Ilya Grigorenko
2013-01-01
Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.
Fiber bundle model under fluid pressure
Amitrano, David; Girard, Lucas
2016-03-01
Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.
CHF Enhancement of Advanced 37-Element Fuel Bundles
Directory of Open Access Journals (Sweden)
Joo Hwan Park
2015-01-01
Full Text Available A standard 37-element fuel bundle (37S fuel bundle has been used in commercial CANDU reactors for over 40 years as a reference fuel bundle. Most CHF of a 37S fuel bundle have occurred at the elements arranged in the inner pitch circle for high flows and at the elements arranged in the outer pitch circle for low flows. It should be noted that a 37S fuel bundle has a relatively small flow area and high flow resistance at the peripheral subchannels of its center element compared to the other subchannels. The configuration of a fuel bundle is one of the important factors affecting the local CHF occurrence. Considering the CHF characteristics of a 37S fuel bundle in terms of CHF enhancement, there can be two approaches to enlarge the flow areas of the peripheral subchannels of a center element in order to enhance CHF of a 37S fuel bundle. To increase the center subchannel areas, one approach is the reduction of the diameter of a center element, and the other is an increase of the inner pitch circle. The former can increase the total flow area of a fuel bundle and redistributes the power density of all fuel elements as well as the CHF. On the other hand, the latter can reduce the gap between the elements located in the middle and inner pitch circles owing to the increasing inner pitch circle. This can also affect the enthalpy redistribution of the fuel bundle and finally enhance CHF or dry-out power. In this study, the above two approaches, which are proposed to enlarge the flow areas of the center subchannels, were considered to investigate the impact of the flow area changes of the center subchannels on the CHF enhancement as well as the thermal characteristics by applying a subchannel analysis method.
Schalk, S.
1999-01-01
In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert producti
Energy Technology Data Exchange (ETDEWEB)
Meslin, B
1998-04-30
Plasma density control on the tokamak Tore Supra is important for the optimization of every experimental scenario dealing with the improvement of plasma performances. Specific conditions are required both in the plasma bulk and at the edge. Within the framework of the present study, a magnetic configuration is used in the e plasma edge of Tore Supra: the ergodic divertor configuration. A magnetic perturbation which is resonant with the permanent field destroys the plasma confinement locally, opening the field lines onto the material components. They aim of the study is the characterization of the edge density in every relevant scenario for Tore Supra. The first part of this work is dedicated to density and temperature measurements by a series of fixed Langmuir probes located at the very edge of the plasma. Thanks to them, density regimes have been put in evidence during experiments where the volume averaged density
Soukhanovskii, V. A.; Kaita, R.; Stratton, B.
2016-11-01
A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300-1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ˜10-15 ms is expected.
Energy Technology Data Exchange (ETDEWEB)
Asakura, N., E-mail: asakura.nobuyuki@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Hoshino, K. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Shimizu, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Shinya, K. [Toshiba Nuclear Engineering Services Co., Isogo, Yokohama 25-8523 (Japan); Utoh, H.; Tokunaga, S.; Tobita, K. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya Univ., Nagoya 464-8603 (Japan)
2015-08-15
A short super-X divertor (SXD) is proposed as an option for the Demo divertor, where the field line length from the divertor null to the outer target was largely increased compared to a similar-size conventional divertor. Physics and engineering design studies for a 3 GW-level fusion power Demo reactor (SlimCS) (Tobita et al., 2009) have recently progressed. Minimal number of the divertor coils were installed inside the toroidal field coil, i.e. interlink-winding. Arrangement of the poloidal field coils and their currents were determined, taking into account of the engineering design such as vacuum vessel and the neutron shield structures, and the divertor maintenance scenario. Divertor plasma simulation showed that significant radiation region is produced between the super-X null and the target. Radiation loss in the divertor was increased, producing fully detached plasmas efficiently. Advantages of the short SXD were demonstrated, but the total peak heat load was a marginal level (10 MW m{sup −2}) for the engineering design.
Bundling Actin Filaments From Membranes: Some Novel Players
Directory of Open Access Journals (Sweden)
Clément eThomas
2012-08-01
Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
Two-categorical bundles and their classifying spaces
DEFF Research Database (Denmark)
Baas, Nils A.; Bökstedt, M.; Kro, T.A.
2012-01-01
For a 2-category 2C we associate a notion of a principal 2C-bundle. In case of the 2-category of 2-vector spaces in the sense of M.M. Kapranov and V.A. Voevodsky this gives the the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2......-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop a lot of powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. A calculation based...... on the main theorem shows that the principal 2-bundles associated to the 2-category of 2-vector spaces in the sense of J.C. Baez and A.S. Crans split, up to concordance, as two copies of ordinary vector bundles. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out...
DEFF Research Database (Denmark)
Wiesen, S.; Fundamenski, W.; Wischmeier, M.;
2011-01-01
A revised formulation of the perpendicular diffusive transport model in 2D multi-fluid edge codes is proposed. Based on theoretical predictions and experimental observations a dependence on collisionality is introduced into the transport model of EDGE2D–EIRENE. The impact on time-dependent JET gas...... fuelled ramp-up scenario modelling of the full transient from attached divertor into the high-recycling regime, following a target flux roll over into divertor detachment, ultimately ending in a density limit is presented. A strong dependence on divertor geometry is observed which can mask features...... of the new transport model: a smoothly decaying target recycling flux roll over, an asymmetric drop of temperature and pressure along the field lines as well as macroscopic power dependent plasma oscillations near the density limit which had been previously observed also experimentally. The latter effect...
DEFF Research Database (Denmark)
Wang, L.; Xu, G.S.; Guo, H.Y.;
2013-01-01
-III ELMy H-modes. The energy loss and divertor power load are systematically characterized for these different ELMy H-modes to provide a physics basis for the next-step high-power long-pulse operations in EAST. Both type-I and compound ELMs exhibit good confinement (H98(y,2) ∼ 1). A significant loss...... is about 10 MW m−2, as determined from the divertor-embedded triple Langmuir probe system with high time resolution. As expected, type-III ELMs lead to much smaller divertor power loads with a peak heat flux of about 2 MW m−2. Peak power loads for compound ELMs are between those for type-I and type...
Energy Technology Data Exchange (ETDEWEB)
Briesemeister, A.R., E-mail: briesemeister@fusion.gat.com [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Isler, R.C. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, S.L. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Unterberg, E.A.; Hillis, D.L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Fenstermacher, M.E.; Meyer, W.H. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States)
2015-08-15
Externally applied non-axisymmetric magnetic fields are shown to have little effect on the impurity ion flow velocity and temperature as measured by the multichord divertor spectrometer in the DIII-D divertor for both attached and detached conditions. These experiments were performed in H-mode plasmas with the grad-B drift toward the target plates, with and without n = 3 resonant magnetic perturbations (RMPs). The flow velocity in the divertor is shown to change by as much as 30% when deuterium gas puffing is used to create detachment of the divertor plasma. No measurable changes in the C III flow were observed in response to the RMP fields for the conditions used in this work. Images of the C III emission are used along with divertor Thomson scattering to show that the local electron and C III temperatures are equilibrated for the conditions shown.
Numerical study of the ITER divertor plasma with the B2-EIRENE code package
Energy Technology Data Exchange (ETDEWEB)
Kotov, V.; Reiter, D. [Forschungszentrum Juelich (DE). Inst. fuer Energieforschung (IEF), Plasmaphysik (IEF-4); Kukushkin, A.S. [ITER International Team, Cadarache (France)
2007-11-15
The problem of plasma-wall interaction and impurity control is one of the remaining critical issues for development of an industrial energy source based on nuclear fusion of light isotopes. In this field sophisticated integrated numerical tools are widely used both for the analysis of current experiments and for predictions guiding future device design. The present work is dedicated to the numerical modelling of the edge plasma region in divertor configurations of large-scale tokamak fusion devices. A well established software tool for this kind of modelling is the B2-EIRENE code. It was originally developed for a relatively hot (>> 10 eV) ''high recycling divertor''. It did not take into account a number of physical effects which can be potentially important for ''detached conditions'' (cold, - several eV, - high density, - {approx} 10{sup 21} m{sup -3}, - plasma) typical for large tokamak devices. This is especially critical for the modelling of the divertor plasma of ITER: an international project of an experimental tokamak fusion reactor to be built in Cadarache, France by 2016. This present work is devoted to a major upgrade of the B2-EIRENE package, which is routinely used for ITER modelling, essentially with a significantly revised version of EIRENE: the Monte-Carlo neutral transport code. The main part of the thesis address three major groups of the new physical effects which have been added to the model in frame of this work: the neutral-neutral collisions, the up-to date hydrogen molecular reaction kinetics and the line radiation transport. The impact of the each stage of the upgrade on the self-consistent (between plasma, the neutral gas and the radiation field) solution for the reference ITER case is analysed. The strongest effect is found to be due to the revised molecular collision kinetics, in particular due to hitherto neglected elastic collisions of hydrogen molecules with ions. The newly added non
—Impact of Customer Knowledge Heterogeneity on Bundling Strategy
Amiya Basu; Padmal Vitharana
2009-01-01
We consider a marketer of components who can select one of three alternative pricing strategies: (1) a pure component strategy (i.e., the customer can only buy the components individually), (2) a pure bundling strategy (i.e., the components must be purchased together), or (3) a mixed bundling strategy (i.e., the customer may buy a component individually, or buy the bundle). We consider a market where customer knowledge of components varies and propose that a high-knowledge customer can determ...
Systematic evaluation of bundled SPC water for biomolecular simulations.
Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V
2015-04-07
In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water
The Born rule as structure of spectral bundles (extended abstract
Directory of Open Access Journals (Sweden)
Bertfried Fauser
2012-10-01
Full Text Available Topos approaches to quantum foundations are described in a unified way by means of spectral bundles, where the base space is a space of contexts and each fibre is its spectrum. Differences in variance are due to the bundle being a fibration or opfibration. Relative to this structure, the probabilistic predictions of the Born rule in finite dimensional settings are then described as a section of a bundle of valuations. The construction uses in an essential way the geometric nature of the valuation locale monad.
Bondage Numbers of C4 Bundles over a Cycle Cn
Directory of Open Access Journals (Sweden)
Moo Young Sohn
2013-01-01
Full Text Available Graph bundles generalize the notion of covering graphs and graph products. Graph bundles have been applied in computer architecture and communication networks. The bondage number is an important parameter for measuring the vulnerability and stability of the network domination under link failure. The bondage number b(G of a graph G is the minimum number of edges whose removal enlarges the domination number. In this paper, we show that the bondage number of every C4 bundles over a cycle Cn (n≥4 is equal to 4.
A convective divertor utilizing a 2nd-order magnetic field null
Rognlien, Thomas
2014-10-01
New results motivate a detailed study of a magnetic divertor concept characterized by strong plasma convection near a poloidal magnetic field (Bp) null region. The configuration is that of a near-2nd-order Bp null (Bp ~ Δ r2) , as in a snowflake divertor. The concept has 2 key features: (A) Convection spreads the heat flux between multiple divertor legs and further broadens the heat-flux profile within each leg, thereby greatly reducing target-plate heat loads. (B) The heat flux is further reduced by line radiation in each leg in detachment-like ionization zones. Theory indicates that convective turbulence arises when the poloidal plasma beta, βp = 2μ0nT/B p 2 >> 1 . Measurements in TCV now more fully quantify earlier NSTX and TCV observations of plasma mixing, and related modeling of TCV indicates that strongly enhanced null-region transport is present. Convective mixing provides a stabilizing mechanism to prevent the ionization fronts (hydrogenic and impurity) from collapsing to a highly radiating core MARFE. Also, the radiating zone maps to a very small region at the midplane owing to the very weak Bp in the convective region, thus minimizing its impact on the core plasma. Detailed calculations are reported that combine features A and B noted above. The plasma mixing mechanisms are described together with the corresponding transport model implemented in the 2D UEDGE edge transport code. UEDGE calculations are presented that quantify the roles of mixing, impurity radiation, and detachment stability for a realistic snowflake configuration. Work in collaboration with D.D. Ryutov, S.I. Krasheninnikov, and M.V. Umansky. Performed for the U.S. DoE by LLNS, LLC, LLNL, under Contract DE-AC52-07NA27344.
Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D
Energy Technology Data Exchange (ETDEWEB)
Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.
1996-04-01
V-4Cr-4-Ti alloy has been recently selected for use in the manufacture of a portion of the DIII-D Radiative Divertor modification, as part of an overall DIII-D vanadium alloy deployment effort developed by General Atomics (GA) in conjunction with the Argonne and Oak Ridge National Laboratories (ANL or ORNL). The goal of this work is to produce a production-scale heat of the alloy and fabricate it into product forms for the manufacture of a portion of the Radiative Divertor (RD) for the DIII-D tokamak, to develop the fabrications technology for manufacture of the vanadium alloy radiative Divertor components, and to determine the effects of typical tokamak environments in the behavior of the vanadium alloy. The production of a {approx}1300-kg heat of V-4Cr-4Ti alloy is currently in progress at Teledyne Wah Chang of Albany, oregon (TWCA) to provide sufficient material for applicable product forms. Two unalloyed vanadium ingots for the alloy have already been produced by electron beam melting of raw processes vanadium. Chemical compositions of one ingot and a portion of the second were acceptable, and Charpy V-Notch (CVN) impact test performed on processed ingot samples indicated ductile behavior. Material from these ingots are currently being blended with chromium and titanium additions, and will be vacuum-arc remelted into a V-4Cr-4Ti alloy ingot and converted into product forms suitable for components of the DIII-D RD structure. Several joining methods selected for specific applications in fabrication of the RD components are being investigated, and preliminary trials have been successful in the joining of V-alloy to itself by both resistance and inertial welding processes and to Inconel 625 by inertial welding.
Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks
Energy Technology Data Exchange (ETDEWEB)
Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Rafiq, T.; Kritz, A. H. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Park, G. Y. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States)
2015-09-15
The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.
Testing candidate interlayers for an enhanced water-cooled divertor target
Energy Technology Data Exchange (ETDEWEB)
Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)
2015-10-15
Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated
Energy Technology Data Exchange (ETDEWEB)
Snowdon, K.J. [Newcastle Univ. (United Kingdom). Dept. of Physics; Tawara, H.
1997-01-01
The mechanisms which may lead to the departure of molecular species from surfaces exposed to low energy (0.1-100 eV) particle or photon and electron irradiation are reviewed. Where possible, the charge and electronic state, angular, translational and internal energy distributions of the departing molecules are described and the physical origin of the nature of those distributions identified. The consequences, for the departing molecules, of certain material choices become apparent from such an analysis. Such information may help guide the choice of appropriate materials for plasma facing components of gas-blanket type divertors such as that recently proposed for the International Thermonuclear Experimental Reactor (ITER). (author). 71 refs.
A new radiation-hard endoscope for divertor spectroscopy on JET
Energy Technology Data Exchange (ETDEWEB)
Huber, A., E-mail: A.Huber@fz-juelich.de [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Brezinsek, S.; Mertens, Ph.; Schweer, B.; Sergienko, G.; Terra, A. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Arnoux, G.; Balshaw, N. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Clever, M. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Edlingdon, T. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Egner, S. [Kayser-Threde GmbH, D-81379 Munich (Germany); Farthing, J. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hartl, M. [Kayser-Threde GmbH, D-81379 Munich (Germany); Horton, L. [EFDA-JET Close Support Unit, Culham Science Centre, Culham OX14 3DB (United Kingdom); Kampf, D. [Kayser-Threde GmbH, D-81379 Munich (Germany); Klammer, J. [KRP-Mechatec Engineering GbR, D-85748 Garching b. Muenchen (Germany); Lambertz, H.T. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Matthews, G.F. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Morlock, C.; Murari, A. [EFDA-JET Close Support Unit, Culham Science Centre, Culham OX14 3DB (United Kingdom); and others
2013-10-15
Highlights: ► A new radiation-hard endoscope with optimised divertor view has been developed on JET. ► A high optical transmittance (≥30%) in the operating wavelength range from 390 nm to 2500 nm has been achieved. ► The endoscope delivers high spatial resolution ≤2 mm at the object plane and ≤3 mm over the whole depth of field (±0.7 m). ► The new optical design includes options for the in situ calibration of the endoscope transmittance. ► A new type of shutter based on pneumatic techniques has been developed in view of ITER and integrated into the endoscope. -- Abstract: In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW) whereby the main plasma-facing components, previously made of carbon, have been replaced by Be in the main chamber and W in the divertor. A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten, beryllium and the possibly remaining carbon in the tungsten divertor of the JET-ILW. It operates in the wavelength range from 390 nm to 2500 nm with high optical transmittance (≥30%) as well as high spatial resolution, that is ≤2 mm at the object plane and ≤3 mm over the whole depth of field (±0.7 m). The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. The endoscope has an optimised observation in the near ultraviolet and in the blue spectral region to ensure the detection of the W I-emission line at 400.8 nm. In parallel to the new optical design, a new type of ITER-like shutter system based on pneumatic techniques has been developed and integrated in the endoscope head. The new optical design includes options for an in situ calibration of the endoscope transmittance during the experimental campaign.
On the asymmetries of ELM divertor power deposition in JET and ASDEX Upgrade
DEFF Research Database (Denmark)
Eich, T.; Kallenbach, A.; Fundamenski, W.
2009-01-01
. The paper discusses a comparable simple extension of the model by introducing a non-zero characteristic velocity of the Maxwellian distributed particles. This way the experimentally observed temporal evolution as well as the in/out energy imbalance can be described. The extended model named free......An analytical expression was derived for describing the divertor target power during ELMs based on the model discussed in [W. Fundamenski, R.A. Pitts, Plasma Phys. Control. Fus. 48 (2006) 109] where the power load arises from a Maxwellian distribution of particles released into the SOL region...
