WorldWideScience

Sample records for bulk-heterojunction solar cells

  1. Electro-optical modeling of bulk heterojunction solar cells

    Science.gov (United States)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  2. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  3. Detailed balance theory of excitonic and bulk heterojunction solar cells

    Science.gov (United States)

    Kirchartz, Thomas; Mattheis, Julian; Rau, Uwe

    2008-12-01

    A generalized solar cell model for excitonic and classical bipolar solar cells describes the combined transport and interaction of electrons, holes, and excitons in accordance with the principle of detailed balance. Conventional inorganic solar cells, single-phase organic solar cells and bulk heterojunction solar cells, i.e., nanoscale mixtures of two organic materials, are special cases of this model. For high mobilities, the compatibility with the principle of detailed balance ensures that our model reproduces the Shockley-Queisser limit irrespective of how the energy transport is achieved. For less ideal devices distinct differences become visible between devices that are described by linear differential equations and those with nonlinear effects, such as a voltage-dependent collection in bipolar p-i-n -type devices. These differences in current-voltage characteristics are also decisive for the validity of the reciprocity theorem between photovoltaic quantum efficiency and electroluminescent emission. Finally, we discuss the effect of band offset at the heterointerface in a bulk heterojunction cell and the effect of the average distances between these heterointerfaces on the performance of a solar cell in order to show how our detailed balance model includes also these empirically important quantities.

  4. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    Science.gov (United States)

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  5. Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Sendova-Vassileva, M; Dikov, H; Popkirov, G; Lazarova, E; Vitanov, P; Gancheva, V; Grancharov, G; Tsocheva, D; Mokreva, P

    2014-01-01

    A new combination of layers functioning as a transparent contact is proposed and tested in real solar cells. The contacts consist of TiO 2 layers and thin metal layers (Ag, Cu) and are deposited by magnetron sputtering. The optical transmission and electrical conductivity of the transparent contact layers (TCL) are measured. The TCLs are applied as back contacts in bulk heterojunction polymer solar cells deposited on ITO covered glass and consisting of the following layers: ITO/PEDOT:PSS/P3HT:PCBM/back contact. The organic layers are deposited by spin-coating. For comparison, the same bulk heterojunction polymer solar cells are prepared with a sputtered Ag back contact. The first results show a dependence of the current-voltage parameters of the studied solar cells on the thickness of the different component layers of the transparent back contacts. There is a balance that has to be observed between the electrical characteristics of the contacts and their optical transparency. Future plans involve their inclusion as intermediate contacts in tandem organic solar cells.

  6. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Chaudhary, Dhirendra K.; Kumar, Pankaj; Kumar, Lokendra

    2017-10-01

    We report here the impact of CH3NH3PbI3-PCBM bulk heterojunction (BHJ) active layer on the photovoltaic performance of perovskite solar cells. The solar cells were prepared in normal architecture on FTO coated glass substrates with compact TiO2 (c-TiO2) layer on FTO as electron transport layer (ETL) and poly(3-hexylthiophene) (P3HT) as hole transport layer (HTL). For comparison, a few solar cells were also prepared in planar heterojunction structure using CH3NH3PbI3 only as the active layer. The bulk heterojunction CH3NH3PbI3-PCBM active layer exhibited very large crystalline grains of 2-3 μm compared to ∼150 nm only in CH3NH3PbI3 active layer. Larger grains in bulk-heterojunction solar cells resulted in enhanced power conversion efficiency (PCE) through enhancement in all the photovoltaic parameters compared to planar heterojunction solar cells. The bulk-heterojunction solar cells exhibited ∼9.25% PCE with short circuit current density (Jsc) of ∼18.649 mA/cm2, open circuit voltage (Voc) of 0.894 V and Fill Factor (FF) of 0.554. There was ∼36.9% enhancement in the PCE of bulk-heterojunction solar cells compared to that of planar heterojunction solar cells. The larger grains are formed as a result of incorporation on PCBM in the active layer.

  7. Different Device Architectures for Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Getachew Adam

    2016-08-01

    Full Text Available We report different solar cell designs which allow a simple electrical connection of subsequent devices deposited on the same substrate. By arranging so-called standard and inverted solar-cell architectures next to each other, a serial connection of the two devices can easily be realized by a single compound electrode. In this work, we tested different interfacial layer materials like polyethylenimine (PEI and PEDOT:PSS, and silver as a non-transparent electrode material. We also built organic light emitting diodes applying the same device designs demonstrating the versatility of applied layer stacks. The proposed design should allow the preparation of organic bulk-heterojunction modules with minimized photovoltaically inactive regions at the interconnection of individual devices.

  8. Plastic Electronics and Optoelectronics: New Science and Technology from Soluble Semiconducting Polymers and Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers

    Science.gov (United States)

    2011-11-03

    Seifter, A. J. Heeger, Adv. Mater., 23, 1679–1683 (2011). 8. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode...distribution is unlimited. 13. SUPPLEMENTARY NOTES None 14. ABSTRACT Bulk heterojunction (BHJ) solar cells were invented at UC Santa Barbara after the...Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers Grant number: AFOSR FA9550-08-1-0248 Dr. Charle Lee, Program

  9. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei

    2013-02-22

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei; Yan, Buyi; Li, Ruipeng; Li, Erqiang; Zhao, Kui; Anjum, Dalaver H.; Alvarez, Steven; Gassaway, Robert; Biocca, Alan K.; Thoroddsen, Sigurdur T; Hexemer, Alexander; Amassian, Aram

    2013-01-01

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  12. Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Suzuki

    2014-03-01

    Full Text Available The effects of germanium tetrabromide addition to tetraphenyl porphyrin zinc (Zn-TPP/fullerene (C60 bulk heterojunction solar cells were characterized. The light-induced charge separation and charge transfer were investigated by current density and optical absorption. Addition of germanium tetrabromide inserted into active layer of Zn-TPP/C60 as bulk heterojunction had a positive effect on the photovoltaic and optical properties. The photovoltaic mechanism of the solar cells was discussed by experimental results. The photovoltaic performance was due to light-induced exciton promoted by insert of GeBr4 and charge transfer from HOMO of Zn-TPP to LUMO of C60 in the active layer.

  13. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application

    Science.gov (United States)

    Chen, Zhiliang; Yang, Guang; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Ma, Junjie; Wang, Hao; Fang, Guojia

    2017-05-01

    Perovskite solar cells have developed rapidly in recent years as the third generation solar cells. In spite of the great improvement achieved, there still exist some issues such as undesired hysteresis and indispensable high temperature process. In this work, bulk heterojunction perovskite-phenyl-C61-butyric acid methyl ester solar cells have been prepared to diminish hysteresis using a facile two step spin-coating method. Furthermore, high quality tin oxide films are fabricated using pulse laser deposition technique at room temperature without any annealing procedure. The as fabricated tin oxide film is successfully applied in bulk heterojunction perovskite solar cells as a hole blocking layer. Bulk heterojunction devices based on room temperature tin oxide exhibit almost hysteresis-free characteristics with power conversion efficiency of 17.29% and 14.0% on rigid and flexible substrates, respectively.

  14. Design rules for donors in bulk-heterojunction solar cells - towards 10 % energy-conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Scharber, M.C.; Muehlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Brabec, C.J. [Konarka Austria, Altenbergerstrasse 69, A-4040 Linz (Austria); Heeger, A.J. [Department of Materials Science, Broida Hall 6125, University of California at Santa Barbara, Santa Barbara, CA 3106-5090 (United States)

    2006-03-17

    For bulk-heterojunction photovoltaic cells fabricated from conjugated polymers and a fullerene derivative, the relation between the open-circuit voltage (V{sub oc}) and the oxidation potential for different conjugated polymers is studied. A linear relation between V{sub oc} and the oxidation potential is found (see figure). Based on this relation, the energy-conversion efficiency of a bulk-heterojunction solar cell is derived as a function of the bandgap and the energy levels of the conjugated polymer. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Laquai, Fré dé ric; Andrienko, Denis; Deibel, Carsten; Neher, Dieter

    2016-01-01

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  16. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Laquai, Frederic

    2016-12-20

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  17. Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells

    Science.gov (United States)

    Gupta, Vinay; Kyaw, Aung Ko Ko; Wang, Dong Hwan; Chand, Suresh; Bazan, Guillermo C.; Heeger, Alan J.

    2013-01-01

    We report Barium (Ba) cathode layer for bulk-heterojunction solar cells which enhanced the fill factor (FF) of p-DTS(FBTTh2)2/PC71BM BHJ solar cell up to 75.1%, one of the highest value reported for an organic solar cell. The external quantum efficiency exceeds 80%. Analysis of recombination mechanisms using the current-voltage (J–V) characteristics at various light intensities in the BHJ solar cell layer reveals that Ba prevents trap assisted Shockley-Read-Hall (SRH) recombination at the interface and with different thicknesses of the Ba, the recombination shifts towards bimolecular from monomolecular. Moreover, Ba increases shunt resistance and decreases the series resistance significantly. This results in an increase in the charge collection probability leading to high FF. This work identifies a new cathode interlayer which outclasses the all the reported interlayers in increasing FF leading to high power conversion efficiency and have significant implications in improving the performance of BHJ solar cells. PMID:23752562

  18. Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells

    Science.gov (United States)

    Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.

    2016-12-01

    Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.

  19. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    Science.gov (United States)

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Charge transport and recombination dynamics in organic bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Andreas

    2011-08-02

    The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as ''Time-of-Flight'' (TOF)), as well as the transient charge extraction technique of ''Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics - i.e. charge transport and charge carrier recombination - in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are

  1. Solution processed organic bulk heterojunction tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Steve; Neher, Dieter [Soft Matter Physics, University of Potsdam, D-14476 Potsdam (Germany)

    2011-07-01

    One of the critical issues regarding the preparation of organic tandem solar cells from solution is the central recombination contact. This contact should be highly transparent and conductive to provide high recombination currents. Moreover it should protect the 1st subcell from the solution processing of the 2nd subcell. Here, we present a systematic study of various recombination contacts in organic bulk heterojunction tandem solar cells made from blends of different polymers with PCBM. We compare solution processed recombination contacts fabricated from metal-oxides (TiO{sub 2} and ZnO) and PEDOT:PSS with evaporated recombination contacts made from thin metal layers and molybdenum-oxide. The solar cell characteristics as well as the morphology of the contacts measured by AFM and SEM are illustrated. To compare the electrical properties of the varying contacts we show measurements on single carrier devices for different contact-structures. Alongside we present the results of optical modeling of the subcells and the complete tandem device and relate these results to experimental absorption and reflection spectra of the same structures. Based on these studies, layer thicknesses were adjusted for optimum current matching and device performance.

  2. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  3. An anomalous behavior in degraded bulk heterojunction organic solar cells

    International Nuclear Information System (INIS)

    Singh, Vinamrita; Tandon, Ram Pal; Arora, Swati; Kumar, Pankaj; Bhatnagar, Pramod Kumar; Arora, Manoj

    2011-01-01

    An anomalous behavior—a change in polarity with the passage of time in the bulk heterojunction poly(3-hexylthiophene) (P3HT):6,6-phenylC61 butyric acid methyl ester (PCBM) organic solar cells—is reported here. This work is a continuation of our previous work where the initial degradation of the organic solar cells, freshly prepared up to 4 h, was mainly due to domain formation in the active layer. With the passage of time, the activity at the interfaces starts becoming significant. A decrease of V OC and J SC , leading to a change in polarity, has been reported and explained up to 300 h after fabrication.

  4. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  5. Morphology control for highly efficient organic–inorganic bulk heterojunction solar cell based on Ti-alkoxide

    International Nuclear Information System (INIS)

    Kato, Takehito; Hagiwara, Naoki; Suzuki, Eiji; Nasu, Yuki; Izawa, Satoru; Tanaka, Kouichi; Kato, Ariyuki

    2016-01-01

    The number of publications concerned with typical bulk-heterojunction solar cells that use fullerene derivatives and inorganic materials as electron acceptors has grown very rapidly. In this work, we focus on Ti-alkoxides as electron acceptors in the photoactive layers of fullerene-free bulk-heterojunction solar cells. We show that it is possible to control the morphology by adjusting the molecular structure and size of the Ti-alkoxides. The short-circuit current density (J_s_c) increased to 191 μA/cm"2 from 25 μA/cm"2 with a maximum, when the phase-separation structure was continuously formed to within about 20 nm below the exciton diffusion length by using either titanium(IV) ethoxide or isopropoxide as an electron acceptor. Within a thickness of 30 nm, the photoactive layer is not influenced by the electron transfer ability; thus, we demonstrate that the charge-separation efficiency is equivalent to that of a fullerene system. - Highlights: • An organic–inorganic bulk-heterojunction photoactive layer was used. • Electron donor was a semiconducting polymer and electron acceptor was Ti-alkoxide. • Demonstration of morphology control by Ti-alkoxide molecules. • Determination of Jsc value by the phase-separation structure in an ultra-thin film. • Charge-separation efficiency of Ti-alkoxide system equivalent to fullerene system.

  6. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode

    International Nuclear Information System (INIS)

    Ongul, Fatih; Yuksel, Sureyya Aydın; Bozar, Sinem; Gunes, Serap; Cakmak, Gulbeden; Guney, Hasan Yuksel; Egbe, Daniel Ayuk Mbi

    2015-01-01

    In this paper, the photovoltaic characteristics of bulk heterojunction solar cells employing an eutectic gallium–indium (EGaIn) alloy as a top metal contact which was coated by a simple and inexpensive brush-painting was investigated. The overall solar cell fabrication procedure was vacuum-free. As references, regular organic bulk heterojunction solar cells employing thermally evaporated Aluminum as a top metal contact were also fabricated. Inserting the ZnO layer between the active layer and the cathode electrodes (Al and EGaIn) improved the photovoltaic performance of the herein investigated devices. The power conversion efficiencies with and without EGaIn top electrodes were rather comparable. Hence, we have shown that the EGaIn, which is liquid at room temperature, can be used as a cathode. It allows an easy and rapid device fabrication that can be implemented through a vacuum free process. (paper)

  7. Shelf life and outdoor degradation studies of organic bulk heterojunction solar cells

    Science.gov (United States)

    Gergova, R.; Sendova-Vassileva, M.; Popkirov, G.; Gancheva, V.; Grancharov, G.

    2018-03-01

    We studied the degradation of different types of bulk heterojunction devices, in which the materials comprising the active layer and/or the materials used for the back electrode are varied. The devices are deposited on ITO covered glass and have the structure PEDOT:PSS/BHJ/Me, where PEDOT:PSS is the hole transport layer, BHJ (bulk heterojunction) is the active layer comprising a polymer donor (e.g. PTB7, PCDTBT) and a fullerene derivative acceptor (e.g. PC60BM, PC70BM) deposited by spin coating, Me is the metal back contact, which is either Ag or Al deposited by magnetron sputtering or thermal evaporation. The device performance was monitored after storage in the dark at ambient conditions by following the evolution of the J-V curve over time. Results of real conditions outdoor degradation studies are also presented. The stability of the different solar cell structures studied is compared.

  8. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces

    OpenAIRE

    Ivan Litzov; Christoph J. Brabec

    2013-01-01

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work fun...

  9. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  10. Charge-carrier selective electrodes for organic bulk heterojunction solar cell by contact-printed siloxane oligomers

    International Nuclear Information System (INIS)

    Hwang, Hyun-Sik; Khang, Dahl-Young

    2015-01-01

    ‘Smart’ (or selective) electrode for charge carriers, both electrons and holes, in organic bulk-heterojunction (BHJ) solar cells using insertion layers made of hydrophobically-recovered and contact-printed siloxane oligomers between electrodes and active material has been demonstrated. The siloxane oligomer insertion layer has been formed at a given interface simply by conformally-contacting a cured slab of polydimethylsiloxane stamp for less than 100 s. All the devices, either siloxane oligomer printed at one interface only or printed at both interfaces, showed efficiency enhancement when compared to non-printed ones. The possible mechanism that is responsible for the observed efficiency enhancement has been discussed based on the point of optimum symmetry and photocurrent analysis. Besides its simplicity and large-area applicability, the demonstrated contact-printing technique does not involve any vacuum or wet processing steps and thus can be very useful for the roll-based, continuous production scheme for organic BHJ solar cells. - Highlights: • Carrier-selective insertion layer in organic bulk heterojunction solar cells • Simple contact-printing of siloxane oligomers improves cell efficiency. • Printed siloxane layer reduces carrier recombination at electrode surfaces. • Siloxane insertion layer works equally well at both electrode surfaces. • Patterned PDMS stamp shortens the printing time within 100 s

  11. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modelling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells

    NARCIS (Netherlands)

    Conings, B.S.T.; Bertho, S.; Vandewal, K.; Senes, A.; D'Haen, J.; Manca, J.V.; Janssen, R.A.J.

    2010-01-01

    In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of

  13. Morphology versus Vertical Phase Segregation in Solvent Annealed Small Molecule Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available The deep study of solvent annealed small molecules bulk heterojunction organic solar cells based on DPP(TBFu2 : PC60BM blend is carried out. To reveal the reason of the solvent annealing advantage over the thermal one, capacitance-voltage measurements were applied. It was found that controlling the vertical phase segregation in the solar cells a high fullerene population in the vicinity of the cathode could be achieved. This results in increase of the shunt resistance of the cell, thus improving the light harvesting efficiency.

  14. Polymer-Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J

    2015-08-01

    Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell

    Science.gov (United States)

    Mohan, Minu; Ramkumar, S.; Namboothiry, Manoj A. G.

    2017-08-01

    P3HT:PCBM is one of the most studied polymer-fullerene system. However the reported power conversion efficiency (PCE) values falls within the range of 4% to 5%. The thin film architecture in OPVs exhibits low PCE compared to inorganic photovoltaic cells. This is mainly due to the low exciton diffusion length that limits the active layer thickness which in turn reduces the absorption of incident light. Several strategies are adapted in order to increase the absorption in the active layer without increasing the film thickness. Inclusion of metal nanoparticles into the polymer layer of bulk heterojunction (BHJ) solar cells is one of the promising methods. Incorporation of metal nanostructures increases the absorption of organic materials due to the high electromagnetic field strength in the vicinity of the excited surface plasmons. In this work, we used 60 nm Au plasmonic structures to improve the efficiency of organic solar cell. The prepared metal nano structures were characterized through scanning electron microscopy (SEM), and UV-Visible spectroscopy techniques. These prepared metallic nanoparticles can be incorporated either into the electron transport layer (ETL) or into the active P3HT:PC71BM layer. The effect of incorporation of plasmonic gold (Au) nanoparticle in the inverted bulk heterojunction organic photovoltaic cells (OPVs) of P3HT:PC71BM fabricated in ambient air condition is in progress. Initial studies shows an 8.5% enhancement in the PCE with the incorporation of Au nanoparticles under AM1.5G light of intensity 1 Sun.

  16. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    KAUST Repository

    Lan, Xinzheng; Bai, Jing; Masala, Silvia; Thon, Susanna; Ren, Yuan; Kramer, Illan J.; Hoogland, Sjoerd H.; Simchi, Arash; Koleilat, Ghada I.; Paz-Soldan, Daniel; Ning, Zhijun; Labelle, André J.; Kim, Jinyoung; Jabbour, Ghassan E.; Sargent, E. H.

    2013-01-01

    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    KAUST Repository

    Lan, Xinzheng

    2013-01-06

    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sandwich-cell-type bulk-heterojunction organic solar cells utilizing liquid crystalline phthalocyanine

    Science.gov (United States)

    Nakata, Yuya; Usui, Toshiki; Nishikawa, Yuki; Nekelson, Fabien; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Sandwich-cell-type bulk-heterojunction organic solar cells utilizing the liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), have been fabricated and their photovoltaic properties have been studied. The short-circuit current (J SC) and power conversion efficiency (PCE) depended on the blend ratio of donor and acceptor molecules, and the maximum performance, such as J SC of 3.4 mA/cm2 and PCE of 0.67%, was demonstrated, when the blend ratio of the acceptor was 10 mol %. The photovoltaic properties were discussed by taking the relationship between the column axis direction of C6PcH2 and the carrier mobility in the active layer into consideration.

  19. Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film.

    Science.gov (United States)

    Luria, Justin L; Hoepker, Nikolas; Bruce, Robert; Jacobs, Andrew R; Groves, Chris; Marohn, John A

    2012-11-27

    We present spatially resolved photovoltage spectra of a bulk heterojunction solar cell film composed of phase-separated poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) polymers prepared on ITO/PEDOT:PSS and aluminum substrates. Over both PFB- and F8BT-rich domains, the photopotential spectra were found to be proportional to a linear combination of the polymers' absorption spectra. Charge trapping in the film was studied using photopotential fluctuation spectroscopy, in which low-frequency photoinduced electrostatic potential fluctuations were measured by observing noise in the oscillation frequency of a nearby charged atomic force microscope cantilever. Over both F8BT- and PFB-rich regions, the magnitude, distance dependence, frequency dependence, and illumination wavelength dependence of the observed cantilever frequency noise are consistent with photopotential fluctuations arising from stochastic light-driven trapping and detrapping of charges in F8BT. Taken together, our findings suggest a microscopic mechanism by which intermixing of phases leads to charge trapping and thereby to suppressed open-circuit voltage and decreased efficiency in this prototypical bulk heterojunction solar cell film.

  20. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola

    2018-01-29

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  1. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola; Wadsworth, Andrew; Moser, Maximilian; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2018-01-01

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  2. Pentacene–fullerene bulk-heterojunction solar cell: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Anup [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Sarkar, Sunandan [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Dept. of Physical Chemistry, Palacký University, Olomouc (Czech Republic); Pal, Sougata [Department of Chemistry, University of Gour Banga, Malda 732103 (India); Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2015-06-12

    We perform DFT/TDDFT calculations to study the optoelectronic properties of some pentacene-based organic molecules and their derivatives, which can serve as donor moiety when blended with fullerene acceptors in the bulk-heterojunction solar cell model. We are motivated by a recent experiment in which an unoptimized device was shown to have a good photovoltaic performance and we aim to further improve the efficiency of this device. We try to optimize the photovoltaic properties on the basis of a quantum-mechanical calculation of the frontier energy levels and of the absorption properties of individual molecules and of the molecule–fullerine composite. - Highlights: • Optoelectronic properties of pentacene–fullerene nanocomposites are presented. • Photovoltaic properties of the nanocomposites are predicted. • DFT/TDDFT results are in well agreement with available experimental results. • Calculated results give a direction for optimizing device performance.

  3. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells.

    Science.gov (United States)

    Liu, Jun; Xue, Yuhua; Gao, Yunxiang; Yu, Dingshan; Durstock, Michael; Dai, Liming

    2012-05-02

    By charge neutralization of carboxylic acid groups in graphene oxide (GO) with Cs(2)CO(3) to afford Cesium-neutralized GO (GO-Cs), GO derivatives with appropriate modification are used as both hole- and electron-extraction layers for bulk heterojunction (BHJ) solar cells. The normal and inverted devices based on GO hole- and GO-Cs electron-extraction layers both outperform the corresponding standard BHJ solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; El Labban, Abdulrahman; Tassone, Christopher J.; Toney, Michael F.; Fré chet, Jean Mj J; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well

  5. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare; Howard, Ian A.; Cabanetos, Clement; El Labban, Abdulrahman; Beaujuge, Pierre; Laquai, Fré dé ric

    2015-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl

  6. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Gao, Yunxiang; Yu, Dingshan; Dai, Liming [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular, Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio (United States); Xue, Yuhua [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular, Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio (United States); Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical College, Zhejiang 325027 (China); Durstock, Michael [Materials and Manufacturing Directorate, Air Force Research Laboratory, RXBP, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2012-05-02

    By charge neutralization of carboxylic acid groups in graphene oxide (GO) with Cs{sub 2}CO{sub 3} to afford Cesium-neutralized GO (GO-Cs), GO derivatives with appropriate modification are used as both hole- and electron-extraction layers for bulk heterojunction (BHJ) solar cells. The normal and inverted devices based on GO hole- and GO-Cs electron-extraction layers both outperform the corresponding standard BHJ solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    Science.gov (United States)

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  8. Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyomin Park

    2012-01-01

    Full Text Available To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.

  9. T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell

    Science.gov (United States)

    Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel

    2017-07-01

    We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).

  10. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gollu, Sankara Rao, E-mail: sankar.gollu@gmail.com [Plastic Electronics and Energy Lab (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Sharma, Ramakant, E-mail: diptig@iitb.ac.in; G, Srinivas, E-mail: diptig@iitb.ac.in; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Lab (PEEL) Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2014-10-15

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO{sub 3}/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO{sub 3} layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  11. Fabrication of Organic Bulk Heterojunction Solar Cells on Flexible Substrates

    Science.gov (United States)

    Calderon, Gabriel; Merced-Sanabria, Milzaida; Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    2015-03-01

    The active layer for the organic solar cells fabricated is composed of P3HT:PCBM, poly(3-hexylthiophene) (P3HT) as electron donor and phenyl-C61-butyric acid methyl ester(PCBM) as electron acceptor. These polymers were used due to their promising characteristics for devices such as bulk heterojunction solar devices. We used polyethylene terephthalate (PET) substrates, a highly flexible plastic, with indium tin oxide (ITO) as the transparent conducting anode for the device, and UV lithography technique to pattern the ITO; this is to facilitate multiple devices on a single substrate. The fabrication process for pattern transfer incorporates developing and etching processes. We diluted the HCl and DI water to etch out the ITO. PEDOT:PSS and active layer of P3HT:PCBM were deposited on (3.0 sq-cm) patterned of ITO/PET by spin coating method. The cathode was thermally evaporated with Al. We characterized the device using a sourcemeter. We also simulated portions of the device using PET on graphene as the substrate.

  12. Bulk Heterojunction Solar Cell Devices Prepared with Composites of Conjugated Polymer and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Nguyen Tam Nguyen Truong

    2017-01-01

    Full Text Available ZnO nanorods (Nrods with ~20–50 nm lengths were synthesized using an aqueous solution of zinc acetate and glacial acetic acid. Bulk heterojunction solar cells were fabricated with the structure of indium tin oxide (ITO/polyethylenedioxythiophene doped with polystyrene-sulfonic acid (PEDOT:PSS/ZnO-Nrods + polymer/electron transport layer (ETL/Al. Current density-voltage characterization of the resulting cells showed that, by adding an ETL and using polymers with a low band gap energy, the photoactive layer surface morphology and the device performance can be dramatically improved.

