WorldWideScience

Sample records for bumetanide

  1. Structure-activity relationships of bumetanide derivatives

    DEFF Research Database (Denmark)

    Pedersen, Kasper Lykke; Töllner, Kathrin; Römermann, Kerstin;

    2015-01-01

    of diuretics such as bumetanide. Bumetanide was discovered by screening ∼5000 3-amino-5-sulfamoylbenzoic acid derivatives, long before NKCC2 was identified in the kidney. Therefore, structure-activity studies on effects of bumetanide derivatives on NKCC2 are not available. EXPERIMENTAL APPROACH: In this study......, the effect of a series of diuretically active bumetanide derivatives was investigated on human NKCC2 variant A (hNKCC2A) expressed in Xenopus laevis oocytes. KEY RESULTS: Bumetanide blocked hNKCC2A transport with an IC50 of 4 μM. There was good correlation between the diuretic potency of bumetanide and its...... of the structural requirements that determine relative potency of loop diuretics on human NKCC2 splice variants, and may lead to the discovery of novel high-ceiling diuretics....

  2. A retrospective evaluation of the efficacy of intravenous bumetanide and comparison of potency with furosemide

    Directory of Open Access Journals (Sweden)

    Nappi JM

    2013-03-01

    Full Text Available Background: The potency of intravenous bumetanide to furosemide using a ratio of 1:40 has been suggested; however, there are little data supporting this ratio. Recent drug shortages required the use of bumetanide in a large patient population, enabling further characterization of the efficacy of IV bumetanide.Objective: The primary objective of this study was to estimate a dose-response effect of IV bumetanide on urine output (UOP in all patients that received 48 hours of therapy as well as in a subgroup of patients with heart failure (HF. This subgroup was used to compare the potency of bumetanide with furosemide. A secondary safety objective described electrolyte replacement required during therapy. Methods: This was a single-center retrospective study examining the dose-response effect of IV bumetanide in patients receiving at least 48 hours of intermittent (iIV or continuous (cIV dosing, measured by UOP per mg of drug received (mL/mg. The potency of IV bumetanide was compared with furosemide in a subset of patients with HF using pre-existing data. The safety of IV bumetanide was analyzed by quantifying electrolyte replacement received during the study period.Results: The primary outcome was higher in the iIV group (n=93 at 1273 ± 844 mL/mg compared with the cIV group (n=16 at 749 ± 370 mL/mg (P=0.002. Among patients with HF who received furosemide (iIV n=30, cIV n=26 or bumetanide (iIV n=30, cIV n=3, a potency ratio of 41:1 was found for the iIV group and 34:1 for all patients with HF. There was no significant difference in electrolyte replacement between groups.Conclusion: A greater response was seen with intermittent bumetanide compared with continuous infusion bumetanide. This study supports the 40:1 dose equivalence ratio (furosemide:bumetanide in patients with HF receiving at least 48 hours of intravenous intermittent bumetanide.

  3. The effect on serum enzymes of intramuscular injections of digoxin, bumetanide, pentazocine and isotonic sodium chloride

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Damsgaard, T

    1976-01-01

    Intramuscular injections of digoxin, bumetanide, pentazocine or isotonic sodium chloride have been given to 39 patients. We followed the serum concentrations of creatine kinase (CK), aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH) and LDH isoenzymes for 4 days. Ten patients receivi...

  4. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Directory of Open Access Journals (Sweden)

    Ryan T Cleary

    Full Text Available Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+-K(+-2 Cl(- cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  5. The effect of bumetanide treatment on the sensory behaviours of a young girl with Asperger syndrome.

    Science.gov (United States)

    Grandgeorge, Marine; Lemonnier, Eric; Degrez, Céline; Jallot, Nelle

    2014-01-31

    Sensory behaviours were not considered as core features of autism spectrum disorders until recently. However, they constitute an important part of the observed symptoms that result in social maladjustment and are currently quite difficult to treat. One promising strategy for the treatment of these behaviours is the use of bumetanide, which was previously shown to reduce the severity of autism spectrum disorders. In this study, we proposed to evaluate sensory behaviours using Dunn's Sensory Profile after 18 months of bumetanide treatment in a 10-year-old girl with Asperger syndrome. Reported improvements covered a large range of sensory behaviours, including auditory, vestibular, tactile, multisensory and oral sensory processing. Although our results were limited to a single case report, we believe that our clinical observations warrant clinical trials to test the long-term efficacy of bumetanide to manage the sensory behaviours of people with autism spectrum disorders.

  6. A randomised controlled trial of bumetanide in the treatment of autism in children

    OpenAIRE

    Lemonnier, Éric; Degrez, Céline; Phelep, Morgane; Tyzio, Roman; Josse, Florent; Grandgeorge, Marine; Hadjikhani, Nouchine; Ben-Ari, Yehezkel

    2012-01-01

    Gamma aminobutyric acid (GABA)-mediated synapses and the oscillations they orchestrate are altered in autism. GABA-acting benzodiazepines exert in some patients with autism paradoxical effects, raising the possibility that like in epilepsies, GABA excites neurons because of elevated intracellular concentrations of chloride. Following a successful pilot study, we have now performed a double-blind clinical trial using the diuretic, chloride-importer antagonist bumetanide that reduces intracellu...

  7. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    OpenAIRE

    Wang-shu Xu; Xuan Sun; Cheng-guang Song; Xiao-peng Mu; Wen-ping Ma; Xing-hu Zhang; Chuan-sheng Zhao

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-...

  8. A Pilot Study on the Combination of Applied Behavior Analysis and Bumetanide Treatment for Children with Autism

    NARCIS (Netherlands)

    Du, L.; Shan, L.; Wang, B.; Li, H.; Xu, Z.; Staal, W.G.; Jia, F.

    2015-01-01

    OBJECTIVE: The purpose of this study was to investigate the therapeutic effects of combined bumetanide and applied behavior analysis (ABA) treatment in children with autism. METHODS: Sixty children diagnosed with autism according to the International Classification of Diseases, Tenth Revision (ICD-1

  9. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Wang-shu Xu

    2016-01-01

    Full Text Available Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  10. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wang-shu Xu; Xuan Sun; Cheng-guang Song; Xiao-peng Mu; Wen-ping Ma; Xing-hu Zhang; Chuan-sheng Zhao

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumeta-nide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These ifndings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  11. Failure of the Nemo Trial: Bumetanide Is a Promising Agent to Treat Many Brain Disorders but Not Newborn Seizures.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Damier, Philippe; Lemonnier, Eric

    2016-01-01

    The diuretic bumetanide failed to treat acute seizures due to hypoxic ischemic encephalopathy (HIE) in newborn babies and was associated with hearing loss (NEMO trial, Pressler et al., 2015). On the other hand, clinical and experimental observations suggest that the diuretic might provide novel therapy for many brain disorders including Autism Spectrum Disorders (ASD), schizophrenia, Rett syndrome, and Parkinson disease. Here, we discuss the differences between the pathophysiology of severe recurrent seizures in the neonates and neurological and psychiatric disorders stressing the uniqueness of severe seizures in newborn in comparison to other disorders. PMID:27147965

  12. Failure of the Nemo trial: bumetanide is a promising agent to treat many brain disorders but not newborn seizures

    Directory of Open Access Journals (Sweden)

    Yehezkel eBen-Ari

    2016-04-01

    Full Text Available The diuretic bumetanide failed to treat acute seizures due to hypoxic ischemic encephalopathy (HIE in newborn babies and was associated with hearing loss (NEMO trial; 1. On the other hand, clinical and experimental observations suggest that the diuretic might provide novel therapy for many brain disorders including autistic spectrum disorder, schizophrenia, Rett syndrome and Parkinson disease. Here, we discuss the differences between the pathophysiology of severe recurrent seizures in the neonates and neurological and psychiatric disorders stressing the uniqueness of severe seizures in newborn in comparison to other disorders.

  13. Improving Emotional Face Perception in Autism with Diuretic Bumetanide: A Proof-of-Concept Behavioral and Functional Brain Imaging Pilot Study

    Science.gov (United States)

    Hadjikhani, Nouchine; Zürcher, Nicole R; Rogier, Ophelie; Ruest, Torsten; Hippolyte, Loyse; Ben-Ari, Yehezkel; Lemonnier, Eric

    2015-01-01

    Clinical observations have shown that GABA-acting benzodiazepines exert paradoxical excitatory effects in autism, suggesting elevated intracellular chloride (Cl-)[subscript i] and excitatory action of GABA. In a previous double-blind randomized study, we have shown that the diuretic NKCC1 chloride importer antagonist bumetanide, that decreases…

  14. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide.

    Science.gov (United States)

    Holmes, Gregory L; Tian, Chengju; Hernan, Amanda E; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-05-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P)days 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-P25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure

  15. Analgesic effect of intrathecal bumetanide is accompanied by changes in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain

    Institute of Scientific and Technical Information of China (English)

    Yanbing He; Shiyuan Xu; Junjie Huang; Qingjuan Gong

    2014-01-01

    Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.

  16. Altered expression of renal bumetanide-sensitive sodium-pota-ssium-2 chloride cotransporter and Cl- channel -K2 gene in angiotensin Ⅱ-infused hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    YE Tao; LIU Zhi-quan; SUN Chao-feng; ZHENG Yong; MA Ai-qun; FANG Yuan

    2005-01-01

    Background Little information is available regarding the effect of angiotensin Ⅱ (Ang Ⅱ) on the bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2), the thiazide-sensitive sodium-chloride cotransporter (NCC), and the Cl- channel (CLC)-K2 at both mRNA and protein expression level in Ang Ⅱ-induced hypertensive rats. This study was conducted to investigate the influence of Ang Ⅱ with chronic subpressor infusion on nephron-specific gene expression of NKCC2, NCC and CLC-K2. Results Ang Ⅱ significantly increased blood pressure and up-regulated NKCC2 mRNA and protein expression in the kidney. Expression of CLC-K2 mRNA in the kidney increased 1.6 fold (P<0.05).There were no changes in NCC mRNA or protein expression in AngII-treated rats versus control. Conclusions Chronic subpressor Ang Ⅱ infusion can significantly alter NKCC2 and CLC-K2 mRNA expression in the kidney, and protein abundance of NKCC2 in kidney is positively regulated by Ang Ⅱ. These effects may contribute to enhanced renal Na+ and Cl- reabsorption in response to Ang Ⅱ.

  17. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat.

    Science.gov (United States)

    Sonalker, Prajakta A; Tofovic, Stevan P; Jackson, Edwin K

    2007-12-01

    1. The renal bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1) is expressed only in the thick ascending limb and selectively traffics from intracellular vesicles (IVs) to apical plasma membranes (PMs), where BSC-1 regulates sodium reabsorption. We showed previously that in kidneys from adult spontaneously hypertensive rats (SHR; model of essential hypertension) total protein expression of BSC-1 was higher compared with kidneys from normotensive Wistar-Kyoto (WKY) rats. However, whether this change is associated with an increased trafficking of BSC-1 from IVs to PMs is unknown. The goal of the present study was to test the hypothesis that the increase in total renal BSC-1 protein expression in SHR is accompanied by an augmented distribution of BSC-1 from IVs to PMs. 2. To test the hypothesis, we obtained renal tissue from the inner stripe of the outer medulla (ISOM; enriched in thick ascending limbs) and isolated IVs and PMs from this tissue by differential centrifugation. Total BSC-1 protein expression in ISOM and BSC-1 protein expression in ISOM IVs and PMs were measured by semiquantitative western blotting in SHR and aged-matched WKY rats at different ages and stages of hypertension. 3. At 5 weeks of age, SHR were prehypertensive (mean arterial blood pressure (MABP) 97 mmHg). At this age, both the total abundance and cellular distribution of BSC-1 were similar in ISOM from SHR and WKY rats. 4. As SHR aged, their hypertension progressed (MABP 137 and 195 mmHg at 8 and 14 weeks of age, respectively). Associated with the increase in MABP was an increase in both steady state protein levels of ISOM BSC-1 and the distribution of ISOM BSC-1 to PMs (four- and sixfold increases at 8 and 14 weeks of age, respectively, compared with age-matched WKY rats; P BSC-1 mRNA was measured and was found not to differ between SHR and WKY rat ISOM at any age or level of MABP. 6. We conclude that as SHR transition from prehypertensive to established hypertension, there is a marked

  18. In vitro studies of theophylline-induced changes in Na, K and Cl transport in hen (Gallus domesticus) colon suggesting bidirectional, basolateral NaK2Cl cotransport

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Munck, B G; Munck, L K;

    1990-01-01

    1. In isolated mucosa from a NaCl-loaded hen theophylline stimulates both unidirectional chloride fluxes (JmsCl and JsmCl). Conductive and electroneutral exchange processes, besides a bumetanide-sensitive, rheogenic process contribute. 2. The bumetanide-sensitive fraction of the theophylline......-induced delta JcmCl is sodium-dependent. 3. Incubation in nominally K(+)-free solutions reduces the bumetanide-sensitive fraction delta JsmCl more than treatment with ouabain. 4. With respect to chloride the bumetanide-sensitive fraction of delta JsmCl has a Hill coefficient of 1.93 +/- 0.03, a Jmax of 12.......9 +/- 0.2 mumol/cm2.hr and a K 1/2 of 73 +/- 1 mmol/l. 5. After ouabain treatment delta JmsCl and delta JsmCl are equally sensitive to bumetanide, while delta JmsCl is bumetanide insensitive without ouabain treatment....

  19. Dosage dependent hormonal counter regulation to combination therapy in patients with left ventricular dysfunction

    DEFF Research Database (Denmark)

    Galløe, A.M.; Skagen, K.; Christensen, Niels Juel;

    2006-01-01

    and bumetanide was tested in a double blind, double placebo-controlled, randomized, multiple cross-over study in a 16 times six balanced incomplete Latin square design. Patients reported optimal quality of life on the sub maximal dose bumetanide. Bumetanide decreased left ventricular function and increased heart...... rate and plasma noradrenaline in a dose dependent manner. Doses of bumetanide of more than 0.5 mg, given twice daily significantly decreased the quality of life and increased diuresis. Weight loss was maximal on 0.5 mg bumetanide twice daily. Trandolapril significantly reduced systolic blood pressure......The present study attempts to assess the efficacy combination therapy for heart failure. Genuine dose-response studies on combination therapy are not available and published studies involved adding one drug on top of 'usual treatment'. Sixteen different dosage combinations of trandolapril...

  20. Determination of Sibutramine, Indapamide, Bumetanide and Chlorothiazide in Mass- reducing Tonic by Micellar Electrokinetic Capillary Chromatography%胶束电动毛细管色谱法测定减肥保健品中的西布曲明、吲达帕胺、丁脲胺和氯噻嗪

    Institute of Scientific and Technical Information of China (English)

    徐远金; 许桂苹

    2005-01-01

    目的:建立了胶束电动毛细管色谱法同时测定减肥保健品中的西布曲明、吲达帕胺、丁脲胺和氯噻嗪的方法.方法:以10.0mmol·L-1磷酸盐缓冲溶液-15.0 mmol·L-1SDS(含35%乙腈,V/V,pH7.5)为电泳介质,未涂层弹性石英毛细管(50μm×48 cm,有效长度为40cm)为分离通道,检测波长为210 nm,压力进样(5 kPa×10 s).结果:西布曲明、吲达帕胺、丁脲胺和氯噻嗪的线性范围分别为4.0~100.0 mg·L-1,2.0~80.0 mg·L-1,2.0~80.0 mg·L-1,2.0~80.0 mg·L-1,检出限分别为1.0,0.5,0.5,0.5 mg·L-1,5次重复测定的相对偏差为2.8%~4.5%;样品加标回收率为89%~103%.结论:该法简便快捷,准确可靠,用于中药成分减肥保健品分析,结果令人满意.