Shatz, L F
2000-03-01
The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.
Simulation of radiative divertor plasmas by Ar seeding with the full W-wall in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H.; Shimizu, K.; Nakano, T.; Asakura, N. [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Hoshino, K. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)
2016-08-15
Radiative divertor plasmas for JT-60SA with a full tungsten (W) wall, which is one of options in future, have been simulated with a SOL/divertor integrated code, SONIC. A conventional modified-coronal radiation (MCR) model with a finite confinement time is used for both Ar and W for the purpose of wide-range parameter surveys for the divertor plasma to obtain the required conditions (q{sub t} ≤ 10 MW/m{sup 2}, n{sup Sep}{sub e-mid} = 3∝8 x 10{sup 19} m{sup -3}, P{sub rad} < ∝30 MW), saving the calculation time. At low W density ratio (n{sub W}/n{sub i} = 1 x 10{sup -5}), due to low radiative power from W ions, Ar density ratio (n{sub Ar}/n{sub i} ≥ 1.0 x 10{sup -3}) and a strong gas puff (Γ{sub p} ≥ 3.0 x 10{sup 22} s{sup -1}) are inevitable to suppress the divertor heat flux down to 10 MW/m{sup 2}. Increasing n{sub W}/n{sub i} to 1 x 10{sup -3} in the divertor region, the divertor heat load becomes low and the operative regions are expanded. While, the W production shall be suppressed since the W radiation is increased with replacement of Ar radiation and the particle recycling decreased. A Monte-Carlo module (IMPMC) implemented in SONIC for Ar seeding reveals that the spatial distribution of Ar ions is predominantly determined by shell structures of the Ar ions. The consistency between IMPMC and MCR calculations is demonstrated for the averaged n{sub Ar}/n{sub i} ratio, the electron density and temperature profiles on the divertor target and typical parameter such as the divertor heat load. It shows that the detailed analysis with IMPMC model can be speedily obtained, using a steady state solution obtained by MCR model as an initial state. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
LVRF fuel bundle manufacture for Bruce
Energy Technology Data Exchange (ETDEWEB)
Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)
2005-12-15
In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37-element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliveries are being met. Supporting presentations will highlight some of the issues in more detail. (author)
A study of bacterial flagellar bundling.
Flores, Heather; Lobaton, Edgar; Méndez-Diez, Stefan; Tlupova, Svetlana; Cortez, Ricardo
2005-01-01
Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.
Introductory lectures on fibre bundles and topology for physicists
Energy Technology Data Exchange (ETDEWEB)
Thomas, G.H.
1978-05-01
These lectures may provide useful background material for understanding gauge theories, particularly the nonperturbative effects such as instantons and monopoles. The mathematical language of topology and fibre bundles is introduced.
National Partnership for Maternal Safety: Consensus Bundle on Obstetric Hemorrhage.
Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S
2015-07-01
Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into four domains: Readiness, Recognition and Prevention, Response, and Reporting and System Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation.
National Partnership for Maternal Safety Consensus Bundle on Obstetric Hemorrhage.
Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S
2015-01-01
Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into 4 domains: Readiness, Recognition and Prevention, Response, and Reporting and Systems Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation.
Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles
Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.
2005-12-01
Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (αtube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.
CANFLEX fuel bundle cross-flow endurance test (test report)
Energy Technology Data Exchange (ETDEWEB)
Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.
1997-04-01
As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.
Mechanical Models of Microtubule Bundle Collapse in Alzheimer's Disease
Sendek, Austin; Singh, Rajiv; Cox, Daniel
2013-03-01
Amyloid-beta aggregates initiate Alzheimer's disease, and downstream trigger degradation of tau proteins that act as microtubule bundle stabilizers and mechanical spacers. Currently it is unclear which of tau cutting by proteases, tau phosphorylation, or tau aggregation are responsible for cytoskeleton degradation., We construct a percolation simulation of the microtubule bundle using a molecular spring model for the taus and including depletion force attraction between microtubules and membrane/actin cytoskeletal surface tension. The simulation uses a fictive molecular dynamics to model the motion of the individual microtubules within the bundle as a result of random tau removal, and calculates the elastic modulus of the bundle as the tau concentration falls. We link the tau removal steps to kinetic tau steps in various models of tau degradation. Supported by US NSF Grant DMR 1207624
Zeta Functions for Elliptic Curves I. Counting Bundles
Weng, Lin
2012-01-01
To count bundles on curves, we study zetas of elliptic curves and their zeros. There are two types, i.e., the pure non-abelian zetas defined using moduli spaces of semi-stable bundles, and the group zetas defined for special linear groups. In lower ranks, we show that these two types of zetas coincide and satisfy the Riemann Hypothesis. For general cases, exposed is an intrinsic relation on automorphism groups of semi-stable bundles over elliptic curves, the so-called counting miracle. All this, together with Harder-Narasimhan, Desale-Ramanan and Zagier's result, gives an effective way to count semi-stable bundles on elliptic curves not only in terms of automorphism groups but more essentially in terms of their $h^0$'s. Distributions of zeros of high rank zetas are also discussed.
On exact triangles consisting of stable vector bundles on tori
Kobayashi, Kazushi
2016-01-01
In this paper, we consider the exact triangles consisting of stable holomorphic vector bundles on one-dimensional complex tori, and discuss their relations with the corresponding Fukaya category via the homological mirror symmetry.
Steric effects induce geometric remodeling of actin bundles in filopodia
Dobramysl, Ulrich; Erban, Radek
2016-01-01
Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...
Bundles of Norms About Teen Sex and Pregnancy.
Mollborn, Stefanie; Sennott, Christie
2015-09-01
Teen pregnancy is a cultural battleground in struggles over morality, education, and family. At its heart are norms about teen sex, contraception, pregnancy, and abortion. Analyzing 57 interviews with college students, we found that "bundles" of related norms shaped the messages teens hear. Teens did not think their communities encouraged teen sex or pregnancy, but normative messages differed greatly, with either moral or practical rationalizations. Teens readily identified multiple norms intended to regulate teen sex, contraception, abortion, childbearing, and the sanctioning of teen parents. Beyond influencing teens' behavior, norms shaped teenagers' public portrayals and post hoc justifications of their behavior. Although norm bundles are complex to measure, participants could summarize them succinctly. These bundles and their conflicting behavioral prescriptions create space for human agency in negotiating normative pressures. The norm bundles concept has implications for teen pregnancy prevention policies and can help revitalize social norms for understanding health behaviors.
Design and synthesis of DNA four-helix bundles
Energy Technology Data Exchange (ETDEWEB)
Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)
2011-06-10
The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.
Performance-based bundled payments: potential benefits and burdens.
Satin, David J; Miles, Justin
2009-10-01
Performance-based bundled payments have emerged as the most recent iteration of pay for performance. These are programs in which providers are paid a single fee for a set of evidenced-based services related to a diagnosis. The payments are typically linked to outcomes as well as other quality measures. This paper reviews two prominent bundled payment programs--PROMETHEUS and ProvenCare--and discusses the potential pitfalls of these approaches.
Identity-Based Cryptosystems for Enhanced Deployment of OSGi Bundles
Parrend, Pierre; Galice, Samuel; Frénot, Stéphane; Ubéda, Stéphane
2007-01-01
International audience; The OSGi platform is designed to make Java soft- ware extensible at runtime. This undeniably presents a great interest in several domains like embedded plat- forms or enterprise application servers. However, se- curing the deployment of the OSGi components, or bundles, proves to be a major challenge. The current approach consists in digitally signing the bundles and certifying the signature through a Public Key Infras- tructure. We propose to replace this technology wi...
Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
Micho Đurđevich; Stephen Bruce Sontz
2011-01-01
A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space $E$, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators amo...
Simplified modeling of EM field coupling to complex cable bundles
Schetelig, B.; J. Keghie; Kanyou Nana, R.; Fichte, L.-O.; S. Potthast; Dickmann, S.
2010-01-01
In this contribution, the procedure "Equivalent Cable Bundle Method" is used for the simplification of large cable bundles, and it is extended to the application on differential signal lines. The main focus is on the reduction of twisted-pair cables. Furthermore, the process presented here allows to take into account cables with wires that are situated quite close to each other. The procedure is based on a new approach to calculate the geometry of the simplified cable and us...
Generalized holomorphic bundles and the B-field action
Hitchin, Nigel
2010-01-01
On a generalized complex manifold there is an associated definition of a generalized holomorphic bundle, introduced by Gualtieri. This notion in the case of an ordinary complex structure yields an object which we call a co-Higgs bundle and we consider the B-field action of a closed form of type (1,1), both local and global. The effect makes contact with both Nahm's equations and holomorphic gerbes.
Generalized holomorphic bundles and the B-field action
Hitchin, Nigel
2011-01-01
On a generalized complex manifold, there is an associated definition of a generalized holomorphic bundle, introduced by Gualtieri. In the case of an ordinary complex structure, this notion yields an object which we call a co-Higgs bundle, and we consider the B-field action of a closed form of type (1,1), both local and global. The effect makes contact with both Nahm's equations and holomorphic gerbes.
BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.
Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren
2016-01-01
Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.
Oscillation of carbon molecules inside carbon nanotube bundles
Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.
2009-04-01
In this paper, we investigate the mechanics of a nanoscaled gigahertz oscillator comprising a carbon molecule oscillating within the centre of a uniform concentric ring or bundle of carbon nanotubes. Two kinds of oscillating molecules are considered, which are a carbon nanotube and a C60 fullerene. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the nanotube-bundle and the C60-bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques, which provides considerable insight into the underlying mechanisms of the nanoscaled oscillators. The paper presents a synopsis of the major results derived in detail by the present authors (Cox et al 2007 Proc. R. Soc. A 464 691-710 and Cox et al 2007 J. Phys. A: Math. Theor. 40 13197-208).
Pre-irradiation testing of actively cooled Be-Cu divertor modules
Energy Technology Data Exchange (ETDEWEB)
Linke, J.; Duwe, R.; Kuehnlein, W. [Forschungszentrum Juelich GmbH (Germany)] [and others
1995-09-01
A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.
Thermal analysis of an exposed tungsten edge in the JET divertor
Energy Technology Data Exchange (ETDEWEB)
Arnoux, G., E-mail: gilles.arnoux@ccfe.ac.uk [CCFE Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Coenen, J. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, 52425 Jülich (Germany); Bazylev, B. [Forshungzentrum Karlsruhe GmbH, P.O.Box 3640, D-76021 Karlsruhe (Germany); Corre, Y. [CEA/DSM/IRFM, CEA Cadarache, 13108 Saint Paul Lez Durance (France); Matthews, G.F.; Balboa, I. [CCFE Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Clever, M. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, 52425 Jülich (Germany); Dejarnac, R. [IPP.CR, Institute of Plasma Physics AS CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Devaux, S.; Eich, T. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Gauthier, E. [CEA/DSM/IRFM, CEA Cadarache, 13108 Saint Paul Lez Durance (France); Frassinetti, L. [Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm (Sweden); Horacek, J. [IPP.CR, Institute of Plasma Physics AS CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Jachmich, S. [Laboratory for Plasma Physics Koninklijke Militaire School – Ecole Royale Militaire, Renaissancelaan, 30 Avenue de la Renaissance, B-1000 Brussels (Belgium); Kinna, D. [CCFE Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Marsen, S. [Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald (Germany); and others
2015-08-15
Highlights: • We provide experimental evidences that melting of the JET tungsten divertor is achieved by transients only. • The measurements show that less than half the parallel heat flux reaches the melted sample. • We propose ideas to investigate to explain the missing heat flux. - Abstract: In the recent melt experiments with the JET tungsten divertor, we observe that the heat flux impacting on a leading edge is 3–10 times lower than a geometrical projection would predict. The surface temperature, tungsten vaporisation rate and melt motion measured during these experiments is consistent with the simulations using the MEMOS code, only if one applies the heat flux reduction. This unexpected observation is the result of our efforts to demonstrate that the tungsten lamella was melted by ELM induced transient heat loads only. This paper describes in details the measurements and data analysis method that led us to this strong conclusion. The reason for the reduced heat flux are yet to be clearly established and we provide some ideas to explore. Explaining the physics of this heat flux reduction would allow to understand whether it can be extrapolated to ITER.
Youchison, Dennis L.; Marshall, Theron D.; McDonald, Jimmie M.; Lutz, Thomas J.; Watson, Robert D.; Driemeyer, Daniel E.; Kubik, David L.; Slattery, Kevin T.; Hellwig, Theodore H.
1997-12-01
Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermal-hydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium-scale, bare copper alloy, hypervapotron mock-ups were designed by Sandia National Laboratories and McDonnell Douglas Aerospace (MDA), fabricated at MDA and tested at Sandia' Plasma Materials Test Facility using the EB-1200 electron beam system. The objectives of our effort were to develop the design and manufacturing procedures required for construction of robust HHF components, verify thermal-hydraulic, thermomechanical and CHF performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines, failure criteria and possibly modify any applicable CHF correlations. This paper describes the design, fabrication and finite elements modeling of two types of hypervapotrons, a common version already in use at JET and a new attached- fin design. HHF test data on the attached-fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths to that of localized, highly peaked, off-nominal profiles.
Operational limits on WEST inertial divertor sector during the early phase experiment
Firdaouss, M.; Corre, Y.; Languille, P.; Greuner, H.; Autissier, E.; Desgranges, C.; Guilhem, D.; Gunn, J. P.; Lipa, M.; Missirlian, M.; Pascal, J.-Y.; Pocheau, C.; Richou, M.; Tsitrone, E.
2016-02-01
The primary goal of the WEST project is to be a test bed to characterize the fatigue and lifetime of ITER-like W divertor components subjected to relevant thermal loads. During the first phase of exploitation (S2 2016), these components (W monoblock plasma facing unit—W-PFU) will be installed in conjunction with graphite components (G-PFU). Since the G-PFU will not be actively cooled, it is necessary to ensure the expected pulse duration allows the W-PFU to reach its steady state without overheating the G-PFU assembly structure or the embedded stainless-steel diagnostics. High heat flux tests were performed at the GLADIS facility to assess the thermal behavior of the G-PFU. Some operational limits based on plasma parameters were determined. It was found that it is possible to operate at an injected power such that the maximal incident heat flux on the lower divertor is 10 MW m-2 for the required pulse length.
Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region
Institute of Scientific and Technical Information of China (English)
李承跃
2012-01-01
The statistical random sample technique has been utilized to develop a new Monte-Carlo algorithm MCHET code recently. A large amount of comparative simulation calculation work relating to the neutralized alpha-particle transport has been performed. As a result, we have found the beneficial optimizing plasma density and temperature profiles in the divertor region, with the great resulting improvement of helium ash removal efficiency by the simultaneously externally applied proper RF ponderomotive force potential energy in the vicinity of the divertor plate region. In this work the dominant atomic processes of electron impact ionization and elastic scattering by plasma ions are included. The thermal and streaming motion of the ions along the magnetic field is taken into consideration. Important conclusions are obtained that the probability of neutral helium turning back to the target plate will increase at least by 50% for the optimized combination of the beneficial density, temperature profiles and proper RF perpendicular electric field. For FEB (Fusion Experimental Breeder) reactor design parameters, the RF ponderomotive potential enhancement from 0.5 to 0.9 of ash removal efficiency can be obviously obtained. In the meantime, the tritium inventory may also be reduced to some extent.
A practical globalization of one-shot optimization for optimal design of tokamak divertors
Blommaert, Maarten; Dekeyser, Wouter; Baelmans, Martine; Gauger, Nicolas R.; Reiter, Detlev
2017-01-01
In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes only state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.
ADX: a high field, high power density, Advanced Divertor test eXperiment
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
Energy Technology Data Exchange (ETDEWEB)
Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Carfora, D.; Esposito, G.; Labate, C.; Mozzillo, R.; Renno, F.; Lanzotti, A. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Siuko, M. [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland)
2013-11-15
Highlights: • Optimization of the RH system for the FAST divertor using TRIZ. • Participative design approach using virtual reality. • Comparison of product alternatives in an immersive virtual reality environment. • Prioritization of concept alternatives based on AHP. -- Abstract: The paper focuses on the application of the Theory of Inventive Problem Solving (TRIZ) to divertor Remote Handling (RH) issues in Fusion Advanced Studies Torus (FAST), a satellite tokamak acting as a test bed for the study and the development of innovative technologies oriented to ITER and DEMO programs. The objective of this study consists in generating concepts or solutions able to overcome design and technical weak points in the current maintenance procedure. Two different concepts are designed with the help of a parametric CAD software, CATIA V5, using a top-down modeling approach; kinematic simulations of the remote handling system are performed using Digital Mock-Up (DMU) capabilities of the software. The evaluation of the concepts is carried out involving a group of experts in a participative design approach using virtual reality, classifying the concepts with the help of the Analytical Hierarchy Process (AHP)
ASDEX Upgrade Edge Transport Studies by Turbulence and Braginskii Divertor Transport Codes
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Y.; Coster, D.P.; Kim, J.W.; Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)
2001-07-01
The equilibration time for diverter transport simulations is in the range of milliseconds to seconds. There, perpendicular transport is given empirically and usually assumed to be constant in time and space. In this work, we aim at describing edge plasma profiles in both the H-mode and the L-mode confinement regimes using a model that couples the transport scale to the underlying turbulence scale. There are 2d and 3d variants of DALF, which is a turbulence code that describes short time scale nonlinear phenomena based on first principles of plasma physics. B2 employs an implicit method which is suitable for describing long time scale, quasi-steady state behavior, while fluctuation/intermittency is inherent in turbulence and typically gives rise to short time scale variations of the radial flux. We coarse rained the information from the 2d version of DALF within the order of turbulence auto correlation time and iterated over the divertor simulation (and thus passed plasma parameters to the turbulence code). Numerical algorithm and criteria for convergence in bridging the physics of two different scales is discussed. The generation mechanism of radial electric field in steep gradient regimes is revisited in the ASDEX Upgrade divertor geometry with realistic parameters. Inclusion of turbulent suppression effects by E x B shear flow is considered. (orig.)