  13. Efficiency increase in flexible bulk heterojunction solar cells with a nano-patterned indium zinc oxide anode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong Hwan; Seifter, Jason; Heeger, Alan J. [Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106-5090 (United States); Park, Jong Hyeok [School of Chemical Engineering and SAINT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Dae-Geun [Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2012-11-15

    Efficient flexible bulk-heterojunction polymer solar cells based on PCDTBT/PC{sub 70}BM were successfully fabricated by a simple nano-imprint technique. The flexible nano-patterned IZO anode with ordered periodic dot structures led to improved light absorption and increased interfacial contact area between the anode and polymer as well as between the polymer and cathode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Study of a ternary blend system for bulk heterojunction thin film solar cells

    Science.gov (United States)

    Ahmad, Zubair; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.

    2016-08-01

    In this research, we report a bulk heterojunction (BHJ) solar cell consisting of a ternary blend system. Poly(3-hexylthiophene) P3HT is used as a donor and [6,6]-phenyl C61-butyric acid methylester (PCBM) plays the role of acceptor whereas vanadyl 2,9,16,23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO) is selected as an ambipolar transport material. The materials are selected and assembled in such a fashion that the generated charge carriers could efficiently be transported rightwards within the blend. The organic BHJ solar cells consist of ITO/PEDOT:PSS/ternary BHJ blend/Al structure. The power conversion efficiencies of the ITO/ PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/ P3HT:PCBM:VOPcPhO/Al solar cells are found to be 2.3% and 3.4%, respectively. This publication was made possible by PDRA (Grant No. PDRA1-0117-14109) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

  15. Performance and stability of P3HT/PCBM bulk heterojunction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yumnam, Nivedita; Bom, Sidhant; Wagner, Veit [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)

    2011-07-01

    Organic photovoltaic cells are promising candidates for large-area, low-cost production of solar cells. However, the low stability in conjunction with their medium performance is one of the major drawbacks in comparison to their inorganic counterparts. In this investigation environmental conditions for degradation of bulk heterojunction P3HT/PCBM solar cells are systematically analyzed over a period of one week. Devices were prepared by spin coating from different compositions of P3HT and PCBM in Chlorobenzene (C{sub 6}H{sub 5}Cl). Performance parameters, efficiency and I-V characteristics were determined in a N{sub 2} glove box showing optimized efficiency for a 1:1 ratio. Degradation behavior in N{sub 2} atmosphere, vacuum and solvent-enriched atmosphere (Chlorobenzene) showed best results for vacuum stored solar cells while for solvent-enriched atmosphere rapid degradation was observed. Remarkable degradation (open-circuit voltage and short-circuit current reduced to 90% and 60% after one week) was also found for N{sub 2} atmosphere of the glove box used for the solar cell production. Residual solvent vapor left dispersed in the atmosphere of the glovebox after the spin coating process is identified as an important parameter of this degradation.

  16. Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells

    KAUST Repository

    McDowell, Caitlin; Abdelsamie, Maged; Zhao, Kui; Smilgies, Detlef M.; Bazan, Guillermo C.; Amassian, Aram

    2015-01-01

    The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution-deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p-DTS(FBTTh2)2/PC

  17. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

  19. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    Science.gov (United States)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  20. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces.

    Science.gov (United States)

    Litzov, Ivan; Brabec, Christoph J

    2013-12-10

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.

  1. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ Solar Cells Using Different Metal Oxide Interfaces

    Directory of Open Access Journals (Sweden)

    Ivan Litzov

    2013-12-01

    Full Text Available Solution-processed inverted bulk heterojunction (BHJ solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL and as hole transport/extraction layers (HTL/HEL in inverted BHJ solar cells will be reviewed and discussed.

  2. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces

    Science.gov (United States)

    Litzov, Ivan; Brabec, Christoph J.

    2013-01-01

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423

  3. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  4. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting

    KAUST Repository

    Pérez, Louis A.

    2013-09-04

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting

    KAUST Repository

    Pé rez, Louis A.; Chou, Kang Wei; Love, John A.; Van Der Poll, Thomas S.; Smilgies, Detlef Matthias; Nguyen, Thuc Quyen; Krä mer, Edward J.; Amassian, Aram; Bazan, Guillermo C.

    2013-01-01

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Liu, Shengjian

    2016-09-16

    Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The

  7. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.

    Science.gov (United States)

    Cho, Jin Woo; Park, Se Jin; Kim, Jaehoon; Kim, Woong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2012-02-01

    In this study, we developed a novel inorganic thin film solar cell configuration in which bulk heterojunction was formed between indium tin oxide (ITO) nanorods and CuInS(2) (CIS). Specifically, ITO nanorods were first synthesized by the radio frequency magnetron sputtering deposition method followed by deposition of a dense TiO(2) layer and CdS buffer layer using atomic layer deposition and chemical bath deposition method, respectively. The spatial region between the nanorods was then filled with CIS nanoparticle ink, which was presynthesized using the colloidal synthetic method. We observed that complete gap filling was achieved to form bulk heterojunction between the inorganic phases. As a proof-of-concept, solar cell devices were fabricated by depositing an Au electrode on top of the CIS layer, which exhibited the best photovoltaic response with a V(oc), J(sc), FF, and efficiency of 0.287 V, 9.63 mA/cm(2), 0.364, and 1.01%, respectively.

  8. Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer

    OpenAIRE

    Kuwabara, Takayuki; Sugiyama, Hirokazu; Kuzuba, Mitsuhiro  ; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-01-01

    Chemical bath deposited titanium oxide (TiOx ) as an electron collection layer is introduced between the organic layer and the indium tin oxide (ITO) electrode for improving the performance of inverted bulk-heterojunction organic thin film solar cells with 1 cm2 active area, where regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were mainly used as the photo-active layer. The uniform and thin TiOx film was easily prepared onto the ITO electrode ...

  9. Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review

    Science.gov (United States)

    Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany

    2014-01-01

    Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.

  10. Solution-Processed Organic Solar Cells from Dye Molecules: An Investigation of Diketopyrrolopyrrole:Vinazene Heterojunctions

    KAUST Repository

    Walker, Bright; Han, Xu; Kim, Chunki; Sellinger, Alan; Nguyen, Thuc-Quyen

    2012-01-01

    Although one of the most attractive aspects of organic solar cells is their low cost and ease of fabrication, the active materials incorporated into the vast majority of reported bulk heterojunction (BHJ) solar cells include a semiconducting polymer

  11. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  12. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir

    2015-02-04

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room-temperature, solution-processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of H25 nm yields solar cell power-conversion effi ciencies (PCEs) of ≈6%, exceeding the effi ciency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60-300 ° C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL-deposited fi lms to solar cell performance. This protocol suggests a new fabrication method for solution-processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to fl exible devices printed on plastic substrates.

  13. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    Science.gov (United States)

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  16. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation.

    Science.gov (United States)

    Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C

    2009-11-17

    As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is

  17. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola; Salvador, Michael; Heumueller, Thomas; Richter, Moses; Classen, Andrej; Shrestha, Shreetu; Matt, Gebhard J.; Holliday, Sarah; Strohm, Sebastian; Egelhaaf, Hans-Joachim; Wadsworth, Andrew; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2017-01-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  18. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola

    2017-09-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  19. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    International Nuclear Information System (INIS)

    Sharma, G. D.

    2011-01-01

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm 2 has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  20. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ajith [Centre for Nano-Bio-Polymer Science and Technology, Department of Physics, St. Thomas College, Pala, Kerala 686574 (India); Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu 641046 (India); Elsa Tom, Anju; Ison, V. V., E-mail: isonvv@yahoo.in, E-mail: praveen@materials.iisc.ernet.in [Centre for Nano-Bio-Polymer Science and Technology, Department of Physics, St. Thomas College, Pala, Kerala 686574 (India); Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C., E-mail: isonvv@yahoo.in, E-mail: praveen@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012 (India); Vinayakan, R. [Department of Chemistry, SVR NSS College Vazhoor, Kerala 686505 (India)

    2014-03-14

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility.

  1. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    International Nuclear Information System (INIS)

    Thomas, Ajith; Elsa Tom, Anju; Ison, V. V.; Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C.; Vinayakan, R.

    2014-01-01

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility

  2. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2017-11-01

    Full Text Available Three donor/acceptor (D/A-type two-dimensional polythiophenes (PTs; PBTFA13, PBTFA12, PBTFA11 featuring difluorobenzothiadiazole (DFBT derivatives as the conjugated (acceptor units in the polymer backbone and tertbutyl–substituted triphenylamine (tTPA-containing moieties as (donor pendants have been synthesized and characterized. These PTs exhibited good thermal stabilities, broad absorption spectra, and narrow optical band gaps. The cutoff wavelength of the UV–Vis absorption band was red-shifted upon increasing the content of the DFBT units in the PTs. Bulk heterojunction solar cells having an active layer comprising blends of the PTs and fullerene derivatives [6,6] phenyl-C61/71-butyric acid methyl ester (PC61BM/PC71BM were fabricated; their photovoltaic performance was strongly dependent on the content of the DFBT derivative in the PT. Incorporating a suitable content of the DFBT derivative in the polymer backbone enhanced the solar absorption ability and conjugation length of the PTs. The photovoltaic properties of the PBTFA13-based solar cells were superior to those of the PBTFA11- and PBTFA12-based solar cells.

  3. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.

    Science.gov (United States)

    Kang, Hongkyu; Kim, Geunjin; Kim, Junghwan; Kwon, Sooncheol; Kim, Heejoo; Lee, Kwanghee

    2016-09-01

    The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II–VI and IV–VI Inorganic Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ryan Kisslinger

    2017-01-01

    Full Text Available Bulk heterojunction solar cells based on blends of quantum dots and conjugated polymers are a promising configuration for obtaining high-efficiency, cheaply fabricated solution-processed photovoltaic devices. Such devices are of significant interest as they have the potential to leverage the advantages of both types of materials, such as the high mobility, band gap tunability and possibility of multiple exciton generation in quantum dots together with the high mechanical flexibility and large molar extinction coefficient of conjugated polymers. Despite these advantages, the power conversion efficiency (PCE of these hybrid devices has remained relatively low at around 6%, well behind that of all-organic or all-inorganic solar cells. This is attributed to major challenges that still need to be overcome before conjugated polymer–quantum dot blends can be considered viable for commercial application, such as controlling the film morphology and interfacial structure to ensure efficient charge transfer and charge transport. In this work, we present our findings with respect to the recent development of bulk heterojunctions made from conjugated polymer–quantum dot blends, list the ongoing strategies being attempted to improve performance, and highlight the key areas of research that need to be pursued to further develop this technology.

  5. Effect of annealing on bulk heterojunction organic solar cells based on copper phthalocyanine and perylene derivative

    KAUST Repository

    Kim, Inho

    2012-02-01

    We investigated the effects of annealing on device performances of bulk heterojunction organic solar cells based on copper phthalocyanine (CuPc) and N,N′-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C6). Blended films of CuPc and PTCDI-C6 with annealing at elevated temperature were characterized by measuring optical absorption, photoluminescence, and X-ray diffraction. Enhanced molecular ordering and increments in domain sizes of donor and acceptor for the blended films were observed, and their influences on device performances were discussed. Annealing led to substantial improvements in photocurrent owing to enhanced molecular ordering and formation of percolation pathways. © 2011 Elsevier B.V. All rights reserved.

  6. The effect of solvent on the morphology of an inkjet printed active layer of bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahaya, Muhammad

    2011-01-01

    Bulk heterojunction organic solar cells were fabricated by sandwiching the active layer between indium tin oxide (ITO) and Al electrodes. The active layer used was a blend of poly(3-octylthiophene-2,5-diyl) (P3OT) as the electron donor and (6,6)-phenyl C 71 butyric acid methyl ester (PC 71 BM) as the electron acceptor. The active layer thin films were deposited by an inkjet printing technique. Prior to deposition of the thin films, the active materials were blended in three different solvents. The printed films were annealed at three different temperatures. It was found that the selection of the appropriate solvent and annealing treatment significantly influences the printing process, the morphology of the printed film and subsequently the performance of the solar cell devices

  7. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Kemerink, M.; Yang, X.N.; Janssen, R.A.J.

    2005-01-01

    Bulk heterojunction photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3‘,7‘-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline ZnO nanoparticles (nc-ZnO) as electron acceptor have been studied. Composite nc-ZnO:MDMO-PPV films were cast

  8. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    OpenAIRE

    Mozer, AJ; Sariciftci, NS; Osterbacka, R; Westerling, M; Juska, G; LUTSEN, Laurence; VANDERZANDE, Dirk

    2005-01-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C-61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after ...

  9. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    Science.gov (United States)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  11. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kramer, Illan J.; Zhitomirsky, David; Bass, John D.; Rice, Philip M.; Topuria, Teya; Krupp, Leslie; Thon, Susanna M.; Ip, Alexander H.; Debnath, Ratan; Kim, Ho-Cheol; Sargent, Edward H.

    2012-01-01

    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kramer, Illan J.

    2012-03-30

    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  14. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    KAUST Repository

    Ma, Zaifei

    2014-01-01

    A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.

  15. Understanding triplet formation pathways in bulk heterojunction polymer : fullerene photovoltaic devices

    NARCIS (Netherlands)

    Tedla, B.; Zhu, F.; Cox, M.; Drijkoningen, J.; Manca, J.V.; Koopmans, B.; Goovaerts, E.

    2015-01-01

    Triplet exciton (TE) formation pathways are systematically investigated in prototype bulk heterojunction (BHJ) "super yellow" poly(p-phenylene vinylene) (SY-PPV) solar cell devices with varying fullerene compositions using complementary optoelectrical and electrically detected magnetic resonance

  16. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  17. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  18. Exploitation of inimitable properties of CuInS2 quantum dots for energy conversion in bulk heterojunction hybrid solar cell

    Science.gov (United States)

    Jindal, Shikha; Giripunje, Sushama M.

    2017-11-01

    Quantum dots (QDs) are the suitable material for solar cell devices owing to its distinctive optical, electrical and electronic properties. Currently, the most efficient devices have employed the toxic QDs which cause destructive impact on environment. In the present article, we have used environment benign CuInS2 QDs as an acceptor material in bulk heterojunction device of P3HT and QDs. The energy level positions corroborated from UPS spectra substantiates the acceptor property of CuInS2. We scrutinized the hybrid solar cell by tailoring the acceptor content in active layer. The increased acceptor content intensifies the performance of device. The enhancement in photovoltaic parameters is mainly due to the fast dissociation and extraction of photogenerated excitons which occurs with the larger wt% of acceptor QDs. Current density-voltage characteristics describes the greater V oc and I sc in the 60 wt% CuInS2 QDs based solar cell as compared to the low wt% of QDs in the active layer.

  19. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien

    2014-04-08

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  20. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien; El Labban, Abdulrahman; Cabanetos, Clement; Hoke, Eric T.; Shukla, Pradeep Kumar; Risko, Chad; Bré das, Jean Luc; McGehee, Michael D.; Beaujuge, Pierre

    2014-01-01

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  1. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    Science.gov (United States)

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  2. Morphological Control of the Photoactive Layer in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Su, Yisong

    2011-07-23

    For its inherent advantages, such as lightweight, low cost, flexibility, and opportunity to cover large surface areas, organic solar cells have attracted more and more attention in both academia and industry. However, the efficiency of organic solar cell is still much lower than silicon solar cells, but steadily rising as it now stands above 8%. The architecture of bulk heterojunction solar cells can improve the performance of organic solar cell a lot, but these improvements are highly dependent on the morphology of photoactive layer. Therefore, by controlling the morphology of photoactive layer, most commonly composed of a P3HT donor polymer and PCBM small molecule, the performance of organic solar cells could be optimized. The use of solvent additives in the solution formulation is particularly interesting, because it is a low cost method of controlling the phase separation of the photoactive layer and possibly removing the need for subsequent thermal and solvent vapor annealing. However, the role of the solvent additive remains not well understood and much debate remains on the mechanisms by which it impacts phase separation. In the first part of this thesis, we investigate the role of the solvent additive on the individual components (solvent, donor and acceptor) of the solution and the photoactive layer both in the bulk solution, during solution-processing and in the post-processing solid state of the film. In the second part of this thesis, we investigate the role of the additive on the blended solution state and resulting thin film phase separation. Finally, we propose a new method of controlling phase separation based on the insight into the role of the solvent additive. In the first part, we used an additive [octandiethiol (OT)] in the solvent to help the aggregation of P3HT in the solution. From the UV-vis experiments, the crystallinity of P3HT in the solutions increased while it decreased in thin films with steady increase of additive concentration. This

  3. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers.

    Science.gov (United States)

    Jasieniak, Jacek J; Treat, Neil D; McNeill, Christopher R; de Villers, Bertrand J Tremolet; Della Gaspera, Enrico; Chabinyc, Michael L

    2016-05-01

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Materials and Devices Research of PPV-ZnO Nanowires for Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhang Xiao-Zhou

    2012-01-01

    Full Text Available Bulk heterojunction photovoltaic devices, which use the conjugated polymer poly(2-methoxyl-5-(2′-ethylhexyloxy-1,4-phenylenevinylene (MEH-PPV as the electron donor and crystalline ZnO nanowires as the electron acceptor, have been studied in this work. The ZnO nanowires were prepared through a chemical vapor deposition mechanism. The dissolved MEH-PPV polymer was spin-coated onto the nanowires. The scanning electron microscope images showed that the ZnO nanowires were covered with a single layer of the polymer, and these materials were used to design a heterojunction solar cell. This solar cell displayed improved performance compared with the devices that were made from only the MEH-PPV polymer. This observed improvement is correlated with the improved electron transport that is perpendicular to the plane of the film. A solar power conversion efficiency of 1.37% was achieved under an AM1.5 illumination.

  5. A cost roadmap for silicon heterojunction solar cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.; Schropp, R.E.I.; Faaij, A.

    2016-01-01

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  6. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.; Schropp, Ruud; Faaij, A.

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  7. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Beiley, Zach M.; Hoke, Eric T.; Mateker, William R.; Douglas, Jessica D.; Collins, Brian A.; Tumbleston, John R.; Graham, Kenneth; Amassian, Aram; Ade, Harald W.; Frechet, Jean; Toney, Michael F.; McGehee, Michael D.

    2012-01-01

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b ' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  8. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2012-10-26

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer\\'s band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b \\' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  9. Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells

    KAUST Repository

    Eisner, Flurin

    2018-04-25

    We report the development of a solution‐processed In2O3/ZnO heterojunction electron transport layer (ETL) and its application in high efficiency organic bulk‐heterojunction (BHJ) and inorganic colloidal quantum dot (CQD) solar cells. Study of the electrical properties of this low‐dimensional oxide heterostructure via field‐effect measurements reveals that electron transport along the heterointerface is enhanced by more than a tenfold when compared to the individual single‐layer oxides. Use of the heterojunction as the ETL in organic BHJ photovoltaics is found to consistently improve the cell\\'s performance due to the smoothening of the ZnO surface, increased electron mobility and a noticeable reduction in the cathode\\'s work function, leading to a decrease in the cells’ series resistance and a higher fill factor (FF). Specifically, non‐fullerene based organic BHJ solar cells based on In2O3/ZnO ETLs exhibit very high power conversion efficiencies (PCE) of up to 12.8%, and high FFs of over 70%. The bilayer ETL concept is further extended to inorganic lead‐sulphide CQD solar cells. Resulting devices exhibit excellent performance with a maximum PCE of 8.2% and a FF of 56.8%. The present results highlight the potential of multilayer oxides as novel ETL systems and lay the foundation for future developments.

  10. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Gupta, Vinay; Upreti, Tanvi; Chand, Suresh

    2013-01-01

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh 2 ) 2 : Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh 2 ) 2 : CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh 2 ) 2 :CdSe::60:40 leads to a short circuit current density (J sc ) = 5.45 mA/cm 2 , open circuit voltage (V oc ) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm 2 under AM1.5G illumination. The J sc and FF are sensitive to the ratio of p-DTS(FBTTh 2 ) 2 :CdSe, which is a crucial factor for the device performance

  11. Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers

    KAUST Repository

    Jagadamma, Lethy Krishnan; Abdelsamie, Maged; El Labban, Abdulrahman; Aresu, Emanuele; Ngongang Ndjawa, Guy Olivier; Anjum, Dalaver H.; Cha, Dong Kyu; Beaujuge, Pierre; Amassian, Aram

    2014-01-01

    In this report, we demonstrate that solution-processed amorphous zinc oxide (a-ZnO) interlayers prepared at low temperatures (∼100 °C) can yield inverted bulk-heterojunction (BHJ) solar cells that are as efficient as nanoparticle-based ZnO requiring comparably more complex synthesis or polycrystalline ZnO films prepared at substantially higher temperatures (150-400 °C). Low-temperature, facile solution-processing approaches are required in the fabrication of BHJ solar cells on flexible plastic substrates, such as PET. Here, we achieve efficient inverted solar cells with a-ZnO buffer layers by carefully examining the correlations between the thin film morphology and the figures of merit of optimized BHJ devices with various polymer donors and PCBM as the fullerene acceptor. We find that the most effective a-ZnO morphology consists of a compact, thin layer with continuous substrate coverage. In parallel, we emphasize the detrimental effect of forming rippled surface morphologies of a-ZnO, an observation which contrasts with results obtained in polycrystalline ZnO thin films, where rippled morphologies have been reported to improve efficiency. After optimizing the a-ZnO morphology at low processing temperature for inverted P3HT:PCBM devices, achieving a power conversion efficiency (PCE) of ca. 4.1%, we demonstrate inverted solar cells with low bandgap polymer donors on glass/flexible PET substrates: PTB7:PC71BM (PCE: 6.5% (glass)/5.6% (PET)) and PBDTTPD:PC71BM (PCE: 6.7% (glass)/5.9% (PET)). Finally, we show that a-ZnO based inverted P3HT:PCBM BHJ solar cells maintain ca. 90-95% of their initial PCE even after a full year without encapsulation in a nitrogen dry box, thus demonstrating excellent shelf stability. The insight we have gained into the importance of surface morphology in amorphous zinc oxide buffer layers should help in the development of other low-temperature solution-processed metal oxide interlayers for efficient flexible solar cells. This journal is

  12. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  13. Simulation of a high-efficiency silicon-based heterojunction solar cell

    Science.gov (United States)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  14. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics

    Science.gov (United States)

    Darwis, D.; Sesa, E.; Farhamza, D.; Iqbal

    2018-05-01

    Bulk heterojunction Organic photovoltaic (OPV) devices are gaining a lot of interest due to their potential for ease of processing and lower manufacturing cost sustainable energy generation. In consequence, the number of studies into the properties and characteristics of organic solar cell devices has been increased to improving their power conversion. A further advancement over past decade has shown that improved efficiency could be obtained by mixed of poly(3 - hexylthiophene) (P3HT) and [1] – phenyl - C61-butyric acid methyl ester (PCBM) as an active layer. A series of optimizations of this P3HT: PCBM blends, such as the mixture ratio variation, the annealing treatments, and solvent treatment, have been emerged to improve the efficiency of the OPV. As a result, significant improvements were achieved. Here, we report the fabrication heterojunction devices of 2.9 % efficiency. This result has been achieved using the configuration of a typical heterojunction solar cell modules consists of layered glass/ITO/PEDOT: PSS/active layer/cathode interlayer

  15. Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells

    KAUST Repository

    Eisner, Flurin; Seitkhan, Akmaral; Han, Yang; Khim, Dongyoon; Yengel, Emre; Kirmani, Ahmad R.; Xu, Jixian; Garcí a de Arquer, F. Pelayo; Sargent, Edward H.; Amassian, Aram; Fei, Zhuping; Heeney, Martin; Anthopoulos, Thomas D.

    2018-01-01

    We report the development of a solution‐processed In2O3/ZnO heterojunction electron transport layer (ETL) and its application in high efficiency organic bulk‐heterojunction (BHJ) and inorganic colloidal quantum dot (CQD) solar cells. Study of the electrical properties of this low‐dimensional oxide heterostructure via field‐effect measurements reveals that electron transport along the heterointerface is enhanced by more than a tenfold when compared to the individual single‐layer oxides. Use of the heterojunction as the ETL in organic BHJ photovoltaics is found to consistently improve the cell's performance due to the smoothening of the ZnO surface, increased electron mobility and a noticeable reduction in the cathode's work function, leading to a decrease in the cells’ series resistance and a higher fill factor (FF). Specifically, non‐fullerene based organic BHJ solar cells based on In2O3/ZnO ETLs exhibit very high power conversion efficiencies (PCE) of up to 12.8%, and high FFs of over 70%. The bilayer ETL concept is further extended to inorganic lead‐sulphide CQD solar cells. Resulting devices exhibit excellent performance with a maximum PCE of 8.2% and a FF of 56.8%. The present results highlight the potential of multilayer oxides as novel ETL systems and lay the foundation for future developments.

  16. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.

    Science.gov (United States)

    Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K

    2016-04-07

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.

  17. Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry.

    Science.gov (United States)

    Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2015-01-14

    Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.