  1. Water permeability of Na+-K+-2C1- cotransporters in mammalian epithelial cells

    DEFF Research Database (Denmark)

    Hammann, Steffen; Herrera-Perez, J.J.; Bundgaard, Magnus;

    2005-01-01

    Water transport properties of the Na+-K+-2Cl- cotransporter (NKCC) were studied in cultures of pigmented epithelial cells (PE) from the ciliary body of the eye. Here, the membrane that faces upwards contains NKCCs and can be subjected to rapid changes in bathing solution composition and osmolarity....... The anatomy of the cultured cell layer was investigated by light and electron microscopy. The transport rate of the cotransporter was determined from the bumetanide-sensitive component of 86Rb+ uptake, and volume changes were derived from quenching of the fluorescent dye calcein. The water permeability (Lp......) of the membrane was halved by the specific inhibitor bumetanide. The bumetanide-sensitive component of the water transport exhibited apparent saturation at osmotic gradients higher than 200 mosmol l-1. Cell shrinkages produced by NaCl or KCl were smaller than those elicited by equi-osmolar applications...

  2. Loop diuretics have anxiolytic effects in rat models of conditioned anxiety.

    Directory of Open Access Journals (Sweden)

    Andrew D Krystal

    Full Text Available A number of antiepileptic medications that modulate GABA(A mediated synaptic transmission are anxiolytic. The loop diuretics furosemide (Lasix and bumetanide (Bumex are thought to have antiepileptic properties. These drugs also modulate GABA(A mediated signalling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signalling, we sought to investigate whether they also mediate anxiolytic effects. Here we report the first investigation of the anxiolytic effects of these drugs in rat models of anxiety. Furosemide and bumetanide were tested in adult rats for their anxiolytic effects using four standard anxiety models: 1 contextual fear conditioning; 2 fear-potentiated startle; 3 elevated plus maze, and 4 open-field test. Furosemide and bumetanide significantly reduced conditioned anxiety in the contextual fear-conditioning and fear-potentiated startle models. At the tested doses, neither compound had significant anxiolytic effects on unconditioned anxiety in the elevated plus maze and open-field test models. These observations suggest that loop diuretics elicit significant anxiolytic effects in rat models of conditioned anxiety. Since loop diuretics are antagonists of the NKCC1 and KCC2 cotransporters, these results implicate the cation-chloride cotransport system as possible molecular mechanism involved in anxiety, and as novel pharmacological target for the development of anxiolytics. In view of these findings, and since furosemide and bumetanide are safe and well tolerated drugs, the clinical potential of loop diuretics for treating some types of anxiety disorders deserves further investigation.

  3. Loop Diuretics Have Anxiolytic Effects in Rat Models of Conditioned Anxiety

    Science.gov (United States)

    Krystal, Andrew D.; Sutherland, Janice; Hochman, Daryl W.

    2012-01-01

    A number of antiepileptic medications that modulate GABAA mediated synaptic transmission are anxiolytic. The loop diuretics furosemide (Lasix) and bumetanide (Bumex) are thought to have antiepileptic properties. These drugs also modulate GABAA mediated signalling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signalling, we sought to investigate whether they also mediate anxiolytic effects. Here we report the first investigation of the anxiolytic effects of these drugs in rat models of anxiety. Furosemide and bumetanide were tested in adult rats for their anxiolytic effects using four standard anxiety models: 1) contextual fear conditioning; 2) fear-potentiated startle; 3) elevated plus maze, and 4) open-field test. Furosemide and bumetanide significantly reduced conditioned anxiety in the contextual fear-conditioning and fear-potentiated startle models. At the tested doses, neither compound had significant anxiolytic effects on unconditioned anxiety in the elevated plus maze and open-field test models. These observations suggest that loop diuretics elicit significant anxiolytic effects in rat models of conditioned anxiety. Since loop diuretics are antagonists of the NKCC1 and KCC2 cotransporters, these results implicate the cation-chloride cotransport system as possible molecular mechanism involved in anxiety, and as novel pharmacological target for the development of anxiolytics. In view of these findings, and since furosemide and bumetanide are safe and well tolerated drugs, the clinical potential of loop diuretics for treating some types of anxiety disorders deserves further investigation. PMID:22514741

  4. Localization and functional characterization of the human NKCC2 isoforms

    DEFF Research Database (Denmark)

    Carota, I; Theilig, F; Oppermann, M;

    2010-01-01

    AIM: Salt reabsorption across the apical membrane of cells in the thick ascending limb (TAL) of Henle is primarily mediated by the bumetanide-sensitive Na(+)/K(+)/2Cl(-) cotransporter NKCC2. Three full-length splice variants of NKCC2 (NKCC2B, NKCC2A and NKCC2F) have been described. The NKCC2 isof...

  5. Loop-acting diuretics do not bind to Tamm-Horsfall urinary glycoprotein.

    Science.gov (United States)

    Brunisholz, M C; Lynn, K L; Hunt, J S

    1987-09-01

    1. Binding between the radiolabelled loop-acting diuretics ([14C]frusemide, [14C]ethacrynic acid and [3H]bumetanide) and human Tamm-Horsfall glycoprotein or human serum albumin in vitro was evaluated by equilibrium dialysis. 2. The diuretic action and binding to urinary Tamm-Horsfall glycoprotein of the radiolabelled diuretics in vivo, after intravenous administration, were examined in rabbits. 3. In vitro, all three radiolabelled diuretics bound strongly to human serum albumin, but not to Tamm-Horsfall glycoprotein. 4. Radiolabelled frusemide and bumetanide, but not ethacrynic acid, caused a diuresis in rabbits, but no binding between the drugs and Tamm-Horsfall glycoprotein was seen in vivo. 5. Binding to Tamm-Horsfall glycoprotein does not appear to be an important mechanism in the action of loop diuretics.

  6. Diuretic treatment in decompensated cirrhosis and congestive heart failure: effect of posture

    DEFF Research Database (Denmark)

    Ring-Larsen, H; Henriksen, Jens Henrik Sahl; Wilken, C;

    1986-01-01

    The diuretic effect of the supine position was evaluated in six patients with cirrhosis and ascites and six with congestive cardiac failure. After fasting overnight in bed the patients received bumetanide 1 mg intravenously and were then immediately randomly assigned to either bed rest in the sup......The diuretic effect of the supine position was evaluated in six patients with cirrhosis and ascites and six with congestive cardiac failure. After fasting overnight in bed the patients received bumetanide 1 mg intravenously and were then immediately randomly assigned to either bed rest...... in the supine position or normal daily activity in the upright position for the next six hours. Two days later the procedure was repeated, the patients being assigned to the other posture. The diuretic response was similar in patients with heart failure and cirrhosis, and was significantly greater in the supine...

  7. Roles of the cytoskeleton and of Protein Phosphorylation Events in the Osmotic Stress Response in EEL Intestinal Epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Pedersen, Stine F; Hoffmann, Else K;

    2002-01-01

    /threonine phosphorylation events in the osmotic stress-induced ion transport in the eel intestinal epithelium, focusing on the sustained RVI phase, as well as on the previously uncharacterized response to hypotonic stress. The study was carried out using confocal laser scanning microscopy, a quantitative F-actin assay...... phase is bumetanide-insensitive, the second, sustained phase is bumetanide-sensitive, reflecting activation of the apically located Na(+)-K(+)-2Cl(-) (NKCC) cotransporter, which correlates with the cellular RVI response. Here, we investigated the involvement of the cytoskeleton and of serine......) inhibitor chelerythrine, the myosin light chain kinase (MLCK) inhibitor ML-7, or the serine/threonine protein phosphatase inhibitor Calyculin A, but was unaffected by the PKA inhibitor H-89. The electrophysiological response of the epithelium to hypotonic stress was characterized by a sustained decrease...

  8. Mechanisms of guanylin action on water and ion absorption at different regions of seawater eel intestine.

    Science.gov (United States)

    Ando, Masaaki; Wong, Marty K S; Takei, Yoshio

    2014-09-15

    Guanylin (GN) inhibited water absorption and short-circuit current (Isc) in seawater eel intestine. Similar inhibition was observed after bumetanide, and the effect of bumetanide was abolished by GN or vice versa, suggesting that both act on the same target, Na(+)-K(+)-2Cl(-) cotransporter (NKCC), which is a key player for the Na(+)-K(+)-Cl(-) transport system responsible for water absorption in marine teleost intestine. However, effect of GN was always greater than that of bumetanide: 10% greater in middle intestine (MI) and 40% in posterior intestine (PI) for Isc, and 25% greater in MI and 34% in PI for water absorption. After treatment with GN, Isc decreased to zero, but 20-30% water absorption still remained. The remainder may be due to the Cl(-)/HCO3 (-) exchanger and Na(+)-Cl(-) cotransporter (NCC), since inhibitors for these transporters almost nullified the remaining water absorption. Quantitative PCR analysis revealed the presence of major proteins involved in water absorption; the NKCC2β and AQP1 genes whose expression was markedly upregulated after seawater acclimation. The SLC26A6 (anion exchanger) and NCCβ genes were also expressed in small amounts. Consistent with the inhibitors' effect, expression of NKCC2β was MI > PI, and that of NCCβ was MI intestine, and its role may be minor, as indicated by the small effect of its inhibitors.

  9. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Directory of Open Access Journals (Sweden)

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  10. Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine.

    Science.gov (United States)

    Kito, Yoshihiko; Mitsui, Retsu; Ward, Sean M; Sanders, Kenton M

    2015-03-01

    Slow waves (slow wavesICC) were recorded from myenteric interstitial cells of Cajal (ICC-MY) in situ in the rabbit small intestine, and their properties were compared with those of mouse small intestine. Rabbit slow wavesICC consisted of an upstroke depolarization followed by a distinct plateau component. Ni(2+) and nominally Ca(2+)-free solutions reduced the rate-of-rise and amplitude of the upstroke depolarization. Replacement of Ca(2+) with Sr(2+) enhanced the upstroke component but decreased the plateau component of rabbit slow wavesICC. In contrast, replacing Ca(2+) with Sr(2+) decreased both components of mouse slow wavesICC. The plateau component of rabbit slow wavesICC was inhibited in low-extracellular-Cl(-)-concentration (low-[Cl(-)]o) solutions and by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of Cl(-) channels, cyclopiazonic acid (CPA), an inhibitor of internal Ca(2+) pumps, or bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). Bumetanide also inhibited the plateau component of mouse slow wavesICC. NKCC1-like immunoreactivity was observed mainly in ICC-MY in the rabbit small intestine. Membrane depolarization with a high-K(+) solution reduced the upstroke component of rabbit slow wavesICC. In cells depolarized with elevated external K(+), DIDS, CPA, and bumetanide blocked slow wavesICC. These results suggest that the upstroke component of rabbit slow wavesICC is partially mediated by voltage-dependent Ca(2+) influx, whereas the plateau component is dependent on Ca(2+)-activated Cl(-) efflux. NKCC1 is likely to be responsible for Cl(-) accumulation in ICC-MY. The results also suggest that the mechanism of the upstroke component differs in rabbit and mouse slow wavesICC in the small intestine.

  11. Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine.

    Science.gov (United States)

    Kito, Yoshihiko; Mitsui, Retsu; Ward, Sean M; Sanders, Kenton M

    2015-03-01

    Slow waves (slow wavesICC) were recorded from myenteric interstitial cells of Cajal (ICC-MY) in situ in the rabbit small intestine, and their properties were compared with those of mouse small intestine. Rabbit slow wavesICC consisted of an upstroke depolarization followed by a distinct plateau component. Ni(2+) and nominally Ca(2+)-free solutions reduced the rate-of-rise and amplitude of the upstroke depolarization. Replacement of Ca(2+) with Sr(2+) enhanced the upstroke component but decreased the plateau component of rabbit slow wavesICC. In contrast, replacing Ca(2+) with Sr(2+) decreased both components of mouse slow wavesICC. The plateau component of rabbit slow wavesICC was inhibited in low-extracellular-Cl(-)-concentration (low-[Cl(-)]o) solutions and by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of Cl(-) channels, cyclopiazonic acid (CPA), an inhibitor of internal Ca(2+) pumps, or bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). Bumetanide also inhibited the plateau component of mouse slow wavesICC. NKCC1-like immunoreactivity was observed mainly in ICC-MY in the rabbit small intestine. Membrane depolarization with a high-K(+) solution reduced the upstroke component of rabbit slow wavesICC. In cells depolarized with elevated external K(+), DIDS, CPA, and bumetanide blocked slow wavesICC. These results suggest that the upstroke component of rabbit slow wavesICC is partially mediated by voltage-dependent Ca(2+) influx, whereas the plateau component is dependent on Ca(2+)-activated Cl(-) efflux. NKCC1 is likely to be responsible for Cl(-) accumulation in ICC-MY. The results also suggest that the mechanism of the upstroke component differs in rabbit and mouse slow wavesICC in the small intestine. PMID:25540230

  12. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  13. HCO3- Transport in Relation to Mucus Secretion from Submucosal Glands

    Directory of Open Access Journals (Sweden)

    Joo NS

    2001-07-01

    Full Text Available The role of HCO(3(- transport in relation to fluid secretion by submucosal glands is being studied in sheep, pigs, cats and humans. Optical methods have been developed to measure secretion rates of mucus volume from single glands with sufficient temporal resolution to detect differences in minute-by-minute secretion rates among glands. The ionic composition and viscoelastic properties of the uncontaminated gland mucus are measured with a combination of ratiometric fluorescent indicators, ion-selective microelectrodes, FRAP, and a miniaturized, magnetic force viscometer. Sheep glands secreted basally at low rates, showed small, transient responses to alpha- and beta-adrenergic agonists, and large responses to a cholinergic agonist, carbachol. Peak rates and temporal patterns of responses to carbachol differed markedly among glands. To assess the contribution of HCO(3(- transport to gland secretion, we either inhibited Na(+/K(+/2Cl(- cotransporter (NKCC with bumetanide or replaced HCO(3(- with HEPES and gassed with O(2. Bumetanide caused a small, non-significant inhibition of basal secretion, but removal of HCO(3(-/CO(2 significantly reduced basal secretion almost by half. Both bumetanide and removal of HCO(3(-/CO(2 reduced carbachol-stimulated secretion significantly, with HCO(3(- removal having the larger effect: a reduction to 33% of control (P less than 0.01. The remaining secretory response to carbachol was nearly eliminated by bumetanide. Sheep mucus pH measured with ion selective electrodes was about 0.4 log more acidic than the bath. In humans, we observed the same pattern of responses to agonists and antagonists as in sheep, and observed a mucus pH of 7.0 using 2',7'-bis(carboxyethyl-5,6-carboxyfluorescein (BCECF. We hypothesize that HCO(3(- transport is important in the formation of mucus secretion, but that most HCO(3(- is scavenged before the final mucus appears at the duct opening. Cystic fibrosis transmembrane conductance regulator

  14. Does the intracellular ionic concentration or the cell water content (cell volume) determine the activity of TonEBP in NIH3T3 cells?

