WorldWideScience

Sample records for bunch profile diagnostics

  1. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Delsim-Hashemi, Hossein

    2008-09-15

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e{sup +}e{sup -} colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 {mu}J) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  2. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    International Nuclear Information System (INIS)

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e+e- colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 μJ) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  3. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    International Nuclear Information System (INIS)

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime

  4. Longitudinal bunch profile measurements with striplines

    International Nuclear Information System (INIS)

    The use of long constant coupling striplines are proposed to measure the bunch length and even the current profile of the bunch. A measurement of the current profile can be obtained if care is taken in matching the impedance over the stripline or the impulse response is measured. A sampling scope can easily provide the bandwidth necessary for the measurement, but requires the bunch shape to be repetitive. Recent improvements in transient digitizers have made these measurements possible for accelerator operations. Measurements of bunch lengths down to 50 ps are presented. Improvements to striplines and measurement systems are discussed, that could lead to bunch length resolutions of about 10 ps. (R.P.) 8 refs.; 4 figs

  5. Longitudinal bunch profile measurements with striplines

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.

    1992-01-01

    Striplines beam position monitors are normally considered low frequency devices with at best an octave bandwidth. Some attempts to make them very high frequency and broadband have led to long and complicated tapered construction. However, conventional uniform coupling striplines can provide very high frequency and broadband response, if the downstream induced signal is gated out electronically. In this case, the leading edge beam signal can provide bunch length and even current profile information for bunch lengths shorter than the length of the stripline. Recent improvement in transient digitizers have made these measurements possible for accelerator operations. Measurements of bunch lengths down to 50 psec are results are presented. Improvements to striplines and measurement systems are discussed, that could lead to bunch length resolutions {approx} 10 psec.

  6. Longitudinal bunch profile measurements with striplines

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.

    1992-05-01

    Striplines beam position monitors are normally considered low frequency devices with at best an octave bandwidth. Some attempts to make them very high frequency and broadband have led to long and complicated tapered construction. However, conventional uniform coupling striplines can provide very high frequency and broadband response, if the downstream induced signal is gated out electronically. In this case, the leading edge beam signal can provide bunch length and even current profile information for bunch lengths shorter than the length of the stripline. Recent improvement in transient digitizers have made these measurements possible for accelerator operations. Measurements of bunch lengths down to 50 psec are results are presented. Improvements to striplines and measurement systems are discussed, that could lead to bunch length resolutions {approx} 10 psec.

  7. Measuring the longitudinal bunch profile at CTF3

    CERN Document Server

    Dabrowski, A E; Bettoni, S; Braun†, H H; Corsini, R; Döbert, S; Egger, D; Lefevre, T; Rabiller, A; Shaker, H; Soby, L; Skowronski, P K; Tecker, F; Velasco, M

    2010-01-01

    The CLIC Test Facility 3 (CTF3) is being built and commissioned by an international collaboration in order to test the feasibility of the proposed Compact Linear Collider (CLIC) two-beam acceleration scheme. The monitoring and control of the bunch length throughout the CTF3 complex is important since this affects the efficiency and the stability of the final RF power production process. Bunch length diagnostics therefore form an essential component of the beam instrumentation at CTF3. This paper presents longitudinal profile measurements based on Streak camera and non-destructive RF power and microwave spectrometry techniques.

  8. Diffraction effects in the coherent transition radiation bunch length diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G.; Lebedev, V.; Nagaitsev, S.; /Fermilab

    2007-08-01

    Diffraction effects in the Coherent Transition Radiation (CTR) bunch length diagnostics are considered for the A0 Photoinjector and the New Muon Laboratory (NML) injection module. The effects can cause a noticeable distortion of the measured CTR spectra depending on the experimental setup and the bunch parameters and resulting in errors of the bunch length measurements. Presented calculations show possible systematic errors in the bunch length in measurements based on the CTR spectra at A0 Photo injector and the NML injection module.

  9. Test of new diagnostics for bunch length measurement

    International Nuclear Information System (INIS)

    Two new diagnostics for bunch length measurements have been recently tested at the ESRF. The first one is based on the spectral analysis of the visible light beam produced by a dipole. The beam is collimated at the input of a photodiode whose output is connected to a spectrum analyzer. The frequency signature is then equivalent to the longitudinal spectrum of the beam. The second device is based on two HF cavities, tuned at two different frequencies, and coupled to the beam wake fields. Their response to the beam passage gives the component of the beam spectrum at the two specified frequencies, from which the beam profile may be reconstructed. Results for these two devices will be presented and compared to measurements made with a streak camera in order to evaluate them. In the low current per bunch regime, both devices show promising results as the theoretical value for zero current bunch length could be reproduced. In this regime, the microwave cavity offers a faster acquisition time. Unfortunately, for high current bunches, time reconstruction is no longer possible for both devices, because the Gaussian approximation is no longer valid. The spectrum method accurately describes, the evolution of the longitudinal spectrum with current, but absolute values will differ by about 20% from the streak camera measurements

  10. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, B.R.

    2007-07-15

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  11. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    International Nuclear Information System (INIS)

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  12. THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Esarey, E.; Leemans, W.P.

    2006-02-15

    Experimental results are reported from two measurementtechniques (semiconductor switching and electro-optic sampling) thatallow temporal characterization of electron bunches produced by alaser-driven plasma-based accelerator. As femtosecond electron bunchesexit the plasma-vacuum interface, coherent transition radiation (at THzfrequencies) is emitted. Measuring the properties of this radiationallows characterization of the electron bunches. Theoretical work on theemission mechanism is represented, including a model that calculates theTHz waveform from a given bunch profile. It is found that the spectrum ofthe THz pulse is coherent up to the 200 mu m thick crystal (ZnTe)detection limit of 4 THz, which corresponds to the production of sub-50fs (root-mean-square) electron bunch structure. The measurementsdemonstrate both the shot-to-shot stability of bunch parameters that arecritical to THz emission (such as total charge and bunch length), as wellas femtosecond synchrotron between bunch, THz pulse, and laserbeam.

  13. Laser diagnostics of micro bunches (old tricks, new games)

    International Nuclear Information System (INIS)

    The transverse shape and the length of micro bunches can be determined thanks to Compton scattering signals. Scanning the bunches across a laser-driven fringe pattern produces periodic modulations of the amount of scattered light, i.e. fringes whose visibility contains information on the electron transverse distribution. Through inverse Fourier transforms, even and odd parts of the profiles of bunches whose size compares with or is larger than the optical wavelength can be reconstructed. The method is suited for round and flat bunches. Methods of bunch length evaluation are also presented. copyright 1996 American Institute of Physics

  14. Optical Synchronization and Electron Bunch Diagnostic at ELBE

    OpenAIRE

    Bousonville, Michael; Czwalinna, M. K.; Schlarb, H.; Schulz, S.; Vilcins, S.; Kuntzsch, Michael; Gensch, Michael; Lehnert, U.; Röser, F.; Schurig, R

    2013-01-01

    The continuous wave electron accelerator ELBE is upgraded to generate short and highly charged electron bunches (~200fs duration, up to 1 nC) . In the last years a prototype of an optical synchronization system using a mode locked fiber laser has been build up at ELBE which is now in commissioning phase. The stabilized pulse train can be used for new methods of electron bunch diagnostics like bunch arrival time measurements with the potential of femtosecond resolution. At ELBE a bunch arrival...

  15. Plasma-driven ultrashort bunch diagnostics

    Science.gov (United States)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.; Marchetti, B.; Maier, A. R.

    2016-06-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  16. Plasma-driven ultrashort bunch diagnostic

    CERN Document Server

    Dornmair, I; Floettmann, K; Marchetti, B; Maier, A R

    2016-01-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  17. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  18. Status of longitudinal bunch diagnostics at the ANKA storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, Nicole; Huttel, Erhard; Judin, Vitali; Kehrer, Benjamin; Klein, Marit; Marsching, Sebastian; Meuter, Christina; Mueller, Anke-Susanne; Nakneimueang, Somprasong; Nasse, Michael J.; Schuh, Marcel; Schwarz, Markus; Smale, Nigel [Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    ANKA, the synchrotron radiation facility at the Karlsruhe Institute of Technology, is operated in a special low-alpha-mode on a regular basis. With the recent installation of a visible light diagnostics beamline further studies of bunch lengthening and deformation could be performed with our streak camera for different machine settings within the low-alpha operation (different bunch currents, energies, alphas, RF voltages). This presentation gives an overview of the various studies.

  19. New diagnostics and cures for coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Electromagnetic interaction between a charged particle beam and its surroundings causes collective instabilities, which must be controlled if the new light sources and colliders are to meet their design goals. Control requires a combination of passive damping and fast active feedback on an unprecedented technological scale. Efficient instability diagnosis techniques are also needed for machines with large numbers of bunches. This thesis describes new methods of measuring and analyzing coupled-bunch instabilities in circular accelerators, and demonstrates the existence of a new cure. A new technique is demonstrated for simultaneous measurement of growth rates, damping rates and coherent tune shifts of all unstable coupled-bunch eigenmodes from a single 10-25-ms transient snapshot of beam motion. The technique has been used to locate and quantify beam impedance resonances at PEP-II, ALS and SPEAR. This method is faster than existing spectral scan methods by at least an order of magnitude, and has the added advantage of revealing coupled-bunch dynamics in the linear small-signal regime. A method is also presented for estimating beam impedance from multi-bunch fill shape and synchronous phase measurements. Phase space tracking of multi-bunch instabilities is introduced as a ''complete instability diagnostic.'' Digitized multi-bunch data is analyzed offline, to estimate the phase space trajectories of bunches and modes. Availability of phase space trajectories is shown to open up a variety of possibilities, including measurement of reactive impedance, and diagnosis of the fast beam-ion instability. Knowledge gained from longitudinal measurements (all made using a digital longitudinal feedback system) has been used to optimize cavity temperatures, tuner positions and feedback parameters, and also to identify sources of beam noise at the three machines. A matrix-based method is presented for analyzing the beneficial effect of bunch-to-bunch tune variation on instability

  20. A robust fibre laser system for electro-optic electron bunch profile measurements at FLASH

    International Nuclear Information System (INIS)

    For the electro-optic measurement of electron bunch profiles at FLASH a robust ytterbium doped fibre laser (YDFL) system has been developed consisting of a laser oscillator and a two-staged amplifier. The oscillator is designed to meet the specifications of high reliability and low noise operation. The amplifier makes use of tailored nonlinearity to enhance the spectral bandwidth of the output laser pulses. Active repetition rate control enables sub-picosecond synchronisation of the laser to the accelerator reference RF. Using a two-stage gating scheme the output pulse train repetition rate is adopted to the accelerator repetition rate. An experimental site used for electro-optic electron bunch diagnostics has been redesigned to support single-shot bunch profile measurements based on spectral decoding. An existing bunch profile monitor with a similar laser system was upgraded and electro-optic bunch profile measurements were conducted, allowing for a comparison with measurements done with other longitudinal electron bunch diagnostics and with former measurements.

  1. A robust fibre laser system for electro-optic electron bunch profile measurements at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wissmann, Laurens-Georg

    2012-08-15

    For the electro-optic measurement of electron bunch profiles at FLASH a robust ytterbium doped fibre laser (YDFL) system has been developed consisting of a laser oscillator and a two-staged amplifier. The oscillator is designed to meet the specifications of high reliability and low noise operation. The amplifier makes use of tailored nonlinearity to enhance the spectral bandwidth of the output laser pulses. Active repetition rate control enables sub-picosecond synchronisation of the laser to the accelerator reference RF. Using a two-stage gating scheme the output pulse train repetition rate is adopted to the accelerator repetition rate. An experimental site used for electro-optic electron bunch diagnostics has been redesigned to support single-shot bunch profile measurements based on spectral decoding. An existing bunch profile monitor with a similar laser system was upgraded and electro-optic bunch profile measurements were conducted, allowing for a comparison with measurements done with other longitudinal electron bunch diagnostics and with former measurements.

  2. Electron bunch profile reconstruction in the few fs regime using coherent Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Advanced accelerators for fourth generation light sources based on high brightness linacs or laser-driven wakefield accelerators will operate with intense, highly relativistic electron bunches that are only a few fs long. Diagnostic techniques for the determination of temporal profile of such bunches are required to be non invasive, single shot, economic and with the required resolution in the fs regime. The use of a radiative process such as coherent Smith-Purcell radiation (SPR), is particularly promising with this respect. In this technique the beam is made to radiate a small amount of electromagnetic radiation and the temporal profile is reconstructed from the measured spectral distribution of the radiation. We summarise the advantages of SPR and present the design parameters and preliminary results of the experiments at the FACET facility at SLAC. We also discuss a new approach to the problem of the recovery of the 'missing phase', which is essential for the accurate reconstruction of the temporal bunch profile.

  3. Electron Bunch Profile Reconstruction in the Few fs Regime using Coherent Smith-Purcell Radiation

    International Nuclear Information System (INIS)

    Advanced accelerators for fourth generation light sources based on high brightness linacs or laser-driven wakefield accelerators will operate with intense, highly relativistic electron bunches that are only a few fs long. Diagnostic techniques for the determination of temporal profile of such bunches are required to be non invasive, single shot, economic and with the required resolution in the fs regime. The use of a radiative process such as coherent Smith-Purcell radiation (SPR), is particularly promising with this respect. In this technique the beam is made to radiate a small amount of electromagnetic radiation and the temporal profile is reconstructed from the measured spectral distribution of the radiation. We summarise the advantages of SPR and present the design parameters and preliminary results of the experiments at the FACET facility at SLAC. We also discuss a new approach to the problem of the recovery of the 'missing phase', which is essential for the accurate reconstruction of the temporal bunch profile.

  4. Status of digital bunch-by-bunch feedback systems at DELTA and their application as diagnostics tools

    International Nuclear Information System (INIS)

    Digital bunch-by-bunch feedback systems allow to detect and counteract longitudinal as well as transverse multi-bunch instabilities. Beam current-dependent grow-damp measurements have been performed in order to characterize these instabilities at the DELTA storage ring. The longitudinal feedback system is used permanently during the operation of the new short-pulse facility in order to damp longitudinal bunch oscillations. Besides that, all three feedback systems are in use as excellent diagnostics tools, e.g. to investigate the injection process or to take data during sudden beam loss for post-processing.

  5. TADPOLE for longitudinal electron-bunch diagnostics based on electro-optic upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick, E-mail: jan-patrick.schwinkendorf@desy.de; Wunderlich, Steffen, E-mail: steffen.wunderlich@desy.de; Schaper, Lucas; Schmidt, Bernhard; Osterhoff, Jens

    2014-03-11

    Electron-bunch diagnostics are desired to utilize unambiguous, non-destructive, single-shot techniques. Various methods fulfill the latter two demands, but feature significant ambiguities and constraints in the reconstruction of time-domain electron-bunch profiles, e.g. uncertainties arising from the phase retrieval of coherent radiation using the Kramers–Kronig relation. We present a novel method of measuring the spectral phase. The measurement is based on upconversion in an electro-optic crystal, where the THz-field spectrum of fs-electron bunches is shifted to the near-infrared. This technique allows the single-shot detection of its longitudinal form factor in both, amplitude and phase. The spectral phase and amplitude information is measured and thus the temporal profile reconstructed using temporal analysis by dispersing a pair of light E-fields, also known as TADPOLE. This is a combination of frequency resolved optical gating (FROG) and spectral interferometry, enabling the temporal measurement of low-power laser pulses. In this procedure, a narrow-bandwidth laser pulse detecting the longitudinal variations in the transverse electric field of an electron bunch via frequency mixing is interfered with a broadband and FROG-characterized reference pulse. The longitudinal beam profile may therefore be unambiguously inferred from the generated interferogram and the detected spectral-phase-information of the reference pulse.

  6. Beam diagnostics based on time-domain bunch-by-bunch data

    International Nuclear Information System (INIS)

    A bunch-by-bunch longitudinal feedback system has been used to control coupled-bunch longitudinal motion and study the behavior of the beam at ALS, SPEAR, PEP-II, and DAΦNE. Each of these machines presents unique challenges to feedback control of unstable motion and data analysis. Here we present techniques developed to adapt this feedback system to operating conditions at these accelerators. A diverse array of techniques has been developed to extract information on different aspects of beam behavior from the time-domain data captured by the feedback system. These include measurements of growth and damping rates of coupled-bunch modes, bunch-by-bunch current monitoring, measurements of bunch-by-bunch synchronous phases and longitudinal tunes, and beam noise spectra. A technique is presented which uses the longitudinal feedback system to measure transverse growth and damping rates. Techniques are illustrated with data acquired at all of the four above-mentioned machines

  7. A Novel Diagnostics of Ultrashort Electron Bunches Based on Detection of Coherent Radiation from Bunched Electron Beam in an Undulator

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    We propose a new method for measurements of the longitudinal profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers (XFELs). The method is based on detection of coherent undulator radiation produced by modulated electron beam. Seed optical quantum laser is used to produce exact optical replica of ultrashort electron bunches. The replica is generated in apparatus which consists of an input undulator (energy modulator), and output undulator (radiator) separated by a dispersion section. The radiation in the output undulator is excited by the electron bunch modulated at the optical wavelength and rapidly reaches a hundred-MW-level power. We then use the now-standard method of ultrashort laser pulse-shape measurement, a tandem combination of autocorrelator and spectrum (FROG -- frequency resolved optical gating) providing real-time single-shot measurements of the electron bunch structure. The big advantage of proposed technique is that it can be used to determine the slice energy spread and emi...

  8. Beam diagnostics based on time-domain bunch-by-bunch data

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, D.; Fox, J.; Hindi, H.; Limborg, C.; Linscott, I.; Prabhakar, S.; Sebek, J.; Young, A. [Stanford Linear Accelerator Center P.O. Box 4349 Stanford, California 94309 (United States); Drago, A.; Serio, M. [INFN-Laboratori Nazionali di Frascati, P.O. Box 13 I-00044 Frascati (Roma) (Italy); Barry, W.; Stover, G. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, California 94563 (United States)

    1998-12-01

    A bunch-by-bunch longitudinal feedback system has been used to control coupled-bunch longitudinal motion and study the behavior of the beam at ALS, SPEAR, PEP-II, and DA{Phi}NE. Each of these machines presents unique challenges to feedback control of unstable motion and data analysis. Here we present techniques developed to adapt this feedback system to operating conditions at these accelerators. A diverse array of techniques has been developed to extract information on different aspects of beam behavior from the time-domain data captured by the feedback system. These include measurements of growth and damping rates of coupled-bunch modes, bunch-by-bunch current monitoring, measurements of bunch-by-bunch synchronous phases and longitudinal tunes, and beam noise spectra. A technique is presented which uses the longitudinal feedback system to measure transverse growth and damping rates. Techniques are illustrated with data acquired at all of the four above-mentioned machines. {copyright} {ital 1998 American Institute of Physics.}

  9. Beam diagnostics based on time-domain bunch-by-bunch data

    International Nuclear Information System (INIS)

    A bunch-by-bunch longitudinal feedback system has been used to control coupled-bunch longitudinal motion and study the behavior of the beam at ALS, SPEAR, PEP-II, and DAΦNE. Each of these machines presents unique challenges to feedback control of unstable motion and data analysis. Here we present techniques developed to adapt this feedback system to operating conditions at these accelerators. A diverse array of techniques has been developed to extract information on different aspects of beam behavior from the time-domain data captured by the feedback system. These include measurements of growth and damping rates of coupled-bunch modes, bunch-by-bunch current monitoring, measurements of bunch-by-bunch synchronous phases and longitudinal tunes, and beam noise spectra. A technique is presented which uses the longitudinal feedback system to measure transverse growth and damping rates. Techniques are illustrated with data acquired at all of the four above-mentioned machines. copyright 1998 American Institute of Physics

  10. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    Science.gov (United States)

    Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  11. Optical synchronization and electron bunch diagnostic at the quasi-cw accelerator ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Kuntzsch, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany); Lehnert, Ulf; Roeser, Fabian [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Czwalinna, Marie Kristin; Schulz, Sebastian; Schlarb, Holger; Vilcins, Silke [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-01

    The continuous wave electron accelerator ELBE is upgraded to generate short and highly charged electron bunches (200 fs duration, up to 1 nC) with an energy of up to 40 MeV. In the last years a prototype of an optical synchronization system using a mode locked fiber laser has been build up which is now in commissioning phase. The stabilized pulse train can be used for new methods of electron bunch diagnostics like bunch arrival time measurement with the resolution down to a few femtoseconds. At ELBE a bunch arrival time monitor (BAM) has been designed and tested at the accelerator. The contribution shows the concept of the femtosecond synchronization system, the design of the BAM and first measurement results.

  12. A high resolution, single bunch, beam profile monitor

    International Nuclear Information System (INIS)

    Efficient linear colliders require very small beam spots to produce high luminosities with reasonable input power, which limits the number of electrons which can be accelerated to high energies. The small beams, in turn, require high precision and stability in all accelerator components. Producing, monitoring and maintaining beams of the required quality has been, and will continue to be, difficult. A beam monitoring system which could be used to measure beam profile, size and stability at the final focus of a beamline or collider has been developed and is described here. The system uses nonimaging bremsstrahlung optics. The immediate use for this system would be examining the final focus spot at the SLAC/FFTB. The primary alternatives to this technique are those proposed by P. Chen / J. Buon, which analyses the energy and angular distributions of ion recoils to determine the aspect ratio of the electron bunch, and a method proposed by Shintake, which measures intensity variation of compton backscattered photons as the beam is moved across a pattern of standing waves produced by a laser

  13. Electron bunch profile reconstruction based on phase-constrained iterative algorithm

    Science.gov (United States)

    Bakkali Taheri, F.; Konoplev, I. V.; Doucas, G.; Baddoo, P.; Bartolini, R.; Cowley, J.; Hooker, S. M.

    2016-03-01

    The phase retrieval problem occurs in a number of areas in physics and is the subject of continuing investigation. The one-dimensional case, e.g., the reconstruction of the temporal profile of a charged particle bunch, is particularly challenging and important for particle accelerators. Accurate knowledge of the longitudinal (time) profile of the bunch is important in the context of linear colliders, wakefield accelerators and for the next generation of light sources, including x-ray SASE FELs. Frequently applied methods, e.g., minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This, however, is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles (both artificial and experimental) that would otherwise remain unresolved by the existing techniques.

  14. A method for calculating longitudinal phase space distribution when given the time profile of the bunch

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Yang Tan

    2001-07-30

    We will show in this paper a method for calculating the longitudinal phase space distribution when the time profile of the bunch as measured by a wall current monitor is given. The key to this method is the assumption that the bunch is matched to the bucket. With this assumption, we will show that the method boils down to solving a simple upper triangular matrix equation. We will also illustrate the method with two examples and show the method's shortcomings.

  15. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    The required high peak current in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short (5-44μm) or in long wavelength mode (45-430μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The device is planned for use as an online bunch profile monitor during regular FEL operation.

  16. Electron bunch diagnostics for laser-plasma accelerators, from THz to X-rays

    International Nuclear Information System (INIS)

    This thesis presents a series of single-shot non-intrusive diagnostics of key attributes of electron bunches produced by a laser-plasma accelerator (LPA). Three injection mechanisms of the LPA are characterized: channeled and self-guided self-injection, plasma down-ramp injection, and two-beam colliding pulse injection. New diagnostic techniques are successfully demonstrated: up to 8 times higher sensitivity wavefront sensor-based plasma density measurements, strong spatio-temporal coupling of the focused THz pulse is demonstrated using the temporal electric-field cross-correlation (TEX) of a long chirped probe with a short probe and confirms the two-component structure of the bunch observed by electron spectrometry, and normalized transverse emittances as low as 0.1 mm mrad are demonstrated for 0.5 GeV-class beams produced in a capillary-guided LPA by characterizing the betatron radiation emitted by the electrons inside the plasma using a new single-shot X-ray spectroscopy technique. (author)

  17. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  18. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  19. Longitudinal electron bunch profile measurement with Electro Optic Sampling at the Radiation Source ELBE

    International Nuclear Information System (INIS)

    At the ELBE Accelerator at the Forschungszentrum Dresden (FZD) we want to perform longitudinal electron bunch profile measurement with Electro Optic Sampling (EOS) technique. We present the preliminary measurement results. The EOS technique is based on the change in the optical characteristics of a birefringent crystal due to the electric field induced by the passage of electrons in the vicinity of the crystal. Therefore we use femtosecond Fiber-Optic laser pulses to probe the change of birefringence in the electro-optic ZnTe crystal. The resolution in the experiment is limited to about 250 fs by the bandwidth of the detection equipment. One of the important steps in the measurement is to synchronize the Fiber-Optic laser pulses emitted with a repetition frequency of 78 MHz with the 13 MHz radio frequency from the superconducting accelerator with low time jitter. The set-up required for determination of the temporal overlap of the femtosecond laser pulse with the real electron bunch was assembled with a OTR sensitive photodiode. The last synchronization step was tuning the time delay of the femtosecond laser relative to the electron bunch by an optical delay unit. By splitting the signal from the ZnTe crystal in a balance detector we achieve information about the longitudinal electron bunch profile.

  20. Time-resolved momentum and beam size diagnostics for bunch trains with very large momentum spread

    Energy Technology Data Exchange (ETDEWEB)

    Olvegård, M., E-mail: maja.olvegard@physics.uu.se [Uppsala University, Department of Physics and Astronomy, Box 516, 751 20 Uppsala (Sweden); Barnes, M.J.; Ducimetière, L. [CERN, European Organization of Nuclear Research, 1211 Genève 23 (Switzerland); Ziemann, V. [Uppsala University, Department of Physics and Astronomy, Box 516, 751 20 Uppsala (Sweden)

    2015-10-11

    We propose a novel method to measure the time-resolved momentum distribution and size of beams with very large momentum spread. To demonstrate the principle we apply the method to the beam at the end of a Compact Linear Collider decelerator, where conventional diagnostic methods are hampered by the large energy spread of the drive beam after up to 90% of its kinetic energy is converted into microwave power. Our method is based on sweeping the beam in a circular pattern to determine the momentum distribution and recording the beam size on a screen using optical transition radiation. We present an algorithm to extract the time-resolved momentum distribution. Furthermore, the beam size along the bunch train can be extracted from the image left on a screen by sweeping the beam linearly. We introduce the analysis technique and show simulation results that allow us to estimate the applicability. In addition, we present a conceptual design of the technical realization.

  1. Time-resolved momentum and beam size diagnostics for bunch trains with very large momentum spread

    International Nuclear Information System (INIS)

    We propose a novel method to measure the time-resolved momentum distribution and size of beams with very large momentum spread. To demonstrate the principle we apply the method to the beam at the end of a Compact Linear Collider decelerator, where conventional diagnostic methods are hampered by the large energy spread of the drive beam after up to 90% of its kinetic energy is converted into microwave power. Our method is based on sweeping the beam in a circular pattern to determine the momentum distribution and recording the beam size on a screen using optical transition radiation. We present an algorithm to extract the time-resolved momentum distribution. Furthermore, the beam size along the bunch train can be extracted from the image left on a screen by sweeping the beam linearly. We introduce the analysis technique and show simulation results that allow us to estimate the applicability. In addition, we present a conceptual design of the technical realization

  2. Bunching of a low-velocity ion beam and the development of beam diagnostic technology

    International Nuclear Information System (INIS)

    An RF cavity resonator for bunching the low-velocity ions has been installed in the beam line from an ECR ion source on a test stand, and the bunch structure is observed by a Faraday cup with good frequency response characteristics. This test stand is originally for development of beam monitors. Owing to the introduction of the RF cavity, beam monitors for bunched beam observation can be tested. Reversely beam bunching characteristics of cavities can be examined on this test stand. Measurements of H, O and Ar beams bunched by an RF cavity equipped with a magnetic alloy are reported. The design of the Faraday cup is also described. (K. Yoshida)

  3. A Quest for Measuring Ion Bunch Longitudinal Profiles with One Picosecond Accuracy in the SNS Linac

    International Nuclear Information System (INIS)

    The SNS linac utilizes several accelerating structures operating at different frequencies and with different transverse focusing structures. Low-loss beam transport requires a careful matching at the transition points in both the transverse and longitudinal axes. Longitudinal beam parameters are measured using four Bunch Shape Monitors (used at many ion accelerator facilities, aka Feschenko devices). These devices, as initially delivered to the SNS, provided an estimated accuracy of about 5 picoseconds, which was sufficient for the initial beam commissioning. New challenges of improving beam transport for higher power operation will require measuring bunch profiles with 1-2 picoseconds accuracy. We have successfully implemented a number of improvements to maximize the performance characteristics of the delivered devices. We will discuss the current status of this instrument, its ultimate theoretical limit of accuracy, and how we measure its accuracy and resolution with real beam conditions.

  4. Mitigation of the electron-cloud effect in the PSR and SNS protonstorage rings by tailoring the bunch profile

    CERN Document Server

    Pivi, M T

    2003-01-01

    For the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and for the Proton Storage Ring (PSR) at Los Alamos, both with intense and very long bunches, the electron cloud develops primarily by the mechanism of trailing-edge multipacting. We show, by means of simulations for the PSR, how the resonant nature of this mechanism may be effectively broken by tailoring the longitudinal bunch profile at fixed bunch charge, resulting in a significant decrease in the electron-cloud effect. We briefly discuss the experimental difficulties expected in the implementation of this cure.

  5. Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length

    International Nuclear Information System (INIS)

    We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths

  6. Application of ps-streak camera in accelerator study. Measurement of longitudinal profile of electron-beam bunch

    International Nuclear Information System (INIS)

    The system for measurement of longitudinal profile of electron-beam bunch of electron accelerator with ps-streak camera has been constructed. Using this system, the length of electron-beam bunch have measured at Beijing Free Electron Laser Facility (BFEL) and Beijing Electron Positron Collider (BEPC) in Inst. of High Energy Physics of China Academy of Sciences, and Electron-Beam Injector for L-Band RF-Linac (LBINJ) in China Institute of Atomic Energy

  7. SPARC Working Point Optimization for a Bunch with Gaussian Temporal Profile

    CERN Document Server

    Boscolo, Manuela; Fusco, Valeria; Migliorati, Mauro; Reiche, Sven; Ronsivalle, Concetta

    2005-01-01

    We present the optimization of the working point for the SPARC photoinjector with a Gaussian temporal profile. The implications of a Gaussian temporal profile are discussed here for the standard working conditions and for the RF compressor case in comparison with the nominal working point performances of a 10ps flat top pulse with rise time of 1ps. Comparisons with the upgraded version of the HOMDYN code including arbitrary bunch temporal profiles are also reported. Advantages and drawbacks of the Gaussian and flat top pulse shapes are discussed. For the standard working point, it is shown that the two cases provide the same saturation length and average power, but the higher current in the beam core of the Gaussian pulse gives a higher peak radiation power. As the laser pulse shape could be Gaussian at the first stage of the SPARC operation, it is clear the importance of these simulation results.

  8. Dependence of e-cloud on the longitudinal bunch profile: studies in the PS & extension to the HL-LHC

    CERN Document Server

    Bhat, C M; Hancock, S; Mahner, E; Caspers, F; Iadarola, G; Argyropoulos, T; Zimmermann, F

    2013-01-01

    Recent studies have shown that the prospects for significantly increasing bunch intensities in the LHC for the luminosity upgrade (HL-LHC) may be severely limited by the available cryogenic cooling capacity and the electron-cloud (EC) driven beam instability. However, it is planned that during the HL-LHC era the bunch intensities in the LHC will go up by nearly a factor of two compared to the LHC-design values. This motivates the exploration of additional EC mitigation techniques that can be adopted in addition to those already in place. Preliminary simulations indicated that long flat bunches can be beneficial over Gaussian bunches to reduce the EC build up. Rigorous studies using realistic bunch profiles have never been done. Therefore, we have undertaken an in-depth investigation in the CERN 26 GeV PS to see if we can validate the previous findings and, in particular, if flattening the bunch can mitigate the EC. Here we present the results from dedicated EC measurements in the PS using a variety of bunch s...

  9. Sub-millimeter Bunch Length Non-invasive Diagnostic Based on the Diffraction and Cherenkov Radiation

    International Nuclear Information System (INIS)

    A layout for the investigation the coherent Cherenkov radiation from a dielectric target with a large spectral dispersion and the coherent diffraction radiation from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics are proposed for the 20∼30MeV Linac at Shanghai Institute of Applied Physics (SINAP). In this paper the status of the joint experiment and future plans are presented.

  10. Physicochemical profile of microbial-assisted composting on empty fruit bunches of oil palm trees.

    Science.gov (United States)

    Lim, Li Yee; Bong, Cassendra Phun Chien; Chua, Lee Suan; Lee, Chew Tin

    2015-12-01

    This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches. PMID:26286798

  11. Measurement of short bunches

    International Nuclear Information System (INIS)

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson lab are presented. At Jefferson Lab, bunch lengths s short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented

  12. Measurement of short bunches

    International Nuclear Information System (INIS)

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson Lab are presented. At Jefferson Lab, bunch lengths as short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented. (author)

  13. First single-shot and non-intercepting longitudinal bunch diagnostics for comb-like beam by means of Electro-Optic Sampling

    International Nuclear Information System (INIS)

    At SPARC-LAB, we have installed an Electro-Optic Sampling (EOS) experiment for single shot, non-destructive measurements of the longitudinal distribution charge of individual electron bunches. The profile of the electron bunch field is electro-optically encoded into a Ti:Sa laser, having 130 fs (rms) pulse length, directly derived from the photocathode's laser. The bunch profile information is spatially retrieved, i.e., the laser crosses with an angle of 30° with respect to the normal to the surface of EO crystal (ZnTe, GaP) and the bunch longitudinal profile is mapped into the laser's transverse profile. In particular, we used the EOS for a single-shot direct visualization of the time profile of a comb-like electron beam, consisting of two bunches, about 100 fs (rms) long, sub-picosecond spaced with a total charge of 160 pC. The electro-optic measurements (done with both ZnTe and GaP crystals) have been validated with both RF Deflector (RFD) and Michelson interferometer measurements

  14. Generation and characterization of electron bunches with ramped current profile at the FLASH facility

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; /Northern Illinois U. /Fermilab; Behrens, C.; Gerth, C.; /DESY; Lemery, F.; /Northern Illinois U.; Mihalcea, D.; /Fermilab; Vogt, M.; /DESY

    2011-09-01

    We report on the successful generation of electron bunches with current prof les that have a quasi-linear dependency on the longitudinal coordinate. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a linac operating at two frequencies (1.3 and 3.9 GHz) and a bunch compressor. Data taken for various accelerator settings demonstrate the versatility of the method. The produced bunches have parameters well matched to drive high-gradient accelerating field with enhanced transformer ratio in beam-driven accelerators based on sub-mm-sizes dielectric or plasma structures.

  15. Design and calibration of ultra-short, broadband (200 nm - 12 μm), single-shot spectrometer for ultrashort electron bunch durations diagnostics

    International Nuclear Information System (INIS)

    The properties of electron bunch based on the Laser-Wakefield accelerators (LWFA) vary from shot to shot due to changes in the environment, such as gas jet profile or laser pointing. In order to understand the properties of these ultra-short electron bunches like bunch duration and bunch substructure in the range of 0.7 to 40 fs we are building a broadband-spectrometer for measuring coherent and incoherent transition radiation (TR). Our TR-spectrometer is able to measure the TR-spectrum from a thin Al-foil in a single shot experiment from UV (200 nm) to mid-IR (12 μm) by means of a CCD detector for the UV to VIS range and two array detectors for the NIR and MIR range. In this poster we present our design and calibration results of the detectors.

  16. Thomson backscattering diagnostics of nanosecond electron bunches in high space charge regime

    OpenAIRE

    B. Paroli

    2012-01-01

    The intra-beam repulsions play a significant role in determining the performances of free-electron devices when an high brilliance of the beam is required. The transversal and longitudinal spread of the beam, its energy and density are fundamental parameters in any beam experiment and different beam diagnostics are available to measure such parameters. A diagnostic method based on the Thomson backscattering of a laser beam impinging on the particle beam is proposed in this work for the study ...

  17. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 2nd QUARTER 2009 MILESTONE REPORT: Perform beam and target experiments with a new induction bunching module, extended FEPS plasma, and improved target diagnostic and positioning equipment on NDCX

    International Nuclear Information System (INIS)

    capability allows us to significantly increase our shot repetition rate, and to take greater advantage of the pinhole/cone arrangement we have developed to localize the beam at final focus. In addition we have improved the capability of the optical diagnostic systems, and we have installed a new beam current transformer downstream of the target to monitor beam current transmitted through the target during an experiment. These improvements will allow us to better exploit the inherent capability of the NDCX facility for high repetition rate and thus to provide more detailed experimental data to assess WDM physics models of target behavior. This milestone has been met by demonstrating highly compressed beams with the new bunching module, which are neutralized in the longer drift compression section by the new ferro-electric plasma sources. The peak uncompressed beam intensity (∼600 kW/cm2) is higher than in previous measurements, and the bunched beam current profiles are ∼2ns. We have also demonstrated a large increase in the experimental data acquisition rate for target heating experiments. In the first test of the new remote-controlled target positioning system, we completed three successful target physics shots in less than two hours. Further improvements are expected.

  18. Measurement of Satellite Bunches at the LHC

    CERN Document Server

    Jeff, A; Boccardi, A; Bozyigit, S; Bravin, E; Lefevre, T; Rabiller, A; Roncarolo, F; Welsch, C P; Fisher, A S

    2012-01-01

    The RF gymnastics involved in the delivery of proton and lead ion bunches to the LHC can result in satellite bunches of varying intensity occupying the nominally empty RF buckets. Quantification of these satellites is crucial for bunch-by-bunch luminosity normalization as well as for machine protection. We present an overview of the longitudinal density monitor (LDM) which is the principal instrument for the measurement of satellite bunches in the LHC. The LDM uses single photon counting of synchrotron light. The very high energies reached in the LHC, combined with a dedicated undulator for diagnostics, allow synchrotron light measurements to be made with both protons and heavy ions. The arrival times of photons are collected over a few million turns, with the resulting histogram corrected for the effects of the detector’s deadtime and afterpulsing in order to reconstruct the longitudinal profile of the entire LHC ring. The LDM has achieved a dynamic range in excess of 105 and a time resolution of 90 ps. Ex...

  19. Postgenomics Diagnostics: Metabolomics Approaches to Human Blood Profiling

    OpenAIRE

    Trifonova, Oxana; Lokhov, Petr; Archakov, Alexander

    2013-01-01

    We live in exciting times with the prospects of postgenomics diagnostics. Metabolomics is a novel “omics” data-intensive science that is accelerating the development of postgenomics diagnostics, particularly with use of accessible peripheral tissue compartments. Metabolomics involves the study of a comprehensive set of low molecular weight substances (metabolites) present in biological systems. The metabolite profiles represent the molecular phenotype of biological systems and reflect the inf...

  20. Modelling and Measurements of Bunch Profiles at the LHC Flat Bottom

    CERN Document Server

    Papadopoulou, Stefania; Muller, Juan; Papaphilippou, Yannis; Trad, Georges

    2016-01-01

    At the LHC flat bottom the interplay between a series of effects (i.e. intrabeam scattering, longitudinal beam manipulations, non-linearities of the machine, etc) can lead to a population of the tails of the beam distributions, which may become non-Gaussian. This paper presents observations of the evolution of particle distributions in the LHC flat bottom. Novel distribution functions are employed to represent the beam profiles, and used as a guideline for generalising emittance growth rate estimations due to IBS. Finally, an attempt is made to benchmark an IBS Monte-Carlo simulation code, able to track 3D particle distributions, with the measured beam profile evolutions.

  1. Neutron emissivity profile camera diagnostics considering present and future tokamaks

    International Nuclear Information System (INIS)

    This thesis describes the neutron profile camera situated at JET. The profile camera is one of the most important neutron emission diagnostic devices operating at JET. It gives useful information of the total neutron yield rate but also about the neutron emissivity distribution. Data analysis was performed in order to compare three different calibration methods. The data was collected from the deuterium campaign, C4, in the beginning of 2001. The thesis also includes a section about the implication of a neutron profile camera for ITER, where the issue regarding interface difficulties is in focus. The ITER JCT (Joint Central Team) proposal of a neutron camera for ITER is studied in some detail

  2. Diagnostic profiles of acute abdominal pain with multinomial logistic regression

    Directory of Open Access Journals (Sweden)

    Ohmann, Christian

    2007-07-01

    Full Text Available Purpose: Application of multinomial logistic regression for diagnostic support of acute abdominal pain, a diagnostic problem with many differential diagnoses. Methods: The analysis is based on a prospective data base with 2280 patients with acute abdominal pain, characterized by 87 variables from history and clinical examination and 12 differential diagnoses. Associations between single variables from history and clinical examination and the final diagnoses were investigated with multinomial logistic regression. Results: Exemplarily, the results are presented for the variable rigidity. A statistical significant association was observed for generalized rigidity and the diagnoses appendicitis, bowel obstruction, pancreatitis, perforated ulcer, multiple and other diagnoses and for localized rigidity and appendicitis, diverticulitis, biliary disease and perforated ulcer. Diagnostic profiles were generated by summarizing the statistical significant associations. As an example the diagnostic profile of acute appendicitis is presented. Conclusions: Compared to alternative approaches (e.g. independent Bayes, loglinear model there are advantages for multinomial logistic regression to support complex differential diagnostic problems, provided potential traps are avoided (e.g. α-error, interpretation of odds ratio.

  3. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author)

  4. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  5. Electron Bunch Shape Measurements Using Electro-optical Spectral Decoding

    Science.gov (United States)

    Borysenko, A.; Hiller, N.; Müller, A.-S.; Steffen, B.; Peier, P.; Ivanisenko, Y.; Ischebeck, R.; Schlott, V.

    Longitudinal diagnostics of the electron bunch shapes play a crucial role in the operation of linac-based light sources. Electro-optical techniques allow us to measure the longitudinal electron bunch profiles non-destructively on a shot-by-shot basis. Here we present results from measurements of electron bunches with a length of 200-900 fs rms at the Swiss FEL Injector Test Facility. All the measurements were done using an Yb-doped fibre laser system (with a central wavelength of a 1050 nm) and a GaP crystal. The technique of electro-optical spectral decoding (EOSD) was applied and showed great capabilities to measure bunch shapes down to around 370 fs rms. Measurements were performed for different electron energies to study the expected distortions of the measured bunch profile due to the energy-dependent widening of the electric field, which plays a role for low beam energies below and around 40 MeV. The studies provide valuable input for the design of the EOSD monitors for the compact linear accelerator FLUTE that is currently under commissioning at the Karslruhe Institute of Technology (KIT).