  18. Design, fabrication, and characterization of polymer based bulk heterojunction solar cells with enhanced efficiencies

    Science.gov (United States)

    Lu, Haiwei

    Polymer based bulk heterojunction (BHJ) solar cells offer promising technological advantages for actualization of low-cost and large-area fabrication on flexible substrates. To reach the envisaged market entry figure of 10% power conversion efficiency (PCE), it is crucial that more solar energy is utilized in the active layer, requiring both higher energy conversion efficiency and expansion of the absorption spectrum of the active layer to near infrared (NIR) region. The research introduced in this dissertation is an effort to increase PCE of solar cells from the aforementioned two directions. In the first method, carbon nanotubes (CNTs) were incorporated into polymer-fullerene BHJ solar cells to increase the hole-collection efficiency. Devices with CNT monolayer networks placed at different positions were fabricated, and the impact of CNTs on device performance was studied. It was demonstrated that CNTs placed on the hole-collection side of the device resulted in optimized performance, with PCE increased from 4% to 4.9%. To realize the controlled deposition of a uniform layer of CNTs on different positions, a mild plasma treatment of the active-layer was employed, and the influence of plasma treatment on device performance was also studied. In the second strategy, I developed an approach to expand the absorption spectrum to NIR region. In this case, hybrid polymer based BHJ solar cells composed of pyridine-capped PbS (PbS-py) quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) were proposed. With pyridines as capping ligands, devices showed superior performance compared to with conventionally used oleate agents. PbS QDs with bandgaps of ˜1.13-1.38 eV offered the advantage of energetically favorable charge separation between P3HT and PbS QDs for photoexcitons in both visible and NIR regions. It was also found that thermal annealing leads to the removal of excess and interfacial pyridine ligands in polymer/QDs composites, and thus provides intimate electrical

  19. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    Science.gov (United States)

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  20. Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells

    NARCIS (Netherlands)

    Chatri, Azadeh Rahimi; Torabi, Solmaz; Le Corre, Vincent M.; Koster, L. Jan Anton

    2018-01-01

    In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated

  1. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    Science.gov (United States)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-04-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  2. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Terence K. S. Wong

    2016-04-01

    Full Text Available The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O, cupric oxide (CuO and copper (III oxide (Cu4O3 is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%.

  3. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Science.gov (United States)

    Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398

  4. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay, E-mail: drvinaygupta@netscape.net [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Upreti, Tanvi; Chand, Suresh [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  5. Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors

    KAUST Repository

    Alqahtani, Obaid; Babics, Maxime; Gorenflot, Julien; Savikhin, Victoria; Ferron, Thomas; Balawi, Ahmed H.; Paulke, Andreas; Kan, Zhipeng; Pope, Michael; Clulow, Andrew J.; Wolf, Jannic Sebastian; Burn, Paul L.; Gentle, Ian R.; Neher, Dieter; Toney, Michael F.; Laquai, Fré dé ric; Beaujuge, Pierre; Collins, Brian A.

    2018-01-01

    The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.

  6. Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors

    KAUST Repository

    Alqahtani, Obaid

    2018-03-25

    The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.

  7. Method for forming indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  8. Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-01-06

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement at two laser wavelengths of 1000 nm and 860 nm, we investigated carrier behavior inside the pentacene and C{sub 60} component of co-deposited pentacene:C{sub 60} bulk-heterojunctions (BHJs) organic solar cells (OSCs). The EFISHG experiments verified the presence of two carrier paths for electrons and holes in BHJs OSCs. That is, two kinds of electric fields pointing in opposite directions are identified as a result of the selectively probing of SHG activation from C{sub 60} and pentacene. Also, under open-circuit conditions, the transient process of the establishment of open-circuit voltage inside the co-deposited layer has been directly probed, in terms of photovoltaic effect. The EFISHG provides an additional promising method to study carrier path of electrons and holes as well as dissociation of excitons in BHJ OSCs.

  9. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.

    2008-01-01

    To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.

  10. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  11. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  12. Electron and Hole Transport Layers: Their Use in Inverted Bulk Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Sandro Lattante

    2014-03-01

    Full Text Available Bulk heterojunction polymer solar cells (BHJ PSCs are very promising organic-based devices for low-cost solar energy conversion, compatible with roll-to-roll or general printing methods for mass production. Nevertheless, to date, many issues should still be addressed, one of these being the poor stability in ambient conditions. One elegant way to overcome such an issue is the so-called “inverted” BHJ PSC, a device geometry in which the charge collection is reverted in comparison with the standard geometry device, i.e., the electrons are collected by the bottom electrode and the holes by the top electrode (in contact with air. This reverted geometry allows one to use a high work function top metal electrode, like silver or gold (thus avoiding its fast oxidation and degradation, and eliminates the need of a polymeric hole transport layer, typically of an acidic nature, on top of the transparent metal oxide bottom electrode. Moreover, this geometry is fully compatible with standard roll-to-roll manufacturing in air and is less demanding for a good post-production encapsulation process. To date, the external power conversion efficiencies of the inverted devices are generally comparable to their standard analogues, once both the electron transport layer and the hole transport layer are fully optimized for the particular device. Here, the most recent results on this particular optimization process will be reviewed, and a general outlook regarding the inverted BHJ PSC will be depicted.

  13. Bulk Heterojunction versus Diffused Bilayer: The Role of Device Geometry in Solution p-Doped Polymer-Based Solar Cells.

    Science.gov (United States)

    Loiudice, Anna; Rizzo, Aurora; Biasiucci, Mariano; Gigli, Giuseppe

    2012-07-19

    We exploit the effect of molecular p-type doping of P3HT in diffused bilayer (DB) polymer solar cells. In this alternative device geometry, the p-doping is accomplished in solution by blending the F4-TCNQ with P3HT. The p-doping both increases the film conductivity and reduces the potential barrier at the interface with the electrode. This results in an excellent power conversion efficiency of 4.02%, which is an improvement of ∼48% over the p-doped standard bulk heterojunction (BHJ) device. Combined VOC-light intensity dependence measurements and Kelvin probe force microscopy reveal that the DB device configuration is particularly advantageous, if compared to the conventional BHJ, because it enables optimization of the donor and acceptor layers independently to minimize the effect of trapping and to fully exploit the improved transport properties.

  14. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

    Science.gov (United States)

    Tsang, Sai-Wing; Chen, Song; So, Franky

    2013-05-07

    Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.

    2011-06-28

    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.; Hoke, Eric T.; Noriega, Rodrigo; Dacuñ a, Javier; Burkhard, George F.; Bartelt, Jonathan A.; Salleo, Alberto; Toney, Michael F.; McGehee, Michael D.

    2011-01-01

    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal-oxide...

  18. Efficient polymer:fullerene bulk heterojunction solar cells with n-type doped titanium oxide as an electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youna [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Geunjin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Heejoo, E-mail: heejook@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Sun Hee [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Kwanghee, E-mail: klee@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2015-05-29

    We have reported a highly n-type doped solution-processed titanium metal oxide (TiO{sub x}) for use as an efficient electron-transport layer (ETL) in polymer:fullerene bulk heterojunction (BHJ) solar cells. When the metal ions (Ti) in TiO{sub x} are partially substituted by niobium (Nb), the charge carrier density increased, by an order of magnitude, because of the large electronegativity of Nb compared to that of Ti. Therefore, the work function (WF) of Nb-doped metal oxide (Nb-TiO{sub x}) decreases from 4.75 eV (TiO{sub x}) to 4.66 eV (Nb-TiO{sub x}), leading to an enhancement in the power conversion efficiency (PCE) of BHJ solar cells with a Nb-TiO{sub x} ETL (from 7.99% to 8.40%). - Highlights: • Solution processable Nb-doped TiO{sub x} was developed by simple sol-gel synthesis. • Charge carrier density in TiO{sub x} is significantly increased by introducing Nb element. • The work function value of Nb-doped TiO{sub x} is reduced by introducing Nb element. • A charge recombination inside of PSC with Nb-TiO{sub x} was effectively suppressed.

  19. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  20. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  1. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    Science.gov (United States)

    Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, M.; Juška, G.

    2005-03-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after an adjustable delay time (tdel). The Photo-CELIV mobility at room temperature is found to be μ =2×10-4cm2V-1s-1, which is almost independent on charge carrier density, but slightly dependent on tdel. Furthermore, determination of charge carrier lifetime and demonstration of an electric field dependent mobility is presented.

  2. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  3. Nanomorphological study of polymer bulk heterojuntion used in flexible solar devices

    Science.gov (United States)

    Calderón-Ortiz, Gabriel; Carrasco, Hector; Vedrine-Pauleus, Josee

    2014-03-01

    Solar cells fabricated with organic polymeric materials can enable large area fabrication on printable and flexible substrates, but increasing their efficiency is coupled to understanding their electrical properties and mechanical function on the nanoscale. In this study we measure the nanoscale conducting and mechanical properties of organic bulk heterojunction polymers coated on graphene and flexible PET or Si substrates. We characterize the nanomorphology of bulk heterojunction conducting polymers by applying conductive atomic force microscope (c-AFM), and force volume mapping for quantitative nanomechanical property calculations.

  4. Electroluminescence of a-Si/c-Si heterojunction solar cells after high energy irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Manuela

    2009-11-24

    The crystalline silicon as absorber material will certainly continue to dominate the market for space applications of solar cells. In the contribution under consideration the applicability of a-Si:H/c-Si heterojunction solar cells in space has been tested by the investigation of the cell modification by high energy protons and comparing the results to the degradation of homojunction crystalline silicon reference cells. The investigated solar cells have been irradiated with protons of different energies and doses. For all investigated solar cells the maximum damage happens for an energy of about 1.7 MeV and is mainly due to the decrease of the effective minority carrier diffusion length in the crystalline silicon absorber. Simulations carried out by AFORS-HET, a heterojunction simulation program, also confirmed this result. The main degradation mechanism for all types of devices is the monotonically decreasing charge carrier diffusion length in the p-type monocrystalline silicon absorber layer. For the heterojunction solar cell an enhancement of the photocurrent in the blue wavelength region has been observed but only in the case of heterojunction solar cell with intrinsic a-Si:H buffer layer. Additionally to the traditional characterization techniques the electroluminescence technique used for monitoring the modifications of the heteroluminescence technique used for monitoring the modifications of the heterointerface between amorphous silicon and crystalline silicon in solar cells after proton irradiation. A direct relation between minority carrier diffusion length and electroluminescence quantum efficiency has been observed but also details of the interface modification could be monitored by this technique.

  5. Rapid phase segregation of P3HT:PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Fang, G.J.; Qin, P.L.; Cheng, F.; Zhao, X.Z. [Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan (China)

    2011-12-15

    The performances of bulk-heterojunction (BHJ) solar cells are investigated for time-dependent thermal annealing with different morphology evolution scales, having special consideration for the diffusion and aggregation of fullerene derivative molecules based on blends of poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM). Meaningfully, rapid formation of dot-like and needle-like crystalline PCBM structures of a few micrometers up to 60 {mu}m in size is obtained with thermal annealing treatment from 2 to 15 min, which dynamically reflects a fast process of PCBM molecule and cluster aggregation. Upon ultrasonic-assisted processing and annealing treatment, the scale of P3HT crystals is drastically increased in view of X-ray diffraction (XRD) patterns, leading to a high hole mobility. And, the P3HT domains can be gradually converted into larger P3HT crystals approved by the decreased full width at half-maximum in the XRD patterns. Corresponding current-voltage curves are measured in quantity and we propose a model to explain the effect of the crystalline degree of P3HT domains and aggregation of PCBM molecules and clusters on the phase segregation, expressing a viewpoint towards high performance of BHJ solar cells. (orig.)

  6. Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction

    International Nuclear Information System (INIS)

    Liu Yu-Xuan; Lü Long-Feng; Ning Yu; Lu Yun-Zhang; Lu Qi-Peng; Zhang Chun-Mei; Fang Yi; Hu Yu-Feng; Lou Zhi-Dong; Teng Feng; Hou Yan-Bing; Tang Ai-Wei

    2014-01-01

    The improvement of the acetone-soaking treatment to the performance of polymer solar cells based on the P3HT/PCBM bulk heterojunction is reported. Undergoing acetone-soaking, the PCBM does not distribute uniformly in the vertical direction, a PCBM enrichment layer forms on the top of the active layer, which is beneficial to the collection of the carriers and blocking the inverting diffusion carriers. X-ray photoelectron spectroscopy (XPS) analysis reveals that the PCBM weight ratio on the top of the active layer increases by 20% after the acetone-soaking treatment. Due to the nonuniform distribution of PCBM, the short-circuit current density, the open-circuit voltage, and the fill factor are enhanced significantly. Finally, the power conversion efficiency of the acetone-soaking device increases by 31% compared with the control device. (interdisciplinary physics and related areas of science and technology)

  7. Additive-Morphology Interplay and Loss Channels in “All-Small-Molecule” Bulk-heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM

    KAUST Repository

    Liang, Ru-Ze

    2017-12-16

    Achieving efficient bulk-heterojunction (BHJ) solar cells from blends of solution-processable small-molecule (SM) donors and acceptors is proved particularly challenging due to the complexity in obtaining a favorable donor–acceptor morphology. In this report, the BHJ device performance pattern of a set of analogous, well-defined SM donors—DR3TBDTT (DR3), SMPV1, and BTR—used in conjunction with the SM acceptor IDTTBM is examined. Examinations show that the nonfullerene “All-SM” BHJ solar cells made with DR3 and IDTTBM can achieve power conversion efficiencies (PCEs) of up to ≈4.5% (avg. 4.0%) when the solution-processing additive 1,8-diiodooctane (DIO, 0.8% v/v) is used in the blend solutions. The figures of merit of optimized DR3:IDTTBM solar cells contrast with those of “as-cast” BHJ devices from which only modest PCEs <1% can be achieved. Combining electron energy loss spectrum analyses in scanning transmission electron microscopy mode, carrier transport measurements via “metal-insulator-semiconductor carrier extraction” methods, and systematic recombination examinations by light-dependence and transient photocurrent analyses, it is shown that DIO plays a determining role—establishing a favorable lengthscale for the phase-separated SM donor–acceptor network and, in turn, improving the balance in hole/electron mobilities and the carrier collection efficiencies overall.

  8. Additive-Morphology Interplay and Loss Channels in “All-Small-Molecule” Bulk-heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM

    KAUST Repository

    Liang, Ru-Ze; Babics, Maxime; Seitkhan, Akmaral; Wang, Kai; Geraghty, Paul Bythell; Lopatin, Sergei; Cruciani, Federico; Firdaus, Yuliar; Caporuscio, Marco; Jones, David J.; Beaujuge, Pierre

    2017-01-01

    Achieving efficient bulk-heterojunction (BHJ) solar cells from blends of solution-processable small-molecule (SM) donors and acceptors is proved particularly challenging due to the complexity in obtaining a favorable donor–acceptor morphology. In this report, the BHJ device performance pattern of a set of analogous, well-defined SM donors—DR3TBDTT (DR3), SMPV1, and BTR—used in conjunction with the SM acceptor IDTTBM is examined. Examinations show that the nonfullerene “All-SM” BHJ solar cells made with DR3 and IDTTBM can achieve power conversion efficiencies (PCEs) of up to ≈4.5% (avg. 4.0%) when the solution-processing additive 1,8-diiodooctane (DIO, 0.8% v/v) is used in the blend solutions. The figures of merit of optimized DR3:IDTTBM solar cells contrast with those of “as-cast” BHJ devices from which only modest PCEs <1% can be achieved. Combining electron energy loss spectrum analyses in scanning transmission electron microscopy mode, carrier transport measurements via “metal-insulator-semiconductor carrier extraction” methods, and systematic recombination examinations by light-dependence and transient photocurrent analyses, it is shown that DIO plays a determining role—establishing a favorable lengthscale for the phase-separated SM donor–acceptor network and, in turn, improving the balance in hole/electron mobilities and the carrier collection efficiencies overall.

  9. Cost analysis of two silicon heterojunction solar cell designs

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.; Schropp, R.E.I.; Turkenburg, W.C.; Faaij, A.P.C.

    2013-01-01

    Research and Development of Silicon Heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. This paper investigates the production costs associated with two different SHJ cell designs investigated within the FLASH programme, a

  10. InGaP Heterojunction Barrier Solar Cells

    Science.gov (United States)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  11. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    Science.gov (United States)

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  12. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  13. Doped Heterojunction Used in Quantum Dot Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yanyan Gao

    2014-01-01

    Full Text Available Incorporated foreign atoms into the quantum dots (QDs used in heterojunction have always been a challenge for solar energy conversion. A foreign atom indium atom was incorporated into PbS/CdS QDs to prepare In-PbS/In-CdS heterojunction by successive ionic layer adsorption and reaction method which is a chemical method. Experimental results indicate that PbS or CdS has been doped with In by SILAR method; the concentration of PbS and CdS which was doped In atoms has no significantly increase or decrease. In addition, incorporating of Indium atoms has resulted in the lattice distortions or changes of PbS or CdS and improved the light harvest of heterojunction. Using this heterojunction, Pt counter electrode and polysulfide electrolyte, to fabricate quantum dot sensitized solar cells, the short circuit current density ballooned to 27.01 mA/cm2 from 13.61 mA/cm2 and the open circuit voltage was improved to 0.43 V from 0.37 V at the same time.

  14. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  15. Solution-Processed Organic Solar Cells from Dye Molecules: An Investigation of Diketopyrrolopyrrole:Vinazene Heterojunctions

    KAUST Repository

    Walker, Bright

    2012-01-25

    Although one of the most attractive aspects of organic solar cells is their low cost and ease of fabrication, the active materials incorporated into the vast majority of reported bulk heterojunction (BHJ) solar cells include a semiconducting polymer and a fullerene derivative, classes of materials which are both typically difficult and expensive to prepare. In this study, we demonstrate that effective BHJs can be fabricated from two easily synthesized dye molecules. Solar cells incorporating a diketopyrrolopyrrole (DPP)-based molecule as a donor and a dicyanoimidazole (Vinazene) acceptor function as an active layer in BHJ solar cells, producing relatively high open circuit voltages and power conversion efficiencies (PCEs) up to 1.1%. Atomic force microscope images of the films show that active layers are rough and apparently have large donor and acceptor domains on the surface, whereas photoluminescence of the blends is incompletely quenched, suggesting that higher PCEs might be obtained if the morphology could be improved to yield smaller domain sizes and a larger interfacial area between donor and acceptor phases. © 2011 American Chemical Society.

  16. Overcoming the efficiency limitations of SnS2 nanoparticle-based bulk heterojunction solar cells

    Science.gov (United States)

    Tam Nguyen Truong, Nguyen; Kieu Trinh, Thanh; Thanh Hau Pham, Viet; Smith, Ryan P.; Park, Chinho

    2018-04-01

    This study examined the effects of heat treatment, the electron transport layer, and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) incorporation on the performance of hybrid bulk heterojunction (BHJ) solar cells composed of tin disulfide (SnS2) nanoparticles (NPs) and low band gap energy polymers poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b3,4-b‧]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PBT7). Inserting an electron transport layer (ETL) (i.e., ZnO) on the top of the photoactive layer improved the surface morphology of the photoactive layer, which led to an improvement in charge transport. Moreover, adding a suitable amount of PCBM to the SnS2/polymer active layer enhanced the device performance, such as short circuit current density (J sc) and power conversion efficiency (PCE). In particular, adding 0.5 mg of PCBM to the composite solution led to a 25% and 1.5% improvement in the J sc value and PCE, respectively. The enhanced performance was due mainly to the improvements in the surface morphology of the photoactive layer, charge carrier mobility within the donor-acceptor interface, and carrier collection efficiency at the cathode.

  17. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Wei Yin

    2016-06-01

    Full Text Available Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  18. Gallium Phosphide Integrated with Silicon Heterojunction Solar Cells

    Science.gov (United States)

    Zhang, Chaomin

    It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch ( 0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si. In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM). The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation

  19. Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells

    KAUST Repository

    McDowell, Caitlin

    2015-07-14

    The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution-deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p-DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS-containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization. In situ measurement shows that polystyrene (PS) and diiodooctane (DIO) additives promote donor crystallite formation synergistically, on different time scales, and through different mechanisms. PS-rich films retain solvent, promoting phase separation early in the casting process. Meanwhile, the low vapor pressure of DIO extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase after casting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  1. Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pla, J.; Tamasi, M.; Rizzoli, R.; Losurdo, M.; Centurioni, E.; Summonte, C.; Rubinelli, F

    2003-02-03

    A detailed study of the properties of indium tin oxide (ITO) thin films used as antireflecting front electrodes in a-Si/c-Si heterojunction solar cells is presented. The deposition conditions of ITO layers by radiofrequency magnetron sputtering were optimized for heterojunction solar cells applications. The X-ray photoelectron spectroscopy analysis of the deposited films allowed for a correlation between the film composition and the experimental parameters used in the sputtering process. The ITO thickness was optimized considering the thickness of the a-Si emitter layer, its optical characteristics and the heterojunction solar cell spectral response. In our devices, the optimal thickness calculated for the ITO film was in the range 80-95 nm, depending on the solar cell spectral response, and a thickness tolerance of {+-}10 nm was found to be suitable to limit the degradation of the device performance. Finally, device simulation results obtained by the 'Analysis of Microelectronic and Photonic Structures' code are reported.

  2. Luminescent GdVO_4:Sm"3"+ quantum dots enhance power conversion efficiency of bulk heterojunction polymer solar cells by Förster resonance energy transfer

    International Nuclear Information System (INIS)

    Bishnoi, Swati; Gupta, Vinay; Sharma, Gauri D.; Chand, Suresh; Sharma, Chhavi; Kumar, Mahesh; Haranath, D.; Naqvi, Sheerin

    2016-01-01

    In this work, we report enhanced power conversion efficiency (PCE) of bulk heterojunction polymer solar cells by Förster resonance energy transfer (FRET) from samarium-doped luminescent gadolinium orthovanadate (GdVO_4:Sm"3"+) quantum dots (QDs) to polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) polymer. The photoluminescence emission spectrum of GdVO_4:Sm"3"+ QDs overlaps with the absorption spectrum of PTB7, leading to FRET from GdVO_4:Sm"3"+ to PTB7, and significant enhancements in the charge-carrier density of excited and polaronic states of PTB7 are observed. This was confirmed by means of femtosecond transient absorption spectroscopy. The FRET from GdVO_4:Sm"3"+ QDs to PTB7 led to a remarkable increase in the power conversion efficiency (PCE) of PTB7:GdVO_4:Sm"3"+:PC_7_1BM ([6,6]-phenyl-C_7_1-butyric acid methyl ester) polymer solar cells. The PCE in optimized ternary blend PTB7:GdVO_4:Sm"3"+:PC_7_1BM (1:0.1:1.5) is increased to 8.8% from 7.2% in PTB7:PC_7_1BM. This work demonstrates the potential of rare-earth based luminescent QDs in enhancing the PCE of polymer solar cells.

  3. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  4. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Švrček Vladimir

    2009-01-01

    Full Text Available Abstract A silicon nanocrystals (Si-ncs conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene (P3HT polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2 nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

  5. Effect of the Side Chains and Anode Material on Thermal Stability and Performance of Bulk-Heterojunction Solar Cells Using DPP(TBFu2 Derivatives as Donor Materials

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available An optimized fabrication of bulk-heterojunction solar cells (BHJ SCs based on previously reported diketopyrrolopyrrole donor, ethyl-hexylated DPP(TBFu2, as well as two new DPP(TBFu2 derivatives with ethyl-hexyl acetate and diethyl acetal solubilizing side-chains and PC60BM as an acceptor is demonstrated. Slow gradual annealing of the solar cell causing the effective donor-acceptor reorganization, and as a result higher power conversion efficiency (PCE, is described. By replacing a hole transporting layer PEDOT:PSS with MoO3 we obtained higher PCE values as well as higher thermal stability of the anode contact interface. DPP(TBFu2 derivative containing ethyl-hexyl acetate solubilizing side-chains possessed the best as-cast self-assembly and high crystallinity. However, the presence of ethyl-hexyl acetate and diethyl acetal electrophilic side-chains stabilizes HOMO energy of isolated DPP(TBFu2 donors with respect to the ethyl-hexylated one, according to cyclic voltammetry.

  6. Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters

    NARCIS (Netherlands)

    Gatz, H.A.; Rath, J.K.; Verheijen, M.A.; Kessels, W.M.M.; Schropp, R.E.I.

    2016-01-01

    Silicon heterojunction solar cells (SHJ) are well known for their high efficiencies, enabled by their remarkably high open-circuit voltages (VOC). A key factor in achieving these values is a good passivation of the crystalline wafer interface. One of the restrictions during SHJ solar cell production

  7. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  8. Research on ZnO/Si heterojunction solar cells

    DEFF Research Database (Denmark)

    Chen, Li; Chen, Xinliang; Liu, Yiming

    2017-01-01

    We put forward an n-ZnO/p-Si heterojunction solar cell model based on AFORS-HET simulations and provide experimental support in this article. ZnO: B (B-doped ZnO) thin films deposited by metal-organic chemical vapor deposition (MOCVD) are planned to act as electrical emitter layer on p-type c...

  9. Understanding the phase separation evolution in efficient P3HT:IC70BA-based bulk-heterojunction polymer solar cells

    International Nuclear Information System (INIS)

    Fan Xi; Guo Shishang; Fang Guojia; Li Songzhan

    2013-01-01

    The effects of solvent and thermal annealing on the morphology of the active layers and the photovoltaic performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) are investigated systematically, for PSCs based on a blend of poly(3-hexylthiophene) (P3HT) as a donor and indene-C 70 bisadduct (IC 70 BA) as an acceptor. IC 70 BA crystallites are found reasonably well dispersed in the P3HT matrix after spin-coating. However, the IC 70 BA crystallites coarsen in size after annealing, which are clearly evidenced by transmission electron microscopy. Simultaneously, space charge limited current measurements demonstrate that solvent and thermal annealing can improve the hole and electron mobility, which reduces charge-carrier recombination and improves charge-carrier transport in the P3HT and IC 70 BA blend layers. The corresponding current-voltage curves are measured in quantity and we propose a model to show the variation of the ordered structure of P3HT domains and IC 70 BA crystallite characteristics in the phase separation process, expressing a viewpoint on the high performance of BHJ PSCs.

  10. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  11. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    Science.gov (United States)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  12. Silicon heterojunction solar cell with passivated hole selective MoOx contact

    Science.gov (United States)

    Battaglia, Corsin; de Nicolás, Silvia Martín; De Wolf, Stefaan; Yin, Xingtian; Zheng, Maxwell; Ballif, Christophe; Javey, Ali

    2014-03-01

    We explore substoichiometric molybdenum trioxide (MoOx, x MoOx, we observe a substantial gain in photocurrent of 1.9 mA/cm2 in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

  13. The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications

    KAUST Repository

    Scarongella, Mariateresa; Paraecattil, Arun Aby; Buchaca-Domingo, Ester; Douglas, Jessica D.; Beaupré , Serge; McCarthy-Ward, Thomas; Heeney, Martin J.; Moser, Jacques Edouard; Leclerc, Mario; Frechet, Jean; Stingelin, Natalie; Banerji, Natalie

    2014-01-01

    Light-induced charge formation is essential for the generation of photocurrent in organic solar cells. In order to gain a better understanding of this complex process, we have investigated the femtosecond dynamics of charge separation upon selective excitation of either the fullerene or the polymer in different bulk heterojunction blends with well-characterized microstructure. Blends of the pBTTT and PBDTTPD polymers with PCBM gave us access to three different scenarios: either a single intermixed phase, an intermixed phase with additional pure PCBM clusters, or a three-phase microstructure of pure polymer aggregates, pure fullerene clusters and intermixed regions. We found that ultrafast charge separation (by electron or hole transfer) occurs predominantly in intermixed regions, while charges are generated more slowly from excitons in pure domains that require diffusion to a charge generation site. The pure domains are helpful to prevent geminate charge recombination, but they must be sufficiently small not to become exciton traps. By varying the polymer packing, backbone planarity and chain length, we have shown that exciton diffusion out of small polymer aggregates in the highly efficient PBDTTPD:PCBM blend occurs within the same chain and is helped by delocalization. This journal is © the Partner Organisations 2014.