Impact of ELM filaments on divertor heat flux dynamics in NSTX
Energy Technology Data Exchange (ETDEWEB)
Ahn, J.-W., E-mail: jahn@pppl.gov [Oak Ridge National Laboratory, Oak Ridge (United States); Maingi, R. [Princeton Plasma Physics Laboratory, Princeton (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore (United States)
2015-08-15
The ELM induced change in wetted area (A{sub wet}) and peak heat flux (q{sub peak}) of divertor heat flux is investigated as a function of the number of striations, which represent ELM filaments, observed in the heat flux profile in NSTX. More striations are found to lead to larger A{sub wet} and lower q{sub peak}. The typical number of striations observed in NSTX is 0–9, while 10–15 striations are normally observed in other machines such as JET, and the ELM contracts heat flux profile when the number of striations is less than 3–4 but broadens it with more of them. The smaller number of striations in NSTX is attributed to the fact that NSTX ELMs are against kink/peeling boundary with lower toroidal mode number (n = 1–5), while typical peeling–ballooning ELMs have higher mode number of n = 10–20. For ELMs with smaller number of striations, relative A{sub wet} change is rather constant and q{sub peak} change rapidly increases with increasing ELM size, while A{sub wet} change slightly increases leading to a weaker increase of q{sub peak} change for ELMs with larger number of striations, both of which are unfavourable trend for the material integrity of divertor tiles.
Energy Technology Data Exchange (ETDEWEB)
Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D. [Sandia National Labs., Albuquerque, NM (United States); Driemeyer, D.E. Kubik, D.L.; Slattery, K.T.; Hellwig, T.H. [McDonnell Douglas Aerospace, St. Louis, MO (United States)
1997-09-01
Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles.
Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D
Energy Technology Data Exchange (ETDEWEB)
Johnson, W.R.; Smith, J.P.
1997-08-01
V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.
Calculation of fractal dimension of magnetic footprint in double-null divertor tokamaks
Crank, Willie; Punjabi, Alkesh; Ali, Halima
2010-11-01
The simplest symplectic map that represents the magnetic topology of double-null divertor tokamaks is the double-null map, given by the map equations: x1=x0-ky0(1-y0^2 ), y1=y0+kx1. k is the map parameter. The map parameter k represents the generic topological effects of toroidal asymmetries. The O-point is at (0,0). The X-points are at (0,±1). We set k=0.51763, and Np=12. Np is the number of iterations of map that are equivalent to a single toroidal circuit of the tokamak. The width of stochastic layer near the upper and the lower X-points is exactly the same and equals 1.69 mm. We start 100,000 filed lines in the stochastic layer near the X-points and advance them for at most 10,000 toroidal circuits. We use the continuous analog of the map to calculate the magnetic footprints in the double-null divertor tokamaks. We calculate the area of the footprints and their fractal dimension. The area is A=0.0024 m^2, and fractal dimension is dfrac=1.0266. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.
Divertor load footprint of ELMs in pellet triggering and pacing experiments at JET
Energy Technology Data Exchange (ETDEWEB)
Frigione, D., E-mail: domenico.frigione@frascati.enea.it [Unità Tecnica Fusione, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Garzotti, L. [CCFE, Culham Science Centre, OX14 3DB (United Kingdom); Lennholm, M. [EFDA CSU, Culham Science Centre, OX14 3DB (United Kingdom); Alper, B. [CCFE, Culham Science Centre, OX14 3DB (United Kingdom); Artaserse, G. [Unità Tecnica Fusione, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bennett, P. [CCFE, Culham Science Centre, OX14 3DB (United Kingdom); Giovannozzi, E. [Unità Tecnica Fusione, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Eich, T. [Max Planck Institute for Plasma Physics, Garching (Germany); Kocsis, G. [WIGNER RCP RMI, POB 49, 1525 Budapest (Hungary); Lang, P.T. [Max Planck Institute for Plasma Physics, Garching (Germany); Maddaluno, G. [Unità Tecnica Fusione, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Mooney, R. [CCFE, Culham Science Centre, OX14 3DB (United Kingdom); Rack, M. [Institut für Energieforschung – Plasmaphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); Sips, G. [EFDA CSU, Culham Science Centre, OX14 3DB (United Kingdom); Tvalashvili, G. [CCFE, Culham Science Centre, OX14 3DB (United Kingdom); Viola, B. [Unità Tecnica Fusione, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Wilkes, D. [CCFE, Culham Science Centre, OX14 3DB (United Kingdom)
2015-08-15
An investigation of pellet pacing and triggering of Edge Localized Modes (ELMs) was carried out in the frame of ELM mitigation studies aimed at reducing their damaging effects on the plasma-facing components (PFCs). The divertor power load footprint of triggered ELMs was compared with gas puffing controlled ELMs. Small pellets, corresponding to a few per cent of the target plasma particle inventory, were used to minimize the fueling effect and the total particle throughput. There is no evidence that pellets can reduce the divertor power load with respect to gas fueling when operating at the same ELM frequency. The line average density and the energy confinement time remained constant when the gas was progressively substituted by pellets. The launch from the Vertical High Field Side (VHFS) confirmed to be more efficient in ELM triggering than from the Low Field Side (LFS) while the power load footprint remained the same both in time evolution and in spatial distribution when changing the injection geometry.
Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D
Energy Technology Data Exchange (ETDEWEB)
Johnson, W.R.; Smith, J.P.; Trester, P.W.
1997-04-01
V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy.
Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology
Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.
2016-10-01
The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.
Thermal fatigue characterization of CFC divertor modules using a one step brazing process
Pintsuk, G.; Casalegno, V.; Ferraris, M.; Koppitz, T.; Salvo, M.
2012-07-01
From the European side, three directional carbon fiber composites (CFCs) are foreseen to be used as plasma facing material for the strike point region of the initial ITER divertor installed for the non-tritium operational phase. For such divertor components two designs, the flat tile and the monoblock concept, are feasible, comprising a joint of the CFC with a Cu/Cu-alloy heat sink. This paper deals with the qualification of a reliable and cheap joining technology for such components, i.e. the simultaneous joining of the CuCrZr heat sink to a compliant Cu layer for the accommodation of thermal stresses and of the Cu layer and the CFC using a non-active Cu-Ge brazing material. For this purpose flat tile and monoblock mock-ups were manufactured, microstructurally analyzed, and subsequently exposed to cyclic high heat flux tests in the electron beam facility JUDITH. Applying hundreds of cycles at up to 20 MW/m2 the tested mock-ups underwent partial damaging, which was characterized in post-mortem microstructural investigations to analyze occurring degradation mechanisms, e.g. partial delamination at the CFC/Cu-interface.
High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor
Energy Technology Data Exchange (ETDEWEB)
Gavila, P., E-mail: pierre.gavila@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Riccardi, B. [Fusion for Energy, 08019 Barcelona (Spain); Pintsuk, G. [Forschungszentrum Juelich, 52425 Juelich (Germany); Ritz, G. [AREVA NP, Centre Technique France, 71205 Le Creusot (France); Kuznetsov, V. [JCS “Efremov Institute”, Doroga na Metallostroy 3, Metallostroy, Saint-Petersburg 196641 (Russian Federation); Durocher, A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul-lez-Durance (France)
2015-10-15
Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m{sup 2}, is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m{sup 2}. During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing
Guillemaut, C.; Lennholm, M.; Harrison, J.; Carvalho, I.; Valcarcel, D.; Felton, R.; Griph, S.; Hogben, C.; Lucock, R.; Matthews, G. F.; Perez Von Thun, C.; Pitts, R. A.; Wiesen, S.; contributors, JET
2017-04-01
Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I sat measurements to the peak I sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.
You, Jeong-Ha
2015-09-01
Development of a diverter target with a sufficient capability of power exhaust is a crucial prerequisite for the realization of a fusion power plant. While the design and technology for divertor target has been successfully developed for ITER, the applicability of this concept is not necessarily assured yet for DEMO mainly because the neutron irradiation dose expected for the DEMO divertor will be an order of magnitude higher than that of the ITER divertor. The possible embrittlement of structural heat sink materials due to irradiation is likely to restrict the structural performance and the operational flexibility of a target component to a considerable extent. For judgment of design feasibility of a target concept a quantitative evaluation of the thermal and structure mechanical performance is needed. In this article, a review on two representative target design concepts considered for the DEMO divertor is presented. Emphasis is put on the mutual impact between the design requirements and the performance of structural materials. Water-cooled and helium-cooled concepts are discussed considering two baseline heat sink materials, CuCrZr alloy and tungsten, respectively. Conclusions are derived from the critical features of the heat sink performance in terms of structural reliability, design/material interface and further R&D needs.
Energy Technology Data Exchange (ETDEWEB)
Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Carfora, D. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); VTT Technical Research Centre of Finland, Tekniikankatu 1, PO Box 1300, FI-33101 Tampere (Finland); Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Esposito, G.; Lanzotti, A.; Marzullo, D. [Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Siuko, M. [VTT Technical Research Centre of Finland, Tekniikankatu 1, PO Box 1300, FI-33101 Tampere (Finland)
2015-05-15
Highlights: • An iterative and incremental design process for cassette-to-VV locking system of DEMO divertor is presented. • Three different concepts have been developed with a systematic design approach. • The final concept has been selected with Fuzzy-Analytic Hierarchy Process in virtual reality. - Abstract: This paper deals with pre-concept studies of DEMO divertor cassette-to-vacuum vessel locking system under the work program WP13-DAS-07-T06: Divertor Remote Maintenance System pre-concept study. An iterative design process, consistent with Systems Engineering guidelines and named Iterative and Participative Axiomatic Design Process (IPADeP), is used in this paper to propose new innovative solutions for divertor locking system, which can overcome the difficulties in applying the ITER principles to DEMO. The solutions conceived have been analysed from the structural point of view using the software Ansys and, eventually, evaluated using the methodology known as Fuzzy-Analytic Hierarchy Process. Due to the lack and the uncertainty of the requirements in this early conceptual design stage, the aim is to cover a first iteration of an iterative and incremental process to propose an innovative design concept to be developed in more details as the information will be completed.
Determination of divertor stray light in high-resolution main chamber H α spectroscopy in JET-ILW
Neverov, V. S.; Kukushkin, A. B.; Stamp, M. F.; Alekseev, A. G.; Brezinsek, S.; von Hellermann, M.; Contributors, JET
2017-01-01
The theoretical model suggested for ITER main chamber H α spectroscopy is applied to the high-resolution spectroscopy (HRS) data of recent JET ITER-like wall (ILW) experiments. The model is aimed at reconstructing the neutral hydrogen isotope density in the SOL, as well as the isotope ratio, by solving a multi-parametric inverse problem with allowance for (i) the strong divertor stray light (DSL) on the main-chamber lines of sight (LoS), (ii) substantial deviation of the neutral atom velocity distribution function (VDF) from a Maxwellian in the SOL, and (iii) data for the direct observation of the divertor. The JET-ILW HRS data on resolving the power at the deuterium and hydrogen spectral lines of the Balmer-alpha series is analysed, with direct observation of the divertor from the top and with observation of the inner wall along the tangential and radial LoS from the equatorial ports. This data allows the spectrum of the DSL and the signal-to-background ratio for the Balmer-alpha light emitted from the far SOL and divertor in the JET-ILW to be evaluated. The results support the expectation of the strong impact of the DSL upon the ITER main chamber H α (and visible light) spectroscopy diagnostics.
Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene
Guozhong, DENG; Xiaoju, LIU; Liang, WANG; Shaocheng, LIU; Jichan, XU; Wei, FENG; Jianbin, LIU; Huan, LIU; Xiang, GAO
2017-04-01
The edge plasma code package SOLPS5.0 is employed to simulate the divertor power footprint widths of the experimental advanced superconducting tokamak (EAST) L-mode and ELM-free H-mode plasmas. The divertor power footprint widths, which consist of the scrape-off layer (SOL) width λ q and heat spreading S, are important physical parameters for edge plasmas. In this work, a plasma current scan is implemented in the simulation to obtain the dependence of the divertor power footprint width on the plasma current I p. Strong inverse scaling of the SOL width with I p has been achieved for both L-mode and H-mode plasmas in the forms of {λ }q,{{L}\\text-\\text{mode}}=4.98× {I}{{p}}-0.68 and {λ }q,{{H}\\text-\\text{mode}}=1.86× {I}{{p}}-1.08. Similar trends have also been demonstrated in the study of heat spreading with {S}{{L}\\text-\\text{mode}}=1.95× {I}{{p}}-0.542 and {S}{{H}\\text-\\text{mode}}=0.756× {I}{{p}}-0.872. In addition, studies on divertor peak heat load and the magnetic flux expansion factor show that both of them are proportional to plasma current. The simulation work here can act as a way to explore the power footprint widths of future tokamak fusion devices such as ITER and the China Fusion Engineering Test Reactor (CFETR).
Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong
2015-09-01
The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)
Combustor having mixing tube bundle with baffle arrangement for directing fuel
Energy Technology Data Exchange (ETDEWEB)
Hughes, Michael John; McConnaughhay, Johnie Franklin
2016-08-23
A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.
Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.
2016-06-01
Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q = 10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95 = 4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP
Havlickova, E; Subba, F; Coster, D; Wischmeier, M; Fishpool, G
2013-01-01
A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two different collisionalities. Based on this comparison, SOLF1D is then used to model the effects of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals by stretching the divertor leg either vertically or radially.
Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D
2013-02-01
The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J
2008-12-31
Experiments conducted in high-performance 1.0 MA and 1.2 MA 6 MW NBI-heated H-mode discharges with a high magnetic flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub t} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the strongly-shaped lower single null configuration with elongation {kappa} = 2.2-2.4 and triangularity {delta} = 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using the inherently high magnetic flux expansion f{sub m} = 16-25 and the partial detachment of the outer strike point at several D{sub 2} injection rates. A good core confinement and pedestal characteristics were maintained, while the core carbon concentration and the associated Z{sub eff} were reduced. The partially detached divertor regime was characterized by an increase in divertor radiated power, a reduction of ion flux to the plate, and a large neutral compression ratio. Spectroscopic measurements indicated a formation of a high-density, low temperature region adjacent to the outer strike point, where substantial increases in the volume recombination rate and CII, CIII emission rates was measured.
Börlin, Niclas; Grussenmeyer, Pierre
2016-06-01
The aim of this paper is to investigate whether the Matlab-based Damped Bundle Adjustment Toolbox (DBAT) can be used to provide independent verification of the BA computation of two popular software—PhotoModeler (PM) and PhotoScan (PS). For frame camera data sets with lens distortion, DBAT is able to reprocess and replicate subsets of PM results with high accuracy. For lens-distortion-free data sets, DBAT can furthermore provide comparative results between PM and PS. Data sets for the discussed projects are available from the authors. The use of an external verification tool such as DBAT will enable users to get an independent verification of the computations of their software. In addition, DBAT can provide computation of quality parameters such as estimated standard deviations, correlation between parameters, etc., something that should be part of best practice for any photogrammetric software. Finally, as the code is free and open-source, users can add computations of their own.
Directory of Open Access Journals (Sweden)
Sandra Umeda Sasaki
2008-01-01
Full Text Available INTRODUCTION: Anterior cruciate ligament ruptures are frequent, especially in sports. Surgical reconstruction with autologous grafts is widely employed in the international literature. Controversies remain with respect to technique variations as continuous research for improvement takes place. One of these variations is the anatomical double bundle technique, which is performed instead of the conventional single bundle technique. More recently, there has been a tendency towards positioning the two bundles through double bone tunnels in the femur and tibia (anatomical reconstruction. OBJECTIVES: To compare, through biomechanical tests, the practice of anatomical double bundle anterior cruciate ligament reconstruction with a patellar graft to conventional single bundle reconstruction with the same amount of patellar graft in a paired experimental cadaver study. METHODS: Nine pairs of male cadaver knees ranging in age from 44 to 63 years were randomized into two groups: group A (single bundle and group B (anatomical reconstruction. Each knee was biomechanically tested under three conditions: intact anterior cruciate ligament, reconstructed anterior cruciate ligament, and injured anterior cruciate ligament. Maximum anterior dislocation, rigidity, and passive internal tibia rotation were recorded with knees submitted to a 100 N horizontal anterior dislocation force applied to the tibia with the knees at 30, 60 and 90 degrees of flexion. RESULTS: There were no differences between the two techniques for any of the measurements by ANOVA tests. CONCLUSION: The technique of anatomical double bundle reconstruction of the anterior cruciate ligament with bone-patellar tendon-bone graft has a similar biomechanical behavior with regard to anterior tibial dislocation, rigidity, and passive internal tibial rotation.
Pressure Loss across Tube Bundles in Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)
2016-03-15
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.
Variable recruitment in bundles of miniature pneumatic artificial muscles.
DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M
2016-09-13
The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles.