  6. Measurement of the Luminous-Region Profile at the PEP-II IP, And Application to e+e- Bunch-Length Determination

    International Nuclear Information System (INIS)

    The three-dimensional luminosity distribution at the interaction point (IP) of the SLAC B-Factory is measured continuously, using e+e- → e+e-, μ+μ- events reconstructed online in the BABAR detector. The centroid of the transverse luminosity profile provides a very precise and reliable monitor of medium- and long-term orbit drifts at the IP. The longitudinal centroid is sensitive to variations in the relative RF phase of the colliding beams, both over time and differentially along the bunch train. The measured horizontal r.m.s. width of the distribution is consistent with a sizeable dynamic-β effect; it is also useful as a benchmark of strong-strong beam-beam simulations. The longitudinal luminosity distribution depends on the e± bunch lengths and vertical IP β-functions, which can be different in the high- and low-energy rings. Using independent estimates of the βfunctions, we analyze the longitudinal shape of the luminosity distribution in the presence of controlled variations in accelerating RF voltage and/or beam current, to extract measurements of the e+ and e- bunch lengths

  7. Diagnostic performance of the "MESACUP anti-Skin profile TEST".

    Science.gov (United States)

    Horváth, Orsolya N; Varga, Rita; Kaneda, Makoto; Schmidt, Enno; Ruzicka, Thomas; Sárdy, Miklós

    2016-02-01

    The "MESACUP anti-Skin profile TEST" is a new, commercially available ELISA kit to detect circulating IgG autoantibodies against desmoglein 1, desmoglein 3, BP180, BP230, and type VII collagen, both simultaneously and more rapidly than previous assays. The aim of this study was to evaluate the diagnostic accuracy of this kit for the diagnosis of pemphigus foliaceus, pemphigus vulgaris, bullous pemphigoid and epidermolysis bullosa acquisita. Dual-centre retrospective study in which 138 patients with autoimmune blistering diseases were compared to 40 controls Using the MESACUP anti-Skin profile TEST, both sensitivities and specificities for desmoglein 1, desmoglein 3, BP180, BP230, and type VII collagen autoantibodies were similar to those obtained using previous, specific ELISA systems and 88% of the results were concordant without any significant difference. The MESACUP anti-Skin profile TEST had a similar performance to previously produced ELISA systems. The novel kit can be used for rapid diagnosis of most common autoimmune blistering diseases and is especially suitable for identifying overlapping disorders. PMID:26771500

  8. Current profile reconstruction using electron temperature imaging diagnostics

    Science.gov (United States)

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L. F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-10-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by Te measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q0 determined to within ±4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires ˜×4 better statistics for comparable final errors.

  9. Multi-bunch Feedback Systems

    CERN Document Server

    Lonza, M

    2014-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...

  10. Remote control of turn-by-turn photon beam profile monitor at the SPring-8 diagnostics beamline II

    International Nuclear Information System (INIS)

    The turn-by-turn beam profile monitor (TTPM) using undulator radiation is installed in the diagnostic beamline II (BL05SS) of the SPring-8 storage ring to observe stored beam oscillation, instabilities of a high current single bunch and so on. The TTPM system employs a high-speed CCD camera (ProEM 512BK by Princeton Instruments) with a special function to record turn-by-turn images both of horizontal and vertical spatial profiles in a single picture by vertically shifting electric charge stored in the CCD elements in microseconds. The CCD camera can be controlled by using WinSpec32 software (Prinston Instruments) running on a local Windows PC at BL05SS via a gigabit Ethernet interface. We have built a TTPM remote control system to realize continuous and automatic observation of stored beam stability during the user time operation at the SPring-8 central control room. The TTPM remote control system consists of the following three parts; control software of WinSpec32 by through COM (Component Object Model) on the local Windows PC, remote application software on Linux operator consoles and communication software using ZeroMQ between the WinSpec32 control software and the remote application software. As the remote application software, two kinds of GUIs are prepared. One is for the measurement of the stored beam oscillation at the top-up injection, and the other is for the instability observation of a high current single bunch. These GUIs provide functions of display of the captured image, fitting calculation of the image, display the result and record it into the DB and so on. The remote control system has been utilized for the stability observation by operators in the central control room since December 2012 and worked well. (author)

  11. Commissioning of the SPPS Linac Bunch Compressor

    International Nuclear Information System (INIS)

    First results and beam measurements are presented for the recently installed linac bunch compressor chicane. The new bunch compressor produces ultra-short electron bunches for the Sub-Picosecond Photon Source (SPPS) and for test beams such as the E164 Plasma Wakefield experiment. This paper will give an overview of the first experiences with tuning and optimizing the compressor together with a description of the beam diagnostics and beam measurements. These measurements form the basis for further detailed study of emittance growth effects such as CSR and wakefields in a previously unmeasured regime of ultra-short bunch lengths

  12. The NLC L-Band Bunch Compressor

    International Nuclear Information System (INIS)

    The first stage bunch compressor in the NLC injector complex compresses the e+/e- beams from a bunch length of 5 mm rms to 0.5 mm rms at the beam energy of 2 GeV. To obtain this compression ratio, the compressor rf section operates with an rf frequency of 1.4 GHz and a voltage of about 140 MV while a magnetic wiggler is used to generate an R56 = 0.5 m. The bunch compressor is designed to operate with a beam from the damping ring that has a bunch spacing slew of 20ps across the bunch train due to the transient loading in the damping rings. The compressor RF section is required to produce a specific energy profile along the bunch train so that the bunch spacing can be corrected in the compressor bending section. Further, the 1-amp beam heavily loads the compressor linac and beam loading compensation is essential to prevent a phase variation along the bunch train in the downstream linacs. In this paper, we will present simulation results of the beam loading compensation using a ΔT scheme assuming various initial bunch spacing arrangements. We will study the impact of the different compressor energy profiles on the beam energy, energy spread, and bunch length at the IP

  13. Plasma Diagnostics Using K-Line Emission Profiles of Argon

    CERN Document Server

    Chen, Yiling; Reinholz, Heidi; Röpke, Gerd

    2014-01-01

    K-line profiles emitted from a warm dense plasma environment are used for diagnostics of Ar droplet plasmas created by high energy laser pulses. We observe temperature gradients within the Ar droplet from cold temperatures of the order of some 10 eV up to higher temperatures of about 170 eV. Non-perturbative wave functions are calculated as well as ionization energies, binding energies and relevant emission energies using a chemical {\\it ab initio} code. The plasma screening is considered within a perturbative approach to the Hamiltonian. The plasma effect influences the many-particle system resulting in energy shifts due to electron-ion and electron-electron interaction. With this approach we get a good reproduction of spectral features that are strongly influenced by ionization and excitation processes within the plasma. Comparing with the widely known FLYCHK code, counting for internal degrees of freedom (bound states) and treating pressure ionization within our quantum statistical approach leads to differ...

  14. Full cycle beam diagnostics with an ionization profile monitor

    International Nuclear Information System (INIS)

    The Alternating Gradient Synchrotron Booster at Brookhaven National Laboratory uses an ionization profile monitor to generate profiles of proton and heavy-ion beams. The profile monitor can acquire hundreds of profiles during an acceleration cycle, and then display and store them for analysis. Profiles appear in real time on an oscilloscope-type display, but other visualizations are available as well, namely mountain range and emittance displays. File storage of profile data is simple, as is the storage of moments and emittances

  15. Comparative Study of Bunch Length And Arrival Time Measurements at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, H.; Azima, A.; Dusterer, S.; Huning, M.; Knabbe, E.A.; Roehrs, M.; Rybnikov, V.; Schmidt, B.; Steffen, B.; /DESY; Ross, M.C.; /SLAC; Schmueser, P.; Winter, A.; /Hamburg U.

    2007-04-16

    Diagnostic devices to precisely measure the longitudinal electron beam profile and the bunch arrival time require elaborate new instrumentation techniques. At FLASH, two entirely different methods are used. The bunch profile can be determined with high precision by a transverse deflecting RF structure, but the method is disruptive and does not allow to monitor multiple bunches in a macro-pulse train. It is therefore complemented by two non-disruptive electrooptical devices, called EO and TEO. The EO setup uses a dedicated diagnostic laser synchronized to the machine RF. The longitudinal electron beam profile is encoded in the intensity profile of a chirped laser pulse and analyzed by looking at the spectral composition of the pulse. The second setup, TEO, utilizes the TiSa-based laser system used for pump-probe experiments. Here, the temporal electron shape is encoded into the spatial dimension of the laser pulse by an intersection angle between the laser and the electron beam at the EO-crystal. In this paper, we present a comparative study of bunch length and arrival time measurements performed simultaneously with all three experimental techniques.

  16. Comparative Study of Bunch Length And Arrival Time Measurements at FLASH

    International Nuclear Information System (INIS)

    Diagnostic devices to precisely measure the longitudinal electron beam profile and the bunch arrival time require elaborate new instrumentation techniques. At FLASH, two entirely different methods are used. The bunch profile can be determined with high precision by a transverse deflecting RF structure, but the method is disruptive and does not allow to monitor multiple bunches in a macro-pulse train. It is therefore complemented by two non-disruptive electrooptical devices, called EO and TEO. The EO setup uses a dedicated diagnostic laser synchronized to the machine RF. The longitudinal electron beam profile is encoded in the intensity profile of a chirped laser pulse and analyzed by looking at the spectral composition of the pulse. The second setup, TEO, utilizes the TiSa-based laser system used for pump-probe experiments. Here, the temporal electron shape is encoded into the spatial dimension of the laser pulse by an intersection angle between the laser and the electron beam at the EO-crystal. In this paper, we present a comparative study of bunch length and arrival time measurements performed simultaneously with all three experimental techniques

  17. Real-time single-shot electron bunch length measurements

    International Nuclear Information System (INIS)

    Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pulse repetition rates. The electron bunch length is determined by measuring the laser pulse spectra with and without the presence of an electron bunch. We demonstrate that this method enables a real-time diagnostic for the bunch length of single electron bunches with a time resolution of 370 femtoseconds and a high signal-noise-ratio

  18. Bunch-by-bunch longitudinal feedback system for PEP-II

    International Nuclear Information System (INIS)

    This paper describes the implementation of the bunch-by-bunch longitudinal feedback system for the PEP-II B Factory. Bunch spacing down to 2 ns is achieved using 500 Megasamples per second A/D and D/A converters, and AT ampersand T 1610 Digital Signal Processors are integrated to run a downsampled feedback algorithm for each bunch in parallel. This general purpose programmable system, packaged in VXI and VME, is modular and scalable to offer portability to other accelerator rings. The control and monitoring hardware and software architecture have been developed to provide ease of operation as well as diagnostic tools for machine physics

  19. Diagnostic profiles of acute abdominal pain with multinomial logistic regression

    OpenAIRE

    Ohmann, Christian; Franke, Claus; Yang, Qin; Decker, Franz; Verde, Pablo E

    2007-01-01

    Purpose: Application of multinomial logistic regression for diagnostic support of acute abdominal pain, a diagnostic problem with many differential diagnoses. Methods: The analysis is based on a prospective data base with 2280 patients with acute abdominal pain, characterized by 87 variables from history and clinical examination and 12 differential diagnoses. Associations between single variables from history and clinical examination and the final diagnoses were investigated with multinomial ...

  20. A simple method for the determination of the structure of ultrashort relativistic electron bunches

    International Nuclear Information System (INIS)

    In this paper we propose a new method for measurements of the longitudinal profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers (XFELs). The method is simply the combination of two well-known techniques, which where not previously combined to our knowledge. We use seed 10-ps 1047 nm quantum laser to produce exact optical replica of ultrafast electron bunches. The replica is generated in apparatus which consists of an input undulator (energy modulator), and the short output undulator (radiator) separated by a dispersion section. The radiation in the output undulator is excited by the electron bunch modulated at the optical wavelength and rapidly reaches 100 MW-level peak power. We then use the now-standard method of ultrashort laser pulse-shape measurement. Fortunately, in the past five years, remarkable progress has occurred in the development of techniques for the measurement of ultrashort laser pulses. For example, a tandem combination of autocorrelator and spectrum (FROG - frequency resolved optical gating) can be used to extract shape information from ultrashort pulses. The FROG trace of ultrashort optical replica can be used to give accurate and rapid electron bunch shape measurements in a way similar to a femtosecond oscilloscope. Real-time single-shot measurements of the electron bunch structure could provide significant information about physical mechanisms responsible for generation ultrashort electron bunches in bunch compressors. The big advantage of proposed technique is that it can be used to determine the slice energy spread and emittance in multishot measurements. It is possible to measure bunch structure completely, that is to measure peak current, energy spread and transverse emittance as a function of time. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the European X-ray FEL. (orig.)

  1. Photon anti bunching versus phantom anti bunching?

    International Nuclear Information System (INIS)

    Photon anti bunching defined by two-time correlation functions has hitherto, to our best knowledge, been considered to constitute a unique, well defined effect. We show explicitly that this is by no means the case. We analyze two of the most famous definitions showing that both anti bunching and bunching effects according to one definition can be accompanied by arbitrary photon correlation effects according to another. As an example we discuss a model of parametric frequency conversion. (authors)

  2. Short bunch wake potentials for a chain of TESLA cavities

    International Nuclear Information System (INIS)

    The modification of wake fields from a single cavity to a quasi-periodic structure of cavities is of great concern, especially for applications using very short bunches. We extend our former study (Novokhatski, 1997 [1]). A strong modification of wake fields along a train of cavities was clearly found for bunch lengths lower than 1 mm. In particular, the wakes induced by the bunch, as it proceeds down the successive cavities, decrease in amplitude and become more linear around the bunch center, with a profile very close to the integral of the charge density. The loss factor, decreasing also with the number of cells, becomes independent of bunch length for very short bunches and tends asymptotically to a finite value. This nice behavior of wake fields for short bunches presents good opportunity for application of very short bunches in Linear Colliders and X-ray Free Electron Lasers

  3. Klystron beam bunching

    International Nuclear Information System (INIS)

    A detailed description of electron-beam bunching phenomena in klystrons is presented. Beam harmonic current is defined, both space-charge and ballistic bunching are analyzed, Ramo's theorem is used to describe how a bunched beam drives a cavity, and a general cavity model including external coupling is provided. (author)

  4. One Bad Apple Spoils the Bunch: Exploiting P2P Applications to Trace and Profile Tor Users

    CERN Document Server

    Blond, Stevens Le; Abdelberi, Chaabane; Kaafar, Mohamed Ali Dali; Castelluccia, Claude; Legout, Arnaud; Dabbous, Walid

    2011-01-01

    Tor is a popular low-latency anonymity network. However, Tor does not protect against the exploitation of an insecure application to reveal the IP address of, or trace, a TCP stream. In addition, because of the linkability of Tor streams sent together over a single circuit, tracing one stream sent over a circuit traces them all. Surprisingly, it is unknown whether this linkability allows in practice to trace a significant number of streams originating from secure (i.e., proxied) applications. In this paper, we show that linkability allows us to trace 193% of additional streams, including 27% of HTTP streams possibly originating from "secure" browsers. In particular, we traced 9% of Tor streams carried by our instrumented exit nodes. Using BitTorrent as the insecure application, we design two attacks tracing BitTorrent users on Tor. We run these attacks in the wild for 23 days and reveal 10,000 IP addresses of Tor users. Using these IP addresses, we then profile not only the BitTorrent downloads but also the w...

  5. Diagnostic X ray dose profiles in molar teeth using Monte Carlo simulation

    International Nuclear Information System (INIS)

    The dose profiles in molar teeth from diagnostic X rays was calculated using the Monte Carlo software program MCNP4c2. The information calculated supports needs in EPR retrospective dosimetry to account for diagnostic X ray exposures in teeth. Only tooth positions 6, 7 and 8 were simulated (the three teeth furthest back including the wisdom teeth) using a very detailed model of the pertinent physiology. The lingual and buccal halves of teeth were evaluated as were the crown dentin and roots in tooth position 7. Linear dose profiles through the enamel were also calculated. (author)

  6. Bunch Shape Monitor for SSCL linac

    International Nuclear Information System (INIS)

    The Superconducting Super Collider Laboratory and the Institute for Nuclear Research ore collaboratively developing a Bunch Shape Monitor diagnostics for commission the SSCL linac. The Bunch Shape Monitor is designed to measure the intensity of beam as a function of time over the micro-bunch of the beam. Design resolution for the SSCL monitors is approximately 7 psec. The first monitor will operate at the fundamental frequency of 428 MHz and will be used to measure the output beam of the RFQ Linac. First available results will be presented and compared with predictions. Further development will allow the monitors to fit in a standard SSCL beam box and one will operate at the third harmonic of 428 MHz. Proposals to use the Bunch Shape Monitor to measure the longitudinal phase space distribution of the beam will be discussed

  7. Bunch shape monitor for SSCL linac

    International Nuclear Information System (INIS)

    The Superconducting Super Collider Laboratory and the Institute for Nuclear Research are collaboratively developing a Bunch Shape Monitor diagnostic for commissioning the SSCL linac. The Bunch Shape Monitor is designed to measure the intensity of beam as a function of time over the micro-bunch of the beam. Design resolution for the SSCL monitors is approximately 7 psec. The first monitor will operate at the fundamental frequency of 428 MHz and will be used to measure and output beam of the RFQ Linac. First available results will be presented and compared with predictions. Further development will allow the monitors to fit in a standard SSCL beam box and one will operate at the third harmonic of 428 MHz. Proposals to use the Bunch Shape Monitor to measure the longitudinal phase space distribution of the beam will be discussed

  8. Application of nuclear emulsion to neutron emission profile diagnostics in the national spherical torus experiment

    International Nuclear Information System (INIS)

    The technology for OPERA experiments in neutrino physics was applied to neutral-beam-heated deuterium discharges of NSTX in order to measure d-d neutron emission profile. The diagnostic system consisted of nuclear emulsions named OPERA films and the automatic track scanning system S-UTS developed in Nagoya University. A neutron collimator having three channels was temporarily built for this purpose. The nuclear emulsion indicated peaked neutron emission profiles at the plasma center in NSTX as expected. (author)

  9. Inferring Zeff spatial profile from background light in incoherent thomson scattering diagnostic

    International Nuclear Information System (INIS)

    A simulation study on the feasibility of inferring spatial Zeff profile along with electron temperature and density in Thomson scattering diagnostic is presented. The background signal, which is usually discarded after subtracted from the Thomson scattering signal, is used in the reconstruction procedure. If the contribution from line radiation to the back-ground signal is by one order of magnitude smaller than that from bremsstrahlung, a fairly accurate Zeff profile can be reconstructed. (author)

  10. Can YAG screen accept LEReC bunch train?

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2016-05-18

    LEReC RF diagnostic beamline is supposed to accept 250 us long pulse trains of 1.6 MeV – 2.6 MeV (kinetic energy) electrons. This beamline is equipped with YAG profile monitor. Since we are interested in observing only the last macro bunch in the train, one of the possibilities is to install a fast kicker and a dedicated dump upstream of the YAG screen (and related diagnostics equipment). This approach is expensive and challenging from engineering point of view. Another possibility is to send the whole pulse train to the YAG screen and to use a fast gated camera (such as Imperex B0610 with trigger jitter under 60ns [1]) to observe the image from the last pulse only. In this paper we study the feasibility of the last approach.

  11. Can YAG screen accept LEReC bunch train?

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2016-05-18

    LEReC RF diagnostic beamline is supposed to accept 250 us long pulse trains of 1.6 MeV – 2.6 MeV (kinetic energy) electrons. This beamline is equipped with YAG profile monitor. Since we are interested in observing only the last macro bunch in the train, one of the possibilities is to install a fast kicker and a dedicated dump upstream of the YAG screen (and related diagnostics equipment). This approach is expensive and challenging from engineering point of view. Another possibility is to send the whole pulse train to the YAG screen and to use a fast gated camera (such as Imperex B0610 with trigger jitter under 60ns) to observe the image from the last pulse only. In this paper we study the feasibility of the last approach.

  12. The frequency splitting of the axisymmetric magnetoacoustic wave as a current profile diagnostic

    International Nuclear Information System (INIS)

    In the presence of finite plasma current, the axisymmetric (m=0) magnetoacoustic wave resonance exhibits a frequency splitting for finite toroidal mode number (n ≠ 0) between oppositely directed travelling waves. Calculations are presented which demonstrate that Δ(1/f), the difference between the inverse resonance frequencies, is directly proportional to known moments of the plasma current profile and, in the limit where the radial wavenumber is much larger than the parallel wavenumber, is independent of the plasma mass density and its profile. Some aspects of the implementation of a current profile diagnostic based on the excitation of these resonances are also considered. (author) 16 refs., 6 figs., 1 tab

  13. AN ONLINE LONGITUDINAL VERTEX AND BUNCH SPECTRUM MONITOR FOR RHIC

    International Nuclear Information System (INIS)

    The longitudinal bunch profile acquisition system at RHIC was recently upgraded to allow on-line measurements of the bunch spectrum, and collision vertex location and shape. The system allows monitoring the evolution of these properties along the ramp, at transition and rebucketing, and at store conditions. We describe some of the hardware and software changes, and show some applications of the system

  14. Diagnostics

    International Nuclear Information System (INIS)

    All the non interacting monitors used for the p-anti p instrumentation can be related to the use of the wall image current as induced by relativistic charged particle bunches circulating in a metallic pipe or vacuum chamber. The monitors are then classified by their type of beam coupling impedance. This allows a more generalized approach of the design of the so-called pickups. (orig./HSI)

  15. Bucket shaking stops bunch dancing in Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; Tan, C.Y.; /Fermilab

    2011-03-01

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase at the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.

  16. Bucket shaking stops bunch dancing in Tevatron

    International Nuclear Information System (INIS)

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. (2,3), the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase at the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.

  17. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    Science.gov (United States)

    Agostini, M.; Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A.

    2015-12-01

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of ne and Te are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  18. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    International Nuclear Information System (INIS)

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of ne and Te are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances

  19. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M., E-mail: matteo.agostini@igi.cnr.it; Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2015-12-15

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of n{sub e} and T{sub e} are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  20. Measurement of bunch length at TRISTAN MR

    International Nuclear Information System (INIS)

    The bunch length was measured at the injection energy of 8 GeV in the TRISTAN Main Ring (MR) with two methods. One method is to measure a longitudinal profile of the synchrotron light using a streak camera, and the other uses a technology based on detecting the beam spectrum. A bunch shortening was observed in low beam currents with both methods. On the other hand, the bunch shape was much distorted from a Gaussian at higher currents. A big disparity in the measurements between the spectrum method and the FWHM of a profile was observed there. A comparison among the spectrum method, the FWHM and the rms. value for non-Gaussian distributions was carried out in order to understand the disparity. (author)

  1. Scrub Typhus: Surveillance, Clinical Profile and Diagnostic Issues in Shandong, China

    OpenAIRE

    Zhang, Meng; Zhao, Zhong-Tang; Wang, Xian-Jun; Li, Zhong; Ding, Lei; Ding, Shu-Jun

    2012-01-01

    To elucidate the epidemic status, clinical profile, and current diagnostic issues of scrub typhus in Shandong Province, we analyzed the surveillance data of scrub typhus from 2006 to 2011 and conducted a hospital-based disease survey in 2010. Scrub typhus was clustered in mountainous and coastal areas in Shandong Province, with an epidemic period from September to November. The most common manifestations were fever (100%), eschar or skin ulcer (86.3%), fatigue (71.6%), anorexia (71.6%), and r...

  2. Bunch identification module

    International Nuclear Information System (INIS)

    This module provides bunch identification and timing signals for the PEP Interaction areas. Timing information is referenced to the PEP master oscillator, and adjusted in phase as a function of region. Identification signals are generated in a manner that allows observers in all interaction regions to agree on an unambiguous bunch identity. The module provides bunch identification signals via NIM level logic, upon CAMAC command, and through LED indicators. A front panel ''region select'' switch allows the same module to be used in all regions. The module has two modes of operation: a bunch identification mode and a calibration mode. In the identification mode, signals indicate which of the three bunches of electrons and positrons are interacting, and timing information about beam crossing is provided. The calibration mode is provided to assist experimenters making time of flight measurements. In the calibration mode, three distinct gating signals are referenced to a selected bunch, allowing three timing systems to be calibrated against a common standard. Physically, the bunch identifier is constructed as a single width CAMAC module. 2 figs., 1 tab

  3. KEKB bunch feedback systems

    Energy Technology Data Exchange (ETDEWEB)

    Tobiyama, M.; Kikutani, E. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)

  4. Cross-diagnostic validity of the Nottingham health profile index of distress (NHPD

    Directory of Open Access Journals (Sweden)

    Klevsgård Rosemarie

    2008-07-01

    Full Text Available Abstract Background The Nottingham Health Profile index of Distress (NHPD has been proposed as a generic undimensional 24-item measure of illness-related distress that is embedded in the Nottingham Health Profile (NHP. Data indicate that the NHPD may have psychometric advantages to the 6-dimensional NHP profile scores. Detailed psychometric evaluations are, however, lacking. Furthermore, to support the validity of the generic property of outcome measures evidence that scores can be interpreted in the same manner in different diagnostic groups are needed. It is currently unknown if NHPD scores have the same meaning across patient populations. This study evaluated the measurement properties and cross-diagnostic validity of the NHPD as a survey instrument among people with Parkinson's disease (PD and peripheral arterial disease (PAD. Methods Data from 215 (PD and 258 (PAD people were Rasch analyzed regarding model fit, reliability, differential item functioning (DIF, unidimensionality and targeting. In cases of cross-diagnostic DIF this was adjusted for and the impact of DIF on the total score and person measures was assessed. Results The NHPD was found to have good overall and individual item fit in both disorders as well as in the pooled sample, but seven items displayed signs of cross-diagnostic DIF. Following adjustment for DIF some aspects of model fit were slightly compromised, whereas others improved somewhat. DIF did not impact total NHPD scores or resulting person measures, but the unadjusted scale displayed minor signs of multidimensionality. Reliability was > 0.8 in all within- and cross-diagnostic analyses. Items tended to represent more distress (mean, 0 logits than that experienced by the sample (mean, -1.6 logits. Conclusion This study supports the within- and cross-diagnostic validity of the NHPD as a survey tool among people with PD and PAD. We encourage others to reassess available NHP data within the NHPD framework to further

  5. HLS bunch current measurement system

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Bunch current is an important parameter for studying the injection fill-pattern in the storage ring and the instability threshold of the bunch, and the bunch current monitor also is an indispensable tool for the top-up injection. A bunch current measurement (BCM) system has been developed to meet the needs of the upgrade project of Hefei Light Source (HLS). This paper presents the layout of the BCM system. The system based on a high-speed digital oscilloscope can be used to measure the bunch current and synchronous phase shift. To obtain the absolute value of bunch-by-bunch current, the calibration coefficient is measured and analyzed. Error analysis shows that the RMS of bunch current is less than 0.01 mA when bunch current is about 5 mA, which can meet project requirement.

  6. Experimental Characterization of Sub-picosecond Electron Bunch Length with Coherent Diffraction Radiation

    International Nuclear Information System (INIS)

    Diffraction radiation is one of the most promising candidates for electron beam diagnostics for the International Linear Collider, x-ray free electron lasers and energy recovery linac due to its non-intercepting characteristics. We report the non-intercepting measurement of sub-ps electron bunch length with coherent diffraction radiation. The bunch length is measured with a Martin—Puplett interferometer and the detailed longitudinal bunch shape is reconstructed with the Kramers—Kronig relation. The rms bunch length is found to be about 0.73 ps, which confirms a successful commissioning of the bunch compressor and the interferometer. (nuclear physics)

  7. Experimental characterization of sub-picosecond electron bunch length with coherent diffraction radiation

    International Nuclear Information System (INIS)

    Diffraction radiation is one of the most promising candidates for electron beam diagnostics for the International Linear Collider, x-ray free electron lasers and energy recovery linac due to its non-intercepting characteristics. We report the non-intercepting measurement of sub-ps electron bunch length with coherent diffraction radiation. The bunch length is measured with a Martin-Puplett interferometer and the detailed longitudinal bunch shape is reconstructed with the Kramers-Kronig relation. The rms bunch length is found to be about 0.73 ps, which confirms a successful commissioning of the bunch compressor and the interferometer. (authors)

  8. Observations of basic diagnostic profile patterns seen in some common disorders of backyard poultry species.

    Science.gov (United States)

    Speer, B L

    1999-09-01

    Poultry species--chickens, ducks, geese--are becoming increasingly popular as pets. As such, requests for accurate diagnoses and treatment are being received by the veterinary community from the public. Unlike the food animal and production-oriented aspects of poultry medicine, success with these pet birds is contingent on preserving the human-pet bird bond, as defined by the individual client. This article presents some of this author's observations in diagnostic profiles on some selected disorders of backyard poultry. PMID:11229050

  9. Electron bunch length measurement at the Vanderbilt FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  10. EDGE2D modelling of edge profiles obtained in JET diagnostic optimized configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kallenbach, A [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Andrew, Y [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Beurskens, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Corrigan, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Eich, T [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Jachmich, S [ERM, Brussels (Belgium); Kempenaars, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Korotkov, A [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Loarte, A [EFDA Close Support Unit, Garching (Germany); Matthews, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Monier-Garbet, P [CEA Cadarache (France); Saibene, G [EFDA Close Support Unit, Garching (Germany); Spence, J [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Suttrop, W [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2004-03-01

    Nine type-I ELMy H-mode discharges in diagnostic optimized configuration in JET are analysed with the EDGE2D/NIMBUS package. EDGE2D solves the fluid equations for the conservation of particles, momentum and energy for hydrogenic and impurity ions, while neutrals are followed with the two-dimensional Monte Carlo module NIMBUS. Using external boundary conditions from the experiment, the perpendicular heat conductivities {chi}{sub i,e} and the particle transport coefficients D, v are varied until good agreement between code result and measured data is obtained. A step-like ansatz is used for the edge transport parameters for the outer core region, the edge transport barrier and the outer scrape-off layer. The time-dependent effect of edge localized modes on the edge profiles is simulated with an ad hoc ELM model based on the repetitive increase of the transport coefficients {chi}{sub i,e} and D. The values of the transport coefficients are matched to experimental data mapped to the outer midplane, in the course of which radial shifts of experimental profiles of the order of 1 cm caused by the accuracy limit of the equilibrium reconstruction are taken into account. Simulated divertor profiles obtained from the upstream transport ansatz and the experimental boundary conditions agree with measurements, except a small region localized at the separatrix strike points which is supposed to be affected by direct ion losses. The integrated analysis using EDGE2D modelling, although still limited by the marginal spatial resolution of individual diagnostics, allows the characterization of profiles in the edge/pedestal region and supplies additional information on the separatrix position. The steep density gradient zone inside the separatrix shrinks compared to the electron temperature with increasing density, indicating the effect of the neutral penetration depth becoming shorter than the region of reduced transport.

  11. Bunched beam stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jie

    1992-09-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  12. Bunched beam stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jie.

    1992-01-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  13. Bunching and anti-bunching in electronic transport

    OpenAIRE

    Emary, Clive; Pöltl, Christina; Carmele, Alexander; Kabuss, Julia; Knorr, Andreas; Brandes, Tobias

    2012-01-01

    In quantum optics the $g^{(2)}$-function is a standard tool to investigate photon emission statistics. We define a $g^{(2)}$-function for electronic transport and use it to investigate the bunching and anti-bunching of electron currents. Importantly, we show that super-Poissonian electron statistics do not necessarily imply electron bunching, and that sub-Poissonian statistics do not imply anti-bunching. We discuss the information contained in $g^{(2)}(\\tau)$ for several typical examples of t...

  14. The device for bunch selffocussing

    International Nuclear Information System (INIS)

    The new device for damping the longitudinal single bunch instability in atotage rings is proposed. This simple device is the dielectric channel insert of definite length in vacuum chamber. The structure of wake fields, induced by intense bunch in such a channel is that, that backward action on bunch particles not leads to bunch selffocusing. The conditions under which this phenomenon reveals itself and can be applied to electron-positron storages are considered. 3 refs

  15. Vibrations of blades bunches

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    Brno: Brno University of Technology, 2014 - (Fuis, V.), s. 520-523 ISBN 978-80-214-4871-1. ISSN 1805-8248. [Engineering Mechanics 2014 /20./. Svratka (CZ), 12.05.2014-15.05.2014] Institutional support: RVO:61388998 Keywords : damping * dry friction * five-blades-bunch * harmonic excitation * response curve Subject RIV: BI - Acoustics

  16. Multi-bunch energy compensation in the NLC bunch compressor

    International Nuclear Information System (INIS)

    The task of the NLC bunch compressor is to reduce the length of each bunch in a train of 90 bunches from 4 mm, at extraction from the damping ring, to about 100 μm, suitable for injection into the X-band main linac. This task is complicated by longitudinal long-range wake fields and the multi-bunch beam loading in the various accelerating sections of the compressor. One possible approach to compensate the multi-bunch beam loading is to add two RF systems with slightly different frequencies (' Δf' scheme) to each accelerating section, as first proposed by Kikuchi. This paper summarizes the choice of parameters for three such compensating sections, and presents simulation results of combined single- and multi-bunch dynamics for four different NLC versions. The multi-bunch energy compensation is shown to be straightforward and its performance to be satisfactory

  17. Electron bunch length measurement at the radiation source ELBE

    International Nuclear Information System (INIS)

    In this study, measurement of electron bunch length at the ELBE Free Electron Laser (FEL) in the Forschungszentrum Dresden (FZD) is represented. Transition radiation is emitted when an electron passes the interface of two mediums of different dielectric constants. In case that the wavelength of the radiation is longer than the bunch length, coherent transition radiation (CTR) is emitted. The time profile of the CTR is a copy of the electron bunch longitudinal profile. The Martin-Puplett interferometer (MPI) is used to measure the autocorrelation function of the CTR pulse. The power spectrum and the bunch length information is obtained by Fourier transforming the measured autocorrelation function. There are different approaches for obtaining the bunch length from the MPI measurements. The data can be evaluated in the time domain as well as in the frequency domain. We can derive the longitudinal shapes of the electron bunch by analyzing the frequency information. The Measurement of the longitudinal electron bunch length is compared with the frequency domain method

  18. Bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL

    International Nuclear Information System (INIS)

    In this thesis, the results of longitudinal bunch shape and bunch length measurements at the DESY VUV-FEL are discussed. As short electron bunches are required for a high-gain free electron laser, the coherent synchrotron radiation (CSR) they produce in a magnetic chicane can be used for diagnostics. The employment of a Martin-Puplett interferometer for measuring the CSR spectrum and the principle of reconstructing the charge distribution from it are presented. (orig.)

  19. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    A CO2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  20. Research of bunch by bunch data acquisition system in SSRF

    International Nuclear Information System (INIS)

    Background: In order to improve the synchrotron performance in the constant current mode, attentions should be paid to problems such as non-linear beam dynamics, broadband beam impedance, and position disturbance, etc. Purpose: To address these problems, a bunch by bunch data acquisition system (BBDAQ) is implemented for real-time bunch position monitoring, as well as the off-line data analysis for the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. It can be applied to optimize new equipment impedance, filling pattern, injection mode, and raise threshold value of current instability. Methods: This BBDAQ developed at SSRF consists a RF front end to filter and expand bunch signal to 2 ns, a data acquisition and processing card to sample bunch signal with four 125-MHz ADCs, which make an equivalent 500-MHz sampling rate, and the EPICS for post-processing to give bunch position and tune value. Results: Online experimental results show that the system can measure bunch by bunch position and tune value successfully. Conclusion: The development of bunch by bunch data acquisition system provides an efficient tool to analyze beam impedance, coupling instability, nonlinear dynamics. It makes further improvement of synchrotron performance visible. (authors)

  1. THz-spectroscopy for bunch length measurement at the TESLA test facility TTF

    International Nuclear Information System (INIS)

    The operation of a free electron laser in the VUV regime puts stringent demands on the beam quality of an electron linear accelerator. For this reason the beam diagnostic technique of fourier-transform spectroscopy has been further developed to determine the longitudinal charge profile of the electron bunch with the required precision. Transition, diffraction and synchrotron radiation have been used as radiation sources and as measurement device a Martin-Puplett interferometer. In the frame of this thesis data have been taken using pyroelectric detectors, DTGS detectors, Golay cells and bolometers. An analysis procedure for the data has been developed and thoroughly tested including among other things the correction of the frequency dependence of the different sources and diffraction effects inside the interferometer. It is possible to reconstruct asymmetric charge distributions using the dispersion relation by Kramers and Kronig. It could be shown, that the analysis is able to reconstruct the expected charge distributions as long as the detectors are not limited in their low frequency acceptance. Depending on the actual amount of noise on the measured data different shapes and widths can be reconstructed with errors below 10% and can hence be distinguished. The results show only small dependencies on the bunch compression parameters, while the shapes and widths are in good agreement with other results. The shortest bunch length measured has a full width at half maximum of approximately 1.6 ps. (orig.)

  2. Single Bunch Monopole Instability

    Energy Technology Data Exchange (ETDEWEB)

    Podobedov, B.; Heifets, S.; /SLAC

    2005-09-12

    We study single bunch stability with respect to monopole longitudinal oscillations in electron storage rings. Our analysis is different from the standard approach based on the linearized Vlasov equation. Rather, we reduce the full nonlinear Fokker-Planck equation to a Schroedinger-like equation which is subsequently analyzed by perturbation theory. We show that the Haissinski solution [3] may become unstable with respect to monopole oscillations and derive a stability criterion in terms of the ring impedance.

  3. Improving ozone profile retrieval from spaceborne UV backscatter spectrometers using convergence behaviour diagnostics

    Directory of Open Access Journals (Sweden)

    B. Mijling

    2010-11-01

    Full Text Available The Ozone Profile Algorithm (OPERA, developed at KNMI, retrieves the vertical ozone distribution from nadir spectral satellite measurements of back scattered sunlight in the ultraviolet and visible wavelength range. To produce consistent global datasets the algorithm needs to have good global performance, while short computation time facilitates the use of the algorithm in near real time applications.

    To test the global performance of the algorithm we look at the convergence behaviour as diagnostic tool of the ozone profile retrievals from the GOME instrument (on board ERS-2 for February and October 1998. In this way, we uncover different classes of retrieval problems, related to the South Atlantic Anomaly, low cloud fractions over deserts, desert dust outflow over the ocean, and the intertropical convergence zone. The influence of the first guess and the external input data including the ozone cross-sections and the ozone climatologies on the retrieval performance is also investigated. By using a priori ozone profiles which are selected on the expected total ozone column, retrieval problems due to anomalous ozone distributions (such as in the ozone hole can be avoided.

    By applying the algorithm adaptations the convergence statistics improve considerably, not only increasing the number of successful retrievals, but also reducing the average computation time, due to less iteration steps per retrieval. For February 1998, non-convergence was brought down from 10.7% to 2.1%, while the mean number of iteration steps (which dominates the computational time dropped 26% from 5.11 to 3.79.

  4. Transverse-to-Longitudinal Phase Space Exchange: a Versatile Tool for Shaping the Current and Energy Profiles of Relativistic Electron Bunches

    International Nuclear Information System (INIS)

    Over the recent years, the emergence of accelerator beamlines capable of exchanging the phase space coordinates between two degrees of freedom has opened the path toward the precise control of phase space distribution and in particular to the production of relativistic electron beams with shaped current profiles. After briefly reviewing the technique, we present its application to produce a train of sub-picosecond microbunches and report on its experimental implementation at the Fermilab's A0 photoinjector facility.

  5. Measurement of femtosecond electron bunches

    International Nuclear Information System (INIS)

    Bunch lengths as short as 84 fs (rms) have been measured at Jefferson Lab using a zero-phasing RF technique. To the best of our knowledge, this is the first accurate bunch length measurement in this regime. In this letter, an analytical approach for computing the longitudinal distribution function and bunch length is described for arbitrary longitudinal and transverse distributions. The measurement results are presented, which are in excellent agreement with numerical simulations

  6. Maser on cyclotron resonance in nonresonant electron bunching mode

    International Nuclear Information System (INIS)

    For masers on cyclotron resonance (MCR) one introduces a new design based on the electron bunching in the field of non-resonance wave. The mentioned design ensures division into two sections of electron-wave interaction space at the expense of magnetic field profiling. It is shown that under certain conditions the particle motion towards the field of non-resonance wave (the first section) is followed by the efficient electron bunching without any essential change in their energy. In the second section where the value of the magnetic field is close to the resonance value one observes the efficient emission of a working wave by the bunched electron beam. So, the klystron type electron-wave interaction with separation of processes of particle bunching and emission takes place

  7. SuperB Bunch-By-Bunch Feedback R&D

    Energy Technology Data Exchange (ETDEWEB)

    Drago, A.; Beretta, M.; /Frascati; Bertsche, K.; Novokhatski, A.; /SLAC; Migliorati, M.; /Rome U.

    2011-08-12

    The SuperB project has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. The SuperB design is based on collisions with extremely low vertical emittance beams and high beam currents. A source of emittance growth comes from the bunch by bunch feedback systems producing high power correction signals to damp the beams. To limit any undesirable effect, a large R&D program is in progress, partially funded by the INFN Fifth National Scientific Committee through the SFEED (SuperB Feedback) project approved within the 2010 budget. The SuperB project [1] has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. In the last and current years, the machine layout has been deeply modified, in particular the main rings are now shorter and an option with high currents has been foreseen. In the fig.1 the new SuperB layout is shown. From bunch-by-bunch feedback point of view, the simultaneous presence in the machine parameters, of very low emittance, of the order of 5-10 pm in the vertical plane, and very high currents, at level of 4 Ampere for the Low Energy Ring, asks for designing very carefully the bunch-by-bunch feedback systems. The parameter list is presented in Fig. 2. The bunch-by-bunch feedback design must take care of the risky and exciting challenges proposed in the SuperB specifications, but it should consider also some other important aspects: flexibility in terms of being able to cope to unexpected beam behaviours [2], [3] legacy of previous version experience [4], [5] and internal powerful diagnostics [6] as in the systems previously used in PEP-II and DAFNE [7].