  14. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2013-09-09

    Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to-date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3-xCl x solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin-film solution processed perovskite solar cells with no mesoporous layer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    Energy Technology Data Exchange (ETDEWEB)

    Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain [CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Ballif, Christophe [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland)

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  16. Fabrication and characterization of DBM/p-Si heterojunction solar cell

    International Nuclear Information System (INIS)

    El-Nahass, M.M.; Kamel, M.A.; Atta, A.A.; Huthaily, S.Y.

    2013-01-01

    Hybrid organic/inorganic solar cell was fabricated by depositing a thin film of p-N,N dimethylaminobenzylidenemalononitrile (DBM) onto p-Si substrate. DBM is a donor–acceptor disubstituted benzenes dye known as molecular rotors and highly polar molecular compounds. Its powder has a polycrystalline structure, while nano-crystallite rods are formed in the as-deposited film. The dark current density–voltage (J–V) characteristics of Au/DBM/p-Si/Al heterojunction device measured at different temperatures ranging from 291 to 353 K have been investigated. The operating conduction mechanisms, the series and shunt resistances, the rectification ratio, the ideality factor, the effective barrier height, and the total trap concentration were determined. The capacitance–voltage (C–V) characteristics indicated that the junction is of abrupt nature. The built-in voltage and the carrier concentration distributed through the depletion region were estimated. Under illumination, the DBM/p-Si cell showed photovoltaic properties and the photovoltaic parameters were evaluated. -- Highlights: ► The molecular rotors DBM dye can be used to manufacture D/A solar cells. ► Since D/A are situated in the DBM molecule, we ensure photoinduced D → A electron transfer. ► The DBM film is grown as nano-rods. ► The most of the DBM bulk of the cell contributes to the generation of external current.

  17. Fabrication and characterization of DBM/p-Si heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M.; Kamel, M.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Atta, A.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Physics Department, Faculty of Science, Taif University, Taif, 888 Taif (Saudi Arabia); Huthaily, S.Y., E-mail: s_huthaily@yahoo.com [Physics Department, Faculty of Education, Hodeidah University, Alduraihimi, 3114 Hodeidah (Yemen)

    2013-01-15

    Hybrid organic/inorganic solar cell was fabricated by depositing a thin film of p-N,N dimethylaminobenzylidenemalononitrile (DBM) onto p-Si substrate. DBM is a donor-acceptor disubstituted benzenes dye known as molecular rotors and highly polar molecular compounds. Its powder has a polycrystalline structure, while nano-crystallite rods are formed in the as-deposited film. The dark current density-voltage (J-V) characteristics of Au/DBM/p-Si/Al heterojunction device measured at different temperatures ranging from 291 to 353 K have been investigated. The operating conduction mechanisms, the series and shunt resistances, the rectification ratio, the ideality factor, the effective barrier height, and the total trap concentration were determined. The capacitance-voltage (C-V) characteristics indicated that the junction is of abrupt nature. The built-in voltage and the carrier concentration distributed through the depletion region were estimated. Under illumination, the DBM/p-Si cell showed photovoltaic properties and the photovoltaic parameters were evaluated. -- Highlights: Black-Right-Pointing-Pointer The molecular rotors DBM dye can be used to manufacture D/A solar cells. Black-Right-Pointing-Pointer Since D/A are situated in the DBM molecule, we ensure photoinduced D {yields} A electron transfer. Black-Right-Pointing-Pointer The DBM film is grown as nano-rods. Black-Right-Pointing-Pointer The most of the DBM bulk of the cell contributes to the generation of external current.

  18. Fabrication of Affordable and Sustainable Solar Cells Using NiO/TiO2 P-N Heterojunction

    Directory of Open Access Journals (Sweden)

    Kingsley O. Ukoba

    2018-01-01

    Full Text Available The need for affordable, clean, efficient, and sustainable solar cells informed this study. Metal oxide TiO2/NiO heterojunction solar cells were fabricated using the spray pyrolysis technique. The optoelectronic properties of the heterojunction were determined. The fabricated solar cells exhibit a short-circuit current of 16.8 mA, open-circuit voltage of 350 mV, fill factor of 0.39, and conversion efficiency of 2.30% under 100 mW/cm2 illumination. This study will help advance the course for the development of low-cost, environmentally friendly, and sustainable solar cell materials from metal oxides.

  19. Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Shao-Ze Tseng

    2014-01-01

    Full Text Available This paper describes a method for fabricating silicon heterojunction thin film solar cells with an ITO/p-type a-Si : H/n-type c-Si structure by radiofrequency magnetron sputtering. A short-circuit current density and efficiency of 28.80 mA/cm2 and 8.67% were achieved. Novel nanopatterned silicon wafers for use in cells are presented. Improved heterojunction cells are formed on a nanopatterned silicon substrate that is prepared with a self-assembled monolayer of SiO2 nanospheres with a diameter of 550 nm used as an etching mask. The efficiency of the nanopattern silicon substrate heterojunction cells was 31.49% greater than that of heterojunction cells on a flat silicon wafer.

  20. Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking

    KAUST Repository

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Descoeudres, Antoine; Despeisse, Matthieu; Haug, Franz-Josef; Ballif, Christophe

    2017-01-01

    Silicon heterojunction solar cells use crystalline silicon (c-Si) wafers as optical absorbers and employ bilayers of doped/intrinsic hydrogenated amorphous silicon (a-Si:H) to form passivating contacts. Recently, we demonstrated that such solar

  1. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  2. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  3. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  4. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.

    Science.gov (United States)

    Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong

    2016-05-11

    We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

  5. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare

    2015-05-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub-nanosecond geminate recombination. In turn the yield of long-lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X-ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin-film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.

  6. Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells

    Science.gov (United States)

    Yeboah, Douglas; Singh, Jai

    2017-11-01

    Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.

  7. Performance optimization studies of solution processed bulk-heterojunction solar cells

    Science.gov (United States)

    Ali, Bakhtyar

    2011-12-01

    Organic Solar Cells (OSCs), which rely on the concept of bulk-heterojunction, stand out due primarily to their simple construction, mechanical flexibility and exceptional ease of processing. These characteristics make them potential candidates to substitute for the expensive photovoltaic counterparts. Among other OSCs, devices containing poly(3-hexylthiophene) (P3HT) and phenyl C61 butaric acid methyl ester (PCBM) as photo-active layer have shown promising results. However, the power conversion efficiency (PCE) is still lower than the required commercialization mark (˜10%). Devices with structure glass/ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al, annealed and un-annealed with device area ˜0.4 cm2 (unless otherwise stated), have been studied. An investigation of the device processing variables has led to the conclusion that the optimum loading of PCBM in the blend for optimum performance is in the range of 1:1 to 1:2. Characterization of the active layer with UV-vis absorption, PL spectra and XRD reveal that the addition of PCBM to P3HT matrix is detrimental for the self-organization of P3HT chains (crystallinity) and it also increases the resistivity. Similarly, 1,2 dichlorobenzene (DCB) has been found to be the best solvent among other solvents such as chloroform (CF) and chlorobenzene (CB), for optimum PCE. The rho(T) data from the samples (pristine P3HT and P3HT/PCBM blends) exhibit anisotropy in conduction where it follows the variable range hoping (VRH) in the lateral (parallel to film) and polaronic behavior in vertical (perpendicular to film) transport. The activation energy obtained from the fit to polaronic model is 329 meV for P3HT/ PCBM blend (1:1). Furthermore, the photovoltaic parameters extracted from a lumped circuit analysis of voltage and temperature dependence of photocurrent, JL(V), in P3HT/PCBM OSCs, completely describe the illuminated J-V data from far reverse bias to beyond the open circuit voltage (Voc). A simple model for carrier collection has been

  8. A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase.

    Science.gov (United States)

    Li, Hongfei; Yang, Zhenhua; Pan, Cheng; Jiang, Naisheng; Satija, Sushil K; Xu, Di; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam H

    2017-08-17

    We report that the addition of a non-photoactive tertiary polymer phase in the binary bulk heterojunction (BHJ) polymer solar cell leads to a self-assembled columnar nanostructure, enhancing the charge mobilities and photovoltaic efficiency with surprisingly increased optimal active blend thicknesses over 300 nm, 3-4 times larger than that of the binary counterpart. Using the prototypical poly(3-hexylthiophene) (P3HT):fullerene blend as a model BHJ system, we discover that the inert poly(methyl methacrylate) (PMMA) added in the binary BHJ blend self-assembles into vertical columns, which not only template the phase segregation of electron acceptor fullerenes but also induce the out-of-plane rotation of the edge-on-orientated crystalline P3HT phase. Using complementary interrogation methods including neutron reflectivity, X-ray scattering, atomic force microscopy, transmission electron microscopy, and molecular dynamics simulations, we show that the enhanced charge transport originates from the more randomized molecular stacking of the P3HT phase and the spontaneous segregation of fullerenes at the P3HT/PMMA interface, driven by the high surface tension between the two polymeric components. The results demonstrate a potential method for increasing the thicknesses of high-performance polymer BHJ solar cells with improved photovoltaic efficiency, alleviating the burden of stringently controlling the ultrathin blend thickness during the roll-to-roll-type large-area manufacturing environment.

  9. Applied research on 2-6 compound materials for heterojunction solar cells

    Science.gov (United States)

    Bube, R. H.

    1975-01-01

    Several II-VI heterojunctions show promise for photovoltaic conversion of solar energy. The three of greatest interest are p-CdTe/n-CdS, p-CdTe/n-ZnSe, and p-ZnTe/n-CdSe. Several p-CdTe/n-CdS heterojunction cells have been prepared by close spaced transport deposition of p-CdTe on single crystal n-CdS, and by two source vacuum evaporation of n-CdS on single crystal p-CdTe. Both types of cells, in an experimental stage, are quite comparable, exhibiting values of quantum efficiency between 0.5 and 0.9, open circuit voltages between 0.50 and 0.66 V, fill factors between 0.4 and 0.6, and solar efficiencies up to 4 percent. Cells of p-ZnTe/n-CdSe have also been made by close spaced vapor transport deposition of n-CdSe on single crystal p-ZnTe.

  10. Enhancement of the inverted polymer solar cells via ZnO doped with CTAB

    Science.gov (United States)

    Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin

    2018-02-01

    A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.

  11. Bulk Heterojunction Solar Cell with Nitrogen-Doped Carbon Nanotubes in the Active Layer: Effect of Nanocomposite Synthesis Technique on Photovoltaic Properties

    Directory of Open Access Journals (Sweden)

    Godfrey Keru

    2015-05-01

    Full Text Available Nanocomposites of poly(3-hexylthiophene (P3HT and nitrogen-doped carbon nanotubes (N-CNTs have been synthesized by two methods; specifically, direct solution mixing and in situ polymerization. The nanocomposites were characterized by means of transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray dispersive spectroscopy, UV-Vis spectrophotometry, photoluminescence spectrophotometry (PL, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, thermogravimetric analysis, and dispersive surface energy analysis. The nanocomposites were used in the active layer of a bulk heterojunction organic solar cell with the composition ITO/PEDOT:PSS/P3HT:N-CNTS:PCBM/LiF/Al. TEM and SEM analysis showed that the polymer successfully wrapped the N-CNTs. FTIR results indicated good π-π interaction within the nanocomposite synthesized by in situ polymerization as opposed to samples made by direct solution mixing. Dispersive surface energies of the N-CNTs and nanocomposites supported the fact that polymer covered the N-CNTs well. J-V analysis show that good devices were formed from the two nanocomposites, however, the in situ polymerization nanocomposite showed better photovoltaic characteristics.

  12. Hybrid bulk heterojunction solar cells based on poly(3-hexylthiophene) and ZnO nanoparticles modified by side-chain functional polythiophenes

    International Nuclear Information System (INIS)

    Li, Fan; Du, Yanhui; Chen, Yiwang

    2012-01-01

    We report the investigation of the hybrid bulk heterojunction solar cells based on the blend of poly(3-hexylthiophene) (P3HT) and ZnO nanoparticles modified by side-chain thiol functional poly(3-thiophenehexanethiol) (P3HT-SH). Grafting of P3HT-SH onto ZnO nanoparticles can promote the dispersion of ZnO nanoparticles within P3HT matrix and facilitate electron injection process into ZnO nanoparticles, resulting in a more efficient photoinduced charge transfer than that in simple physical mixture of P3HT and non-modified ZnO nanoparticles (P3HT/ZnO). Furthermore, the performance of hybrid photovoltaic device based on P3HT/P3HT-SH-modified ZnO blend exhibits an improved device efficiency compared with P3HT/ZnO even before thermal treatment. After being annealed at 80 °C, the P3HT/P3HT-SH-modified ZnO device shows the power conversion efficiency as high as 0.68%, with the short-circuit current density of 1.89 mA/cm 2 , the open-circuit voltage of 0.599 V and a fill factor of 60.5% under AM 1.5 G illumination with 100 mW/cm 2 light intensity. - Highlights: ► Hybrid solar cells based on poly(3-hexylthiophene) and modified ZnO nanoparticles ► ZnO nanoparticles modified by side-chain functional polythiophenes ► Uniform dispersion and intimate contact between polymers and nanoparticles ► Efficient charge transfer leading to the improvement of device efficiency

  13. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.; Kamperman, Marleen; Nedelcu, Mihaela; Ducati, Caterina; Wiesner, Ulrich; Smilgies, Detlef -M.; Toombes, Gilman E. S.; Hillmyer, Marc A.; Ludwigs, Sabine; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided

  14. Luminescent GdVO{sub 4}:Sm{sup 3+} quantum dots enhance power conversion efficiency of bulk heterojunction polymer solar cells by Förster resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Swati [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Gupta, Vinay, E-mail: drvinaygupta@netscape.net; Sharma, Gauri D.; Chand, Suresh [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Organic and Hybrid Solar Cells Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Sharma, Chhavi; Kumar, Mahesh [Ultrafast Optoelectronics and Terahertz Photonics Lab, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India); Naqvi, Sheerin [Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-07-11

    In this work, we report enhanced power conversion efficiency (PCE) of bulk heterojunction polymer solar cells by Förster resonance energy transfer (FRET) from samarium-doped luminescent gadolinium orthovanadate (GdVO{sub 4}:Sm{sup 3+}) quantum dots (QDs) to polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) polymer. The photoluminescence emission spectrum of GdVO{sub 4}:Sm{sup 3+} QDs overlaps with the absorption spectrum of PTB7, leading to FRET from GdVO{sub 4}:Sm{sup 3+} to PTB7, and significant enhancements in the charge-carrier density of excited and polaronic states of PTB7 are observed. This was confirmed by means of femtosecond transient absorption spectroscopy. The FRET from GdVO{sub 4}:Sm{sup 3+} QDs to PTB7 led to a remarkable increase in the power conversion efficiency (PCE) of PTB7:GdVO{sub 4}:Sm{sup 3+}:PC{sub 71}BM ([6,6]-phenyl-C{sub 71}-butyric acid methyl ester) polymer solar cells. The PCE in optimized ternary blend PTB7:GdVO{sub 4}:Sm{sup 3+}:PC{sub 71}BM (1:0.1:1.5) is increased to 8.8% from 7.2% in PTB7:PC{sub 71}BM. This work demonstrates the potential of rare-earth based luminescent QDs in enhancing the PCE of polymer solar cells.

  15. Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells

    KAUST Repository

    Etgar, Lioz

    2012-10-24

    We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH 3NH 3PbI 3) perovskite/TiO 2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH 3NH 3I and PbI 2 in γ-butyrolactone on a 400 nm thick film of TiO 2 (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH 3NH 3PbI 3 as a back contact. Importantly, the CH 3NH 3PbI 3 nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH 3NH 3PbI 3/TiO 2 heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J sc= 16.1 mA/cm 2, open-circuit photovoltage V oc = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m 2 intensity. At a lower light intensity of 100W/m 2, a PCE of 7.3% was measured. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost, high-efficiency solar cells. © 2012 American Chemical Society.

  16. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    Science.gov (United States)

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  17. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  18. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Directory of Open Access Journals (Sweden)

    Miao Tan

    2017-08-01

    Full Text Available We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i the work function of the transparent conductive oxide layer, (ii the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si interface, (iii the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H layer, and (iv the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  19. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Science.gov (United States)

    Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong

    2017-08-01

    We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  20. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali; Bruner, Christopher; Dauskardt, Reinhold H.

    2012-01-01

    that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using

  1. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul; Kim, Jong H.

    2016-01-01

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure

  2. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  3. Thin film solar cells grown by organic vapor phase deposition

    Science.gov (United States)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  4. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  5. Organic tandem and multi-junction solar cells

    NARCIS (Netherlands)

    Hadipour, Afshin; de Boer, Bert; Blom, Paul W. M.

    2008-01-01

    The emerging field of stacked layers (double- and even multi-layers) in organic photovoltaic cells is reviewed. Owing to the limited absorption width of organic molecules and polymers, only a small fraction of the solar flux can be harvested by a single-layer bulk hetero-junction photovoltaic cell.

  6. A Generalized Theory Explains the Anomalous Suns–Voc Response of Si Heterojunction Solar Cells

    KAUST Repository

    Chavali, Raghu Vamsi Krishna

    2016-11-30

    Suns–Voc measurements exclude parasitic series resistance effects and are, therefore, frequently used to study the intrinsic potential of a given photovoltaic technology. However, when applied to a-Si/c-Si heterojunction (SHJ) solar cells, the Suns–Voc curves often feature a peculiar turnaround at high illumination intensities. Generally, this turn-around is attributed to extrinsic Schottky contacts that should disappear with process improvement. In this paper, we demonstrate that this voltage turnaround may be an intrinsic feature of SHJ solar cells, arising from the heterojunction (HJ), as well as its associated carrier-transport barriers, inherent to SHJ devices. We use numerical simulations to explore the full current–voltage (J–V) characteristics under different illumination and ambient temperature conditions. Using these characteristics, we establish the voltage and illumination-intensity bias, as well as temperature conditions necessary to observe the voltage turnaround in these cells. We validate our turnaround hypothesis using an extensive set of experiments on a high-efficiency SHJ solar cell and a molybdenum oxide (MoOx) based hole collector HJ solar cell. Our work consolidates Suns–Voc as a powerful characterization tool for extracting the cell parameters that limit efficiency in HJ devices.

  7. Enhancing the photovoltaic performance of bulk heterojunction polymer solar cells by adding Rhodamine B laser dye as co-sensitizer.

    Science.gov (United States)

    Kazemifard, Sholeh; Naji, Leila; Afshar Taromi, Faramarz

    2018-04-01

    Ternary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied. To gain insight into the influences of RhB on the photovoltaic performance of PSCs, physicochemical and optical properties of TBs were compared with those of BHJ binary blend as a standard. RhB broadened the light absorption properties of the active layer and played a bridging role between P3HT and PC 61 BM. The PCE and short-circuit current density (Jsc) of the optimized TB-based PSCs comprising of 0.5 wt% RhB reached 5% and 12.12 mA/cm 2 , respectively. Compared to BHJ standard cell, the PCE and the generated current was improved by two orders of magnitude due to higher photon harvest of the active layer, cascade energy level structure of TB components and a considerable decrease in the charge carrier recombination. The results suggest that RhB can be considered as an effective material for application in PSCs to attain high photovoltaic performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali

    2012-04-01

    The fracture resistance of P3HT:PC 60BM-based photovoltaic devices are characterized using quantitative adhesion and cohesion metrologies that allow identification of the weakest layer or interface in the device structure. We demonstrate that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using depth profiling and X-ray photoelectron spectroscopy on the resulting fracture surfaces, we examine the gradient of molecular components through the thickness of the bulk heterojunction layer. Finally, using atomic force microscopy we show how the topography of the failure path is related to buckling of the metal electrode and how it develops with annealing. The research provides new insights on how the molecular design, structure and composition affect the cohesive properties of organic photovoltaics. © 2011 Elsevier B.V. All rights reserved.

  9. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien

    2017-09-28

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices\\' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  10. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien; Paulke, Andreas; Piersimoni, Fortunato; Wolf, Jannic Sebastian; Kan, Zhipeng; Cruciani, Federico; El Labban, Abdulrahman; Neher, Dieter; Beaujuge, Pierre; Laquai, Fré dé ric

    2017-01-01

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  11. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  12. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.

    2006-01-01

    Blends of nanocryst. zinc oxide nanoparticles (nc-ZnO) and regioregular poly(3-hexylthiophene) (P3HT) processed from soln. have been used to construct hybrid polymer-metal oxide bulk-heterojunction solar cells. Thermal annealing of the spin-cast films significantly improves the solar-energy

  13. Light-induced performance increase of silicon heterojunction solar cells

    KAUST Repository

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Christmann, Gabriel; Descoeudres, Antoine; Nicolay, Sylvain; Despeisse, Matthieu; Watabe, Yoshimi; Ballif, Christophe

    2016-01-01

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  14. Light-induced performance increase of silicon heterojunction solar cells

    KAUST Repository

    Kobayashi, Eiji

    2016-10-11

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  15. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  16. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer.

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-13

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  17. Graphene nanoplatelet doping of P3HT:PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance

    Science.gov (United States)

    Aïssa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J.; Essehli, Rachid; Mahmoud, Khaled A.

    2018-03-01

    Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date—in particular the low power conversion efficiency (PCE)—has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm-2, a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein.

  18. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  19. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Lopez-Sandoval, R. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi 78216 (Mexico); Liu, J.; Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC (United States)

    2007-09-22

    It is shown that carbon nanotubes can be used to enhance carrier mobility for efficient removal of the charges in thin film polymer-conjugated/fullerene photovoltaic devices. The fabricated photovoltaic devices consist of poly(3-octylthiophene) (P3OT) polymer blended with undoped multiwalled carbon nanotubes (MWNTs) and carbon nanotubes doped with nitrogen (CNx-MWNTs). Nanophase formation and dispersion problems associated with the use of carbon nanotubes in polymer devices were addressed through the generation of functional groups and electrostatic attaching of the polyelectrolyte poly(dimethyldiallylamine) chloride (PDDA) in both MWNTs and CNx-MWNT systems. The resultant nanophase was highly dispersed allowing for excellent bulk heterojunction formation. Our results indicate that CNx-MWNTs enhance the efficiency of P3OT solar cells in comparison with MWNTs. (author)

  20. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  1. Impact of the Nature of the Side-Chains on the Polymer-Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells

    KAUST Repository

    Wang, Tonghui; Ravva, Mahesh Kumar; Bredas, Jean-Luc

    2016-01-01

    Polymer-fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton-dissociation, charge-separation, and charge-recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side-chains on the polymer-fullerene packing in mixed regions. The focus is on poly-benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione (PBDTTPD) as electron-donating material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as electron-accepting material. Three polymer side-chain patterns are considered: i) linear side-chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side-chains on BDT and a branched side-chain on TPD; and iii) two branched side-chains on BDT and a linear side-chain on TPD. Increasing the number of branched side-chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side-chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton-dissociation and charge-recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar-cell performance as a function of side-chain patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  2. Impact of the Nature of the Side-Chains on the Polymer-Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells

    KAUST Repository

    Wang, Tonghui

    2016-06-20

    Polymer-fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton-dissociation, charge-separation, and charge-recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side-chains on the polymer-fullerene packing in mixed regions. The focus is on poly-benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione (PBDTTPD) as electron-donating material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as electron-accepting material. Three polymer side-chain patterns are considered: i) linear side-chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side-chains on BDT and a branched side-chain on TPD; and iii) two branched side-chains on BDT and a linear side-chain on TPD. Increasing the number of branched side-chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side-chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton-dissociation and charge-recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar-cell performance as a function of side-chain patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  3. Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    International Nuclear Information System (INIS)

    Kramer, Illan J.; Pattantyus-Abraham, Andras G.; Barkhouse, Aaron R.; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Md. K.; Graetzel, Michael; Sargent, Edward H.

    2011-01-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum.

  4. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  5. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. A Bicontinuous Double Gyroid Hybrid Solar Cell : Letter

    NARCIS (Netherlands)

    Crossland, E.J.W.; Kamperman, M.M.G.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D.M.; Toombes, G.E.S.; Hillmyer, M.A.; Ludwigs, S.; Steiner, U.; Snaith, H.J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable

  7. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  8. Organic solar cells fundamentals, devices, and upscaling

    CERN Document Server

    Rand, Barry P

    2014-01-01

    Solution-Processed DonorsB. Burkhart, B. C. ThompsonSmall-Molecule and Vapor-Deposited Organic Photovoltaics R. R. Lunt, R. J. HolmesAcceptor Materials for Solution-Processed Solar Cells Y. HeInterfacial Layers R. Po, C. Carbonera, A. BernardiElectrodes in Organic Photovoltaic Cells S. Yoo, J.-Y. Lee, H. Kim, J. LeeTandem and Multi-Junction Organic Solar Cells J. Gilot, R. A. J. JanssenBulk Heterojunction Morphology Control and Characterization T. Wang, D. G. LidzeyOptical Modeling and Light Management

  9. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    KAUST Repository

    Burkhard, George F.

    2009-12-09

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  10. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    KAUST Repository

    Burkhard, George F.; Hoke, Eric T.; Scully, Shawn R.; McGehee, Michael D.

    2009-01-01

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  11. Inverted bulk-heterojunction organic solar cells with the transfer-printed anodes and low-temperature-processed ultrathin buffer layers

    Science.gov (United States)

    Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi

    2018-03-01

    We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.