Thermal hydraulics of rod bundles: The effect of eccentricity
Energy Technology Data Exchange (ETDEWEB)
Chauhan, Amit K., E-mail: amit_fmlab@yahoo.co.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S., E-mail: prasad@iitm.ac.in [Thermal Turbomachines Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Patnaik, B.S.V., E-mail: bsvp@iitm.ac.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)
2013-10-15
Highlights: • Present CFD investigation explores, whole bundle eccentricity for the first time. • Fluid flow and thermal characteristics in various subchannels are analyzed. • Mass flux distribution is particularly analyzed to study eccentricity effect. • Higher eccentricity resulted in a shoot up in rod surface temperature distribution. • Both tangential and radial flow in rod bundles has resulted due to eccentricity. -- Abstract: The effect of eccentricity on the fluid flow and heat transfer through a 19-rod bundle is numerically carried out. When the whole bundle shifts downwards with respect to the outer (pressure) tube, flow redistribution happens. This in turn is responsible for changes in mass flux, pressure and differential flow development in various subchannels. The heat flux imposed on the surface of the fuel rods and the mass flux through the subchannels determines the coolant outlet temperatures. The simulations are performed for a coolant flow Reynolds number of 4 × 10{sup 5}. For an eccentricity value of 0.7, the mass flux in the bottom most subchannel (l) was found to decrease by 10%, while the surface temperature of the fuel rod in the vicinity of this subchannel increased by 250% at the outlet section. Parameters of engineering interest including skin friction coefficient, Nusselt number, etc., have been systematically explored to study the effect of eccentricity on the rod bundle.
Thermo-mechanical tests of a CFC divertor mock-up
Cardella, A.; Akiba, M.; Duwe, R.; Di Pietro, E.; Suzuki, S.; Satoh, K.; Reheis, N.
1994-04-01
Thermo-mechanical tests have been performed on a divertor mock-up consisting of a metallic tube armoured with five carbon fibre composite tiles. The tube is inserted inside the tiles and brazed with TiCuSil braze (monoblock concept). The tube material is TZM, a molybdenum alloy, and the armour material is SEP CARB N112, a high conductivity carbon-carbon composite. Using special surface preparation consisting of laser drilling, small (˜- 500 μm) holes in the composite have been made to increase the surface wetted by the braze and the resistance. The mock-up has been tested at the JAERI 400 kW electron beam test facility JEBIS. The aim of the test was to assess the performance of the mock-up in screening and thermal fatigue tests with particular attention to the behaviour of the armour to heat sink joint.
An FPGA-based bolometer for the MAST-U Super-X divertor
Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray
2016-11-01
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.
Evaluation of Nb-base alloys for the divertor structure in fusion reactors
Energy Technology Data Exchange (ETDEWEB)
Purdy, I.M. [Argonne National Laboratory, Upton, IL (United States)
1996-04-01
Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.
Post, D; Clark, R E H; Putvinskaya, N
1995-01-01
Reduction of the peak heat loads on the plasma facing components is essential for the success of the next generation of high fusion power tokamaks such as the International Thermonuclear Experimental Reactor (ITER) 1 . Many present concepts for accomplishing this involve the use of atomic processes to transfer the heat from the plasma to the main chamber and divertor chamber walls and much of the experimental and theoretical physics research in the fusion program is directed toward this issue. The results of these experiments and calculations are the result of a complex interplay of many processes. In order to identify the key features of these experiments and calculations and the relative role of the primary atomic processes, simple quasi-analytic models and the latest atomic physics rate coefficients and cross sections have been used to assess the relative roles of central radiation losses through bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange and hydrogen radiation losses f...
Surface modifications of W divertor components for EAST during exposure to high heat loads with He
Energy Technology Data Exchange (ETDEWEB)
Li, C., E-mail: lichun10@mails.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Greuner, H. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Yuan, Y. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhao, S.X.; Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Böswirth, B. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Fu, B.Q.; Jia, Y.Z. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, X. [Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)
2015-08-15
Flat-type W/Cu plasma-facing components have been developed for the new generation divertor of the Chinese Experimental Advanced Superconducting Tokamak. Surface modifications of such actively water-cooled W components following short and long pulse high heat loading coupled with He particle loads with fluence of 3 × 10{sup 22} m{sup −2} have been investigated. An adiabatically loaded W block was investigated as a comparison and exposed to short pulse loads. Blistering was observed on all sample surfaces, but was less pronounced on the components than on the W block, due to the significant lower surface temperature caused by active cooling. For components, longer pulse loads gave rise to a rougher surface. Furthermore, most blisters on components are found to be less than 1 μm in diameter, with just a very few blisters larger than 1 μm, observed only in some near 〈1 1 1〉 grains.
A Fusion Chamber Design with a Liquid First Wall and Divertor
Energy Technology Data Exchange (ETDEWEB)
Nygren, R; Sze, D; Nelson, B; Fogarty, P; Eberle, C; Rognlien, T; Rensink, M; Smolentsev, S; Youssef, M; Sawan, M; Merrill, B; Majeski, R
2003-11-11
The APEX study is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around a fusion plasma. We present a design for the chamber of a 3840MW fusion reactor based on the configuration for the chamber and magnets from ARIESRS but with a fast flowing molten salt of mixed Be, Li and Na fluorides for the first wall and divertor and molten salt blanket with a ferritic steel structure. Our design analysis includes strong radiation from the core and edge plasma, (liquid) MHD effects on the weakly conducting molten salt, a recycling first wall stream that enables a high efficiency thermal conversion, and evaluations of breeding, neutronics, tritium recovery and safety.
An FPGA-based bolometer for the MAST-U Super-X divertor.
Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray
2016-11-01
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.
Ex-vessel break in ITER divertor cooling loop analysis with the ECART code
Cambi, G; Parozzi, F; Porfiri, MT
2003-01-01
A hypothetical double-ended pipe rupture in the ex-vessel section of the International Thermonuclear Experimental Reactor (ITER) divertor primary heat transfer system during pulse operation has been assessed using the nuclear source term ECART code. That code was originally designed and validated for traditional nuclear power plant safety analyses, and has been internationally recognized as a relevant nuclear source term codes for nuclear fission plants. It permits the simulation of chemical reactions and transport of radioactive gases and aerosols under two-phase flow transients in generic flow systems, using a built-in thermal-hydraulic model. A comparison with the results given in ITER Generic Site Safety Report, obtained using a thermal-hydraulic system code (ATHENA), a containment code (INTRA) and an aerosol transportation code (NAUA), in a sequential way, is also presented and discussed.
Neutron diffraction stress determination in W-laminates for structural divertor applications
Directory of Open Access Journals (Sweden)
R. Coppola
2015-07-01
Full Text Available Neutron diffraction measurements have been carried out to develop a non-destructive experimental tool for characterizing the crystallographic structure and the internal stress field in W foil laminates for structural divertor applications in future fusion reactors. The model sample selected for this study had been prepared by brazing, at 1085 °C, 13 W foils with 12 Cu foils. A complete strain distribution measurement through the brazed multilayered specimen and determination of the corresponding stresses has been obtained, assuming zero stress in the through-thickness direction. The average stress determined from the technique across the specimen (over both ‘phases’ of W and Cu is close to zero at −17 ± 32 MPa, in accordance with the expectations.
Symposium on Singularities, Representation of Algebras, and Vector Bundles
Trautmann, Günther
1987-01-01
It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.
Narrow muon bundles from muon pair production in rock
Kudryavtsev, V A; Spooner, N J C
1999-01-01
We revise the process of muon pair production by high-energy muons in rock using the recently published cross-section. The three- dimensional Monte Carlo code MUSIC has been used to obtain the characteristics of the muon bundles initiated via this process. We have compared them with those of conventional muon bundles initiated in the atmosphere and shown that large underground detectors, capable of collecting hundreds of thousands of multiple muon events, can discriminate statistically muon induced bundles from conventional ones. However, we find that the enhancement of the measured muon decoherence function over that predicted at small distances, recently reported by the MACRO experiment, cannot be explained by the effect of muon pair production alone, unless its cross-section is underestimated by a factor of 3. (20 refs).
Narrow muon bundles from muon pair production in rock
Kudryavtsev, V A; Spooner, N J C; 10.1016/S0370-2693(99)01378-7
2009-01-01
We revise the process of muon pair production by high-energy muons in rock using the recently published cross-section. The three-dimensional Monte Carlo code MUSIC has been used to obtain the characteristics of the muon bundles initiated via this process. We have compared them with those of conventional muon bundles initiated in the atmosphere and shown that large underground detectors, capable of collecting hundreds of thousands of multiple muon events, can discriminate statistically muon induced bundles from conventional ones. However, we find that the enhancement of the measured muon decoherence function over that predicted at small distances, recently reported by the MACRO experiment, cannot be explained by the effect of muon pair production alone, unless its cross-section is underestimated by a factor of 3.
Rheology of semiflexible bundle networks with transient linkers.
Müller, Kei W; Bruinsma, Robijn F; Lieleg, Oliver; Bausch, Andreas R; Wall, Wolfgang A; Levine, Alex J
2014-06-13
We present a theoretical and computational analysis of the rheology of networks made up of bundles of semiflexible filaments bound by transient cross-linkers. Such systems are ubiquitous in the cytoskeleton and can be formed in vitro using filamentous actin and various cross-linkers. We find that their high-frequency rheology is characterized by a scaling behavior that is quite distinct from that of networks of the well-studied single semiflexible filaments. This regime can be understood theoretically in terms of a length-scale-dependent bending modulus for bundles. Next, we observe new dissipative dynamics associated with the shear-induced disruption of the network at intermediate frequencies. Finally, at low frequencies, we encounter a region of non-Newtonian rheology characterized by power-law scaling. This regime is dominated by bundle dissolution and large-scale rearrangements of the network driven by equilibrium thermal fluctuations.
Multi-scale strain-stiffening of semiflexible bundle networks
Piechocka, I K; Broedersz, C P; Kurniawan, N A; MacKintosh, F C; Koenderink, G H
2015-01-01
Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation Factor XIII. Furthermore, at high stress, the protofibri...
Simulation of bundle test Quench-12 with integral code MELCOR
Energy Technology Data Exchange (ETDEWEB)
Duspiva, J. [Nuclear Research Inst., Rez plc (Czech Republic)
2011-07-01
The past NRI analyses cover the Quench-01, Quench-03 and Quench-06 with version MELCOR 1.8.5 (including reflood model), and Quench-01 and Quench-11 tests with the latest version MELCOR 1.8.6. The Quench-12 test is specific, because it has different bundle configuration related to the VVER bundle configuration with hexagonal grid of pins and also used E110 cladding material. Specificity of Quench-12 test is also in the used material of fuel rod cladding - E110. The test specificities are a reason for the highest concern, because the VVER reactors are operated in the Czech Republic. The new input model was developed with the taking into account all experience from previous simulations of the Quench bundle tests. The recent version MELCOR 1.8.6 YU{sub 2}911 was used for the simulation with slightly modified ELHEAT package. Sensitivity studies on input parameters and oxidation kinetics were performed. (author)
Lesson Eleven Transient and intermittent left bundle branch block
Institute of Scientific and Technical Information of China (English)
鲁端; 王劲
2004-01-01
@@ In transient left bundle branch block,normal intraventricular conduction subsequently returns,if only1temporarily.The condition has also been called paroxysmal,unstable,or temporary left bundle branch block. Its etiology is similar to that of the stable variety2, with the great majority of the patients having ischemic or hypertensive heart disease or both. Transient bundle branch block may complicate acute myocardial infarction or may occur during attacks of angina. It may appear during an episode of congestive heart failure and disappear with improvement of the cardiac status. Most patients eventually develop permanent block. Occasionally,however, the patient may revert to normal conduction even years after consistently demonstrating the block.
4d SCFTs from negative-degree line bundles
Nardoni, Emily
2016-01-01
We construct 4d $\\mathcal{N}=1$ quantum field theories by compactifying the (2,0) theories on a Riemann surface with genus $g$ and $n$ punctures, where the normal bundle decomposes into a sum of two line bundles with possibly negative degrees $p$ and $q$. Until recently, the only available field-theoretic constructions required the line bundle degrees to be nonnegative, although supergravity solutions were constructed in the literature for the zero-puncture case for all $p$ and $q$. Here, we provide field-theoretic constructions and computations of the central charges of 4d $\\mathcal{N}=1$ SCFTs that are the IR limit of M5-branes wrapping a surface with general $p$ or $q$ negative, for general genus $g$ and number of maximal punctures $n$.
Real Parabolic Vector Bundles over a Real Curve
Indian Academy of Sciences (India)
Sanjay Amrutiya
2014-02-01
We define real parabolic structures on real vector bundles over a real curve. Let $(X, _X)$ be a real curve, and let $S\\subset X$ be a non-empty finite subset of such that $_X(S) = S$. Let ≥ 2 be an integer. We construct an -fold cyclic cover : $Y→ X$ in the category of real curves, ramified precisely over each point of , and with the property that for any element of the Galois group , and any $y\\in Y$, one has $_Y(gy) = g^{-1}_Y(y)$. We established an equivalence between the category of real parabolic vector bundles on $(X,_X)$ with real parabolic structure over , all of whose weights are integral multiples of 1/, and the category of real -equivariant vector bundles on $(Y, _Y)$.
On the motives of moduli of chains and Higgs bundles
García-Prada, Oscar; Schmitt, Alexander
2011-01-01
We take another approach to Hitchin's strategy of computing the cohomology of moduli spaces of Higgs bundles by localization with respect to the circle-action. Our computation is done in the dimensional completion of the Grothendieck ring of varieties and starts by describing the classes of moduli stacks of chains rather than their coarse moduli spaces. As an application we show that the n-torsion of the Jacobian acts trivially on the middle dimensional cohomology of the moduli space of twisted SL_n-Higgs-bundles of degree coprime to n and we give an explicit formula for the motive of the moduli space of Higgs bundles of rank 4 and odd degree. This provides new evidence for a conjecture of Hausel and Rodr\\'iguez-Villegas. Along the way we find explicit recursion formulas for the motives of several types of moduli spaces of stable chains.
Failure of a MEA reclaimer tube bundle due to corrosion
Energy Technology Data Exchange (ETDEWEB)
Shaban, H.; Abdo, M.S.E.; Lal, D.P.
1988-08-01
The removal of sulphur compounds from natural gas used in ammonia production is carried out by scrubbing with monoethanol amine (MEA). To avoid build up of corrosion and degradation products, a portion of the circulating MEA solution is passed through a reclaimer. This is essentially a kettle-type reboiler with a tube bundle made of 316L stainless steel. Occasional failures of the tube bundle due to pitting corrosion have been reported. It is suggested that the excessive pitting corrosion observed on the upper rows of the tube bundle could be partly due to high steam temperature but mainly due to the liquid level falling below the tubes leaving an accumulation of corrosive degradation products on the exposed surfaces, normally these corrosive products remain diluted in the MEA solution and cause little corrosion of the covered tubes. Their concentration on the dry upper layers of the hot metal tubes, however, leads to excessive corrosion. (U.K.).
DTI Image Registration under Probabilistic Fiber Bundles Tractography Learning
Lei, Tao; Fan, Yangyu; Zhang, Xiuwei
2016-01-01
Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to the structure of the nerve fibers. The residual error estimation step in active sample selection learning is improved by modifying the residual error model using finite sample set. The calculated deformation field is then registered on the DTI images. The results of our proposed registration method are compared with 6 state-of-the-art DTI image registration methods under visualization and 3 quantitative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance.
The Family Problem: Hints from Heterotic Line Bundle Models
Constantin, Andrei; Mishra, Challenger
2015-01-01
Within the class of heterotic line bundle models, we argue that N=1 vacua which lead to a small number of low-energy chiral families are preferred. By imposing an upper limit on the volume of the internal manifold, as required in order to obtain finite values of the four-dimensional gauge couplings, and validity of the supergravity approximation we show that, for a given manifold, only a finite number of line bundle sums are consistent with supersymmetry. By explicitly scanning over this finite set of line bundle models on certain manifolds we show that, for a sufficiently small volume of the internal manifold, the family number distribution peaks at small values, consistent with three chiral families. The relation between the maximal number of families and the gauge coupling is discussed, which hints towards a possible explanation of the family problem.
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.
Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim
2016-02-10
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.
Gradient Bundle Analysis: A Full Topological Approach to Chemical Bonding
Morgenstern, Amanda
2016-01-01
The "chemical bond" is a central concept in molecular sciences, but there is no consensus as to what a bond actually is. Therefore, a variety of bonding models have been developed, each defining the structure of molecules in a different manner with the goal of explaining and predicting chemical properties. This thesis describes the initial development of gradient bundle analysis (GBA), a chemical bonding model that creates a high resolution picture of chemical interactions within the charge density framework. GBA is based on concepts from the quantum theory of atoms in molecules (QTAIM), but uses a more complete picture of the topology and geometry of the electron charge density to understand and predict bonding interactions. Gradient bundles are defined as volumes bounded by zero-flux surfaces (ZFSs) in the gradient of the charge density with well-defined energies. The structure of gradient bundles provides an avenue for detecting the locations of valence electrons, which correspond to reactive regions in a ...
Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U.
van Eden, G G; Reinke, M L; Peterson, B J; Gray, T K; Delgado-Aparicio, L F; Jaworski, M A; Lore, J; Mukai, K; Sano, R; Pandya, S N; Morgan, T W
2016-11-01
The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm(2) Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.
Studies of short-range tungsten migration in DIII-D divertor
Rudakov, D. L.; Stangeby, P. C.; Elder, J. D.; Ding, R.; Abrams, T.; Unterberg, E. A.; Briesemeister, A.; Donovan, D.; McLean, A. G.; Guo, H. Y.; Thomas, D. M.; Hinson, E.; Wampler, W. R.; Watkins, J. G.