  8. SuperB Bunch-By-Bunch Feedback R and D

    International Nuclear Information System (INIS)

    The SuperB project has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e+/e- Super Flavor Factory to achieve a peak luminosity > 10**36 cm-2 s-1. The SuperB design is based on collisions with extremely low vertical emittance beams and high beam currents. A source of emittance growth comes from the bunch by bunch feedback systems producing high power correction signals to damp the beams. To limit any undesirable effect, a large R and D program is in progress, partially funded by the INFN Fifth National Scientific Committee through the SFEED (SuperB Feedback) project approved within the 2010 budget. The SuperB project (1) has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e+/e- Super Flavor Factory to achieve a peak luminosity > 10**36 cm-2 s-1. In the last and current years, the machine layout has been deeply modified, in particular the main rings are now shorter and an option with high currents has been foreseen. In the fig.1 the new SuperB layout is shown. From bunch-by-bunch feedback point of view, the simultaneous presence in the machine parameters, of very low emittance, of the order of 5-10 pm in the vertical plane, and very high currents, at level of 4 Ampere for the Low Energy Ring, asks for designing very carefully the bunch-by-bunch feedback systems. The parameter list is presented in Fig. 2. The bunch-by-bunch feedback design must take care of the risky and exciting challenges proposed in the SuperB specifications, but it should consider also some other important aspects: flexibility in terms of being able to cope to unexpected beam behaviours (2), (3) legacy of previous version experience (4), (5) and internal powerful diagnostics (6) as in the systems previously used in PEP-II and DAFNE (7).

  9. Short bunched beam monitor

    International Nuclear Information System (INIS)

    In order to monitor the short bunched beam, two types of monitors were developed and tested. A core monitor using a Co-based amorphous core which has high μ characteristics and high frequency response can be used as a non-destructive current monitor for the beam in the range of 1ns to several μs pulse width. A wall current monitor designed carefully has been also tested. The wall current monitor has measured the beam shape with the pulse width of 200ps or less. In this paper the characteristics and overall performance of these monitors are described. (author)

  10. Study of Short Bunches at the Free Electron Laser CLIO

    CERN Document Server

    Delerue, Nicolas; Khodnevych, Vitalii; Berthet, Jean-Paul; Glotin, Francois; Ortega, Jean-Michel; Prazeres, Rui

    2016-01-01

    CLIO is a Free Electron Laser based on a thermionic electron gun. In its normal operating mode it delivers electron 8 pulses but studies are ongoing to shorten the pulses to about 1 ps. We report on simulations showing how the pulse can be shortened and the expected signal yield from several bunch length diagnostics (Coherent Transition Radiation, Coherent Smith Purcell Radiation).

  11. Downsampled bunch-by-bunch feedback for PEP II

    International Nuclear Information System (INIS)

    The PEP II B Factory requires a feedback system to damp out longitudinal synchrotron oscillations. A time-domain bunch-by-bunch feedback system has been proposed in which each bunch is treated as an oscillator being driven by disturbances from the other bunches. The phase is detected, filtered, and the feedback correction signal is applied by the kicker. Since we are damping energy oscillations using measurements of phase, the required feedback signal must be proportional to the amplitude of the phase oscillations but phase shifted by 90 degrees. This signal must be calculated for each of the 1658 bunches, in parallel. In the original proposal, it was estimated that a farm of approximately 480 digital signal processors (DIPS) would be required to implement the feedback system. However, using the technique of downsampling, this number can be reduced to about 50 DIPS. In what follows, we will briefly explain the basic idea of downsampling and its implementation

  12. Downsampled bunch-by-bunch feedback for PEP II

    International Nuclear Information System (INIS)

    The PEP 11 B Factory requires a feedback system to damp out longitudinal synchrotron oscillations. A time-domain bunch-by-bunch feedback system has been proposed in which each bunch is treated as an oscillator being driven by disturbances from the other bunches. The phase is detected, filtered, and the feedback correction signal is applied by the kicker. Since we are damping energy oscillations using measurements of phase, the required feedback signal must be proportional to the amplitude of the phase oscillations but phase shifted by 90 degrees. This signal must be calculated for each of the 1658 bunches, in parallel. In the original proposal, it was estimated that a farm of approximately 480 digital signal processors (DSPS) would be required to implement the feedback system. However, using the technique of downsampling, this number can be reduced to about 50 DSPS. In what follows, we will briefly explain the basic idea of downsampling and its implementation

  13. Analysis of bunch by bunch oscillations with bunch trains at injection into LHC at 25 ns bunch spacing

    CERN Document Server

    Bartosik, H

    2012-01-01

    An MD on August 26, 2011 was dedicated to injection studies of bunch trains with 25 ns spacing and nominal intensity of approximately 1×10(11) protons per bunch. Due to an electrical glitch, the MD was stopped after two attempts of injecting a train of 48 bunches for beam 2. Both injections were aborted after less than 0.1 s. In particular, the first attempt with transverse damper on was dumped after 1000 turns while the second attempt with transverse damper off was dumped after 500 turns only. In this note, an analysis of the bunch by bunch oscillation data recorded with the post-mortem system from the transverse damper is presented. The presented data clearly shows the presence of instabilities that affect mainly the second half of the batch. This is compatible with what would be expected qualitatively in the presence of the electron cloud effect.

  14. Modified bunch filling scheme for Indus-2

    International Nuclear Information System (INIS)

    Currently Indus-2 is operated with all bunches filled mode. It may be required to fill the ring with different bunch filling patterns in future as per requirements of the users and also to mitigate the problems of ion trapping and beam instabilities. In Indus-2 one can store beam current in maximum of 291 bunches. A bunch-filling scheme has been evolved in which, it is possible to fill Indus-2 with different filling patterns. In the earlier scheme, three patterns of bunch filling are proposed namely all bunches, three symmetric bunches and a single bunch. In this scheme there is problem of bunch overlapping in the buckets, if more than one bunch is extracted from the booster. In the new scheme, a formulation has been derive to avoid the overlapping of bunches. (author)

  15. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential

    Directory of Open Access Journals (Sweden)

    Bendahl Pär-Ola

    2007-03-01

    Full Text Available Abstract Background Soft tissue sarcoma (STS diagnosis is challenging because of a multitude of histopathological subtypes, different genetic characteristics, and frequent intratumoral pleomorphism. One-third of STS metastasize and current risk-stratification is suboptimal, therefore, novel diagnostic and prognostic markers would be clinically valuable. We assessed the diagnostic and prognostic value of array-based gene expression profiles using 27 k cDNA microarrays in 177, mainly high-grade, STS of 13 histopathological subtypes. Results Unsupervised analysis resulted in two major clusters – one mainly containing STS characterized by type-specific genetic alterations and the other with a predominance of genetically complex and pleomorphic STS. Synovial sarcomas, myxoid/round-cell liposarcomas, and gastrointestinal stromal tumors clustered tightly within the former cluster and discriminatory signatures for these were characterized by developmental genes from the EGFR, FGFR, Wnt, Notch, Hedgehog, RAR and KIT signaling pathways. The more pleomorphic STS subtypes, e.g. leiomyosarcoma, malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma and dedifferentiated/pleomorphic liposarcoma, were part of the latter cluster and were characterized by relatively heterogeneous profiles, although subclusters herein were identified. A prognostic signature partly characterized by hypoxia-related genes was identified among 89 genetically complex pleomorphic primary STS and could, in a multivariate analysis including established prognostic markers, independently predict the risk of metastasis with a hazard ratio of 2.2 (P = 0.04. Conclusion Diagnostic gene expression profiles linking signaling pathways to the different STS subtypes were demonstrated and a hypoxia-induced metastatic profile was identified in the pleomorphic, high-grade STS. These findings verify diagnostic utility and application of expression data for improved selection of high

  16. Multi-transcript profiling in archival diagnostic prostate cancer needle biopsies to evaluate biomarkers in non-surgically treated men

    OpenAIRE

    Kachroo, Naveen; Warren, Anne Y; Gnanapragasam, Vincent J.

    2014-01-01

    Background Most biomarkers in prostate cancer have only been evaluated in surgical cohorts. The value of these biomarkers in a different therapy context remains unclear. Our objective was to test a panel of surgical biomarkers for prognostic value in men treated by external beam radiotherapy (EBRT) and primary androgen deprivation therapy (PADT). Methods The Fluidigm® PCR array was used for multi-transcript profiling of laser microdissected tumours from archival formalin-fixed diagnostic biop...

  17. Preliminary calculations of ballistic bunch compression with thermionic cathode rf guns

    International Nuclear Information System (INIS)

    Preliminary calculations using the computer code PARMELA indicate that it is possible to achieve peak currents on the order of 1 kA using a thermionic-cathode rf gun and ballistic bunch compression. In contrast to traditional magnetic bunching schemes, ballistic bunch compression uses a series of rf cavities to modify the energy profile of the beam and properly chosen drifts to allow the bunching to occur naturally. The method, suitably modified, should also be directly applicable to photoinjector rf guns. Present work is focusing on simultaneously compressing the bunch while reducing the emittance of the electron beam. At present, the calculated normalized rms emittance is in the neighborhood of 6.8 π mm mrad with a peak current of 0.88 kA, and a peak bunch charge of 0.28 nC from a thermionic-cathode gun

  18. Dechirper wakefields for short bunches

    Science.gov (United States)

    Bane, Karl; Stupakov, Gennady

    2016-06-01

    In previous work (Bane and Stupakov, 2015 [1]) general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X-ray FELs-like the LCLS-is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as a function of beam offset, the slice energy spread increase, and the emittance growth. In the Appendix, a more accurate derivation-than that is found in Bane and Stupakov (2015) [1]-of the arbitrary bunch length wakes is performed; we find full agreement with the earlier results, provided the bunches are short compared to the dechirper gap, which is normally the regime of interest.

  19. Digital bunch-by-bunch transverse feedback system at SSRF

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to suppress multi-bunch couple instabilities caused by transverse impedance, a bunch-by-bunch transverse feedback system based on a FPGA digital processor is commissioned at SSRF storage ring. The RF front end has two COD pre-rejected attenuators for increasing the system arrangement and signal noise ratio, and the 3*RF Local signal comes from the BPM’s sum signal using a FIR filter for avoiding the effect of longitudinal oscillation. The digital processor receives the coupled horizontal and vertical oscillation signals in the base band and transforms the coupled signals to the horizontal and vertical feedback signals with two series double-zeroes FIR filters. A matlab GUI is applied for producing the FIR coefficients when the tune is shifted. The horizontal and vertical Kickers have a special design for increasing the shunt impedance. Then the multi-bunch instabilities are suppressed respectively and the minimum damping time is about 0.4 ms.

  20. Bunched Beam Cooling in the Fermilab Recycler

    CERN Document Server

    Neuffer, David V; Burov, Alexey; Nagaitsev, Sergei

    2005-01-01

    Stochastic cooling with bunched beam in a linear bucket has been obtained and implemented operationally in the fermilab recycler. In this implementation the particle bunch length is much greater than the cooling system wavelengths. The simultaneous longitudinal bunching enables cooling to much smaller longitudinal emittances than the coasting beam or barrier bucket system. Characteristics and limitations of bunched beam stochastic cooling are discussed.

  1. Measurements of neutral density profiles using a deuterium Balmer-alpha diagnostic in the C-2 FRC plasma

    International Nuclear Information System (INIS)

    In C-2 field-reversed configuration (FRC) device, low neutral density outside the FRC separatrix is required to minimize the charge exchange loss of fast particles. Titanium gettering is used in C-2 to reduce the wall recycling and keep the neutral density low in plasma edge. The measurements of neutral density radial profile are desirable to understand the plasma recycling and the effects of titanium gettering. These measurements are also needed to study the interaction of neutral beams with FRC plasma and confinement of fast ions. Diagnostic based on absolute deuterium Balmer-alpha (D-alpha) radiation measurements is developed and deployed on C-2 device to measure the radial profile of neutral density. Simultaneous measurements of electron density and temperature are done using CO2 interferometer, Thomson scattering, and triple probes diagnostics along with absolute D-alpha radiation. Abel inversion was performed to get the time dependent radial profile of the local D-alpha emission density. Neutral density profiles are obtained under different machine conditions of titanium deposition.

  2. Effects of PACMAN bunches in the LHC

    CERN Document Server

    Herr, Werner

    1996-01-01

    The maximum achievable luminosity in the LHC is mainly limited by beam-beam effects. The large number of bunches and their head-on and long range interactions determine the maximum allowable bunch intensity. Furthermore, the arrangement of bunches in the LHC ring imply further complications: the beam-beam effects on a given particle depend on its bunch position in the LHC bunch train and result in the appearance of so-called PACMAN bunches which can have a different dynamic behaviour and life time. The consequences of the existence of such PACMAN bunches are presented and possible procedures to minimize or avoid detrimental effects are discussed.

  3. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    Science.gov (United States)

    Evtushenko, P.; Coleman, J.; Jordan, K.; Klopf, J. Michael; Neil, G.; Williams, G. P.

    2006-11-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  4. Flat bunches in the LHC

    CERN Document Server

    Shaposhnikova, E; Baudrenghien, P; Mastoridis, T; Muller, J E; Papotti, G; Salvant, B; Timko, H; Bhat, C; Burov, A

    2014-01-01

    A high harmonic RF system which could serve multiple purposes was proposed for the LHC. Possible applications of the second harmonic RF system include beam stabilisation in the longitudinal plane in absence of wide-band longitudinal feedback and reduction of bunch peak line density. Apart from other useful features flat bunches are expected to produce less beam-induced heating below 1 GHz, the frequency region critical for some LHC equipment. The latter however can also be achieved by de-populating the bunch center. This was demonstrated during the dedicated machine development session in the LHC using RF phase modulation. In this paper the results of tests with single bunches and nominal LHC beams are presented and possible use of this technique in LHC operation is discussed.

  5. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  6. A betatron tune measurement system based on bunch-by-bunch transverse feedback at the Duke storage ring

    Science.gov (United States)

    Xu, Wei; Z. Wu, W.; Li, Jing-Yi; He, Duo-Hui; K. Wu, Y.

    2013-07-01

    To combat electron beam instabilities, a digital bunch-by-bunch transverse feedback (TFB) system has been developed for the Duke storage ring. While it is capable of suppressing transverse beam instabilities for multibunch operation, the TFB system has not been needed for typical operation of the Duke storage ring. To explore the great potential of this system, we have developed beam diagnostic techniques using the TFB, in particular, the TFB based tune measurement techniques. The tune measurement technique allows us to conduct fast chromaticity measurements, compared with the existing chromaticity measurement system using a network analyzer. This new tune measurement system also enables us to measure the bunch tune for multibunch operation of the Duke storage ring. With the TFB based tune measurement system, we have studied the tune stability of the electron beam in the Duke storage ring. This tune system has also been used to calibrate the tune knob for the Duke storage ring.

  7. Reflectometry: a reliable and sensitive plasma diagnostic for density profile and turbulence measurements on Tore-Supra

    International Nuclear Information System (INIS)

    A set of four reflectometers has been installed on Tore-Supra to measure the density profiles and the properties of density fluctuations with good spatial resolution. Fast swept X-mode reflectometers covering the range 50 to 155 GHz provide reliable and accurate measurements of the whole density profile from the edge on the outer side up to the core on the high field side even during large and fast profile evolution. Precise evaluation of the density profile is crucial for particle transport studies. A particular feature, a local peaking, has been observed in the core during ohmic discharge. Density fluctuations are measured with three different techniques. The classical fixed frequency method looks at large scale fluctuations (kr -1) and is highly sensitive. It measures the radial profile of fluctuations and can detect density perturbation associated to high frequency perturbations like the Alfven modes. A new method has been validated to measure the radial profile of small scale density fluctuations from fast FM-CW phase reflected signal. This method could also retrieve the radial wavenumber spectrum. The last method Doppler reflectometry is based on back scattering. It measures the poloidal rotation and fluctuations amplitude at different poloidal wave numbers (3 θ -1). This collection of diagnostics achieves complementary measurements from the low to the high field side of the discharge and from large to small scale. (authors)

  8. Serum peptide/protein profiling by mass spectrometry provides diagnostic information independently of CA125 in women with an ovarian tumor

    DEFF Research Database (Denmark)

    Callesen, Anne; Madsen, Jonna S; Iachina, Maria; Vach, Werner; Kruse, Torben A; Jensen, Ole N; Mogensen, Ole

    2010-01-01

    investigated. Protein profiles of 113 serum samples from women with an ovarian tumor (54 malign and 59 benign) were generated using MALDI-TOF MS. A total of 98 peaks with a significant difference (p<0.01) in intensity between women with benign tumors/cysts and malignant ovarian tumors were identified. After...... protein profiling as a diagnostic tool in discrimination between benign ovarian tumors/cysts and malignant ovarian tumors. Additionally, the method provided diagnostic information independent of CA125.......In the present study, the use of a robust and sensitive mass spectrometry based protein profiling analysis was tested as diagnostic tools for women with an ovarian tumor. The potential additional diagnostic value of serum protein profiles independent of the information provided by CA125 were also...

  9. Autoantibody profiling of benign and malignant thyroid tumors and design of a prototype diagnostic array

    Directory of Open Access Journals (Sweden)

    K V Lanshchakov

    2012-06-01

    Full Text Available Currently the “gold standard” in diagnostics of thyroid tumors is a fine-needle aspiration cytology (FNAC. However, FNAC cannot discriminate between benign and malignant thyroid tumors in 15 to 30% of observations. In order to develop an additional tool for differential diagnostics of thyroid tumors we evaluated the diagnostic performance of 3-antigen serum autoantibody signature in groups of benign ( n = 22 and malignant ( n = 26 thyroid tumors using a dot-blot ELISA-based analysis The sensitivity and specificity of resultant array were estimated to be 55–60% and 95–100%, respectively ( p < 0.001 according to one-sided Fisher Exact Test. Thus, we created a prototype antigen array for differential diagnostics of thyroid tumors which can be regarded as a platform for design of more complicated panel, highly sensitive in thyroid cancer detection, which can significantly improve the accuracy of preoperative diagnosis of thyroid cancer.

  10. Bunch Compressor Beamlines for the Tesla and S Band Linear Colliders

    International Nuclear Information System (INIS)

    A detailed design for a single stage beam bunch length compressor for both the TESLA and the S-Band Linear Collider (SBLC) is presented. Compression is achieved by introducing an energy-position correlation along the bunch with an rf section at zero-crossing phase followed by a short bending section with energy dependent path length (momentum compaction). The motivation for a wiggler design is presented and many of the critical single bunch tolerances are evaluated. A solenoid based spin rotator is included in the design and transverse emittance tuning elements, diagnostics and tuning methods are described. Bunch length limitations due to second order momentum compaction and sinusoidal rf shape are discussed with options for compensation. Finally, the disadvantages of bunch compression using a 180o arc are discussed

  11. Bunch Compressor Beamlines for the Tesla and S Band Linear Colliders

    CERN Document Server

    Emma, P

    2003-01-01

    A detailed design for a single stage beam bunch length compressor for both the TESLA and the S-Band Linear Collider (SBLC) is presented. Compression is achieved by introducing an energy-position correlation along the bunch with an rf section at zero-crossing phase followed by a short bending section with energy dependent path length (momentum compaction). The motivation for a wiggler design is presented and many of the critical single bunch tolerances are evaluated. A solenoid based spin rotator is included in the design and transverse emittance tuning elements, diagnostics and tuning methods are described. Bunch length limitations due to second order momentum compaction and sinusoidal rf shape are discussed with options for compensation. Finally, the disadvantages of bunch compression using a 180 sup o arc are discussed.

  12. Commissioning of TTF2 Bunch Compressor for the Femtosecond (FS) FEL Mode Operation

    CERN Document Server

    Kim, Yujong

    2005-01-01

    To get lasing at TTF2, we should supply high quality electron beams with a high peak current, a low slice emittance, and a low slice energy spread. To supply a high peak current, we compress bunch length with two bunch compressors. During TTF2 lasing period, there was no available special bunch length diagnostic tool such as LOLA cavity or streak camera. However we could optimize TTF2 bunch compressors by monitoring pyro-electric detector signal, by measuring emittance, and by monitoring beam images at chicane center and dump region, and by comparing operational machine conditions with simulation results. In this paper, we describe our various commissioning experiences of TTF2 bunch compressor to generate a femtosecond-long spike with a high peak current.

  13. Strong wakefields generated by a train of femtosecond bunches in a planar dielectric microstructure

    Science.gov (United States)

    Wang, Changbiao; Hirshfield, J. L.; Fang, J.-M.; Marshall, Thomas C.

    2004-05-01

    A tall, dielectric-lined rectangular wakefield microstructure is analyzed as a possible element of an advanced linear wakefield accelerator. This accelerator would be driven by a train of fs electron microbunches that would be chopped out of a longer bunch using a powerful CO2 laser and then formed into a train of rectangular-profile bunches using a quadrupole. The bunches set up a periodic wakefield in the microstructure that can be built up to 400 600 MV/m, for example, using a train of ten 3-fs 1-pC bunches. Two major issues are examined. First, interference is studied using the particle-in-cell code KARAT between transition radiation and Cerenkov wakefield radiation, both set up by the passage of a charge bunch through a dielectric structure of finite length. Of significance is the difference in propagation speeds of transition radiation and Cerenkov radiation (which travels almost at the vacuum light speed c) and the magnitude of the respective fields. Second, stability is examined for drive and accelerated bunches using computations of test particle orbits in the longitudinal and transverse wakefields excited by the drive bunches. It is found that nearly all test electrons in the drive bunches are confined within the structure for a travel distance of 30cm or more, while test electrons located in an accelerated bunch can have stable motion over greater than 30cm without passing through the structure walls.

  14. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    International Nuclear Information System (INIS)

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  15. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    2000-04-01

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  16. Self-bunching electron guns

    CERN Document Server

    Mako, F; Weilhammer, Peter

    1999-01-01

    We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated cold emission, long life, and tolerance to contamination. The cold emission process is based on secondary electron emission. FMT has studied this resonant bunching process which gives rise to high current densities (0.01-5 kA/cm/sup 2/), high charge bunches (up to 100 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ~5% of the RF period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ~40 ps long microbunches at ~20 A/cm/sup 2/ without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 mu s-long macro- pulses. About 5.8*10/sup 13/ micro-bunches or 62,000 coulombs have pass...

  17. Sub-picosecond electron bunch length measurement

    International Nuclear Information System (INIS)

    A subpicosecond electron bunch length measuring system has been developed at the SUNSHINE facility. The method is based on an autocorrelation technique in the frequency domain utilizing the coherent radiation emitted from the electron bunch at wavelengths equal and longer than the bunch length. The radiation spectrum is the Fourier transform of the electron bunch distribution and measuring this spectrum in a far-infrared Michelson interferometer allows the determination of the bunch length down to the femto-second regime. The experimental setup and measurement of subpicosecond electron pulses including possible improvements to maximize the bunch information available from an interferogram will be described

  18. Smoothed Temporal Variance Spectrum: weak line profile variations and NRP diagnostics

    Science.gov (United States)

    Kholtygin, A. F.; Sudnik, N. P.

    2016-05-01

    We describe the version of the Temporal Variance Spectrum (TVS, Fullerton, Gies & Bolton) method with pre-smoothed line profile (smoothed Temporal Variance Spectrum, smTVS). This method introduced by Kholtygin et al. can be used to detect the ultra weak variations of the line profile even for very noisy stellar spectra. We also describe how to estimate the mode of the non-radial pulsations (NRP) using the TVS and smTVS with different time spans. The influence of the rotational modulation of the line profile on the TVS is considered. The analysis of the contribution of NRP and rotational modulation in the global TVS is studied.

  19. Smoothed Temporal Variance Spectrum: weak line profile variations and NRP diagnostics

    CERN Document Server

    Kholtygin, A F

    2016-01-01

    We describe the version of the Temporal Variance Spectrum (TVS, Fullerton, Gies & Bolton 1996) method with pre-smoothed line profile (smoothed Temporal Variance Spectrum, smTVS). This method introduced by Kholtygin et al. (2003) can be used to detect the ultra weak variations of the line profile even for very noisy stellar spectra. We also describe how to estimate the mode of the non-radial pulsations (NRP) using the TVS and smTVS with different time spans. The influence of the rotational modulation of the line profile on the TVS is considered. The analysis of the contribution of NRP and rotational modulation in the global TVS is studied.

  20. Herlitz junctional epidermolysis bullosa : diagnostic features, mutational profile, incidence and population carrier frequency in the Netherlands

    NARCIS (Netherlands)

    Yuen, W. Y.; Lemmink, H. H.; van Dijk-Bos, K. K.; Sinke, R. J.; Jonkman, M. F.

    2011-01-01

    Background Junctional epidermolysis bullosa, type Herlitz (JEB-H) is a lethal, autosomal recessive blistering disease caused by null mutations in the genes coding for the lamina lucida/densa adhesion protein laminin-332 (LAMB3, LAMA3 and LAMC2). Objectives To present the diagnostic features and mole

  1. Confirmation among College Women: The Eating Disorders Not Otherwise Specified Diagnostic Profile

    Science.gov (United States)

    Schwitzer, Alan; Hatfield, Tammy; Jones, Angela R.; Duggan, Molly H.; Jurgens, Jill; Winninger, Ali

    2008-01-01

    Previously, the researchers proposed and tested a diagnostic framework for women with eating-related concerns who seek college health and mental health treatment. The framework emphasized moderate problems characterized by frequent binging, occasional purging, and frequent exercise; rumination; body image and self-esteem concerns; ambivalence…

  2. Electro-optical Bunch Length Monitor for FLUTE: Layout and Simulations

    OpenAIRE

    Borysenko, A.; Hertle, E.; Schuh, M.; Schwarz, M.; Wesolowski, P.; Steffen, Bernd; Hiller, N.; Judin, V.; Kehrer, B.; Marsching, S.; Müller, A. -S.; Nasse, M. J.; Rossmanith, R.; Ruprecht, R.

    2014-01-01

    A new compact linear accelerator FLUTE is currently under construction at Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. It aims at obtaining femtosecond electron bunches (~1fs - 300 fs) with a wide charge range (1 pC - 3 nC) and requires a precise bunch length diagnostic system. Here we present the layout of a bunch length monitor based on the electro-optic technique of spectral decoding using an Yb-doped fiber laser system (central wavelength 1030 nm) and a GaP ...

  3. A synthetic diagnostic to modelled expected 2-D radiation power loss profile for the infrared imaging video bolometer of the Aditya tokamak

    International Nuclear Information System (INIS)

    A 'synthetic diagnostic' has been developed to theoretically estimate the radiation from the ADITYA tokamak plasma using Infrared Imaging Video Bolometer (IRVB). These theoretical results will then be compared with the results obtained experimentally. The IRVB is a two dimensional (2-D) plasma radiation imaging diagnostic IRVB is used to measure time resolved 2-D profile of radiation power loss with wide field of view (FOV). The synthetic IRVB assumes symmetry in the tokamak. In poloidal cross-section it assumes symmetric parabolic profiles of plasma temperature, plasma density and impurity density. The IRVB system is essentially a pinhole camera system. It traces the line of sights of each bolometer pixel through the plasma volume and calculates local power emissivity at each volume element in space using the radiative cooling rates of plasma impurity. Finally line integrated emissivity 2-D profile provides a brightness profile at each bolometer pixel. This brightness profile is the expected IRVB image at foil location By considering the system etendue the power loss profile can be computed. Using the synthetic diagnostic, spatial response of the experimental diagnostic, FOV, expected signal level and Signal to Noise ratio can be determined. The synthetic IRVB used to simulate ADITYA-IRVB diagnostic and results were compared with experimental results. (author)

  4. Single-bunch kicker pulser

    International Nuclear Information System (INIS)

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 μHy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode

  5. Single-bunch kicker pulser

    Energy Technology Data Exchange (ETDEWEB)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  6. Self-bunching electron guns

    International Nuclear Information System (INIS)

    We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated cold emission, long life, and tolerance to contamination. The cold emission process is based on secondary electron emission. FMT has studied this resonant bunching process which gives rise to high current densities (0.01-5 kA/cm2), high charge bunches (up to 100 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ∼5% of the rf period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ∼40 ps long micro-bunches at ∼20 A/cm2 without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 μs-long macro-pulses. About 5.8x1013 micro-bunches or ∼62,000 coulombs have passed through this gun and it is still working fine. The second project, the S-Band MPG†, is now operational. It is functioning at a frequency of 2.85 GHz, a repetition rate of 30 Hz, with a 2 μs-long macro-pulse. It produces about 150 A/cm2. The third project involves the construction of a 34.2 GHz frequency-multiplied source driven by an X-Band MPG. Analytical work has been carried out on this device, and we are ready to proceed with design, fabrication, and testing

  7. Measuring the electron bunch timing with femtosecond resolution at FLASH

    International Nuclear Information System (INIS)

    Bunch arrival time monitors (BAMs) are an integral part of the laser-based synchronisation system which is being developed at the Free Electron Laser in Hamburg (FLASH).The operation principle comprises the measurement of the electron bunch arrival time relative to the optical timing reference, which is provided by actively length-stabilised fibre-links of the synchronisation system. The monitors are foreseen to be used as a standard diagnostic tool, not only for FLASH but also for the future European X-Ray Free-Electron Laser (European XFEL). The present bunch arrival time monitors have evolved from proof-of-principle experiments to beneficial diagnostic devices, which are almost permanently available during standard machine operation. This achievement has been a major objective of this thesis. The developments went in parallel to improvements in the reliable and low-maintenance operation of the optical synchronisation system. The key topics of this thesis comprised the characterisation and optimisation of the opto-mechanical front-ends of both, the fibre-links and the BAMs. The extent of applications involving the bunch arrival time information has been enlarged, providing automated measurements for properties of the RF acceleration modules, for instance, the RF on-crest phase determination and the measurement of energy fluctuations. Furthermore, two of the currently installed BAMs are implemented in an active phase and gradient stabilisation of specific modules in order to minimise the arrival time jitter of the electron bunches at the location of the FEL undulators, which is crucial for a high timing resolution of pump-probe experiments.

  8. Measuring the electron bunch timing with femtosecond resolution at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Marie Kristin

    2013-03-15

    Bunch arrival time monitors (BAMs) are an integral part of the laser-based synchronisation system which is being developed at the Free Electron Laser in Hamburg (FLASH).The operation principle comprises the measurement of the electron bunch arrival time relative to the optical timing reference, which is provided by actively length-stabilised fibre-links of the synchronisation system. The monitors are foreseen to be used as a standard diagnostic tool, not only for FLASH but also for the future European X-Ray Free-Electron Laser (European XFEL). The present bunch arrival time monitors have evolved from proof-of-principle experiments to beneficial diagnostic devices, which are almost permanently available during standard machine operation. This achievement has been a major objective of this thesis. The developments went in parallel to improvements in the reliable and low-maintenance operation of the optical synchronisation system. The key topics of this thesis comprised the characterisation and optimisation of the opto-mechanical front-ends of both, the fibre-links and the BAMs. The extent of applications involving the bunch arrival time information has been enlarged, providing automated measurements for properties of the RF acceleration modules, for instance, the RF on-crest phase determination and the measurement of energy fluctuations. Furthermore, two of the currently installed BAMs are implemented in an active phase and gradient stabilisation of specific modules in order to minimise the arrival time jitter of the electron bunches at the location of the FEL undulators, which is crucial for a high timing resolution of pump-probe experiments.

  9. Stochastic cooling of bunched beams

    International Nuclear Information System (INIS)

    Numerical simulation studies are presented for transverse and longitudinal stochastic cooling of bunched particle beams. Radio frequency buckets of various shapes (e.g. rectangular, parabolic well, single sinusoidal waveform) are used to investigate the enhancement of phase space cooling by nonlinearities of synchrotron motion. The connection between the notions of Landau damping for instabilities and mixing for stochastic cooling are discussed. In particular, the need for synchrotron frequency spread for both Landau damping and good mixing is seen to be comparable for bunched beams

  10. Bacillus 'next generation' diagnostics: Moving from detection towards sub-typing and risk related strain profiling

    Directory of Open Access Journals (Sweden)

    MonikaEhling-Schulz

    2013-02-01

    Full Text Available The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture based methods, which are still widely used. However, due to the extreme intraspecies diversity found in the genus Bacillus, DNA based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain dependent than species specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential, trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.

  11. Polarized profiles of spectral lines from plasmas: overview of the theory and of diagnostic applications

    International Nuclear Information System (INIS)

    Most of the papers on Plasma Polarization Spectroscopy discuss only the polarization of absolute intensities of spectral lines, i.e., intensities integrated over the wavelength or over the frequency. In distinction to that, this paper deals with the polarization of spectral line profiles (or shapes). In other words, we discuss here the polarization dependent on the wavelength (or on the frequency) scanned over the distribution of the relative intensity of the line. So we focus on the situations where the spectral line broadening depends on the polarization. By the definition, spectral line profiles are normalized to unity. Therefore, profiles integrated over the wavelength (or over the frequency) do not depend on the polarization. (author)

  12. Line-profile variations in pulsating subdwarf-B stars as a pulsation mode diagnostic

    CERN Document Server

    Schoenaers, C

    2005-01-01

    In previous attempts to perform seismic modelling of pulsating subdwarf-B stars, various mode identification techniques are used with uncertain results. We investigated a method so far neglected in sdB stars, but very successful for Main Sequence pulsators, that is, mode identification from the line-profile variations caused by stellar pulsation. We report the calculation of time-resolved synthetic spectra for sdB stars pulsating with various combinations of pulsation modes; these calculations were carried out over appropriate ranges of effective temperature, surface gravity and helium abundances. Preliminary tests using these synthetic line-profile variations demonstrated their potential for mode identification by comparison with observation.

  13. Smoothed Temporal Variance Spectrum: weak line profile variations and NRP diagnostics

    OpenAIRE

    Kholtygin, A. F.; Sudnik, N. P.

    2016-01-01

    We describe the version of the Temporal Variance Spectrum (TVS, Fullerton, Gies & Bolton 1996) method with pre-smoothed line profile (smoothed Temporal Variance Spectrum, smTVS). This method introduced by Kholtygin et al. (2003) can be used to detect the ultra weak variations of the line profile even for very noisy stellar spectra. We also describe how to estimate the mode of the non-radial pulsations (NRP) using the TVS and smTVS with different time spans. The influence of the rotational mod...

  14. High order limit in bunch compressor

    International Nuclear Information System (INIS)

    This paper studies the high order effect in bunch compressing. There exists the limit of high order effect which is from RF accelerating field and bunch compressor, the bunch length obtained from high order theory is longer than that from linear theory, the initial uniform distribution bunch is easier to compress than the initial Gaussian distribution. Finally, a numerical simulation has been carried out, and the results agree with the theory well. (authors)

  15. Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

    International Nuclear Information System (INIS)

    An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of about 0.5 m using the UV-sensitive channeltron and with slightly lower accuracy from the photomultiplier data due to the slower transitions in the red region of the spectrum. The Gaussian shape of the longitudinal distribution of ions inside the bunch was confirmed. With the information of the transverse beam size that can be measured simultaneously by a newly installed ionization profile monitor (IPM) at the ESR, an accurate determination of the ion density in the bunched beam will be allowed. -- Highlights: ► Optical methods to measure the bunch shape of ion beam at storage ring. ► High resolution of bunch length was obtained from the UV-sensitive channeltron. ► The Gaussian shape of longitudinal distribution of the ions in the bunch was confirmed

  16. MicroRNA Expression Profiling Identifies Molecular Diagnostic Signatures for Anaplastic Large Cell Lymphoma

    DEFF Research Database (Denmark)

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie;

    2013-01-01

    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[-]) ALCLs, 9 angioimm...

  17. Measurement of the energy loss of an electron bunch passing in a chicane-type bunch compressor due to the coherent synchrotron radiation

    International Nuclear Information System (INIS)

    The energy loss of an electron beam due to the coherent synchrotron radiation in the components for beam transportation possibly degrades the quality of the beam. In this work the energy loss of an intense single-bunch electron beam passing through a chicane-type bunch compressor has been investigated. The single-bunch beams are being used for self-amplified spontaneous emission experiments in Osaka University. At a beam energy of 27 MeV and the charge of electrons in a bunch of 22 nC the peak shift on the energy spectrum of the beam by 1% and the energy loss of about 0.5% have been observed. In order to evaluate the energy of the coherent synchrotron radiation emitted in the bunch compressor a form factor of the electron bunch has been assumed, according to the results for the measurements of the time profile of the electron bunch with a streak camera and the spectrum of the coherent transition radiation

  18. Measurement of the energy loss of an electron bunch passing in a chicane-type bunch compressor due to the coherent synchrotron radiation

    CERN Document Server

    Okuda, S; Yokoyama, K

    2000-01-01

    The energy loss of an electron beam due to the coherent synchrotron radiation in the components for beam transportation possibly degrades the quality of the beam. In this work the energy loss of an intense single-bunch electron beam passing through a chicane-type bunch compressor has been investigated. The single-bunch beams are being used for self-amplified spontaneous emission experiments in Osaka University. At a beam energy of 27 MeV and the charge of electrons in a bunch of 22 nC the peak shift on the energy spectrum of the beam by 1% and the energy loss of about 0.5% have been observed. In order to evaluate the energy of the coherent synchrotron radiation emitted in the bunch compressor a form factor of the electron bunch has been assumed, according to the results for the measurements of the time profile of the electron bunch with a streak camera and the spectrum of the coherent transition radiation.

  19. Running excitation of blades bunches

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    Praha: Institute of Thermomechanics AS CR, 2014 - (Zolotarev, I.; Pešek, L.), s. 45-52 ISBN 978-80-87012-54-3. [DYMAMESI 2014. Praha (CZ), 25.11.2014-26.11.2014] Institutional support: RVO:61388998 Keywords : damping * dry friction * five-blades-bunch * delayed harmonic excitation Subject RIV: BI - Acoustics

  20. Bunch compressor for high-current single bunch electron linear accelerator

    International Nuclear Information System (INIS)

    A bunch compressor with four dipole magnet has been installed and tested on the IRIS-Osaka single bunch electron linear accelerator. The single bunch with a full length of 40 ps is compressed into 12 ps, whereas the bunch length of 16 ps in FWHM is compressed into 9.5 ps. The maximum compression rate is estimated to be about 30% for the single bunch with the charge of 10-40 nC

  1. Functional protease profiling with reporter peptides in serum specimens of colorectal cancer patients: demonstration of its routine diagnostic applicability

    Directory of Open Access Journals (Sweden)

    Findeisen Peter

    2012-06-01

    Full Text Available Abstract Background The progression of many solid tumors is characterized by the release of tumor-associated proteases and the detection of tumor specific proteolytic activity in serum specimens is a promising diagnostic tool in oncology. Here we describe a mass spectrometry-based functional proteomic profiling approach that tracks the ex-vivo degradation of a synthetic endoprotease substrate in serum specimens of colorectal tumor patients. Methods A reporter peptide (RP with the amino acid sequence WKPYDAAD was synthesized that has a known cleavage site for the cysteine-endopeptidase cancer procoagulant (EC 3.4.22.26. The RP was added to serum specimens from colorectal cancer patients (n = 30, inflammatory controls (n = 30 and healthy controls (n = 30 and incubated under strictly standardized conditions. The proteolytic fragment of the RP was quantified with liquid chromatography / mass spectrometry (LC/MS. Results RP-spiking showed good intra- and inter-day reproducibility with coefficients of variation (CVs that did not exceed a value of 10%. The calibration curve for the anchor peptide was linear in the concentration range of 0.4 – 50 μmol/L. The median concentration of the RP-fragment in serum specimens from tumor patients (TU: 17.6 μmol/L, SD 9.0 was significantly higher when compared to non-malignant inflammatory controls (IC: 11.1 μmol/L, SD 6.1 and healthy controls (HC: 10.3 μmol/L, SD 3.1. Highest area under receiver operating characteristic (AUROC values were seen for discrimination of TU versus HC (0.89 followed by TU versus IC (0.77. IC and HC could barely be separated indicated by an AUROC value of 0.57. The proteolytic activity towards the RP was conserved in serum specimens that were kept at room temperature for up to 24 hours prior to the analysis. Conclusion The proteolytic cleavage of reporter peptides is a surrogate marker for tumor associated proteolytic activity in serum specimens of cancer patients. A

  2. A comparison of boundary-layer heights inferred from wind-profiler backscatter profiles with diagnostic calculations using regional model forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Baltink, H.K.; Holtslag, A.A.M. [Royal Netherlands Meteorological Inst., KNMI, De Bilt (Netherlands)

    1997-10-01

    From October 1994 through January 1997 the Tropospheric Energy Budget Experiment (TEBEX) was executed by KNMI. The main objectives are to study boundary layer processes and cloud variability on the sub-grid scale of present Global Climate Models and to improve the related sub-grid parametrizations. A suite of instruments was deployed to measure a large number of variables. Measurements to characterize ABL processes were focussed around the 200 m high meteorological observation tower of the KNMI in Cabauw. In the framework of TEBEX a 1290 MHz wind-profiler/RASS was installed in July 1994 at 300 m from tower. Data collected during TEBEX are used to assess the performance of a Regional Atmospheric Climate Model (RACMO). This climate model runs also in a operational forecast mode once a day. The diagnostic ABL-height (h{sub model}) is calculated from the RACMO forecast output. A modified Richardson`s number method extended with an excess parcel temperature is applied for all stability conditions. We present the preliminary results of a comparison of h{sub model} from forecasts with measured h{sub TS} derived from profiler and sodar data for July 1995. (au)

  3. Measurement of bunch length in Indus-1 storage ring using fast photodiode

    International Nuclear Information System (INIS)

    The length of electron bunches in a storage ring is an important parameter for both synchrotron radiation users and accelerator physicists. Several methods are used for measurements of bunch length using electronic and optical instruments. We have measured temporal profile of synchrotron radiation emitted from dipole magnet of Indus-1 by using fast photodiode. Bunch length is calculated by assuming gaussian profile for the particles inside bunch. The results show that bunch length is increasing with the decrease of gap voltage of RF cavity. These measurements were carried out at low beam current; at high voltage results are in close agreement with theory and the values estimated using ZAP code. In the second experiment, the results show that bunch length increases with the increase of beam current inside the bunch, and above threshold current, it follows Chao-Gareyte scaling law. The longitudinal broadband impedance for Indus-1 SRS was estimated using Keil-Schnell criterion and results were compared with theoretical estimated values using ZAP code.