  12. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    , such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques...

  13. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    Science.gov (United States)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  14. Planar versus bulk heterojunction perovskite microstructures: Impact of morphology on photovoltaic properties and recombination dynamics

    Science.gov (United States)

    Singh, Ranbir; Shukla, Vivek Kumar

    2018-05-01

    In this work, we compare the planar and bulk heterojunction (BHJ) perovskite thin films for their morphologies, photovoltaic properties, and recombination dynamics. The BHJ perovskite thin films were prepared with the addition of fullerene derivative [6, 6]-Phenyl-C60 butyric acid methyl ester (PC60BM). The addition of PC60BM in perovskite provides a pinhole free film with high absorption coefficient and better charge transfer. The solar cells fabricated with BHJ perovskite exhibits power conversion efficiency (PCE) of 13.5%, with remarkably increased short-circuit current density (JSC) of 20.1 mAcm-2 and reduced recombination rate.

  15. 3-D modelling of a bilayer heterojunction organic solar cell based on ...

    African Journals Online (AJOL)

    The thin film multilayer stacking theory is applied to the bilayer heterojunction organic solar cell, with the optical matrix of the Abeles theory leading to new expression of generation rate and density of exciton photogenerated in the organic photoactive layer of CuPc/C60. The excitons density is investigated considering the ...

  16. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Pattantyus-Abraham, Andras G.

    2010-06-22

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depletedheterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest opencircuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety. © 2010 American Chemical Society.

  17. A Generalized Theory Explains the Anomalous Suns–Voc Response of Si Heterojunction Solar Cells

    KAUST Repository

    Chavali, Raghu Vamsi Krishna; Li, Jian V.; Battaglia, Corsin; De Wolf, Stefaan; Gray, Jeffery Lynn; Alam, Muhammad Ashraful

    2016-01-01

    Suns–Voc measurements exclude parasitic series resistance effects and are, therefore, frequently used to study the intrinsic potential of a given photovoltaic technology. However, when applied to a-Si/c-Si heterojunction (SHJ) solar cells, the Suns

  18. Hydrogen doping of Indium Tin Oxide due to thermal treatment of hetero-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ritzau, Kurt-Ulrich, E-mail: kurt-ulrich.ritzau@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany); Behrendt, Torge [Infineon Technologies, Max-Planck-Straße 5, 59581 Warstein (Germany); Palaferri, Daniele [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS—UMR 7162, 75013 Paris (France); Bivour, Martin; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2016-01-29

    Indium Tin Oxide (ITO) layers in silicon hetero junction solar cells change their electrical and optical properties when exposed to temperature treatments. Hydrogen which effuses from underlying amorphous silicon layers is identified to dope the ITO layer. This leads to an additional increase in conductivity. In this way an almost isolating ITO can become degenerately doped through temperature treatments. The resulting carrier density in the range of 10{sup 20} cm{sup −3} leads to a substantial increase in free carrier absorption, which in turn leads to an increased parasitic absorption in the cell device. Thus hydrogen effusion in silicon hetero-junction (SHJ) solar cells does not only affect the degradation of amorphous silicon (a-Si:H) passivation of crystalline silicon (c-Si), but also the electrical and optical properties of both front and back ITO layers. This leads to the further design rule for SHJ solar cells, meaning that ITO properties have to be optimized in the state after modification during temperature treatment. - Highlights: • ITO is additionally doped by heat treatment of silicon hetero-junction solar cells. • The discovered effect turns an almost isolating ITO into a degenerately doped TCO. • TCO properties have to be considered as measured in the final cell.

  19. Geometric light trapping with a V-trap for efficient organic solar cells

    KAUST Repository

    Kim, Soo Jin; Margulis, George Y.; Rim, Seung-Bum; Brongersma, Mark L.; McGehee, Michael D.; Peumans, Peter

    2013-01-01

    mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29

  20. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  1. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  2. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali; Levi, Kemal; McGehee, Michae D.; Dauskardt, Reinhold H.

    2012-01-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial

  3. Wide-bandgap epitaxial heterojunction windows for silicon solar cells

    Science.gov (United States)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland; Sekula-Moise, Patricia A.; Vernon, Stanley M.

    1990-01-01

    It is shown that the efficiency of a solar cell can be improved if minority carriers are confined by use of a wide-bandgap heterojunction window. For silicon (lattice constant a = 5.43 A), nearly lattice-matched wide-bandgap materials are ZnS (a = 5.41 A) and GaP (a = 5.45 A). Isotype n-n heterojuntions of both ZnS/Si and GaP/Si were grown on silicon n-p homojunction solar cells. Successful deposition processes used were metalorganic chemical vapor deposition (MO-CVD) for GaP and ZnS, and vacuum evaporation of ZnS. Planar (100) and (111) and texture-etched - (111)-faceted - surfaces were used. A decrease in minority-carrier surface recombination compared to a bare surface was seen from increased short-wavelength spectral response, increased open-circuit voltage, and reduced dark saturation current, with no degradation of the minority carrier diffusion length.

  4. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  5. RETRACTED: Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    KAUST Repository

    Kramer, Illan J.; Pattantyus-Abraham, Andras G.; Barkhouse, Aaron R.; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Md. K.; Grä tzel, Michael; Sargent, Edward H.

    2011-01-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. © 2010 Elsevier B.V.

  6. RETRACTED: Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    KAUST Repository

    Kramer, Illan J.

    2011-08-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. © 2010 Elsevier B.V.

  7. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.

    Science.gov (United States)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60) complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C(60)-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C(60) interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C(60) bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices.

  8. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C60 complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C60-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C60 interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C60 bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices. © 2009 American Chemical Society.

  9. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    International Nuclear Information System (INIS)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-01-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection

  10. Research on ZnO/Si heterojunction solar cells

    Science.gov (United States)

    Chen, Li; Chen, Xinliang; Liu, Yiming; Zhao, Ying; Zhang, Xiaodan

    2017-06-01

    We put forward an n-ZnO/p-Si heterojunction solar cell model based on AFORS-HET simulations and provide experimental support in this article. ZnO:B (B-doped ZnO) thin films deposited by metal-organic chemical vapor deposition (MOCVD) are planned to act as electrical emitter layer on p-type c-Si substrate for photovoltaic applications. We investigate the effects of thickness, buffer layer, ZnO:B affinity and work function of electrodes on performances of solar cells through computer simulations using AFORS-HET software package. The energy conversion efficiency of the ZnO:B(n)/ZnO/c-Si(p) solar cell can achieve 17.16% ({V}{oc}: 675.8 mV, {J}{sc}: 30.24 mA/cm2, FF: 83.96%) via simulation. On a basis of optimized conditions in simulation, we carry out some experiments, which testify that the ZnO buffer layer of 20 nm contributes to improving performances of solar cells. The influences of growth temperature, thickness and diborane (B2H6) flow rates are also discussed. We achieve an appropriate condition for the fabrication of the solar cells using the MOCVD technique. The obtained conversion efficiency reaches 2.82% ({V}{oc}: 294.4 mV, {J}{sc}: 26.108 mA/cm2, FF: 36.66%). Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project (No. 11TXSYGX22100), the National High Technology Research and Development Program of China (No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (No. 65010341).

  11. Simple fabrication of back contact heterojunction solar cells by plasma ion implantation

    Science.gov (United States)

    Koyama, Koichi; Yamaguchi, Noboru; Hironiwa, Daisuke; Suzuki, Hideo; Ohdaira, Keisuke; Matsumura, Hideki

    2017-08-01

    A back-contact amorphous-silicon (a-Si)/crystalline silicon (c-Si) heterojunction is one of the most promising structures for high-efficiency solar cells. However, the patterning of back-contact electrodes causes the increase in fabrication cost. Thus, to simplify the fabrication of back-contact cells, we attempted to form p-a-Si/i-a-Si/c-Si and n-a-Si/i-a-Si/c-Si regions by the conversion of a patterned area of p-a-Si/i-a-Si/c-Si to n-a-Si/i-a-Si/c-Si by plasma ion implantation. It is revealed that the conversion of the conduction type can be realized by the plasma ion implantation of phosphorus (P) atoms into p-a-Si/i-a-Si/c-Si regions, and also that the quality of passivation can be kept sufficiently high, the same as that before ion implantation, when the samples are annealed at around 250 °C and also when the energy and dose of ion implantation are appropriately chosen for fitting to a-Si layer thickness and bulk c-Si carrier density.

  12. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer.

    Science.gov (United States)

    Sun, Weihai; Li, Yunlong; Ye, Senyun; Rao, Haixia; Yan, Weibo; Peng, Haitao; Li, Yu; Liu, Zhiwei; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin; Bian, Zuqiang; Huang, Chunhui

    2016-05-19

    During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid ( PSS) as the hole transport material (HTM), the hydrophilicity of the PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a facile solution-processed method was introduced into the inverted planar heterojunction perovskite solar cells. After the optimization of the devices, a champion PCE of 17.1% was obtained with an open circuit voltage (Voc) of 0.99 V, a short-circuit current (Jsc) of 23.2 mA cm(-2) and a fill factor (FF) of 74.4%. Furthermore, the unencapsulated device cooperating with the CuOx film exhibited superior performance in the stability test, compared to the device involving the PSS layer, indicating that CuOx could be a promising HTM for replacing PSS in inverted planar heterojunction perovskite solar cells.

  13. Atomic layer deposited ZnO:B as transparent conductive oxide for silicon heterojunction solar cells

    NARCIS (Netherlands)

    Gatz, H.A.; Koushik, D.; Rath, J.K.; Kessels, W.M.M.; Schropp, R.E.I.

    A key factor to improve the performance of silicon heterojunction solar cells (SHJ) is increasing their short circuit density (Jsc) by reducing the parasitic absorption of light in the front side of the cell. Therefore, we have investigated the replacement of the conventional sputtered ITO on the

  14. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.; Sachs-Quintana, I. T.; Kastrop, John P.; Beaupré , Serge; Leclerc, Mario; McGehee, Michael D.

    2011-01-01

    Organic bulk-heterojunction solar cells comprising poly[N-9'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2', 1',3'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.

    2011-04-20

    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Lee, Seungho; Balaji, Nagarajan; Ahn, Shihyun; Hussain, Shahzada Qamar; Han, Sangmyeong; Jung, Junhee; Jang, Juyeon; Lee, Yunjung; Yi, Junsin

    2013-01-01

    Highlights: ► We have employed a LiF dielectric layer as a new back-contact electrode. ► Increasing LiF thickness will decrease barrier for electrons transport, thus yield J sc . ► Increasing LiF thickness will reduced shunt leakage and enhanced internal field, thus yield V oc . ► Employing LiF layer, improvement of performance of HIT solar cells up to 17.13%. -- Abstract: To improve the quantum efficiency (QE) and hence the efficiency of the amorphous/crystalline silicon heterojunction solar cell, we have employed a LiF dielectric layer on the rear side. The high dipole moment of the LiF reduces the aluminum electrode's work–function and then lowers the energy barrier at back contact. This lower energy barrier height helps to enhance both the operating voltage and the QE at longer wavelength region, in turn improves the open-circuit voltage (V oc ), short-circuit current density (J sc ), and then overall cell efficiency. With optimized LiF layer thickness of 20 nm, 1 cm 2 heterojunction with intrinsic thin layer (HIT) solar cells were produced with industry-compatible process, yielding V oc of 690 mV, J sc of 33.62 mA/cm 2 , and cell efficiencies of 17.13%. Therefore LiF/Al electrode on rear side is proposed as an alternate back electrode for high efficiency HIT solar cells

  17. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene

    Directory of Open Access Journals (Sweden)

    Heewon Hwang

    2017-09-01

    Full Text Available A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta [2,1-b;3,4-b′]dithiophene-alt-4,7(2,1,3-benzothiadiazole] has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE, exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ with minimized intermixing. The organic photovoltaic (OPV device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36% is comparable to that of OPVs (3.87% prepared by the conventional method (deposition of a blended solution of polymer:fullerene. The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

  18. Thermal characterization of semiconducting polymer bulk heterojunctions

    Science.gov (United States)

    Remy, Roddel A.

    Polymer semiconductors are intriguing due to their potential use in flexible electronics. Poly (3-hexylthiophene) (P3HT)--a very common polymer in this field--is semicrystalline and it is known that crystalline P3HT has a higher hole mobility than amorphous P3HT. Quantifying each fraction in the bulk and thin film states is therefore crucial to understanding its performance in transistor and other applications. In polymer solar cells, it acts as an electron donor and is typically mixed with the nanoparticle-like molecule, phenyl-C61-butyric acid methyl ester (PCBM)--an electron acceptor--in a thin film morphology termed a bulk heterojunction (BHJ). The structural hierarchy within the bulk heterojunction is complicated and its characterization, with a focus on P3HT morphology, is the topic of this dissertation. Calorimetry can play an important role in the elucidation of P3HT morphology with quantitative analysis of the crystalline and amorphous fractions present in the material. This was demonstrated by employing differential scanning calorimetry (DSC) to obtain the enthalpy of fusion of 100% crystalline P3HT (42.9 J/g) using oligomeric P3HT measurements. The more sensitive temperature modulated DSC (TMDSC) was then used to examine the glass transition of P3HT and the crystalline, mobile amorphous and rigid amorphous phases were quantified. The presence of these phases can play a large role in understanding the charge transfer process in polymer semiconductors. BHJ thin films of 50 wt.% PCBM were then analyzed and a polymer crystallinity of 30% was found after thermal annealing from initially non-crystalline polymer material. With assistance from previously acquired small angle neutron scattering data, a thorough analysis of the entire BHJ morphology was accomplished. A surprisingly large rigid amorphous polymer phase is present in the BHJ which could be located at the P3HT/PCBM interface, affecting charge transfer. Finally, interlayer diffusion of PCBM was

  19. The use of nanofibers of P3HT in bulk heterojunction solar cells: the effect of order and morphology on the performance of P3HT:PCBM blends

    Science.gov (United States)

    Vanderzande, Dirk J. M.; Oosterbaan, Wibren D.; Vrindts, Veerle; Bertho, Sabine; Bolsée, Jean Christophe; Gadisa, Abay; Vandewal, Koen; Manca, Jean; Lutsen, Laurence; Cleij, Thomas J.; D'Haen, Jan; Zhao, Jun; Van Assche, Guy; Van Mele, Bruno

    2009-08-01

    Poly-3-AlkylThiophenes (P3ATs) with an n-alkyl chain length varying from C3 till C9 were synthesized by using the Rieke method. Subsequently, these materials were used to make P3AT/PCBM blends which were investigated in bulk heterojunction (BHJ) solar cells. The phase diagram of a P3H(exyl)T:PCBM blend was measured by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC). A single glass transition is observed for all compositions. The glass transition temperature (Tg) increases with increasing PCBM concentration: from 12 °C for pure P3HT to 131 °C for pure PCBM. The observed range of Tg's defines the operating window for thermal annealing and explains the long-term instability of both morphology and photovoltaic performance of P3HT:PCBM solar cells. All regioregular P3ATs allow for efficient fiber formation in several solvents. The fibers formed are typically 15 to 25 nm wide and 0.5 to >4 μm long and mainly crystalline. By means of temperature control the fiber content in the casting solution for P3AT:PCBM BHJ solar cells is controlled while keeping the overall molecular weight of the polymer in the blend constant. In this way, fiber isolation and the use of solvent mixtures are avoided and with P3HT nanofibers, a power conversion efficiency of 3.2 % was achieved. P3AT:PCBM BHJ solar cells were also prepared from P3B(utyl)T, P3P(entyl)T and P3HT using the good solvent o-dichlorobenzene and a combination of slow drying and thermal annealing. In this way, power conversion efficiencies of 3.2, 4.3, and 4.6 % were obtained, respectively. P3PT is proved to be a potentially competitive material compared to P3HT.

  20. Solar cells with gallium phosphide/silicon heterojunction

    Science.gov (United States)

    Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina

    2015-09-01

    One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.

  1. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  2. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  3. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to

  4. How the relative permittivity of solar cell materials influences solar cell performance

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Huss-Hansen, Mathias K.; Hansen, Ole

    2017-01-01

    of the materials permittivity on the physics and performance of the solar cell by means of numerical simulation supported by analytical relations. We demonstrate that, depending on the specific solar cell configuration and materials properties, there are scenarios where the relative permittivity has a major......The relative permittivity of the materials constituting heterojunction solar cells is usually not considered as a design parameter when searching for novel combinations of heterojunction materials. In this work, we investigate the validity of such an approach. Specifically, we show the effect...... the heterojunction partner has a high permittivity, solar cells are consistently more robust against several non-idealities that are especially likely to occur in early-stage development, when the device is not yet optimized....

  5. Sol-gel derived ZnO as an electron transport layer (ETL) for inverted organic solar cells

    Science.gov (United States)

    Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Phukhrambam; Chandel, Tarun; Sharma, Rishi

    2017-05-01

    In this work, we present the study of the fabrication process of the sol-gel derived zinc oxide (ZnO) as an electron transport layer (ETL.). The solution processed inverted bulk heterojunction organic solar cells based on a thin film blend of poly (3-hexylthiophene 2, 5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester is prepared. ZnO thin films are annealed at different temperature to optimize the solar cell performance and their characterization for their structural and optical properties are carried out. We have observed Voc=70mV, Jsc=1.33 µA/cm2 and FF=26% from the inverted heterojunction solar cell.

  6. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.

    Science.gov (United States)

    Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang

    2018-05-22

    High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.

  7. Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Lee, Seungho [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Balaji, Nagarajan [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Ahn, Shihyun [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Hussain, Shahzada Qamar [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Han, Sangmyeong [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Jang, Juyeon; Lee, Yunjung [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2013-05-15

    Highlights: ► We have employed a LiF dielectric layer as a new back-contact electrode. ► Increasing LiF thickness will decrease barrier for electrons transport, thus yield J{sub sc}. ► Increasing LiF thickness will reduced shunt leakage and enhanced internal field, thus yield V{sub oc}. ► Employing LiF layer, improvement of performance of HIT solar cells up to 17.13%. -- Abstract: To improve the quantum efficiency (QE) and hence the efficiency of the amorphous/crystalline silicon heterojunction solar cell, we have employed a LiF dielectric layer on the rear side. The high dipole moment of the LiF reduces the aluminum electrode's work–function and then lowers the energy barrier at back contact. This lower energy barrier height helps to enhance both the operating voltage and the QE at longer wavelength region, in turn improves the open-circuit voltage (V{sub oc}), short-circuit current density (J{sub sc}), and then overall cell efficiency. With optimized LiF layer thickness of 20 nm, 1 cm{sup 2} heterojunction with intrinsic thin layer (HIT) solar cells were produced with industry-compatible process, yielding V{sub oc} of 690 mV, J{sub sc} of 33.62 mA/cm{sup 2}, and cell efficiencies of 17.13%. Therefore LiF/Al electrode on rear side is proposed as an alternate back electrode for high efficiency HIT solar cells.

  8. Efficient low bandgap polymer solar cell with ordered heterojunction defined by nanoimprint lithography.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2014-11-12

    In this work, we demonstrate the feasibility of using nanoimprint lithography (NIL) to make efficient low bandgap polymer solar cells with well-ordered heterojunction. High quality low bandgap conjugated polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) nanogratings are fabricated using this technique for the first time. The geometry effect of PCPDTBT nanostructures on the solar cell performance is investigated by making PCPDTBT/C70 solar cells with different feature sizes of PCPDTBT nanogratings. It is found that the power conversion efficiency (PCE) increases with increasing nanograting height, PCPDTBT/C70 junction area, and decreasing nanograting width. We also find that NIL makes PCPDTBT chains interact more strongly and form an improved structural ordering. Solar cells made on the highest aspect ratio PCPDTBT nanostructures are among the best reported devices using the same material with a PCE of 5.5%.

  9. Simulation of High Efficiency Heterojunction Solar Cells with AFORS-HET

    International Nuclear Information System (INIS)

    Wang Lisheng; Chen Fengxiang; Ai Yu

    2011-01-01

    In this paper, the high efficiency TCO/a-Si:H (n)/a-Si:H(i)/c-Si(p)/uc-Si(p + )/Al HIT (heterojunction with intrinsic thin-layer) solar cells was analyzed and designed by AFORS-HET software. The influences of emitter, intrinsic layer and back surface field (BSF) on the photovoltaic characteristics of solar cell were discussed. The simulation results show that the key role of the intrinsic layer inserted between the a-Si:H and crystalline silicon substrate is to decrease the interface states density. If the interface states density is lower than 10 10 cm -2 V -1 thinner intrinsic layer is better than thicker one. The increase of the thickness of the emitter will decrease the short-current density and affect the conversion efficiency. Microcrystalline BSF can increase conversion efficiency more than 2 percentage points compared with HIT solar cell with no BSF. But this BSF requires the doping concentration must exceed 10 20 cm -3 . Considered the band mismatch between crystalline silicon and microcrystalline silicon, the optimal band gap of microcrystalline silicon BSF is about 1.4-1.6eV.

  10. Tandem-type organic solar cells by stacking different heterojunction materials

    International Nuclear Information System (INIS)

    Triyana, Kuwat; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2005-01-01

    Three layers of phthalocyanine/perylene heterojunction (HJ) components were stacked and sandwiched by an indium tin oxide (ITO) and a top metal electrode, which is denoted by a triple-HJ organic solar cell. The organic material in the middle-HJ component second from the ITO was varied to investigate the photovoltaic properties. The power conversion efficiency (PCE) was improved by the more balanced photo-generated carrier by use of the appropriate material for the second-HJ component. The optimized device showed higher PCE (1.38%) than the reference device (0.98%)

  11. Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianhua; Li, Fushan, E-mail: fushanli@hotmail.com; Yang, Kaiyu; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-04-30

    Graphical abstract: - Highlights: • All solution processed perovskite solar cells were realized with Ag nanowires. • ZnO nanoparticles were used as electron transport layer. • The solar cells showed a photovoltaic behavior with efficiency of 9.21%. • Device performance showed negligible difference between forward and reverse scan. - Abstract: In this paper, we reported a low temperature processed planar heterojunction perovskite solar cell employing silver nanowires as the top electrode and ZnO nanoparticles as the electron transport layer. The CH{sub 3}NH{sub 3}PbI{sub 3} perovskite was grown as the light absorber via two-step spin-coating technique. The as-fabricated perovskite solar cell exhibited the highest power conversion efficiency of 9.21% with short circuit current density of 19.75 mA cm{sup −2}, open circuit voltage of 1.02, and fill factor value of 0.457. The solar cell's performance showed negligible difference between the forward and reverse bias scan. This work paves a way for realizing low cost solution processable solar cells.

  12. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  13. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor.

    Science.gov (United States)

    Wu, Zhongwei; Bai, Sai; Xiang, Jian; Yuan, Zhongcheng; Yang, Yingguo; Cui, Wei; Gao, Xingyu; Liu, Zhuang; Jin, Yizheng; Sun, Baoquan

    2014-09-21

    Graphene oxide (GO) is employed as a hole conductor in inverted planar heterojunction perovskite solar cells, and the devices with CH₃NH₃PbI₃-xClx as absorber achieve an efficiency of over 12%. The perovskite film grown on GO exhibits enhanced crystallization, high surface coverage ratio as well as preferred in-plane orientation of the (110) plane. Efficient hole extraction from the perovskite to GO is demonstrated.

  14. Plasma enhanced atomic layer deposited MoOx emitters for silicon heterojunction solar cells

    OpenAIRE

    Ziegler, J.; Mews, M.; Kaufmann, K.; Schneider, T.; Sprafke, A.N.; Korte, L.; Wehrsporn, R.B

    2015-01-01

    A method for the deposition of molybdenum oxide MoOx with high growth rates at temperatures below 200 C based on plasma enhanced atomic layer deposition is presented. The stoichiometry of the overstoichiometric MoOx films can be adjusted by the plasma parameters. First results of these layers acting as hole selective contacts in silicon heterojunction solar cells are presented and discussed

  15. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  16. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The photovoltaic conversion efficiency of a solar cell fabricated by a simple electrophoretic method with a planar transparent hybrid of graphenes (GPs) and single wall carbon nanotubes (SCNTs)/n-type silicon heterojunction was significantly increased compared to GPs/n-Si and SCNTs/n-Si solar cells...

  17. Fabrication of heterojunction solar cells by using microcrystalline hydrogenated silicon oxide film as an emitter

    International Nuclear Information System (INIS)

    Banerjee, Chandan; Sritharathikhun, Jaran; Konagai, Makoto; Yamada, Akira

    2008-01-01

    Wide gap, highly conducting n-type hydrogenated microcrystalline silicon oxide (μc-SiO : H) films were prepared by very high frequency plasma enhanced chemical vapour deposition at a very low substrate temperature (170 deg. C) as an alternative to amorphous silicon (a-Si : H) for use as an emitter layer of heterojunction solar cells. The optoelectronic properties of n-μc-SiO : H films prepared for the emitter layer are dark conductivity = 0.51 S cm -1 at 20 nm thin film, activation energy = 23 meV and E 04 = 2.3 eV. Czochralski-grown 380 μm thick p-type (1 0 0) oriented polished silicon wafers with a resistivity of 1-10 Ω cm were used for the fabrication of heterojunction solar cells. Photovoltaic parameters of the device were found to be V oc = 620 mV, J sc = 32.1 mA cm -2 , FF = 0.77, η = 15.32% (active area efficiency)

  18. Recovery of indium-tin-oxide/silicon heterojunction solar cells by thermal annealing

    OpenAIRE

    Morales Vilches, Ana Belén; Voz Sánchez, Cristóbal; Colina Brito, Mónica Alejandra; López Rodríguez, Gema; Martín García, Isidro; Ortega Villasclaras, Pablo Rafael; Orpella García, Alberto; Alcubilla González, Ramón

    2014-01-01

    The emitter of silicon heterojunction solar cells consists of very thin hydrogenated amorphous silicon layers deposited at low temperature. The high sheet resistance of this type of emitter requires a transparent conductive oxide layer, which also acts as an effective antireflection coating. The deposition of this front electrode, typically by Sputtering, involves a relatively high energy ion bombardment at the surface that could degrade the emitter quality. The work function of the tra...