    DEFF Research Database (Denmark)

    Rødgaard, Tina; Schou, Kenneth; Friis, Martin Barfred;

    2008-01-01

    of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory...... volume decrease (RVD). Upon return to the original isotonic medium, cells shrank initially followed by a regulatory volume increase (RVI). To maintain cell shrinkage, the RVI process was inhibited as follows: Ethyl-isopropyl-amiloride (EIPA) inhibited the Na(+)/H(+) antiport, Bumetanide inhibited the Na......(+)/K(+)/2Cl(-) co-transporter, and Gadolinium inhibited shrinkage-activated Na(+) channels. Cells remained shrunken for at least 4 hours (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high NaCl hypertonic...

  15. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia

    DEFF Research Database (Denmark)

    Boucher, R C; Larsen, Erik Hviid

    1988-01-01

    The use of primary cell culture techniques to predict the function of native respiratory epithelia was tested in studies of dog airway epithelia. Epithelial cells from Cl- secretory (tracheal) and Na+ absorptive (bronchial) airway regions were isolated by enzymatic digestion, plated on collagen...... matrices, and maintained in serum-free, hormone-supplemented media. Transepithelial and intracellular studies showed that both the tracheal and bronchial culture preparations exhibited bioelectric parameters quantitatively similar to those of intact tissues. Similar to the native tissue, the tracheal...... preparation exhibited an equivalent short-circuit circuit (Ieq) that was sensitive to inhibitors of Cl- transport (bumetanide, diphenylamine carboxylic acid) but was insensitive to an inhibitor of Na+ transport, amiloride. In contrast, the bronchial preparation, like the native tissue, exhibited an Ieq...

  16. Application of the Na+ recirculation theory to ion coupled water transport in low- and high resistance osmoregulatory epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Møbjerg, Nadja; Nielsen, Robert

    2007-01-01

    approaches: (i) An isotope tracer method in small intestine. Simultaneous measurement of water flow and ion transport in toad skin epithelium demonstrating, (ii) occasional hyposmotic absorbates, and (iii) reduced fluid absorption in the presence of serosal bumetanide. (iv) Studies of the metabolic cost......The theory of Na+ recirculation for isosmotic fluid absorption follows logically from Hertz's convection-diffusion equation applied to the exit of water and solutes from the lateral intercellular space. Experimental evidence is discussed indicating Na+ recirculation based upon the following...... of net Na+ absorption demonstrating an efficiency that is lower than the 18 Na+ per O2 consumed given by the stoichiometry of the Na+/K+-pump. Mathematical modeling predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag...

  17. Loop Diuretics in the Treatment of Hypertension.

    Science.gov (United States)

    Malha, Line; Mann, Samuel J

    2016-04-01

    Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.

  18. Unexpected Extra-renal Effects of Loop Diuretics in the Preterm Neonate

    Science.gov (United States)

    Cotton, Robert; Suarez, Sandra; Reese, Jeff

    2012-01-01

    The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, due to its actions on the ubiquitous NKCC1 co-transporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus, and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through the inhibitory neurotransmitter, GABA. Conclusion The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents since the range of their effects may be broader than the single action sought by the prescribing physician. PMID:22536874

  19. [Research advances in the management of autism spectrum disorders in children].

    Science.gov (United States)

    Li, Hong-Hua; Shan, Ling; Du, Lin; Jia, Fei-Yong

    2015-08-01

    Autism spectrum disorders (ASD) are a group of developmental dysfuntion of nervous system characterized by social interaction and communication disorders, restricted interests and repetitive stereotyped behaviors. The incidence of ASD has been increasing through the world. Some studies have shown that early reasonable individualized comprehensive intervention can obviously improve the prognosis of children with ASD. The etiology of ASD is unclear now, and behavioral and developmental intervention is the main therapy for ASD. The reasonable application of some drugs can improve the efficacy of the behavioral intervention for concomitant symptoms in ASD. With the in-depth study of the pathogenesis of ASD, bumetanide, oxytocin, vitamin D and hyperbaric oxygen therapy have been found to be promising for the improvement of core symptoms of ASD. This article reviews the research advances in the behavioral and developmental intervention and drug therapy for ASD. PMID:26287360

  20. Prostaglandin E2-induced colonic secretion in patients with and without colorectal neoplasia

    DEFF Research Database (Denmark)

    Kaltoft, Nicolai; Tilotta, Maria C; Witte, Anne-Barbara;

    2010-01-01

    BACKGROUND: The pathogenesis for colorectal cancer remains unresolved. A growing body of evidence suggests a direct correlation between cyclooxygenase enzyme expression, prostaglandin E2 metabolism and neoplastic development. Thus further understanding of the regulation of epithelial functions...... by prostaglandin E2 is needed. We hypothesized that patients with colonic neoplasia have altered colonic epithelial ion transport and express functionally different prostanoid receptor levels in this respect. METHODS: Patients referred for colonoscopy were included and grouped into patients with and without...... cm(-2) (p = 0.027). Stimulation or inhibition with theophylline, ouabain, bumetanide, forskolin or the EP receptor agonists prostaglandin E2, butaprost, sulprostone and prostaglandin E1 (OH) did not differ significantly between the two groups. Histology was with normal findings in both groups...

  1. Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2007-01-01

    Protein phosphorylation/dephosphorylation and cytoskeletal reorganization regulate the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) during osmotic shrinkage; however, the mechanisms involved are unclear. We show that in cytoplasts, plasma membrane vesicles detached from Ehrlich ascites tumor cells (EATC......) by cytochalasin treatment, NKCC1 activity evaluated as bumetanide-sensitive (86)Rb influx was increased compared with the basal level in intact cells yet could not be further increased by osmotic shrinkage. Accordingly, cytoplasts exhibited no regulatory volume increase after shrinkage. In cytoplasts......, cortical F-actin organization was disrupted, and myosin II, which in shrunken EATC translocates to the cortical region, was absent. Moreover, NKCC1 activity was essentially insensitive to the myosin light chain kinase (MLCK) inhibitor ML-7, a potent blocker of shrinkage-induced NKCC1 activity in intact...

  2. Minimal volume regulation after shrinkage of red blood cells from five species of reptiles

    DEFF Research Database (Denmark)

    Kristensen, Karina; Berenbrink, Michael; Koldkjær, Pia;

    2008-01-01

    Red blood cells (RBCs) from most vertebrates restore volume upon hypertonic shrinkage and the mechanisms underlying this regulatory volume increase (RVI) have been studied extensively in these cells. Despite the phylogenetically interesting position of reptiles, very little is known about their red...... cell function. The present study demonstrates that oxygenated RBCs in all major groups of reptiles exhibit no or a very reduced RVI upon ~ 25% calculated hyperosmotic shrinkage. Thus, RBCs from the snakes Crotalus durissus and Python regius, the turtle Trachemys scripta and the alligator Alligator...... mississippiensis showed no statistically significant RVI within 120 min after shrinkage, while the lizard Tupinambis merianae showed 22% volume recovery after 120 min. Amiloride (10- 4 M) and bumetanide (10- 5 M) had no effect on the RVI in T. merianae, indicating no involvement of the Na+/H+ exchanger (NHE) or...

  3. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Olesen, Jesper H; Bedal, Konstanze;

    2011-01-01

    %), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally......(v) by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na(+)-glucose co-transporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab, and -8ab, we detected Aqp1aa, and -1ab...

  4. Regulation of electrolyte transport with IL-1β in rabbit distal colon

    Directory of Open Access Journals (Sweden)

    F. R. Homaidan

    1995-01-01

    Full Text Available Interletrkin-1β levels are elevated in inflammatory bowel disease. In this study the mechanism by which interleukin-1β affects electrolyte transport in the rabbit distal colon, was investigated. Interleukin-1β caused a delayed increase in short-circuit current (Isc which was attributed to protein synthesis since the effect was inhibited by cycloheximide. The interleukin-1β induced increase in Isc was not affected by amiloride treatment but was completely inhibited by bumetanide or in chloride-free buffer and by indomethacin. Prostaglandin E2 levels increased in tissue treated with interleukin-1β, but this increase was reversed by cycloheximide. These data suggest that interleukin-1β causes its effect via a yet to be identified second messenger, by increasing chloride secretion through a prostaglandin E2 mediated mechanism.

  5. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Herrera-Perez, José J; Zeuthen, Thomas;

    2010-01-01

    ionic and osmotic gradients. The coupling between salt and water transport in NKCC1 represents a novel aspect of cellular water homeostasis where cells can change their volume independently of the direction of an osmotic gradient across the membrane. This has relevance for both epithelial......Water transport by the Na+-K+-2Cl(-) cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl(-) fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored...... by intracellular self-quenching of the fluorescent dye calcein. Isosmotic removal of external Cl(-) or Na+ caused a rapid efflux of water from the cells, which was inhibited by bumetanide (10 µm). When returned to the control solution there was a rapid water influx that required the simultaneous presence...

  6. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium.

    Science.gov (United States)

    Nickell, William T; Kleene, Nancy K; Kleene, Steven J

    2007-09-15

    When olfactory receptor neurons respond to odours, a depolarizing Cl(-) efflux is a substantial part of the response. This requires that the resting neuron accumulate Cl(-) against an electrochemical gradient. In isolated olfactory receptor neurons, the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 is essential for Cl(-) accumulation. However, in intact epithelium, a robust electrical olfactory response persists in mice lacking NKCC1. This response is largely due to a neuronal Cl(-) efflux. It thus appears that NKCC1 is an important part of a more complex system of Cl(-) accumulation. To identify the remaining transport proteins, we first screened by RT-PCR for 21 Cl(-) transporters in mouse nasal tissue containing olfactory mucosa. For most of the Cl(-) transporters, the presence of mRNA was demonstrated. We also investigated the effects of pharmacological block or genetic ablation of Cl(-) transporters on the olfactory field potential, the electroolfactogram (EOG). Mice lacking the common Cl(-)/HCO(3)(-) exchanger AE2 had normal EOGs. Block of NKCC cotransport with bumetanide reduced the EOG in epithelia from wild-type mice but had no effect in mice lacking NKCC1. Hydrochlorothiazide, a blocker of the Na(+)-Cl(-) cotransporter, had only a small effect. DIDS, a blocker of some KCC cotransporters and Cl(-)/HCO(3)(-) exchangers, reduced the EOG in epithelia from both wild-type and NKCC1 knockout mice. A combination of bumetanide and DIDS decreased the response more than either drug alone. However, no combination of drugs completely abolished the Cl(-) component of the response. These results support the involvement of both NKCC1 and one or more DIDS-sensitive transporters in Cl(-) accumulation in olfactory receptor neurons.

  7. Comparison of Cannabidiol, Antioxidants, and Diuretics in Reversing Binge Ethanol-Induced Neurotoxicity

    Science.gov (United States)

    Hamelink, Carol; Hampson, Aidan; Wink, David A.; Eiden, Lee E.; Eskay, Robert L.

    2014-01-01

    Binge alcohol consumption in the rat induces substantial neurodegeneration in the hippocampus and entorhinal cortex. Oxidative stress and cytotoxic edema have both been shown to be involved in such neurotoxicity, whereas N-methyl-D-aspartate (NMDA) receptor activity has been implicated in alcohol withdrawal and excitoxic injury. Because the nonpsychoactive cannabinoid cannabidiol (CBD) was previously shown in vitro to prevent glutamate toxicity through its ability to reduce oxidative stress, we evaluated CBD as a neuroprotectant in a rat binge ethanol model. When administered concurrently with binge ethanol exposure, CBD protected against hippocampal and entorhinal cortical neurodegeneration in a dose-dependent manner. Similarly, the common antioxidants butylated hydroxytoluene and α-tocopherol also afforded significant protection. In contrast, the NMDA receptor antagonists dizocilpine (MK-801) and memantine did not prevent cell death. Of the diuretics tested, furosemide was protective, whereas the other two anion exchanger inhibitors, L-644,711 [(R)-(+)-(5,6-dichloro2,3,9,9a-tetrahydro 3-oxo-9a-propyl-1H-fluoren-7-yl)oxy acetic acid] and bumetanide, were ineffective. In vitro comparison of these diuretics indicated that furosemide is also a potent antioxidant, whereas the nonprotective diuretics are not. The lack of efficacy of L-644,711 and bumetanide suggests that the antioxidant rather than the diuretic properties of furosemide contribute most critically to its efficacy in reversing ethanol-induced neurotoxicity in vitro, in our model. This study provides the first demonstration of CBD as an in vivo neuroprotectant and shows the efficacy of lipophilic antioxidants in preventing binge ethanol-induced brain injury. PMID:15878999

  8. Loop diuretics are open-channel blockers of the cystic fibrosis transmembrane conductance regulator with distinct kinetics

    Science.gov (United States)

    Ju, Min; Scott-Ward, Toby S; Liu, Jia; Khuituan, Pissared; Li, Hongyu; Cai, Zhiwei; Husbands, Stephen M; Sheppard, David N

    2014-01-01

    BACKGROUND AND PURPOSE Loop diuretics are widely used to inhibit the Na+, K+, 2Cl− co-transporter, but they also inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Here, we investigated the mechanism of CFTR inhibition by loop diuretics and explored the effects of chemical structure on channel blockade. EXPERIMENTAL APPROACH Using the patch-clamp technique, we tested the effects of bumetanide, furosemide, piretanide and xipamide on recombinant wild-type human CFTR. KEY RESULTS When added to the intracellular solution, loop diuretics inhibited CFTR Cl− currents with potency approaching that of glibenclamide, a widely used CFTR blocker with some structural similarity to loop diuretics. To begin to study the kinetics of channel blockade, we examined the time dependence of macroscopic current inhibition following a hyperpolarizing voltage step. Like glibenclamide, piretanide blockade of CFTR was time and voltage dependent. By contrast, furosemide blockade was voltage dependent, but time independent. Consistent with these data, furosemide blocked individual CFTR Cl− channels with ‘very fast’ speed and drug-induced blocking events overlapped brief channel closures, whereas piretanide inhibited individual channels with ‘intermediate’ speed and drug-induced blocking events were distinct from channel closures. CONCLUSIONS AND IMPLICATIONS Structure–activity analysis of the loop diuretics suggests that the phenoxy group present in bumetanide and piretanide, but absent in furosemide and xipamide, might account for the different kinetics of channel block by locking loop diuretics within the intracellular vestibule of the CFTR pore. We conclude that loop diuretics are open-channel blockers of CFTR with distinct kinetics, affected by molecular dimensions and lipophilicity. PMID:24117047

  9. Inward flux of lactate⁻ through monocarboxylate transporters contributes to regulatory volume increase in mouse muscle fibres.