  4. Measurement of bunch length in Indus-1 storage ring using fast photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep; Nathwani, R. K.; Holikatti, A. C.; Kumar Karnewar, Akhilesh; Tyagi, Y.; Yadav, S.; Puntambekar, T. A.; Navathe, C. P. [Beam Diagnostics Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2012-11-15

    The length of electron bunches in a storage ring is an important parameter for both synchrotron radiation users and accelerator physicists. Several methods are used for measurements of bunch length using electronic and optical instruments. We have measured temporal profile of synchrotron radiation emitted from dipole magnet of Indus-1 by using fast photodiode. Bunch length is calculated by assuming gaussian profile for the particles inside bunch. The results show that bunch length is increasing with the decrease of gap voltage of RF cavity. These measurements were carried out at low beam current; at high voltage results are in close agreement with theory and the values estimated using ZAP code. In the second experiment, the results show that bunch length increases with the increase of beam current inside the bunch, and above threshold current, it follows Chao-Gareyte scaling law. The longitudinal broadband impedance for Indus-1 SRS was estimated using Keil-Schnell criterion and results were compared with theoretical estimated values using ZAP code.

  5. Assessment of Error in Synoptic-Scale Diagnostics Derived from Wind Profiler and Radiosonde Network Data

    Science.gov (United States)

    Mace, Gerald G.; Ackerman, Thomas P.

    1996-01-01

    A topic of current practical interest is the accurate characterization of the synoptic-scale atmospheric state from wind profiler and radiosonde network observations. We have examined several related and commonly applied objective analysis techniques for performing this characterization and considered their associated level of uncertainty both from a theoretical and a practical standpoint. A case study is presented where two wind profiler triangles with nearly identical centroids and no common vertices produced strikingly different results during a 43-h period. We conclude that the uncertainty in objectively analyzed quantities can easily be as large as the expected synoptic-scale signal. In order to quantify the statistical precision of the algorithms, we conducted a realistic observing system simulation experiment using output from a mesoscale model. A simple parameterization for estimating the uncertainty in horizontal gradient quantities in terms of known errors in the objectively analyzed wind components and temperature is developed from these results.

  6. Plasma diagnostics applying k-line emission profiles of mid-Z materials

    International Nuclear Information System (INIS)

    Complete text of publication follows. Narrow K-line emission of some keV is known as an appropriate light source for Thomson scattering on warm dense matter with solid and even over-solid electron density. However, as the K-spectra are emitted from a warm dense plasma themselves we are also able to infer plasma parameters by studying the line profiles. Our quantum-statistical approach to spectral line shifts is applied to various moderately ionized mid-Z materials. We focus on the opposing influence of ionization/excitation (blue shift) and plasma polarization effects (red shift). The applied theoretical treatment of spectral line profiles is based on a self-consistent ion sphere model. We observe large contributions of satellite transitions due to M-shell ionization and excitation. To determine the composition, a mixture of various excited and ionized ionic states embedded in a plasma has to be considered. Plasma polarization effects that cause shifts of the emission and ionization energies are taken into account. K-line profiles of titanium are calculated for bulk temperatures up to 100 eV and free electron densities up to 1024 cm-3 in order to analyze recent measurements with respect to the plasma parameters of electron heated target regions. Moreover, in high-intensity laser-matter interactions, inevitable prepulses are likely to create preplasma and shocks within the target before the main pulse arrives. We investigate the influence of density gradients due to prepulses on the spectral profiles. Further, radial bulk temperature distributions as well as the composition of the created warm dense matter can be inferred. Recent results on silicon (semi-conductor) are shown in comparison to titanium (metal) and a polymer.

  7. Line-profile variations in pulsating subdwarf-B stars as a pulsation mode diagnostic

    OpenAIRE

    Schoenaers, C.; Lynas-Gray, A. E.

    2005-01-01

    In previous attempts to perform seismic modelling of pulsating subdwarf-B stars, various mode identification techniques are used with uncertain results. We investigated a method so far neglected in sdB stars, but very successful for Main Sequence pulsators, that is, mode identification from the line-profile variations caused by stellar pulsation. We report the calculation of time-resolved synthetic spectra for sdB stars pulsating with various combinations of pulsation modes; these calculation...

  8. Direct diagnostic technique of high-intensity laser profile based on laser-compton scattering

    International Nuclear Information System (INIS)

    A high-intensity laser is essential for plasma generation for EUV (Extreme Ultraviolet) lithography, which is studied as the next generation of ultra-fine semiconductor lithography. Nevertheless, there is no way to directly measure profile of high-intensity laser at the present day. Therefore, we have been developing a method for measuring high-intensity laser profile based on the laser-Compton scattering using Cs-Te photo cathode RF-Gun at Waseda University. Specifically, laser profile is obtained by scanning the electron beam which is focused to about 10μm by solenoid lens. We have simulated beam size focused by solenoid lens using tracking code GPT (General Particle Tracer) and optimized the beam parameter to obtain beam size of 10μm. Then, we have installed solenoid lens and generated focused beam. We measured beam size using radiochromic film called GAFCHROMIC dosimetry film type HD-810. In this conference, we will report the result of GPT simulations, beam size measurements, the present progress and future prospects. (author)

  9. Experiment and simulations of sub-ps electron bunch train generation at Fermilab photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.-E; Church, M.; /Fermilab; Piot, P.; Prokop, C.R.; /Fermilab /Northern Illinois U.

    2011-10-01

    Recently the generation of electron bunch trains with sub-picosecond time structure has been experimentally demonstrated at the A0 photoinjector of Fermilab using a transverse-longitudinal phase-space exchange beamline. The temporal profile of the bunch train can be easily tuned to meet the requirements of the applications of modern accelerator beams. In this paper we report the A0 bunch-train experiment and explore numerically the possible extension of this technique to shorter time scales at the Fermilab SRF Accelerator Test Facility, a superconducting linear electron accelerator currently under construction in the NML building.

  10. CSR instability in a Bunch Compressor

    International Nuclear Information System (INIS)

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch with wavelengths small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation taking into account incoherent energy spread and finite emittance of the beam. Numerical solution of this equation for the LCLS bunch compressor gives the amplification factor for different wavelengths of the beam microbunching

  11. High-sensitivity bunch charge monitor

    International Nuclear Information System (INIS)

    Conceptual design of a high-sensitivity bunch charge monitor is presented. The device operates with short, spaced bunches. For the optimal performance, the bunch duration should be less than 10 ns and bunch spacing should be more than 100 ns. Sensitivity of the monitor is near 10 V per nanocoulomb. The equivalent scheme and the output signal shape are also presented. Such a kind of monitor seems to be promising for bunch charge measurements of the beams like those in the TESLA or ILC projects

  12. High-sensitivity bunch charge monitor

    Science.gov (United States)

    Lebedev, N. I.; Fateev, A. A.

    2008-12-01

    The conceptual design for a high-sensitivity bunch charge monitor is presented. The device operates with short, spaced bunches. For optimal performance, the bunch duration should be less than 10 ns and bunch spacing should be more than 100 ns. Sensitivity of the monitor is close to 10 V per nanocoulomb. The equivalent scheme and the output signal shape are also presented. Such a monitor seems to be promising for the bunch charge measurements of beams like those in TESLA or ILC projects.

  13. Electro Optic Bunch Length Measurements at the VUV-FEL at DESY

    CERN Document Server

    Steffen, Bernd; Knabbe, Ernst-Axel; Schlarb, Holger; Schmidt, Bernhard; Schmüser, Peter; Winter, Axel

    2005-01-01

    For the operation of a SASE FEL, the longitudinal bunch profile is one of the most critical parameters. At the superconducting linac of the VUV-FEL at DESY, an electro optic sampling (EOS) experiment was installed to probe the time structure of the electric field of the bunches to better than 100 fs rms. The field induced birefringence of a ZnTe crystal is detected by a femtosecond laser pulse (TiSa) and the time structure is measured by scanning the relative timing of the electron bunch and the TiSa pulse. A synchronization stability of better than 70 fs between laser and accelerator RF has been achieved. First results on the synchronization and the bunch profile measurements are presented.

  14. Multiple Serum Cytokine Profiling to Identify Combinational Diagnostic Biomarkers in Attacks of Familial Mediterranean Fever

    Science.gov (United States)

    Koga, Tomohiro; Migita, Kiyoshi; Sato, Shuntaro; Umeda, Masataka; Nonaka, Fumiaki; Kawashiri, Shin-Ya; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Origuchi, Tomoki; Ueki, Yukitaka; Masumoto, Junya; Agematsu, Kazunaga; Yachie, Akihiro; Yoshiura, Koh-Ichiro; Eguchi, Katsumi; Kawakami, Atsushi

    2016-01-01

    Abstract The precise cytokine networks in the serum of individuals with familial Mediterranean fever (FMF) that are associated with its pathogenesis have been unknown. Here, we attempted to identify specific biomarkers to diagnose or assess disease activity in FMF patients. We measured serum levels of 45 cytokines in 75 FMF patients and 40 age-matched controls by multisuspension cytokine array. FMF in “attack” or “remission” was classified by Japan College of Rheumatology-certified rheumatologists according to the Tel Hashomer criteria. Cytokines were ranked by their importance by a multivariate classification algorithm. We performed a logistic regression analysis to determine specific biomarkers for discriminating FMF patients in attack. To identify specific molecular networks, we performed a cluster analysis of each cytokine. Twenty-nine of the 45 cytokines were available for further analyses. Eight cytokines’ serum levels were significantly elevated in the FMF attack versus healthy control group. Nine cytokines were increased in FMF attack compared to FMF remission. Multivariate classification algorithms followed by a logistic regression analysis revealed that the combined measurement of IL-6, IL-18, and IL-17 distinguished FMF patients in attack from the controls with the highest accuracy (sensitivity 89.2%, specificity 100%, and accuracy 95.5%). Among the FMF patients, the combined measurement of IL-6, G-CSF, IL-10, and IL-12p40 discriminated febrile attack periods from remission periods with the highest accuracy (sensitivity 75.0%, specificity 87.9%, and accuracy 84.0%). Our data identified combinational diagnostic biomarkers in FMF patients based on the measurement of multiple cytokines. These findings help to improve the diagnostic performance of FMF in daily practice and extend our understanding of the activation of the inflammasome leading to enhanced cytokine networks. PMID:27100444

  15. SUCCESSFUL BUNCHED BEAM STOCHASTIC COOLING IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BRENNAN, J.M.; BLASKIEWICZ, M.; SEVERINO, F.

    2006-06-23

    We report on a successful test of bunch-beam stochastic cooling in RHIC at 100 GeV. The cooling system is designed for heavy ions but was tested in the recent RHIC run which operated only with polarized protons. To make an analog of the ion beam a special bunch was prepared with very low intensity. This bunch had {approx}1.5 x 10{sup 9} protons, while the other 100 bunches contained {approx}1.2 x 10{sup 11} protons each. With this bunch a cooling time on the order 1 hour was observed through shortening of the bunch length and increase in the peak bunch current, together with a narrowing of the spectral line width of the Scottky power at 4 GHz. The low level signal processing electronics and the isolated-frequency kicker cavities are described.

  16. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL)

    DEFF Research Database (Denmark)

    Ralfkiaer, Ulrik; Hagedorn, Peter; Bangsgaard, Nannie;

    2011-01-01

    from benign inflammation, we studied miRNA expression levels in 198 patients with CTCL, peripheral T-cell lymphoma (PTL), and benign skin diseases (psoriasis and dermatitis). Using microarrays, we show that the most induced (miR-326, miR-663b, and miR-711) and repressed (miR-203 and miR-205) mi......Cutaneous T-cell lymphomas (CTCLs) are the most frequent primary skin lymphomas. Nevertheless, diagnosis of early disease has proven difficult because of a clinical and histologic resemblance to benign inflammatory skin diseases. To address whether microRNA (miRNA) profiling can discriminate CTCL...

  17. Electron Bunch Train Excited Higher-Order Modes in a Superconducting RF Cavity

    CERN Document Server

    Gao, Yongfeng; Wang, Fang; Feng, Liwen; Zhuang, Dehao; Lin, Lin; Zhu, Feng; Hao, Jiankui; Quan, Shengwen; Liu, Kexin

    2016-01-01

    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.

  18. Safety profile and protocol prevention of adverse reactions to uroangiographic contrast media in diagnostic imaging.

    Science.gov (United States)

    Rossi, C; Reginelli, A; D'Amora, M; Di Grezia, G; Mandato, Y; D'Andrea, A; Brunese, L; Grassi, R; Rotondi, A

    2014-01-01

    The purpose of the study is to examine the incidence of adverse reactions caused by non-ionic contrast media in selected patients after desensitization treatment and to evaluate the safety profile of organ iodine contrast media (i.c.m.) in a multistep prevention protocol. In a population of 2000 patients that had received a CT scan, 100 patients with moderate/high risk for adverse reactions against iodinated contrast agents followed a premedication protocol and all adverse reactions are reported and classified as mild, moderate or severe. 1.7 percent of the pre-treated patients reported a mild, immediate type reaction to iodine contrast; of these five patients with allergy 0.71 percent had received iomeprol, 0.35 percent received ioversol and 0.71 percent received iopromide. The incidence of adverse reactions was reported to be higher (4 out of 5 patients) among those that referred a history of hypersensitivity against iodinated i.c.m. Although intravenous contrast materials have greatly improved, especially in terms of their safety profile, they should not be administered if there isn't a clear or justified indication. In conclusion, even if we know that the majority of these reactions are idiosyncratic and unpredictable we propose, with the aim of improving our knowledge on this subject, a multicenter study, based on skin allergy tests (prick test, patch test, intradermal reaction) in selected patients that have had previous experiences of hypersensitivity against parenteral organ iodine contrast media. PMID:24750802

  19. Metabolic Dysfunction in Heart Failure: Diagnostic, Prognostic, and Pathophysiologic Insights From Metabolomic Profiling.

    Science.gov (United States)

    Hunter, Wynn G; Kelly, Jacob P; McGarrah, Robert W; Kraus, William E; Shah, Svati H

    2016-06-01

    Metabolic impairment is an intrinsic component of heart failure (HF) pathophysiology. Although initially conceived as a myocardial defect, metabolic dysfunction is now recognized as a systemic process with complex interplay between the myocardium and peripheral tissues and organs. Specifically, HF-associated metabolic dysfunction includes alterations in substrate utilization, insulin resistance, defects in energy production, and imbalanced anabolic-catabolic signaling leading to cachexia. Each of these metabolic abnormalities is associated with significant morbidity and mortality in patients with HF; however, their detection and therapeutic management remains challenging. Given the difficulty in obtaining human cardiac tissue for research purposes, peripheral blood metabolomic profiling, a well-established approach for characterizing small-molecule metabolite intermediates from canonical biochemical pathways, may be a useful technology for dissecting biomarkers and mechanisms of metabolic impairment in HF. In this review, metabolic abnormalities in HF will be discussed with particular emphasis on the application of metabolomic profiling to detecting, risk stratifying, and identifying novel targets for metabolic therapy in this heterogeneous population. PMID:27216948

  20. Electro-optical measurement of sub-ps structures in low charge electron bunches

    Science.gov (United States)

    Müller, F.; Peier, P.; Schlott, V.; Steffen, B.; Feurer, T.; Kuske, P.

    2012-07-01

    Electro-optical detection of THz coherent synchrotron radiation is a nondestructive method for measuring subpicosecond electron bunches or subpicosecond substructures on otherwise longer electron bunches. With a new diagnostic setup at the Swiss Light Source, which combines an amplified Yb fiber laser and a suitable GaP crystal, we demonstrate sampling as well as spectrally resolved single-shot measurements of sliced electron bunches containing as little as a few pC of charge. The single-shot measurements not only allow for a precise electric field characterization but also for a detailed analysis of the timing jitter between the electron bunch and the synchronized Yb fiber laser. The measurements of subsequent turns in the storage ring show distinct deviations from the simulations and we find strong indications that this discrepancy is caused by radiation loss through coherent synchrotron radiation itself, which is not included in many of today’s simulation codes.

  1. Method for the determination of the three-dimensional structure of ultrashort relativistic electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca; Ilinski, Petr; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail

    2009-05-15

    We describe a novel technique to characterize ultrashort electron bunches in Xray Free-Electron Lasers. Namely, we propose to use coherent Optical Transition Radiation to measure three-dimensional (3D) electron density distributions. Our method relies on the combination of two known diagnostics setups, an Optical Replica Synthesizer (ORS) and an Optical Transition Radiation (OTR) imager. Electron bunches are modulated at optical wavelengths in the ORS setup.When these electron bunches pass through a metal foil target, coherent radiation pulses of tens MW power are generated. It is thereafter possible to exploit advantages of coherent imaging techniques, such as direct imaging, diffractive imaging, Fourier holography and their combinations. The proposed method opens up the possibility of real-time, wavelength-limited, single-shot 3D imaging of an ultrashort electron bunch. (orig.)

  2. Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane

    International Nuclear Information System (INIS)

    The Linac Coherent Light Source (LCLS) is a SASE xray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through first bunch compressor chicane was installed during the fall of 2006. The first bunch compressor is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present preliminary measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression with micron-scale current spikes

  3. The aging of Anna Freud's diagnostic profile: a re-examination and re-application of the psychoanalytic assessment for older adults.

    Science.gov (United States)

    Chase, Carola

    2011-01-01

    In 1962 Anna Freud published her pioneering paper on the Diagnostic Profile, proposing a framework for organizing relevant clinical material and observations for the assessment of a child's inner world. Since that time, the Profile has been applied, with modifications, to work with babies, adolescents, adults, blind children, and others. This paper strives to demonstrate the Profile's applicability to a group often neglected in the psychoanalytic literature, namely the older population, a vibrant group frequently seeking psychotherapy and even psychoanalysis. A case study of a woman in her 70s is used to illustrate the advantages for clinicians of the Profile for a clearer understanding, both diagnostically and intrapsychically, of the older adult. PMID:26027147

  4. Bunch Shape Monitors For The Desy H-Minus Linac

    Science.gov (United States)

    Feschenko, A. V.; Liiou, A. V.; Mirzojan, A. N.; Menshov, A. A.; Ostroumov, P. N.; Holtkamp, N.; Nagl, M.; Peperkorn, I.

    1997-05-01

    In order to tune and control the longitudinal bunch shape and energy spread in the DESY Proton linac (LINAC III), three Bunch Shape Monitors (BSM) have been developed and installed. The mechanical layout has been optimised in order to fit the extremely narrow space between the DTL tanks. One of the BSMs, as an additional feature, can measure the absolute energy of the beam and is installed downstream of three Alvarez tanks. Using of thin wire as a source of secondary electrons, these devices can be used as a non-destructive beam diagnostic tool during Linac operation. The performance of the BSMs as well as the results of the Linac III studies using the new devices will be presented.

  5. Diagnostic role of magnetic resonance cholangiopancreatography in evaluation of obstructive biliopathies and correlating it with final diagnosis and clinical profile of patients

    OpenAIRE

    Parashari, Umesh Chandra; Khanduri, Sachin; Bhadury, Samarjit; Upadhyay, Deepika; Kishore, Kaushal

    2015-01-01

    Aims and Objective: We assessed the utility of magnetic resonance cholangiopancreatography (MRCP) as a noninvasive diagnostic tool in patients with obstructive biliopathies. Materials and Methods: A prospective study was conducted on 54 patients with clinically suspected biliary obstruction. MRCP in these patients was compared and correlated with final diagnosis and their clinical profile. Statistical Analysis: Sample profile was described in terms of sensitivity, specificity, positive and ne...

  6. Profiling the clinical presentation of diagnostic characteristics of a sample of symptomatic TMD patients

    Directory of Open Access Journals (Sweden)

    e Silva Machado Luciana

    2012-08-01

    Full Text Available Abstract Background Temporomandibular disorder (TMD patients might present a number of concurrent clinical diagnoses that may be clustered according to their similarity. Profiling patients’ clinical presentations can be useful for better understanding the behavior of TMD and for providing appropriate treatment planning. The aim of this study was to simultaneously classify symptomatic patients diagnosed with a variety of subtypes of TMD into homogenous groups based on their clinical presentation and occurrence of comorbidities. Methods Clinical records of 357 consecutive TMD patients seeking treatment in a private specialized clinic were included in the study sample. Patients presenting multiple subtypes of TMD diagnosed simultaneously were categorized according to the AAOP criteria. Descriptive statistics and two-step cluster analysis were used to characterize the clinical presentation of these patients based on the primary and secondary clinical diagnoses. Results The most common diagnoses were localized masticatory muscle pain (n = 125 and disc displacement without reduction (n = 104. Comorbidity was identified in 288 patients. The automatic selection of an optimal number of clusters included 100% of cases, generating an initial 6-cluster solution and a final 4-cluster solution. The interpretation of within-group ranking of the importance of variables in the clustering solutions resulted in the following characterization of clusters: chronic facial pain (n = 36, acute muscle pain (n = 125, acute articular pain (n = 75 and chronic articular impairment (n = 121. Conclusion Subgroups of acute and chronic TMD patients seeking treatment can be identified using clustering methods to provide a better understanding of the clinical presentation of TMD when multiple diagnosis are present. Classifying patients into identifiable symptomatic profiles would help clinicians to estimate how common a disorder is within a population of

  7. Single-bunch longitudinal instability

    International Nuclear Information System (INIS)

    A theoretical analysis is given of the recently observed microwave instability in storage rings. It is shown that one expects a threshold proportional to impedance R/sub S/ in the limit of very large or small resonator bandwidths, with the threshold lower by the bunching factor for the large bandwidth case. For intermediate bandwidths, the threshold should be proportional to the area under the resonance curve, so de-Qing resonators will have little effect in this region

  8. Advanced Bunching Scheme at REGAE

    OpenAIRE

    Zeitler, Benno; Floettmann, Klaus; Gruener, Florian

    2015-01-01

    The field of laser wakefield acceleration offers very high accelerating gradients. To combine the university research on this topic with the expertise of a large and well-established accelerator facility, the LAOLA Collaboration was formed between DESY and the University of Hamburg. One of the campaigns pursued within this framework is the external injection of an electron bunch from a conventional gun into a laser-driven plasma wakefield, which is a promising path towards increased control o...

  9. Evaluation of a bunch-by-bunch fast feedback system at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Marsching, Sebastian; Hiller, Nicole; Hofmann, Andre; Huttel, Erhard; Judin, Vitali; Kehrer, Benjamin; Klein, Marit; Mueller, Anke-Susanne; Smale, Nigel [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2011-07-01

    Multi-bunch instabilities are an important limiting factor in the operation of electron storage rings. Using modern bunch-by-bunch fast-feedback systems, these instabilities can be studied and partly damped, thus pushing accelerator performance beyond limits. At ANKA a bunch-by-bunch fast feedback system is currently evaluated for damping instabilities present during injection as well as during user operation. This talk presents the results of the ongoing work regarding the damping of these instabilities and the investigation of the corresponding multi-bunch effects.

  10. Measurement of Bunch Length Using Spectral Analysis of Incoherent Radiation Fluctuations

    International Nuclear Information System (INIS)

    A measurement of the longitudinal beam profile of a relativistic charged particle beam is an important tool in modern accelerators. For bunch lengths in the range of picoseconds, such measurements can be performed by means of a streak camera. Shorter bunches usually require special techniques. In this paper we describe a novel technique that allows obtaining properties of a bunch of charged particles through measurement of the fluctuations of incoherent radiation from the bunch. Due to shot-noise fluctuations in the longitudinal beam density, this incoherent radiation has a spectrum, which consists of random spikes with width inversely proportional to the bunch length. The convolution of the beam current can also be obtained from the radiation spectrum. After the convolution function is found, the phase retrieval technique can be applied to recover the bunch shape. This technique has been used to analyze the shape of the 4-ps-long bunches at the Advanced Photon Source self-amplified spontaneous emission free-electron laser (SASE FEL) experiment

  11. Beam diagnostics of the TRISTAN accumulation ring

    International Nuclear Information System (INIS)

    The beam diagnostic system of the TRISTAN Accumulation Ring consists of beam position monitors, visible radiation monitors, x-ray monitors, tune measurement setup, etc.. Eighty-six position monitors are installed around the ring. For the closed orbit measurement, a superheterodyne circuit is used to pick up the 479-th harmonic of the revolution frequency (795 kHz) out of beam pulse trains. Synchrotron light is observed in the visible region and in the x-ray region. Visible radiation is used in three ways: profile monitoring by TV cameras, beam current measurement and bunch shape observation by a streak camera. In the x-ray channel a multi-wire ionization chamber is used to get a digitized profile of the x-ray source. Stripline pickups are installed to detect transverse oscillations of e+ and e- bunches. The envelope signal of pulse trains will be sent to an FFT processor for tune number identification. At the same time the signals are amplified and fed back to wideband deflection electrodes for damping of the oscillaitons

  12. Collective energy loss of attosecond electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, A., E-mail: ogata@post.kek.jp [Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kondoh, T.; Norizawa, K.; Yang, J.; Yoshida, Y.; Kashiwagi, S. [Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kaneko, T. [Department of Applied Physics, Okayama University of Science, Ridai-cho, Kita-ku, Okayama 700-0005 (Japan)

    2011-05-01

    In this study, we have analytically shown that if the electron bunch length is in the 100-as range, the energy loss of the bunch is proportional to the square of the number of electrons in the bunch. If the number of electrons is large, the collective loss introduces a high-energy-density state in the target. The results were verified by carrying out 2D PIC simulations.

  13. Collective energy loss of attosecond electron bunches

    International Nuclear Information System (INIS)

    In this study, we have analytically shown that if the electron bunch length is in the 100-as range, the energy loss of the bunch is proportional to the square of the number of electrons in the bunch. If the number of electrons is large, the collective loss introduces a high-energy-density state in the target. The results were verified by carrying out 2D PIC simulations.

  14. Clinical profile, diagnostic delay, and genetic make-up of cystic fibrosis in Kashmir, India

    Directory of Open Access Journals (Sweden)

    Tasaduq Ahmad Mir

    2011-01-01

    Full Text Available Objectives: This observational study was done to describe the clinical profile, and delays in diagnosing cystic fibrosis (CF disease in Kashmir, India. Materials and Methods : A total of 6758 patients between the ages of 0 and 19 years were registered over a period of 1 year. Out of these, 150 patients suspected of having CF, on clinical grounds, were subjected to pilocarpine iontophoresis, and later on genetic evaluation. Apart from these specific tests, these patients were subjected to laboratory tests like blood counts, blood sugar, KFT, LFT, pancreatic function test, serum electrolytes, and chloride, urine, throat swab, blood culture, ABG analysis, chest and paranasal X-rays. In addition, sonographic evaluation of abdominal organs was carried out to know the status of internal organs. A polymerase chain reaction (PCR-based test was used for the identification of CF mutation. Results: CF was diagnosed in three (0.8% patients. Median age of presentation of CF was 78 months. Family history suggestive of CF was present in one (33.3% and consanguinity in three (100% patients. Common clinical manifestations at the time of presentation included recurrent pneumonia in three (100%, failure to thrive in three (100%, recurrent diarrhea in one (33.3% patients. General physical examination showed pallor in three (100%, malnutrition in three (100%, and clubbing in two (66.7% patients. Examination of respiratory tract revealed hyperinflation in two (66.7%, rhinitis in two (66.7%, and creptations in two (66.7% patients. Sonography of abdominal organs revealed pancreatic cysts in one (33.3%, hyperechoeic and increased liver span in two (66.7%, and small gallbladder in one (33.3%. Staphylococcus aureus was cultured from sputum in one (33.3%, pseudomonas aeruginosa in one (33.3% patients. Delta F508 mutation was present in one (33.3% patient. Conclusion: CF may be more common in Kashmir and other parts of Asia, than indicated by our study; diagnosis is often

  15. Modulated electron bunch with amplitude front tilt in an undulator

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    In a previous paper we discussed the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. We demonstrated that the effect of aberration of light supplies the basis for understanding phenomena like the deflection of coherent undulator radiation by a dipole magnet. We illustrated this fact by examining the operation of an XFEL under the steady state assumption, that is a harmonic time dependence. We argued that in this particular case the microbunch front tilt has no objective meaning; in other words, there is no experiment that can discriminate whether an electron beam is endowed with a microbunch front tilt of not. In this paper we extend our considerations to time-dependent phenomena related with a finite electron bunch duration, or SASE mode of operation. We focus our attention on the spatiotemporal distortions of an X-ray pulse. Spatiotemporal coupling arises naturally in coherent undulator radiation behind the kick, because the deflection process involves the introduction of a tilt of the bunch profile. This tilt of the bunch profile leads to radiation pulse front tilt, which is equivalent to angular dispersion of the output radiation. We remark that our exact results can potentially be useful to developers of new generation XFEL codes for cross-checking their results.

  16. Bunch Length Measurements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, W.J.; Fisher, A.; Huang, X.; Safranek, J.; Sebek, J.; /SLAC; Lumpkin, A.; /Argonne; Sannibale, F.; /LBL, Berkeley; Mok, W.; /Unlisted

    2007-11-28

    A series of bunch length measurements were made in SPEAR3 for two different machine optics. In the achromatic optics the bunch length increases from the low-current value of 16.6ps rms to about 30ps at 25ma/bunch yielding an inductive impedance of -0.17{Omega}. Reducing the momentum compaction factor by a factor of {approx}60 [1] yields a low-current bunch length of {approx}4ps rms. In this paper we review the experimental setup and results.

  17. Electron cloud wakefields in bunch trains

    Science.gov (United States)

    Petrov, F. B.; Boine-Frankenheim, Oliver

    2016-02-01

    Electron cloud is a concern for many modern and future accelerator facilities. There are a number of undesired effects attributed to the presence of electron clouds. Among them are coherent instabilities, emittance growth, cryogenic heat load, synchronous phase shift and pressure rise. In long bunch trains one can observe the emittance growth getting faster along the bunch train. The interaction between the beam and the electron cloud is a two-stream interaction. The prameters of the electron cloud wakefields depend on the beam intensity, beam centroid perturbations, and on the electron density and perturbations. If the electron cloud forgets the bunch centroid perturbation very fast, the buildup itself, via growing density, becomes a way of coupling between the bunches. In the present paper we address how the bunch perturbation shape affects the multi-bunch wakefields under the conditions similar to the CERN LHC and SPS. We study the interplay between the single-bunch and multi-bunch electron cloud wakefields. The effect of the dipole magnetic field on the multi-bunch wakefields is studied.

  18. Longitudinal Single Bunch Instability Caused by Wake Field of Electron Cloud

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-Dong; YU Cheng-Hui

    2009-01-01

    The electron cloud accumulated in the vicinity of positron beam generates longitudinal electric field during the passage of bunch. The longitudinal interaction between bunch and electron cloud can lead to the distortion of the bunch shape. We use a simple analytic formula to calculate the longitudinal electric field due to electron cloud. Based on the longitudinal wake field, the macro-particle tracking method is used to simulate the variation of bunch longitudinal profile in different electron cloud densities and the simulation also shows that the synchrotron oscillation tune is slightly shifted by the wake field. By comparing the simulation results and the analytical estimation from potential distortion theory, the longitudinal wake field from electron cloud can be seen as a potential well effect.

  19. Observation, control and modal analysis of longitudinal coupled-bunch instabilities in the ALS via a digital feedback system

    International Nuclear Information System (INIS)

    The operation of a longitudinal multi-bunch damping system using digital signal processing techniques is shown via measurements from the LBL Advanced Light Source. The feedback system (developed for use by PEP-II, ALS and DAΦNE) uses a parallel array of signal processors to implement a bunch by bunch feedback system for sampling rates up to 500 MHz. The programmable DSP system allows feedback control as well as accelerator diagnostics. A diagnostic technique is illustrated which uses the DSP system to excite and then damp the beam. The resulting 12 ms time domain transient is Fourier analyzed to provide the simultaneous measurement of growth rates and damping rates of all unstable coupled-bunch beam modes

  20. Analysis on Achieving a Minimum Bunch Length in LCLS Bunch Compressor One

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Huang, Zhirong; Ding, Yuantao; Wu, Juhao; /SLAC

    2011-08-19

    An ultra-short bunch is required by different applications in many aspects. In this paper, the condition to achieve a minimum bunch length at the Linac Coherent Light Source (LCLS) [1] bunch compressor one (BC1) is analyzed analytically and evaluated by simulation. The space charge, wake field and coherent synchrotron radiation (CSR) effects are not discussed here.

  1. Design of RF-Deflector cavity for ultra-short electron bunch measurement

    International Nuclear Information System (INIS)

    An S-band Cs-Te Photocathode RF-Gun system which can produce a high current, high energy, a low emittance and ultra-short bunch, has been developing at Waseda University. For measurement of ultra-short electron bunch, we decided to use RF-Deflecting cavity which can convert longitudinal distribution to transverse distribution. With this technique, the temporal profile of the electron beam can be obtained as the transverse profile. This technique will make it possible to measure ultra-short electron bunch length and electron beam temporal profile. The cavity is a 2856 MHz normal conducting RF-Cavity in a dipole (TM120) mode. In this conference, we present the cavity structure design optimization procedure and future plan. (author)

  2. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles

    International Nuclear Information System (INIS)

    Energy dispersive X-ray fluorescence (EDXRF) spectroscopy is an analytical method for identification and quantification of elements in materials by measurement of their spectral energy and intensity. EDXRFS spectroscopic technique involves simultaneous non-invasive acquisition of both fluorescence and scatter spectra from samples for quantitative determination of trace elemental content in complex matrix materials. The objective is develop a chemometric-aided EDXRFS method for rapid diagnosis of cancer and its severity (staging) based on analysis of trace elements (Cu, Zn, Fe, Se and Mn), their speciation and multivariate alterations of the elements in cancerous body tissue samples as cancer biomarkers. The quest for early diagnosis of cancer is based on the fact that early intervention translates to higher survival rate and better quality of life. Chemometric aided EDXRFS cancer diagnostic model has been evaluated as a direct and rapid superior alternative for the traditional quantitative methods used in XRF such as FP method. PCA results of cultured samples indicate that it is possible to characterize cancer at early and late stage of development based on trace elemental profiles

  3. Characterization of pseudosingle bunch kick-and-cancel operational mode

    Science.gov (United States)

    Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.

    2015-12-01

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  4. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

  5. Six-dimensional measurements of trains of high brightness electron bunches

    Science.gov (United States)

    Cianchi, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Di Giovenale, D.; Di Pirro, G. P.; Ferrario, M.; Gallo, A.; Innocenti, L.; Mostacci, A.; Pompili, R.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2015-08-01

    Trains of ultrashort electron pulses with THz repetition rate, so-called comblike beams, are assuming an ever growing interest in plasma-based acceleration. In particle-driven plasma wakefield acceleration (PWFA), a train of driver bunches with separation of the order of plasma wavelength, i.e., 300 μ m , resonantly excites a plasma wake, which accelerates a trailing witness bunch, injected at the accelerating phase. Comblike beams have great potentialities in different fields of applications. In particular, radiation sources, such as free-electron lasers and THz radiation, take advantage from the possibility to tailor electron beams modulated both in time and energy, to customize emission bandwidth and temporal properties. In these scenarios, the manipulation of longitudinal phase space to investigate different bunch configurations, in terms of energy and time separation, is founded on the knowledge of the 6D phase space of each bunch in the train. In this paper we present the methods developed at the SPARC_LAB test facility in order to fulfill the requirements. Starting from conventional diagnostics, therefore applying well-known tools using more than one diagnostic at the same time, we have completely characterized not only the full 6D phase space of a comblike electron beam with THz repetition rate, but also each single bunch within the train. To our knowledge, this is the first time such a measurement has been performed. Experimental results for multibunch trains in different configurations, suitable for PWFA applications, will be shown and discussed.

  6. Transverse modes for flat inter-bunch wakes

    CERN Document Server

    Burov, Alexey

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  7. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  8. Tolerances of TTF-2 First Bunch Compressor

    International Nuclear Information System (INIS)

    In bunch compressors for SASE-FEL facilities, the projected transverse emittance can be diluted by magnetic multipole component errors in dipoles and dipole misalignments as well as by coherent synchrotron radiation (CSR). In this paper, we describe the multipole field tolerances and the misalignment tolerances of the first bunch compressor (BC2) for the TESLA Test Facility Phase-2 (TTF-2)

  9. Bunch length measurements using synchrotron ligth monitor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion University, Norfolk, VA; Tiefenback, Michael G. [Jefferson Lab, Newport News, VA

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  10. Bucket shaking stops bunch dancing in Tevatron

    CERN Document Server

    Burov, A

    2012-01-01

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called "dancing bunches," persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing.

  11. A bunch-by-bunch beam position monitor based on scope embedded IOC

    International Nuclear Information System (INIS)

    A bunch-by-bunch beam position monitor system, based on a broadband oscilloscope embedded EPICS IOC, has been developed at SSRF to study the beam instabilities driven by the wake-field effects. The horizontal and vertical beam positions of each bunch could be located independently in this system by using the original signals from the button-type pickups on the storage ring. In this article, we report the hardware and software architecture of this system. The bunch-by-bunch data of the storage ring are used to evaluate performance of the system. Dependency of the tune, and the betatron oscillation amplitude of different bunch on the corresponding bunch ID, is also detected. The system is an effective tool for machine-study of SSRF. (authors)

  12. Ballistic bunching theory of electron cyclotron resonance masers

    Energy Technology Data Exchange (ETDEWEB)

    Baik, C. W.; Jeon, S. G.; Park, G. S. [Seoul National University, Seoul (Korea, Republic of)

    2003-12-15

    A bunching parameter which determines the strength of modulation in electron cyclotron resonance masers (ECRM) is derived using a ballistic bunching theory. Unlike klystrons that utilize space bunching, this bunching parameter strongly depends on the beam velocity ratio due to phase bunching in ECRM. The dependencies of the beam velocity ratio ({approx} {alpha}{sup 2}), the interaction length ({approx} d), and the input drive power ({approx} P{sub in}{sup 1/2}) on the bunching parameter are derived. The orbital phase bunching results calculated using the ballistic bunching theory and a large-signal code are compared and show reasonable agreement.

  13. Loss of Landau Damping for Bunch Oscillations

    CERN Document Server

    Burov, A

    2012-01-01

    Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increa...

  14. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  15. Photon Beam Diagnostics for VISA FEL

    International Nuclear Information System (INIS)

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations

  16. Time-resolved electron beam diagnostics with sub-femtosecond resolution

    CERN Document Server

    Wang, Guanglei; Zhang, Wei; Deng, Haixiao; Yang, Xueming

    2015-01-01

    In modern high-gain free-electron lasers, ultra-fast photon pulses designed for studying chemical, atomic and biological systems are generated from a serial of behaviors of high-brightness electron beam at the time-scale ranging from several hundred femtoseconds to sub-femtosecond. Currently, radiofrequency transverse deflectors are widely used to provide reliable, single-shot electron beam phase space diagnostics, with a temporal resolution of femtosecond. Here, we show that the time resolution limitations caused by the intrinsic beam size in transverse deflectors, can be compensated with specific transverse-to-longitudinal coupling elements. For the purpose, an undulator with transverse gradient field is introduced before the transverse deflector. With this technique, a resolution of less than 1fs root mean square has been theoretically demonstrated for measuring the longitudinal profile and/or the micro-bunching of the electron bunch.

  17. The Beam Instrumentation and Diagnostic Challenges for LHC Operation at high Energy

    CERN Document Server

    Jones, OR

    2014-01-01

    This contribution will present the role of beam diagnostics in facing the challenges posed by running the LHC close to its design energy of 7TeV. Machine protection will be ever more critical, with the quench level of the magnets significantly reduced, so relying heavily on the beam loss system, abort gap monitor, interlocks on the beam position and fast beam current change system. Non-invasive profile monitoring also becomes more of a challenge, with standard synchrotron light imaging limited by diffraction and rest gas ionization monitoring dominated by space charge effects. There is also a requirement to better understand beam instabilities, of which several were observed during Run I, leading to the need for synchronised bunch-by-bunch, turn-by-turn information from many distributed instrumentation systems. All of these challenges will be discussed along with the strategies adopted to overcome them.

  18. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    Science.gov (United States)

    Zhang, C. J.; Hua, J. F.; Wan, Y.; Guo, B.; Pai, C.-H.; Wu, Y. P.; Li, F.; Chu, H.-H.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Wang, J.; Lu, W.

    2016-06-01

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  19. Study of CSR longitudinal bunch compression cavity

    International Nuclear Information System (INIS)

    The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring (CSR)is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch,which can be produced by non-adiabatic compression of bunch implemented by a fast compression with 90 degree rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF-voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET-FT-1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238U72+ with 250 MeV/u will be compressed from 200 ns to 50 ns.The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80 kV, and the cavity can be used to compress heavy ions in the CSR. (authors)

  20. Bunching system of the KEKB linac

    International Nuclear Information System (INIS)

    At present, the KEK 2.5-GeV Linac is being upgraded as the injector of the KEK B-factory (KEKB). One of the most important changes is to increase the intensities of positron beams injected into a KEKB ring; it is, therefore, required to accelerate high-intensity single-bunch electron beams to high energy, 3.7 GeV, where they are converted to positron beams. For the purpose, the primary electron bunch should have more than 10 nC. Furthermore, the bunch lengths must be limited as short as 10 ps, in order to achieve narrow energy spreads of primary electron beams, and produce positron beams of short bunch lengths, as well. The bunching system has been designed to meet these requirements, introducing subharmonic bunchers (SHB). This paper describes the upgrade of the bunching system and the results of simulations of bunching using PARMELA. The designs and RF test of SHB cavities are described. (author)

  1. Van Kampen modes for bunch longitudinal motion

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab

    2010-09-01

    Conditions for existence, uniqueness and stability of bunch steady states are considered. For the existence uniqueness problem, simple algebraic equations are derived, showing the result both for the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. Emerging of discrete van Kampen modes show either loss of Landau damping, or instability. This method can be applied for an arbitrary impedance, RF shape and beam distribution function Available areas on intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Language of van Kampen modes is a powerful tool for studying beam stability. Its unique efficiency reveals itself in those complicated cases, when the dielectric function cannot be obtained, as it is for the longitudinal bunch motion. Emergence of a discrete mode means either loss of Landau damping or instability. By definition, the discrete modes lie outside the continuous incoherent spectrum, but they still may stay within the bucket. In the last case, the discrete mode would disappear after a tiny portion of resonant particles would be added. However, if the discrete mode lie outside the bucket, the Landau damping cannot be restored by tiny perturbation of the particle distribution; LLD is called radical in that case. For a given bunch emittance and RF voltage, the intensity is limited either by reduction of the bucket acceptance or by (radical) LLD. In this paper, results are presented for longitudinal bunch stability in weak head-tail approximation and resistive wall impedance; three RF configurations are studied: single harmonic, bunch shortening and bunch lengthening. It is shown that every RF configuration may be preferable, depending on the bunch emittance and intensity.