  19. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    OpenAIRE

    Geissbühler Jonas; Werner Jérémie; Martin de Nicolas Silvia; Barraud Loris; Hessler-Wyser Aïcha; Despeisse Matthieu; Nicolay Sylvain; Tomasi Andrea; Niesen Bjoern; De Wolf Stefaan; Ballif Christophe

    2015-01-01

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p type amorphous silicon with molybdenum oxide films. In this article we evidence that annealing above 130?°C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited c...

  20. Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells

    KAUST Repository

    Vandewal, Koen

    2013-08-27

    The performance of polymer:fullerene solar cells is strongly affected by the active layer morphology and polymer microstructure. In this Perspective, we review ongoing research on how structural factors influence the photogeneration and collection of charge carriers as well as charge carrier recombination and the related open-circuit voltage. We aim to highlight unexplored research opportunities and provide some guidelines for the synthesis of new conjugated polymers for high-efficiency solar cells. © 2013 American Chemical Society.

  1. Buried MoO x/Ag Electrode Enables High-Efficiency Organic/Silicon Heterojunction Solar Cells with a High Fill Factor.

    Science.gov (United States)

    Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2018-04-25

    Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.

  2. Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction

    Science.gov (United States)

    Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman

    2018-02-01

    Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.

  3. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Yuliar; Van der Auweraer, Mark, E-mail: mark.vanderauweraer@chem.kuleuven.be [Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200F, 2404, B-3001 Leuven (Belgium); Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David [Imec vzw, Kapeldreef 75, B-3001 Leuven (Belgium); Justo, Yolanda; Hens, Zeger [Physical Chemistry Laboratory, Ghent University, Krijgslaan 281-S3, 9000 Gent (Belgium)

    2014-09-07

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  4. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    International Nuclear Information System (INIS)

    Firdaus, Yuliar; Van der Auweraer, Mark; Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David; Justo, Yolanda; Hens, Zeger

    2014-01-01

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system

  5. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  6. Film morphology effects on the electrical and optical properties of bulk heterojunction organic solar cells based on MEH-PPV/C60 composite

    International Nuclear Information System (INIS)

    Ltaief, A.; Davenas, J.; Bouazizi, A.; Ben Chaabane, R.; Alcouffe, P.; Ben Ouada, H.

    2005-01-01

    The influence of film morphology on the electrical behaviour of an MEH-PPV/C 60 organic solar cells has been investigated. The dissociation of photogenerated charge pairs in composites of buckminsterfullerenes (C 60 ) in a conjugated polymer matrix (MEH-PPV) forming dispersed heterojunctions was studied at low C 60 acceptor concentrations to separate electron transfer from charge transport effects. The motivation of this study was to analyse the strong dependence of organic solar cell efficiencies on the morphology of the composite. Two effects controlling film morphology have been investigated; the first one being the influence of the fullerene concentration and the second one is the effect of the organic solvent used to deposit the photoactive layer. The sample morphology was studied using atomic force microscopy (AFM). Photoluminescence (PL) experiments and current-voltage (I-V) measurements were performed on the deposited photovoltaic film to investigate the influence of dispersion on the charge transfer process between MEH-PPV and C 60 . An attempt to explain all the results will be presented

  7. Photonic crystal geometry for organic solar cells.

    Science.gov (United States)

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.

  8. Generalized detailed balance theory of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kirchartz, Thomas

    2009-12-12

    compatible with the Shockley-Queisser limit and the classical diode theory. For organic solar cells, exciton binding energies are sufficiently high, so that purely bipolar models are no longer applicable. Instead, excitonic transport has to be included. Thus, the inclusion of exciton transport into the bipolar detailed balance model leads to a generalized detailed balance model that simulates solar cells with predominantly bipolar transport, with predominantly excitonic transport and with every combination of both. Due to low exciton diffusion lengths, organic solar cells are usually combined with a specific device geometry, the bulk heterojunction. In a bulk heterojunction device, the whole bulk of the absorber is made up of distributed heterojunctions, where the exciton is transferred to a bound pair at the interface, which is then split into free electron and hole. The assumption that exciton transport is only relevant towards the next heterointerface allows to develop also a version of the detailed balance model that is applicable to bulk heterojunction cells. The last variation of the detailed balance model includes the process of impact ionisation as a means to generate more than one exciton from a single high energy photon. The model for multiple exciton generating absorbers identifies possible bottlenecks as well as maximum efficiencies of future solar cells that use this concept. Another direct consequence of the principle of detailed balance is a reciprocity theorem between electroluminescence and solar cell quantum efficiency. The theoretical part of this thesis discusses the validity range of this reciprocity and checks for each version of the model, whether the relation between electroluminescence and quantum efficiency is still applicable. The main result shows that voltage dependent carrier collection as encountered in low mobility pin-junction devices leads to deviations from the reciprocity, while it still holds for most pn-junction solar cells. The

  9. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  10. Controlling the Electronic Interface Properties in Polymer-Fullerene Bulk-Heterojunction Solar Cells

    OpenAIRE

    Stubhan, Tobias

    2014-01-01

    The world consumes several tens of terawatts (TW) of electricity. If solar energy should have a notable share in the energy generation of the future, the fabrication of solar modules has to be changed from nowadays batch-to-batch processes that operate in the gigawatt regime to a reliable production that allows TW`s. Large area roll-to-roll (R2R) printing enables solar cell manufacturing to proceed to TW production. Organic photovoltaics (OPV) are one of the very promising technologies for...

  11. Fabrication of Inverted Bulk-Heterojunction Organic Solar Cell with Ultrathin Titanium Oxide Nanosheet as an Electron-Extracting Buffer Layer

    Science.gov (United States)

    Itoh, Eiji; Maruyama, Yasutake; Fukuda, Katsutoshi

    2012-02-01

    The contributions and deposition conditions of ultrathin titania nanosheet (TN) crystallites were studied in an inverted bulk-heterojunction (BHJ) cell in indium tin oxide (ITO)/titania nanosheet/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic devices. Only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film deposited by the layer-by-layer deposition technique effectively decreased the leakage current and increased both open circuit voltage (VOC) and fill factor (FF), and power conversion efficiency (η) was increased nearly twofold by the insertion of two TN layers. The deposition of additional TN layers caused the reduction in FF, and the abnormal S-shaped curves above VOC for the devices with three and four TN layers were ascribed to the interfacial potential barrier at the ITO/TN interface and the series resistance across the multilayers of TN and PDDA. The performance of the BHJ cell with TN was markedly improved, and the S-shaped curves were eliminated following the the insertion of anatase-phase titanium dioxide between the ITO and TN layers owing to the decrease in the interfacial potential barrier.

  12. Bulk heterojunction organic photovoltaic cell fabricated by the electrospray deposition method using mixed organic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takeshi; Takagi, Kenji; Asano, Takashi [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan); Honda, Zentaro; Kamata, Norihiko; Ueno, Keiji; Shirai, Hajime [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Ju, Jungmyoung; Yamagata, Yutaka; Tajima, Yusuke [RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan)

    2011-07-15

    A high-efficiency bulk heterojunction organic photovoltaic cell (OPV) was achieved by the electrospray deposition method. The surface roughness of the P3HT:PCBM thin film can be reduced using the mixed solvent consisting of o-dichlorobenzene (o-DCB) and acetone. The effect of acetone concentration is related to its dielectric constant. Under an optimized concentration of acetone in o-DCB (20 vol%), the P3HT/PCBM active layer with a smooth surface can be formed, and the power conversion efficiency of the OPV was 1.9%. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells.

    Science.gov (United States)

    Chen, Hsiu-Cheng; Lin, Shu-Wei; Jiang, Jian-Ming; Su, Yu-Wei; Wei, Kung-Hwa

    2015-03-25

    In this study, we employed polyethylenimine-doped sol-gel-processed zinc oxide composites (ZnO:PEI) as efficient electron transport layers (ETL) for facilitating electron extraction in inverted polymer solar cells. Using ultraviolet photoelectron spectroscopy, synchrotron grazing-incidence small-angle X-ray scattering and transmission electron microscopy, we observed that ZnO:PEI composite films' energy bands could be tuned considerably by varying the content of PEI up to 7 wt %-the conduction band ranged from 4.32 to 4.0 eV-and the structural order of ZnO in the ZnO:PEI thin films would be enhanced to align perpendicular to the ITO electrode, particularly at 7 wt % PEI, facilitating electron transport vertically. We then prepared two types of bulk heterojunction systems-based on poly(3-hexylthiophene) (P3HT):phenyl-C61-butryric acid methyl ester (PC61BM) and benzo[1,2-b:4,5-b́]dithiophene-thiophene-2,1,3-benzooxadiazole (PBDTTBO):phenyl-C71-butryric acid methyl ester (PC71BM)-that incorporated the ZnO:PEI composite layers. When using a composite of ZnO:PEI (93:7, w/w) as the ETL, the power conversion efficiency (PCE) of the P3HT:PC61BM (1:1, w/w) device improved to 4.6% from a value of 3.7% for the corresponding device that incorporated pristine ZnO as the ETL-a relative increase of 24%. For the PBDTTBO:PC71BM (1:2, w/w) device featuring the same amount of PEI blended in the ETL, the PCE improved to 8.7% from a value of 7.3% for the corresponding device that featured pure ZnO as its ETL-a relative increase of 20%. Accordingly, ZnO:PEI composites can be effective ETLs within organic photovoltaics.

  14. Planar heterojunction perovskite solar cell based on CdS electron transport layer

    KAUST Repository

    Abulikemu, Mutalifu

    2017-07-02

    We report on planar heterojunction perovskite solar cells employing a metal chalcogenide (CdS) electron transport layer with power conversion efficiency up to 10.8%. The CdS layer was deposited via solution-process chemical bath deposition at low-temperature (60°C). Pinhole-free and uniform thin films were obtained with good structural, optical and morphological properties. An optimal layer thickness of 60nm yielded an improved open-circuit voltage and fill factor compared to the standard TiO2-based solar cells. Devices showed a higher reproducibility of the results compared to TiO2-based ones. We also tested the effect of annealing temperature on the CdS film and the effect of CdCl2 treatment followed by high temperature annealing (410°C) that is expected to passivate the surface, thus eliminating eventual trap-states inducing recombination.

  15. Planar heterojunction perovskite solar cell based on CdS electron transport layer

    KAUST Repository

    Abulikemu, Mutalifu; Barbe, Jeremy; El Labban, Abdulrahman; Eid, Jessica; Del Gobbo, Silvano

    2017-01-01

    We report on planar heterojunction perovskite solar cells employing a metal chalcogenide (CdS) electron transport layer with power conversion efficiency up to 10.8%. The CdS layer was deposited via solution-process chemical bath deposition at low-temperature (60°C). Pinhole-free and uniform thin films were obtained with good structural, optical and morphological properties. An optimal layer thickness of 60nm yielded an improved open-circuit voltage and fill factor compared to the standard TiO2-based solar cells. Devices showed a higher reproducibility of the results compared to TiO2-based ones. We also tested the effect of annealing temperature on the CdS film and the effect of CdCl2 treatment followed by high temperature annealing (410°C) that is expected to passivate the surface, thus eliminating eventual trap-states inducing recombination.

  16. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  17. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    Science.gov (United States)

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  18. Enhancement of the photoelectric performance in inverted bulk heterojunction solid solar cell with inorganic nanocrystals

    International Nuclear Information System (INIS)

    Luan, Weiling; Zhang, Chengxi; Luo, Lingli; Yuan, Binxia; Jin, Lin; Kim, Yong-Sang

    2017-01-01

    Highlights: • Solid solar cells based on FeS_2 or PbS NCs showed power conversion efficiency (PCE) of 3.0% and 3.11%, respectively. • The FeS_2 NCs/polymer solar cells showed good time and thermal stability when exposed in air condition. • Ternary solid solar cells based on PbS NCs exhibited a higher short circuit current density (J_s_c). - Abstract: Nanocrystal/polymer solid solar cells have the advantages of low-cost, simple process, and flexible manufacture. In this work, ternary solid solar cells based on FeS_2 and PbS nanocrystals exhibited photovoltaic conversion efficiency of 3.0% and 3.1%, respectively. As a kind of semiconductor with optical absorption in the visible and near-infrared regions, FeS_2 nanocrystals matched well with the solar radiation spectrum. Furthermore, PbS Nanocrystals could increase the number of electrons, due to its multiple exciton effect. Additionally, the FeS_2 nanocrystals solar cells showed high stability, with 83.3% of its initial efficiency remained after 15 weeks of exposure in air, and kept good stable performance at 20–80 °C. The photovoltaic conversion efficiency fluctuation magnitudes were also found to be smaller than quantum-dot sensitized solar cell under the same conditions.

  19. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    DEFF Research Database (Denmark)

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C

    2012-01-01

    demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy......The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We...... energies was observed....

  20. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

    Science.gov (United States)

    Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.

    2018-01-01

    In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.

  1. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi

    2010-01-01

    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  2. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  3. Investigation of donor-acceptor copolymer films and their blends with fullerene in the active layers of bulk heterojunction solar cells by Raman microspectroscopy

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Morávková, Zuzana; Pokorná, Veronika; Výprachtický, Drahomír

    2017-01-01

    Roč. 47, August (2017), s. 194-199 ISSN 1566-1199 R&D Projects: GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : conjugated polymers * low-band gap * bulk heterojunction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.399, year: 2016

  4. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Monishka Rita [Centre for Renewable Energy and Low Emission Technology, Charles Darwin University, Darwin, NT 0909 (Australia); Singh, Jai [School of Engineering and IT, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be {<=} 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Device operation of conjugated polymer/zinc oxide bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, L. Jan Anton; van Strien, Wouter J.; Beek, Waldo J. E.; Blom, Paul W. M.

    2007-01-01

    Solar cells based on a poly (p-phenylene vinylene) (PPV) derivative and zinc oxide nanoparticles can reach a power conversion efficiency of 1.6%. The transport of electrons and holes in these promising devices is characterized and it is found that the electron mobility is equal to 2.8 x 10(-9) m(2)

  7. Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell.

    Science.gov (United States)

    Batra, Kamal; Nayak, Sasmita; Behura, Sanjay K; Jani, Omkar

    2015-07-01

    Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.

  8. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  9. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  10. Efficiency enhancement using a Zn1- x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  11. Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells

    KAUST Repository

    Vandewal, Koen; Himmelberger, Scott; Salleo, Alberto

    2013-01-01

    The performance of polymer:fullerene solar cells is strongly affected by the active layer morphology and polymer microstructure. In this Perspective, we review ongoing research on how structural factors influence the photogeneration and collection

  12. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2016-09-09

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  13. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

    Science.gov (United States)

    Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J

    2013-10-21

    Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.

  14. Dipyrrolidinyl-substituted perylene diimide as additive for poly(3-hexylthiophene): [6,6]-Phenyl C61 butyric acid methylester bulk-heterojunction blends

    International Nuclear Information System (INIS)

    Vivo, Paola; Dubey, Rajeev; Lehtonen, Elina; Kivistö, Hannele; Vuorinen, Tommi; Lemmetyinen, Helge

    2013-01-01

    The effects of the addition of 1,7-dipyrrolidinyl-substituted perylene diimide (1,7-PyPDI) to a traditional poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM) bulk-heterojunction blend on the performance of organic solar cells, are described. When the 1,7-PyPDI amount in the mixture is accurately tuned, the power conversion efficiency (η) of the 1,7-PyPDI-doped cells is enhanced compared to a reference non-doped device. Cells fabricated by spin-coating blends from chloroform solution with P3HT (monomer):PCBM:1,7-PyPDI molar ratio of 6.85:1:0.03 resulted in 39.6% higher power conversion efficiency than P3HT:PCBM blend. The efficiency improvement is attributed to possible photochemical interactions between the three components of the blend, which contribute to enhance the charge separation, and minimize the charge recombination processes. Moreover, the increased absorption and the microstructural implications induced by the introduction of 1,7-PyPDI contribute to explain the enhancement of the solar cell performance. - Highlights: • The solar cell active layer is doped with perylene derivative in different ratios. • The addition of the dopant significantly enhances the solar cell efficiency. • The possible role of the dopant in the heart of the solar cell is discussed

  15. Dipyrrolidinyl-substituted perylene diimide as additive for poly(3-hexylthiophene): [6,6]-Phenyl C61 butyric acid methylester bulk-heterojunction blends

    Energy Technology Data Exchange (ETDEWEB)

    Vivo, Paola, E-mail: paola.vivo@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Dubey, Rajeev; Lehtonen, Elina; Kivistö, Hannele [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Vuorinen, Tommi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2013-12-02

    The effects of the addition of 1,7-dipyrrolidinyl-substituted perylene diimide (1,7-PyPDI) to a traditional poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM) bulk-heterojunction blend on the performance of organic solar cells, are described. When the 1,7-PyPDI amount in the mixture is accurately tuned, the power conversion efficiency (η) of the 1,7-PyPDI-doped cells is enhanced compared to a reference non-doped device. Cells fabricated by spin-coating blends from chloroform solution with P3HT (monomer):PCBM:1,7-PyPDI molar ratio of 6.85:1:0.03 resulted in 39.6% higher power conversion efficiency than P3HT:PCBM blend. The efficiency improvement is attributed to possible photochemical interactions between the three components of the blend, which contribute to enhance the charge separation, and minimize the charge recombination processes. Moreover, the increased absorption and the microstructural implications induced by the introduction of 1,7-PyPDI contribute to explain the enhancement of the solar cell performance. - Highlights: • The solar cell active layer is doped with perylene derivative in different ratios. • The addition of the dopant significantly enhances the solar cell efficiency. • The possible role of the dopant in the heart of the solar cell is discussed.

  16. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    Science.gov (United States)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  17. Electrical and optical modeling of poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester P3HT-PCBM bulk heterojunction solar cells

    Science.gov (United States)

    Brioua, Fathi; Remram, Mohamed; Nechache, Riad; Bourouina, Hicham

    2017-11-01

    In this work, we investigate a two-dimensional theoretical model for the photon conversion through an integration of the optical and electrical part of multilayer system in a bulk heterojunction solar cell based on poly(3-hexylthiophene) (P3HT)/6,6-phenyl C61-butyric acid methyl ester (PCBM) blend. The optical properties of the studied structure ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al, such as the exciton generation rate and the electrical field distribution, are predicted at vicinity of the active layer and have been used to solve Poisson and continuity, drift-diffusion equations of the electrical model which characterize the electrical behavior of semiconductor device using finite element method (FEM). The electrical parameters such as power conversion efficiency (PCE), open voltage circuit ( V oc), short-circuit current density ( J sc) and fill factor (FF) are extracted from the current-voltage (J-V) characteristics under illumination and in dark conditions. Highest external quantum efficiency (IPCE), up to 60%, is obtained around 520 nm, while a power conversion efficiency (PCE) value of 3.62% is found to be in good agreement with the literature results. Integration of such theoretical approach into technological applications dealing with optoelectrical material performance will rapidly provide to the user accurate data outputs required for efficient validation of proof-of-concepts.

  18. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maslova, O. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow 125047 (Russian Federation); GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P. [GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  19. Formation of BaSi2 heterojunction solar cells using transparent MoOx hole transport layers

    Science.gov (United States)

    Du, W.; Takabe, R.; Baba, M.; Takeuchi, H.; Hara, K. O.; Toko, K.; Usami, N.; Suemasu, T.

    2015-03-01

    Heterojunction solar cells that consist of 15 nm thick molybdenum trioxide (MoOx, x < 3) as a hole transport layer and 600 nm thick unpassivated or passivated n-BaSi2 layers were demonstrated. Rectifying current-voltage characteristics were observed when the surface of BaSi2 was exposed to air. When the exposure time was decreased to 1 min, an open circuit voltage of 200 mV and a short circuit current density of 0.5 mA/cm2 were obtained under AM1.5 illumination. The photocurrent density under a reverse bias voltage of -1 V reached 25 mA/cm2, which demonstrates the significant potential of BaSi2 for solar cell applications.

  20. Computational Methodologies for Developing Structure–Morphology–Performance Relationships in Organic Solar Cells: A Protocol Review

    KAUST Repository

    Do, Khanh

    2016-09-08

    We outline a step-by-step protocol that incorporates a number of theoretical and computational methodologies to evaluate the structural and electronic properties of pi-conjugated semiconducting materials in the condensed phase. Our focus is on methodologies appropriate for the characterization, at the molecular level, of the morphology in blend systems consisting of an electron donor and electron acceptor, of importance for understanding the performance properties of bulk-heterojunction organic solar cells. The protocol is formulated as an introductory manual for investigators who aim to study the bulk-heterojunction morphology in molecular details, thereby facilitating the development of structure morphology property relationships when used in tandem with experimental results.

  1. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  2. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.; Sarkar, Dabraj; Hilali, Mohamed M.; Saha, Sayan; Mathew, Leo; Rao, Rajesh A.; Smith, Ryan S.; Xu, Dewei; Jawarani, Dharmesh; Garcia, Ricardo; Ainom, Moses; Banerjee, Sanjay K.

    2014-01-01

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  3. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.

    2014-04-14

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  4. Investigation of silicon heterojunction solar cells by photoluminescence under DC-bias

    Directory of Open Access Journals (Sweden)

    Courtois Guillaume

    2013-09-01

    Full Text Available Photoluminescence measurements on solar cells are usually carried out under open-circuit conditions. We report here on an innovative approach, in which the samples are simultaneously illuminated and DC-biased, so that the luminescence can be monitored under several operating points, that is to say several injection levels, ranging from short-circuit conditions to the light-emitting regime of the device. The experiments were performed on in-house made c-Si/a-Si:H heterojunction solar cells illuminated by a continuous green laser diode and positively biased. The luminescence spectra obtained this way were compared to those obtained with no light excitation source, which corresponds to usual electroluminescence mode and dark J(V. Firstly, the obtained luminescence spectra have shown the expected exponential dependence on the applied voltage. Furthermore, given that the amplitude of the emitted luminescence is proportional to the radiative recombination rate, this approach enables to indirectly characterise the non-radiative recombination phenomena. In the case of HJ solar cells with intrinsic thin layers processed on high quality FZ-wafers, non-radiative recombination is dominated by the defects at the c-Si/a-Si:H interface. The luminescence measurements presented here therefore give information on the quality of the surface passivation. An estimation of the interface defect density was achieved by comparing our experimental results with modelling.

  5. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    Science.gov (United States)

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  6. Study of buffer layer thickness on bulk heterojunction solar cell.

    Science.gov (United States)

    Noh, Seunguk; Suman, C K; Lee, Donggu; Kim, Seohee; Lee, Changhee

    2010-10-01

    We studied the effect of the buffer layer (molybdenum-oxide (MoO3)) thickness on the performance of organic solar cell based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester fullerene derivative (PCBM). The thickness of MoO3 was varied from 1 nm to 30 nm for optimization of device performance. The photocurrent-voltage and impedance spectroscopy were measured under dark and AM1.5G solar simulated illumination of 100 mW/cm2 for exploring the role of the buffer layer thickness on carrier collection at an anode. The MoO3 thickness of the optimized device (efficiency approximately 3.7%) was found to be in the range of 5 approximately 10 nm. The short-circuit current and the shunt resistance decrease gradually for thicker MoO3 layer over 5 nm. The device can be modeled as the combination of three RC parallel circuits (each one for the active layer, buffer layer and interface between the buffer layer and the active layer) in series with contact resistance (Rs approximately 60 ohm).

  7. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin

    2015-12-16

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  8. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin; Tu, Wei-Chen; Tang, Libin; Wei, Tzu-Chiao; Wei, Wan-Rou; Lau, Shu Ping; Chen, Lih-Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  9. A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Sahdan, M.Z.; Mamat, M.H.; Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z.; Husairi, S.S. [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA -UiTM, 40450 Shah Alam, Selangor (Malaysia); Md Sin, N.D. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2013-06-15

    Vertically aligned Al:ZnO nanorod arrays has been used as window layer in the fabrication of ordered bulk heterojuction hybrid solar cells. The utilization of the nanorod arrays will enhance the electron transport in vertical direction and also for light harvesting applications for high performance devices. The performance of this hybrid polymer/metal oxide photovoltaic devices based on MEH-PPV [poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene)] and oriented Al:ZnO nanorod arrays is studied. The Al:ZnO nanorod arrays with a diameter of about 70–80 nm and thickness of approximately 500 nm were successfully grown on Al:ZnO-coated ITO substrate by sonicated sol–gel immersion technique. The photovoltaic performance of a short-circuit current density of 5.320 mA/cm{sup 2}, an open-circuit voltage of 195 mV and a fill factor of 27.71%, with a power conversion efficiency of about 0.287% under AM 1.5 illumination (100 mW/cm{sup 2}). To the best of our knowledge, preparation of aligned Al:ZnO nanorod arrays for this type of solar cell fabrication has not been reported by any research group.

  10. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    Science.gov (United States)

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  11. Interplay between efficiency and device architecture for small molecule organic solar cells.

    Science.gov (United States)

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  12. Plasma-enhanced atomic-layer-deposited MoO{sub x} emitters for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Johannes; Schneider, Thomas; Sprafke, Alexander N. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Mews, Mathias; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Silicon-Photovoltaics, Berlin (Germany); Kaufmann, Kai [Fraunhofer Center for Silicon Photovoltaics CSP, Halle (Germany); University of Applied Sciences, Hochschule Anhalt Koethen, Koethen (Germany); Wehrspohn, Ralf B. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Fraunhofer Institute for Mechanics of Materials IWM Halle, Halle (Germany)

    2015-09-15

    A method for the deposition of molybdenum oxide (MoO{sub x}) with high growth rates at temperatures below 200 C based on plasma-enhanced atomic layer deposition is presented. The stoichiometry of the over-stoichiometric MoO{sub x} films can be adjusted by the plasma parameters. First results of these layers acting as hole-selective contacts in silicon heterojunction solar cells are presented and discussed. (orig.)