    Directory of Open Access Journals (Sweden)

    Michael I Lindinger

    Full Text Available Mouse and rat skeletal muscles are capable of a regulatory volume increase (RVI after they shrink (volume loss resultant from exposure to solutions of increased osmolarity and that this RVI occurs mainly by a Na-K-Cl-Cotransporter (NKCC-dependent mechanism. With high-intensity exercise, increased extracellular osmolarity is accompanied by large increases in extracellular [lactate⁻]. We hypothesized that large increases in [lactate⁻] and osmolarity augment the NKCC-dependent RVI response observed with a NaCl (or sucrose-induced increase in osmolarity alone; a response that is dependent on lactate⁻ influx through monocarboxylate transporters (MCTs. Single mouse muscle fibres were isolated and visualized under light microscopy under varying osmolar conditions. When solution osmolarity was increased by adding NaLac by 30 or 60 mM, fibres lost significantly less volume and regained volume sooner compared to when NaCl was used. Phloretin (MCT1 inhibitor accentuated the volume loss compared to both NaLac controls, supporting a role for MCT1 in the RVI response in the presence of elevated [lactate⁻]. Inhibition of MCT4 (with pCMBS resulted in a volume loss, intermediate to that seen with phloretin and NaLac controls. Bumetanide (NKCC inhibitor, in combination with pCMBS, reduced the magnitude of volume loss, but volume recovery was complete. While combined phloretin-bumetanide also reduced the magnitude of the volume loss, it also largely abolished the cell volume recovery. In conclusion, RVI in skeletal muscle exposed to raised tonicity and [lactate⁻] is facilitated by inward flux of solute by NKCC- and MCT1-dependent mechanisms. This work demonstrates evidence of a RVI response in skeletal muscle that is facilitated by inward flux of solute by MCT-dependent mechanisms. These findings further expand our understanding of the capacities for skeletal muscle to volume regulate, particularly in instances of raised tonicity and lactate

  10. Interaction between {sup 99}Tc{sup m}-hydroxmethylene diphosphonate and loop-diuretics in an experimental mouse system

    Energy Technology Data Exchange (ETDEWEB)

    Cronhjort, M. [Dept. of Diagnostic Radiology, Karolinska Hospital, Stockholm (Sweden); Sjoeberg, H.E. [Dept. of Endocrinology, Karolinska Hospital, Stockholm (Sweden); Schnell, P.O. [Dept. of Hospital Physics, Karolinska Hospital, Stockholm (Sweden); Jacobsson, H. [Dept. of Diagnostic Radiology, Karolinska Hospital, Stockholm (Sweden)

    1994-12-31

    The image quality at bone scintigraphy depends largely on the bone/soft-tissue activity ratio. This varies considerably between different patients and may sometimes be strongly reduced. The ratio increases with time due to urinary excretion of extracelluar activity. The possibility to utilize the phosphaturic effect of loop-diuretics to enhance the excretion of the soft tissue activity caused by radiolabeled phosphonate compounds at bone scintigraphy has been studied. Three loop-diuretics (Bumetanide, Ethacrynic acid and Furosemide) were injected at different times in relation to {sup 99}Tc{sup m}-Hydroxymethylene diphosphonate (HDP) in mice. By assessing the activity of different organs as well as of peripheral blood by a gamma-counter, the activity distribution in the animals was established. Administration of diuretics together with, or after HDP has a negative influence on the quality of the potential HDP-image. Administration of diuretics prior to the radiopharmaceutical slightly improves the image quality, but not to an extent justifying it use for this purpose in practice. The complex effects on HDP may be explained by the influence of Furosemide on calcium, pH and on blood plasma volume and their hormonal consequences. (orig.) [Deutsch] Bei der Knochenszintigraphie haengt die Bildqualitaet hauptsaechlich von der Quote der Isotopenaktivitaet in den Knochen und in den Weichteilen ab. Die extrazellulaere Weichteilaktivitaet wird durch die Nieren ausgeschieden, zur Steigerung der Quote fuehrend. Die Moeglichkeit die Diuretica wegen ihrer Wirkung die extrazellulaeren Isotopen aus dem Koerper auszuschneiden zu benuetzen ist hier untersucht worden. Diesbezueglich hat man insgesamt drei Typen von Loop-Diuretica (Bumetanid, Ethacrynsaeure und Furosemid) verwendet. Die Diuretica hat man den Maeusen bei verschiedenen Zeitpunkten im Verhaeltnis zu dem {sup 99}Tc{sup m}-HDP (HDP) zugefuehrt. Um die Verteilung des Isotops in den Tierkoerpern festzustellen, ist die

  11. Differential Cl-and HCO3-mediated anion secretion by different colonic cell types in response to tetromethylpyrazine

    Institute of Scientific and Technical Information of China (English)

    Jin-Xia Zhu; Ning Yang; Qiong He; Lai-Ling Tsang; Wen-Chao Zhao; Yiu-Wa Chung; Hsiao-Chang Chan

    2004-01-01

    AIM: Colonic epithelium is known to secrete both Cl- and HCO3-, but the secretory mechanisms of different colonic cell types are not fully understood. The present study aimed to investigate the differential activation of Cl-and HCO3-secretion by tetramethylpyrazine (TMP) in human crypt-like cell line, T84, and villus-like cell line, Caco-2, in comparison to the TMP-induced secretory response in freshly isolated rat colonic mucosa.METHODS: Colonic epithelial anion secretion was studied by using the short circuit current (Isc) technique. RT-PCR was used to examine the expression of Na+-HCO3--cotranspoter in different epithelial cell types.RESULTS: TMP produced a concentration-dependent Isc which was increase in both T84 and Caco-2 cells. When extracellular Cl- was removed, TMP-induced Isc was abolished by 76.6% in T84 cells, but not in Caco-2 cells. However,after both Cl- and HCO3- were removed, TMlP-induced ISC in Caco-2 cells was reduced to 10%. Bumetanide, an inhibitor of Na+-K+-Cl--cotranspoter, inhibited the TMP-induced ISC by 96.7% in T84 cells, but only 47.9% in Caco-2 cells. In the presence of bumetanide and 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of Na+-HCO3- cotransporter,inhibited the TMP-induced current in Caco-2 cells by 93.3%.In freshly isolated rat colonic mucosa, TMP stimulated distinct ISC responses similar to that observed in T84 and Caco-2cells depending on the concentration used. RT-PCR revealed that the expression of Na+-HCO3- cotransporter in Caco-2cells was 4-fold more greater than that in T84 cells.CONCLUSION: TMP exerts concentration-dependent differential effects on different colonic cell types with stimulation of predominant Cl- secretion by crypt cells at a lower concentration, but predominant HCO3- secretion by villus cells at a higher concentration, suggesting different roles of these cells in colonic Cl- and HCO3- secretion.

  12. Improvement of barrier function and stimulation of colonic epithelial anion secretion by Menoease Pills

    Institute of Scientific and Technical Information of China (English)

    Jin-Xia Zhu; Ning Yang; Gui-Hong Zhang; Lai-Ling Tsang; Yu-Lin Gou; Hau-Yan Connie Wong; Yiu-Wa Chung; Hsiao-Chang Chan

    2004-01-01

    AIM: Menoease Pills (MP), a Chinese medicine-based new formula for postmenopausal women, has been shown to modulate the endocrine and immune systems[1]. The present study investigated the effects of MP and one of its active ingredients, ligustrazine, on epithelial barrier and ion transport function in a human colonic cell line, T84.METHODS: Colonic transepithelial electrophysiological characteristics and colonic anion secretion were studied using the short circuit current (ISC) technique. RT-PCR was used to examine the expression of cytoplasmic proteins associated with the tight junctions, ZO-1(zonula occludens-1) and ZO-2 (zonula occludens-2).RESULTS: Pretreatment of T84 cells with MP (15 μg/mL) for 72 h significantly increased basal potential difference,transepithelial resistance and basal ISC. RT-PCR results showed that the expressions of ZO-1 and ZO-2 were significantly increased after MP treatment, consistent with improved epithelial barrier function. Results of acute stimulation showed that apical addition of MP produced a concentrationdependent (10-5 000 μg/mL, EC50 = 293.9 μg/mL) increase in ISC. MP-induced ISC was inhibited by basolateral treatment with bumetanide (100 μmol/L), an inhibitor of the Na+-K+-2Cl- cotransporter, apical addition of Cl-channel blockers, diphenylamine-2, 2'-dicarboxylic acid (1 mmol/L) or glibenclamide (1 mmol/L), but not 4, 4'-diisothiocyanostilbene2, 2'-disulfonic acid or epithelial Na+ channel blocker,amiloride. The effect of MP on ZO-1 and ZO-2 was mimicked by Ligustrazine and the ligustrazine-induced ISC was also blocked by basolateral application of bumetanide and apical addition of diphenylamine-2, 2'-dicarboxylic acid or glibenclamide, and reduced by a removal of extracellular Cl-.CONCLUSION: The results of the present study suggest that MP and lligustrazine may improve epithelial barrier function and exert a stimulatory effect on colonic anion secretion, indicating the potential use of MP and its active ingredients

  13. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Sofia Temudo Duarte

    Full Text Available OBJECTIVE: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. METHODS: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life and from Rett syndrome patients (2 to 19 years of life, by immunoblot analysis. RESULTS: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. CONCLUSIONS: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective.

  14. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  15. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    Science.gov (United States)

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function. PMID:26794590

  16. Volume-regulatory K+ fluxes in the isolated perfused rat liver: characterization by ion transport inhibitors.

    Science.gov (United States)

    Haddad, P; Graf, J

    1989-09-01

    Net hepatic release and uptake of K+ were examined in isolated perfused rat livers subjected to a 10-min period of hypotonic stress. Effluent Na+, K+, and Ca2+ activities were monitored throughout. Initiation and termination of hypotonic stress triggered sharp transient (less than 1 min) changes in effluent ion activities that indicated net water movement into and out of the liver, respectively. In addition, hypotonic stress caused a large transient net release of hepatic K+, whereas return to isotonicity triggered a transient net hepatic K+ uptake. The hypotonically induced K+ release was inhibited by 2 mM barium (95%) and by 1 mM quinine (60%). Net K+ influx, on the other hand, was inhibited by 1 mM ouabain (100%) and by 1 mM amiloride (50%). Osmotically induced K+ fluxes were not significantly affected by bicarbonate removal and were only partially inhibited by 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or bumetanide. The results suggest that K+ conductance increases during hypotonic stress, whereas return to isotonicity induces a ouabain-sensitive K+ uptake partly because of increased Na+-H+ exchange. These mechanisms probably participate in regulatory volume decrease and regulatory volume increase, respectively. PMID:2551180

  17. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    Science.gov (United States)

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  18. Diuretics prime plant immunity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yoshiteru Noutoshi

    Full Text Available Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  19. Functional characterization of serotonin receptor subtypes in human duodenal secretion

    DEFF Research Database (Denmark)

    Engelmann, Bodil Elisabeth; Bindslev, Niels; Poulsen, Steen Seier;

    2006-01-01

    Serotonin (5-HT) stimulates ion secretion in the gastrointestinal tract and the sensitivity for 5-HT might be altered in dyspeptic patients infected with Helicobacter pylori. The purpose of the present study was to characterize the 5-HT-induced electrogenic ion transport in the duodenum of dyspep......Serotonin (5-HT) stimulates ion secretion in the gastrointestinal tract and the sensitivity for 5-HT might be altered in dyspeptic patients infected with Helicobacter pylori. The purpose of the present study was to characterize the 5-HT-induced electrogenic ion transport in the duodenum...... of dyspeptic patients with or without Helicobacter pylori infection, and to determine the 5-HT receptor subtypes functionally involved. Biopsies from the second part of duodenum were obtained from 43 dyspeptic patients during routine endoscopy. Biopsies were mounted in modified Ussing chambers with air suction...... for measurements of short-circuit current by a previously validated technique. Short-circuit current was measured before and after application of graded cumulative doses of 5-HT and a single dose of bumetanide (an inhibitor of chloride/bicarbonate transport), or one of the selective 5-HT receptor antagonists...

  20. Activation of Chloride Secretion by Isoflavone Genistein in Endometrial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Chatsri Deachapunya

    2013-11-01

    Full Text Available Background /Aim: Genistein, the most active isoflavone found primarily in soybeans, alters ion transport functions in intestinal and airway epithelia. The present study aims to investigate the acute effects and mechanisms of action of genistein in immortalized porcine endometrial epithelial cells. Methods: Ussing chamber technique was used for transepithelial electrical measurements. Results: Genistein increased short-circuit currents (Isc which were inhibited by glibenclamide, NPPB, CFTRinh-172, DIDS or bumetanide, but not amiloride. In experiments with amphotericin B-permeabilized monolayers, genistein activated the apical Cl- current and barium-sensitive basolateral K+ current while inhibiting the apical K+ current. Genistein failed to increase the Isc in the presence of forskolin or IBMX, but did increase the Isc in UTP. Pretreatment with genistein also abolished the increase in the Isc when induced by forskolin, IBMX or UTP. However, Ca2+-chelating BAPTA-AM did not affect the genistein-induced increase in the Isc. The genistein-stimulated Isc was reduced by tyrosine kinase inhibitors, tyrphostin A23 or AG490. However, vanadate, a tyrosine phosphatase inhibitor, failed to inhibit the genistein response. Estrogen receptor antagonist ICI182,780 did not alter the genistein's action. Conclusion: The soy isoflavone, genistein, stimulates Cl- secretion in endometrial epithelial cells possibly via a direct activation of CFTR which appears to be modulated through a tyrosine kinase-dependent pathway. The present findings may be of benefit for the therapeutic application of genistein in the treatment of electrolyte transport disorders in the epithelia.

  1. [Glomerulo-tubular balance in diabetes mellitus: molecular evidence and clinical consequences].

    Science.gov (United States)

    Evangelista, C; Rizzo, M; Cantone, A; Corbo, G; Di Donato, L; Trocino, C; Zacchia, M; Capasso, G

    2006-01-01

    Diabetes mellitus is fast becoming a world epidemic. About one-third of individuals with diabetes, after 10 yrs, develop diabetic nephropathy, the first cause of end-stage kidney disease. The evolution of diabetic nephropathy can be considered in three stages: glomerular hyperfiltration, microalbuminuria (30-300 mg/24 hr) and proteinuria (>300 mg/24 hr). This study was designed to investigate the tubular basis of glomerular hyperfiltration in early diabetes mellitus. Diabetes was inducted in rats with i.p. streptozotocin (65 mg/kg bw) for 6 days. At the end of the treatment, the glomerular filtration rate (GFR), measured by inulin clearance, had substantially increased in diabetic rats compared with controls. Quantitative polymerase chain reaction (PCR) and Western blot analysis reveal that in diabetic rats compared with controls, mRNA and protein abundance was higher for type 3 sodium/hydrogen exchanger (NHE3) in proximal tubule and ascending limbs of Henle's loop, and higher for bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2) in ascending limbs of Henle's loop. Western blot analysis confirmed the PCR results. Finally, the abundance of á -ENaC protein was unchanged in diabetic rats compared to controls. These results show that the primary sodium reabsorption increase in proximal tubule reduces salt concentrations at the macula densa. This elicits a tubuloglomerular feedback-dependent increase in single nephron GFR.