  2. New fast beam profile monitor for electron-positron colliders.

    Science.gov (United States)

    Bogomyagkov, A V; Gurko, V F; Zhuravlev, A N; Zubarev, P V; Kiselev, V A; Meshkov, O I; Muchnoi, N Yu; Selivanov, A N; Smaluk, V V; Khilchenko, A D

    2007-04-01

    A new fast beam profile monitor has been developed at the Budker Institute of Nuclear Physics. This monitor is based on the Hamamatsu multianode photomultiplier with 16 anode strips and provides turn-by-turn measurement of the transverse beam profile. The device is equipped with an internal memory, which has enough capacity to store 131,072 samples of the beam profile. The dynamic range of the beam profile monitor allows us to study turn-by-turn beam dynamics within the bunch charge range from 1 pC up to 10 nC. Using this instrument, we have investigated at the VEPP-4M electron-positron collider a number of beam dynamics effects which cannot be observed by other beam diagnostics tools. PMID:17477653

  3. Coupled-bunch instabilities in RHIC

    International Nuclear Information System (INIS)

    We used the program ZAP to evaluate the coupled-bunch modes for the case of 57 equally spaced bunches with the Sacherer-Zotter formalism assuming parabolic bunches. The sources of coupling impedances assumed were space charge, resistive wall, broadband, and rf cavity fundamental and parasitic modes. Generally the studies assumed a stainless steel vacuum chamber, but we did perform a comparison run using a stainless steel chamber internally coated with a thin cold copper layer. These latter investigations were motivated by the proposal for coating which would reduce parasitic wall heating in the vacuum chambers in the superconducting dipoles. 10 tabs

  4. Space Charge Effects in Bunch Shape Monitors

    CERN Document Server

    Feschenko, A V

    2000-01-01

    The operation and parameters of Bunch Shape Monitors using coherent transformation of time structure of an analyzed beam into a spatial one of low energy secondary electrons emitted from a wire target is influenced by the characteristics of a beam under study. The electromagnetic field of a bunch disturbs the trajectories of secondary electrons, thus resulting in a degradation of phase resolution and in errors of phase reading. Another effect is the perturbation of the target potential due to the current in the wire induced by a bunch as well as due to current compensating emission of the secondary electrons. The methods, the models and the results of simulations are presented.

  5. Space Charge Effects in Bunch Shape Monitors

    Science.gov (United States)

    Feschenko, Alexander

    The operation and parameters of Bunch Shape Monitors using coherent transformation of time structure of an analyzed beam into a spatial one of low energy secondary electrons emitted from a wire target is influenced by the characteristics of a beam under study. The electromagnetic field of a bunch disturbs the trajectories of secondary electrons, thus resulting in a degradation of phase resolution and in errors of phase reading. Another effect is the perturbation of the target potential due to the current in the wire induced by a bunch as well as due to current compensating emission of the secondary electrons. The methods, the models and the results of simulations are presented.

  6. Van Kampen modes for bunch longitudinal motion

    CERN Document Server

    Burov, A

    2012-01-01

    Conditions for existence, uniqueness and stability of bunch steady states are considered. For the existence uniqueness problem, simple algebraic equations are derived, showing the result both for the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. Emerging of discrete van Kampen modes show either loss of Landau damping, or instability. This method can be applied for an arbitrary impedance, RF shape and beam distribution function Available areas on intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations.

  7. A sensitive beam-bunch phase detector

    International Nuclear Information System (INIS)

    A sensitive heavy-ion beam-bunch phase detector has been developed by first examining the relationship between the sensitivity of an rf resonant cavity as a particle bunch detector and the shunt impedance of the same cavity as an accelerating structure. Then the various high shunt impedance rf cavities previously developed for accelerating heavy ions were evaluated for use as bunch detectors. A spiral-loaded geometry was chosen, built, and tested with beam. The sensitivity obtained, 14 μ V per electrical nA of beam, is a factor 3 higher than previously reported. (orig.)

  8. Diagnostics for the CEBAF FEL Injector

    Science.gov (United States)

    Kehne, D.; Engwall, D.; Jordan, K.; Benson, S.; Bohn, C.; Cardman, L.; Douglas, D.; Happek, U.; Krafft, G. A.; Neil, G.; Sinclair, C.

    1996-04-01

    A test stand for the 10 MeV, 5 mA average current injector for the CEBAF FEL is currently under construction. The injector tests will progress through two phases. The first phase will be devoted to characterizing the gun transverse and longitudinal emittance performance as a function of bunch charge, beam size, and energy. The goal of the second phase is to achieve the nominal requirements of the 10 MeV injector, including bunch length, emittance, charge per bunch, and energy stability. This paper summarizes the diagnostics planned to be used in these experiments.

  9. High Temporal Resolution, Single-shot Electron Bunch-length Measurements

    CERN Document Server

    Berden, Giel; Van der Meer, Lex; Jamison, Steven; Allan Gillespie, William; MacLeod, Allan

    2004-01-01

    A new technique, combining electro-optic detection of the Coulomb field of an electron bunch with single-shot cross-correlation of optical pulses is used to enable single-shot measurements of the electric field profile of sub-picosecond electron bunches. As in our previous "spectral decoding" technique (I. Wilke et al., Phys. Rev. Lett. 88(12) 2002), the electric field of the electron bunch is encoded electro-optically on an optical pulse. However, the new "temporal decoding" method offers a much better time resolution since it overcomes a fundamental time-resolution limit of the spectral decoding method, which arises from the inseparability of time and frequency properties of the probing optical pulse. The temporal decoding technique has been applied to the measurement of 50 MeV electron bunches in the FELIX free electron laser, showing the longitudinal profile of single bunches of around 650 fs FWHM. The method is non-destructive and real-time, and therefore ideal for online monitoring of the longitudinal s...

  10. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  11. Bucket Shaking Stops Bunch Oscillations In The Tevatron

    CERN Document Server

    Tan, C Y

    2011-01-01

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called "dancing bunches". Although the dancing bunches do not cause single bunch emittance growth or beam loss at injection, it leads to bunch lengthening at collisions. In operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper shows the Tevatron experiments which support this theory.

  12. Real-time single-shot electron bunch length measurements

    CERN Document Server

    Wilke, I; Gillespie, W A; Berden, G; Knippels, G M H; Meer, A F G

    2002-01-01

    Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pu...

  13. Theory of superradiance of electron bunch moving in waveguide under group synchronism condition

    CERN Document Server

    Ginzburg, N S; Sergeev, A S

    2000-01-01

    Theory of wiggler superradiance of electron bunch moving in waveguide under group synchronism condition is presented. It is shown that in the reference frame moving with electrons emission occurs at a quasi cut-off frequency. The theory is based on parabolic equation for description of wave profile evolution. Comparison with experimental results is discussed.

  14. Ion stability in electron bunch train

    International Nuclear Information System (INIS)

    The self-consistent theory of ion stability in electron bunch train is described. Change in ion skeleton density caused by ion motion in a bunch focusing field and in defocusing intrinsic field is taken into account in the theory. The functional dependence of the maximum possible coefficient of charge compensation of the beam by the current of this beam and geometry of bunches composing it is determined on the basis of the supposition about the periodic laminar ion motion at the limit of their stability. Calculation results are given for cases of cylindrical and plane cross sections of beams with uniform electron density in the bunches. The results of a numerical experiment on studying the dependence of compensation on beam intensity are presented. Comparison of these results with predictions of the self-consistent theory and the heavy skeleton theory known early confirms the foundation of model suppositions of the self-consistent theory

  15. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  16. Structural changes in bunched crystalline ion beams

    International Nuclear Information System (INIS)

    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions

  17. Structural changes in bunched crystalline ion beams

    CERN Document Server

    Bussmann, M; Schätz, T; Habs, D

    2003-01-01

    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions.

  18. Real-Time, Single-Shot Temporal Measurements of Short Electron Bunches, Terahertz CSR and FEL Radiation

    CERN Document Server

    Berden, G; Van der Meer, A F G

    2005-01-01

    Electro-optic detection of the Coulomb field of electron bunches is a promising technique for single-shot measurements of the bunch length and shape in the sub-picosecond time domain. This technique has been applied to the measurement of 50 MeV electron bunches in the FELIX free electron laser, showing the longitudinal profile of single bunches of around 650 fs FWHM [Phys. Rev. Lett. 93, 114802 (2004)]. The method is non-destructive and real-time, and therefore ideal for online monitoring of the longitudinal shape of single electron bunches. At FELIX we have used it for real-time optimization of sub-picosecond electron bunches. Electro-optic detection has also been used to measure the electric field profiles of far-infrared (or terahertz) optical pulses generated by the relativistic electrons. We have characterised the far-infrared output of the free electron laser, and more recently, we have measured the temporal profile of terahertz optical pulses generated at one of the bending magnets.

  19. Real-time, single-shot temporal measurements of short electron bunches, tera-hertz CSR and FEL radiation

    International Nuclear Information System (INIS)

    Electro-optic detection of the Coulomb field of electron bunches is a promising technique for single-shot measurements of the bunch length and shape in the sub-picosecond time domain. This technique has been applied to the measurement of 50 MeV electron bunches in the FELIX free electron laser, showing the longitudinal profile of single bunches of around 650 fs FWHM. The method is non-destructive and real-time, and therefore ideal for online monitoring of the longitudinal shape of single electron bunches. At FELIX we have used it for real-time optimization of sub-picosecond electron bunches. Electro-optic detection has also been used to measure the electric field profiles of far-infrared (or tera-hertz) radiation generated by the relativistic electrons. We have characterized the far-infrared output of the free electron laser, and more recently, we have measured the temporal profile of tera-hertz coherent synchrotron radiation (CSR) generated at one of the bending magnets. (authors)

  20. Spectral methods for measuring ultrashort electron bunch durations from Laser Wakefield accelerators

    International Nuclear Information System (INIS)

    Laser-wakefield accelerators (LWFA) feature electron bunch durations ranging from several fs to tens of fs. Knowledge and control of the electron bunch duration is vital to the design of future table-top, X-ray light-sources for laser-synchronized pump-probe experiments, ranging from betatron radiation, Thomson scattering to FELs. Due to the nonlinear nature of the laser-wakefield electron injection and small changes in initial experimental conditions the electron bunch properties are often subject to large shot-to-shot variations, which requires diagnostics working not only at ultrashort time-scales but also at single-shot. We aim for measurements of the LWFA electron bunch duration and bunch substructure at single-shot by analysing the coherent and incoherent transition radiation spectrum. Our ultra-broadband spectrometer ranges from the UV (200 nm) to the mid-IR (12 μm), which allows to resolve time-scales from 0.7 to 40 fs. The prism and grating-based spectrometer divides and maps the spectrum onto three detector systems (UV/VIS;NIR;MIR) of staggered, increasing resolution towards lower wavelengths. Here we present the experimental approach, scope and current status of our spectrometer project.

  1. Searching for early breast cancer biomarkers by serum protein profiling of pre-diagnostic serum; a nested case-control study

    International Nuclear Information System (INIS)

    Serum protein profiles have been investigated frequently to discover early biomarkers for breast cancer. So far, these studies used biological samples collected at or after diagnosis. This may limit these studies' value in the search for cancer biomarkers because of the often advanced tumor stage, and consequently risk of reverse causality. We present for the first time pre-diagnostic serum protein profiles in relation to breast cancer, using the Prospect-EPIC (European Prospective Investigation into Cancer and nutrition) cohort. In a nested case-control design we compared 68 women diagnosed with breast cancer within three years after enrollment, with 68 matched controls for differences in serum protein profiles. All samples were analyzed with SELDI-TOF MS (surface enhanced laser desorption/ionization time-of-flight mass spectrometry). In a subset of 20 case-control pairs, the serum proteome was identified and relatively quantified using isobaric Tags for Relative and Absolute Quantification (iTRAQ) and online two-dimensional nano-liquid chromatography coupled with tandem MS (2D-nanoLC-MS/MS). Two SELDI-TOF MS peaks with m/z 3323 and 8939, which probably represent doubly charged apolipoprotein C-I and C3a des-arginine anaphylatoxin (C3adesArg), were higher in pre-diagnostic breast cancer serum (p = 0.02 and p = 0.06, respectively). With 2D-nanoLC-MS/MS, afamin, apolipoprotein E and isoform 1 of inter-alpha trypsin inhibitor heavy chain H4 (ITIH4) were found to be higher in pre-diagnostic breast cancer (p < 0.05), while alpha-2-macroglobulin and ceruloplasmin were lower (p < 0.05). C3adesArg and ITIH4 have previously been related to the presence of symptomatic and/or mammographically detectable breast cancer. We show that serum protein profiles are already altered up to three years before breast cancer detection

  2. Coupled Bunch Instabilities in the LHC

    CERN Document Server

    Angal-Kalinin, Deepa

    2002-01-01

    In the LHC, the coupled bunch instabilities will be mainly driven by the RF cavities and the resistive wall effect. The growth times of these instabilities have been estimated taking into consideration the undamped and damped higher order modes of these cavities. These estimates show that the rise times of the longitudinal coupled bunch instabilities are under control. The proposed transverse feed-back system allows the same conclusion to be drawn for the transverse resistive wall instability.

  3. Bunch compression for the TLC: Preliminary design

    International Nuclear Information System (INIS)

    A preliminary design of a TLC bunch compressor as a two-stage device is described. The main parameters of the compressor, as well as results of some simulations, are presented. They show that the ideal system (no imperfections) does the job of transmitting transverse emittances without distortions (at least up to the second-order terms) producing at the same time the desired bunch length of 50 μm. 9 refs., 6 figs., 4 tabs

  4. Compact noninvasive electron bunch-length monitor

    International Nuclear Information System (INIS)

    A compact RF cavity was constructed that simultaneously resonates at many harmonic modes when excited by a bunched electron beam passing through its bore. The excitation of these modes provides a Fourier description of the temporal characteristics of the bunchtrain. The cavity was used to non-invasively characterize electron bunches produced from thin and thick GaAs photocathodes inside a DC high voltage photogun illuminated with 37 ps (FWHM) laser pulses at repetition rates near 500 and 1500 MHz, at average beam current from 5 uA to 500 uA and at beam energy from 75 keV to 195 keV. The cavity bunchlength monitor could detect electron bunches as short as 57 ps (FWHM) when connected directly to a sampling oscilloscope, and could clearly distinguish bunches with varying degrees of space-charge induced growth and with different tail signatures. Efforts are underway to detect shorter bunches, by designing cavities with increased bandwidth and improved coupling uniformity. This demonstration lends credibility to the idea that these cavities could also be used for other applications, including bunching and shaping, when driven with external RF

  5. Terahertz radiation from laser accelerated electron bunches

    International Nuclear Information System (INIS)

    Coherent terahertz and millimeter wave radiation from laser accelerated electron bunches has been measured. The bunches were produced by tightly focusing (spot diameter ∼ 6 (micro)m) a high peak power (up to 10 TW), ultra-short ((ge)50 fs) laser pulse from a high repetition rate (10 Hz) laser system (0.8 (micro)m), onto a high density (>1019 cm-3) pulsed gas jet of length ∼ 1.5 mm. As the electrons exit the plasma, coherent transition radiation is generated at the plasma-vacuum boundary for wavelengths long compared to the bunch length. Radiation in the 0.3-19 THz range and at 94 GHz has been measured and found to depend quadratically on the bunch charge. The measured radiated energy for two different collection angles is in good agreement with theory. Modeling indicates that optimization of this table-top source could provide more than 100 (micro)J/pulse. Together with intrinsic synchronization to the laser pulse, this will enable numerous applications requiring intense terahertz radiation. This radiation can also be used as a powerful tool for measuring the properties of laser accelerated bunches at the exit of the plasma accelerator. Preliminary spectral measurements indicates that bunches as short as 30-50 fs have been produced in these laser driven accelerators

  6. Generation of attosecond electron bunches

    International Nuclear Information System (INIS)

    Ultra-fast science is an important new research frontier that is driving the development of novel sources for generation of extremely short x-ray and electron pulses. Recent advances in femtosecond lasers have stimulated development of femtosecond x-ray sources that allow the study of matter at the time scale shorter than period of oscillations of atoms in molecules, ∼ 100 fs. The next breakthrough would be a source of electron pulses comparable with atomic periods ω-1 ∼ 100 attosecond (10-16 s), where ω is a transition frequency between atomic levels. This will open qualitatively new class of phenomena based on the interaction of atomic electrons in the medium with a collective electric field of electron pulses and not with their individual electrons. For example, one can expect coherent ionization losses that are proportional to a square number of electrons in the microbunch, phase synchronized excitation of medium followed by its relaxation with a radiation of a single-cycled optical pulse, excitation of entanglement states in the medium of atoms with few valence electrons, and possibly other new phenomena, yet to be identified. Simple estimation of coherent ionization losses shows that a 100 MeV, 100 attosecond electron pulse containing 105 electrons will lose its total energy after propagating only ∼ 200(micro)m through liquid hydrogen. This is approximately 104 times shorter stopping range than it is for a long (on atomic scale) electron bunch

  7. 6D electron beam diagnostics at SPARC_LAB

    Science.gov (United States)

    Cianchi, A.; Anania, M. P.; Bacci, A.; Bellaveglia, Marco; Castellano, Michele; Chiadroni, Enrica; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Innocenti, Luca; Mostacci, Andrea; Pompili, Riccardo; Rossi, A. R.; Shpakov, V.; Vaccarezza, Cristina; Villa, Fabio

    2015-05-01

    To create very short electron bunches or comb-like beams, able to drive a SASE-FEL, to produce THz radiation, or to drive a plasma beam driven accelerator is needed advanced phase space manipulation. The characterization of the 6D phase space is of paramount importance in order to verify that the beam parameters fulfill the expectation. At SPARCLAB we have integrated several longitudinal and transverse beam diagnostics for single bunch or for a train of comb-like bunches at THz repetition rate. Longitudinal diagnostic is based on RF deflecting cavity and a dispersive element. Quadrupole scan technique is used to measure the transverse emittance in single bunch mode or in conjunction respectively with a dipole, to separate beams of different energy, and RF deflector, to discriminates bunches with different time of arrival.

  8. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wa

  9. Diagnostic development

    International Nuclear Information System (INIS)

    During the past year the far-infrared or submillimeter diagnostic research program resulted in three major developments: (1) an optically pumped 0.385-μm D2O-laser oscillator-amplifier system was operated at a power level of 1 MW with a line width of less than 50 MHz; (2) a conical Pyrex submillimeter laser beam dump with a retention efficiency greater than 104 was developed for the ion temperature Thompson scattering experiment; and (3) a new diagnostic technique was developed that makes use of the Faraday rotation of a modulated submillimeter laser beam to determine plasma current profile. Measurements of the asymmetric distortion of the H/sub α/ (6563 A) spectral line profile show that the effective toroidal drift velocity, dv/sub two vertical bars i/dT/sub i/, may be used as an indicator of plasma quality and as a complement to other ion temperature diagnostics

  10. Bunch length measurements using electro-optical sampling at the SLS linac

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2004-07-01

    A mode-locked titanium-sapphire laser with 15 fs pulse width is used to determine the time profile of the picosecond electron bunches in the Swiss light source linac of the Paul Scherrer Institute, Villigen Switzerland. This was done using the electro-optic effect in Zinc-Telluride crystals and sampling the change induced by coherent transition radiation with the TiSa laser. The development, implementation and results of an analogue synchronisation system to synchronise the repetition rate of the TiSa laser to the radio frequency of the accelerator with a short term stability of 40 fs is presented. The experimental setup of the bunch length measurements is described and results are presented on the coincidence measurements between the laser pulses and the coherent transition radiation pulses generated by the electron bunches. (orig.)

  11. Temporal characterization of ultrashort ionization-injected electron bunches generated from a laser wakefield accelerator

    CERN Document Server

    Zhang, C J; Wan, Y; Guo, B; Pai, C -H; Wu, Y P; Li, F; Chu, H -H; Gu, Y Q; Mori, W B; Joshi, C; Wang, J; Lu, W

    2016-01-01

    A new concept to diagnose the temporal characteristics of ultrashort electron bunches generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but separated by half a laser wavelength. By analyzing the modulated energy spectrum, the beam current profile and the longitudinal (energy versus time) phase space are recovered. This concept is demonstrated through particle-in-cell simulations and experiment.

  12. Observation, control, and modal analysis of longitudinal coupled-bunch instabilities in the ALS via a digital feedback system

    International Nuclear Information System (INIS)

    The operation of a longitudinal multibunch damping system using digital signal processing (DSP) techniques is shown via measurements from the Lawrence Berkeley Laboratory (LBL) Advanced Light Source (ALS). The feedback system (developed for use by PEP-II, ALS, and DAΦNE) uses a parallel array of signal processors to implement a bunch-by-bunch feedback system for sampling rates up to 500 MHz. The programmable DSP system allows feedback control as well as accelerator diagnostics. A diagnostic technique is illustrated which uses the DSP system to excite and then damp the beam. The resulting 12-ms time domain transient is Fourier analyzed to provide the simultaneous measurement of growth rates and damping rates of all unstable coupled-bunch beam modes. copyright 1997 American Institute of Physics

  13. Transformer ratio studies for single bunch plasma wakefield acceleration

    International Nuclear Information System (INIS)

    In Plasma Wakefield Acceleration (PWFA) plasma oscillations are driven by ultra relativistic electron beams. The ratio of the maximum accelerating field behind the driving beam (bunch) and the maximum decelerating field inside the driving beam (bunch) is defined as Transformer Ratio, a key parameter that determines the energy gain in particle acceleration. We investigate the transformer ratio for different shapes of a single driving bunch. One dimensional, fluid, relativistic, cold plasma equations have been numerically solved. A complete map of the transformer ratio is obtained by varying: bunch shape, bunch length and density ratio. It is found that the transformer ratio critically depends on the bunch shape and on the density ratio. Moreover both in the linear as well as in the non-linear regime the theoretical limit of 2 for the transformer ratio of a single symmetric bunch can be exceeded using asymmetric bunches in the linear regime as well as symmetric bunches in nonlinear regime

  14. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  15. Single Shot Electron-Beam Bunch Length Measurements

    CERN Document Server

    Berden, G; Oepts, D; Van der Meer, A F G

    2003-01-01

    It is recognised by the Instrumentation community that 4th generation light sources (like TESLA, LCLS) are posing some of the most stringent requirements on beam diagnostics. Among these, the single-shot electro-optic measurement of the bunch length and shape in the sub-picosecond domain is an ongoing development. The electro-optic detection method makes use of the fact that the local electric field of a highly relativistic electron bunch moving in a straight line is almost entirely concentrated perpendicular to its direction of motion. This electric field makes an electro-optic crystal placed in the vicinity of the beam birefringent. The amount of birefringence depends on the electric field and is probed by monitoring the change of polarization of the wavelength components of a chirped, synchronized Ti:sapphire laser pulse. This talk will provide details of the experimental setup at the Free Electron Laser for Infrared eXperiments (FELIX) in Nieuwegein, The Netherlands, where single shot images have been obt...

  16. Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

    Science.gov (United States)

    Wen, W. Q.; Lochmann, M.; Ma, X.; Bussmann, M.; Winters, D. F. A.; Nörtershäuser, W.; Botermann, B.; Geppert, C.; Frömmgen, N.; Hammen, M.; Hannen, V.; Jöhren, R.; Kühl, Th.; Litvinov, Yu. A.; Sánchez, R.; Stöhlker, Th.; Vollbrecht, J.; Weinheimer, C.; Dimopoulou, C.; Nolden, F.; Steck, M.

    2013-05-01

    An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of about 0.5 m using the UV-sensitive channeltron and with slightly lower accuracy from the photomultiplier data due to the slower transitions in the red region of the spectrum. The Gaussian shape of the longitudinal distribution of ions inside the bunch was confirmed. With the information of the transverse beam size that can be measured simultaneously by a newly installed ionization profile monitor (IPM) at the ESR, an accurate determination of the ion density in the bunched beam will be allowed.

  17. A simple method for the determination of the structure of ultrashort relativistic electron bunches

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    In this paper we propose a new method for measurements of the longitudinal profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers (XFELs). The method is simply the combination of two well-known techniques, which where not previously combined to our knowledge. We use seed 10-ps 1047 nm quantum laser to produce exact optical replica of ultrafast electron bunches. The replica is generated in apparatus which consists of an input undulator (energy modulator), and the short output undulator (radiator) separated by a dispersion section. The radiation in the output undulator is excited by the electron bunch modulated at the optical wavelength and rapidly reaches 100 MW-level peak power. We then use the now-standard method of ultrashort laser pulse-shape measurement, a tandem combination of autocorrelator and spectrum (FROG -- frequency resolved optical gating). The FROG trace of the optical replica of electron bunch gives accurate and rapid electron bunch shape measurements in a way similar to a f...

  18. Correction of unevenness in recycler beam profile

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Hu, M.; Ng, K.Y.; /Fermilab

    2006-05-01

    A beam confined between two rf barriers in the Fermilab Recycler Ring exhibits very uneven longitudinal profile. This leads to the consequence that the momentum-mined antiproton bunches will have an intolerable variation in bunch intensity. The observed profile unevenness is the result of a tiny amount of rf imperfection and rf beam-loading. The profile unevenness can be flattened by feeding back the uneven rf fan-back gap voltage to the low-level rf.

  19. Validation and Application of a Custom-Designed Targeted Next-Generation Sequencing Panel for the Diagnostic Mutational Profiling of Solid Tumors

    Science.gov (United States)

    Froyen, Guy; Broekmans, An; Hillen, Femke; Pat, Karin; Achten, Ruth; Mebis, Jeroen; Rummens, Jean-Luc; Willemse, Johan; Maes, Brigitte

    2016-01-01

    The inevitable switch from standard molecular methods to next-generation sequencing for the molecular profiling of tumors is challenging for most diagnostic laboratories. However, fixed validation criteria for diagnostic accreditation are not in place because of the great variability in methods and aims. Here, we describe the validation of a custom panel of hotspots in 24 genes for the detection of somatic mutations in non-small cell lung carcinoma, colorectal carcinoma and malignant melanoma starting from FFPE sections, using 14, 36 and 5 cases, respectively. The targeted hotspots were selected for their present or future clinical relevance in solid tumor types. The target regions were enriched with the TruSeq approach starting from limited amounts of DNA. Cost effective sequencing of 12 pooled libraries was done using a micro flow cell on the MiSeq and subsequent data analysis with MiSeqReporter and VariantStudio. The entire workflow was diagnostically validated showing a robust performance with maximal sensitivity and specificity using as thresholds a variant allele frequency >5% and a minimal amplicon coverage of 300. We implemented this method through the analysis of 150 routine diagnostic samples and identified clinically relevant mutations in 16 genes including KRAS (32%), TP53 (32%), BRAF (12%), APC (11%), EGFR (8%) and NRAS (5%). Importantly, the highest success rate was obtained when using also the low quality DNA samples. In conclusion, we provide a workflow for the validation of targeted NGS by a custom-designed pan-solid tumor panel in a molecular diagnostic lab and demonstrate its robustness in a clinical setting. PMID:27101000

  20. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  1. Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    吴静; 姚列明; 朱建华; 韩晓玉; 李文柱

    2012-01-01

    This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A toknmak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutrM beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n= 8-7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m· s^-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.

  2. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  3. An ion source with bunched beam release

    International Nuclear Information System (INIS)

    As a continuation of a preceding study, the possibility of bunched beam release from a FEBIAD-B2 ion source was investigated for the alkali metals, the alkaline-earths, aluminum, the transition elements scandium to nickel and for ytterbium. With an appropriate choice of the cooling/heating system and of the trap material, efficient bunching is reached for the alkalies, calcium, manganese and ytterbium, which have enthalpies of adsorption within the range 2.6 ≤ΔH, < 5 eV, the window useful for bunching. Utilizing deduced values of the mean sticking time at a surface of defined temperature, ΔH/sub a/-values up to approximately 6 eV can be determined. Thus the conditions can be specified which should allow bunching and chemical separation for various other elements that are too refractory for the present device. Experimental and semi-empirical ΔH/sub a/-values are in good agreement for the transition elements and aluminium but exhibit strong deviations for the alkali metals, the alkaline-earths, ytterbium and probably some other lanthanides. On-line mass separation of neutron-deficient isotopes of cadmium, indium and tin with a high degree of selectivity demonstrates the chemical separation power of bunched beam release

  4. Analytical bunch compression studies for FLUTE

    CERN Document Server

    Schreck, M

    2014-01-01

    The current article deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into three parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the back reaction of bunches with coherent synchrotron radiation (CSR) are neglected. The second part is dedicated to the treatment of space charge effects and the third part gives some analytical results on the emission of CSR. The upshot is that the results of the first and the third part agree quite well with what is obtained from simulatio...

  5. Loss of Landau Damping for Bunch Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab

    2011-04-11

    Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.

  6. ''High intensity per bunch'' working group

    International Nuclear Information System (INIS)

    Third Generation Light Sources are supposed to store high intensity beams not only in many tightly spaced bunches (multibunch operation), but also in few bunch or even single lunch modes of operation, required for example for time structure experiments. Single bunch instabilities, driven by short-range wake fields, however spoil the beam quality, both longitudinally and transversely. Straightforward ways of handling them, by pushing up the chromaticity (ζ = ΔQ/(Δp/p)) for example, enabled to raise the charge per bunch, but to the detriment of beam lifetime. In addition, since the impedance of the vacuum chamber deteriorates with the installation of new insertion devices, the current thresholds tend to dope down continuously. The goal of this Working Group was then to review these limitations in the existing storage rings, where a large number of beam measurements have been performed to characterise them, and to discuss different strategies which are used against them. About 15 different laboratories reported on the present performance of storage rings, experiences gained in high charge per bunch, and on simulation results and theoretical studies. More than 25 presentations addressed the critical issues and stimulated the discussion. Four main topics came out: - Observation and experimental data; - Impedance studies and tracking codes; - Theoretical investigations; - Cures and feedback. (author)

  7. Electro-optical bunch shape measurements - possible temporal resolution limits

    International Nuclear Information System (INIS)

    Coherent synchrotron radiation arises when the longitudinal electron bunch length is smaller than the wavelength. In storage rings, substructures on the electron bunches (micro-bunching) can lead to strong ''bursting'' of coherent radiation and investigation of such effects requires a measurement of the electron bunch length with sufficient temporal resolution. In linear accelerators, the bunch lengths themselves can be extremely short. This report considers the main electro-optical techniques for bunch length measurements and discusses systematic limitations of the method. Special emphasis is put on possible ways to increase the temporal resolution.

  8. Status of non-destructive bunch length measurement based on coherent Cherenkov radiation

    CERN Document Server

    Zhang, Jianbing; Yu, Tiemin; Deng, Haixiao; Shkitov, Dmitry; Shevelev, Mikhail; Naumenko, Gennady; Potylitsyn, Alexander

    2013-01-01

    As a novel non-destructive bunch length diagnostic of the electron beam, an experimental observation of the coherent Cherenkov radiation generated from a dielectric caesium iodide crystal with large spectral dispersion was proposed for the 30MeV femtosecond linear accelerator at Shanghai Institute of Applied Physics (SINAP). In this paper, the theoretical design, the experimental setup, the terahertz optics, the first angular distribution observations of the coherent Cherenkov radiation, and the future plans are presented.

  9. Bunched beam longitudinal instability: Coherent dipole motion

    International Nuclear Information System (INIS)

    In this paper, the authors present a new formulation for the longitudinal coherent dipole motion, where a quadrature response of the environmental impedance is shown to be the effective longitudinal impedance for the beam instability. The Robinson-Pedersen formulation for the longitudinal dipole motion is also presented, the difference of the two approaches is discussed in the comparison. The results by using the Sacherer integral equation for the coherent dipole motion can generate the same results as by using the other two approaches, except for a scaling difference. The formulation is further generalized to the rigid bunch motion using signal analysis method, where a form factor shows up naturally. Finally, the formulation is applied to solve the coupled bunch instabilities. Examples of the AGS Booster and the AGS coupled bunch instabilities are used to illustrate the applications of the formulation

  10. Note on polarized RHIC bunch arrangement

    International Nuclear Information System (INIS)

    We discuss what combinations of bunch polarization in the two RHIC rings are necessary to do the physics measurements at various interaction regions. We also consider the bunches for both the pion inclusive and p-p elastic polarization measurements. Important factors to consider are the direction of the polarization with respect to the momentum in each bunch, the beam gas backgrounds, and the simulation of zero - polarization in one beam by averaging + and - helicity, and luminosity monitoring for normalization. These considerations can be addressed by setting the relative number of each of the 9 combinations possible at each of the 6 interaction regions. The combinations are (+ empty -) yellow X (+ empty -)blue, where yellow and blue are the counter-rotating rings

  11. Bunch lengthening in the Fermilab main ring during storage

    International Nuclear Information System (INIS)

    There are two known current dependent effects which can increase the length of stored bunched beams: (1) a reduction of the potential well of the applied rf focusing system; and (2) induced unstable oscillations of the bunches, which can stabilize at a longer length by the process of Landau damping. In the first case, the current distribution in the bunches, interacting with induced electromagnetic fields in the walls, leaves a wake field which acts back on the bunches. A new equilibrium bunch shape results, different from that due to the applied rf, and this new equilibrium bunch shape will slowly establish itself as the particles within the bunch move on their new trajectories. The second form of bunch instability is the single bunch type. These are characterized by high frequency (i.e. within bunch) oscillations in the microwave region and fast growth rates. The coherent effects are very difficult to observe and such instabilities tend to simulate an incoherent growth in the bunch. An attempt is made to describe the observation of bunch lengthening in the main ring in terms of both potential well distortion and induced microwave fields. It is found that the increase in bunch size is in qualitative agreement with an induced microwave instability if the wall (i.e. chamber discontinuities) couples to beam with a broad resistive impedance in the microwave region of the order of Z/n approximately 75 OMEGA

  12. Stripline Transversal Filter Techniques for Sub-picosecond Bunch Timing Measurements

    International Nuclear Information System (INIS)

    Measurement of time of arrival of a particle bunch is a fundamental beam diagnostic. The PEP-II/ALS/BESSY/PLS longitudinal feedback systems use a planar stripline circuit to convert a 30 ps beam BPM impulse signal into a 4 cycle tone burst at the 6th harmonic of the accelerator RF frequency (2.856 GHz). A phase-detection technique is used to measure the arrival time of these BPM impulses with 200 fs rms single-shot resolution (out of a 330 ps dynamic range). Scaled in frequency, this approach is directly applicable to FEL and other sub-ps regime pulse and timing measurements. The transversal circuit structure is applicable to measurement of microbunches or closely spaced bunches (the PEP-II/ALS/BESSY/PLS examples make independent measurements at 2 ns bunch spacing) and opens up some new diagnostic and control possibilities. This paper reviews the principles of the technique, and uses data from PEP-II operations to predict the limits of performance of this measurement scheme for arrival phase measurement. These predictions are compared with results in the literature from electro-optic sub-picosecond beam timing and phasing diagnostics

  13. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  14. Misalignment study of NLC bunch compressor

    International Nuclear Information System (INIS)

    Results of computer simulations of the misalignments in the 180 degree-bend angle second-stage bunch compressor for the NLC are described. The aim of this study was to evaluate alignment and production error tolerances. Three versions of the second stage, differing in their minimum obtainable bunch length (44 μ, 60 μ, and 86 μ) were studied. Simulations included orbit correction produced by errors and misalignments of the compressor elements. The orbit correction itself was done within some error margins. The effects of misalignments on transverse emittance growth were found. Recommendations for alleviating alignment tolerances are discussed

  15. Dancing bunches as Van Kampen modes

    CERN Document Server

    Burov, A

    2012-01-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron, RHIC and SPS can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Based on that, a method of beam stabilization is suggested.

  16. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane

    Science.gov (United States)

    Zhu, J.; Assmann, R. W.; Dohlus, M.; Dorda, U.; Marchetti, B.

    2016-05-01

    The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D) quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR) model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.

  17. Development of the bunch-by-bunch beam current acquisition system at SSRF

    Institute of Scientific and Technical Information of China (English)

    HUANG Siting; LENG Yongbin; YAN Yingbing

    2009-01-01

    In this paper, we report the development of a bunch-by-bunch beam current acquisition system. Through a waveform-reconstruction algorithm, the system realizes high equivalent sampling rate with a relatively low inherent rate. Based on the EPICS environment, information communication with other systems can be achieved. Preliminary test results in commissioning the SSRF storage ring show that the system can reconstruct the beam waveform of single bunch, providing a convenient and reliable method for the top-up operation in the future.

  18. Development of bunch by bunch transverse feedback system at Hefei light source

    International Nuclear Information System (INIS)

    This paper has introduced the development of the transverse bunch-by-bunch measurement and feedback system, including the experiment of damping the coupled bunch instability. Some key technologies on the system have been introduced: the vector calculation module as a signal processing module used to adjust the phase of the feedback signals, the feedback kicker cavity and the notch filter used to filter the DC component and revolution frequencies component in a signal and save the feedback power. The result of the feedback experiment is mentioned: the instability oscillation was damped when the feedback system was on. (authors)

  19. Application of Thomson scattering at 1.06{mu}m as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Franke, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs.

  20. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  1. Bunch length measured by 20 GHz digital sampling oscilloscope

    International Nuclear Information System (INIS)

    The paper discusses the method and principle of bunch length measured using HP54121T 20 GHz digital sampling oscilloscope in Hefei Light Source (HLS) ring. The measurement result of the bunch length and its lengthening is given. The root of mean square for bunch length is about 3.80-10.33 cm at 2-124 mA beam current. As the beam current slop over 15 mA, the bunch lengthening is obvious

  2. Multi-bunch injection for SSRF storage ring

    CERN Document Server

    Jiang, Bocheng; Wang, Baoliang; Zhang, Manzhou; Yin, Chongxian; Yan, Yingbing; Tian, Shunqiang; Wang, Kun

    2015-01-01

    The multi-bunch injection has been adopt at SSRF which greatly increases the injection rate and reduces injection time compared to the single bunch injection. The multi-bunch injection will massively reduce the beam failure time during users operation and prolong pulsed injection hardware lifetime. In this paper, the scheme to produce multi bunches for the RF electron gun is described. The refilling result and the beam orbit stability for top up operation is discussed.

  3. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gamage, Randika [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  4. 33 CFR 163.20 - Bunching of tows.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Bunching of tows. 163.20 Section... AND WATERWAYS SAFETY TOWING OF BARGES § 163.20 Bunching of tows. (a) In all cases where tows can be bunched, it should be done. (b) Tows navigating in the North and East Rivers of New York must be...

  5. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer

    International Nuclear Information System (INIS)

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  6. Fetal infection from rubeovirus or cytomegalovirus: correlation among maternal serological profiles, invasive diagnostic procedures, and long-term follow-up.

    Science.gov (United States)

    Noia, G; Masini, L; De Santis, M; Scavo, M; Pomini, F; Grillo, R; Cattani, P; Ranno, O; Caruso, A; Mancuso, S

    1998-01-01

    Different variables influence the possibility that maternal viral infection may be transmitted to the fetus, although not all fetal infections result in fetal "illness" with consequent fetopathy. As concerns the fetus, prenatal diagnosis includes invasive techniques necessary for fetal tissue sampling. These techniques carry some risks. The fetal infectious risk, as determined by maternal clinico-serological profile and according to sonographic investigation, always should be weighed against the risks and benefits of invasive diagnostic procedures. The present study re-elaborates the criteria necessary for defining fetal risk as related to the maternal serological profile. In the 26 mothers with rubeola infection, the incidence of fetal mortality was 7.7%. Fetal prognosis worsens with the precocity of eruption. In these cases the esantema is the most reliable prognostic element as an indication to perform the invasive procedure. In the 15 patients with cytomegalovirus infection, no fetal or postnatal losses occurred. Morbidity occurred in 13.3% of cases, and the two ill fetuses were classified in the same risk group. In this group of patients, the maternal serological profile is a significant predictor of fetal morbidity. PMID:9502669

  7. Bunch Compressor for Beam-Based Alignment

    CERN Document Server

    Latina, A; Schulte, D

    2007-01-01

    Misalignments in the main linac of future linear colliders can lead to significant emittance growth. Beam-based alignment algorithms, such as Dispersion Free Steering (DFS), are necessary to mitigate these effects. We study how to use the Bunch Compressor to create the off-energy beams necessary for DFS and discuss the effectiveness of this method.

  8. Single bunch stability in the ESRF

    International Nuclear Information System (INIS)

    The longitudinal wake potential/impedance and bunch lengthening/stability in ESRF were studied. A cylindrical approximation of individual components of the vacuum chamber were studied. The results are wake potential and loss parameters. Measurements are necessary when the cylindrical approximation is not realistic. The coaxial wire method which is used gives a wake potential that can be substituted for the computed wake in the analysis. A measurement bench is presently being tested at ESRF. Wake potentials (computed or measured) are added before modeling or approximation is made. The impedance model used is the broad-band resonator model. Equations are derived for the longitudinal potential well. The bunch shape can be estimated knowing the first moments of the line density function. Mode coupling cannot explain the turbulent instability threshold. The threshold has then to be estimated by crude assumptions on potential well or bunch shape distortions. In the ESRF case, this threshold corresponds to a value of asymmetry s(th) = 0.6. Above the threshold the bunch lengthens with this constant asymmetry value

  9. Electron multipacting in long-bunch beam

    OpenAIRE

    Kai-Wei, Li

    2015-01-01

    The electron multipacting is an important factor for the development of the electron cloud. There is a trailing-edge multipacting in the tail of the long-bunch beam. It can be described by the energy gain and motion of electrons. The analyses are in agreement with the simulation.