2016-10-01
Two toroidal rings of 5 cm wide W-coated TZM inserts were installed in the lower divertor of DIII-D. Migration of W on the graphite tile surfaces 1-6 cm radially outwards from the outermost ring was studied in a series of 23 reproducible lower single null L-mode discharges with the Outer Strike Point (OSP) placed on the ring. The discharges used 3.2 MW of NBI heating power; plasma density and electron temperature at the OSP were about 1x1020m-3 and 30 eV. W gross erosion rates were measured via monitoring 400.9 nm WI line and applying S/XB coefficient. W deposition was measured on a graphite DiMES sample used as a divertor collector probe. The sample featured two 1 mm wide radial inserts; one was exposed for the whole experiment, the other was exchanged every 4-8 plasma discharges. Measurements of the areal density of W on the inserts by post-mortem RBS analysis show that W deposition is largest in the area of net carbon deposition, possibly due to W re-erosion suppression by C deposits. Measured W coverage in the area of net C erosion is comparable to ERO modeling predictions. Supported by US DOE under DE-FG02-07ER54917, DE-AC04-94AL85000, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FC02-04ER54698.
Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U
van Eden, G. G.; Reinke, M. L.; Peterson, B. J.; Gray, T. K.; Delgado-Aparicio, L. F.; Jaworski, M. A.; Lore, J.; Mukai, K.; Sano, R.; Pandya, S. N.; Morgan, T. W.
2016-11-01
The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
Energy Technology Data Exchange (ETDEWEB)
Chapman, S. C., E-mail: S.C.Chapman@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Dendy, R. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Todd, T. N.; Webster, A. J.; Morris, J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Watkins, N. W. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Centre for the Analysis of Time Series, London School of Economics, London (United Kingdom); Department of Engineering and Innovation, Open University, Milton Keynes (United Kingdom); Calderon, F. A. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom)
2014-06-15
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.
Manufacturing and testing of a Be/OFHCCu divertor module
Araki, M.; Youchison, D. L.; Akiba, M.; Watson, R. D.; Sato, K.; Suzuki, S.
1996-10-01
Beryllium, carbon-based materials and tungsten are considered as plasma facing materials for the next generation of fusion machines such as the international thermonuclear experimental reactor (ITER). Beryllium is one of the primary candidate materials because of its low atomic number and lack of tritium codeposition. However, joining of a beryllium armor to a copper heat sink remains a critical problem due to the formation of brittle intermetallics at the interface. To address this concern, the Japan Atomic Energy Research Institute manufactured a beryllium/Cu divertor module with Cr and Ni diffusion barriers. This Be/Cu module was tested in the electron beam test system of Sandia National Laboratories in the framework of the US—Japan Fusion Collaboration. The divertor module consisted of four beryllium tiles, 25 mm × 25 mm, and a square copper heat sink with convolutions like a screw nut inside the coolant channel. To evaluate the integrity of the brazed bonds under various heat fluxes, beryllium tiles of two different thicknesses, 2 and 10 mm, were bonded to the copper heat sink. Cooling conditions of 10 m/s water flow velocity at 1 MPa, and a water inlet temperature of 20°C were selected based on the thermal analysis. During high heat flux testing the 10 mm thick Be tiles detached at an absorbed heat flux around 5 MW/m 2 for several shots due to flaws at the braze joint confirmed by optical observation after manufacturing. One of the 2 mm thick Be tiles failed after 550 cycles at the steady state heat flux of 6.5 MW/m 2. Most likely the failure was caused by brittleness at the interface caused by the presence of BeCu intermetallics.
Application of carbon-aluminum nanostructures in divertor coatings from fusion reactor
Ciupina, V.; Lungu, C. P.; Vladoiu, R.; Epure, T. D.; Prodan, G.; Porosnicu, C.; Prodan, M.; Stanescu, I. M.; Contulov, M.; Mandes, A.; Dinca, V.; Zarovschi, V.
2012-10-01
Nanostructured carbon materials have increasingly attracted the interest of the scientific community, because of their fascinating physical properties and potential applications in high-tech devices. In the current ITER design, the tiles made of carbon fiber composites (CFCs) are foreseen for the strike point zone and tungsten (W) for other parts of the divertor region. This choice is a compromise based mainly on experience with individual materials in many different tokamaks. Also Carbon-Aluminum composites are the candidate material for the First Wall in ITER. In order to prepare nanostructured carbon-aluminum nanocomposite for the divertor part in fusion applications, the original method thermionic vacuum arc (TVA) was used in two electronic guns configuration. One of the main advantages of this technology is the bombardment of the growing thin film just by the ions of the depositing film. Moreover, the energy of ions can be controlled. Thermo-electrons emitted by an externally heated cathode and focused by a Wehnelt focusing cylinder are strongly accelerated towards the anode whose material is evaporated and bright plasma is ignited by a high voltage DC supply. The nanostructured C-Al films were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Tribological properties in dry sliding were evaluated using a CSM ball-on-disc tribometer. The carbon - aluminum films were identified as a nanocrystals complex (from 2nm to 50 nm diameters) surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films. The friction coefficients (0.1 - 0.2, 0.5) of the C-Al coatings was decreased more than 2-5 times in comparison with the uncoated substrates proving excellent tribological properties. C-Al nanocomposites coatings were designed to have excellent tribological properties while the structure is composed by nanocrystals complex surrounded by amorphous structures
Ciupina, V.; Morjan, I.; Lungu, C. P.; Vladoiu, R.; Prodan, G.; Prodan, M.; Zarovschi, V.; Porosnicu, C.; Stanescu, I. M.; Contulov, M.; Mandes, A.; Dinca, V.; Sugiyama, K.
2011-10-01
Nanostructured carbon materials have increasingly attracted the interest of the scientific community, because of their fascinating physical properties and potential applications in high-tech devices. In the current ITER design, the tiles made of carbon fiber composites (CFCs) are foreseen for the strike point zone and tungsten (W) for other parts of the divertor region. This choice is a compromise based mainly on experience with individual materials in many different tokamaks. Also Beryllium is the candidate material for the First Wall in ITER. In order to prepare nanostructured carbon-tungsten nanocomposite for the divertor part in fusion applications, the original method thermionic vacuum arc (TVA) was used in two electronic guns configuration. One of the main advantages of this technology is the bombardment of the growing thin film just by the ions of the depositing film. The nanostructured C-W and C-Be films were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The C-W films were identified as a nanocrystals complex (5 nm average diameter) surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films. The C-Be films are polycrystalline with mean grain size about 15 nm. The friction coefficients (0.15 - 0.35) of the C-W coatings was decreased more than 3-5 times in comparison with the uncoated substrates proving excellent tribological properties. C-W nanocomposites coatings were designed to have excellent tribological properties while the structure is composed by nanocrystals complex surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films.&updat
A Fusion Reactor Design with a Liquid First Wall and Divertor
Energy Technology Data Exchange (ETDEWEB)
Nygren, R E; Rognlien, T D; Rensink, M E; Smolentsev, S S; Youssef, M E; Sawan, M Z; Merrill, B J; Eberle, C; Fogarty, P J; Nelson, B E; Sze, D K; Majeski, R
2003-11-13
Within the magnetic fusion energy program in the US, a program called APEX is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around the plasma. As part of this work, the APEX Team has investigated several possible design implementations and developed a specific engineering concept for a fusion reactor with liquid walls. Our approach has been to utilize an already established design for a future fusion reactor, the ARIES-RS, for the basic chamber geometry and magnetic configuration and to replace the chamber technology in this design with liquid wall technology for a first wall and divertor and a blanket with adequate tritium breeding. This paper gives an overview of one design with a molten salt (a mixture of lithium, beryllium and sodium fluorides) forming the liquid surfaces and a ferritic steel for the structural material of the blanket. The design point is a reactor with 3840MW of fusion power of which 767MW is in the form of energetic particles (alpha power) and 3073MW is in the form of neutrons. The alpha plus auxiliary power total 909MW of which 430MW is radiated from the core mostly onto the first wall and the balance flows into the edge plasma and is distributed between the first wall and the divertor. In pursuing the application of liquid surfaces in APEX, the team has developed analytical tools that are significant achievements themselves and also pursued experiments on flowing liquids. This work is covered elsewhere, but the paper will also note several such areas to indicate the supporting science behind the design presented. Significant new work in modeling the plasma edge to understand the interaction of the plasma with the liquid walls is one example. Another is the incorporation of magneto-hydrodynamic (MHD) effects in fluid modeling and heat transfer.
Overview of co-deposition and fuel inventory in castellated divertor structures at JET
Rubel, M. J.; Coad, J. P.; Pitts, R. A.; JET-EFDA Work Programme
2007-08-01
The main focus of this work is fuel retention in plasma components of the JET water-cooled Mk-I divertors operated with small tiles, first with carbon fibre composite (CFC) and then with castellated beryllium. Until recently these have been the only large-scale structures of this type used in fusion experiments. Three issues regarding fuel retention and material migration are addressed: (i) accumulation in gaps separating tiles and in the grooves of castellation; (ii) comparison of deposition on carbon and beryllium; (iii) in-depth migration of deuterium into the bulk of CFC. The essential results are summarised as follows: (i) co-deposition occurs up to a few cm deep in the gaps between the Mk-I tiles; (ii) fuel inventory in the CFC tile gaps exceeds that on plasma-facing surfaces by up to a factor of 2; (iii) in gaps between the beryllium tiles from the inner divertor corner the fuel content reaches 30% of that on plasma-facing surfaces, whereas in the grooves of castellation in Be the fuel content is less than 3.0% of that found on the top surface; (iv) fuel inventory on the Be tiles is strongly associated with the carbon co-deposition; (v) the D content measured in the bulk (1.5 mm below the surface) on cleaved CFC tiles exceeds 1 × 10 15 cm -2. Implications of these results for a next-step device are addressed and the transport mechanism into the gaps is briefly discussed. The results presented here suggest that in a machine with non-carbon walls in the main chamber (as foreseen for ITER) the material transport and subsequent fuel inventory in the castellation would be reduced.
The Analysis of SBWR Critical Power Bundle Using Cobrag Code
Directory of Open Access Journals (Sweden)
Yohannes Sardjono
2013-03-01
Full Text Available The coolant mechanism of SBWR is similar with the Dodewaard Nuclear Power Plant (NPP in the Netherlands that first went critical in 1968. The similarity of both NPP is cooled by natural convection system. These coolant concept is very related with same parameters on fuel bundle design especially fuel bundle length, core pressure drop and core flow rate as well as critical power bundle. The analysis was carried out by using COBRAG computer code. COBRAG computer code is GE Company proprietary. Basically COBRAG computer code is a tool to solve compressible three-dimensional, two fluid, three field equations for two phase flow. The three fields are the vapor field, the continuous liquid field, and the liquid drop field. This code has been applied to analyses model flow and heat transfer within the reactor core. This volume describes the finitevolume equations and the numerical solution methods used to solve these equations. This analysis of same parameters has been done i.e.; inlet sub cooling 20 BTU/lbm and 40 BTU/lbm, 1000 psi pressure and R-factor is 1.038, mass flux are 0.5 Mlb/hr.ft2, 0.75 Mlb/hr.ft2, 1.00 Mlb/hr.ft2 and 1.25 Mlb/hr.ft2. Those conditions based on history operation of some type of the cell fuel bundle line at GE Nuclear Energy. According to the results, it can be concluded that SBWR critical power bundle is 10.5 % less than current BWR critical power bundle with length reduction of 12 ft to 9 ft.
Einstein Manifolds, Abelian Instantons, Bundle Reduction, and the Cosmological Constant
Soo, C P
2001-01-01
The anti-self-dual projection of the spin connections of certain four-dimensional Einstein manifolds can be Abelian in nature. These configurations signify bundle reductions. By a theorem of Kobayashi and Nomizu such a process is predicated on the existence of a covariantly constant field. It turns out that even without fundamental Higgs fields and other physical matter, gravitational self-interactions can generate this mechanism if the cosmological constant is non-vanishing. This article identifies the order parameter, and clarifies how these Abelian instanton solutions are associated with a Higgs triplet which causes the bundle reduction from SO(3) gauge group to U(1).
Milnor-Wood type inequalities for Higgs bundles
Hartnick, Tobias
2011-01-01
We explain how the generalized Milnor-Wood inequality of Burger and Iozzi for reductive representations of a cocompact complex-hyperbolic lattice into a Hermitian Lie group translates under Simpson's non-abelian Hodge correspondence into an inequality for topological invariants of the corresponding Higgs bundles. In this way, we obtain an inequality that holds for all Hermitian Lie groups, generalizing the Milnor-Wood type inequalities for Higgs bundles that have been proved for the classical Hermitian Lie groups by Bradlow, Garcia-Prada, and Gothen and by Koziarz and Maubon.
Dialytic Separation of Bundled, Functionalized Carbon Nanotubes from Carbonaceous Impurities
Directory of Open Access Journals (Sweden)
J. Justin Mulvey
2014-11-01
Full Text Available Separating functionalized single-wall carbon nanotubes (SWCNTs from functionalized amorphous carbon is challenging, due to their polydispersity and similar physicochemical properties. We describe a single-step, dialytic separation method that takes advantage of the ability of heavily functionalized SWCNTs to bundle in a polar environment while maintaining their solubility. Experiments on functionalized SWCNTs were compared with functionalized, C60 fullerenes (buckyballs to probe the general applicability of the method and further characterize the bundling process. This approach may simultaneously be used to purify a functionalization reaction mixture of unreacted small molecules and of residual solvents, such as dimethylformamide.
Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
Durdevich, Micho; Sontz, Stephen Bruce
2013-05-01
A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space E, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators among themselves as a consequence of a geometric property, namely, that the connection has curvature zero.
Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
Directory of Open Access Journals (Sweden)
Micho Đurđevich
2013-05-01
Full Text Available A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space E, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators among themselves as a consequence of a geometric property, namely, that the connection has curvature zero.
Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
evich, Micho Đurđ
2011-01-01
A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space E, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutivity of these operators among themselves as a consequence of a geometric property, namely, that the connection has curvature zero.
Capillary Micro-Flow Through a Fiber Bundle(Ⅰ)
Institute of Scientific and Technical Information of China (English)
ZHU Ying-dan; WANG Ji-hui; TAN Hua; GAO Guo-qiang
2004-01-01
The present work considered the capillary micro-flow through a fiber bundle. The resin heights in the fiber bundle as a function of time were used to determine the experimental values of capillary pressure and the permeability by the nonlinear regression fitting method. The fitting curves showed a good agreement with experiments. However, these values of capillary pressure from short- time experiments were much lower than the theoretical results from the Yang-Laplace Equation. More accurate capillary pressure was predicted from the presented long-run experiment.
Arthroscopic double-bundle posterior cruciate ligament reconstruction surgical technique.
Fanelli, Gregory C; Beck, John D; Edson, Craig J
2010-06-01
The keys to successful posterior cruciate ligament (PCL) reconstruction are to identify and treat all pathology, use strong graft material, accurately place tunnels in anatomic insertion sites, minimize graft bending, use a mechanical graft tensioning device, use primary and back-up graft fixation, and use the appropriate postoperative rehabilitation program. Adherence to these technical principles results in successful single-bundle and double-bundle arthroscopic transtibial tunnel PCL reconstruction based on stress radiography, arthrometer, knee ligament rating scales, and patient satisfaction measurements.
BUNDLE ADJUSTMENTS CCD CAMERA CALIBRATION BASED ON COLLINEARITY EQUATION
Institute of Scientific and Technical Information of China (English)
Liu Changying; Yu Zhijing; Che Rensheng; Ye Dong; Huang Qingcheng; Yang Dingning
2004-01-01
The solid template CCD camera calibration method of bundle adjustments based on collinearity equation is presented considering the characteristics of space large-dimension on-line measurement. In the method, a more comprehensive camera model is adopted which is based on the pinhole model extended with distortions corrections. In the process of calibration, calibration precision is improved by imaging at different locations in the whole measurement space, multi-imaging at the same location and bundle adjustments optimization. The calibration experiment proves that the calibration method is able to fulfill calibration requirement of CCD camera applied to vision measurement.
Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength
DEFF Research Database (Denmark)
Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda;
2011-01-01
A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...
Chern-Simons functional under gauge transformations on flat bundles
Byun, Yanghyun; Kim, Joohee
2017-01-01
We describe the effect of a gauge transformation on the Chern-Simons functional in a thorough and unifying manner. We use the assumptions that the structure group is compact and connected and, in particular, that the principal bundle is flat. The Chern-Simons functional we consider is the one defined by choosing a flat reference connection. The most critical step in arriving at the main result is to show both the existence and the uniqueness of a cohomology class on the adjoint bundle such that it is the class of the so-called Maurer-Cartan 3-form when restricted to each fiber.
The Determinant Bundle on the Moduli Space of Stable Triples over a Curve
Indian Academy of Sciences (India)
Indranil Biswas; N Raghavendra
2002-08-01
We construct a holomorphic Hermitian line bundle over the moduli space of stable triples of the form (1, 2, ), where 1 and 2 are holomorphic vector bundles over a fixed compact Riemann surface , and : 2 → 1 is a holomorphic vector bundle homomorphism. The curvature of the Chern connection of this holomorphic Hermitian line bundle is computed. The curvature is shown to coincide with a constant scalar multiple of the natural Kähler form on the moduli space. The construction is based on a result of Quillen on the determinant line bundle over the space of Dolbeault operators on a fixed ∞ Hermitian vector bundle over a compact Riemann surface.