  13. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells

    International Nuclear Information System (INIS)

    Song, Xin; Sun, Po; Chen, Zhi-Kuan; Wang, Weiwei; Ma, Wanli

    2015-01-01

    We reported a planar heterojunction perovskite solar cell fabricated from MAPbI 3−x Cl x perovskite precursor solution containing 1-chloronaphthalene (CN) additive. The MAPbI 3−x Cl x perovskite films have been characterized by UV-vis, SEM, XRD, and steady-state photoluminescence (PL). UV-vis absorption spectra measurement shows that the absorbance of the film with CN additive is significantly higher than the pristine film and the absorption peak is red shift by 30 nm, indicating the perovskite film with additive possessing better crystal structures. In-situ XRD study of the perovskite films with additive demonstrated intense diffraction peaks from MAPbI 3−x Cl x perovskite crystal planes of (110), (220), and (330). SEM images of the films with additive indicated the films were more smooth and homogenous with fewer pin-holes and voids and better surface coverage than the pristine films. These results implied that the additive CN is beneficial to regulate the crystallization transformation kinetics of perovskite to form high quality crystal films. The steady-state PL measurement suggested that the films with additive contained less charge traps and defects. The planar heterojunction perovskite solar cells fabricated from perovskite precursor solution containing CN additive demonstrated 30% enhancement in performance compared to the devices with pristine films. The improvement in device efficiency is mainly attributed to the good crystal structures, more homogenous film morphology, and also fewer trap centers and defects in the films with the additive

  14. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting.

    Science.gov (United States)

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-12-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.

  15. Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends

    Science.gov (United States)

    Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen

    2017-11-01

    The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.

  16. Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking

    KAUST Repository

    Kobayashi, Eiji

    2017-06-24

    Silicon heterojunction solar cells use crystalline silicon (c-Si) wafers as optical absorbers and employ bilayers of doped/intrinsic hydrogenated amorphous silicon (a-Si:H) to form passivating contacts. Recently, we demonstrated that such solar cells increase their operating voltages and thus their conversion efficiencies during light exposure. We found that this performance increase is due to improved passivation of the a-Si:H/c-Si interface and is induced by injected charge carriers (either by light soaking or forward-voltage biasing of the device). Here, we discuss this counterintuitive behavior and establish that: (i) the performance increase is observed in solar cells as well as modules; (ii) this phenomenon requires the presence of doped a-Si:H films, but is independent from whether light is incident from the a-Si:H(p) or the a-Si:H(n) side; (iii) UV and blue photons do not play a role in this effect; (iv) the performance increase can be observed under illumination intensities as low as 20Wm (0.02-sun) and appears to be almost identical in strength when under 1-sun (1000Wm); (v) the underlying physical mechanism likely differs from annealing-induced surface passivation.

  17. CH 3 NH 3 PbI 3 /GeSe bilayer heterojunction solar cell with high performance

    Science.gov (United States)

    Hou, Guo-Jiao; Wang, Dong-Lin; Ali, Roshan; Zhou, Yu-Rong; Zhu, Zhen-Gang; Su, Gang

    2018-01-01

    Perovskite (CH3NH3PbI3) solar cells have made significant advances recently. In this paper, we propose a bilayer heterojunction solar cell comprised of a perovskite layer combining with a IV-VI group semiconductor layer, which can give a conversion efficiency even higher than the conventional perovskite solar cell. Such a scheme uses a property that the semiconductor layer with a direct band gap can be better in absorption of long wavelength light and is complementary to the perovskite layer. We studied the semiconducting layers such as GeSe, SnSe, GeS, and SnS, respectively, and found that GeSe is the best, where the optical absorption efficiency in the perovskite/GeSe solar cell is dramatically increased. It turns out that the short circuit current density is enhanced 100% and the power conversion efficiency is promoted 42.7% (to a high value of 23.77%) larger than that in a solar cell with only single perovskite layer. The power conversion efficiency can be further promoted so long as the fill factor and open-circuit voltage are improved. This strategy opens a new way on developing the solar cells with high performance and practical applications.

  18. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Amjad, E-mail: amjad.farooq1212@hotmail.com [Wah Engineering College, University of Wah, Wah Cantt. 47040 (Pakistan); GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Karimov, Kh.S. [GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Physical Technical Institute, Aini St. 299/1, Dushanbe 734063 (Tajikistan); Ahmed, Nisar; Ali, Taimoor [GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Khalid Alamgir, M. [National Institute of Vacuum Science and Technology, NCP complex, Islamabad 44000 (Pakistan); Usman, Muhammad [Experimental Physics Laboratories, National Centre for Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2015-01-15

    In this study we present the dependence of electrical properties of copper phthalocyanine (CuPc) and metal free phthalocyanine (H{sub 2}Pc) bulk heterojunction structure under different illumination levels. To fabricate the device on ITO coated glass substrate the bulk heterojunction thin film of CuPc and H{sub 2}Pc with thickness varying from 100 nm to 300 nm are deposited by thermal evaporator. Aluminum thin film was deposited by thermal evaporation as a top contact. The optical properties of the fabricated device are investigated using UV–vis spectroscopy. The current-voltage characteristics in dark and under illumination show that the device is sensitive towards visible light. The absorption spectrum describes its photo sensitivity in the range of wavelength from 200 nm to 850 nm. Simulation of current-intensity of light curve is carried out and experimental results are found in good agreement with simulated ones.

  19. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector

    International Nuclear Information System (INIS)

    Farooq, Amjad; Karimov, Kh.S.; Ahmed, Nisar; Ali, Taimoor; Khalid Alamgir, M.; Usman, Muhammad

    2015-01-01

    In this study we present the dependence of electrical properties of copper phthalocyanine (CuPc) and metal free phthalocyanine (H 2 Pc) bulk heterojunction structure under different illumination levels. To fabricate the device on ITO coated glass substrate the bulk heterojunction thin film of CuPc and H 2 Pc with thickness varying from 100 nm to 300 nm are deposited by thermal evaporator. Aluminum thin film was deposited by thermal evaporation as a top contact. The optical properties of the fabricated device are investigated using UV–vis spectroscopy. The current-voltage characteristics in dark and under illumination show that the device is sensitive towards visible light. The absorption spectrum describes its photo sensitivity in the range of wavelength from 200 nm to 850 nm. Simulation of current-intensity of light curve is carried out and experimental results are found in good agreement with simulated ones

  20. Increased short circuit current in an azafullerene-based organic solar cell.

    Science.gov (United States)

    Cambarau, Werther; Fritze, Urs F; Viterisi, Aurélien; Palomares, Emilio; von Delius, Max

    2015-01-21

    We report the synthesis of a solution-processable, dodecyloxyphenyl-substituted azafullerene monoadduct (DPC59N) and its application as electron acceptor in bulk heterojunction organic solar cells (BHJ-OSCs). Due to its relatively strong absorption of visible light, DPC59N outperforms PC60BM in respect to short circuit current (JSC) and external quantum efficiency (EQE) in blends with donor P3HT.

  1. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide.

    Science.gov (United States)

    Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  2. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

    International Nuclear Information System (INIS)

    Bashiri, Hadi; Azim Karami, Mohammad; Mohammadnejad, Shahramm

    2017-01-01

    By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. (paper)

  3. Characterization of Transition Metal Oxide/Silicon Heterojunctions for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Luis G. Gerling

    2015-10-01

    Full Text Available During the last decade, transition metal oxides have been actively investigated as hole- and electron-selective materials in organic electronics due to their low-cost processing. In this study, four transition metal oxides (V2O5, MoO3, WO3, and ReO3 with high work functions (>5 eV were thermally evaporated as front p-type contacts in planar n-type crystalline silicon heterojunction solar cells. The concentration of oxygen vacancies in MoO3−x was found to be dependent on film thickness and redox conditions, as determined by X-ray Photoelectron Spectroscopy. Transfer length method measurements of oxide films deposited on glass yielded high sheet resistances (~109 Ω/sq, although lower values (~104 Ω/sq were measured for oxides deposited on silicon, indicating the presence of an inversion (hole rich layer. Of the four oxide/silicon solar cells, ReO3 was found to be unstable upon air exposure, while V2O5 achieved the highest open-circuit voltage (593 mV and conversion efficiency (12.7%, followed by MoO3 (581 mV, 12.6% and WO3 (570 mV, 11.8%. A short-circuit current gain of ~0.5 mA/cm2 was obtained when compared to a reference amorphous silicon contact, as expected from a wider energy bandgap. Overall, these results support the viability of a simplified solar cell design, processed at low temperature and without dopants.

  4. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  5. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  6. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Science.gov (United States)

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318

  7. Effect of regioregularity on recombination dynamics in inverted bulk heterojunction organic solar cells

    Science.gov (United States)

    Chandrasekaran, Naresh; Liu, Amelia C. Y.; Kumar, Anil; McNeill, Christopher R.; Kabra, Dinesh

    2018-01-01

    The effect of polymer regioregularity on the charge transport properties and bimolecular recombination rates of polymer-based solar cells is studied in detail using transient photovoltaic techniques. We compare organic solar cells fabricated with an ITO/ZnO/PEIE/P3HT:PCBM/MoO3/Ag structure using either 100% regioregular poly(3-hexylthiophene) (DF-P3HT) yielding an average power conversion efficiency (PCE) of 3.8  ±  0.3% or 92% regioregular P3HT (rr-P3HT) that yields an average PCE of 3.28  ±  0.4%. Transient photocurrent measurements reveal the presence of less mobile photoinduced charges in rr-P3HT:PCBM cells when compared to DF-P3HT:PCBM solar cells. Transient photovoltage measurements are used to establish the relationship between regioregularity and bimolecular recombination rate constant (k) finding that under 1 Sun, devices with high regioregularity have a longer τ despite having a higher k. The high value of k for the DF-P3HT:PCBM system as compared to the rr-P3HT:PCBM system is attributed to enhanced mobility and better charge transport of mobile charges in the DF-P3HT:PCBM system, consistent with enhanced fibrillar order in DF-P3HT films observed with transmission electron microscopy. We also note a slight decrease in cell open circuit voltage with increase in polymer regioregularity, which is due to the increase in k. Other recombination mechanisms such as trap-assisted recombination are found to be important in the lower regioregular P3HT device compounded by the reduced mobility and poor inter-chain ordering.

  8. Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on silicon heterojunction solar cells using textured aluminum doped zinc oxide (ZnO:Al as a transparent conductive oxide (TCO instead of flat indium tin oxide. Double side silicon heterojunction solar cell were fabricated by radio frequency plasma enhanced chemical vapor deposition on high life time N-type float zone crystalline silicon wafers. On both sides of these cells we have deposited by radio frequency magnetron sputtering ZnO:Al layers of thickness ranging from 800 nm to 1400 nm. These TCO layers were then textured by dipping the samples in a 0.5% hydrochloric acid. External quantum efficiency as well as I-V under 1 sun illumination measurements showed an increase of the current for the cells using textured ZnO:Al. The cells were then annealed at 150 °C, 175 °C and 200 °C during 30 min in ambient atmosphere and characterized at each annealing step. The results show that annealing has no impact on the open circuit voltage of the devices but that up to a 175 °C it enhances their short circuit current, consistent with an overall enhancement of their spectral response. Our results suggest that ZnO:Al is a promising material to increase the short circuit current (Jsc while avoiding texturing the c-Si substrate.

  9. Interface engineering for efficient fullerene-free organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  10. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  11. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.; Beaujuge, Pierre M.; Holcombe, Thomas W.; Lee, Olivia P.; Fréchet, Jean M. J.

    2010-01-01

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  12. Fabrication of AgInSe2 heterojunction solar cell

    Science.gov (United States)

    Khudayer, Iman Hameed

    2018-05-01

    Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta = 400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta = 400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization, the photovoltaic parameters such as, open-circuit voltage, short-circuit current density, fill factor, ideality factor, and efficiencies, were computed. As well as the built-in potential, carrier concentration and depletion width were determined under RT and (Ta = 400, 500 and 600) K from C-V measurement.

  13. PHOTOELECTROCHEMICAL SOLAR ENERGY CONVERSION ...

    African Journals Online (AJOL)

    Preferred Customer

    on indium-doped tin oxide (ITO) used as a photoactive electrode; amorphous ... The polymer electrolyte was prepared by dissolving 309 mg of POMOE in 25 mL .... The VOC of Bulk heterojunction (BHJ) based solar cells is strongly correlated ...

  14. Improved performance of molecular bulk-heterojunction photovoltaic cells through predictable selection of solvent additives

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Kenneth R.; Wieruszewski, Patrick M.; Stalder, Romain; Mei, Jianguo [The George and Josephine Butler, Polymer Research Laboratory, Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL 32611-7200 (United States); Hartel, Michael J.; So, Franky [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Reynolds, John R. [The George and Josephine Butler, Polymer Research Laboratory, Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL 32611-7200 (United States); School of Chemistry and Biochemistry, School of Materials Science and Engineering and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2012-11-21

    Solvent additives provide an effective means to alter the morphology and thereby improve the performance of organic bulk-heterojunction photovoltaics, although guidelines for selecting an appropriate solvent additive remain relatively unclear. Here, a family of solvent additives spanning a wide range of Hansen solubility parameters is applied to a molecular bulk-heterojunction system consisting of an isoindigo and thiophene containing oligomer as the electron donor and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM) as the electron acceptor. Hansen solubility parameters are calculated using the group contribution method and compared with the measured solubilities for use as a screening method in solvent additive selection. The additives are shown to alter the morphologies in a semipredictable manner, with the poorer solvents generally resulting in decreased domain sizes, increased hole mobilities, and improved photovoltaic performance. The additives with larger hydrogen bonding parameters, namely triethylene glycol (TEG) and N-methyl-2-pyrrolidone (NMP), are demonstrated to increase the open circuit voltage by 0.2 V. Combining a solvent additive observed to increase short circuit current, poly(dimethylsiloxane), with TEG results in an increase in power conversion efficiency from 1.4 to 3.3%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations.

    Science.gov (United States)

    Mandujano-Ramírez, Humberto J; González-Vázquez, José P; Oskam, Gerko; Dittrich, Thomas; Garcia-Belmonte, Germa; Mora-Seró, Iván; Bisquert, Juan; Anta, Juan A

    2014-03-07

    Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.

  16. Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors

    KAUST Repository

    Bloking, Jason T.; Han, Xu; Higgs, Andrew T.; Kastrop, John P.; Pandey, Laxman; Norton, Joseph E.; Risko, Chad; Chen, Cynthia E.; Bré das, Jean-Luc; McGehee, Michael D.; Sellinger, Alan

    2011-01-01

    -hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (PI-BT) and 4,7-bis(4-(N-hexyl-naphthalimide)vinyl)benzo[c]1,2,5-thiadiazole (NI-BT), show significantly different behaviors in bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor. Two

  17. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  18. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    International Nuclear Information System (INIS)

    Zeng, Xiangbin; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-01-01

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B_2H_6 flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10"−"3 Ω cm, mobility of 16.5–25.5 cm"2/Vs, and carrier concentration of 2.2–2.7 × 10"2"0 cm"−"3 were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n"+-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm"2 and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm"2 and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  19. Flexible organic solar cells including efficiency enhancing grating structures

    International Nuclear Information System (INIS)

    De Oliveira Hansen, Roana Melina; Liu Yinghui; Madsen, Morten; Rubahn, Horst-Günter

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications. (paper)

  20. Theoretical investigation on heterojunction solar cell

    International Nuclear Information System (INIS)

    Prema, K.; Geetha, K.

    1986-11-01

    The study of thin film solar cells has proved that the surface is rough. A two-dimensional method based on the integral equation technique to analyse thin film solar cells has been developed by DeMey et al. In this paper we present our analysis of a thin film solar cell using the above techniques. Variation of the minority carrier concentration, the saturation current and the junction current of the solar cell with surface roughness is presented. (author). 8 refs, 4 figs

  1. Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells

    Science.gov (United States)

    Ahmed, Nuha; Zhang, Lei; Sriramagiri, Gowri; Das, Ujjwal; Hegedus, Steven

    2018-04-01

    Electroluminescence (EL) coupled with reflection measurements are used to spatially quantify optical losses in silicon heterojunction solar cells due to plasmonic absorption in the metal back contacts. The effect of indium tin oxide back reflector in decreasing this plasmonic absorption is found to increase the reflection from the back nickel (Ni)-aluminum (Al) and Al metals by ˜12% and ˜41%, respectively, in both bifacial and front junction silicon solar cells. Losses due to back reflection are calculated by comparison between the EL emission signals in high and low back reflection samples and are shown to be in agreement with standard reflection measurements. We conclude that the optical properties of the back contact can significantly influence the EL intensity which complicates the interpretation of EL as being primarily due to recombination especially when comparing two different devices with spatially varying back surface structures.

  2. Periodically arranged colloidal gold nanoparticles for enhanced light harvesting in organic solar cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Fernandes Cauduro, André Luis; Kunstmann-Olsen, Casper

    2016-01-01

    Although organic solar cells show intriguing features such as low-cost, mechanical flexibility and light weight, their efficiency is still low compared to their inorganic counterparts. One way of improving their efficiency is by the use of light-trapping mechanisms from nano- or microstructures......, which makes it possible to improve the light absorption and charge extraction in the device’s active layer. Here, periodically arranged colloidal gold nanoparticles are demonstrated experimentally and theoretically to improve light absorption and thus enhance the efficiency of organic solar cells....... Surface-ordered gold nanoparticle arrangements are integrated at the bottom electrode of organic solar cells. The resulting optical interference and absorption effects are numerically investigated in bulk hetero-junction solar cells based on the Finite-Difference Time-Domain (FDTD) and Transfer Matrix...

  3. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H.P.; Xu, S.; Zhao, Z.; Xiang, Y.

    2014-01-01

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H 2 , aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  4. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    KAUST Repository

    Sharenko, Alexander; Treat, Neil D.; Love, John A.; Toney, Michael F.; Stingelin, Natalie; Nguyen, Thuc-Quyen

    2014-01-01

    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is

  5. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    KAUST Repository

    Sharenko, Alexander

    2014-08-12

    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is

  6. Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing

    KAUST Repository

    Verploegen, Eric; Miller, Chad E.; Schmidt, Kristin; Bao, Zhenan; Toney, Michael F.

    2012-01-01

    Using grazing incidence X-ray scattering, we observe the effects of solvent vapors upon the morphology of poly(3-hexylthiophene)-phenyl-C 61-butyric acid methyl ester (P3HT-PCBM) bulk heterojunction thin film blends in real time; allowing us to observe morphological rearrangements that occur during this process as a function of solvent. We detail the swelling of the P3HT crystallites upon the introduction of solvent and the resulting changes in the P3HT crystallite morphology. We also demonstrate the ability for tetrahydrofuran vapor to induce crystallinity in PCBM domains. Additionally, we measure the nanoscale phase segregated domain size as a function of solvent vapor annealing and correlate this to the changes observed in the crystallite morphology of each component. Finally, we discuss the implications of the morphological changes induced by solvent vapor annealing on the device properties of BHJ solar cells. © 2012 American Chemical Society.

  7. Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing

    KAUST Repository

    Verploegen, Eric

    2012-10-23

    Using grazing incidence X-ray scattering, we observe the effects of solvent vapors upon the morphology of poly(3-hexylthiophene)-phenyl-C 61-butyric acid methyl ester (P3HT-PCBM) bulk heterojunction thin film blends in real time; allowing us to observe morphological rearrangements that occur during this process as a function of solvent. We detail the swelling of the P3HT crystallites upon the introduction of solvent and the resulting changes in the P3HT crystallite morphology. We also demonstrate the ability for tetrahydrofuran vapor to induce crystallinity in PCBM domains. Additionally, we measure the nanoscale phase segregated domain size as a function of solvent vapor annealing and correlate this to the changes observed in the crystallite morphology of each component. Finally, we discuss the implications of the morphological changes induced by solvent vapor annealing on the device properties of BHJ solar cells. © 2012 American Chemical Society.

  8. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  9. Potential effect of CuInS2/ZnS core-shell quantum dots on P3HT/PEDOT:PSS heterostructure based solar cell

    Science.gov (United States)

    Jindal, Shikha; Giripunje, S. M.

    2018-07-01

    Nanostructured quantum dots (QDs) are quite promising in the solar cell application due to quantum confinement effect. QDs possess multiple exciton generation and large surface area. The environment friendly CuInS2/ZnS core-shell QDs were prepared by solvothermal method. Thus, the 3 nm average sized CuInS2/ZnS QDs were employed in the bulk heterojunction device and the active blend layer consisting of the P3HT and CuInS2/ZnS QDs was investigated. The energy level information of CuInS2/ZnS QDs as an electron acceptor was explored by ultra violet photoelectron spectroscopy. Bulk heterojunction hybrid device of ITO/PEDOT:PSS/P3HT: (CuInS2/ZnS QDs)/ZnO/Ag was designed by spin coating approach and its electrical characterization was investigated by solar simulator. Current density - voltage characteristics shows the enhancement in power conversion efficiency with increasing concentration of CuInS2/ZnS QDs in bulk heterojunction device.

  10. Fluorene-based narrow-band-gap copolymers for red light- emitting diodes and bulk heterojunction photovoltaic cells

    Institute of Scientific and Technical Information of China (English)

    Mingliang SUN; Li WANG; Yangjun XIA; Bin DU; Ransheng LIU; Yong CAO

    2008-01-01

    A series of narrow band-gap conjugated copo-lymers (PFO-DDQ) derived from 9,9-dioctylfluorene (DOF) and 2,3-dimethyl-5,8-dithien-2-yl-quinoxalines (DDQ) is prepaid by the palladium-catalyzed Suzuki coupling reaction with the molar feed ratio of DDQ at around 1%,5%,15%,30% and 50%,respectively.The obtained polymers are readily soluble in common organic solvents.The solutions and the thin solid films of the copolymers absorb light from 300-590 nm with two absorbance.peaks at around 380 and 490 nm.The intens-ity of 490 nm peak increases with the increasing DDQ content in the polymers.Efficient energy transfer due to exciton trapping on narrow-band-gap DDQ sites has been observed.The PL emission consists exclusively of DDQ unit emission at around 591 643 nm depending on the DDQ content in solid film.The EL emission peaks are red-shifted from 580 nm for PFO-DDQ1 to 635 nm for PFO-DDQ50.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/ PVK/PFO-DDQt5/Ba/A1 is 1.33% with a luminous effi-ciency 1.54 cd/A.Bulk heterojunction photovoltaic cells fabricated from composite films of PFO-DDQ30 copoly-mer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as electron donor and electron acceptor,respect-ively in device configuration:ITO/PEDOT:PSS/PFO-DDQ30:PCBM/PFPNBr/Al shows power conversion effi-ciencies of 1.18% with open-circuit voltage (Voc) of 0.90 V and short-circuit current density (Jsc) of 2.66 mA/cm2 under an AM1.5 solar simulator (100 mW/cm2).The photocurrent response wavelengths of the PVCs based on PFO-DDQ30/PCBM blends covers 300-700 nm.This indicates that these kinds of low band-gap polymers are promising candidates for polymeric solar cells and red light-emitting diodes.

  11. Squaraine Planar-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Bin Fan

    2009-01-01

    derivatives with extraordinarily high extinction coefficients are used as electron donors in bilayer heterojunctions with fullerene C60 as electron acceptor. Due to the very strong squaraine absorption band in the red spectral domain, antibatic behavior due to light filtering is observed in the photocurrent spectrum for film thicknesses of 35 nm to 40 nm. At reduced film thicknesses of 20 nm, this filtering effect at maximum absorption can be alleviated and power conversion efficiencies under simulated AM 1.5 full sun irradiation of 0.59% and 1.01% are obtained for the two squaraine derivatives, respectively. The photovoltaic properties of these cells are investigated with respect to electrode materials and chemical doping.

  12. Environment-oriented life cycle analysis of bulk materials, applied in solar cell systems

    International Nuclear Information System (INIS)

    Geelen, H.

    1994-04-01

    In the solar cell technology several bulk materials (glass, steel, aluminium, concrete, copper, zinc and synthetic materials) are applied intensively. By means of a life cycle analysis (LCA) the environmental effects and bottlenecks of the use of these materials is investigated in this report. Also attention is paid to the options to reduce the environmental effects of photovoltaic (PV) systems by changing processes and/or by redesign of the PV systems. Two systems are studied: solar cells, integrated in pitched roofs, and solar cells on the ground in solar cell arrays. The study is focused on the use of bulk materials in the solar module, the cables and the supporting construction. After brief introductions on the environment-oriented LCA method, the standard construction of PV modules and the principles of solar cells, an overview is given of the present and future material input for the above-mentioned PV-systems. Next, attention is paid to the energy consumption and the most important emissions of the production of the bulk materials. Based on these data three environmental effect scores of the PV systems are calculated and analyzed: the energy consumption, the greenhouse effect or global warming equivalent, and the acidifying effect or acidification equivalent. Also a fourth effect, for which the so-called environmental indicator human toxicity is defined, is described. By means of this indicator the hazardous effects for the public health can be indicated. The sum of the four indicators is a measure for the environmental profile of the roof PV-system and the ground PV-array system. Recommendations are given by which the systems and their environmental profiles can be improved. 29 figs., 50 tabs., 5 appendices, refs

  13. Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies

    KAUST Repository

    Aboulhassan, A.

    2017-07-04

    The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state-of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths.

  14. Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies

    KAUST Repository

    Aboulhassan, A.; Sicat, R.; Baum, D.; Wodo, O.; Hadwiger, Markus

    2017-01-01

    The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state-of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths.

  15. Temperature dependence of organic solar cell parameters

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Matthias; Mueller, Klaus; Philip, Shine; Paloumpa, Ioanna; Henkel, Karsten; Schmeisser, Dieter [Brandenburgische Technische Universitaet Cottbus (Germany). Angewandte Physik - Sensorik

    2009-07-01

    The influence of an annealing step on the parameters of bulk heterojunction organic solar cells is investigated. In order to fabricate the solar cells we use glass coated with ITO (indium-tin oxide) as a substrate on which the active layer consisting of P3HT and PCBM is spincoated. Al-electrodes are evaporated on top of the active layer. We use PEDOT:PSS as buffer layer. Each sample is annealed at different temperatures for a short time. Between every temperature step the I-V characteristic of the cell is measured. The following parameters are derived afterwards: FF, I{sub sc} (density), V{sub oc}. Also the efficiency is estimated. The results show a maximum cell efficiency for drying at 100 C for 20sec. A further important step for preparation is the drying procedure of the PEDOT:PSS layer. Here an improvement of about 50% in cell efficiency is measured after drying at 50 C for 5 days under inert gas atmosphere.

  16. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    A. Baumann

    2014-08-01

    Full Text Available We herein perform open circuit voltage decay (OCVD measurements on methylammonium lead iodide (CH3NH3PbI3 perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70BM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%–70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.