  10. Adiabatic Excitation of Longitudinal Bunch Shape Oscillations

    International Nuclear Information System (INIS)

    By modulating the rf voltage at near twice the synchrotrons frequency we are able to modulate the longitudinal bunch shape. We show experimentally that this can be done while preserving the longitudinal emittance when the rf voltage modulation is turned on adiabatically. Experimental measurements will be presented along with theoretical predictions

  11. Dancing bunches as Van Kampen modes

    International Nuclear Information System (INIS)

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation (1-3). Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron (4), RHIC (5) and SPS (6) can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Based on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron (4), and possibly for RHIC (5) and SPS (6), being in that sense an alternative to the soliton explanation (5, 20). Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. (17) agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution function

  12. Dancing bunches as Van Kampen modes

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab

    2011-03-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation [1-3]. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron [4], RHIC [5] and SPS [6] can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Based on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron [4], and possibly for RHIC [5] and SPS [6], being in that sense an alternative to the soliton explanation [5, 20]. Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. [17] agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution function

  13. Diagnostics Beamline for the SRF Gun Project

    CERN Document Server

    Kamps, T; Goldammer, K; Krämer, Dietrich; Kuske, P; Kuszynski, J; Lipka, D; Marhauser, F; Quast, T; Richter, R

    2005-01-01

    A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies be...

  14. Diagnostics Beamline for the SRF Gun Project

    Energy Technology Data Exchange (ETDEWEB)

    T. Kamps; V. Durr; K. Goldammer; D. Kramer; P. Kuske; J. Kuszynski; D. Lipka; F. Marhauser; T. Quast; D. Richter; U. Lehnert; P. Michel; J. Teichert; P. Evtushenko; I. Will

    2005-08-22

    A superconducting radio-frequency photo electron injector (SRF gun) is currently under construction by a collaboration of BESSY, DESY, FZR and MBI. The project aims at the design and setup of a CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies between 5 ps and 50 ps, two schemes using electro-optical sampling and Cherenkov radiation are detailed. The beam energy and energy spread is measured with a 180-degree spectrometer.

  15. Transverse C-band deflecting structure for longitudinal electron-bunch-diagnosis in XFEL “SACLA”

    Energy Technology Data Exchange (ETDEWEB)

    Ego, H., E-mail: ego@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI), Kouto, Sayo, Hyogo (Japan); Maesaka, H.; Sakurai, T.; Otake, Y. [RIKEN SPring-8 Center, Kouto, Sayo, Hyogo (Japan); Hashirano, T.; Miura, S. [Mitsubishi Heavy Industries, Ltd. (MHI), Itozaki, Mihara, Hiroshima (Japan)

    2015-09-21

    In the 8 GeV compact X-ray FEL “SACLA,” a single bunch of electrons is compressed to a duration of approximately 30 fs to yield a peak current of 3 kA, which creates brilliant self-amplified spontaneous emission. To measure the longitudinal profile of an ultrashort electron bunch and verify the compression, we developed a high-gradient C-band RF deflecting structure 1.8 m long and periodically loaded with racetrack-shaped irises. The irises generated a high deflection gradient for the vertically deflecting HEM11-5π/6 dipole mode and suppressed rotation of the deflection plane. The two structures were fabricated and generated a stable total deflecting voltage exceeding 60 MV and revealed the longitudinal electron-bunch profile with an effective time resolution of approximately 10 fs.

  16. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    International Nuclear Information System (INIS)

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  17. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    Science.gov (United States)

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Shimada, M.; Zen, H.; Kimura, S.; Yamamoto, N.; Hosaka, M.; Katoh, M.; Ashida, M.

    2012-03-01

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  18. Proceedings of the impedance and bunch instability workshop

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.

  19. Numerical analysis of velocity bunching for an ERL light source

    International Nuclear Information System (INIS)

    We investigate feasibility of velocity bunching in the main linac of an energy recovery linac (ERL) by a computational simulation. The simulation performed for eight TESLA-type cavities reveals successful bunch compression from 3.2 ps to 170 fs, which is in good agreement with the analytical prediction. Since the residual energy spread after velocity bunching is considerably smaller than the correlated energy spread required for magnetic compression through recirculation, velocity bunching is useful to realize short-pulse and high-brightness X-rays by ERL. The beam current limitation on velocity bunching is also discussed

  20. Proceedings of the impedance and bunch instability workshop

    International Nuclear Information System (INIS)

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring

  1. Microbunching Due to Coherent Synchrotron Radiation in a Bunch Compressor

    International Nuclear Information System (INIS)

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch. This modulation generates coherent radiation with the wave length small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation. Numerical solution of this equation for the LCLS bunch compressor reveals such an instability, in qualitative agreement with numerical simulations

  2. Beam diagnostics measurements at 3 MeV of the LINAC4 H- beam at CERN

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, G J; Gerard, D; Kolad, B; Lenardon, F; Ludwig, M; Raich, U; Roncarolo, F; Sordet, M; Tan, J; Tassan-Viol, J; Vuitton, C; Feshenko, A

    2014-01-01

    As part of the CERN LHC injector chain upgrade, LINAC4 [1, 2] will accelerate H- ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been commissioned in the LINAC4 tunnel. Diagnostic devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.

  3. Advanced diagnostics applied to a laser-driven electron-acceleration experiment

    International Nuclear Information System (INIS)

    In this paper, the interaction of 10-TW laser pulses, focused at moderately relativistic intensity, with a supersonic helium gas-jet has been investigated by varying gas density and jet nozzle. We have successfully tested several advanced diagnostic devices to characterize the plasma and the accelerated electron bunches. Plasma densities have been measured by means of a femtosecond high-resolution interferometer, while the electron beams were analyzed with a stack of radiochromic films, a beam-profile monitor, a magnetic spectrometer, and a nuclear activation setup based on gamma-ray generation via electron Bremsstrahlung. We present the results as well as the basic features and relevant details of such diagnostics whose performances can fit a large class of experiments. (authors)

  4. STELLA experiment—microbunch diagnostic

    Science.gov (United States)

    He, P.; Liu, Y.; Cline, D. B.; Babzien, M.; Gallardo, J. C.; Kusche, K. P.; Pogorelsky, I. V.; Skaritka, J.; van Steenbergen, A.; Yakimenko, V.; Kimura, W. D.

    1999-07-01

    A microbunch diagnostic system is built at the Accelerator Test Facility (ATF) of Brookhaven National Laboratory for monitoring microbunches (10-fs bunch length) produced by the Inverse Free Electron Laser accelerator in Staged Electron Laser Acceleration experiment. It is similar to one already demonstrated at the ATF. With greatly improved beam optics conditions higher order harmonic coherent transition radiation will be measurable to determine the microbunch length and shape.

  5. Software development for Indus-1 bunch filling pattern measurement

    International Nuclear Information System (INIS)

    Indus-1 is a 450 MeV synchrotron radiation source operational at RRCAT Indore. In Indus-1 storage ring, electrons are stored in two bunches. The distribution of beam current in these two bunches is termed as bunch filling pattern. In Indus-1, it is desirable to have symmetric bunch filling pattern for its optimum performance. This paper describes the development of software for bunch filling pattern measurement of Indus-1. This software measures the current distribution of the electron bunches circulating in the storage ring. To measure bunch currents wall current monitor (WCM) installed in the Indus-1 storage ring is used. Using a 500 MHz digital storage oscilloscope as a high-speed digitizer and online data processing by the developed software, measurement of online bunch filling pattern was achieved. This software has helped Indus operation crew to achieve desired bunch current symmetry in the Indus-1 storage ring. The software has the provision to store the online bunch current symmetry into a Microsoft-excel file which can be used for further analysis. Using this software, up to 99% bunch filling symmetry has been achieved by Indus operation crew. (author)

  6. Controlling multi-bunches by a fast phase switching

    International Nuclear Information System (INIS)

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a traveling wave-structure, so that each bunch receives a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e+,e-) for the high energy collisions and one (e--scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e--bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6 degree in phase). This allows a low energy spread of this third bunch at the e+-production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented

  7. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications

    OpenAIRE

    Domenica Scumaci; Laura Tammè; Claudia Vincenza Fiumara; Giusi Pappaianni; Antonio Concolino; Emanuela Leone; Maria Concetta Faniello; Barbara Quaresima; Enrico Ricevuto; Francesco Saverio Costanzo; Giovanni Cuda

    2015-01-01

    Background Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-po...

  8. Commissioning results of the APS storage ring diagnostics systems

    International Nuclear Information System (INIS)

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size (σx ∼ 150 μm, σy ∼ 50 μm), current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at ∼ 6.5 Hz frequency; observation of bunch lengthening (σ ∼ 30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations

  9. Laser diagnostics for picosecond e-beams

    International Nuclear Information System (INIS)

    We propose a novel approach to picosecond e-bunch/laser pulse synchronization and spatial alignment based upon refraction and reflection of a laser beam on a plasma column created by relativistic electrons traveling through a gas or solid optical material. The technique may be used in laser accelerators and for general subpicosecond e-beam diagnostics

  10. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  11. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  12. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  13. Test of a bunch shape monitor for high current LINACs at GSI

    International Nuclear Information System (INIS)

    Due to the efficient acceleration foreseen at the Proton-LINAC for FAIR, the longitudinal beam dynamics plays a key role for the optimization of the beam parameters. To achieve the highest current operation foreseen for the FAIR facility, a dedicated instrument for bunch shape measurement is required. At the heavy ion LINAC at GSI, a novel scheme of non-invasive Bunch Shape Monitor has been tested. Caused by the beam impact on the residual gas, secondary electrons are liberated. These electrons are accelerated by an electrostatic field, transported through a sophisticated electrostatic energy analyzer and an rf-deflector, acting as a time-to-space converter. Finally a MCP detects the electron distribution. This Bunch Shape Monitor is able to obtain longitudinal profiles down to 400 ps with a resolution of 50 ps, corresponding to 2 of the acceleration frequency, and is able to recognize bunch distortion up to 1300 ps. Systematic parameter studies for the device were performed to demonstrate the applicability and to determine the achievable resolution.

  14. Theory of cyclotron super-radiance from a moving electron bunch under group synchronism condition

    Science.gov (United States)

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Rozental, R. M.; Phelps, A. D. R.; Cross, A. W.; Ronald, K.

    2003-11-01

    A theory of cyclotron super-radiance (SR) from a moving electron bunch under a group synchronism condition has been developed. This regime occurs for the propagation of a radiation field in a waveguide or in other dispersive media such as a plasma when the electron bunch translational velocity coincides with the wave group velocity. In the comoving reference frame such emission corresponds to emission at a quasi-cut-off frequency. For a linear approximation it is shown that a bunch of electrons rotating in the magnetic field can be presented as an active resonator which possesses a spectrum of unstable eigenmodes. The gain of these modes defines the gain of the SR instability. To describe the nonlinear stage of the SR instability a time-domain approach based on a combination of a parabolic equation for wave evolution and a non-isochronous oscillator equation to describe electron azimuthal self-bunching was used. Profiles of SR pulses were found first in the comoving reference frame and then transferred into the laboratory reference frame using a Lorentz transformation. Both linear and nonlinear analyses demonstrated the advantage of SR in the regime of group synchronism as compared to cyclotron SR in free space. The fast drop of the SR pulse amplitude by detuning the magnetic field from the grazing condition was observed using the three-dimensional particle-in-cell code KARAT.

  15. Face Recognition by Extending Elastic Bunch Graph Matching with Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Rajinda Senaratne

    2009-08-01

    Full Text Available Elastic Bunch Graph Matching is one of the well known methods proposed for face recognition. In this work, we propose several extensions to Elastic Bunch Graph Matching and its recent variant Landmark Model Matching. We used data from the FERET database for experimentations and to compare the proposed methods. We apply Particle Swarm Optimization to improve the face graph matching procedure in Elastic Bunch Graph Matching method and demonstrate its usefulness. Landmark Model Matching depends solely on Gabor wavelets for feature extraction to locate the landmarks (facial feature points. We show that improvements can be made by combining gray-level profiles with Gabor wavelet features for feature extraction. Furthermore, we achieve improved recognition rates by hybridizing Gabor wavelet with eigenface features found by Principal Component Analysis, which would provide information contained in the overall appearance of a face. We use Particle Swarm Optimization to fine tune the hybridization weights. Results of both fully automatic and partially automatic versions of all methods are presented. The best-performing method improves the recognition rate up to 22.6% and speeds up the processing time by 8 times over the Elastic Bunch Graph Matching for the fully automatic case.

  16. Self-interaction of subpico-second electron bunch traveling through a chicane-based bunch-compressor

    International Nuclear Information System (INIS)

    A photo-cathode RF-gun and a chicane-based bunch-compressor are installed on an S-band linac which had been used for a UT-FEL experiment. Electron bunches extracted from the photo-cathode RF-gun are accelerated by an S-band structure up to 20 MeV and compressed by a chicane magnet. Since the bunch has very small longitudinal size and relatively low energy, coherent synchrotron radiation emitted from the bunch in the chicane creates a nonuniform energy loss in the bunch and degrades the performance of the bunch compressor. In the present paper, the performance of the bunch-compressor under the influence of coherent synchrotron radiation is studied. Preliminary experimental results are also presented

  17. Self-interaction of subpico-second electron bunch traveling through a chicane-based bunch-compressor

    CERN Document Server

    Hajima, R; Ueda, T; Sakai, F; Kotaki, H; Kondoh, S; Kando, M; Kinoshita, K; Harano, H; Watanabe, T; Uesaka, M; Dewa, H; Nakajima, K

    1999-01-01

    A photo-cathode RF-gun and a chicane-based bunch-compressor are installed on an S-band linac which had been used for a UT-FEL experiment. Electron bunches extracted from the photo-cathode RF-gun are accelerated by an S-band structure up to 20 MeV and compressed by a chicane magnet. Since the bunch has very small longitudinal size and relatively low energy, coherent synchrotron radiation emitted from the bunch in the chicane creates a nonuniform energy loss in the bunch and degrades the performance of the bunch compressor. In the present paper, the performance of the bunch-compressor under the influence of coherent synchrotron radiation is studied. Preliminary experimental results are also presented.

  18. Real-time monitoring of longitudinal electron bunch parameters by intensity-integrated and spectroscopic measurements of single coherent THz pulses

    International Nuclear Information System (INIS)

    High-gain free-electron lasers (FELs) generate intense and monochromatic photon pulses with few tens of femtosecond duration. For this purpose, electron beams are accelerated to relativistic energies and shrunk longitudinally down to micrometer size.The diagnosis of theses compressed electron bunches is a challenge especially for MHz bunch repetition rates as provided by the FEL FLASH in Hamburg. In this thesis, coherently emitted THz radiation of single electron bunches were investigated, on which the longitudinal structure is imprinted. Two instruments were used: First, the FLASH bunch compression monitors, relying on the integrated intensity measurement of diffraction radiation, were modified to determine the overall length of every bunch behind the two bunch compressors (BC). A model was developed showing that their response is independent of the exact bunch shape for lengths below 200 μm (rms). This could experimentally be verified in the range between 50 and 190 μm within 7% accuracy for themonitor behind the last BC by comparison with measurements with the transverse deflecting structure (TDS). Second, a single-shot spectrometer with five staged reflective blazed gratings has been designed, build and commissioned. With its two grating sets, the wavelength ranges from 5.5 to 44 μm and 45 to 440 μm can be simultaneously detected by 118 fast pyroelectric elements. Measurements based on transition radiation spectra were compared with profiles recorded by the TDS.The shape of the spectra as well as the reconstructed temporal profiles (using the Kramers-Kronig relation for phase retrieval) are in excellent agreement. For bunches with a charge of 50 pC, bunch lengths down to 5 μm (fhwm) could be detected.

  19. Bunch shape measurements at the INR linac

    International Nuclear Information System (INIS)

    The bunch shape analyser (BSA) has been developed in the INR and is used for the INR linac tuning. The operation of the device is based on a transverse scanning of a low energy secondary electrons emitted from a thin target crossed by an accelerated beam. The phase resolution obtained is better than 1deg (f = 198.2 MHz). The results of the bunch shape measurements at the exit of the first (20 MeV) accelerating cavity as well as at the exit of the drift tube linac part (100 MeV) of the accelerator are presented. The methods and the results of rf amplitudes and phases setting and a longitudinal emittance measurements with the help of BSA are described. (author)

  20. Single-bunch beams for BC-75

    International Nuclear Information System (INIS)

    On June 8, 1983, a beam consisting of a single S-band bunch was transported through the linac into the beam switchyard (BSY) and analyzed in the C-line (Beamline 27) at 30 GeV. The C-line toroid 2712 measured an intensity of approximately 2 x 109e-/pulse. The exact intensity was uncertain due to the limited response time of the toroid for fast, single-bunch beams. However, the linear Q intensity monitors (Lin Q) showed the transmission of the beam through the linac between Sectors 2 and 30 to be fairly flat with an intensity of 3 x 109e-/pulse in the final 19 sectors. The CID Faraday cup, which is located adjacent to the Gun Lin Q, was used to check the calibration of the Lin Q

  1. Production and Characterization of Attosecond Bunch Trains

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Christopher M.S.; Colby, Eric; Ischebeck, Rasmus; McGuinness , Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U.

    2008-06-02

    We report the production of optically spaced attosecond microbunches produced by the inverse Free Electron Laser (IFEL) process. The IFEL is driven by a Ti:sapphire laser synchronized with the electron beam. The IFEL is followed by a magnetic chicane that converts the energy modulation into the longitudinal microbunch structure. The microbunch train is characterized by observing Coherent Optical Transition Radiation (COTR) at multiple harmonics of the bunching. The experimental results are compared with 1D analytic theory showing good agreement. Estimates of the bunching factors are given and correspond to a microbunch length of 350as fwhm. The formation of stable attosecond electron pulse trains marks an important step towards direct laser acceleration.

  2. Study of electron bunching in gyroklystrons

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, M.S.; Jain, P.K., E-mail: mschauhan.rs.ece@itbhu.ac.in, E-mail: pkjain.ece@itbhu.ac.in [Center of Research in Microwave Tubes, Department of Electronics Engineering, Institute of Technology, Banaras Hindu University, Varanasi (India)

    2011-07-01

    In this paper the study of electron bunching in the output cavity of gyroklystron has been carried out to optimize the output efficiency of gyroklystron by numerically solving the coupled equations obtained from nonlinear analysis, describing the strong interaction between the beam and RF fields in the output cavity of the gyroklystron. The generalized results obtained here can be applied to optimize the output efficiency of a gyroklystron of any frequency and power. (author)

  3. THE CHAOTIC BEHAVIOR OF THE BUNCHED BEAM

    International Nuclear Information System (INIS)

    Using the self consistent Vlasov equation we discuss a wave dynamical system to describe the chaotic behavior of the bunched beam, present some results of the existence of the global solutions as the generalized functions. Disappearance of the first integral, and appearance of the wave packet chaos due to birth of the continuous spectrum in Vlasov system is studied. We propose a new concept of wave packet chaos to describe the chaotic behavior of the wave dynamical system

  4. Typical ultraviolet spectra in combination with diagnostic mass fragmentation analysis for the rapid and comprehensive profiling of chlorogenic acids in the buds of Lonicera macranthoides.

    Science.gov (United States)

    Zhang, Shui-Han; Hu, Xin; Shi, Shu-Yun; Huang, Lu-Qi; Chen, Wei; Chen, Lin; Cai, Ping

    2016-05-01

    A major challenge of profiling chlorogenic acids (CGA) in natural products is to effectively detect unknown or minor isomeric compounds. Here, we developed an effective strategy, typical ultraviolet (UV) spectra in combination with diagnostic mass fragmentation analysis based on HPLC-DAD-QTOF-MS/MS, to comprehensively profile CGA in the buds of Lonicera macranthoides. First, three CGA UV patterns were obtained by UV spectra screening. Second, 13 types of CGA classified by molecular weights were found by thorough analysis of CGA peaks using high-resolution MS. Third, selected ion monitoring (SIM) was carried out for each type of CGA to avoid overlooking of minor ones. Fourth, MS/MS spectra of each CGA were investigated. Then 70 CGA were identified by matching their UV spectra, accurate mass signals and fragmentation patterns with standards or previously reported compounds, including six caffeoylquinic acids (CQA), six diCQA, one triCQA, three caffeoylshikimic acids (CSA), six diCSA, one triCSA, three p-coumaroylquinic acids (pCoQA), four p-coumaroylcaffeoylquinic acids (pCoCQA), four feruloylquinic acids (FQA), five methyl caffeoylquinates (MCQ), three ethyl caffeoylquinates (ECQ), three dimethoxycinnamoylquinic acids (DQA), six caffeoylferuloylquinic acids (CFQA), six methyl dicaffeoylquinates (MdiCQ), four FQA glycosides (FQAG), six MCQ glycosides (MCQG), and three ethyl dicaffeoylquinates (EdiCQ). Forty-five of them were discovered from Lonicera species for the first time, and it is noted that CGA profiles were investigated for the first time in L. macranthoides. Results indicated that the developed method was a useful approach to explore unknown and minor isomeric compounds from complex natural products. PMID:26970751

  5. Laser-cooled bunched ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  6. Coherent radiation by short bunch electron beam

    International Nuclear Information System (INIS)

    The electron beam which is accelerated with a linear accelerator forms the bunch of which the length in advancing direction is several millimeter. The radiation in far infrared region and transition radiation emitted from it are the coherent radiation, in which the phase of the radiation components from many electrons are uniform. Consequently, the intensity increases remarkably. By using this, the research on the properties of transition radiation of long wavelength and Cherenkov radiation which were unknown so far because those are weak was carried out. The radiation like this is not only powerful light source, but also it can be utilized to measure the shape of the bunch of accelerated particles. The coherent effect and the intensity of coherent radiation are explained. The spectra and the intensity distribution, the interference of coherent light, the properties of transition radiation, the formation layer of Cherenkov radiation from finite tracks and so on are reported. The measurement of the shape of bunch was carried out, and line-shaped beam and laterally extended beam are explained. The application as light source is reported. (K.I.)

  7. Submicron multi-bunch BPM for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; /Fermilab

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied to measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.

  8. Status of the bunch-by-bunch fast-feedback system at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Marsching, Sebastian; Hiller, Nicole; Huttel, Erhard; Judin, Vitali; Kehrer, Benjamin; Klein, Marit; Meuter, Christina; Mueller, Anke-Susanne; Nasse, Michael; Schuh, Marcel; Smale, Nigel; Streichert, Max [Karlsruhe Institute of Technology (Germany)

    2012-07-01

    At ANKA, the synchrotron light source of the Karlsruhe Institute of Technology, a vertical bunch-by-bunch fast-feedback system is being commissioned for damping multi-bunch instabilities and performing beam-dynamics studies. The ANKA synchrotron operates at a regular beam energy of 2.5 GeV while the ANKA injector operates at only 0.5 GeV. Thus, the beam injected into the synchrotron has to be ramped up in energy. Therefore, the fast-feedback system has to be able to damp instabilities over the whole energy range from 0.5 to 2.5 GeV. In this talk, we summarize the progress of the commissioning process and present studies we performed on compensating effects caused by the change of beam energy.

  9. Collective instability of bunches due to uncaptured ions

    International Nuclear Information System (INIS)

    Ionization of the residual gas by the beam may result in numerous limitations on the operational performance of storage rings. The most dangerous are the resonant phenomena, which occur when produced ions are captured in the beam due to its space charge fields. Relevant instabilities may take place in the electron, or antiproton beam. If such a beam is bunched, the ions can be captured in the beam only in the case, when their oscillations in the beam field are stable. Over-focusing of the ions due to either a proper choice of the bunch intensity and the bunch to bunch distance, or missing of some amount of bunches providing an empty gap in the beam can help to pump ions out of the closed orbit and to eliminate these limitations. However, even in the case, when the ion oscillations in the beam are unstable, the ions leave the closed orbit during some finite time. Provided that this time is longer than the bunch to bunch period, the ions couple coherent oscillations of the beam bunches making those unstable. In particular, such an instability may take place both in the negatively charged and in the positively charged beams (protons, positrons). The long gap in the bunch train essentiality changes the nature of the instability, if the ions produced by last bunches are removed from the closed orbit prior to perturb the oscillations of the first bunch. Without such a feedback the instability becomes the beam break-up type with essentially non-exponential growth of the amplitudes of oscillations. It is important that any exponential decay will finally damp these unstable oscillations. In this report we present simplified calculations related to the collective multi-bunch instability due to uncaptured ions in positron, or electron bunches taking into account the gap in the beam. In the beam with a gap, the interaction of the bunches via uncaptured ions results in the beam break-up instability of the beam provided that ion is completely pumped out by the gap. This

  10. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications

    Science.gov (United States)

    Scumaci, Domenica; Tammè, Laura; Fiumara, Claudia Vincenza; Pappaianni, Giusi; Concolino, Antonio; Leone, Emanuela; Faniello, Maria Concetta; Quaresima, Barbara; Ricevuto, Enrico; Costanzo, Francesco Saverio; Cuda, Giovanni

    2015-01-01

    Background Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC. Methods To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19), previously reported by our group, with the aim to identify specific signatures. Results The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker. Conclusions Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer. PMID:26061043

  11. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications.

    Directory of Open Access Journals (Sweden)

    Domenica Scumaci

    Full Text Available Breast cancer (BC is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC.To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19, previously reported by our group, with the aim to identify specific signatures.The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker.Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer.

  12. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus.

    Science.gov (United States)

    Dittrich, Sabine; Tadesse, Birkneh Tilahun; Moussy, Francis; Chua, Arlene; Zorzet, Anna; Tängdén, Thomas; Dolinger, David L; Page, Anne-Laure; Crump, John A; D'Acremont, Valerie; Bassat, Quique; Lubell, Yoel; Newton, Paul N; Heinrich, Norbert; Rodwell, Timothy J; González, Iveth J

    2016-01-01

    Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP). To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require 90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i) time-to-result non-condensing humidity with a minimal shelf life of 12 months; iii) operational conditions of 5-40°C, ≤90% non-condensing humidity; and iv) minimal sample collection needs (50-100μL, capillary blood). This expert approach to define assay requirements for a bacterial vs. non-bacterial assay should guide product development, and enable targeted and timely efforts by industry partners and academic institutions. PMID:27559728

  13. On measuring charged particle bunch duration in linear accelerators

    International Nuclear Information System (INIS)

    The process of measuring short bunches is simulated by means of cavity resonators in which HF fields are excited by both positive and negative ion bunches flying through them. The simulation is aimed to assess optimum operation of a linear accelerator. A set of bunches of chance form and duration is simulated. Then the simulation of the process of restoring the duration and shape of a bunch according to data obtained from a limited number of resonators is realized. The use of 3-4 resonators tuned to 3, 6, 9 and 12-th harmonics of bunch repetition rate is shown to be sufficient for determining bunch duration with an accuracy of several per cent. When data on harmonic phases is available, one can obtain information on beam asymmetry

  14. Spectral Decoding Electro Optic Bunch Length and Arrival Time Jitter Measurements at the DESY VUV-FEL

    CERN Document Server

    Steffen, Bernd; Knabbe, Ernst-Axel; Schmidt, Bernhard; Schmüser, Peter; Winter, Axel

    2005-01-01

    For the operation of a SASE FEL, the longitudinal bunch profile is one of the most critical parameters. At the superconducting linac of the VUV-FEL at DESY, an electrooptic spectral decoding (EOSD) experiment is installed to probe the time structure of the electric field of the bunches to better than 200 fs rms. The field induced birefringence of a ZnTe crystal is detected by TiSa laser pulses that are frequency chirped to ≈ 2 ps. The time structure is encoded on the wavelength spectrum of the chirped TiSa pulse. First results on the bunch length as function of the linac parameters and on time jitter measurements are presented.

  15. Bunch Extension Monitor for LINAC of SPIRAL2 facility

    OpenAIRE

    Revenko, R.V.; Vignet, J.-L.

    2013-01-01

    Measurements of the bunch longitudinal shape of beam particles are crucial for optimization and control of the LINAC beam parameters and maximization of its integrated luminosity. The non-interceptive bunch extension monitor for LINAC of SPIRAL2 facility is being developed at GANIL. The five bunch extension monitors are to be installed on the entrance of LINAC between superconducting cavities. The principle of monitor operation is based on registration of x-rays induced by ions of accelerator...

  16. Longitudinal Bunch Lengthening Compensation in High Charge RF Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Pei, S.; Adolphsen, C.; /SLAC

    2008-10-03

    In high charge RF photoinjectors for wakefield two beam acceleration studies, due to the strong longitudinal space charge, bunch lengthening between the photocathode and photoinjector exit is a critical issue. We present beam dynamics studies of bunch lengthening in an RF photoinjector for a high charge electron beam and describe methods to compensate the bunch lengthening to various degrees. In particular, the beam dynamics for bunch charge from 1nC to 30nC are studied for an S-band 2856 MHz photoinjector.

  17. Tax Bunching, Income Shifting and Self-employment

    DEFF Research Database (Denmark)

    le Maire, Christian Daniel; Schjerning, Bertel

    This paper proposes a dynamic extension to Saez (2010) bunching formula that allows us to distinguish bunching based on real responses and income shifting. We provide direct evidence of income shifting and pronounced bunching in taxable income for the case of Danish self-employed. If income...... shifting was neglected in this case, we would conclude that taxable incomes were highly sensitive to changes in marginal tax rates. We show, however, that more than half of the observed bunching in taxable income for the self-employed is driven by intertemporal income shifting, implying a structural...

  18. Tax Bunching, Income Shifting and Self-employment

    DEFF Research Database (Denmark)

    le Maire, Christian Daniel; Schjerning, Bertel

    2013-01-01

    This paper proposes a dynamic extension to Saez (2010) bunching formula that allows us to distinguish bunching based on real responses and income shifting. We provide direct evidence of income shifting and pronounced bunching in taxable income for the Danish self-employed. If income shifting was...... neglected in this case, we would estimate a taxable income elasticity in the range of 0.43-0.53 and conclude that taxable incomes were highly sensitive to changes in marginal tax rates. We show, however, that more than half of the bunching in taxable income is driven by intertemporal income shifting...

  19. A three dimensional bunch shape monitor for the CERN proton linac

    International Nuclear Information System (INIS)

    The development, performance and test of the Three Dimensional Bunch Shape Monitor (3D-BSM) are presented. The principle of operation is based on the analysis of secondary electrons produced by a primary beam on a 0.1 mm tungsten wire to which a potential of -10 kV is applied. The horizontal particle distribution is provided by moving the wire across the primary beam. A horizontal slit located outside the primary beam area is moved vertically in order to analyse the secondary electron density distribution in the vertical direction. The longitudinal profile is measured as in the bunch length detector developed at INR earlier. The 3D-BSM has been installed and commissioned at the CERN proton linac. (author)

  20. Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector

    CERN Document Server

    Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-01-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

  1. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    International Nuclear Information System (INIS)

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers

  2. Mode-switching induced super-thermal bunching in quantum-dot microlasers

    Science.gov (United States)

    Redlich, Christoph; Lingnau, Benjamin; Holzinger, Steffen; Schlottmann, Elisabeth; Kreinberg, Sören; Schneider, Christian; Kamp, Martin; Höfling, Sven; Wolters, Janik; Reitzenstein, Stephan; Lüdge, Kathy

    2016-06-01

    The super-thermal photon bunching in quantum-dot (QD) micropillar lasers is investigated both experimentally and theoretically via simulations driven by dynamic considerations. Using stochastic multi-mode rate equations we obtain very good agreement between experiment and theory in terms of intensity profiles and intensity-correlation properties of the examined QD micro-laser’s emission. Further investigations of the time-dependent emission show that super-thermal photon bunching occurs due to irregular mode-switching events in the bimodal lasers. Our bifurcation analysis reveals that these switchings find their origin in an underlying bistability, such that spontaneous emission noise is able to effectively perturb the two competing modes in a small parameter region. We thus ascribe the observed high photon correlation to dynamical multistabilities rather than quantum mechanical correlations.

  3. Global profiling and rapid matching of natural products using diagnostic product ion network and in silico analogue database: Gastrodia elata as a case study.

    Science.gov (United States)

    Lai, Chang-Jiang-Sheng; Zha, Liangping; Liu, Da-Hui; Kang, Liping; Ma, Xiaojing; Zhan, Zhi-Lai; Nan, Tie-Gui; Yang, Jian; Li, Fajie; Yuan, Yuan; Huang, Lu-Qi

    2016-07-22

    Rapid discovery of novel compounds of a traditional herbal medicine is of vital significance for pharmaceutical industry and plant metabolic pathway analysis. However, discovery of unknown or trace natural products is an ongoing challenge. This study presents a universal targeted data-independent acquisition and mining strategy to globally profile and effectively match novel natural product analogues from an herbal extract. The famous medical plant Gastrodia elata was selected as an example. This strategy consists of three steps: (i) acquisition of accurate parent and adduct ions (PAIs) and the product ions data of all eluting compounds by untargeted full-scan MS(E) mode; (ii) rapid compound screening using diagnostic product ions (DPIs) network and in silico analogue database with SUMPRODUCT function to find novel candidates; and (iii) identification and isomerism discrimination of multiple types of compounds using ClogP and ions fragment behavior analyses. Using above data mining methods, a total of 152 compounds were characterized, and 70 were discovered for the first time, including series of phospholipids and novel gastroxyl derivatives. Furthermore, a number of gastronucleosides and phase II metabolites of gastrodin and parishins were discovered, including glutathionylated, cysteinylglycinated and cysteinated compounds, and phosphatidylserine analogues. This study extended the application of classical DPIs filter strategy and developed a structure-based screening approach with the potential for significant increase of efficiency for discovery and identification of trace novel natural products. PMID:27318507

  4. Beam transport and bunch compression at TARLA

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Avni, E-mail: avniaksoy@ankara.edu.tr [Ankara University, Ankara (Turkey); Lehnert, Ulf [HZDR, Dresden (Germany)

    2014-10-21

    The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) will operate two InfraRed Free Electron Lasers (IR-FEL) covering the range of 3–250 μm. The facility will consist of an injector fed by a thermionic triode gun with two-stage RF bunch compression, two superconducting accelerating ELBE modules operating at continuous wave (CW) mode and two independent optical resonator systems with different undulator period lengths. The electron beam will also be used to generate Bremsstrahlung radiation. In this study, we present the electron beam transport including beam matching to the undulators and the shaping of the longitudinal phase space using magnetic dispersive sections.

  5. Beam transport and bunch compression at TARLA

    International Nuclear Information System (INIS)

    The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) will operate two InfraRed Free Electron Lasers (IR-FEL) covering the range of 3–250 μm. The facility will consist of an injector fed by a thermionic triode gun with two-stage RF bunch compression, two superconducting accelerating ELBE modules operating at continuous wave (CW) mode and two independent optical resonator systems with different undulator period lengths. The electron beam will also be used to generate Bremsstrahlung radiation. In this study, we present the electron beam transport including beam matching to the undulators and the shaping of the longitudinal phase space using magnetic dispersive sections

  6. Silica aerogel radiators for bunch length measurements

    International Nuclear Information System (INIS)

    Cherenkov radiators based on silica aerogel are used to measure the electron bunch length at the photo injector test facility at DESY Zeuthen (PITZ). The energy range of those electrons is 4-5 MeV. In this paper, the time resolution defined by the usage of aerogel is calculated analytically and Monte Carlo simulations are performed. It is shown that silica aerogel gives the possibility to reach a time resolution of about 0.1 ps for high photon intensities and a time resolution of about 0.02 ps can be obtained for thin silica aerogel radiators

  7. Diagnostic and prognostic role of MRI in spinal trauma, its comparison and correlation with clinical profile and neurological outcome, according to ASIA impairment scale

    Directory of Open Access Journals (Sweden)

    Umesh C Parashari

    2011-01-01

    Full Text Available Aims and objectives: To evaluate the role of magnetic resonance imaging (MRI as a non-invasive diagnostic tool in patients with acute and chronic spinal trauma and to compare and correlate the MRI findings with those of patients′ clinical profile and neurological outcome according to ASIA impairment scale to assess prognostic and clinical value of MRI. Materials and Methods: Sixty two patients of spinal trauma formed the study group in a prospective fashion. The patients undergoing MR imaging and magnetic resonance images were analyzed and correlated with findings on neurological examination according to American Spinal Injury Association (ASIA impairment scale (AIS at the time of MRI examination and subsequently at sub-acute interval to assess neurological outcome. Statistical Analysis : Sample profile was described in terms of 95% confidence limit and proportion. To describe strength of association between extent of spinal cord injury and outcome, odd′s ratio, bivariate and multi variant analysis, was used. Pearson′s chi square (χ 2 statistics was applied to test the association between two categorical variables. Data were analyzed using statistical software package, STATA 9.2 and the difference was considered to be significant if ′P′ value was <0.05. Observation and Results: The cord edema without hemorrhage was the most common MR finding (41.5%. The others were sizable focus of hemorrhage within the cord (33%, epidural hematoma (5.0%, and normal cord (26%. Majority of MR findings correlated well with clinical profile of the patient according to ASIA impairment scale. This study demonstrated that patients with presence of sizable focus of haemorrhage had larger cord edema and more severe grade of initial ASIA impairment scale( AIS with poor recovery at follow up (P=0.032.Improvement in upper extremity was more than lower extremity. Severe cord compression was also associated with poor neurological outcome; however it was not

  8. Transverse electron beam diagnostics at REGAE

    International Nuclear Information System (INIS)

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  9. Transverse electron beam diagnostics at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Bayesteh, Shima

    2014-12-15

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  10. Electron bunches are cut down to size

    International Nuclear Information System (INIS)

    Physicists have used ultrashort pulses of light to control the motion of electrons ejected from molecules and to produce electron beams just a few nanometres in length. One of the unwritten laws of physics seems to be that ever-larger experiments are needed to observe ever-smaller objects. Bigger and bigger accelerators have been built to probe the structure of molecules, atoms, nuclei and sub-nuclear particles. Recently, however, this trend has started to reverse: tabletop accelerators and particle storage rings the size of saucers are beginning to appear in the laboratory, while atoms can be trapped on a microchip. Now we may be witnessing yet another radical reduction in size following the construction of an electron beam that measures just a few atoms across. Recently Paul Corkum and co-workers at the National Research Council (NRC) of Canada in Ottawa and the University of Sherbrooke, also in Canada, have managed to generate and manipulate bunches of electrons that extend for less than a nanometre - i.e. less than about 10 atomic diameters - in all three dimensions. The bunches are also extremely short-lived and last for just a few hundred attoseconds (10-18 s), not much longer than it would take an electron to orbit around the nucleus (H Niikura et al. 2002 Nature 417 917). In the September issue of Physics World, Armin Scrinzi of the Vienna University of Technology, Austria, describes how these 'nanobeams' are created. (U.K.)

  11. LHC Report: spring cleaning over, bunches of luminosity

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Scrubbing was completed on Wednesday 13 April. The run had seen over 1000 bunches per beam successfully circulating at 450 GeV. Measurements showed that electron cloud activity in the cold regions had been suppressed. A decrease of vacuum activity in the warm regions demonstrated that the cleaning had also achieved the required results there. As discussed in the last Bulletin, the scrubbing was performed with high intensity bunches with 50 nanosecond spacing. Given the potential luminosity performance with this spacing (more bunches, higher bunch intensity from the injectors) and in the light of the results of the scrubbing run, the decision was taken to continue the 2011 physics run with this bunch spacing.   A few issues with 50 nanosecond spacing had to be resolved when standard operations for luminosity production resumed. Once things had been tidied up, stable beams were provided for the experiments, firstly with 228 bunches per beam and then with 336 bunches per beam. The 336 bunch fill that w...

  12. Coupled-Beam and Coupled-Bunch Instabilities

    CERN Document Server

    Burov, Alexey

    2016-01-01

    A problem of coupled-beam instability is solved for two multibunch beams with slightly different revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the inter-bunch growth rates between the intra-bunch modes is described. The general analysis is applied to the RR; possibilities to stabilize the beams by means of chromaticity, feedback and Landau damping are considered.

  13. Single-shot longitudinal shape measurements of nanosecond particle bunches

    International Nuclear Information System (INIS)

    Since September 1986 the CERN Proton Synchrotron (PS) machine, as part of the LEP injector chain, is able to accelerate electrons besides the various usual hadron particles. It should be noted that owing to their peculiar dynamics, electron bunches are generally much shorter than hadron bunches. Typical values for the total bunch length in the PS are: - for Gaussian electron bunches: 0.7-5 ns, - for parabolic hadron bunches: 3-100 ns. Peak current intensities range from less than 1 mA (oxygen) to more than 50 A for high-intensity proton beams, whilst electron bunches have peak currents of about 1-3 A. In order to match the RF system and to avoid instabilities at injection in the Super Proton Synchrotron (SPS), the longitudinal dimensions (energy spread and length) of the electron bunches have to be carefully adjusted in the PS to the following nominal values before extraction: σ/sub E/E = 10-3, 4σ/sub t/ = 2.1 ns. An instrument providing a precise measurement of the bunch shape is thus of primary importance. The apparatus presented here consists of a wide-band pick-up, a transient digitizer, and a small computer for control and signal handling

  14. Bunched soliton states in weakly coupled sine-Gordon systems

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.; Blackburn, J. A.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....

  15. Very Short Bunches in MIT-Bates South Hall Ring

    CERN Document Server

    Wang, Dong; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Ihloff, Ernie; Podobedov, Boris; Tschalär, C; Wang, Defa; Wang, Fuhua; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The study of ultra-short bunches in MIT SHR storage ring with very small momentum compactions is carried out. The ultra-short bunches are to greatly enhence the coherent radiation by many orders of magnitude. The ring lattice is resigned to reach very small momentum compaction factor down to 1·10-5

  16. A Single-Shot Method for Measuring Femtosecond Bunch Length in Linac-Based Free-Electron Lasers

    International Nuclear Information System (INIS)

    There is growing interest in the generation and characterization of femtosecond and subfemtosecond pulses from linac-based free-electron lasers (FELs). In this report, following the method of Ricci and Smith (Phys. Rev. ST Accel. Beams 3, 032801 (2000)), we investigate the measurement of the longitudinal bunch profile of an ultrashort electron bunch produced by these FELs. We show that this method can be applied in a straightforward manner at x-ray FEL facilities such as the Linac Coherent Light Source by slightly adjusting the second bunch compressor followed by running the bunch on an rf zero-crossing phase of the final linac. We find that the linac wakefield strongly perturbs the measurement, and through analysis show that it can be compensated in a simple way. We demonstrate the effectiveness of this method and wakefield compensation through numerical simulations, including effects of coherent synchrotron radiation and longitudinal space charge. When used in conjunction with a high-resolution electron spectrometer, this method potentially reveals the temporal profile of the electron beam down to the femtosecond and subfemotsecond scale.