Quillen Bundle and Geometric Prequantization of Non-Abelian Vortices on a Riemann Surface
Indian Academy of Sciences (India)
Rukmini Dey; Samir K Paul
2011-02-01
In this paper we prequantize the moduli space of non-abelian vortices. We explicitly calculate the symplectic form arising from 2 metric and we construct a prequantum line bundle whose curvature is proportional to this symplectic form. The prequantum line bundle turns out to be Quillen’s determinant line bundle with a modified Quillen metric. Next, as in the case of abelian vortices, we construct line bundles over the moduli space whose curvatures form a family of symplectic forms which are parametrized by $\\Psi_0$, a section of a certain bundle. The equivalence of these prequantum bundles are discussed.
Leddy, Jarrod; Dudson, Ben
2016-10-01
Understanding the transport processes in the low temperature plasma at the boundary region of magnetic confinement fusion (MCF) devices is crucial to the design and operation of future fusion reactor devices. It influences the divertor heat load, and probably the core confinement as well. The dominant source of this transport is turbulence, which serves to mix the high and low temperature regions of the plasma. The nature of this plasma turbulence is affected by not only the plasma parameters, but also the neutral species that also exist in these low temperature regions. The interaction of neutrals with the plasma turbulence is studied in linear device geometry (for its simplicity, yet similarity in plasma parameters), and the result is a strong interaction that impacts the local plasma and neutral densities, momenta and energies. The neutral gas is found to affect plasma edge turbulence primarily through momentum exchange, reducing the radial electric field and enhancing cross-field transport, with consequent implications for the SOL width and divertor heat loads. Therefore, turbulent plasma and fluid simulations have been performed in multiple tokamak geometries to more closely examine the effects of this interaction. These cases were chosen for the variety in configuration with ISTOK having a toroidal limiter (ie. no divertor), DIII-D having a standard divertor configuration, and MAST-U having a super-X divertor with extended outer divertor legs. Progress towards the characterization of neutral impact on detachment and edge behavior will be presented.
Zhang, Bin; Gan, Kaifu; Gong, Xianzu; Zhang, Xiaodong; Wang, Fumin; Yang, Zhendong; Chen, Meiwen; Wang, Xiaoqiong
2015-10-01
Divertor heat patterns induced by Lower Hybrid Current Drive (LHCD) L-mode plasmas are investigated using an infra-red (IR) camera system on an Experimental Advanced Superconducting Tokamak (EAST). A two-dimensional finite element analysis code DFlux is used to compute heat flux along the poloidal divertor target and corresponding quantities. Outside the Origin Strike Zone (OSZ), a Second Peak Heat Flux (SPHF) zone, where the heat flux is even stronger than that at the OSZ, appears on the lower-outer (LO) divertor plates with LHCD and disappears immediately after switching off the LHCD. The main heat-flux shifts from the SPHF zone towards the OSZ when the divertor configuration converts from double null to lower single null, indicating that the growth of the SPHF zone is apparently affected by a plasma magnetic configuration. The heat patterns on the LO divertor plates are observed to be different from that on the lower-inner (LI) targets as the SPHF zone appears only on the LO divertor target. It is also found that the heat flux at the SPHF zone was obviously enhanced after the Supersonic Molecule Beam Injection (SMBI) pulse. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB101001 and 2014GB101002)
Energy Technology Data Exchange (ETDEWEB)
Azeroual, A
2000-04-04
In a thermonuclear reactor, one must continuously fuel the discharge and extract the ashes resulting from fusion reactions. To avoid the risk of discharge poisoning, {alpha}-particle concentration is limited to {approx} 10 %. To allow for steady-state conditions requires then to extract {>=}2 % of the helium out flux. In Tore Supra, the ergodic divertor is the main component managing the heat and particle fluxes at the edge. Its principle consists in generating a resonant perturbation able to destroy magnetic surfaces at the plasma periphery. In this region, the field lines are open and connected at both ends to neutralizers which are wetted by the major part of the heat and particle fluxes and are the structures through which a part of the plasma out flux is pumped for maintaining the discharge in steady-state conditions. This work describes the neutral recirculation around the ergodic divertor and is based on a data base of 56 discharges. One discuss the two processes allowing for particle exhaust: the ballistic collection of ions and that of neutrals backscattered by atomic reactions. These two processes are modelled accounting for a realistic description of the divertor geometry. A comparison between simulations and experiments is presented for measurements characterising the three main actors of plasma-wall interaction: the edge plasma, the D{sub {alpha}} light emission and the neutral pressure in the divertor plenum. Last, one question how such a system can be extrapolated to next step machines, for which one must account for technical constraints linked to the presence of the shield protecting the coils from the high neutron flux. (author)
On $(k,l)$-stable vector bundles over algebraic curves
Mata-Gutiérrez, Osbaldo
2012-01-01
In this paper, we study the $(k,l)$-stable vector bundles over non-singular projective curve $X$ of genus $g\\geq 2,$ its relation with stability and Segre invariants. For rank 2 and 3, we give an explicit description and relation of $(k,l)$-stability and Brill-Noether loci.
Thermal conversion of bundled carbon nanotubes into graphitic ribbons.
Gutiérrez, H R; Kim, U J; Kim, J P; Eklund, P C
2005-11-01
High temperature heat treatment (HTT) of bundled single-walled carbon nanotubes (SWNTs) in vacuum ( approximately 10(-5) Torr) has been found to lead to the formation of two types of graphitic nanoribbons (GNRs), as observed by high-resolution transmission electron microscopy. Purified SWNT bundles were first found to follow two evolutionary steps, as reported previously, that is, tube coalescence (HTT approximately 1400 degrees C) and then massive bond rearrangement (HTT approximately 1600 degrees C), leading to the formation of bundled multiwall nanotubes (MWNTs) with 3-12 shells. At HTT > 1800 degrees C, we find that these MWNTs collapse into multishell GNRs. The first type of GNR we observed is driven by the collapse of diameter-doubled single-wall nanotubes, and their production is terminated at HTT approximately 1600 degrees C when the MWNTs also start to form. We propose that the collapse is driven by van der Waals forces between adjacent tubes in the same bundle. For HTT > 2000 degrees C, the heat-treated material is found to be almost completely in the multishell GNR form.
Fission yeast Scp3 potentially maintains microtubule orientation through bundling.
Directory of Open Access Journals (Sweden)
Kanako Ozaki
Full Text Available Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC, a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.
Rigidity of Minimal Submanifolds with Flat Normal Bundle
Indian Academy of Sciences (India)
Hai-Ping Fu
2010-09-01
Let $M^n(n≥ 3)$ be an -dimensional complete immersed $\\frac{n-2}{n}$-superstable minimal submanifold in an $(n+p)$-dimensional Euclidean space $\\mathbb{R}^{n+p}$ with flat normal bundle. We prove that if the second fundamental form of satisfies some decay conditions, then is an affine plane or a catenoid in some Euclidean subspace.
Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles
DEFF Research Database (Denmark)
Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n...
The Roach muscle bundle and umbilical cord coiling
de Laat, Monique W. M.; Nikkels, Peter G. J.; Franx, Arie; Visser, Gerard H. A.
2007-01-01
Objective: To determine if presence of the Roach muscle, a small muscle bundle tying just beside the umbilical artery, contributes to umbilical cord coiling. Methods: 251 umbilical cords were examined. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length
Multicell slug flow heat transfer analysis of finite LMFBR bundles
Energy Technology Data Exchange (ETDEWEB)
Yeung, M.K.; Wolf, L.
1978-12-01
An analytical two-dimensional, multi-region, multi-cell technique has been developed for the thermal analysis of LMFBR rod bundles. Local temperature fields of various unit cells were obtained for 7, 19, and 37-rod bundles of different geometries and power distributions. The validity of the technique has been verified by its excellent agreement with the THTB calculational result. By comparing the calculated fully-developed circumferential clad temperature distribution with those of the experimental measurements, an axial correction factor has been derived to account for the entrance effect for practical considerations. Moreover, the knowledge of the local temperature field of the rod bundle leads to the determination of the effective mixing lengths L/sub ij/ for adjacent subchannels of various geometries. It was shown that the implementation of the accurately determined L/sub ij/ into COBRA-IIIC calculations has fairly significant effects on intersubchannel mixing. In addition, a scheme has been proposed to couple the 2-D distributed and lumped parameter calculation by COBRA-IIIC such that the entrance effect can be implanted into the distributed parameter analysis. The technique has demonstrated its applicability for a 7-rod bundle and the results of calculation were compared to those of three-dimensional analyses and experimental measurements.
Almost Lie structures on an anchored Banach bundle
Cabau, Patrick
2011-01-01
Under appropriate assumptions, we generalize the concept of linear almost Poisson struc- tures, almost Lie algebroids, almost differentials in the framework of Banach anchored bundles and the relation between these objects. We then obtain an adapted formalism for mechanical systems which is illustrated by the evolutionary problem of the "Hilbert snake"
Self-adjointness of the Gaffney Laplacian on Vector Bundles
Energy Technology Data Exchange (ETDEWEB)
Bandara, Lashi, E-mail: lashi.bandara@chalmers.se [Chalmers University of Technology and University of Gothenburg, Mathematical Sciences (Sweden); Milatovic, Ognjen, E-mail: omilatov@unf.edu [University of North Florida, Department of Mathematics and Statistics (United States)
2015-12-15
We study the Gaffney Laplacian on a vector bundle equipped with a compatible metric and connection over a Riemannian manifold that is possibly geodesically incomplete. Under the hypothesis that the Cauchy boundary is polar, we demonstrate the self-adjointness of this Laplacian. Furthermore, we show that negligible boundary is a necessary and sufficient condition for the self-adjointness of this operator.
Logging residue bundling at the roadside in mountain operations
Energy Technology Data Exchange (ETDEWEB)
Spinelli, Raffaele; Magagnotti, Natascia (NR IVALSA, Sesto Fiorentino (Italy))
2009-04-15
The recovery of logging residue offers many benefits, and can be effectively performed with several techniques. This study presents the results of four distinct trials conducted on the Italian Alps with a truck-mounted bundler, and compares them with the figures obtained by the Austrian and German colleagues on the other side of the Alps. Average productivity varied between 14 and 22 bundles per productive machine hour (PMH), or between 10 and 15 bundles per scheduled machine hour (SMH). Mass production ranged from 3.1 to 4.3 oven-dry tonnes /SMH. If the machine is used for at least 800 SMH/year bundling costs will range between Euro 7 and 9/MWh, which is within the profitability limit indicated in Nordic studies. Although bundling may represent an additional cost in the slash-to-chip chain, it offers the important benefit of efficient outdoor winter storage, which is crucial in a region where the supply and demand of fuel biomass are often diachronic. The truck-mounted bundler used on the Alps adopts the same mechanism and achieves the same performance of the Nordic forwarder-mounted application. The main difference lies in its superior road mobility, which is crucial when covering scattered landings
AdS 3-manifolds and Higgs bundles
DEFF Research Database (Denmark)
Alessandrini, Daniele; Li, Qiongling
2015-01-01
In this paper we investigate the relationships between closed AdS 3-manifolds and Higgs bundles. We have a new way to construct AdS structures that allows us to see many of their properties explicitly, for example we can recover the very recent formula by Tholozan for the volumes. We also find...
Geometric Description of Fibre Bundle Surface for Birkhoff System
Institute of Scientific and Technical Information of China (English)
CAO Li-Mei; SUN Hua-Fei; ZHANG Zhen-Ning
2009-01-01
A fibre bundle surface for the BirkhofT system is constructed.The metric and the Riemannian connection of the surface are defined and the representation of the Gaussian curvature of this surface is presented.Finally,three examples for the Birkhoff system are given to illustrate our results.
Dendritic bundles, minicolumns, columns, and cortical output units
Directory of Open Access Journals (Sweden)
Giorgio Innocenti
2010-03-01
Full Text Available The search for the fundamental building block of the cerebral cortex has highlighted three structures, perpendicular to the cortical surface: i columns of neurons with radially invariant response properties, e.g., receptive field position, sensory modality, stimulus orientation or direction, frequency tuning etc. ii minicolumns of radially aligned cell bodies and iii bundles, constituted by the apical dendrites of pyramidal neurons with cell bodies in different layers. The latter were described in detail, and sometimes quantitatively, in several species and areas. It was recently suggested that the dendritic bundles consist of apical dendrites belonging to neurons projecting their axons to specific targets. We review the concept above and suggest that another structural and computational unit of cerebral cortex is the cortical output unit (COU, i.e. an assembly of bundles of apical dendrites and their parent cell bodies including each of the outputs to distant cortical or subcortical structures, of a given cortical locus (area or part of an area. This somato-dendritic assembly receives inputs some of which are common to the whole assembly and determine its radially invariant response properties, others are specific to one or more dendritic bundles, and determine the specific response signature of neurons in the different cortical layers and projecting to different targets.
Frame-independent mechanics:geometry on affine bundles
Grabowska, K.; Grabowski, J.; Urbanski, P.
2005-01-01
Main ideas of the differential geometry on affine bundles are presented. Affine counterparts of Lie algebroid and Poisson structures are introduced and discussed. The developed concepts are applied in a frame-independent formulation of the time-dependent and the Newtonian mechanics.
MYOCARDIAL DEFORMATION AND COMPLETE LEFT BUNDLE BRANCH BLOCK
Directory of Open Access Journals (Sweden)
E. N. Pavlyukova
2015-12-01
Full Text Available Tissue Doppler imaging is evolving as a useful echocardiographic tool for quantitative assessment of left ventricular systolic and diastolic function. Over the last 10 years, myocardial deformation imaging has become possible initially with tissue Doppler , and more recently with myocardial speckle-tracking using 2D echocardiography. Unlike simple tissue velocity measurements, deformation measurements are specific for the region of interest. Strain rate or strain measurements have been used as sensitive indicators for subclinical diseases, and it is the most widely used tool to assess mechanical dyssynchrony. Left bundle branch block is a frequent, etiologically heterogeneous, clinically hostile and diagnostically challenging entity. About 2% of patients underwent cardiac stress testing show stable or intermittent left bundle branch block. Presence of left bundle branch block is associated with a lower and slower diastolic coronary flow velocity especially during hyperemia. Stress echocardiography is the best option for the diagnosis of ischemic heart disease, albeit specificity and sensitivity reduce in patients with left bundle branch block in the territory of left anterior descending artery in presence of initial septum dyskinesia.
Euler-Lagrange Forms and Cohomology Groups on Jet Bundles
Institute of Scientific and Technical Information of China (English)
CHEN Jing-Bo
2005-01-01
@@ Using the language of jet bundles, we generalize the definitions of Euler-Lagrange one-form and the associated cohomology which were introduced by Guo et al. [Commun. Theor. Phys. 37(2002)1]. Continuous and discreteLagrange mechanics and field theory are presented. Higher order Euler-Lagrange cohomology groups are also introduced.
Heat transfer from a tube bundle in a bubble column
Energy Technology Data Exchange (ETDEWEB)
Saxena, S.C.; Vadivel, R.
1988-09-01
Heat transfer coefficient for an immersed five tube bundle in a two-phase (air-water) bubble column is measured as a function of air velocity and other relevant parameters. Average and local air holdup are also measured under identical conditions to characterize the system uniquely.
Get ready: Bundled payments are in your future.
2015-09-01
The Centers for Medicare & Medicaid Services' (CMS') mandatory bundled payment pilot project makes clear that the agency intends to reform Medicare reimbursement. Hospitals in 75 geographic areas are required to participate in a five-year pilot project that puts them at risk for the cost of hip and knee replacements from the time of surgery until 90 days after discharge. Already, more than 6,500 providers are participating in the Bundled Payments for Care Improvement project, a voluntary program where participants can choose from 48 clinical episodes and four models. Even if they won't be part of a bundled payments arrangement, case managers need to shift their thinking to prepare for the future of reimbursement by developing close working relationships with post-acute providers, knowing the services and quality delivered by post-acute providers, and being aware of the costs for the entire episode of care. Case managers will not be able to handle all the responsibilities necessary in a bundled payment arrangement if they have large caseloads.
A note on stochastic calculus in vector bundles
Catuogno, Pedro J; Ruffino, Paulo R
2011-01-01
The aim of these notes is to relate covariant stochastic integration in a vector bundle $E$ (as in Norris \\cite{Norris}) with the usual Stratonovich calculus via the connector $\\K:TE \\rightarrow E$ (cf. e.g. Paterson \\cite{Paterson} or Poor \\cite{Poor}) which carries the connection dependence.
Negotiating over bundles and prices using aggregate knowledge
Somefun, D.J.A.; Klos, T.B.; La Poutré, J.A.
2004-01-01
Combining two or more items and selling them as one good, a practice called bundling, can be a very effective strategy for reducing the costs of producing, marketing, and selling goods. In this paper, we consider a form of multi-issue negotiation where a shop negotiates both the contents and the pri
Exposure Control Using Adaptive Multi-Stage Item Bundles.
Luecht, Richard M.
This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…
Galassi, D.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph.; Baudoin, C.; Colin, C.; Fedorczak, N.; Nace, N.; Serre, E.