  2. The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rajpal Sharad

    2008-09-01

    Full Text Available Abstract Background Altered Cl- homeostasis and GABAergic function are associated with nociceptive input hypersensitivity. This study investigated the role of two major intracellular Cl- regulatory proteins, Na+-K+-Cl- cotransporter 1 (NKCC1 and K+-Cl- cotransporter 2 (KCC2, in neuropathic pain following spinal cord injury (SCI. Results Sprague-Dawley rats underwent a contusive SCI at T9 using the MASCIS impactor. The rats developed hyperalgesia between days 21 and 42 post-SCI. Thermal hyperalgesia (TH was determined by a decrease in hindpaw thermal withdrawal latency time (WLT between days 21 and 42 post-SCI. Rats with TH were then treated with either vehicle (saline containing 0.25% NaOH or NKCC1 inhibitor bumetanide (BU, 30 mg/kg, i.p. in vehicle. TH was then re-measured at 1 h post-injection. Administration of BU significantly increased the mean WLT in rats (p Conclusion Taken together, expression of NKCC1 and KCC2 proteins was differentially altered following SCI. The anti-hyperalgesic effect of NKCC1 inhibition suggests that normal or elevated NKCC1 function and loss of KCC2 function play a role in the development and maintenance of SCI-induced neuropathic pain.

  3. Antiepileptic drug treatment strategies in neonatal epilepsy.

    Science.gov (United States)

    Hernan, A E; Holmes, G L

    2016-01-01

    The highest risk of seizures across the lifespan is in the neonatal period. The enhanced excitability of the immature brain compared to the mature brain is related to the sequential development and expression of essential neurotransmitter signaling pathways. During the neonatal period there is an overabundance of excitatory receptors, and γ-amino-butyric acid (GABA) is potentially depolarizing, as opposed to hyperpolarizing in the older brain. While this enhanced excitability is required for regulation of activity-dependent synapse formation and refining of synaptic connections that are necessary for normal brain development, enhanced excitability predisposes the immature brain to seizures. In addition to being common, neonatal seizures are very difficult to treat; antiepileptic drugs used in older children and adults are less efficacious, and possibly detrimental to brain development. In an effort to target the unique features of neurotransmission in the neonate, bumetanide, an NKCC1 inhibitor which reduces intraneuronal Cl(-) and induces a significant shift of EGABA toward more hyperpolarized values in vitro, has been used to treat neonatal seizures. As the understanding of the pathophysiology of genetic forms of neonatal epilepsy has evolved there have been a few successful attempts to pharmacologically target the mutated protein. This approach, while promising, is challenging due to the findings that the genetic syndromes presenting in infancy demonstrate genetic heterogeneity in regard to both the mutated gene and its function. PMID:27323943

  4. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats.

    Science.gov (United States)

    Elkjaer, Marie-Louise; Kwon, Tae-Hwan; Wang, Weidong; Nielsen, Jakob; Knepper, Mark A; Frøkiaer, Jørgen; Nielsen, Søren

    2002-12-01

    The purpose of this study was to examine whether hypokalemia is associated with altered abundance of major renal Na+ transporters that may contribute to the development of urinary concentrating defects. We examined the changes in the abundance of the type 3 Na+/H+ exchanger (NHE3), Na+ - K+-ATPase, the bumetanide-sensitive Na+ - K+ - 2Cl- cotransporter (BSC-1), the thiazide-sensitive Na+ - Cl- cotransporter (TSC), and epithelial sodium channel (ENaC) subunits in kidneys of hypokalemic rats. Semiquantitative immunoblotting revealed that the abundance of BSC-1 (57%) and TSC (46%) were profoundly decreased in the inner stripe of the outer medulla (ISOM) and cortex/outer stripe of the outer medulla (OSOM), respectively. These findings were confirmed by immunohistochemistry. Moreover, total kidney abundance of all ENaC subunits was significantly reduced in response to the hypokalemia: alpha-subunit (61%), beta-subunit (41%), and gamma-subunit (60%), and this was confirmed by immunohistochemistry. In contrast, the renal abundance of NHE3 in hypokalemic rats was dramatically increased in cortex/OSOM (736%) and ISOM (210%). Downregulation of BSC-1, TSC, and ENaC may contribute to the urinary concentrating defect, whereas upregulation of NHE3 may be compensatory to prevent urinary Na+ loss and/or to maintain intracellular pH levels.

  5. A role for ATP-sensitive potassium channels in the anticonvulsant effects of triamterene in mice.

    Science.gov (United States)

    Shafaroodi, Hamed; Barati, Saghar; Ghasemi, Mehdi; Almasirad, Ali; Moezi, Leila

    2016-03-01

    There are reports indicating that diuretics including chlorothiazide, furosemide, ethacrynic acid, amiloride and bumetanide can have anticonvulsant properties. Intracellular acidification appears to be a mechanism for the anticonvulsant action of some diuretics. This study was conducted to investigate whether or not triamterene, a K(+)-sparing diuretic, can generate protection against seizures induced by intravenous or intraperitoneal pentylenetetrazole (PTZ) models. And to see if, triamterene can withstand maximal electroshock seizure (MES) in mice. We also investigated to see if there is any connection between triamterene's anti-seizure effect and ATP-sensitive K(+) (KATP) channels. Five days triamterene oral administration (10, 20 and 40 mg/kg), significantly increased clonic seizure threshold which was induced by intravenous pentylenetetrazole. Triamterene (10, 20 and 40 mg/kg) treatment also increased the latency of clonic seizure and decreased its frequency in intraperitoneal PTZ model. Administration of triamterene (20 mg/kg) also decreased the incidence of tonic seizure in MES-induced seizure. Co-administration of a KATP sensitive channel blocker, glibenclamide, in the 6th day, 60 min before intravenous PTZ blocked triamterene's anticonvulsant effect. A KATP sensitive channel opener, diazoxide, enhanced triamterene's anti-seizure effect in both intravenous PTZ or MES seizure models. At the end, triamterene exerts anticonvulsant effect in 3 seizure models of mice including intravenous PTZ, intraperitoneal PTZ and MES. The anti-seizure effect of triamterene probably is induced through KATP channels. PMID:26855365

  6. Seizure-induced disinhibition of the HPA axis increases seizure susceptibility.

    Science.gov (United States)

    O'Toole, Kate K; Hooper, Andrew; Wakefield, Seth; Maguire, Jamie

    2014-01-01

    Stress is the most commonly reported precipitating factor for seizures. The proconvulsant actions of stress hormones are thought to mediate the effects of stress on seizure susceptibility. Interestingly, epileptic patients have increased basal levels of stress hormones, including corticotropin-releasing hormone (CRH) and corticosterone, which are further increased following seizures. Given the proconvulsant actions of stress hormones, we proposed that seizure-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis may contribute to future seizure susceptibility. Consistent with this hypothesis, our data demonstrate that pharmacological induction of seizures in mice with kainic acid or pilocarpine increases circulating levels of the stress hormone, corticosterone, and exogenous corticosterone administration is sufficient to increase seizure susceptibility. However, the mechanism(s) whereby seizures activate the HPA axis remain unknown. Here we demonstrate that seizure-induced activation of the HPA axis involves compromised GABAergic control of CRH neurons, which govern HPA axis function. Following seizure activity, there is a collapse of the chloride gradient due to changes in NKCC1 and KCC2 expression, resulting in reduced amplitude of sIPSPs and even depolarizing effects of GABA on CRH neurons. Seizure-induced activation of the HPA axis results in future seizure susceptibility which can be blocked by treatment with an NKCC1 inhibitor, bumetanide, or blocking the CRH signaling with Antalarmin. These data suggest that compromised GABAergic control of CRH neurons following an initial seizure event may cause hyperexcitability of the HPA axis and increase future seizure susceptibility.

  7. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  8. Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Cohen Noam A

    2009-11-01

    Full Text Available Abstract Secondhand smoke (SHS exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure.

  9. Regulation of the sodium/potassium/chloride cotransporter by calcium and cyclic AMP in cultured vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, B.L.; Smith, L.; Smith, J.B.

    1987-05-01

    The activity of the Na/K/Cl cotransporter in smooth muscle cells cultured from rat aorta was assayed by measuring the initial rate of furosemide-inhibitable /sup 86/Rb influx or efflux. Five uM furosemide or 0.2 uM bumetanide inhibited influx by 50%. Furosemide-inhibitable /sup 86/Rb influx depended on the presence of all 3 ions in the external medium. The dependence on Na and K was hyperbolic with apparent Km values of 45 and 5 mM, respectively. The dependence on Cl was sigmoidal. Assuming a stoichiometry of 1:1:2 for Na:K:Cl, a Km for Cl of 60 mM was obtained from a Hofstee plot of the data. Rapidly growing cells had 3 fold higher cotransport activity than quiescent cells. Angiotensin II (ANG) stimulated furosemide-inhibitable /sup 86/Rb efflux by 2 fold. An ANG receptor antagonist prevented ANG from increasing cotransport activity. Two calcium ionophores, A23187 and ionomycin, increased cotransport activity by 2 fold. Phorbol myristate acetate had no effect on cotransport activity. Isoproterenol, dibutyryl cyclic AMP, cholera toxin, or methylisobutylxanthine inhibited furosemide-sensitive /sup 86/Rb influx by 35 to 50%. From these findings they conclude that increasing cytoplasmic free calcium stimulates cotransport activity, whereas increasing cellular cyclic AMP inhibits the cotransporter.

  10. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons.

    Science.gov (United States)

    Jin, Zhenhua; Choi, Myung-Jin; Park, Cheung-Seog; Park, Young Seek; Jin, Young-Ho

    2012-01-13

    Propofol, an intravenous anesthetic, is broadly used for general anesthesia and diagnostic sedations due to its fast onset and recovery. Propofol depresses respiratory and cardiovascular reflex responses, however, their underlying mechanisms are not well known. Cardiorespiratory information from visceral afferent vagus nerves is integrated in the nucleus tractus solitarii (NTS). Cardiac and respiratory signals transducing vagal afferent neurons release the excitatory neurotransmitter glutamate onto NTS neurons in an activity dependent manner and trigger negative feedback reflex responses. In this experiment, the effects of propofol on glutamatergic synaptic responses at NTS neurons was tested using patch clamp methods. Glutamatergic excitatory postsynaptic currents (EPSC) were recorded at chloride reversal potential (-49mV) without γ-aminobutyric acid type A (GABA(A)) receptor antagonists. Propofol (≥3μM) facilitated frequency of the spontaneous EPSCs in a concentration dependent manner without altering amplitude and decay time. The GABA(A) receptor selective antagonist, gabazine (6μM), attenuated propofol effects on glutamate release. Propofol (10μM) evoked glutamate release was also blocked in the presence of the voltage dependent Na(+) and Ca(2+) channel blockers TTX (0.3μM) and Cd(2+) (0.2mM), respectively. In addition, the Na(+)-K(+)-Cl(-) cotransporter type 1 antagonist bumetanide (10μM) also inhibited propofol evoked increase in sEPSC frequency. These results suggest that propofol evoked glutamate release onto NTS neurons by GABA(A) receptor-mediated depolarization of the presynaptic excitatory terminals.

  11. Regulated phosphorylation of the K-Cl cotransporter KCC3 at dual C-terminal threonines is a potent switch of intracellular potassium content and cell volume homeostasis

    Directory of Open Access Journals (Sweden)

    Norma C. Adragna

    2015-07-01

    Full Text Available The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD, resulting in K+ and Cl– efflux via the activation of K+ channels, volume-regulated anion channels (VRACs, and the K+-Cl– cotransporters, including KCC3. Here, we show genetic alanine (Ala substitution at threonines (Thr 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl– cotransporter isoform 1 (NKCC1. This results in a rapid (90 % reduction in intracellular K+ content (Ki via both Cl-dependent (KCC3a + NKCC1 and Cl-independent (DCPIB [VRAC inhibitor]-sensitive pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in the KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

  12. Gamma-aminobutyric acid and autism spectrum disorders%γ-氨基丁酸与孤独症谱系障碍

    Institute of Scientific and Technical Information of China (English)

    王刚; 单玲; 杜琳; 贾飞勇; 王伟

    2015-01-01

    孤独症谱系障碍是一组以社会交往、交流障碍和重复刻板性行为为主要特征的疾病,病因尚不明确。近年研究发现在孤独症谱系障碍动物模型中分娩时及生后早期Na+-K+-2Cl-共转运体1(NKCC1)与K+-2Cl-共转运体2(KCC2)的表达时相发生改变,造成海马神经元细胞内氯离子堆积,致使γ-氨基丁酸介导的神经兴奋性与抑制性的转换被破坏。应用 NKCC1抑制剂布美他尼对模型动物母体进行干预后纠正了它们的神经发育顺序,改善了其孤独症样行为,并且已有研究应用布美他尼改善了孤独症患者的症状。故而γ-氨基丁酸信号通路为孤独症谱系障碍发病机制的研究提供了新的方向,可能成为治疗孤独症谱系障碍新的靶点。本文对γ-氨基丁酸与孤独症谱系障碍关系的研究现状作一综述。%Autism spectrum disorder (ASD) is a group of diseases characterized by social interaction and communication defects and repeat stereotyped behaviors, and the etiology is not clear now. In recent years, the study found that in the ASD animal model of childbirth and early postnatal the time of expression of Na+-K+-2Cl-transporter 1 (NKCC1) and K+-2Cl- (KCC2) had changed, and the accumulation of chlorine ion neurons within the hippocampus, lead to the conversion of excitatory and inhibitory mediated by gamma-aminobutyric acid (GABA) was damaged. Application of bumetanide, as a NKCC1 inhibitor, in animal models’ matrix may correct their neurological development order, improve autistic behaviors. And the existing research by applying bumetanide improved symptoms in patients with ASD. So GABA signaling pathway provides a new direction of the pathogenesis of ASD, may become a new target in the treatment of ASD. In this paper, the research was about the relationship of GABA and ASD.

  13. Modulation of ion transport across rat distal colon by cysteine

    Directory of Open Access Journals (Sweden)

    Martin eDiener

    2012-03-01

    Full Text Available The aim of this study was to identify the actions of stimulation of endogenous production of H2S by cysteine, the substrate for the two H2S-producing enzymes, cystathionin-beta-synthase and cystathionin-gamma-lyase, on ion transport across rat distal colon. Changes in short-circuit current (Isc induced by cysteine were measured in Ussing chambers. Free cysteine caused a concentration-dependent, transient fall in Isc, which was sensitive to amino-oxyacetate and beta-cyano-L-alanine, i.e. inhibitors of H2S-producing enzymes. In contrast, Na cysteinate evoked a biphasic change in Isc, i.e. an initial fall followed by a secondary increase, which was also reduced by these enzyme inhibitors. All responses were dependent on the presence of Cl- and inhibited by bumetanide, suggesting that free cysteine induces an inhibition of transcellular Cl- secretion, whereas Na cysteinate – after a transient inhibitory phase – activates anion secretion. The assumed reason for this discrepancy is a fall in the cytosolic pH induced by free cysteine, but not by Na cysteinate, as observed in isolated colonic crypts loaded with the pH-sensitive dye, BCECF. Intracellular acidification is known to inhibit epithelial K+ channels. Indeed, after preinhibition of basolateral K+ channels with tetrapentylammonium or Ba2+, the negative Isc induced by free cysteine was reduced significantly. In consequence, stimulation of endogenous H2S production by Na cysteinate causes, after a short inhibitory response, a delayed activation of anion secretion, which is missing in the case of free cysteine, probably due to the cytosolic acidification. In contrast, diallyl trisulfide, which is intracellularly converted to H2S, only evoked a monophasic increase in Isc without the initial fall observed with Na cysteinate. Consequently, time course and amount of produced H2S seem to strongly influence the functional response of the colonic epithelium evoked by this gasotransmitter.