  17. Longitudinal diffusion of a proton bunch under external noise

    International Nuclear Information System (INIS)

    Evolution of longitudinal distribution of a proton bunch subjected to stationary (amplitude or phase) RF-noises is governed by a diffusion equation. Its diffusion coefficient is essentially nonlinear and, possibility, diverges near separatrix. The paper deals with the dynamical foundations of this diffusive approximation. Treated in detail is the motion of particles located either inside, or outside stationary buckets (beam halo). The formal statement of boundary-value problem for the noise-induced diffusion of a bunch (zero boundary conditions at separatrix, or at infinity) is discussed. Both these problems are solved numerically for arbitrarily long bunches. Use is made of the Finite Element Technique (spatial discretization), and of the Crank-Nicolson's scheme (time-domain integration). Computed estimates of the representative bunch life-times for the wide-band (white) noise approximation are presented. These emerge from the criteria of either bunch quality degradation, or of its population loss. 6 refs.; 11 figs

  18. Achromat with linear space charge for bunched beams

    International Nuclear Information System (INIS)

    The standard definition for an achromat is a transport line having zero values for the spatial dispersion (R16) and the angular dispersion (RZ6). For a bunched beam with linear space charge this definition of achromaticity does not hold. The linear space charge in the presence of a bend provides coupling between (a) bunch spatial width and bunch length (R1.5) and (b) bunch angular spread and bunch length (R25). Therefore, achromaticity should be redefined as a line having zero values of the spatial dispersion (R16), the angular dispersion (R26), and matrix elements R15 and R25. These additional conditions (R15=R25=0) can be achieved, for example, with two small RF cavities at appropriate locations in the achromat, to cancel space charge effects. An example of the application of this technique to the Spallation Neutron Source (SNS) high energy beam transport line is presented

  19. Cherenkov loss factor of short relativistic bunches:general approach

    CERN Document Server

    Baturin, S S

    2013-01-01

    The interaction of short relativistic charged particle bunches with waveguides and other accelerator system components is a critical issue for the development of X-ray FELs (free electron lasers) and linear collider projects. Wakefield Cherenkov losses of short bunches have been studied previously for resistive wall, disk-loaded, corrugated and dielectric loaded waveguides. It was noted in various publications [1] that if the slowdown layer is thin, the Cherenkov loss factor of a short bunch does not depend on the guiding system material and is a constant for any given transverse cross section dimensions of the waveguides. In this paper, we consider a new approach to the analysis of loss factors for relativistic short bunches and formulate a general integral relation that allows calculation of the loss factor for a short relativistic bunch passing an arbitrary waveguide system. The loss factors calculated by this new method for various types of waveguides with arbitrary thickness slowdown layers, including in...

  20. A Proof of Principle of Asymmetric Bunch Pair Merging

    CERN Document Server

    Benedikt, Michael; Vallet, J L; CERN. Geneva. AB Department

    2003-01-01

    Bunch splitting was established as a routine operation in the arsenal of rf gymnastics in the PS Complex long before it became the saving grace of the beam for the LHC. Historically, however, it was born out of the time-reversed analogue process of merging, in which a pair of bunches are combined. Hitherto, both operations have been performed with bunches of equal longitudinal emittance. Now an asymmetric merging process has been demonstrated. By combining a bunch with a small empty bucket, it is possible to deplete only the central density of the resultant particle distribution. This would allow bunches to be tailored with quasi-flat line densities. The details of the method are presented together with some measurements.

  1. Bunch mode specific rate corrections for PILATUS3 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Trueb, P., E-mail: peter.trueb@dectris.com [DECTRIS Ltd, 5400 Baden (Switzerland); Dejoie, C. [ETH Zurich, 8093 Zurich (Switzerland); Kobas, M. [DECTRIS Ltd, 5400 Baden (Switzerland); Pattison, P. [EPF Lausanne, 1015 Lausanne (Switzerland); Peake, D. J. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Radicci, V. [DECTRIS Ltd, 5400 Baden (Switzerland); Sobott, B. A. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Walko, D. A. [Argonne National Laboratory, Argonne, IL 60439 (United States); Broennimann, C. [DECTRIS Ltd, 5400 Baden (Switzerland)

    2015-04-09

    The count rate behaviour of PILATUS3 detectors has been characterized for seven bunch modes at four different synchrotrons. The instant retrigger technology of the PILATUS3 application-specific integrated circuit is found to reduce the dependency of the required rate correction on the synchrotron bunch mode. The improvement of using bunch mode specific rate corrections based on a Monte Carlo simulation is quantified. PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  2. Bunch mode specific rate corrections for PILATUS3 detectors

    International Nuclear Information System (INIS)

    The count rate behaviour of PILATUS3 detectors has been characterized for seven bunch modes at four different synchrotrons. The instant retrigger technology of the PILATUS3 application-specific integrated circuit is found to reduce the dependency of the required rate correction on the synchrotron bunch mode. The improvement of using bunch mode specific rate corrections based on a Monte Carlo simulation is quantified. PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel

  3. Simulations of the ILC Electron Gun and Electron Bunching System

    International Nuclear Information System (INIS)

    The International Linear Collider (ILC) is a proposed electron-positron collider, expected to provide insight into important questions in particle physics. A part of the global R and D effort for the ILC is the design of its electron gun and electron bunching system. The present design of the bunching system has two sub-harmonic bunchers, one operating at 108 MHz and one at 433MHz, and two 5-cell 1.3 GHz (L-band) bunchers. This bunching system has previously been simulated using the Phase and Radial Motion in Electron Linear Accelerators (PARMELA) software, and those simulations indicated that the design provides sufficient bunching and acceleration. Due to the complicated dynamics governing the electrons in the bunching system we decided to verify and expand the PARMELA results using the more recent and independent simulation software General Particle Tracer (GPT). GPT tracks the motion and interactions of a set of macro particles, each of which represent a number of electrons, and provides a variety of analysis capabilities. To provide initial conditions for the macro particles, a method was developed for deriving the initial conditions from detailed simulations of particle trajectories in the electron gun. These simulations were performed using the Egun software. For realistic simulation of the L-band bunching cavities, their electric and magnetic fields were calculated using the Superfish software and imported into GPT. The GPT simulations arrived at similar results to the PARMELA simulations for sub-harmonic bunching. However, using GPT it was impossible to achieve an efficient bunching performance of the first L-band bunching cavity. To correct this, the first L-band buncher cell was decoupled from the remaining 4 cells and driven as an independent cavity. Using this modification we attained results similar to the PARMELA simulations. Although the modified bunching system design performed as required, the modifications are technically challenging to implement

  4. Extreme short electron bunch generation based on velocity bunching in accelerating structure at t-ACTS, Tohoku University

    International Nuclear Information System (INIS)

    We are conducting a beam experiment of sub-picosecond electron bunch generation at t-ACTS (test accelerator as a coherent terahertz source), Tohoku University. In the t-ACTS, the intense coherent terahertz radiation will be generated from an undulator and an isochronous accumulator ring via producing sub-picosecond bunches. The accelerator is composed of a thermionic cathode rf gun, an alpha magnet and a 3 m-long accelerating structure. Velocity bunching scheme in accelerating structure is applied to generate the short electron bunch. The thermionic rf gun consists of two independent cavities has been developed, which is capable of manipulating the beam longitudinal phase space. To produced femtosecond electron bunch, the longitudinal phase space distribution of the beam entering the accelerating structure is optimized by changing the rf gun parameters. The bunch length is measured by observing an optical tradition radiation using a streak camera. In the study of femtosecond electron bunch generation, a relation between the rf gun parameters and the bunch length after compression was investigated. The preliminary results of experiments are described in this report. (author)

  5. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    Science.gov (United States)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  6. On compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko V. N.; Wang, G.

    2014-05-09

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator, or, in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. Using a proper transverse profile of the electron beam (or plasma column) for a coasting beam would compensate both the tune shift and the tune spread in the hadron beam. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  7. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  8. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  9. Genetic variation in sugar composition among muscadine, Florida hybrid bunch and bunch grape genotypes

    OpenAIRE

    Basha SM; Vasanthaiah HK; Kambiranda DM; Easwaran K; Queeley G

    2012-01-01

    Sheikh M Basha,1 Hemanth KN Vasanthaiah,1 Devaiah M Kambiranda,1 Kokila Easwaran,2 Gilbert Queeley31Center For Viticulture and Small Fruit Research, Florida A&M University, Tallahassee, FL, USA; 2Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India; 3Cooperative Extension, College of Engineering Technology and Agricultural Sciences, Florida A&M University, Tallahassee, FL, USAAbstract: Sugar content and composition of the bunch grape (Vitis...

  10. Reflective optical system for time-resolved electron bunch measurements at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Rosbach, K.; Baehr, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roensch-Schulenburg, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2011-01-15

    The Photo-Injector Test facility at DESY, Zeuthen site (PITZ), produces pulsed electron beams with low transverse emittance and is equipped with diagnostic devices for measuring various electron bunch properties, including the longitudinal and transverse electron phase space distributions. The longitudinal bunch structure is recorded using a streak camera located outside the accelerator tunnel, connected to the diagnostics in the beam-line stations by an optical system of about 30 m length. This system mainly consists of telescopes of achromatic lenses, which transport the light pulses and image them onto the entrance slit of the streak camera. Due to dispersion in the lenses, the temporal resolution degrades during transport. This article presents general considerations for time-resolving optical systems as well as simulations and measurements of specific candidate systems. It then describes the development of an imaging system based on mirror telescopes which will improve the temporal resolution, with an emphasis on off-axis parabolic mirror systems working at unit magnification. A hybrid system of lenses and mirrors will serve as a proof of principle. (orig.)

  11. Reflective optical system for time-resolved electron bunch measurements at PITZ

    International Nuclear Information System (INIS)

    The Photo-Injector Test facility at DESY, Zeuthen site (PITZ), produces pulsed electron beams with low transverse emittance and is equipped with diagnostic devices for measuring various electron bunch properties, including the longitudinal and transverse electron phase space distributions. The longitudinal bunch structure is recorded using a streak camera located outside the accelerator tunnel, connected to the diagnostics in the beam-line stations by an optical system of about 30 m length. This system mainly consists of telescopes of achromatic lenses, which transport the light pulses and image them onto the entrance slit of the streak camera. Due to dispersion in the lenses, the temporal resolution degrades during transport. This article presents general considerations for time-resolving optical systems as well as simulations and measurements of specific candidate systems. It then describes the development of an imaging system based on mirror telescopes which will improve the temporal resolution, with an emphasis on off-axis parabolic mirror systems working at unit magnification. A hybrid system of lenses and mirrors will serve as a proof of principle. (orig.)

  12. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    Science.gov (United States)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  13. LHC Pilot Bunches from the CERN PS Booster

    CERN Document Server

    Benedikt, Michael

    2003-01-01

    For the first commissioning phase of the LHC, a single proton bunch is required. The production of this so-called "LHC pilot bunch" will follow a different scheme than the one of the nominal LHC proton bunch train. Both the transverse and the longitudinal LHC bunch characteristics should already be established in the PS Booster. The parameter space for the LHC pilot bunch spans a factor 66 in beam brightness. To cover the whole parameter space, a mixture of several ingredients was required: intensity adjustment with low voltage rf-capture; definition of the transverse emittance with shavers; controlled blow-up followed by longitudinal shaving to define the longitudinal emittance. All beam variants were produced on harmonic two, with only one bunch being sent to the downstream accelerator chain. To cover also the lowest intensity side, the Linac beam was reduced by a factor 5 with a "sieve". The pilot bunches corresponding to the "corners" of the parameter space and a few selected inner reference points were s...

  14. Spectrum analysis in beam diagnostics

    International Nuclear Information System (INIS)

    In this article, we discuss fundamentals of the spectrum analysis in beam diagnostics, where several important particle motions in a circular accelerator are considered. The properties of the Fourier transform are presented. Then the coasting and the bunched beam motion in both longitudinal and transverse are studied. The discussions are separated for the signal particle, multiple particle, and the Schottky noise cases. To demonstrate the interesting properties of the beam motion spectrum, time domain functions are generated, and then the associated spectra are calculated and plotted. In order to show the whole picture in a single plot, some data have been scaled, therefore they may not be realistic in an accelerator

  15. Ponderomotive Laser Acceleration and Focusing in Vacuum: Application for Attosecond Electron Bunches

    International Nuclear Information System (INIS)

    A novel approach for the generation of ultrabright attosecond electron bunches is proposed, based on acceleration in vacuum by a short laser pulse. The laser pulse profiles is tailored such that the electrons are both focused and accelerated by the ponderomotive force of the light. Using time-averaged equations of motion analytical criteria for optimal regime of acceleration are found. It is shown that for realistic laser parameters a beam with up to 106 particles and normalized transverse and longitudinal emittances -8 m can be produced

  16. Bunching for Shorter Damping Rings for the ILC

    CERN Document Server

    Neuffer, David V

    2005-01-01

    A variant rearrangement of the bunch trains for the ILC that enables much shorter damping rings is presented. In a particular example the ~2280 bunches are regrouped into ~450 subtrains of five adjacent bunches. These subtrains are extracted from the damping rings at ~2.2 ms intervals, obtaining the 1ms macrobunch length of the baseline TESLA collider scenario. If the baseline damping rf frequency is 325 MHz and the kicker rise and fall times are ~20 ns, a ring circumference of ~4.5km is required. Variations of the scheme could easily reduce the circumference to ~3km, and faster kickers could reduce it even further.

  17. Measurement of bunch time-structure in KEK PF

    International Nuclear Information System (INIS)

    The time-structure of the bunches in the KEK-PF storage ring under the single bunch condition was measured by means of a photon counting system installed in beamline 21. When the jitter in the electronic system is negligible, the response of the whole system is finally determined by a transit time spread (TTS) of a photomultiplier (PMT). The TTS of the PMT was measured with a picosecond pulse laser system, pulse width of which was about 7 ps in FWHM. A current dependence of the longitudinal bunch shape was observed with the improved system and the authors found the increase of the asymmetry with the increase of the current

  18. Developing electron beam bunching technology for improving light sources

    International Nuclear Information System (INIS)

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source

  19. Velocity bunching in travelling wave accelerator with low acceleration gradient

    CERN Document Server

    Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka

    2013-01-01

    We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.

  20. Chicane and wiggler based bunch compressors for future linear colliders

    International Nuclear Information System (INIS)

    In this paper, we discuss bunch compressors for future linear colliders. In the past, the bunch compression optics has been based upon achromatic cells using strong sextupoles to correct the dispersive and betatron chromaticity. To preserve the very small emittances required in most future collider designs, these schemes tend to have very tight alignment tolerances. Here, we describe bunch compressors based upon magnetic chicanes or wigglers which do need sextupoles to correct the chromatic emittance dilution. The dispersive chromaticity cancels naturally and the betatron chromaticity is not a significant source of emittance dilution. Thus, these schemes allow for substantially reduced alignment tolerances. Finally, we present a detailed design for the NLC linear collider

  1. Multi-Stage Bunch Compressors for the International Linear Collider

    OpenAIRE

    Tenenbaum, Peter G.; Raubenheimer, Tor O.; Wolski, Andrzej

    2005-01-01

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1 percent, compared to over 3 percent for a single-stage design. Analytic and simulation studies of the multi-stage bunch compr...

  2. Multi-Stage Bunch Compressors for the International Linear Collider

    International Nuclear Information System (INIS)

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed

  3. Multi-Stage Bunch Compressors for the International Linear Collider

    CERN Document Server

    Tenenbaum, P G; Wolski, Andrzej

    2005-01-01

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.

  4. Feasibility of Diagnostics Undulator Studies at ASTA

    OpenAIRE

    Lumpkin, A. H.; Wendt, M.; Byrd, J. M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermilab. With a 1-ms macropulse composed of up to 3000 micropulses and with beam energies projected from 45 to 800 MeV, the need for non-intercepting diagnostics for beam size, position, energy, and bunch length is clear. In addition to the rf BPMs, optical synchrotron radiation (OSR), and optical diffraction radiation (ODR) techniques already planned, we propose the use of undulator radiation fr...

  5. Investigation of the phase space distribution of electron bunches at the FLASH-linac using a transverse deflecting structure

    Energy Technology Data Exchange (ETDEWEB)

    Roehrs, M.

    2008-06-15

    The operation of a high-gain free-electron laser (FEL) puts stringent demands on the peak current, transverse emittance and energy spread of the electron beam. At the Free Electron Laser in Hamburg (FLASH), a transverse deflecting structure (TDS) has been installed to investigate these electron beam parameters. The radio-frequency electromagnetic field in the TDS is utilized to deflect the beam electrons vertically as a function of time so that the charge distribution in the longitudinal-horizontal plane can be imaged with optical transition radiation screens. Using this technique, the single-bunch current profile was measured with an unprecedented resolution of about 10 {mu}m (30 fs) under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Appropriate variations of the focal strengths of quadrupole magnets allowed for the measurement of the horizontal emittance as a function of the longitudinal position within a bunch (slice emittance) with a longitudinal resolution in the order of 10 {mu}m. While the slice emittance in the peak current region was measured to be significantly larger than deduced from properties of the FEL radiation, tomographic methods revealed a bunch region of small horizontal emittance and high current. The observed increase in slice emittance in the peak current region was found to be caused by coherent emission of synchrotron radiation within bending magnets. (orig.)

  6. Investigation of the phase space distribution of electron bunches at the FLASH-linac using a transverse deflecting structure

    International Nuclear Information System (INIS)

    The operation of a high-gain free-electron laser (FEL) puts stringent demands on the peak current, transverse emittance and energy spread of the electron beam. At the Free Electron Laser in Hamburg (FLASH), a transverse deflecting structure (TDS) has been installed to investigate these electron beam parameters. The radio-frequency electromagnetic field in the TDS is utilized to deflect the beam electrons vertically as a function of time so that the charge distribution in the longitudinal-horizontal plane can be imaged with optical transition radiation screens. Using this technique, the single-bunch current profile was measured with an unprecedented resolution of about 10 μm (30 fs) under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Appropriate variations of the focal strengths of quadrupole magnets allowed for the measurement of the horizontal emittance as a function of the longitudinal position within a bunch (slice emittance) with a longitudinal resolution in the order of 10 μm. While the slice emittance in the peak current region was measured to be significantly larger than deduced from properties of the FEL radiation, tomographic methods revealed a bunch region of small horizontal emittance and high current. The observed increase in slice emittance in the peak current region was found to be caused by coherent emission of synchrotron radiation within bending magnets. (orig.)

  7. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  8. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  9. Investigation of transient processes at the DELTA electron storage ring using a digital bunch-by-bunch feedback system

    International Nuclear Information System (INIS)

    At the 1.5-GeV synchrotron radiation source DELTA, operated by the TU Dortmund University, intensive synchrotron radiation in the spectral range from hard X-rays to THz radiation is generated by the circular deflection of highly relativistic electron bunches. Interacting with the vacuum chamber wall, the electron bunches create electric fields, which can act back on subsequent bunches. With increasing beam current, the excitation is enhanced so that the electron beam is unstable, which means that the electron bunches oscillate longitudinally or transversely relative to their reference position. The oscillations reduce the quality of the synchrotron radiation and limit the maximum storable beam current. Within the scope of this thesis, the beam instabilities at the storage ring were systematically investigated. A digital bunch-by-bunch feedback system was installed and commissioned, which allows to detect and digitize the position of each electron bunch at each turn. Based on the input signal, a correction signal is calculated in order to suppress transverse and longitudinal oscillation of the bunches. In addition, it is possible to excite dedicated bunches. The systematic excitation of all coupled-bunch modes allowed for the first time to determine the damping rates of all 192 eigenmodes of the electron beam. The current dependence of the damping rates was investigated and an instability threshold was found. Besides the investigation of multibunch instabilities, single-bunch instabilities are discussed. In addition, the acquisition unit of the digital feedback system can be triggered on external events. This was used to investigate the injection process and beam losses. It was shown that the transverse feedback system increases the injection efficiency. Another aspect of this thesis is the improvement of the signal quality of ultrashort coherent synchrotron radiation pulses, which are generated by the short-pulse facility at DELTA. The short-pulse facility is based

  10. Investigation of transient processes at the DELTA electron storage ring using a digital bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Hoener, Markus

    2015-07-01

    At the 1.5-GeV synchrotron radiation source DELTA, operated by the TU Dortmund University, intensive synchrotron radiation in the spectral range from hard X-rays to THz radiation is generated by the circular deflection of highly relativistic electron bunches. Interacting with the vacuum chamber wall, the electron bunches create electric fields, which can act back on subsequent bunches. With increasing beam current, the excitation is enhanced so that the electron beam is unstable, which means that the electron bunches oscillate longitudinally or transversely relative to their reference position. The oscillations reduce the quality of the synchrotron radiation and limit the maximum storable beam current. Within the scope of this thesis, the beam instabilities at the storage ring were systematically investigated. A digital bunch-by-bunch feedback system was installed and commissioned, which allows to detect and digitize the position of each electron bunch at each turn. Based on the input signal, a correction signal is calculated in order to suppress transverse and longitudinal oscillation of the bunches. In addition, it is possible to excite dedicated bunches. The systematic excitation of all coupled-bunch modes allowed for the first time to determine the damping rates of all 192 eigenmodes of the electron beam. The current dependence of the damping rates was investigated and an instability threshold was found. Besides the investigation of multibunch instabilities, single-bunch instabilities are discussed. In addition, the acquisition unit of the digital feedback system can be triggered on external events. This was used to investigate the injection process and beam losses. It was shown that the transverse feedback system increases the injection efficiency. Another aspect of this thesis is the improvement of the signal quality of ultrashort coherent synchrotron radiation pulses, which are generated by the short-pulse facility at DELTA. The short-pulse facility is based

  11. Real-time monitoring of longitudinal electron bunch parameters by intensity-integrated and spectroscopic measurements of single coherent THz pulses; Echtzeitbestimmung longitudinaler Elektronenstrahlparameter mittels absoluter Intensitaets- und Spektralmessung einzelner kohaerenter THz Strahlungspulse

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan

    2012-12-15

    High-gain free-electron lasers (FELs) generate intense and monochromatic photon pulses with few tens of femtosecond duration. For this purpose, electron beams are accelerated to relativistic energies and shrunk longitudinally down to micrometer size.The diagnosis of theses compressed electron bunches is a challenge especially for MHz bunch repetition rates as provided by the FEL FLASH in Hamburg. In this thesis, coherently emitted THz radiation of single electron bunches were investigated, on which the longitudinal structure is imprinted. Two instruments were used: First, the FLASH bunch compression monitors, relying on the integrated intensity measurement of diffraction radiation, were modified to determine the overall length of every bunch behind the two bunch compressors (BC). A model was developed showing that their response is independent of the exact bunch shape for lengths below 200 {mu}m (rms). This could experimentally be verified in the range between 50 and 190 {mu}m within 7% accuracy for themonitor behind the last BC by comparison with measurements with the transverse deflecting structure (TDS). Second, a single-shot spectrometer with five staged reflective blazed gratings has been designed, build and commissioned. With its two grating sets, the wavelength ranges from 5.5 to 44 {mu}m and 45 to 440 {mu}m can be simultaneously detected by 118 fast pyroelectric elements. Measurements based on transition radiation spectra were compared with profiles recorded by the TDS.The shape of the spectra as well as the reconstructed temporal profiles (using the Kramers-Kronig relation for phase retrieval) are in excellent agreement. For bunches with a charge of 50 pC, bunch lengths down to 5 {mu}m (fhwm) could be detected.

  12. Suppression of bunch transverse instabilities by the chamber asymmetry

    International Nuclear Information System (INIS)

    Axial asymmetry of a vacuum chamber gives rise to wake forces producing betatron tune shifts for tail particles. In the result, the bunch transverse instabilities could be suppressed or even eliminated

  13. MULTIPLE SINGLE BUNCH EXTRACTION TO THE AGS SWITCHYARD

    International Nuclear Information System (INIS)

    In this report we will describe the multiple single bunch extraction system as utilized to deliver beams to the Brookhaven's Alternating Gradient Synchrotron (AGS) switchyard area. We will describe modifications of the AGS switchyard, necessary to allow it to accept bunched beam, and results of the first commissioning of this system. The AGS Switchyard has for many years been used to simultaneously deliver (unbunched) resonant extracted beam to a set of fixed target experiments. In order to accommodate new fixed target experiments which require bunched beams, a method of sending the bunched beams to the AGS Switchyard was required. In addition, by using the AGS switchyard instead of the upstream section of the Brookhaven's Relativistic Heavy Ion Collider (RHIC) injection line the accelerators can be reconfigured quickly and efficiently for filling RHIC. We will present results of the commissioning of this system, which was done in January 2001

  14. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  15. MULTIPLE SINGLE BUNCH EXTRACTION TO THE AGS SWITCHYARD.

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,K.A.; AHRENS,L.; GASSNER,D.; GLENN,J.W.; ROSER,T.; SMITH,G.; TSOUPAS,N.; VAN ASSELT,W.; ZENO,K.

    2001-06-18

    In this report we will describe the multiple single bunch extraction system as utilized to deliver beams to the Brookhaven's Alternating Gradient Synchrotron (AGS) switchyard area. We will describe modifications of the AGS switchyard, necessary to allow it to accept bunched beam, and results of the first commissioning of this system. The AGS Switchyard has for many years been used to simultaneously deliver (unbunched) resonant extracted beam to a set of fixed target experiments. In order to accommodate new fixed target experiments which require bunched beams, a method of sending the bunched beams to the AGS Switchyard was required. In addition, by using the AGS switchyard instead of the upstream section of the Brookhaven's Relativistic Heavy Ion Collider (RHIC) injection line the accelerators can be reconfigured quickly and efficiently for filling RHIC. We will present results of the commissioning of this system, which was done in January 2001.

  16. A bunch compressor for the Next Linear Collider

    International Nuclear Information System (INIS)

    A bunch compressor design for the Next Linear Collider (NLC) is described. The compressor reduces the bunch length by a factor of 40 in two stages. The first stage at 2 GeV consists of an rf section and a wiggler. The second stage at 10 GeV is formed by an arc, an rf section, and a chicane. The final bunch phase is insensitive to initial phase errors and to beam loading in the intermediate S-band pre-linac. Residual longitudinal aberrations of the system are partially compensated. The bunch compressor encompasses a solenoid spin-rotator system at 2 GeV that allows complete control over the spin orientation

  17. Compensation of longitudinal nonlinearities in the NLC bunch compressor

    International Nuclear Information System (INIS)

    The X-Band linac of the Next Linear Collider (NLC) will accelerate bunches of about 100 μm rms length to energies of 250-750 GeV. The task of the NLC bunch compressor is to reduce the initial bunch length of 4-5 mm, at extraction from the damping ring, by a factor of 40, to the desired value. This task is accomplished in two separate stages. The first stage at 2 GeV consists of an rf section and a wiggler. The second stage at 10 GeV is formed by an arc, an rf section, and a chicane. The system is designed such that the final bunch phase is insensitive to initial phase errors and to beam-loading in the intermediate S-band pre-linac. Additional decelerating rf sections are employed to compensate significant longitudinal aberrations

  18. Compensation of Longitudinal Nonlinearities in the NLC Bunch Compressor

    International Nuclear Information System (INIS)

    The X-band linac of the Next Linear Collider (NLC) will accelerate bunches of about 100 μm rms length to energies of 250 endash 750 GeV. The task of the NLC bunch compressor is to reduce the initial bunch length of 4 endash 5 mm, at extraction from the damping ring, by a factor of 40, to the desired value. This task is accomplished in two separate stages. The first stage at 2 GeV consists of an rf section and a wiggler. The second stage at 10 GeV is formed by an arc, an rf section, and a chicane. The system is designed such that the final bunch phase is insensitive to initial phase errors and to beam-loading in the intermediate S-band pre-linac. Additional decelerating rf sections are employed to compensate significant longitudinal aberrations. copyright 1996 American Institute of Physics

  19. Characterization of laser-driven single and double electron bunches with a permanent magnet quadrupole triplet and pepper-pot mask

    Science.gov (United States)

    Manahan, G. G.; Brunetti, E.; Aniculaesei, C.; Anania, M. P.; Cipiccia, S.; Islam, M. R.; Grant, D. W.; Subiel, A.; Shanks, R. P.; Issac, R. C.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2014-10-01

    Electron beams from laser-plasma wakefield accelerators have low transverse emittance, comparable to those from conventional radio frequency accelerators, which highlights their potential for applications, many of which will require the use of quadrupole magnets for optimal electron beam transport. We report on characterizing electron bunches where double bunches are observed under certain conditions. In particular, we present pepper-pot measurements of the transverse emittance of 120-200 MeV laser wakefield electron bunches after propagation through a triplet of permanent quadrupole magnets. It is shown that the normalized emittance at source can be as low as 1 π mm mrad (resolution limited), growing by about five times after propagation through the quadrupoles due to beam energy spread. The inherent energy-dependence of the magnets also enables detection of double electron bunches that could otherwise remain unresolved, providing insight into the self-injection of multiple bunches. The combination of quadrupoles and pepper-pot, in addition, acts as a diagnostic for the alignment of the magnetic triplet.

  20. Bunch shape monitors using low energy secondary electron emission

    Science.gov (United States)

    Feschenko, A. V.

    1992-07-01

    To measure a longitudinal charge distribution in an ion linac beam it is preferable to apply bunch shape monitors using a low energy secondary emission electrons. Monitors of this type and their development are discussed. Different varieties of rf deflectors for a transverse modulation of secondary electrons are considered. Preliminary parameters of a bunch shape monitor for the SSC linac are presented. A detector to measure both longitudinal and transverse distributions of a two component ion beam is described.

  1. A bunch extension monitor for the SPIRAL2 LINAC

    OpenAIRE

    Vignet, J.L.; Revenko, R.

    2014-01-01

    Measurements of the bunch longitudinal shape of beamparticles are crucial for optimization and control ofLINAC beam parameters and maximization of itsintegrated luminosity. The non-interceptive bunchextension monitor for the LINAC of SPIRAL2 facility isbeing developed at GANIL. Five bunch extensionmonitors will be installed at the beginning of the LINACbetween superconducting cavities. The principle ofoperation is based on the registration of x-rays induced byions of accelerator beam interact...

  2. Bunch shape monitors using low energy secondary electron emission

    International Nuclear Information System (INIS)

    To measure a longitudinal charge distribution in an ion linac beam it is preferable to apply bunch shape monitors using a low energy secondary emission electrons. Monitors of this type and their development are discussed. Different varieties of rf deflectors for a transverse modulation of secondary electrons are considered. Preliminary parameters of a bunch shape monitor for the SSC linac are presented. A detector to measure both longitudinal and transverse distributions of a two component ion beam is described

  3. Discontinuity of Lyapunov Exponents Near Fiber Bunched Cocycles

    OpenAIRE

    Butler, Clark

    2015-01-01

    We give examples of locally constant $SL(2,\\mathbb{R})$-cocycles over a Bernoulli shift which are discontinuity points for Lyapunov exponents in the H\\"older topology and are arbitrarily close to satisfying the fiber bunching inequality. Backes, Brown, and the author have shown that the Lyapunov exponents vary continuously when restricted to the space of fiber bunched H\\"older continuous cocycles. Our examples give evidence that this theorem is optimal within certain families of H\\"older cocy...

  4. VELOCITY BUNCHING OF HIGH-BRIGHTNESS ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Musumeci, P; Rosenzweig, J B; Brown, W J; England, R J; Ferrario, M; Jacob, J S; Thompson, M C; Travish, G; Tremaine, A M; Yoder, R

    2004-10-15

    Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS) experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly in ICS experiments

  5. Torrefaction of Pelletized Oil Palm Empty Fruit Bunches

    OpenAIRE

    Nyakuma, Bemgba Bevan; Ahmad, Arshad; Johari, Anwar; Abdullah, Tuan Amran Tuan; Oladokun, Olagoke

    2015-01-01

    The torrefaction of oil palm Empty Fruit Bunch (EFB) briquettes was examined in this study. The results indicate that temperature significantly influenced the mass yield, energy yield and heating value of oil palm empty fruit bunch (OPEFB) briquettes during torrefaction. The solid uniform compact nature of EFB briquettes ensured a slow rate of pyrolysis or devolatization which enhanced torrefaction. The mass yield decreased from 79.70 % to 43.03 %, energy yield from 89.44 % to 64.27 % during ...

  6. Longitudinal bunch dynamics study with coherent synchrotron radiation

    Science.gov (United States)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  7. Bunch modulation in LWFA blowout regime

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, Jiří; Klimo, Ondřej; Vieira, J.; Korn, Georg

    Bellingham : SPIE, 2015 - (Ledingham, K.; Esarey, E.; Spohr, K.; Schroeder, C.; McKenna, P.; Gruner, F.; Bolton, P.), "95141E-1"-"95141E-7" ISBN 978-1-62841-635-0. ISSN 0277-786X. [Laser Acceleration of Electrons, Protons, and Ions III and Medical Applications of Laser-Generated Beams of Particles III. Praha (CZ), 13.04.2015-15.04.2015] R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : electron injection * bunch modulation * LWFA Subject RIV: BC - Control Systems Theory

  8. An improved injector bunching geometry for ATLAS

    Indian Academy of Sciences (India)

    Richard C Pardo; J Bogaty; B E Clifft; S Sherementov; P Strickhorn

    2002-12-01

    The bunching system of the ATLAS positive ion injector (PII) has been improved by relocating the harmonic buncher to a point significantly closer to the second stage sine-wave buncher and the injector LINAC. The longitudinal optics design has also been modified and now employs a virtual waist from the harmonic buncher feeding the second stage sine-wave buncher. This geometry improves the handling of space charge for high-current beams, significantly increases the capture fraction into the primary rf bucket and reduces the capture fraction of the unwanted parasitic rf bucket. Total capture and transport through the PII has been demonstrated as high as 80% of the injected dc beam while the population of the parasitic, unwanted rf bucket is typically less than 3% of the total transported beam. To remove this small residual parasitic component a new traveling-wave transmission-line chopper has been developed reducing both transverse and longitudinal emittance growth from the chopping process. This work was supported by the U.S. Department of Energy under contract W-31-109-ENG-38.

  9. Selective component degradation of oil palm empty fruit bunches (OPEFB) using high-pressure steam

    International Nuclear Information System (INIS)

    In order to accelerate the bioconversion process of press-shredded empty fruit bunches (EFB), the effect of high-pressure steam pre-treatment (HPST) in degrading the lignocellulosic structure was investigated. HPST was carried out under various sets of temperature/pressure conditions such as 170/0.82, 190/1.32, 210/2.03, and 230 °C/3.00 MPa. It was noted that after HPST, the surface texture, color, and mechanical properties of the treated EFB had obviously altered. Scanning electron micrographs of the treated EFB exhibited effective surface erosion that had occurred along the structure. Moreover, the Fourier transform infrared and thermogravimetric analyses showed the removal of silica bodies and hemicellulose ingredients. X-ray diffraction profiles of the treated EFB indicated significant increases in crystallinity. These results reveal that HPST is an effective pre-treatment method for altering the physicochemical properties of the EFB and enhancing its biodegradability characteristics for the bioconversion process. -- Highlights: ► Bioconversion of empty fruit bunches (EFB) was accelerated by high-pressure steam pre-treatment. ► Scanning electron micrographs exhibited surface erosion as well as composting over 20 days. ► FT-IR and TG data showed the selective removal of silica bodies and hemicellulose ingredient. ► X-ray diffraction profiles of the treated EFB indicated significant increases in crystallinity

  10. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  11. Proposed development of novel diagnostics for intense, ultrafast laser-plasma experiments at JAEA-KPSI

    International Nuclear Information System (INIS)

    Development of new diagnostics is critical for future laser-plasma accelerators, laser-driven light sources and for x-ray FELs. Recent laser wakefield electron acceleration developments and novel beam-based light source schemes (such as free electron lasers) obviate the need for next generation ultrafast diagnostics, capable of temporal resolution of a few femtoseconds (and in some cases attoseconds) for laser pulses (high order harmonics), x-ray pulses and electron bunches. Single shot detection capability in noninvasive and parasitic modes is also important. Alterations of laser pulse spectra and the associated dynamics can be informative diagnostics. The portion of a high intensity laser pulse that is transmitted through a self-induced underdense plasma (such as in laser wakefield acceleration LWFA schemes) carries the effects of plasma processes it has experienced. A distinction between the self-modulated laser wakefield (SMLWF) acceleration regime and the forced laser wakefield (FLWF) acceleration regime is in the spectral signature of the transmitted ir laser pulse. The former regime generates sidebands from stimulated Raman forward scattering (SRS-F) and the latter exhibits general spectral broadening that evidences ir laser pulse compression. Transmitted spectral effects can diagnose these acceleration regimes. Existing noninvasive electro-optic (EO) schemes for detection of ultrashort electron bunches are limited by material properties to temporal resolution at the 50-100 femtosecond level. While timing jitter at conventional accelerators is of this order (or greater), single bunch longitudinal profile measurements can require improvement of at least an order of magnitude. A new FO technique is described here which monitors enhancement and associated dynamics of spectral components in a probe pulse. Three correlation schemes for detecting ultrashort x-ray pulses are described. Two-photon absorption in tailored ion targets is proposed for scanning auto

  12. Influence of storage conditions on MALDI-TOF MS profiling of gingival crevicular fluid: Implications on the role of S100A8 and S100A9 for clinical and proteomic based diagnostic investigations.

    Science.gov (United States)

    Preianò, Mariaimmacolata; Maggisano, Giuseppina; Lombardo, Nicola; Montalcini, Tiziana; Paduano, Sergio; Pelaia, Girolamo; Savino, Rocco; Terracciano, Rosa

    2016-03-01

    Gingival crevicular fluid (GCF) may be a source of diagnostic biomarkers of periodontitis/gingivitis. However, peptide fingerprints may change, depending on GCF collection, handling and storage. We evaluated how storage conditions affect the quality and the reproducibility of MALDI-TOF profiles of this fluid. GCF was collected on paper strips from four subjects with healthy gingiva. Our findings demonstrated that sample storage conditions significantly affect GCF peptide pattern over time. Specifically, the storage of GCF immediately extracted from paper strips generates less variations in molecular profiles compared to the extraction performed after the storage. Significant spectral changes were detected for GCF samples stored at -20°C directly on the paper strips and extracted after three months, in comparison to the freshly extracted control. Noteworthy, a significant decrease in the peak area of HNP-3, S100A8, full-length S100A9 and its truncated form were detected after 3 months at -80°C. The alterations found in the "stored GCF" profile not only may affect the pattern-based biomarker discovery but also make its use not adequate for in vitro diagnostic test targeting S100A8, S100A9 proposed as potential diagnostic biomarkers for periodontal disease. In summary, this study shows that the best preserved signatures were obtained for the GCF samples eluted in trifluoroacetic acid and then immediately stored at -80°C for 1 month. The wealth of information gained from our data on protein/patterns stability after storage might be helpful in defining new protocols which enable optimal preservation of GCF specimen. PMID:26711623

  13. Real-time diagnostics at ASDEX Upgrade-Architecture and operation

    International Nuclear Information System (INIS)

    Diagnostics at ASDEX Upgrade have available a very large number of highly developed measuring channels. The prospect of making this wealth of information usable for plasma optimisation led to the implementation of a number of diagnostics running data acquisition in real-time (RT). Ultimately, this development aims to achieve a network of intelligent diagnostics delivering analysed data for high-level plasma performance control such as profile shaping and NTM stabilisation. The new RT diagnostics consist of standard industrial 19 in. servers organised in clusters and running a standard UNIX multiprocessor RT-capable operating system (RT OS). Built-to-purpose computer interface cards deliver data (e.g. via serial links) from the data acquisition (DAQ) front-ends directly into the main memory of the DAQ servers. An RT data analysis task immediately following the running direct memory access (DMA) data transfers processes the data and delivers the results to follow-up systems in the control chain. Whereas the first systems were implemented in a simple just a bunch of computers (JBOC) configuration being operated as a number of single diagnostics, newer systems are integrated into diagnostic clusters using parallel computing techniques such as message passing interface (MPI). The paper describes the hardware (ADC front-ends, serial I/O, selection criteria and performance of the involved computer busses and systems) and software (DAQ, DA, RT OS, MPI) architecture of the assembled systems. Benchmark results for DAQ and MPI bandwidth and latencies as well as for the behaviour of the RT OS will be given

  14. Bunch length measurements in the VUV storage ring

    International Nuclear Information System (INIS)

    Measurements of the bunch length have been made as part of a study of current-dependent phenomena to provide a complete characterization of the VUV ring. Scaling laws have been put forth for the anomalous bunch lengthening with current which is generally observed in storage rings. However, there is no complete theory of the lengthening phenomenon and it is of great interest to compare the behavior of existing machines to the scaling laws. In addition, high peak currents are sought both for damping rings for linear colliders and for free-electron laser drivers and might be achieved through low-momentum compaction lattices. Finally since the bunch lengthening depends on the vacuum chamber. The accepted scaling law of bunch length with current contains the RF voltage, electron energy and momentum compaction. The VUV ring was particularly interesting for such measurements because one could separately and easily vary both the electron energy and the momentum compaction. Although the ring is injected at full energy (750 MeV) the authors have had extensive experience running the ring at low-energy (as low as 80 MeV) for the TOK project. In the following they discuss their measurement technique. The low current bunch length in operational conditions is on the order of 170 psec (σ), i.e., comparable to or longer than the vacuum pipe's smallest dimension, and allows a simple measurement. They present data of bunch length versus current (up to 500 mA in a single bunch), varying electron energy and momentum compaction. Finally, a fit of the data with the Chao-Gareyte model is discussed

  15. Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber

    Science.gov (United States)

    Chen, Wei-Cheng; Chen, Guo-Jie; Han, Ding-An; Li, Bin

    2014-06-01

    A fiber laser with either a polarization-independent semiconductor saturable absorption mirror (PID-SESAM) or a polarization-dependent SESAM (PD-SESAM) as a passive mode-locker is constructed for obtaining the vector soliton bunching. The temporal patterns of the soliton bunching generated from the fiber laser with a PD-SESAM are much more abundant than that in fiber laser with a PID-SESAM. Only the vibrating soliton bunching is generated from the fiber laser with a PID-SESAM. However, there are another three interesting temporal patterns of the soliton bunching generated from the fiber laser with a PD-SESAM except for the vibrating soliton bunching. They are variable length soliton bunching, breathing soliton bunching and stable soliton bunching along the slow axis induced by polarization instability. It is found that the polarization property of the saturable absorber plays a pivotal role for achieving different temporal patterns of the soliton bunching.