2017-03-01
The poloidal asymmetries of parallel flows in edge plasmas are investigated by the 3D fluid turbulence code TOKAM3X. A diverted COMPASS-like magnetic equilibrium is used for the simulations. The measurements and simulations of parallel Mach numbers are compared, and exhibit good qualitative agreement. Small-scale turbulent transport is observed to dominate near the low field side midplane, even though it co-exists with significant large-scale cross-field fluxes. Despite the turbulent nature of the plasma in the divertor region, simulations show the low effectiveness of turbulence for the cross-field transport towards the private flux region. Nevertheless, a complex pattern of fluxes associated with the average field components are found to cross the separatrix in the divertor region. Large-scale and small-scale turbulent E× B transport, along with the \
EMC3-EIRENE modeling of toroidally-localized divertor gas injection experiments on Alcator C-Mod
Energy Technology Data Exchange (ETDEWEB)
Lore, J.D., E-mail: lorejd@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Reinke, M.L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); LaBombard, B. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Lipschultz, B. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Churchill, R.M. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Feng, Y. [Max Planck Institute for Plasma Physics, Greifswald (Germany)
2015-08-15
Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ∼50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modeling, with the simulation yielding a toroidal asymmetry in the heat flow to the outer strike point. Toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.
Chordee repair utilizing a novel technique ensuring neurovascular bundle preservation.
Dean, G E; Burno, D K; Zaontz, M R
2000-03-01
Penile chordee, with and without hypospadias, is amenable to surgical correction. The Nesbit technique of dorsal plication of the ventral tunica albuginea is effective in correcting most cases of corporal disproportion. A hazard with this approach is the potential inclusion of the dorsal neurovascular bundle, with resultant erectile and sensory dysfunction. We developed a simple technique using the Freer elevator to isolate the neurovascular bundle prior to plication. This ensures that no injury occurs to the neurovascular bundle during plication. Since 1994, 37 boys with chordee have been repaired using this approach. Their ages at the time of operation ranged from 5 months to 28 years (mean 9 months). Following standard degloving of the penis, an incision through Buck's fascia is made lateral and parallel to the neurovascular bundle at the maximum level of the chordee. A similar incision is carried out on the contralateral side. A 4-mm-wide Freer elevator is positioned under Buck's fascia while hugging the tunica albuginea. The Freer elevator slides across the midline to the contralateral side, separating Buck's fascia and underlying layers from the tunica albuginea. Following isolation of the bundle, each corporal body is plicated by creating a longitudinal incision through the tunica albuginea, which then is closed transversely with a 5-0 polydioxanone suture. Buck's fascia subsequently is closed with an absorbable suture following confirmation of chordee correction. No complications have been encountered during a mean follow-up of 21 months (range 5-51 months). No patients have required reoperation for persistent chordee. We developed a technique that elevates the neurovascular bundle prior to plication, thereby ensuring no injury to this structure. We have successfully used this modified Nesbit technique since 1994 and have had no complications. Utilization of the Freer elevator adds an estimated 5 minutes to chordee correction compared to a standard
A comprehensive comparison on vibration and heat transfer of two elastic heat transfer tube bundles
Institute of Scientific and Technical Information of China (English)
闫柯; 葛培琪; 翟强
2015-01-01
Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid−structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.
Energy Technology Data Exchange (ETDEWEB)
Tanchuk, Victor, E-mail: Victor.Tanchuk@sintez.niiefa.spb.su [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Grigoriev, Sergey; Makhankov, Alexey; Senik, Konstantin; Yablokov, Nikolay [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Belenky, Mikhail; Blinov, Mikhail; Lebedev, Mikhail; Fokin, Boris [I.I. Polzunov Scientific and Development Association on Research and Design of Power Equipment, 191167 St. Petersburg (Russian Federation)
2014-10-15
Highlights: • The experiments on the assembly of the ¼ ITER divertor dome consisting of three groups of hypervapotrons with aim to prove applicability of the thermography method for detection of defective channels are performed. • Numerical simulation of the FAT procedure on the calculation model of ½ dome is carried out. • It is not only the flow rate difference in parallel channels caused by defective hypervapotrons but also the flow history that affects essentially the dynamics of the temperature field of the dome surface. - Abstract: The divertor dome (DO), being part of the ITER divertor, is designed to extract the major part of the plasma thermal energy. As a plasma-facing component (PFC), the DO experiences high heat fluxes (up to 5.0 MW/m{sup 2}). Such severe operation conditions of the DO imply stringent requirements for the DO design and its cooling system to ensure the required temperature operation regime of the dome. Hence, Final Acceptance Tests (FAT) shall be performed on each DO final assembled component with the aim to demonstrate that none of parallel coolant channels are completely or partially blocked. The paper presents the results of the analytical and experimental testing of the thermography method capability to perform the FAT. The aim is to determine defective hypervapotrons of the divertor dome. The method consists in contactless measurement of the dynamic temperature field of the PFC surface at a step-like increase (from zero to constant value) in the coolant flow rate with a temperature higher than that of the hypervapotron.
Infinitesimal moduli of G2 holonomy manifolds with instanton bundles
de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.
2016-11-01
We describe the infinitesimal moduli space of pairs ( Y, V) where Y is a manifold with G 2 holonomy, and V is a vector bundle on Y with an instanton connection. These structures arise in connection to the moduli space of heterotic string compactifications on compact and non-compact seven dimensional spaces, e.g. domain walls. Employing the canonical G 2 cohomology developed by Reyes-Carrión and Fernández and Ugarte, we show that the moduli space decomposes into the sum of the bundle moduli {H}_{{overset{ěe }{d}}_A}^1(Y,End(V)) plus the moduli of the G 2 structure preserving the instanton condition. The latter piece is contained in {H}_{overset{ěe }{d}θ}^1(Y,TY) , and is given by the kernel of a map overset{ěe }{F} which generalises the concept of the Atiyah map for holomorphic bundles on complex manifolds to the case at hand. In fact, the map overset{ěe }{F} is given in terms of the curvature of the bundle and maps {H}_{overset{ěe }{d}θ}^1(Y,TY) into {H}_{{overset{ěe }{d}}_A}^2(Y,End(V)) , and moreover can be used to define a cohomology on an extension bundle of TY by End( V). We comment further on the resemblance with the holomorphic Atiyah algebroid and connect the story to physics, in particular to heterotic compactifications on ( Y, V) when α' = 0.
Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction
Directory of Open Access Journals (Sweden)
Demet Pepele
2014-03-01
Full Text Available Aim: The goal in anterior cruciate ligament reconstruction (ACLR is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our clinic between June 2009 and March 2010, performed the anatomic double bundle ACLR with autogenous hamstring grafts 20 patients were evaluated prospectively with Cincinnati, IKDC and Lysholm scores and in clinically for muscle strength and with Cybex II dynamometer. Results: The mean follow-up is 17.8 months (13-21 months. Patients%u2019 scores of Cincinnati, IKDC and Lysholm were respectively, preoperative 18.1, 39.3 and 39.8, while the post-op increased to 27.2, 76.3 and 86.3. In their last check, 17 percent of the patients according to IKDC scores (85% A (excellent and B (good group and 3 patients took place as C (adequate group. The power measurements of quadriceps and hamstring muscle groups of patients who underwent surgery showed no significant difference compared with the intact knees. Discussion: Double-bundle ACL reconstruction is a satisfactory method. There is a need comparative, long-term studies in large numbers in order to determine improving clinical outcome, preventing degeneration and restoring the knee biomechanics better.
Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks
Pankin, A Y; Kritz, A H; Park, G Y; Chang, C S; Brunner, D; Groebner, R J; Hughes, J W; LaBombard, B; Terry, J L; Ku, S
2015-01-01
The guiding-center kinetic neoclassical transport code, XGC0, [C.S. Chang et. al, Phys. Plasmas 11, 2649 (2004)] is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current $I_{\\rm p}$. The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisio...
Energy Technology Data Exchange (ETDEWEB)
Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi
2015-10-15
Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.
Dependence of the L-H transition on X-point geometry and divertor recycling on NSTX
Battaglia, D. J.; Chang, C. S.; Kaye, S. M.; Kim, K.; Ku, S.; Maingi, R.; Bell, R. E.; Diallo, A.; Gerhardt, S.; LeBlanc, B. P.; Menard, J.; Podesta, M.; the NSTX Team
2013-11-01
The edge electron (Te) and ion temperature (Ti) at the time of the L-H transition increase when the X-point radius (RX) is reduced to a high-triangularity shape while maintaining constant edge density. Consequently the L-H power threshold (PLH) is larger for the high-triangularity shape. This supports the prediction that a single-particle loss hole, whose properties are strongly linked to RX and Ti, influences the edge radial electric field (Er) and Er × B flow-shearing rate available for turbulence suppression. Simulations using XGC0, a full-f drift-kinetic neoclassical code, indicate that maintaining a constant Er × B flow-shearing rate does require a larger heat flux and edge Ti as RX decreases. NSTX also observes a decrease in PLH when the divertor recycling is decreased using lithium coatings. However, the edge Te and Ti at the L-H transition appear independent of the divertor recycling for a constant shape. XGC0 calculations demonstrate that more heat flux is needed to maintain the edge Ti and the Er × B flow-shearing rate as the contribution of divertor recycling to the overall neutral fuelling rate increases.
Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U
Energy Technology Data Exchange (ETDEWEB)
Hosea, J C [PPPL; Perkins, R J [PPPL; Jaworski, M A [PPPL; Kramer, G J [PPPL; Ahn, J-W [ORNL
2014-07-01
RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over the tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.
78 FR 29139 - Medicare Program; Bundled Payments for Care Improvement Model 1 Open Period
2013-05-17
... participation in Model 1 of the Bundled Payments for Care Improvement initiative. DATES: Model 1 of the Bundled Payments for Care Improvement Deadline: Interested organizations must submit a Model 1 Open Period... regarding Model 1 of the Bundled Payments for Care Improvement initiative. For additional information...
Vapor shielding models and the energy absorbed by divertor targets during transient events
Energy Technology Data Exchange (ETDEWEB)
Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Pshenov, A. A.; Eksaeva, E. A.; Marenkov, E. D.; Krasheninnikov, S. I. [National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation)
2016-02-15
The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shielding is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding
Kim, Deok-Kyu; Hong, Sang Hee
2005-06-01
A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.
Measurements of gross erosion of Al in the DIII-D divertor
Energy Technology Data Exchange (ETDEWEB)
Chrobak, C., E-mail: chrobak@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Leonard, A.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Rudakov, D.L. [University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417 (United States); Wong, C.P.C. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Wright, G.M. [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Buchenauer, D.A.; Watkins, J.G.; Wampler, W.R. [Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185 (United States); Elder, J.D. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Doerner, R.P.; Nishijima, D.; Tynan, G.R. [University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417 (United States)
2015-08-15
Aluminum (Al) is a convenient proxy for beryllium (Be) plasma material interaction studies since they have a number of physical and chemical similarities. Al samples were exposed at the lower outer strike point of an L-mode divertor plasma in DIII-D (conditions 7–11 × 10{sup 18} D-ions cm{sup −2} s{sup −1}, T{sub e} = 12–47 eV). The gross erosion rate was directly measured using post-mortem ion beam analysis of small 1 mm-sized samples where local re-deposition was determined to be negligible. The gross erosion rate was also calculated using spectroscopic methods, but these rates greatly underestimate the direct (i.e. non-spectroscopic) measurement. The direct measured erosion yields were within the range of published D{sup +} → Al ion beam sputtering yields. The ionizations per photon (S/XB) coefficients used in the spectroscopic analysis were determined in separate experiments using He plasmas at the PISCES-B linear plasma facility at UCSD. The measured S/XB coefficients were on average ∼6× higher than the theoretically calculated values.
Characterization of Impurities in Tokamak Divertor Plasmas from Analysis of Spectral Profiles
Isler, R. C.; Brooks, N. H.; Zaniol, B.
2002-12-01
Studies of the production, transport, and radiative losses of impurities in present-day tokamak divertors provide input necessary for the design of future burning- plasma machines. Several types of information rely on detailed analysis of emission profiles. These include ion temperatures, ion flows along field lines, and impurity production mechanisms. Temperatures and flows are determined from Doppler broadening and shifts by comparing measured line shapes to theoretical profiles that include the nonlinear Zeeman/Paschen-Back effect. The two major production mechanisms for atomic carbon are physical and chemical sputtering. These processes can be distinguished by comparing atomic and molecular fluxes, which requires modeling the band emissions of CD and C2. They can also be differentiated from measurements of effective temperatures of C I (best profile fits to thermal distributions). Careful inspection of profiles that give high effective temperatures reveals that they are not actually Gaussian but have asymmetries and shifts that can be correlated to energy distributions expected for physical sputtering. Examples of all these applications are discussed in this review.
Viewgraphs presented at the ASDEX/DOE workshop on disruptions in divertor tokamaks
Energy Technology Data Exchange (ETDEWEB)
Granetz, R.; Gruber, O.; Zohm, H. [and others
1994-09-01
The emphasis of this year`s ASDEX/DOE workshop was on disruptions in diverted tokamaks. The meeting was held here at MIT on 14--15 March. It is particularly appropriate that MIT hosted the workshop this year, since Alcator C-Mod had just recently completed its very first run campaign, and disruptions are one of the key areas of research in our program. There were a total of 14 speakers, with participants from IPP (Garching), CRPP (Lausanne), Culham, General Atomics, PPPL, Sandia, ORNL, the ITER JCT, and MIT. The subjects addressed included statistical analysis of disruption probabilities in ASDEX, modelling of the vertical axisymmetric plasma motion in DIII-D, impact of disruptions on the design of the ITER divertors, modelling of runaway electrons, and TSC calculations of disruption-induced currents and forces in TPX, etc. One item of particular interest to us was the experimental correlation of halo current magnitude with plasma current on ASDEX-Upgrade. The data indicates at least a linear, and possibly even a quadractic dependence. This has important implications for Alcator C-Mod, since it would predict halo currents of order 1 MA or more at full performance. At the conclusion of the talks, an informal discussion of disruption databases was held, primarily for the purpose of helping us develop a useful one for C-Mod.
Study and simulation of carbon impurity dynamics near the ergodic divertor in Tore Supra
Energy Technology Data Exchange (ETDEWEB)
Giannella, R.; Cordier, J.J.; Corre, Y.; Ghendrih, P.; Guirlet, R.; Gunn, J. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Hogan, J. [Oak Ridge National Lab., TN (United States)
1999-10-15
In the past few years, effects induced by the ergodic dive such as impurity screening and transport modifications in the plasma edge have been used to achieve high radiation, low contamination regimes. A crucial issue in understanding these effects is that of impurity generation and propagation across the plasma edge, especially in the vicinity of the Ergodic Divertor (ED) neutralizer plates. A variety of diagnostic tools and techniques are used for this purpose. In the case of Tore Supra, interpretation of spectroscopic data is strongly complicated by the complex geometry of the ED, leading among other effects to the total lack of uniformity of the sources. Indeed, due to the specific pattern of impurity sources on the neutralizers and to their particular orientation with respect to the local magnetic field, densities of lowly ionised impurities are deeply modulated on the sub-centimeter scale in both directions perpendicular to the magnetic field. Because of this, accurate 3-D simulations are essential for the evaluation of experimental signals. (authors)
Kinetic studies of divertor heat fluxes in Alcator C-Mod
Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Chang, C. S.; Brunner, D.; Hughes, J. W.; Labombard, B.; Terry, J.
2010-11-01
The kinetic XGC0 code [C.S. Chang et al, Phys. Plasmas 11 (2004) 2649] is used to model the H- mode pedestal and SOL regions in Alcator C-Mod discharges. The self-consistent simulations in this study include kinetic neoclassical physics and anomalous transport models along with the ExB flow shear effects. The heat fluxes on the divertor plates are computed and the fluxes to the outer plate are compared with experimental observations. The dynamics of the radial electric field near the separatrix and in the SOL region are computed with the XGC0 code, and the effect of the anomalous transport on the heat fluxes in the SOL region is investigated. In particular, the particle and thermal diffusivities obtained in the analysis mode are compared with predictions from the theory-based anomalous transport models such as MMM95 [G. Bateman et al, Phys. Plasmas 5 (1998) 1793] and DRIBM [T. Rafiq et al, to appear in Phys. Plasmas (2010)]. It is found that there is a notable pinch effect in the inner separatrix region. Possible physical mechanisms for the particle and thermal pinches are discussed.
Design of a water cooled monoblock divertor for DEMO using Eurofer as structural material
Energy Technology Data Exchange (ETDEWEB)
Richou, Marianne, E-mail: marianne.richou@cea.fr [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Li-Puma, Antonella [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, IT-00044 Frascati (Italy)
2014-10-15
The performed investigation focus on a monoblock type design for a water cooled DEMO divertor using Eurofer as structural material. In 2013, a study case of such a concept was presented. It was shown that basic concepts using Eurofer as structural material are limited to an incident heat flux of 8 MW m{sup −2}. Since, the EFDA agency issued new specifications. In this study, the conceptual design is reassessed with regard to specifications. Then, steady state thermal analyses and thermo-mechanical elastic analyses have been performed to define an upgrade of the geometry taking into account new specifications, design criteria and the maximum heat flux requirement of 10 MW m{sup −2}. An analysis of the influence of each adjustable geometrical parameter on thermo-mechanical design criteria was performed. As a consequence, geometrical parameters were set in order to fit to materials requirements. For defined hydraulic conditions taken in the most favourable configuration, the limit of this design is estimated to an incident heat flux of 10 MW m{sup −2}. Margin to critical heat flux and rules against progressive deformation/ratcheting in structural material limit the design.