  14. Hippocampus and epilepsy: Findings from human tissues.

    Science.gov (United States)

    Huberfeld, G; Blauwblomme, T; Miles, R

    2015-03-01

    Surgical removal of the epileptogenic zone provides an effective therapy for several focal epileptic syndromes. This surgery offers the opportunity to study pathological activity in living human tissue for pharmacoresistant partial epilepsy syndromes including temporal lobe epilepsies with hippocampal sclerosis, cortical dysplasias, epilepsies associated with tumors and developmental malformations. Slices of tissue from patients with these syndromes retain functional neuronal networks and may generate epileptic activities. The properties of cells in this tissue may not be greatly changed, but excitatory synaptic transmission is often enhanced and GABAergic inhibition is preserved. Typically epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in the neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated, not in the hippocampus but in the subiculum, an output region, which projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite about 20% of subicular pyramidal cells while simultaneously inhibiting the majority. Interictal discharges thus depend on both GABAergic and glutamatergic signaling. The depolarizing effects of GABA depend on a pathological elevation in levels of chloride in some subicular cells, similar to those of developmentally immature cells. Such defect is caused by a perturbed expression of the cotransporters regulating intracellular chloride concentration, the importer NKCC1 and the extruder KCC2. Blockade of NKCC1 actions by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions and consequently suppressing interictal

  15. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    LENUS (Irish Health Repository)

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX\\/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  16. GABAergic signaling as therapeutic target for Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Giada eCellot

    2014-07-01

    Full Text Available GABA, the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or NMDA receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as Autism Spectrum Disorders (ASDs are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders.

  17. Possible role of GABAergic depolarization in neocortical neurons in generating hyperexcitatory behaviors during emergence from sevoflurane anesthesia in the rat

    Directory of Open Access Journals (Sweden)

    Byung‑Gun Lim

    2014-04-01

    Full Text Available Hyperexcitatory behaviors occurring after sevoflurane anesthesia are of serious clinical concern, but the underlying mechanism is unknown. These behaviors may result from the potentiation by sevoflurane of GABAergic depolarization/excitation in neocortical neurons, cells implicated in the genesis of consciousness and arousal. The current study sought to provide evidence for this hypothesis with rats, the neocortical neurons of which are known to respond to GABA (γ-aminobutyric acid with depolarization/excitation at early stages of development (i.e., until the second postnatal week and with hyperpolarization/inhibition during adulthood. Employing behavioral tests and electrophysiological recordings in neocortical slice preparations, we found: (1 sevoflurane produced PAHBs (post-anesthetic hyperexcitatory behaviors in postnatal day (P1–15 rats, whereas it failed to elicit PAHBs in P16 or older rats; (2 GABAergic PSPs (postsynaptic potentials were depolarizing/excitatory in the neocortical neurons of P5 and P10 rats, whereas mostly hyperpolarizing/inhibitory in the cells of adult rats; (3 at P14–15, <50% of rats had PAHBs and, in general, the cells of the animals with PAHBs exhibited strongly depolarizing GABAergic PSPs, whereas those without PAHBs showed hyperpolarizing or weakly depolarizing GABAergic PSPs; (4 bumetanide [inhibitor of the Cl− importer NKCC (Na+–K+–2Cl− cotransporter] treatment at P5 suppressed PAHBs and depolarizing GABAergic responses; and (5 sevoflurane at 1% (i.e., concentration <1 minimum alveolar concentration potentiated depolarizing GABAergic PSPs in the neurons of P5 and P10 rats and of P14–15 animals with PAHBs, evoking action potentials in ≥50% of these cells. On the basis of these results, we conclude that sevoflurane may produce PAHBs by potentiating GABAergic depolarization/excitation in neocortical neurons.

  18. THE EFFECT OF HYPOXIA ON ELECTRICAL AND CONTRACTILE PROPERTIES OF SMOOTH MUSCLES OF THE GUINEA PIG URETER

    Directory of Open Access Journals (Sweden)

    I. V. Kovalev

    2016-01-01

    Full Text Available Aim. The effect of hypoxia on the electrical and contractile activities of smooth muscles cells (SMCs of the guinea pig ureter was studied by the method of the double sucrose bridge.Materials and methods. This method allows registering simultaneously parameters of the action potential (AP and the contraction of SMCs, caused by an electrical stimulus.Results. It was found that lowering the oxygen content in the perfusion solution for 10 min resulted to an increase of electrical and contractile activity of ureteral SMCs. Addition of tetraethylammonium chloride (TEA, 5 mM – nonselective blocker of potassium membrane conductance – in hypoxic conditions causing an additional increase in the amplitude of the AP, duration of the AP plateau and the contractile responses of smooth muscles. Thus, the hypoxia decreased the potassium membrane conductance of ureteral SMCs. Inhibition of the effect of the α1 -adrenergic receptors agonist phenylephrine (PE, 10 mM on the electrical and contractile properties of SMCs in hypoxic condition indicate the involvement of the protein kinase C-dependent signaling system in effects of hypoxia. Pretreatment of ureteral smooth muscles with bumetanide (100 mM – selective inhibitor of Na+,K+,2Cl- - cotransporter (NKCC – caused a decrease of the activating effect of hypoxia on the SMCs of guinea pig ureter.Conclusion.Thus, the impact of hypoxia on the regulation of electrical activity and contractions of smooth muscles of guinea pig ureter may be due to changes in ion permeability of membranes SMCs and operation of ion-transporting systems. 

  19. Glucose stimulates calcium-activated chloride secretion in small intestinal cells.

    Science.gov (United States)

    Yin, Liangjie; Vijaygopal, Pooja; MacGregor, Gordon G; Menon, Rejeesh; Ranganathan, Perungavur; Prabhakaran, Sreekala; Zhang, Lurong; Zhang, Mei; Binder, Henry J; Okunieff, Paul; Vidyasagar, Sadasivan

    2014-04-01

    The sodium-coupled glucose transporter-1 (SGLT1)-based oral rehydration solution (ORS) used in the management of acute diarrhea does not substantially reduce stool output, despite the fact that glucose stimulates the absorption of sodium and water. To explain this phenomenon, we investigated the possibility that glucose might also stimulate anion secretion. Transepithelial electrical measurements and isotope flux measurements in Ussing chambers were used to study the effect of glucose on active chloride and fluid secretion in mouse small intestinal cells and human Caco-2 cells. Confocal fluorescence laser microscopy and immunohistochemistry measured intracellular changes in calcium, sodium-glucose linked transporter, and calcium-activated chloride channel (anoctamin 1) expression. In addition to enhancing active sodium absorption, glucose increased intracellular calcium and stimulated electrogenic chloride secretion. Calcium imaging studies showed increased intracellular calcium when intestinal cells were exposed to glucose. Niflumic acid, but not glibenclamide, inhibited glucose-stimulated chloride secretion in mouse small intestines and in Caco-2 cells. Glucose-stimulated chloride secretion was not seen in ileal tissues incubated with the intracellular calcium chelater BAPTA-AM and the sodium-potassium-2 chloride cotransporter 1 (NKCC1) blocker bumetanide. These observations establish that glucose not only stimulates active Na absorption, a well-established phenomenon, but also induces a Ca-activated chloride secretion. This may explain the failure of glucose-based ORS to markedly reduce stool output in acute diarrhea. These results have immediate potential to improve the treatment outcomes for acute and/or chronic diarrheal diseases by replacing glucose with compounds that do not stimulate chloride secretion.

  20. Subcellular localization and displacement by diuretics of the peripheral benzodiazepine binding site (PBS) from rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Lukeman, S.; Fanestil, D.

    1986-03-05

    Although the PBS has been identified in many organs, its function and cellular location are speculative. Using rapid filtration, binding of (/sup 3/H)RO 5-4864 (*RO) (.75 nM) was assessed in four subcellular fractions (.3 mg/ml) derived from depapillated rat kidney by differential centrifugation: N (450g x 2 min), O (13,000 x 10), P (105,000 x 30), and S. The binding distribution was: N-18%, O-74%, P-6%, and S-2%. Marker enzyme analysis revealed that O was enriched in mitochondria (M), lysosomes (L), peroxisomes (P), and endoplasmic reticulum (ER), but not plasma membrane, and that N contained small amounts (10-15%) of markers for the above. Repeated washing of O removed ER enzymes but preserved *RO binding. O was further fractionated with centrifugation (57,000g x 4 hr) on a linear sucrose gradient (18-65%); *RO binding then comigrated with M but not P and L markers. Centrifugation of isolated M (5500 x 10 min) on another linear sucrose gradient (37-65%) gave low and high density bands, which contained 65% and 35% of *RO binding activity, resp. *RO binding in O was specific, saturable, reversible, and inhibited by diuretics. Inhibitors with the highest potency were indacrinone (K/sub d/ = 35 ..mu..M), hydrochlorothiazide (100 ..mu..M), and ethacrynic acid (325 ..mu..M). Low potency inhibitors (K/sub d/ greater than or equal to 1 mM) included amiloride, triamterene, furosemide, bumetanide, and ozolinone.

  1. Effects of atrial and brain natriuretic peptides upon cyclic GMP levels, potassium transport, and receptor binding in rat astrocytes

    International Nuclear Information System (INIS)

    The ability of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) to alter cyclic GMP levels and NaKCl cotransport in rat neocortical astrocytes was determined. At concentrations of 10(-9)-10(-6) M, rat ANP99-126 (rANF), rat ANP102-126 (auriculin B), and rat ANP103-126 (atriopeptin III) stimulated 6- to 100-fold increases in cyclic GMP levels. Porcine BNP (pBNP) and rat BNP (rBNP) were 20%-90% as effective as rANF over most of this concentration range, although 10(-6) M pBNP produced a greater effect than rANF. NaKCl cotransport as measured by bumetanide-sensitive 86Rb+ influx was not altered by exposure of astrocytes to 10(-6)M rANF, pBNP, or rBNP. Both pBNP and rBNP, as well as rat ANP103-123 (atriopeptin I) and des[gl18, ser19, gly20, leu21, gly22] ANF4-23-NH2 (C-ANF4-23) strongly competed for specific 125I-rANF binding sites in astrocyte membranes with affinities ranging from 0.03 to 0.4 nM, suggesting that virtually all binding sites measured at subnanomolar concentrations of 125I-rANF were of the ANP-C (ANF-R2) receptor subtype. These receptors are thought to serve a clearance function and may be linked to a guanylate cyclase activity that is chemically and pharmacologically distinct from that coupled to ANP-A (ANF-R1) receptors. ANP receptors on astrocytes may function in limiting the access of ANP and BNP to neurons involved in body fluid and cardiovascular regulation

  2. Assessment of aqueous humor formation in human ciliary body in vitro:effect of ionic transport inhibitors%离体人眼睫状体房水分泌的测定以及药物的影响

    Institute of Scientific and Technical Information of China (English)

    吴仁毅; 杨芳; 尹金福; 姚克; Ivan Haefliger

    2009-01-01

    目的:建立离体的人眼睫状体房水分泌模型,研究离子转运抑制剂对房水分泌的影响.方法:应用改建的Ussing chamber,建立人眼睫状体房水分泌模型,检测人眼睫状体组织房水主动分泌以及跨睫状体短路电流(Isc).在此基础上,研究影响细胞离子转运的药物Na+-K+ATP酶抑制剂喹巴因(ouabain)、Na+-K+-2Cl-协同转运抑制剂丁苯氧酸(bumetanide)和碳酸酐酶抑制剂醋氮酰胺(acetazolamide)对房水分泌的影响.结果: 离体人眼睫状体Isc为(20.5±2.3) μA/cm2,房水的分泌量为(3.52±0.46) μL·h-1/cm2,并可维持4 h以上.在睫状体基质(血管)面给药喹巴因、丁苯氧酸或乙酰唑胺后,房水主动分泌分别下降87%(P<0.01),40%(P<0.01)和46%(P<0.01).结论:应用离体模型可有效测量人眼睫状体的主动房水分泌.影响细胞离子转运的药物能显著影响离体人眼睫状体的Isc和房水分泌,表明跨睫状体的离子转运参与了房水分泌过程.

  3. At immature mossy fibers-CA3 connections, activation of presynaptic GABAB receptors by endogenously released GABA contributes to synapses silencing

    Directory of Open Access Journals (Sweden)

    Victoria F Safiulina

    2009-02-01

    Full Text Available Early in postnatal life correlated GABAergic activity in the hippocampus is thought to play a crucial role in synaptogenesis and in the development of adult neuronal networks. Unlike adulthood, at this developmental stage, mossy fibers (MF which are the axons of granule cells, release GABA into CA3 principal cells and interneurons. Here, we tested the hypothesis that at MF-CA3 connections, tonic activation of GABAB autoreceptors by GABA is responsible for the low probability of release and synapse silencing. Blocking GABAB receptors with CGP55845 enhanced the probability of GABA release and switched on silent synapses while the opposite was observed with baclofen. Both these effects were presynaptic and were associated with changes in paired-pulse ratio and coefficient of variation. In addition, enhancing the extracellular GABA concentration by repetitive stimulation of MF or by blocking the GABA transporter GAT-1, switched off active synapses, an effect that was prevented by CGP55845. In the presence of CGP55845, stimulation of MF induced synaptic potentiation. The shift of EGABA from the depolarizing to the hyperpolarizing direction with bumetanide, a blocker of the cation-chloride co-transporter NKCC1, prevented synaptic potentiation and caused synaptic depression, suggesting that the depolarizing action of GABA observed in the presence of CGP55845 is responsible for the potentiating effect. It is proposed that, activation of GABAB receptors by spillover of GABA from MF terminals reduces the probability of release and contributes to synapses silencing. This would act as a filter to prevent excessive activation of the auto-associative CA3 network and the emergence of seizures.

  4. Age-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters

    Directory of Open Access Journals (Sweden)

    Seok Kyu eKang

    2015-05-01

    Full Text Available Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB, with NKCC1 antagonist bumetanide (BTN as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in postnatal day 7, 10 and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy.