  16. Electron bunch acceleration in an inverse free-electron laser with a helical magnetic wiggler and axial guide field

    International Nuclear Information System (INIS)

    Electron bunch acceleration by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied numerically in a static helical magnetic wiggler in vacuum. The main electron bunch parameters for simulations are 10 MeV initial energy with 0.1% longitudinal energy spread, 1 mm mrad rms transverse emittance, and 3x1012 cm-3 density. It is shown that the radial Gaussian profile can decrease the acceleration gradient compared with that of the plane-wave approximation due to the reduction of electron-pulse interaction area. In order to collimate electron bunch and overcome the decreasing of the acceleration gradient, an external axial magnetic field is used. The importance of the electron initial phase with respect to laser pulse is considered, and some appropriate values are found. Finally, acceleration of a femtosecond (fs) microbunch with an optimum appropriate initial phase is considered, which leads to a nearly monoenergetic microbunch and an acceleration gradient of about ≅0.2 GeV/m

  17. Proposal of An Experiment on Bunch Length Modulation in DAFNE

    International Nuclear Information System (INIS)

    Obtaining very short bunches is an issue especially for colliders but also for CSR sources. The modulation of the bunch length in a strong rf focusing regime had been proposed, corresponding to a high value of the synchrotron tune. A ring structure where the function R56 along the ring oscillates between large positive and negative values will produce bunch length modulation. The synchrotron frequency can be tuned both by the rf power and by the integral of the function R56, up to the limit of zero value corresponding to the isochronicity condition. The proposal of a bunch length modulation along the ring in DAΦNE is here described. DAΦNE lattice can be tuned to positive or negative momentum compaction values, or to structures in which the two arcs are respectively set to positive/negative integrals of the R56 function. With the installation of an extra rf system at 1.3 GHz, experiments on bunch length modulation both in the regime of high and low synchrotron tune can be realized

  18. Coherent diffraction radiation interferometry and short bunch length measurements

    International Nuclear Information System (INIS)

    The promising approach to measure a length of subpicosecond electron bunch is connected with measurements of coherent diffraction radiation (CDR) spectra due to strong dependence of the spectrum shape on the bunch length σz in the wavelength region λ ∼ σz [Proceedings of the International Symposium on New Visions in Laser-Beam Interactions, Nucl. Instr. and Meth. A 455 (1) (2000)]. The spectral measurements may be carried out by using an interferometer or a polychromator. The alternative approach for similar measurements is proposed in the paper. The interference pattern from two shifted halves of a CDR target may be used for this aim. If the broadband detector measures a CDR yield around λ0 ∼ σz then moving one half of the CDR target relative to other (parallel to beam) in the range of a few bunch lengths one can obtain the detuning curve (interferogram). The shape of detuning curve and its connection with bunch length is calculated for different detector apertures and detector waveband. The proposed technique may open the new possibility for non-invasive bunch length measurements in the subpicosecond range

  19. Harmonically resonant cavity as a bunch-length monitor

    Science.gov (United States)

    Roberts, B.; Hannon, F.; Ali, M. M.; Forman, E.; Grames, J.; Kazimi, R.; Moore, W.; Pablo, M.; Poelker, M.; Sanchez, A.; Speirs, D.

    2016-05-01

    A compact, harmonically resonant cavity with fundamental resonant frequency 1497 MHz was used to evaluate the temporal characteristics of electron bunches produced by a 130 kV dc high voltage spin-polarized photoelectron source at the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector, delivered at 249.5 and 499 MHz repetition rates and ranging in width from 45 to 150 picoseconds (FWHM). A cavity antenna attached directly to a sampling oscilloscope detected the electron bunches as they passed through the cavity bore with a sensitivity of ˜1 mV /μ A . The oscilloscope waveforms are a superposition of the harmonic modes excited by the beam, with each cavity mode representing a term of the Fourier series of the electron bunch train. Relatively straightforward post-processing of the waveforms provided a near-real time representation of the electron bunches revealing bunch-length and the relative phasing of interleaved beams. The noninvasive measurements from the harmonically resonant cavity were compared to measurements obtained using an invasive RF-deflector-cavity technique and to predictions from particle tracking simulations.

  20. Emittance-dominated long bunches in dual harmonic RF system

    Institute of Scientific and Technical Information of China (English)

    AN Shi-Zhong; Klaus Bongardt; Rudolf Maier; TANG Jing-Yu; ZHANG Tian-Jue

    2008-01-01

    The storage of long bunches for long time intervals needs flattened stationary buckets with a large bucket height. The longitudinal motion of the initially mismatched beam has been studied for both the single and dual harmonic RF systems. The RF amplitude is determined to be r.m.s wise matched. The bucket height of the single harmonic system is too small even for shorter bunch with only 20% increased energy spread. The Halo formation and even debunching can be seen after a few synchrotron periods for single particles with large amplitude. In the case of small energy spread for a cooled beam, Coulomb interaction cannot be ignored. The external voltage has to be increased to keep the r.m.s bunch length unchanged. The new voltage ratio R(N) simplifies physics for the emittance-dominated bunches with modest particle number N. For the single harmonic system, substantial amount of debunching occurs without increasing the external voltage, but very little if the RF amplitude is doubled. Results from the ORBIT tracking code are presented for the 1 GeV bunch in the HESR synchrotron, part of the GSI FAIR project.

  1. Performance of the transverse coupled-bunch feedback system in the SRRC

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.T.; Kuo, C.C.; Kuo, C.H.; Lin, K.K.; Ueng, T.S.; Weng, W.T.

    1996-10-01

    A transverse feedback system has been implemented and commissioned in the SRRC storage ring to suppress transverse coupled-bunch oscillations of the electron beam. The system includes transverse oscillation detectors, notch filter, baseband quadrature processing circuitry, power amplifiers, and kickers. To control a large number of transverse coupled-bunch modes, the system is broad-band, bunch-by- bunch in nature. Because the system is capable of bunch-by-bunch correction, it can also be useful for suppressing instabilities introduced by ions. The sextupole strength was then reduced to improve dynamic aperture and hence lifetime of the storage ring.

  2. Beamlet laser diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.

    1996-06-01

    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  3. Beam diagnostics at Ganil in 1986

    International Nuclear Information System (INIS)

    Position and profile monitors are considered in the beam lines and in the separated sector cyclotron; beam current monitors are presented such as interceptive and non interceptive probes; then bunch length monitors with electron emission probes and x ray emission probes are reviewed; the knowledge of the beam central phase is essential for tuning and controlling the beam, so are beam central phase monitors. The use of these central phase measurements is presented. Counting system of beam turns is considered

  4. Single Bunch Longitudinal Instability in the CERN SPS

    CERN Document Server

    Lasheen, Alexandre; Hancock, Steven; Radvilas, Edgaras; Roggen, Toon; Shaposhnikova, Elena

    2016-01-01

    The longitudinal single bunch instability observed in the SPS leads to uncontrolled emittance blow-up and limits the quality of high intensity beams required for the High Luminosity LHC and AWAKE projects at CERN. The present SPS impedance model developed from a thorough survey of machine elements was used in macro-particle simulations (with the code BLonD) of the bunch behavior through the acceleration cycle. Comparison of simulations with measurements of the synchrotron frequency shift, performed on the SPS flat bottom to probe the impedance, show a reasonable agreement. During extensive experimental studies various beam and machine parameters (bunch intensity, longitudinal emittance, RF voltage, with single and double RF systems) were scanned in order to further benchmark the SPS impedance model with measurements and to better understand the mechanism behind the instability. It was found that the dependence of instability threshold on longitudinal emittance and beam energy has an unexpected non-monotonic b...

  5. Laser induced bunch lengthening on the ACO storage ring FEL

    Science.gov (United States)

    Robinson, K. E.; Madey, J. M. J.; Deacon, D. A. G.; Velghe, M. F.

    1983-03-01

    The experimental procedures and data obtained during a study of the laser-induced change in the electron bunch length are reported for trials with a free-electron laser (FEL). Bunch lengthening is thought to play a critical role in the efficiency and power output of an FEL. The experimental apparatus consisted of an external laser, an undulator ring, and a nonisochronous storage ring. Synchrotron light in the storage ring was measured by a photodiode, and bunch length changes were monitored by tuning the receiver mode to a harmonic of the orbit frequency. A Gaussian electron pulse shape was assumed, together with a Gaussian envelope for the Fourier transform, which was proven in a previous experiment. The power spectra of the photodiode were modeled analytically. It was found that high current conditions alter the electron excitation and require further theoretical modeling.

  6. Multi-Bunch Beam Dynamics Studies for the European XFEL

    CERN Document Server

    Baboi, N

    2004-01-01

    In the X-ray free electron laser planned to be built at DESY (TESLA XFEL) the acceleration of the electron bunches will be made with 9-cell superconducting cavities. These cavities have been initially developed within the TESLA linear collider study. The impact of the higher order modes (HOM) has been shown to be within the acceptable beam dynamics limits for the collider. For the XFEL the dynamics is relaxed from point of view of multi-bunch effects (e.g. shorter length, higher emittance). However the lower energy and different time structure of the beam make the study of the HOM effects in the XFEL linac necessary. Multi-bunch beam dynamics studies are ongoing. The results of the HOM measurements at the TESLA Test Facility are used. Several options for the beam structure, as necessary for various applications, are studied. The results will be discussed.

  7. Bunch gap signal picking-up in BEPC II

    International Nuclear Information System (INIS)

    A high speed circuit is designed for obtaining the BEPC II bunch fiducial signal based on tunnel diode circuit, monostable multivibrator and ECL logic technology. The bunch train with a gap in storage ring is described. The waveforms of the induced signal of the pickup electrode after long cable transmission decay are analyzed. A monostable multivibrator using tunnel diode is described, with which a positive pulse of 0.3 ns is stretched to a 4 ns ECL signal. The ways to find out gap in standard and non-standard injection mode are presented. The test result shows that the circuit works well in standard and non-standard bunch injection modes and the measured timing jitter of 80.49 ps(RMS) fits for the design. (authors)

  8. Commissioning of the LCLS Linac and Bunch Compressors

    International Nuclear Information System (INIS)

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor, was commissioned in the spring and summer of 2007. The second phase of commissioning, including the second bunch compressor and various main linac modifications, was completed in January through August of 2008. We report here on experience gained during this second phase of machine commissioning, including the injector, the first and second bunch compressor stages, the linac up to 14 GeV, and beam stability measurements. The final commissioning phase, including the undulator and the long transport line from the linac, is set to begin in December 2008, with first light expected in July 2009

  9. Chicane and wiggler based bunch compressors for future linear colliders

    International Nuclear Information System (INIS)

    In this paper, the authors discuss bunch compressors for future linear colliders. In the past, the bunch compression optics has been based upon achromatic cells using strong sextupoles to correct the dispersive and betatron chromaticity. To preserve the very small emittances required in most future collider designs, these schemes tend to have very tight alignment tolerances. Here, the authors describe bunch compressors based upon magnetic chicanes or wigglers which do not need sextupoles to correct the chromatic emittance dilution. The dispersive chromaticity cancels naturally and the betatron chromaticity is not a significant source of emittance dilution. Thus, these schemes allow for substantially reduced alignment tolerances. Finally, they present a detailed design for the NLC linear collider

  10. A waveguide overloaded cavity as longitudinal kicker for the DA{Phi}NE bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Boni, R.; Ghigo, A.; Marcellini, F.; Serio, M.; Zobov, M. [Instituto Nazionale de Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-08-01

    The multibunch operation of DA{Phi}NE calls for a very efficient feedback system to damp the coupled-bunch longitudinal instabilities. A collaboration program among SLAC, LBL and LNF laboratories on this subject led to the development of a time domain, digital system based on digital signal processors that has been already successfully tested at ALS. The feedback chain ends with the longitudinal kicker, an electromagnetic structure capable of transferring the proper energy correction to each bunch. A cavity kicker for the DA{Phi}NE bunch-by-bunch longitudinal feedback system based on a pill-box loaded by six waveguides has been designed and a full-scale aluminium prototype has been fabricated at LNF. Both simulations and measurements have shown a peak shunt impedance of about 750 ohm and a bandwidth of about 220 MHz. The large shunt impedance allows to economize on the costly feedback power. Moreover, the damping waveguides drastically reduce the device HOM longitudinal and transverse impedances. One cavity pre ring will be sufficient to operate the machine up to 30 bunches while a second device per ring together with a feedback power improvement will be necessary to reach the ultimate current. (G.T.)

  11. Design of the Source Development Lab bunch compressor

    International Nuclear Information System (INIS)

    The accelerator at the Source Development Lab at BNL consists of a 1.6 cell RF photocathode electron gun followed by a 230 MeV SLAC-type linac that includes a magnetic chicane bunch compressor. The nominal specifications call for a 10 ps FWHM bunch of 2nC charge to be compressed in time by a factor of 25 at an energy of 85 MeV. The design of the compressor magnets and the beam dynamics from the gun through the magnetic chicane are described

  12. Non-linear effects in bunch compressor of TARLA

    Science.gov (United States)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  13. The First Results of Bunch Shape Measurements in SNS Linac

    CERN Document Server

    Feschenko, A; Kisselev, Yu V; Kravchuk, L V; Liyu, A; Menshov, A; Mirzojan, A N

    2004-01-01

    Three Bunch Shape Monitors with transverse scanning of low energy secondary electrons for the SNS Linac have been developed and fabricated. The peculiarity of the detectors is using of energy separation of the electrons. The separation enables to minimize influence of detached electrons originated from dissociation of H-minus ions in the detector wire target. The first detector was used at the exit of the first DTL tank during its commissioning. The results of Bunch Shape measurements are presented and discussed. These results were used to verify beam quality, to set parameters of the accelerating field, to estimate a longitudinal beam halo and to restore a longitudinal beam emittance.

  14. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Science.gov (United States)

    Wittig, G.; Karger, O.; Knetsch, A.; Xi, Y.; Deng, A.; Rosenzweig, J. B.; Bruhwiler, D. L.; Smith, J.; Manahan, G. G.; Sheng, Z.-M.; Jaroszynski, D. A.; Hidding, B.

    2015-08-01

    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  15. Bunch Length Measurements With Laser/SR Cross-Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Timothy; /Stanford U., Phys. Dept.; Daranciang, Dan; /Stanford U., Phys. Dept.; Lindenberg, Aaron; /Stanford U., Phys. Dept.; Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Goodfellow, John; /SLAC; Huang, Xiaobiao; /SLAC; Mok, Walter; /SLAC; Safranek, James; /SLAC; Wen, Haidan; /SLAC

    2012-07-06

    By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.

  16. The Optimized Bunch Compressor for the International Linear Collider

    International Nuclear Information System (INIS)

    The International Linear Collider (ILC) utilizes a two stage Bunch Compressor (BC) that compresses the RMS bunch length from 9 mm to 200 to 300 micrometers before sending the electron beam to the Main Linac. This paper reports on the new design of the optimized BC wiggler. It was reduced in length by more than 30%. The introduction of nonzero dispersion slope in the BC wigglers enabled them to generate the required compression while having a small SR emittance growth, a tunability range of over a factor of 2 in each wiggler, and less than 3% RMS energy spread throughout the entire system

  17. VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB) BIO-OIL

    OpenAIRE

    Z.S. Nazirah; M.J.M. Ridzuan; S.M. Hafis; Mohamed, A R; K.Azduwin

    2013-01-01

    Empty fruit bunches (EFB) are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB) bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepa...

  18. Operation and performance of bunch pre-compression for increased transmission at the SLC

    International Nuclear Information System (INIS)

    As the beam currents at the SLC are increased, transverse aperture restrictions in the ring-to-linac transport line (RTL) become increasingly important. The RTL contains a bunch compressor which introduces a large energy variation across the bunch and hence a larger transverse beam size. Since 1994 the compressor amplitude has been operating at higher than design voltage. While advantageous for shaping the bunch distribution, this increased the bunch energy spread and therefore resulted in more beam loss. Moreover, due to current-dependent bunch lengthening in the damping ring, the higher the beam current, the more the current loss. To avoid such losses, the bunch length may be precompressed in the damping ring. Until recently, bunch precompression with high beam currents was not stable. In this paper the authors identify the reasons for the difficulties, describe the changes made to accommodate bunch precompression, and discuss performance aspects after implementation. The estimated increase in current at the interaction point is 15%

  19. Bunch-shape monitor for a picosecond single-bunch beam of a 35 MeV electron linear accelerator

    International Nuclear Information System (INIS)

    A non-interactive-type bunch-shape and beam intensity monitor for a 35 MeV electron linear accelerator (linac) has been developed. The monitor consists of an electric SMA-type connector and an Al pipe of 50 mm inner diameter. Test measurements of the present monitor have been made under the conditions of the accelerated charges of lower than 27 nC/pulse and the pulse width ranging from 6 to 30 ps (Full Width at Half Maximum). The results show that the present monitor is applicable to bunch-shape measurement of the picosecond single-bunch beam. The monitor output is also found to be proportional to the beam intensity of more than 0.05 nC/pulse. (author)

  20. Bunch-Shape Monitor for a Picosecond Single-Bunch Beam of a 35 MeV Electron Linear Accelerator

    Science.gov (United States)

    Hosono, Yoneichi; Nakazawa, Masaharu; Iguchi, Tetsuo; Ueda, Touru; Kobayashi, Tosiaki; Kozawa, Takahiro; Uesaka, Mitsuru; Ohkuma, Juzo; Okuda, Shuichi; Yamamoto, Tamotsu; Suemine, Shoji

    1995-09-01

    A non-interactive-type bunch-shape and beam intensity monitor for a 35 MeV electron linear accelerator (linac) has been developed. The monitor consists of an electric SMA-type connector and an Al pipe of 50 mm inner diameter. Test measurements of the present monitor have been made under the conditions of the accelerated charges of lower than 27 nC/pulse and the pulse width ranging from 6 to 30 ps (Full Width at Half Maximum). The results show that the present monitor is applicable to bunch-shape measurement of the picosecond single-bunch beam. The monitor output is also found to be proportional to the beam intensity of more than 0.05 nC/pulse.

  1. Test of a non-invasive bunch shape monitor at the GSI high current LINAC

    International Nuclear Information System (INIS)

    At the heavy ion LINAC at GSI, a novel scheme of non-invasive Bunch Shape Monitor has been tested with several ion beams at 11.4 MeV/u. Caused by the beam impact on the residual gas, secondary electrons are liberated. These electrons are accelerated by an electrostatic field, transported through a sophisticated electrostatic energy analyzer and an rf-deflector, acting as a time-to-space converter. Finally a MCP detects the electron distribution. For the applied beam settings this Bunch Shape Monitor is able to obtain longitudinal profiles down to 400 ps with a resolution of 50 ps, corresponding to 2 degree of the 36 MHz acceleration frequency. During a long shutdown period for the GSI accelerators in 2013, the monitor underwent a general technical retrofit: Influence of the beam has been significantly reduced, due enhanced electrodes, new apertures have been installed to decrease electron scattering, sophisticated stepping motors will allow better image properties, a MCP shielding plate will prevent high background. Together with these improvements the achievements of the monitor are discussed.

  2. Test of a non-invasive bunch shape monitor at the GSI high current LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, Benjamin; Forck, Peter; Kester, Oliver [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Institut fuer Angewandte Physik, Goethe Universitaet Frankfurt (Germany); Dorn, Christoph; Kowina, Piotr [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2014-07-01

    At the heavy ion LINAC at GSI, a novel scheme of non-invasive Bunch Shape Monitor has been tested with several ion beams at 11.4 MeV/u. Caused by the beam impact on the residual gas, secondary electrons are liberated. These electrons are accelerated by an electrostatic field, transported through a sophisticated electrostatic energy analyzer and an rf-deflector, acting as a time-to-space converter. Finally a MCP detects the electron distribution. For the applied beam settings this Bunch Shape Monitor is able to obtain longitudinal profiles down to 400 ps with a resolution of 50 ps, corresponding to 2 degree of the 36 MHz acceleration frequency. During a long shutdown period for the GSI accelerators in 2013, the monitor underwent a general technical retrofit: Influence of the beam has been significantly reduced, due enhanced electrodes, new apertures have been installed to decrease electron scattering, sophisticated stepping motors will allow better image properties, a MCP shielding plate will prevent high background. Together with these improvements the achievements of the monitor are discussed.

  3. A laser-heterodyne bunch length monitor for the SLC interaction point

    International Nuclear Information System (INIS)

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a 'laser wire', by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point

  4. A laser-heterodyne bunch length monitor for the SLC interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Kotseroglou, T.; Alley, R.; Jobe, K. [and others

    1997-05-01

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a `laser wire`, by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point.

  5. Observation of the substructure in the electron bunch on the ACO storage ring

    International Nuclear Information System (INIS)

    In the future, one interesting point of the SRFEL at Orsay will be the microtemporal analysis of the laser beam correlated with that of the electron bunch. In a first time, we have only analysed the temporal structure of the electron bunch with an Electrophotonic streak camera. The first results seem to indicate that the bunch is not an homogeneous bunch but presents a substructure. We discuss with details this data

  6. Excitation of wake waves in plasma by a succession of charged particle bunches. II

    International Nuclear Information System (INIS)

    The problem of excitation of wake waves in plasma by a succession of homogeneous relativistic electron bunches is considered. A recurrent relation between the amplitude of wake fields of the n-th and (n-1)-th bunches has been obtained. It was shown that the maximum possible value of the amplitude of wake field in case of a single bunches may by obtained behind the N-th bunch, when nb/na>1. 11 refs

  7. Design of a multi-bunch BPM for the next linear collider

    International Nuclear Information System (INIS)

    The Next Linear Collider (NLC) will collide 180-bunch trains of electrons and positrons with bunch spacing of 1.4 ns. The small spot size (σy < 3 nm) at the interaction point requires precise control of emittance, which in turn requires the alignment of individual bunches in the train to within a fraction of a micron. Multi-bunch beam position monitors (BPMs) are to determine the bunch-to-bunch misalignment on each machine pulse. High bandwidth kickers will then be programmed to bring the train into better alignment on the next machine cycle. A prototype multi-bunch BPM system with bandwidth (350 MHz) sufficient to distinguish adjacent bunches has been built at SLAC. It is based on 5 G sample/s digitization of analog sum and difference channels. Calibration tone injection and logging of the single bunch impulse response provide the kernel for deconvolution of bunch-by-bunch position from the sum and difference waveforms. These multi-bunch BPMs have been tested in the Accelerator Test Facility at KEK and in the PEP-II ring at SLAC. The results of these measurements are presented in this paper

  8. An Electron Bunch Compressor Based on an FEL Interaction in the Far Infra Red

    CERN Document Server

    Gaupp, Andreas

    2013-01-01

    In this note an electron bunch compressor is proposed based on FEL type interaction of the electron bunch with far infrared (FIR) radiation. This mechanism maintains phase space density and thus requires a high quality electron beam to produce bunches of the length of a few ten micrometer.

  9. Short Electron Beam Bunch Characterization Through Measurement of Terahertz Radiation

    CERN Document Server

    Zhang, Shukui; Douglas, David; Shinn, Michelle D; Williams, Gwyn

    2004-01-01

    Characterization of the electron beam bunch length of the upgrade FEL at Jefferson Lab was performed by analyzing the FTIR spectra of the coherent terahertz pulses. The results are compared with autocorrelation from a scanning polarization autocorrelator that measures the optical transition radiation. The limitations of the different methods to such a characterization are presented in this paper.

  10. Plasmas in particle accelerators: adiabatic theories for bunched beams

    International Nuclear Information System (INIS)

    Three different formalisms for discussing Vlasov's equation for bunched beam problems with anharmonic space charge forces are outlined. These correspond to the use of a drift kinetic equation averaged over random betatron motions; a fluidkinetic adiabatic regime analogous to the theory of Chew, Goldberger, and Low; and an adiabatic hydrodynamic theory

  11. The stability of ions in bunched-beam machines

    International Nuclear Information System (INIS)

    In this paper, the conditions leading to the accumulation of ions are established for various cases of bunched beams, together with the maximum ion density which can be reached. An application to the SPS panti p collider is also given. (orig./HSI)

  12. LHC Report: 1,033 bunches per beam and counting

    CERN Multimedia

    Jorg Wenninger for the LHC team

    2015-01-01

    Following the second technical stop, the first beams were injected into the LHC in the early evening of Saturday, 5 September. About ten days later, the machine was operated with around 1,000 bunches per beam.    Evolution of the stored energy per LHC beam, over time.   The first step after a technical stop consists of running through a full LHC cycle, from injection to collisions and beam dump, with a low-intensity bunch (“probe”) to check all machine settings and equipment. This is followed by a series of collimation and absorber validation tests at different points in the LHC cycle. Low-intensity beams – typically the equivalent of three nominal bunches (3 x 1011 protons) – are expanded transversely or longitudinally, or de-bunched to verify that the collimators and absorbers are correctly intercepting lost particles. The techniques for those validations have been progressively improved, and t...

  13. Scanning Synchronization of Colliding Bunches for MEIC Project

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, V. P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Chernousov, Yu D. [Inst. of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Kazakevich, G. M. [Euclid Techlabs LLC., Cleveland, OH (United States)

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP). A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.

  14. Instability of a witness bunch in a plasma bubble

    CERN Document Server

    Burov, A; Nagaitsev, S

    2016-01-01

    The stability of a trailing witness bunch, accelerated by a plasma wake accelerator (PWA) in a blow-out regime, is discussed. The instability growth rate as well as the energy spread, required for BNS damping, are obtained. A relationship between the PWA power efficiency and the BNS energy spread is derived.

  15. String formulation of space charge forces in a deflecting bunch

    Science.gov (United States)

    Talman, Richard

    2004-10-01

    The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation) and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995; Nucl. Instrum. Methods Phys. Res., Sect. ANIMAER0168-9002 417, 158 (1998).10.1016/S0168-9002(98)00623-8

  16. Instability of a witness bunch in a plasma bubble

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lebedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-02-16

    The stability of a trailing witness bunch, accelerated by a plasma wake accelerator (PWA) in a blow-out regime, is discussed. The instability growth rate as well as the energy spread, required for BNS damping, are obtained. A relationship between the PWA power efficiency and the BNS energy spread is derived.

  17. Stabilization of the bunch lengthening in a storage ring

    International Nuclear Information System (INIS)

    The method of increasing the longitudinal focusing is considered as a means against the lengthening effect of an intense bunch in the storage ring. Main limitations of this approach are analyzed. A conclusion for having a big momentum compaction factor to obtain a small longitudinal emittance is made. 5 refs

  18. BUNCHED BEAM STOCHASTIC COOLING SIMULAITONS AND COMPARISON WITH DATA

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-09-10

    With the experimental success of longitudinal, bunched beam stochastic cooling in RHIC it is natural to ask whether the system works as well as it might and whether upgrades or new systems are warranted. A computer code, very similar to those used for multi-particle coherent instability simulations, has been written and is being used to address these questions.

  19. The beam diagnostic system, serving the Serpukhov fast ejection

    CERN Document Server

    Cupérus, J; Kamber, I; Nuttall, J

    1973-01-01

    A set of beam transformers measures the intensity of each bunch, circulating or ejected. Five electrostatic pick-ups measure the radial position of one selected bunch. Secondary emission grids and luminescent screens give the profile and position of the beam at relevant points. Gated radiation detectors monitor beam loss in the ejection area. All signals are digitalized and fed to a minicomputer on line. Readout is via nixies, CRT analogue displays, pen recorders and a teletype. Statistics can be made over a chosen number of acceleration cycles. (5 refs).

  20. Piramal Diagnostics

    OpenAIRE

    Neeraj Dwivedi; Arvinder Singh

    2011-01-01

    The case presents a decision situation facing the Vice President of strategic planning at Piramal Diagnostics Limited, who has to formulate the future growth strategy and decide on the roadmap. The company is the largest player in the organized medical diagnostics industry in India and has shown attractive growth in the past few years. The case describes the structural characteristics of the medical diagnostics industry in India and follows it with a description of the strengths and weaknesse...

  1. Growth of Quantum Wires on Step-Bunched Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feng

    2005-02-01

    This proposal initiates a combined theoretical and experimental multidisciplinary research effort to explore a novel approach for growing metallic and magnetic nanowires on step-bunched semiconductor and dielectric substrates, and to lay the groundwork for understanding the growth mechanisms and the electronic, electrical, and magnetic properties of metallic and magnetic nanowires. The research will focus on four topics: (1) fundamental studies of step bunching and self-organization in a strained thin film for creating step-bunched substrates. (2) Interaction between metal adatoms (Al,Cu, and Ni) and semiconductor (Si and SiGe) and dielectric (CaF2) surface steps. (3) growth and characterization of metallic and magnetic nanowires on step-bunched templates. (4) fabrication of superlattices of nanowires by growing multilayer films. We propose to attack these problems at both a microscopic and macroscopic level, using state-of-the-art theoretical and experimental techniques. Multiscale (electronic-atomic-continuum) theories will be applied to investigate growth mechanisms of nanowires: mesoscopic modeling and simulation of step flow growth of strained thin films, in particular, step bunching and self-organization will be carried out within the framework of continuum linear elastic theory; atomistic calculation of interaction between metal adatoms and semiconductor and dielectric surface steps will be done by large-scale computations using first-principles total-energy methods. In parallel, thin films and nanowires will be grown by molecular beam epitaxy (MBE), and the resultant structure and morphology will be characterized at the atomic level up to micrometer range, using a combination of different surface/interface probes, including scanning tunneling microscopy (STM, atomic resolution), atomic force microscopy (AFM, nanometer resolution), low-energy electron microscopy (LEEM, micrometer resolution), reflectance high-energy electron diffraction (RHEED), and x

  2. Effect of plasma inhomogeneity on plasma wakefield acceleration driven by long bunches

    Energy Technology Data Exchange (ETDEWEB)

    Lotov, K. V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Pukhov, A. [Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany); Caldwell, A. [Max-Planck-Institut fuer Physik, 80805 Muenchen (Germany)

    2013-01-15

    Effects of plasma inhomogeneity on self-modulating proton bunches and accelerated electrons were studied numerically. The main effect is the change of the wakefield wavelength which results in phase shifts and loss of accelerated particles. This effect imposes severe constraints on density uniformity in plasma wakefield accelerators driven by long particle bunches. The transverse two stream instability that transforms the long bunch into a train of micro-bunches is less sensitive to density inhomogeneity than are the accelerated particles. The bunch freely passes through increased density regions and interacts with reduced density regions.

  3. A fifth harmonic rf bunch monitor for the ANL-APS electron linac

    International Nuclear Information System (INIS)

    The function of a fifth harmonic (14.28 GHz) bunch monitor is to provide a signal which is proportional to the electron beam bunch size. The monitoring of the rf power signal at 14.28 GHz enables the operator to optimize the rf bunching of the beam at the end of the first accelerating section where the full bunching has been formed and remains mainly constant in size throughout the rest of the electron linac. A modified version of the SLAC original bunch monitor has been fabricated and its rf properties measured. This paper describes the design and the initial measurement results

  4. Self-pinching of a relativistic electron bunch in a drift tube

    OpenAIRE

    Parazzoli, Claudio G.; Koltenbah, Benjamin E. C.

    1997-01-01

    Electron bunches with charge densities $\\rho$ of the order of $10^2$ to $10^3$ [nC/cm$^3$], energies between $20.$ and $100.$ [MeV], peak current $>100$ [A], bunch lengths between 0.3 and 1.8 [cm], and bunch charge of 2.0 to $20.$ [nC] are relevant to the design of Free Electron Lasers and future linear colliders. In this paper we present the results of numerical simulations performed with a particle in a cell (pic) code of an electron bunch in a drift tube. The electron bunch has cylindrical...

  5. Exploiting coherence for real-time studies by single-bunch imaging

    OpenAIRE

    Rack, A; Scheel, M; Hardy, L; Curfs, C.; Bonnin, A; Reichert, H

    2014-01-01

    First real-time studies of ultra-fast processes by single-bunch imaging at the European Synchrotron Radiation Facility are reported. By operating the storage ring of the ESRF in single-bunch mode with its correspondingly increased electron bunch charge density per singlet, the polychromatic photon flux density at insertion-device beamlines is sufficient to capture hard X-ray images exploiting the light from a single bunch (the corresponding bunch length is 140 ps FWHM). Hard X-ray imaging wit...

  6. Generation of femtosecond electron bunches using a laser photocathode RF gun linac

    International Nuclear Information System (INIS)

    Electron beams with pulse durations of picoseconds and femtoseconds have been applied to the accelerator physics application such as free electron lasers and laser-Comptom x-rays. The ultrashort electron bunches are also key element in time-resolved measurements including pulse radiolysis to improve the time resolution of the measurements. In this study, femtosecond electron bunches were generated using a laser photocathode RF gun linac and a magnetic bunch compressor at ISIR, Osaka University. The bunch lengths were evaluated by detecting coherent transition radiation (CTR) emitted from the electron bunches using a Michelson interferometer. (author)

  7. Estimation of emittance degradation due to multi-pole fields of XFEL bunch compressors

    International Nuclear Information System (INIS)

    In order to obtain a high-brightness electron beam in an XFEL, the electron bunch should be longitudinally compressed in a linear accelerator using magnetic bunch compressors composed of four bending magnets. The bunch compression requires a large energy chirp on the electron bunch, which produces a horizontal spread of the beam size inside bunch compressors. Since the bending magnets have multi-pole field components, they leak energy-dispersion and degrade emittance downstream of the chicane. In this paper, the emittance degradation due to the multi-pole fields of the bending magnets is estimated using simplified analytical formulae for the XFEL/SPring-8. (author)

  8. ITER diagnostics

    International Nuclear Information System (INIS)

    As part of the ITER Conceptual Design Activity (CDA), three workshops were held on plasma diagnostics. From these conference, a set of diagnostics for the full operation of ITER has been developed. This report summarizes the results of these design and discussion activities, and the incorporation of the concepts developed into the overall ITER experiment. Refs, figs and tabs

  9. Molecular Diagnostics

    OpenAIRE

    Choe, Hyonmin; Deirmengian, Carl A; Hickok, Noreen J.; Morrison, Tiffany N.; Tuan, Rocky S.

    2015-01-01

    Orthopaedic infections are complex conditions that require immediate diagnosis and accurate identification of the causative organisms to facilitate appropriate management. Conventional methodologies for diagnosis of these infections sometimes lack accuracy or sufficient rapidity. Current molecular diagnostics are an emerging area of bench-to-bedside research in orthopaedic infections. Examples of promising molecular diagnostics include measurement of a specific biomarker in the synovial fluid...

  10. Diagnostic dilemma

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Dobrovolny, Robert; Nazarenko, Irina;

    2011-01-01

    in two expert laboratories did not identify a confirmatory mutation, presenting a diagnostic dilemma. A renal biopsy proved diagnostic and renewed efforts to detect an a-Gal A mutation. Subsequent gene dosage analyses identified a large a-Gal A deletion confirming her heterozygosity, and she was...

  11. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    International Nuclear Information System (INIS)

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier (1). In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. (1) R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  12. Ponderomotive scattering of an electron-bunch before injection into a laser wakefield

    CERN Document Server

    Khachatrian, A G; Luttikhof, M J H; Van Goor, F A

    2006-01-01

    For the purpose of laser wakefield acceleration, it turned out that also the injection of electron bunches longer than a plasma wavelength can generate accelerated femtosecond bunches with relatively low energy spread. This is of high interest because such injecting bunches can be provided, e.g., by state-of-the-art photo cathode RF guns. Here we point out that when an e-bunch is injected in the wakefield it is important to take into account the ponderomotive scattering of the injecting bunch by the laser pulse in the vacuum region located in front of the plasma. At low energies of the injected bunch this scattering results in a significant drop of the collection efficiency. Larger collection efficiency can by reached with lower intensity laser pulses and relatively high injection energies. We also estimate the minimum trapping energy for the injected electrons and the length of the trapped bunch.

  13. Creation and Storage of Long and Flat Bunches in the LHC

    CERN Document Server

    Damerau, H

    2005-01-01

    To maximize the luminosity of the Large Hadron Collider (LHC), the collision of particle bunches with a uniform longitudinal particle density is considered for a future upgrade. The benefits of such bunches and their generation by means of special longitudinal beam manipulations are presented in this report. Three possible options are analyzed with respect to their potential luminosity gain at the beam-beam limit: short rectangular bunches held by radio frequency (RF) harmonics using multiples of the nominal RF frequency of 400.8MHz, long and flat bunches held by multiples of 40.08MHz, and so-called superbunches, confined by barrier buckets. The comparison of the three different approaches shows that flat bunches, with an intermediate bunch length of the order of several meters, are capable of producing a comparable luminosity to superbunches, while avoiding most of their inherent disadvantages. Possible schemes to create the bunches with uniform line density are studied and a longitudinal manipulation to com...

  14. Vibrating Wire for Beam Profile Scanning

    CERN Document Server

    Arutunian, S G; Mailian, M R; Sinenko, I G; Vasiniuk, I E

    1999-01-01

    The method for measurement of transverse profile (emittance) of the bunch by detecting of radiation arising scattering at of the bunch on the scanning wire is wide-spread. In this work the information about scattering bunch is proposed to measure using the oscillation frequency of the tightened scanning wire. In such way the system of radiation (or secondary particles) extraction and measurement can be removed. Dependence of oscillations frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam, influence of beam self field. Preliminary calculations show that influence caused by wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, niobium zirconium alloys). A scheme of self oscillations generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. Special method of wire fixation and elimination of trans...

  15. The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Øystein Bruserud

    2013-02-01

    Full Text Available Chemokines are important regulators of many different biological processes, including (i inflammation with activation and local recruitment of immunocompetent cells; (ii angiogenesis as a part of inflammation or carcinogenesis; and (iii as a bridge between the coagulation system and inflammation/immune activation. The systemic levels of various chemokines may therefore reflect local disease processes, and such variations may thereby be used in the routine clinical handling of patients. The experience from patients with myeloproliferative diseases, and especially patients with acute myeloid leukemia (AML, suggests that systemic plasma/serum cytokine profiles can be useful, both as a diagnostic tool and for prognostication of patients. However, cytokines/chemokines are released by a wide range of cells and are involved in a wide range of biological processes; the altered levels may therefore mainly reflect the strength and nature of the biological processes, and the optimal clinical use of chemokine/cytokine analyses may therefore require combination with organ-specific biomarkers. Chemokine levels are also altered by clinical procedures, therapeutic interventions and the general status of the patients. A careful standardization of sample collection is therefore important, and the interpretation of the observations will require that the overall clinical context is considered. Despite these limitations, we conclude that analysis of systemic chemokine/cytokine profiles can reflect important clinical characteristics and, therefore, is an important scientific tool that can be used as a part of future clinical studies to identify clinically relevant biomarkers.

  16. A new luminescence beam profile monitor for intense proton and heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  17. Vertical coherent instabilities in bunched particle-beams

    International Nuclear Information System (INIS)

    The purpose of this paper is to study the vertical coherent instabilities which occur in bunched particle beams. The problem is complicated by the fact that the velocity of a single particle in a bunch is not constant, but rather consists of an equilibrium velocity and an oscillation about that. This synchrotron oscillation occurs at a frequency which is in general much less than the other characteristic frequencies of the system: the revolution frequency and the transverse betatron frequencies. The approach used here to study coherent instabilities illuminates the effect of the synchrotron frequency in setting the time scale for an instability, without making restrictive assumptions on the relative size of the synchrotron frequency and the coherent frequency shift

  18. Torrefaction of Pelletized Oil Palm Empty Fruit Bunches

    CERN Document Server

    Nyakuma, Bemgba Bevan; Johari, Anwar; Abdullah, Tuan Amran Tuan; Oladokun, Olagoke

    2015-01-01

    The torrefaction of oil palm Empty Fruit Bunch (EFB) briquettes was examined in this study. The results indicate that temperature significantly influenced the mass yield, energy yield and heating value of oil palm empty fruit bunch (OPEFB) briquettes during torrefaction. The solid uniform compact nature of EFB briquettes ensured a slow rate of pyrolysis or devolatization which enhanced torrefaction. The mass yield decreased from 79.70 % to 43.03 %, energy yield from 89.44 % to 64.27 % during torrefaction from 250 {\\deg}C to 300 {\\deg}C. The heating value (HHV) of OPEFB briquettes improved significantly from 17.57 MJ/kg to 26.24 MJ/kg after torrefaction at 300 {\\deg}C for 1 hour. Fundamentally, the study has highlighted the effects of pelletization and torrefaction on solid fuel properties of oil palm EFB briquettes and its potential as a solid fuel for future thermal applications.

  19. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  20. Preliminary Study on Two Possible Bunch Compression Schemes at NLCTA

    International Nuclear Information System (INIS)

    In this paper, two possible bunch compression configurations are proposed and evaluated by numerical simulation in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. A bunch compression ratio up to 20 could be achieved under a perfect condition, without consideration for the timing jitter and other error sources. The NLCTA is a test accelerator built at SLAC, which is approximately 42 meters long and composed of X-band acceleration structures. The main aim of building NLCTA is to develop and demonstrate the X-band rf acceleration technologies for the next generation linear collider, with a relatively high acceleration gradient between 50 MV/m and 100 MV/m. The current operation configuration of NLCTA features a thermionic-cathode electron gun at its starting point which generates an electron beam with an energy of 5 MeV. This is followed by a roughly 1.5 meter long X-band acceleration structure which boosts the electron beam energy to 60 MeV. Then there is a four-dipole magnetic chicane which is 6 meters long and provides a first order longitudinal dispersion of R56 = -73mm. Next the electron beam passes by several matching quadrupoles and can be accelerated further to 120 MeV through another one-meter-long X-band acceleration structure. After that, there are three small chicanes downstream, with a total first order longitudinal dispersion of R56 = -10mm. A sketch of the main components of NLCTA is shown in Figure 1, where the total length of this accelerator is 45 meters. Free Electron Lasers (FELs), proposed by J. Madey and demonstrated for the first time at Stanford University in 1970s (2) (3), use the lasing of relativistic electron beam traveling through a magnetic undulator, which can reach high power and can be widely tunable in wavelength. Linac based FEL source can provide sufficient brightness, and a short X-ray wavelength down to angstrom scale, which promises in supporting wide range of research experiments. In order to have an electron beam