Tearing mode physics studies applying the dynamic ergodic divertor on TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Koslowski, H R [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Westerhof, E [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Bock, M de [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Classen, I [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Jaspers, R [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Kikuchi, Y [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Kraemer-Flecken, A [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Lazaros, A [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Liang, Y [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Loewenbrueck, K [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Varshney, S [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Hellermann, M von [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wolf, R [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Zimmermann, O [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany)
2006-12-15
The dynamic ergodic divertor (DED) on the TEXTOR tokamak allows for the reproducible destabilization of the m/n = 2/1 tearing mode which is phase locked to the external static or rotating perturbation field. In combination with its flexible heating systems (co- and counter-neutral beam injection, ion cyclotron resonance heating, electron cyclotron resonance heating (ECRH) with steerable launcher) dedicated experiments to study the mode onset, properties of large islands and mode stabilization can be performed. The dependence of the mode excitation threshold (field penetration) on the plasma rotation shows a resonance character, with minimum threshold when the external perturbation frequency matches the MHD frequency of the 2/1 mode. Mode stabilization by ECRH heating shows that for the TEXTOR plasma heating is more effective than the current drive in O-point. Extrapolation to ITER yields a significant contribution to the mode suppression originating from the temperature increase within the island. Alfven-like modes, which have been previously identified in the vicinity of large islands on FTU (Buratti et al 2005 Nuclear Fusion 45 1446), are found to be created already before island formation above a certain threshold of the externally applied perturbation field.
The influence of the dynamic ergodic divertor on the radial electric field at the Tokamak TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Coenen, Jan Willem
2009-11-06
In this work the influence of external Resonant Magnetic Perturbations (RMPs) on the radial electric field Er in magnetically confined plasmas is investigated by Charge Exchange Recombination Spectroscopy (CXRS) at the Tokamak TEXTOR. Here, the RMPs are produced with the Dynamic Ergodic Divertor (DED), a set of 16 helical perturbation coils located at the high field side of TEXTOR. Within this work, the base mode number of perturbations has been m/n=6/2. We have first investigated the influence of external torque from neutral heating beams on plasma rotation and E{sub r}. The ergodic zone causes an electron loss, and subsequently a (vector)j x (vector)B force driven by the compensating ion return current. In addition, the DED changes the global confinement properties. Depending on the edge safety factor (''field line twist'') q{sub a}, either increased or decreased particle confinement is observed. In case of the increased particle confinement (IPC) the increase in density (40%) and particle confinement time {tau}{sub p} (30%) is correlated to the connection of field lines at the q=5/2 surface to the DED target, locally changing the transport properties and the E{sub r}. Transport is reduced and the E{sub r} shear is increased locally at q=5/2 up to 1.5 . 10{sup 5}s{sup -1}, while the E{sub r} becomes more positive. (orig.)
Zhang, Yuxuan; Galloway, Alexander; Wood, James; Robbie, Mikael Brian Olsson; Easton, David; Zhu, Wenzhong
2014-11-01
In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported.
Giambelli-type formula for subbundles of the tangent bundle
Kazarian, M E
1996-01-01
Let us consider a generic $n$-dimensional subbundle $\\CV$ of the tangent bundle $TM$ on some given manifold $M$. Given $\\CV$ one can define different degeneracy loci $\\Si_{\\bold r}(\\CV),\\;\\bold r=(r_1\\leq r_2\\leq r_3 dimension of the subspace $\\CV^j(x)\\subset TM(x)$ spanned by all length $\\leq j$ commutators of vector fields tangent to $\\CV$ at $x$ is less than or equal to $r_j$. We calculate 'explicitly' the cohomology classes dual to $\\Si_{\\bold r}(\\CV)$ using determinantal formulas due to W.~Fulton and the expression for the Chern classes of the associated bundle of free Lie algebras in terms of the Chern classes of $\\CV$.
Curved Space-Times by Crystallization of Liquid Fiber Bundles
Hélein, Frédéric; Vey, Dimitri
2017-01-01
Motivated by the search for a Hamiltonian formulation of Einstein equations of gravity which depends in a minimal way on choices of coordinates, nor on a choice of gauge, we develop a multisymplectic formulation on the total space of the principal bundle of orthonormal frames on the 4-dimensional space-time. This leads quite naturally to a new theory which takes place on 10-dimensional manifolds. The fields are pairs of ((α ,ω ),π), where (α ,ω ) is a 1-form with coefficients in the Lie algebra of the Poincaré group and π is an 8-form with coefficients in the dual of this Lie algebra. The dynamical equations derive from a simple variational principle and imply that the 10-dimensional manifold looks locally like the total space of a fiber bundle over a 4-dimensional base manifold. Moreover this base manifold inherits a metric and a connection which are solutions of a system of Einstein-Cartan equations.
Implementing strategic bundles for infection prevention and management.
Kaier, K; Wilson, C; Hulscher, M; Wollersheim, H; Huis, A; Borg, M; Scicluna, E; Lambert, M-L; Palomar, M; Tacconelli, E; De Angelis, G; Schumacher, M; Wolkewitz, M; Kleissle, E-M; Frank, U
2012-04-01
Healthcare-associated infections (HAI) are considered to be the most frequent adverse event in healthcare delivery. Active efforts to curb HAI have increased across Europe thanks to the growing emphasis on patient safety and quality of care. Recently, there has been dramatic success in improving the quality of patient care by focusing on the implementation of a group or "bundle" of evidenced-based preventive practices to achieve a better outcome than when implemented individually. The project entitled IMPLEMENT is designed to spread and test knowledge on how to implement strategic bundles for infection prevention and management in a diverse sample of European hospitals. The general goal of this project is to provide evidence on how to decrease the incidence of HAI and to improve antibiotic use under routine conditions.
Heat transfer in a bundle cooled with supercritical Freon-12
Energy Technology Data Exchange (ETDEWEB)
Peiman, W.; Milner, A.; Pascoe, C.; Patel, H.; Richards, G.; Pioro, I., E-mail: wargha.peiman@mycampus.uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)
2010-07-01
This paper focuses on analyzing experimental data on Freon-12 at a supercritical pressure of 4.65 MPa. Experiments were conducted at the Institute of Physics and Power Engineering in Russia. The test section consisted of a pressure tube, ceramic inserts, a hexagonal flow tube and a vertical 7-element bundle installed inside the flow tube. The seven elements of the bundle were made of stainless steel and had an outer diameter of 9.5 mm and a heated length of one meter. Bulk-fluid temperature of the coolant at the inlet and the outlet of the test section and the temperature profile of the central heated element were recorded using thermocouples. For comparison, bulk-fluid, and sheath temperature profiles were calculated using various correlations and results were compared with the experimental values. (author)
Pressure effects on single wall carbon nanotube bundles
Energy Technology Data Exchange (ETDEWEB)
Teredesai, P.V. [Indian Inst. of Science, Bangalore (India). Dept. of Physics; Sood, A.K. [Indian Inst. of Science, Bangalore (India). Dept. of Physics; Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Jakkur (India); Sharma, S.M.; Karmakar, S.; Sikka, S.K. [High Pressure Physics Div., Bhabha Atomic Research Center, Mumbai (India); Govindaraj, A.; Rao, C.N.R. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Jakkur (India)
2001-01-01
We report high pressure Raman studies on single wall carbon nanotube bundles under hydrostatic conditions using two different pressure transmitting media, alcohol mixture and pure water. The radial and tangential modes show a blue shift when SWNT bundle is immersed in the liquids at ambient pressures. The pressure dependence of the radial modes is the same in both liquids. However, the pressure derivatives d{omega}/dP of the tangential modes are slightly higher for the water medium. Raman results are compared with studies under non-hydrostatic conditions and with recent high-pressure X-ray studies. It is seen that the mode frequencies of the recovered sample after pressure cycling from 26 GPa are downshifted by {proportional_to}7-10 cm{sup -1} as compared to the starting sample. (orig.)
Frobenius Pull Backs of Vector Bundles in Higher Dimensions
Indian Academy of Sciences (India)
V Trivedi
2012-11-01
We prove that for a smooth projective variety of arbitrary dimension and for a vector bundle over , the Harder–Narasimhan filtration of a Frobenius pull back of is a refinement of the Frobenius pull back of the Harder–Narasimhan filtration of , provided there is a lower bound on the characteristic (in terms of rank of and the slope of the destabilizing sheaf of the cotangent bundle of ). We also recall some examples, due to Raynaud and Monsky, to show that some lower bound on is necessary. We also give a bound on the instability degree of the Frobenius pull back of in terms of the instability degree of and well defined invariants of .
Through silicon vias filled with planarized carbon nanotube bundles.
Wang, Teng; Jeppson, Kjell; Olofsson, Niklas; Campbell, Eleanor E B; Liu, Johan
2009-12-02
The feasibility of using carbon nanotube (CNT) bundles as the fillers of through silicon vias (TSVs) has been demonstrated. CNT bundles are synthesized directly inside TSVs by thermal chemical vapor deposition (TCVD). The growth of CNTs in vias is found to be highly dependent on the geometric dimensions and arrangement patterns of the vias at atmospheric pressure. The CNT-Si structure is planarized by a combined lapping and polishing process to achieve both a high removal rate and a fine surface finish. Electrical tests of the CNT TSVs have been performed and their electrical resistance was found to be in the few hundred ohms range. The reasons for the high electrical resistance have been discussed and possible methods to decrease the electrical resistance have been proposed.
Analyses of bundle experiment data using MATRA-h
Energy Technology Data Exchange (ETDEWEB)
Lim, In Cheol; Chea, Hee Taek [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-06-01
When the construction and operation license for HANARO was renewed in 1995, 25% of CHF penalty was imposed. The reason for this was that the validation work related to the CHF design calculation was not enough for the assurance of CHF margin. As a part of the works to recover this CHF penalty, MATRA-h was developed by implementing the new correlations for the heat transfer, CHF prediction, subcooled void to the MATRA-a, which is the modified version of COBRA-IV-I done by KAERI. Using MATRA-h, the subchannel analyses for the bundle experiment data were performed. The comparison of the code predictions with the experimental results, it was found that the code would give the conservative predictions as far as the CHF in the bundle geometry is concerned. (author). 12 refs., 25 figs., 16 tabs.
Infinitesimal moduli of G2 holonomy manifolds with instanton bundles
de la Ossa, Xenia; Svanes, Eirik Eik
2016-01-01
We describe the infinitesimal moduli space of pairs $(Y, V)$ where $Y$ is a manifold with $G_2$ holonomy, and $V$ is a vector bundle on $Y$ with an instanton connection. These structures arise in connection to the moduli space of heterotic string compactifications on compact and non-compact seven dimensional spaces, e.g. domain walls. Employing the canonical $G_2$ cohomology $H^*_{{\\check{\\rm d}}_E}(Y,E)$ developed by Reyes-Carri\\'on and Fern\\'andez and Ugarte, we show that the moduli space decomposes into the sum of the bundle moduli $H^1_{{\\check{\\rm d}}_A}(Y,{\\rm End}(V))$ plus the moduli of the $G_2$ structure preserving the instanton condition. The latter piece is contained in $H^1_{{\\check{\\rm d}}_\
The special linear version of the projective bundle theorem
Ananyevskiy, Alexey
2012-01-01
A special linear Grassmann variety SGr(k,n) is the complement to the zero section of the determinant of the tautological vector bundle over Gr(k,n). For a representable ring cohomology theory A(-) with a special linear orientation and invertible stable Hopf map \\eta, including Witt groups and MSL[\\eta^{-1}], we have A(SGr(2,2n+1))=A(pt)[e]/(e^{2n}), and A(SGr(2,2n)) is a truncated polynomial algebra in two variables over A(pt). A splitting principle for such theories is established. We use the computations for the special linear Grassmann varieties to calculate A(BSL_n) in terms of the homogeneous power series in certain characteristic classes of the tautological bundle.
Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong
2016-08-15
The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.
Bagger-Witten line bundles on moduli spaces of elliptic curves
Gu, W
2016-01-01
In this paper we discuss Bagger-Witten line bundles over moduli spaces of SCFTs. We review how in general they are `fractional' line bundles, not honest line bundles, twisted on triple overlaps. We discuss the special case of moduli spaces of elliptic curves in detail. There, the Bagger-Witten line bundles does not exist as an ordinary line bundle, but rather is necessarily fractional. As a fractional line bundle, it is nontrivial (though torsion) over the uncompactified moduli stack, and its restriction to the interior, excising corners with enhanced stabilizers, is also fractional. We review and compare to results of recent work arguing that well-definedness of the worldsheet metric implies that the Bagger-Witten line bundle is torsion, and give general arguments on the existence of universal structures on moduli spaces of SCFTs, in which superconformal deformation parameters are promoted to nondynamical fields ranging over the SCFT moduli space.
Analysis of Subchannel and Rod Bundle PSBT Experiments with CATHARE 3
Directory of Open Access Journals (Sweden)
M. Valette
2012-01-01
Full Text Available This paper presents the assessment of CATHARE 3 against PWR subchannel and rod bundle tests of the PSBT benchmark. Noticeable measurements were the following: void fraction in single subchannel and rod bundle, multiple liquid temperatures at subchannel exit in rod bundle, and DNB power and location in rod bundle. All these results were obtained both in steady and transient conditions. Void fraction values are satisfactory predicted by CATHARE 3 in single subchannels with the pipe module. More dispersed predictions of void values are obtained in rod bundles with the CATHARE 3 3D module at subchannel scale. Single-phase liquid mixing tests and DNB tests in rod bundle are also analyzed. After calibrating the mixing in liquid single phase with specific tests, DNB tests using void mixing give mitigated results, perhaps linked to inappropriate use of CHF lookup tables in such rod bundles with many spacers.
Cerebrocerebellar system and Arnold's bundle: A tractographic study: preliminary results
Directory of Open Access Journals (Sweden)
Eliasz Engelhardt
Full Text Available Abstract The cerebellum, traditionally considered a structure involved in balance and movement control, was more recently recognized as important in cognitive, emotional and behavioral functions. These functions appear to be related to the more recent parts of the cerebellum that belong to the cerebrocerebellar system. One of the key segments of this system is the (prefronto-[penduncule]-pontine projection that represents the Arnold's bundle. Diffusion tensor imaging and tractography (DTI-TR has permitted in vivo virtual dissection of white matter tracts, including those of the cerebellar. Objective: To study the fronto-[peduncule]-pontine projection (Arnold's bundle, with DTI-TR. Methods: Ten normal subjects were included (mean age 30 years. Standard acquisitions in three planes were obtained with a 1.5T GE Signa Horizon scanner, complemented with DTI acquisitions. Post-processing and analysis was performed using an ADW 4.3 workstation running Functool 4.5.3 (GE Medical Systems. A single ROI was placed on the medial third of the cerebral peduncle base, considered the site of convergence of the fibers of Arnold's bundle, bilaterally. Results: Twenty tractograms were obtained. All were constituted by a significant number of fibers in correspondence to the frontal lobe, and part of them anterior to the coronal plane at the anterior commissure, which characterizes them as associated to the prefrontal region. Conclusions: For the first time, frontal lobe related projections were systematically revealed with DTI-TR seeded from cerebral peduncle base ROIs. They showed anatomic coherence with Arnold's bundle, which includes the prefrontopontine segment of the cortico-ponto-cerebellar path, one of the components of the cerebrocerebellar system, acknowledged as fundamental for non-motor functions such as cognition, emotion and behavior.
"Bundle Data" Approach at GES DISC Targeting Natural Hazards
Shie, C. L.; Shen, S.; Kempler, S. J.
2015-12-01
Severe natural phenomena such as hurricane, volcano, blizzard, flood and drought have the potential to cause immeasurable property damages, great socioeconomic impact, and tragic loss of human life. From searching to assessing the "Big", i.e., massive and heterogeneous scientific data (particularly, satellite and model products) in order to investigate those natural hazards, it has, however, become a daunting task for Earth scientists and applications researchers, especially during recent decades. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has served "Big" Earth science data, and the pertinent valuable information and services to the aforementioned users of diverse communities for years. In order to help and guide our users to online readily (i.e., with a minimum effort) acquire their requested data from our enormous resource at GES DISC for studying their targeted hazard/event, we have thus initiated a "Bundle Data" approach in 2014, first targeting the hurricane event/topic. We have recently worked on new topics such as volcano and blizzard. The "bundle data" of a specific hazard/event is basically a sophisticated integrated data package consisting of a series of proper datasets containing a group of relevant ("knowledge-based") data variables readily accessible to users via a system-prearranged table linking those data variables to the proper datasets (URLs). This online approach has been developed by utilizing a few existing data services such as Mirador as search engine; Giovanni for visualization; and OPeNDAP for data access, etc. The online "Data Cookbook" site at GES DISC is the current host for the "bundle data". We are now also planning on developing an "Automated Virtual Collection Framework" that shall eventually accommodate the "bundle data", as well as further improve our management in "Big Data".
The Business of Bundling: Joining Forces on Joint Replacement.
Kaldy, Joanne
2016-03-01
A mandated bundled-payment program for joint replacement is in place in several regions across the country, and practitioners such as pharmacists are still sorting out their roles in this federal initiative. To get involved, pharmacists need to establish connections with area hospitals and physician groups to promote and document their ability to manage medications, reduce and eliminate medication-related problems and rehospitalizations, and work with patients to maximize adherence and improve communication for those undergoing hip and knee replacement.
Input modelling for subchannel analysis of CANFLEX fuel bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-06-01
This report describs the input modelling for subchannel analysis of CANFLEX fuel bundle using CASS(Candu thermalhydraulic Analysis by Subchannel approacheS) code which has been developed for subchannel analysis of CANDU fuel channel. CASS code can give the different calculation results according to users' input modelling. Hence, the objective of this report provide the background information of input modelling, the accuracy of input data and gives the confidence of calculation results. (author). 11 refs., 3 figs., 4 tabs.