  5. Advances in management of neonatal seizures.

    Science.gov (United States)

    Vesoulis, Zachary A; Mathur, Amit M

    2014-06-01

    Seizures are more common in the neonatal period than any other time in the human lifespan. A high index of suspicion for seizures should be maintained for infants who present with encephalopathy soon after birth, have had a stroke, central nervous system (CNS) infection or intracranial hemorrhage or have a genetic or metabolic condition associated with CNS malformations. Complicating the matter, most neonatal seizures lack a clinical correlate with only subtle autonomic changes and often no clinical indication at all. Over the last three decades, several tools have been developed to enhance the detection and treatment of neonatal seizures. The use of electroencephalography (EEG) and the later development of amplitude-integrated EEG (aEEG), allows for Neurologists and non-Neurologists alike, to significantly increase the sensitivity of seizure detection. When applied to the appropriate clinical setting, time to diagnosis and start of therapy is greatly reduced. Phenobarbital maintains the status of first-line therapy in worldwide use. However, newer anti-epileptic agents such as, levetiracetam, bumetanide, and topiramate are increasingly being applied to the neonatal population, offering the potential for seizure treatment with a significantly better side-effect profile. Seizures in premature infants, continue to confound clinicians and researchers alike. Though the apparent seizure burden is significant and there is an association between seizures and adverse outcomes, the two are not cleanly correlated. Compounding the issue, GABA-ergic anti-epileptic drugs are not only less effective in this age group due to reversed neuronal ion gradients but may cause harm. Selecting an appropriate treatment group remains a challenge. PMID:24796413

  6. Activation of CFTR by ASBT-mediated bile salt absorption.

    Science.gov (United States)

    Bijvelds, Marcel J C; Jorna, Huub; Verkade, Henkjan J; Bot, Alice G M; Hofmann, Franz; Agellon, Luis B; Sinaasappel, Maarten; de Jonge, Hugo R

    2005-11-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal ileum might also modulate intestinal fluid secretion. Taurocholate (TC) induced a biphasic rise in the short circuit current across ileal tissue, reflecting transepithelial electrogenic ion transport. This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Cl- secretion. The residual response in Cftr-null mice could be attributed to electrogenic ASBT activity, as it matched the TC-coupled absorptive Na+ flux. TC-evoked Cl- secretion required ASBT-mediated TC uptake, because it was blocked by a selective ASBT inhibitor and was restricted to the distal ileum. Suppression of neurotransmitter or prostaglandin release, blocking of the histamine H1 receptor, or pretreatment with 5-hydroxytryptamine did not abrogate the TC response, suggesting that neurocrine or immune mediators of Cl- secretion are not involved. Responses to TC were retained after carbachol treatment and after permeabilization of the basolateral membrane with nystatin, indicating that BS modulate CFTR channel gating rather than the driving force for Cl- exit. TC-induced Cl- secretion was maintained in cGMP-dependent protein kinase II-deficient mice and only partially inhibited by the cAMP-dependent protein kinase inhibitor H89, suggesting a mechanism of CFTR activation different from cAMP or cGMP signaling. We conclude that active BS absorption in the ileum triggers CFTR activation and, consequently, local salt and water secretion, which may serve to prevent intestinal obstruction in the postprandial state. PMID:16037545

  7. Transepithelial electrical potential of nonsensory region of gerbil utricle in vitro.

    Science.gov (United States)

    Marcus, D C

    1986-11-01

    Transepithelial electrical potential difference (VT) was measured across the vestibular labyrinth of the inner ear in vitro by puncturing the epithelial wall of the utricle with a glass microelectrode. A region of nonsensory cells of the utricle was isolated from the sensory regions by introducing columns of liquid Sylgard 184. Under control conditions, the VT of this region was +7.5 +/- 0.3 mV (means +/- SE), lumen positive. This potential difference was rapidly reduced by either 1 mM ouabain, 10-100 microM bumetanide, 0.5-5.0 mM Ba (in the bathing solution), or cooling, but not by the disulfonic stilbene, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Changes in VT due to reductions of Cl or Na or to increases of K in the bathing solution in exchange for presumably impermeant ions were observed in this region and were compared with those in a preparation in which the insulating seals were absent. The K-induced voltage change was significantly higher in the unblocked preparation, a finding consistent with a high K permeability of the sensory cells. The voltage change due to reduction of Cl was not inhibited by Cl channel blockers (9-anthracenecarboxylate and diphenylamine-2-carboxylate) in the bathing solution. These results represent the first direct demonstration that the nonsensory cells of the utricle produce a lumen-positive active-transport potential and characterize some of the properties of the cell membranes in terms of their pharmacological sensitivities and net voltage responses to changes in the bathing medium ions Na, K, and Cl.

  8. Chloride Accumulators NKCC1 and AE2 in Mouse GnRH Neurons: Implications for GABAA Mediated Excitation.

    Directory of Open Access Journals (Sweden)

    Carol Taylor-Burds

    Full Text Available A developmental "switch" in chloride transporters occurs in most neurons resulting in GABAA mediated hyperpolarization in the adult. However, several neuronal cell subtypes maintain primarily depolarizing responses to GABAA receptor activation. Among this group are gonadotropin-releasing hormone-1 (GnRH neurons, which control puberty and reproduction. NKCC1 is the primary chloride accumulator in neurons, expressed at high levels early in development and contributes to depolarization after GABAA receptor activation. In contrast, KCC2 is the primary chloride extruder in neurons, expressed at high levels in the adult and contributes to hyperpolarization after GABAA receptor activation. Anion exchangers (AEs are also potential modulators of responses to GABAA activation since they accumulate chloride and extrude bicarbonate. To evaluate the mechanism(s underlying GABAA mediated depolarization, GnRH neurons were analyzed for 1 expression of chloride transporters and AEs in embryonic, pre-pubertal, and adult mice 2 responses to GABAA receptor activation in NKCC1-/- mice and 3 function of AEs in these responses. At all ages, GnRH neurons were immunopositive for NKCC1 and AE2 but not KCC2 or AE3. Using explants, calcium imaging and gramicidin perforated patch clamp techniques we found that GnRH neurons from NKCC1-/- mice retained relatively normal responses to the GABAA agonist muscimol. However, acute pharmacological inhibition of NKCC1 with bumetanide eliminated the depolarization/calcium response to muscimol in 40% of GnRH neurons from WT mice. In the remaining GnRH neurons, HCO3- mediated mechanisms accounted for the remaining calcium responses to muscimol. Collectively these data reveal mechanisms responsible for maintaining depolarizing GABAA mediated transmission in GnRH neurons.

  9. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model.

    Directory of Open Access Journals (Sweden)

    Zi-Huan Yang

    Full Text Available BACKGROUND & AIMS: Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. METHODS/PRINCIPAL FINDINGS: In isolated rat colonic crypts, mucosal addition of naringenin (100 microM elicited a concentration-dependent and sustained increase in the short-circuit current (I(SC, which could be inhibited in Cl- free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid, but not by DIDS (4, 4'- diisothiocyanatostilbene-2, 2'-disulfonic acid. Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl azacyclotridecan-2-imine-hydrochloride pretreatment reduced the naringenin-induced I(SC. In addition, significant inhibition of the naringenin-induced I(SC by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl- secretion. Naringenin-evoked whole cell current which exhibited a linear I-V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl- conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. CONCLUSIONS: Taken together, our data suggest that naringenin could stimulate Cl- secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation.

  10. Impaired intestinal sodium and chloride transport in the blind loop syndrome of the rat.

    Science.gov (United States)

    Schulzke, J D; Fromm, M; Menge, H; Riecken, E O

    1987-03-01

    Self-filling blind loops of rat jejunum were used as a model for the blind loop syndrome in humans. Electrical resistance, short circuit current, and unidirectional sodium and chloride fluxes were measured using the Ussing technique. Whereas net fluxes for sodium and chloride did not differ significantly from zero in the blind loop or in the control, unidirectional fluxes of either direction were decreased and electrical resistance was increased, indicating an increase in the tightness of the intestinal wall. Measurements of alternating current impedance and micropuncture experiments revealed that this was due to an increase in epithelial resistance from 9 +/- 1 omega X cm2 (n = 15, results of both methods) to 27 +/- 4 omega X cm2 (n = 15) and in subepithelial resistance from 40 +/- 2 omega X cm2 (n = 15) to 76 +/- 7 omega X cm2 (n = 15). As the ratio of epithelial to subepithelial resistance was similar in the blind loop and in the control, lower transport rates in the blind loop are indicative of impaired epithelial transport function. Subsequently, two different transport systems were characterized. First, the 3-o-methyl-glucose-induced, phlorizin-reversible increase in short circuit current, representing glucose-coupled sodium absorption, showed a 77% decrease in maximum velocity in the blind loop and no change in Km. Second, the chloride-induced, bumetanide-reversible increase in short circuit current in tissues stimulated simultaneously by prostaglandin E1 and theophylline, representing rheogenic chloride secretion, also showed a decrease in maximum velocity (of 83%) and no change in Km. A morphometric analysis revealed that the crypt surface area increased by 100% in the blind loop, whereas the villous surface area was not significantly different between blind loops and controls. We conclude that the jejunal self-filling blind loop is characterized by impaired active ion transport processes and an increase in epithelial and subepithelial resistance.

  11. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia.

    Science.gov (United States)

    Willumsen, N J; Boucher, R C

    1989-02-01

    Cystic fibrosis (CF) airway epithelia express a defect in adenosine 3',5'-cyclic monophosphate (cAMP)-dependent regulation of apical membrane Cl- channels. Recent patch-clamp studies have raised the possibility that Ca2+ -dependent mechanisms for the activation of Cl- secretion may be preserved in CF airway epithelia. To determine 1) whether intact normal (N1) and CF airway epithelia exhibit a Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanisms initiate Cl- secretion via activation of an apical membrane Cl- conductance (GCl-), nasal epithelia from N1 and CF subjects were cultured on collagen membranes, and responses to isoproterenol or Ca2- ionophores [A23187 10(-6) M; ionomycin (10(-5)M)] were measured with transepithelial and intracellular techniques. Isoproterenol induced activation of an apical membrane GCl- in N1 cultures but was ineffective in CF. In contrast, in both N1 and CF amiloride-pretreated cultures, A23187 induced an increase in the equivalent short-circuit current that was associated with an activation of an apical membrane Gc1- and was bumetanide inhibitable. A23187 addition during superfusion of the lumen with a low Cl- (3 mM) solution reduced intracellular Cl- activity of CF cells. A Ca2+ ionophore of different selectivity properties, ionomycin, was also an effective Cl- secretagogue in both N1 and CF cultures. We conclude that 1) the A23187 induced Cl- secretion via activation of an apical GCl- in N1 human nasal epithelium, and 2) in contrast to an isoproterenol-dependent path, a Ca2+ -dependent path for GCl- activation is preserved in CF epithelia. PMID:2465689

  12. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases.

    Science.gov (United States)

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  13. Mechanisms underlying spontaneous constrictions of postcapillary venules in the rat stomach.

    Science.gov (United States)

    Mitsui, Retsu; Hashitani, Hikaru

    2016-02-01

    Postcapillary venules (PCVs) play a critical role in regulating capillary hydrostatic pressure, but their contractile mechanisms are not well understood. We examined the properties of spontaneous vasomotion and corresponding Ca(2+) transients in gastric PCV. In the rat gastric submucosa, changes in PCV diameter and intracellular Ca(2+) dynamics were visualised by video tracking system and fluorescent Ca(2+) imaging, respectively, while PCV morphology was examined by immunohistochemistry. Stellate-shaped PCV mural cells expressing α-smooth muscle actin exhibited synchronised spontaneous Ca(2+) transients to develop vasomotion which was abolished by nifedipine (1 μM), cyclopiazonic acid (10 μM), or Ca(2+)-activated Cl(-) channel inhibitors (100 μM niflumic acid, 1 μM T16Ainh-A01). A gap junction blocker (3 μM carbenoxolone) disrupted the synchrony of spontaneous Ca(2+) transients amongst PCV mural cells and attenuated spontaneous vasomotion. Low chloride solution ([Cl(-)]0 = 12.4 mM) also disrupted the synchrony of spontaneous Ca(2+) transients and abolished vasomotion. Na(+)-K(+)-Cl(-) co-transporter inhibitors (10 μM bumetanide, 30 μM furosemide) suppressed spontaneous Ca(2+) transients and vasoconstrictions. A phosphodiesterase type 5 (PDE5) inhibitor (1 μM tadalafil) disrupted the spontaneous Ca(2+) transient synchrony and abolished vasomotion in a nitric oxide (NO)-dependent manner. Thus, gastric PCVs exhibit spontaneous vasomotion, resulting from synchronised spontaneous Ca(2+) transients within a network of stellate-shaped PCV mural cells. An active Cl(-) accumulation partly via Na(+)-K(+)-Cl(-) co-transport appears to be fundamental in maintaining depolarisation upon the opening of Ca(2+)-activated Cl(-) channels that triggers Ca(2+) influx via voltage-dependent L-type Ca(2+) channels. Basal PDE5 activity may continuously counteract vaso-relaxing effects of endothelial NO to maintain spontaneous vasomotion.

  14. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats

    Directory of Open Access Journals (Sweden)

    Taizhe eQian

    2014-02-01

    Full Text Available In the developing cerebral cortex, the marginal zone (MZ, consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of

  15. Research advances in the management of autism spectrum disorders in children%儿童孤独症谱系障碍的治疗研究进展

    Institute of Scientific and Technical Information of China (English)

    李洪华; 单玲; 杜琳; 贾飞勇

    2015-01-01

    孤独症谱系障碍(ASD)为一类广泛性神经系统发育障碍,以社会交往及交流障碍、兴趣狭窄、刻板与重复行为为主要特点。目前ASD的发病率呈显著上升趋势,早期合理的个性化综合干预治疗可明显改善患儿预后。由于ASD的病因不明,目前尚无特效药,主要以行为与教育干预为主;对ASD的伴发症状,如易激惹、自伤行为、注意缺陷多动障碍、睡眠问题等,合理应用一些药物,可改善ASD患儿的行为干预效果。随着ASD发病机制的深入研究,布美他尼、催产素、维生素D及高压氧治疗,可有望改善ASD核心症状。该文对目前针对ASD的行为与发展干预及治疗方法进行了综述。%Autism spectrum disorders (ASD) are a group of developmental dysfuntion of nervous system characterized by social interaction and communication disorders, restricted interests and repetitive stereotyped behaviors. The incidence of ASD has been increasing through the world. Some studies have shown that early reasonable individualized comprehensive intervention can obviously improve the prognosis of children with ASD. The etiology of ASD is unclear now, and behavioral and developmental intervention is the main therapy for ASD. The reasonable application of some drugs can improve the efifcacy of the behavioral intervention for concomitant symptoms in ASD. With the in-depth study of the pathogenesis of ASD, bumetanide, oxytocin, vitamin D and hyperbaric oxygen therapy have been found to be promising for the improvement of core symptoms of ASD. This article reviews the research advances in the behavioral and developmental intervention and drug therapy for ASD.

  16. Effect of genistein on basal jejunal chloride secretion in R117H CF mice is sex and route specific

    Directory of Open Access Journals (Sweden)

    Rayyan E

    2015-01-01

    Full Text Available Esa Rayyan,1 Sarah Polito,1 Lana Leung,1 Ashesh Bhakta,1 Jonathan Kang,1 Justin Willey,1 Wasim Mansour,1 Mitchell L Drumm,2 Layla Al-Nakkash11Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA; 2Pediatric Pulmonology Division, Case Western Reserve University, Cleveland, OH, USAAbstract: Cystic fibrosis (CF results from the loss or reduction in function of the CFTR (cystic fibrosis transmembrane conductance regulatory protein chloride channel. The third most common CFTR mutation seen clinically is R117H. Genistein, a naturally occurring phytoestrogen, is known to stimulate CFTR function in vitro. We aimed to determine whether route of administration of genistein could mediate differential effects in R117H male and female CF mice. Mice were fed (4 weeks or injected subcutaneously (1 week with the following: genistein 600 mg/kg diet (600Gd; genistein-free diet (0Gd; genistein injection 600 mg/kg body weight (600Gi; dimethyl sulfoxide control (0Gi. In male R117H mice fed 600Gd, basal short circuit current (Isc was unchanged. In 600Gd-fed female mice, there was a subgroup that demonstrated a significant increase in basal Isc (53.14±7.92 µA/cm2, n=6, P<0.05 and a subgroup of nonresponders (12.05±6.59 µA/cm2, n=4, compared to 0Gd controls (29.3±6.5 µA/cm2, n=7. In R117H mice injected with 600Gi, basal Isc was unchanged in both male and female mice compared to 0Gi controls. Isc was measured in response to the following: the adenylate cyclase activator forskolin (10 µM, bilateral, bumetanide (100 µM, basolateral to indicate the Cl- secretory component, and acetazolamide (100 µM, bilateral to indicate the HCO3- secretory component; however, there was no effect of genistein (diet or injection on any of these parameters. Jejunal morphology (ie, villi length, number of goblet cells per villus, crypt depth, and number of goblet cells per crypt in R117H mice suggested no genistein

  17. Factors affecting ammonium uptake by C11 clone of MDCK cells.

    Science.gov (United States)

    Tararthuch, A L; Fernandez, R; Ramirez, M A; Malnic, G

    2002-11-01

    In several tissues ammonium ions are able to use the transport pathways of other ions, particularly of K+. We investigated this possibility in the C11 clone of MDCK cells, thought to represent intercalated cells, in control and 0 Cl- conditions. Cell pH was measured by ratiometric fluorescence microscopy using the pH indicator BCECF. After preincubating the cells for 10 min in control or 0 Cl- (substituted by gluconate) Ringer, an ammonium pulse was applied to induce cell acidification. The magnitude of the initial alkalinization (DeltapH) was 0.24+/-0.03 ( n=28) pH units in controls, which fell to 0.023+/-0.01 ( n=12) in 0 Cl-, suggesting uptake of NH4+ balancing the alkalinization by NH3. Addition of 10(-3) M bumetanide or furosemide to the 0 Cl- medium, or 10(-4 )M hexamethylene amiloride, did not alter DeltapH. However, with 5 mM Ba+, DeltapH increased to 38% of control. When 2.5x10(-4) M ouabain, an inhibitor of Na+-K+ ATPase, was used, DeltapH increased to 46% of control. Inhibition of H+-K+ ATPase by SCH28080 or by omeprazol caused significant increase in DeltapH. In 0 Cl- solution, these cells underwent a mean volume reduction (-d V) of -10.24+/-1.96% per 10 min as measured by confocal microscopy. To investigate if NH4+ influx was regulated by cell volume or by cell Cl-, volume reduction was avoided by two procedures. When preincubating with NPPB, a Cl- channel blocker, in 0 Cl-, volume reduction was inhibited (d V=-2.12% per 10 min), and DeltapH was 0.24+/-0.04 ( n=5). When the cells were preincubated in hypotonic 0 Cl- (260 mosmol/l), cell volume reduction was abolished (d V=+2.6% per 10 min) and DeltapH was 0.52+/-0.07 ( n=7). Thus, activation of NH4+ influx by several transporters was due to volume reduction rather than to [Cl-] alteration. PMID:12457240

  18. Evidence for Active Electrolyte Transport by Two-Dimensional Monolayers of Human Salivary Epithelial Cells.

    Science.gov (United States)

    Hegyesi, Orsolya; Földes, Anna; Bori, Erzsébet; Németh, Zsolt; Barabás, József; Steward, Martin C; Varga, Gábor

    2015-12-01

    secretion. Inhibition of basolateral NKCC1 by bumetanide reduced the response to ATP, indicating the active involvement of this transporter in Cl(-) secretion. In conclusion, we have demonstrated that both PTHSG and huSMG primary cultures cultivated in Hepato-STIM form two-dimensional monolayers in vitro on permeable supports and achieve active vectorial transepithelial electrolyte transport. The presence of both basolateral-to-apical anion fluxes and an apical-to-basolateral Na(+) flux indicates both acinar and ductal characteristics. With further refinement, this model should provide a firm basis for new interventions to correct salivary gland dysfunction. PMID:26200762

  19. Prostaglandin E2-induced colonic secretion in patients with and without colorectal neoplasia

    Directory of Open Access Journals (Sweden)

    Poulsen Steen S

    2010-01-01

    Full Text Available Abstract Background The pathogenesis for colorectal cancer remains unresolved. A growing body of evidence suggests a direct correlation between cyclooxygenase enzyme expression, prostaglandin E2 metabolism and neoplastic development. Thus further understanding of the regulation of epithelial functions by prostaglandin E2 is needed. We hypothesized that patients with colonic neoplasia have altered colonic epithelial ion transport and express functionally different prostanoid receptor levels in this respect. Methods Patients referred for colonoscopy were included and grouped into patients with and without colorectal neoplasia. Patients without endoscopic findings of neoplasia served as controls. Biopsy specimens were obtained from normally appearing mucosa in the sigmoid part of colon. Biopsies were mounted in miniaturized modified Ussing air-suction chambers. Indomethacin (10 μM, various stimulators and inhibitors of prostanoid receptors and ion transport were subsequently added to the chamber solutions. Electrogenic ion transport parameters (short circuit current and slope conductance were recorded. Tissue pathology and tissue damage before and after experiments was assessed by histology. Results Baseline short circuit current and slope conductance did not differ between the two groups. Patients with neoplasia were significantly more sensitive to indomethacin with a decrease in short circuit current of 15.1 ± 2.6 μA·cm-2 compared to controls, who showed a decrease of 10.5 ± 2.1 μA·cm-2 (p = 0.027. Stimulation or inhibition with theophylline, ouabain, bumetanide, forskolin or the EP receptor agonists prostaglandin E2, butaprost, sulprostone and prostaglandin E1 (OH did not differ significantly between the two groups. Histology was with normal findings in both groups. Conclusions Epithelial electrogenic transport is more sensitive to indomethacin in normal colonic mucosa from patients with previous or present colorectal neoplasia compared

  20. Chronic noradrenaline increases renal expression of NHE-3, NBC-1, BSC-1 and aquaporin-2.

    Science.gov (United States)

    Sonalker, Prajakta A; Tofovic, Stevan P; Bastacky, Sheldon I; Jackson, Edwin K

    2008-05-01

    1. Because chronic activation of the renal sympathetic nervous system promotes sodium and water retention, it is conceivable that long-term exposure of the kidney to the sympathetic neurotransmitter noradrenaline upregulates the expression of key renal epithelial transport systems. 2. To test this hypothesis, we used immunoblotting of renal cortical and medullary tissue to investigate the abundance of major transport systems expressed along the renal tubule in response to long-term (15 days) infusions of noradrenaline (600 ng/min) in rats. 3. Mean arterial blood pressure and heart rate were significantly elevated in rats receiving chronic infusions of noradrenaline (128 +/- 10 mmHg and 492 +/- 16 b.p.m., respectively) compared with animals treated with saline only (89 +/- 3 mmHg and 376 +/- 14 b.p.m., respectively). 4. Chronic infusions of noradrenaline also increased the protein abundance of the cortical Na(+)/H(+) exchanger isoform 3 (NHE-3; 2.5-fold; P = 0.0142), the cortical sodium-bicarbonate cotransporter NBC-1 (2.5-fold; P = 0.0067), the bumetanide-sensitive sodium-potassium-chloride cotransporter BSC-1/NKCC2 in the inner stripe of outer medulla (threefold; P = 0.0020) and aquaporin-2 in the inner medulla (twofold; P = 0.0039). 5. In contrast, noradrenaline did not significantly affect expression of the thiazide-sensitive Na(+)-Cl(-) cotransporter in the cortex, Na(+)/K(+)-ATPase-alpha(1) in the cortex and inner stripe of the outer or inner medulla, the inwardly rectifying K(+) channel (ROMK-1) in the inner stripe of the outer medulla or aquaporin-1 in the cortex or inner medulla. Noradrenaline did significantly, but modestly (less than twofold), increase aquaporin-1 in the inner stripe of the outer medulla. 6. We conclude that noradrenaline-induced increases in the expression of NHE-3, NBC-1, BSC-1 and aquaporin-2 are likely to play an important role in the regulation of salt and water transport by noradrenaline in the kidney and may explain, at least in

  1. Colonic epithelial ion transport is not affected in patients with diverticulosis

    Directory of Open Access Journals (Sweden)

    Tilotta Maria C

    2007-09-01

    Full Text Available Abstract Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1 to investigate colonic epithelial ion transport in patients with diverticulosis and (2 to adapt a miniaturized Modified Ussing Air-Suction (MUAS chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls except for diverticulosis in 22 (D-patients. Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC was 43.8 μA·cm-2 (0.8 – 199 for controls and 59.3 μA·cm-2 (3.0 – 177.2 for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0 equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4 equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.

  2. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota).

    Science.gov (United States)

    Wood, Chris M; Robertson, Lisa M; Johannsson, Ora E; Val, Adalberto Luis

    2014-10-01

    Mechanisms of Na(+) uptake, ammonia excretion, and their potential linkage were investigated in three characids (cardinal, hemigrammus, moenkhausia tetras), using radiotracer flux techniques to study the unidirectional influx (J in), efflux (J out), and net flux rates (J net) of Na(+) and Cl(-), and the net excretion rate of ammonia (J Amm). The fish were collected directly from the Rio Negro, and studied in their native "blackwater" which is acidic (pH 4.5), ion-poor (Na(+), Cl(-) ~20 µM), and rich in dissolved organic matter (DOM 11.5 mg C l(-1)). J in (Na) , J in (Cl) , and J Amm were higher than in previous reports on tetras obtained from the North America aquarium trade and/or studied in low DOM water. In all three species, J in (Na) was unaffected by amiloride (10(-4) M, NHE and Na(+) channel blocker), but both J in (Na) and J in (Cl) were virtually eliminated (85-99 % blockade) by AgNO3 (10(-7) M). A time course study on cardinal tetras demonstrated that J in (Na) blockade by AgNO3 was very rapid (<5 min), suggesting inhibition of branchial carbonic anhydrase (CA), and exposure to the CA-blocker acetazolamide (10(-4) M) caused a 50 % reduction in J in (Na) .. Additionally, J in (Na) was unaffected by phenamil (10(-5) M, Na(+) channel blocker), bumetanide (10(-4) M, NKCC blocker), hydrochlorothiazide (5 × 10(-3) M, NCC blocker), and exposure to an acute 3 unit increase in water pH. None of these treatments, including partial or complete elimination of J in (Na) (by acetazolamide and AgNO3 respectively), had any inhibitory effect on J Amm. Therefore, Na(+) uptake in Rio Negro tetras depends on an internal supply of H(+) from CA, but does not fit any of the currently accepted H(+)-dependent models (NHE, Na(+) channel/V-type H(+)-ATPase), or co-transport schemes (NCC, NKCC), and ammonia excretion does not fit the current "Na(+)/NH4 (+) exchange metabolon" paradigm. Na(+), K(+)-ATPase and V-type H(+)-ATPase activities were present at similar

  3. SSA 03-3 DIETARY SALT INTAKE AND HYPERTENSION IN SINGAPORE.

    Science.gov (United States)

    Oh, Vernon Min Sen

    2016-09-01

    reduction in the daily dietary salt intake between the age group 40-49 years (9000 mg) and those aged 60-69 years (7700 mg). The Indian and Chinese respondents in the Survey consumed more salt, 8700 and 8500 mg/day respectively, than the Malays (7600 mg/day).A study led by Associate Professor Rob Martinus Van Dam in the School of Public Health, National University of Singapore, is addressing the validation and calibration of a technique to estimate the 24-hour urinary content of sodium from measurements of sodium concentration in a spot urine sample. The technique is intended to raise the accuracy of spot urine sampling.It is difficult to interpret the significance of the decreased daily intake of salt in older persons, aged 50 to 69, in the face of the greater prevalence of hypertension in these age bands (31.9% in those aged 50-59 years, and 53.4% in those aged 60-69). For instance, some older persons might ingest less dietary sodium, or the net renal tubular excretion of sodium in the urine might decrease between age 50 and 69 years without any change in dietary sodium intake.Moreover, the treatment of hypertension in persons aged 50 to 69 years is likely to include diuretic agents, both thiazide drugs, and loop diuretics such as furosemide and bumetanide. In most hypertensive patients, long-term treatment with diuretics exposes older persons to a risk of hyponatraemia, hypokalemia, or both. The latter conditions result from a net increase in the urinary excretion of sodium and potassium (apart from increased free water excretion). Such diuretic-related loss of sodium in the urine also needs to be factored into the estimation of dietary sodium intake by means of 24-hour urinary sodium output.The increased prescription of renin-angiotensin-aldosterone blocking drugs to control HTn further confounds the estimation of dietary sodium intake from 24-hour urine collections. Angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, both reduce the

  4. SSA 03-3 DIETARY SALT INTAKE AND HYPERTENSION IN SINGAPORE.

    Science.gov (United States)

    Oh, Vernon Min Sen

    2016-09-01

    reduction in the daily dietary salt intake between the age group 40-49 years (9000 mg) and those aged 60-69 years (7700 mg). The Indian and Chinese respondents in the Survey consumed more salt, 8700 and 8500 mg/day respectively, than the Malays (7600 mg/day).A study led by Associate Professor Rob Martinus Van Dam in the School of Public Health, National University of Singapore, is addressing the validation and calibration of a technique to estimate the 24-hour urinary content of sodium from measurements of sodium concentration in a spot urine sample. The technique is intended to raise the accuracy of spot urine sampling.It is difficult to interpret the significance of the decreased daily intake of salt in older persons, aged 50 to 69, in the face of the greater prevalence of hypertension in these age bands (31.9% in those aged 50-59 years, and 53.4% in those aged 60-69). For instance, some older persons might ingest less dietary sodium, or the net renal tubular excretion of sodium in the urine might decrease between age 50 and 69 years without any change in dietary sodium intake.Moreover, the treatment of hypertension in persons aged 50 to 69 years is likely to include diuretic agents, both thiazide drugs, and loop diuretics such as furosemide and bumetanide. In most hypertensive patients, long-term treatment with diuretics exposes older persons to a risk of hyponatraemia, hypokalemia, or both. The latter conditions result from a net increase in the urinary excretion of sodium and potassium (apart from increased free water excretion). Such diuretic-related loss of sodium in the urine also needs to be factored into the estimation of dietary sodium intake by means of 24-hour urinary sodium output.The increased prescription of renin-angiotensin-aldosterone blocking drugs to control HTn further confounds the estimation of dietary sodium intake from 24-hour urine collections. Angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, both reduce the