  17. Geometric light trapping with a V-trap for efficient organic solar cells

    KAUST Repository

    Kim, Soo Jin

    2013-03-14

    The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

  18. Silicon Heterojunction Solar Cells Using AlOx and Plasma-Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2014-06-01

    Full Text Available Aluminum oxide (AlOx and plasma immersion ion implantation (PIII were studied in relation to passivated silicon heterojunction solar cells. When aluminum oxide (AlOx was deposited on the surface of a wafer; the electric field near the surface of wafer was enhanced; and the mobility of the carrier was improved; thus reducing carrier traps associated with dangling bonds. Using PIII enabled implanting nitrogen into the device to reduce dangling bonds and achieve the desired passivation effect. Depositing AlOx on the surface of a solar cell increased the short-circuit current density (Jsc; open-circuit voltage (Voc; and conversion efficiency from 27.84 mA/cm2; 0.52 V; and 8.97% to 29.34 mA/cm2; 0.54 V; and 9.68%; respectively. After controlling the depth and concentration of nitrogen by modulating the PIII energy; the ideal PIII condition was determined to be 2 keV and 10 min. As a result; a 15.42% conversion efficiency was thus achieved; and the Jsc; Voc; and fill factor were 37.78 mA/cm2; 0.55 V; and 0.742; respectively.

  19. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells

    DEFF Research Database (Denmark)

    Pan, Hongbin; Zuo, Lijian; Fu, Weifei

    2013-01-01

    Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend active layer have been fabricated with a MoO3–Au co-evaporation composite film as the anode interfacial layer (AIL). The optical...

  20. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells

    Science.gov (United States)

    Sachenko, A. V.; Kryuchenko, Yu. V.; Kostylyov, V. P.; Korkishko, R. M.; Sokolovskyi, I. O.; Abramov, A. S.; Abolmasov, S. N.; Andronikov, D. A.; Bobyl', A. V.; Panaiotti, I. E.; Terukov, E. I.; Titov, A. S.; Shvarts, M. Z.

    2016-03-01

    Temperature dependences of the photovoltaic characteristics of ( p)a-Si/( i)a-Si:H/( n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80-420 K. The open-circuit voltage ( V OC), fill factor ( FF) of the current-voltage ( I-U) characteristic, and maximum output power ( P max) reach limiting values in the interval of 200-250 K on the background of monotonic growth in the short-circuit current ( I SC) in a temperature range of 80-400 K. At temperatures below this interval, the V OC, FF, and P max values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I-U curve shape exhibits a change that is accompanied by a drop in V OC. Possible factors that account for the decrease in V OC, FF, and P max are considered.

  1. Theoretical and Experimental Study of Plasmonic Polymer Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Adam, Jost; Madsen, Morten

    The organic bulk hetero-junction solar cell has remarkable advantages such as low cost, mechanical flexibility and simple process techniques. Recently, low-band gap photoactive materials have obtained a significant attention due to their potential to absorb a wider range of the solar spectrum...... to attain higher power conversion efficiencies. Many low-band gap photoactive materials, however, still show a relatively low external quantum efficiency of less than 60% [1]. One possible approach to improve the device performance is to increase the light absorption in the active layer. This may, amongst...... other approaches, be achieved by using nano- or micro-structures that trap light at specific wavelengths [2], or by using the localized surface plasmon resonance effect of metal nanoparticles in the devices. In this work, we theoretically studied planar polymer solar cell based on finite-difference time...

  2. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells

    International Nuclear Information System (INIS)

    Huang, Xiaokun; Hu, Ziyang; Xu, Jie; Wang, Peng; Zhang, Jing; Zhu, Yuejin

    2017-01-01

    Highlights: • An ultrathin and discrete TiO 2 (u-TiO 2 ) was fabricated at low temperature. • High-performance perovskite solar cells based u-TiO 2 was realized. • u-TiO 2 between perovskite and FTO functions as a bridge for electron transport. • u-TiO 2 accelerates electron transfer and alleviates charge recombination. - Abstract: A compact TiO 2 (c-TiO 2 ) layer fabricated by spin coating or spray pyrolysis following a high-temperature sintering is a routine in high-performance planar heterojunction perovskite solar cells. Here, we demonstrate an effective low-temperature approach to fabricate an ultrathin and discrete TiO 2 (u-TiO 2 ) for enhancing photovoltaic performance of perovskite solar cells. Via hydrolysis of low-concentration TiCl 4 solution at 70 °C, u-TiO 2 was grown on a fluorine doped tin oxide (FTO) substrate, forming the electron selective contact with the photoactive CH 3 NH 3 PbI 3 film. The perovskite solar cell using u-TiO 2 achieves an efficiency of 13.42%, which is compared to 13.56% of the device using c-TiO 2 prepared by high-temperature sintering. Cyclic voltammetry, steady-state photoluminescence spectroscopy and electrical impedance spectroscopy were conducted to study interface engineering and charge carrier dynamics. Our results suggest that u-TiO 2 functions as a bridge for electron transport between perovskite and FTO, which accelerates electron transfer and alleviates charge recombination.

  4. Influence of the polymer architecture on morphology and device properties of polymer bulk heterojunction photovoltaic cells

    NARCIS (Netherlands)

    Koetse, M.M.; Sweelssen, J.; Franse, T.; Veenstra, S.C.; Kroon, J.M.; Yang, X.N.; Alexeev, A.A.; Loos, J.; Schubert, U.S.; Schoo, H.F.M.; Kafafi, Z.H.; Lane, P.A.

    2004-01-01

    Polymer bulk hetero junction solar cells were made from poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV) as donor and poly(cyanoetherphenylenevinylene) (PCNEPV) derivatives as acceptor material. In this paper we start out with discussing the synthesis of the materials.

  5. Bulk Heterojunction Organic Solar Cell Area-Dependent Parameter Fluctuation

    Directory of Open Access Journals (Sweden)

    A. J. Trindade

    2017-01-01

    Full Text Available Organic solar cell efficiency is known to be active area dependent and is usually a problem in the upscale factor for market applications. In this work, a detailed study of organic photovoltaic devices with active layer based on poly(3-hexylthiophene (P3HT and 1-(3-methoxycarbonyl-propyl-1-phenyl-(6,6C61 (PCBM is made, evaluating the effect of the change on the active area from 10−2 to 4 cm4. The device structure was kept simple in order to allow the understanding of the physical effects involved. Device figures of merit were extracted from the equivalent circuit using a genetic-based algorithm, and their relationship with the active area was compared. It is observed that the efficiency drops significantly with the active area increase (as the fill factor while the parallel and series resistance, adjusted to the active area, seems to be relatively constant and increases linearly, respectively. The short circuit current and the generated photocurrent also drop significantly with the active area increase. The open circuit voltage does not show major changes. These results are discussed considering the main influences for the observed efficiency data. Particularly, as the basic circuit model seems to fail to explain the macroscopic results, the behavior can be related with the enlargement of defect interaction.

  6. Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications

    KAUST Repository

    Cruciani, Federico

    2018-04-01

    Bulk heterojunction (BHJ) devices represent a very versatile family of organic cells for both the fields of solar energy conversion and photodetection. Organic photovoltaics (OPV) are an attractive alternative to their silicon-based counterparts because of their potential for low-cost roll-to-roll printing, and their intended application in light-weight mechanically conformable devices and in window-type semi-transparent PV modules. Of all proposed OPV candidates, polymer donor with different absorption range are especially promising when used in conjunction with complementary absorbing acceptor materials, like fullerene derivatives (PCBM), conjugated molecules or polymers, achieving nowadays power conversion efficiencies (PCEs) in the range of 10-13% and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR and high detectivity values reached so far, compared to the inorganic devices. Since the research has been focused on the enhancement of those numbers for an effective commercialization of organic cells, the topic of the following thesis has been centered on the synthesis of different polymer structures with diverse absorption ranges, used as donor or acceptor, with emphasis on performance in various BHJ devices either for solar cells and photodetectors. In the first part, two new wide band gap polymers, used as donor material in BHJ devices blended with fullerene and small molecule acceptors, are presented. The PBDT_2FT and PBDTT_2FT have shown nice efficiencies from 7% to 9.8%. The device results are implemented with a morphology study and a specific application in a semi-transparent tandem device, reaching a record PCE of 5.4% for average level of transparency of 48%. In another section two new low band gap polymers (Eopt~ 1.26 eV) named DTP_2FBT and (Eopt~ 1.1 eV) named BDTT_BTQ are presented. While the DTP

  7. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  8. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVSi surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and

  9. Solar Cell Polymer Based Active Ingredients PPV and PCBM

    Science.gov (United States)

    Hardeli, H.; Sanjaya, H.; Resikarnila, R.; Nitami H, R.

    2018-04-01

    A polymer solar cell is a solar cell based on a polymer bulk heterojunction structure using the method of thin film, which can convert solar energy into electrical energy. Absorption of light is carried by active material layer PPV: PCBM. This study aims to make solar cells tandem and know the value of converting solar energy into electrical energy and increase the value of efficiency generated through morphological control, ie annealing temperature and the ratio of active layer mixture. The active layer is positioned above the PEDOT:PSS layer on ITO glass substrate. The characterization results show the surface morphology of the PPV:PCBM active layer is quite evenly at annealing temperature of 165 ° C. The result of conversion of electrical energy with a UV light source in annealing samples with temperature 165 ° C is 0.03 mA and voltage of 4.085 V with an efficiency of 2.61% and mixed ratio variation was obtained in comparison of P3HT: PCBM is 1: 3

  10. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  11. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Impact of Microstructure on the Photostability of Organic Bulk Heterojunction Solar Cells

    OpenAIRE

    Heumueller, Thomas

    2016-01-01

    The aim of this thesis is to understand the mechanisms of burn-in degradation in organic solar cells and show pathways to reduce burn-in and increase device lifetime. The initial blend morphology is found to play a critical role during degradation and the main focus of this thesis is on the impact of microstructure on device stability. In order to reveal how morphology influences light induced losses of the characteristic photovoltaic parameters short circuit current and open circuit voltage ...

  13. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  14. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  15. Controlled Synthesis and Functionalization of Vertically-Aligned Carbon Nanotubes for Multifunctional Applications

    Science.gov (United States)

    2015-05-07

    Graphene Oxide Derivatives as Charge Extraction Materials for High-Performance Bulk Heterojunction Solar Cells...performance bulk heterojunction solar cells" Adv. Mater. 24, 2227, 2012. 38. J. Liu, Y. Xue, L. Dai. "Sulfated graphene oxide as a hole-extraction layer...34Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells" Adv. Mater. 24, 2227, 2012

  16. An efficient descriptor model for designing materials for solar cells

    Science.gov (United States)

    Alharbi, Fahhad H.; Rashkeev, Sergey N.; El-Mellouhi, Fedwa; Lüthi, Hans P.; Tabet, Nouar; Kais, Sabre

    2015-11-01

    An efficient descriptor model for fast screening of potential materials for solar cell applications is presented. It works for both excitonic and non-excitonic solar cells materials, and in addition to the energy gap it includes the absorption spectrum (α(E)) of the material. The charge transport properties of the explored materials are modelled using the characteristic diffusion length (Ld) determined for the respective family of compounds. The presented model surpasses the widely used Scharber model developed for bulk heterojunction solar cells. Using published experimental data, we show that the presented model is more accurate in predicting the achievable efficiencies. To model both excitonic and non-excitonic systems, two different sets of parameters are used to account for the different modes of operation. The analysis of the presented descriptor model clearly shows the benefit of including α(E) and Ld in view of improved screening results.

  17. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  18. Charge transport across bulk heterojunction organic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, Genene [University of Kwazulu-Natal, School of Physics, Scottsville (South Africa); Addis Ababa University, Department of Physics, Addis Ababa (Ethiopia)

    2012-01-15

    The transport of charges in organic photo-active film has been the focus of tremendous research in the past few decades with the view to understand the physics of the polymers. Bulk heterojunction type devices are particularly more interesting because of their high power conversion efficiency. We have fabricated organic PV cell based on sandwich type ITO/PEDOT:PSS/APFO green-6:PCBM/LiF/Al device structure. The space charge limited currents were investigated to be able to derive important transport parameters of the devices. The measured current agrees very well with trap free space charge limited transport theory. The zero field mobility and field activation factor found from the data were {mu} {sub 0}=(3.39{+-}0.2) x 10{sup -6} m{sup 2}/V sec and {gamma}=(8.3{+-}0.3) x 10{sup -4} (m/V){sup 1/2}, respectively. (orig.)

  19. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan [Univ. of California, Santa Barbara, CA (United States); Bazan, Guillermo [Univ. of California, Santa Barbara, CA (United States); Nguyen, Thuc-Quyen [Univ. of California, Santa Barbara, CA (United States); Wudl, Fred [Univ. of California, Santa Barbara, CA (United States)

    2015-02-12

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  20. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    inherent a-Si:H/c-Si band offset distribution with a low conduction band offset and a large valence band offset is disadvantageous for p-c-Si heterojunction solar cells if compared to their n-c-Si counterparts. A calculation of the saturation current densities of the cell's emitter, bulk and back contact demonstrates that the n-a-Si:H/p-c-Si emitter suffers from a low built-in potential. Modelling of the back contact based on the charge carrier transport equations shows that the insertion of an i-a-Si:H layer with a thickness d {>=} 3 nm (that is mandatory for a high surface passivation quality) leads to a series resistance that is critical for usage in a solar cell. The model mainly ascribes the high back contact resistance to the large valence band offset at the heterojunction. (orig.)

  1. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  2. Dielectric nanostructures for broadband light trapping in organic solar cells

    KAUST Repository

    Raman, Aaswath

    2011-09-15

    Organic bulk heterojunction solar cells are a promising candidate for low-cost next-generation photovoltaic systems. However, carrier extraction limitations necessitate thin active layers that sacrifice absorption for internal quantum efficiency or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D and multi-level ITO-air gratings lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model organic solar cell where PCDTBT:PC71BM is the organic semiconductor. Specific to this approach, the active layer itself remains untouched yet receives the benefit of light trapping by nanostructuring the top surface below which it lies. The techniques developed here are broadly applicable to organic semiconductors in general, and enable partial decoupling between active layer thickness and photocurrent generation. © 2011 Optical Society of America.

  3. Ordering effects in benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6- dione polymers with >7% solar cell efficiency

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; El Labban, Abdulrahman; Hansen, Michael Ryan; Tassone, Christopher J.; Toney, Michael F.; Beaujuge, Pierre

    2014-01-01

    Benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6-dione (PBDFTPD) polymers prepared by microwave-assisted synthesis can achieve power conversion efficiencies (PCEs) >7% in bulk-heterojunction solar cells with phenyl-C61/71-butyric acid methyl

  4. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    Science.gov (United States)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  5. Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Singh, Vinamrita; Arora, Swati; Arora, Manoj; Sharma, Vishal; Tandon, R.P.

    2014-01-01

    The effect of multi-walled carbon nanotubes on the properties of P3HT:PCBM based solar cells has been studied. The concentration of MWCNT was optimized at 0.2% and the concentration of P3HT:PCBM was increased from 20mg/ml to 30mg/ml to obtain highest efficiency. An increase in charge carrier mobility was also observed, which is attributed to high charge transport properties of MWCNT. The active layer was optically stable with respect to absorption, whereas the emission spectra revealed an increase in charge recombination with time. The solar cells doped with MWCNT exhibited increased stability as compared to undoped cells. - Highlights: • MWCNT doped P3HT:PCBM based solar cells are optimized for increased efficiency. • Degradation studies showed that MWCNT stabilizes the cell performance. • Mobility and basic device characteristics decreased with time. • Photoluminescence studies with time showed an increase in charge recombination. • Degradation for devices kept in air is faster as compared to the samples in vacuum

  6. Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain Delhi College, University of Delhi, Delhi 110002 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Sharma, Vishal; Tandon, R.P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-08-22

    The effect of multi-walled carbon nanotubes on the properties of P3HT:PCBM based solar cells has been studied. The concentration of MWCNT was optimized at 0.2% and the concentration of P3HT:PCBM was increased from 20mg/ml to 30mg/ml to obtain highest efficiency. An increase in charge carrier mobility was also observed, which is attributed to high charge transport properties of MWCNT. The active layer was optically stable with respect to absorption, whereas the emission spectra revealed an increase in charge recombination with time. The solar cells doped with MWCNT exhibited increased stability as compared to undoped cells. - Highlights: • MWCNT doped P3HT:PCBM based solar cells are optimized for increased efficiency. • Degradation studies showed that MWCNT stabilizes the cell performance. • Mobility and basic device characteristics decreased with time. • Photoluminescence studies with time showed an increase in charge recombination. • Degradation for devices kept in air is faster as compared to the samples in vacuum.

  7. An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells

    KAUST Repository

    Cai, Ning

    2011-04-13

    The high molar absorption coefficient organic D-π-A dye C220 exhibits more than 6% certified electric power conversion efficiency at AM 1.5G solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis(N,N-dimethoxyphenylamine)-9,9′- spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This contributes to a new record (6.08% by NREL) for this type of sensitized heterojunction photovoltaic device. Efficient charge generation is proved by incident photon-to-current conversion efficiency spectra. Transient photovoltage and photocurrent decay measurements showed that the enhanced performance achieved with C220 partially stems from the high charge collection efficiency over a wide potential range. © 2011 American Chemical Society.

  8. Thermocleavable Materials for Polymer Solar Cells with High Open Circuit Voltage-A Comparative Study

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Gevorgyan, Suren; Jørgensen, Mikkel

    2009-01-01

    The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3......MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 °C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical...... conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis...

  9. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer.

    Science.gov (United States)

    Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y

    2015-01-27

    An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pronounced Effects of a Triazine Core on Photovoltaic Performance-Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor.

    Science.gov (United States)

    Duan, Yuwei; Xu, Xiaopeng; Yan, He; Wu, Wenlin; Li, Zuojia; Peng, Qiang

    2017-02-01

    A novel-small molecular acceptor with electron-deficient 1,3,5-triazine as the core and perylene diimides as the arms is developed as the acceptor material for efficient bulk heterojunction organic solar cells with an efficiency of 9.15%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural, electronic and transport properties of armorphous/crystalline silicon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Tim Ferdinand

    2011-06-15

    application of established concepts for the physical description of a-Si:H in the following chapters. Further, the impact of the PECVD deposition parameters on the properties of the resulting layers is explored and discussed. Next, the lineup of the electronic bands at the heterojunction is elucidated in devicerelevant a-Si:H/c-Si heterostructures. To this end, a novel method combining photoelectron spectroscopy and surface photovoltage measurements is developed and employed. It is found that upon widening the a-Si:H optical band gap by controlling its hydrogen content, predominantly the valence band offset is increasing while the conduction band offset stays constant. The significance of the valence band offset for solar cell operation and possible pathways for tailoring the electronic properties of the heterojunction are discussed. In the last chapter, the microscopic properties of the a- Si:H layers are linked with the resulting passivation of c-Si surface states, which limit the obtainable open-circuit-voltage in a heterojunction solar cell. It is found that in case of ideal processing, the heterojunction does not possess particular properties but can be described by the a-Si:H bulk properties projected onto the actual heterojunction. The principal limit of c-Si surface passivation follows naturally, as does the explanation of passivation degradation effects from the metastability inherent to a-Si:H. The amorphous network has the propensity to adapt upon changes in externally controllable parameters like the Fermi energy. (orig.)

  12. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    IR: Fourier-transform infrared FTO: Fluorine doped tin oxide G-R: generation-recombination HEIWIP: heterojunction interfacial workfunction internal...SECURITY CLASSIFICATION OF: The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions , (2) J and H...aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost

  13. Review of status developments of high-efficiency crystalline silicon solar cells

    Science.gov (United States)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  14. AC characterization of bulk organic solar cell in the dark and under illumination

    International Nuclear Information System (INIS)

    Váry, Michal; Perný, Milan; Šály, Vladimír; Packa, Juraj

    2014-01-01

    Highlights: • A study of organic bulk photovoltaic (PV) solar cell. • Current–voltage characteristics in the dark and under illumination. • AC measurements, both under illumination and in the dark conditions. • Equivalent AC circuit. • Effective lifetime assigned with electron–hole recombination and diffusion time of the electron was estimated. - Abstract: Impedance spectroscopy has been used widely to evaluate the transport processes in photovoltaic, mainly based on inorganic semiconductors, structures – solar cells. The aim of this research was to characterize improved organic bulk photovoltaic (PV) solar cells exploiting this method. Progress in technology of investigated organic solar cell involves the use of an active layer based on low band gap type of polymer. The organic PV cell with front transparent electrode and rear metal electrode and active layer produced by Konarka Technologies was analyzed by electrical DC and AC measurements. Current–voltage (I–V) characteristics in the dark and under illumination were measured and basic PV parameters were calculated. AC measurements, both under illumination and in the dark conditions, were processed in order to identify electronic behavior using equivalent AC circuit which was suggested by fitting of measured impedance data. Circuit with the best correlation to measured data is analyzed in details. Voltage and frequency dependences of fitted equivalent circuit components and calculated parameters are explained and presented in the paper

  15. Charge carrier recombination dynamics in perovskite and polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona; Wolff, Christian M.; Schön, Natalie; Brenner, Thomas J. K.; Neher, Dieter [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476, Potsdam (Germany); Stranks, Samuel D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regard to the mechanism and time scale of free carrier recombination.

  16. Correlation of heterojunction luminescence quenching and photocurrent in polymer-blend photovoltaic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rabade, Astrid; Morteani, Arne C.; Friend, Richard H. [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-10-19

    Charge generation in organic solar cells proceeds via photogeneration of excitons in the bulk that form geminate electron-hole pairs at the heterojunction formed between electron donor and acceptors. It is shown that an externally applied electric field increases the number of free charges formed from the geminate pair, and quenches the luminescence from the relaxed exciplex with one-to-one correspondence. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; Bude, Romain; El Labban, Abdulrahman; LI, LIANG; Beaujuge, Pierre

    2014-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells

  18. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    International Nuclear Information System (INIS)

    Zhang, Y.; Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.; Zhu, R.

    2015-01-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters

  19. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.

    Science.gov (United States)

    Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R

    2015-03-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  20. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  1. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  2. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    International Nuclear Information System (INIS)

    Arora, Swati; Singh, Vinamrita; Arora, Manoj; Pal Tandon, Ram

    2012-01-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10 12 -10 13 cm -2 eV -1 , which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  3. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  4. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact

    Science.gov (United States)

    Fan, Lin; Wang, Fengyou; Liang, Junhui; Yao, Xin; Fang, Jia; Zhang, Dekun; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2017-01-01

    A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. Project supported by the International Cooperation Projects of the Ministry of Science and Technology (No. 2014DFE60170), the National Natural Science Foundation of China (Nos. 61474065, 61674084), the Tianjin Research Key Program of Application Foundation and Advanced Technology (No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province (No. BE2014147-3), and the 111 Project (No. B16027).

  5. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Science.gov (United States)

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360

  6. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Directory of Open Access Journals (Sweden)

    Tetsuro Hori

    2010-11-01

    Full Text Available Organic thin-film solar cells with a conducting polymer (CP/fullerene (C60 interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene (PAT6/Au have been improved by the insertion of molybdenum trioxide (VI (MoO3 and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  7. A p-type quantum dot/organic donor: Acceptor solar-cell structure for extended spectral response

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiang-Yu; Dayal, Smita; Kopidakis, Nikos; Beard, Matthew C.; Luther, Joseph M. [National Renewable Energy Laboratory, 1617 Cole Blvd, Golden CO 80401 (United States); Hou, Jianhui; Huo, Lijun [Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2011-07-15

    A coupled PbS quantum dot film and a PSBTBT:PCBM bulk heterojunction layer contribute comparable photocurrent in a new stacked solar-cell architecture with sensitivity in the near infrared and an efficiency >4%. With a focus on the energy level alignment between components, time-resolved microwave photoconductivity is used to elucidate the charge transport pathways for electrons and holes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Linear side chains in benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c] pyrrole-4,6-dione polymers direct self-assembly and solar cell performance

    KAUST Repository

    Cabanetos, Clement; El Labban, Abdulrahman; Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; Frechet, Jean; McGehee, Michael D.; Beaujuge, Pierre

    2013-01-01

    role that linear side-chain substituents play in poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers for bulk heterojunction (BHJ) solar cell applications. We show that replacing branched side chains by linear ones

  9. Organic bulk heterojunction photovoltaic structures: design, morphology and properties

    International Nuclear Information System (INIS)

    Bulavko, G V; Ishchenko, A A

    2014-01-01

    Main approaches to the design of organic bulk heterojunction photovoltaic structures are generalized and systematized. Novel photovoltaic materials based on fullerenes, organic dyes and related compounds, graphene, conjugated polymers and dendrimers are considered. The emphasis is placed on correlations between the chemical structure and properties of materials. The effect of morphology of the photoactive layer on the photovoltaic properties of devices is analyzed. Main methods of optimization of the photovoltaic properties are outlined. The bibliography includes 338 references

  10. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  11. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  12. PbS/Cd3P2 quantum heterojunction colloidal quantum dot solar cells

    International Nuclear Information System (INIS)

    Cao, Hefeng; Xu, Songman; Liu, Huan; Liu, Zeke; Zhu, Xiangxiang; Peng, Jun; Ma, Wanli; Hu, Long; Luo, Miao; Tang, Jiang

    2015-01-01

    Here, we demonstrated the quantum heterojunction colloidal quantum dot (CQD) solar cells employing the PbS CQDs/Cd 3 P 2 CQDs architecture in which both the p-type PbS and n-type Cd 3 P 2 CQD layers are quantum-tunable and solution-processed light absorbers. We synthesized well-crystallized and nearly monodispersed tetragonal Cd 3 P 2 CQDs and then engineered their energy band alignment with the p-type PbS by tuning the dot size and hence the bandgap to achieve efficient light absorbing and charge separation. We further optimized the device through the Ag-doping strategy of PbS CQDs that may leverage an expanded depletion region in the n-layer, which greatly enhances the photocurrent. The resulting devices showed an efficiency of 1.5%. (paper)

  13. The role of the hole-extraction layer in determining the operational stability of a polycarbazole:fullerene bulk-heterojunction photovoltaic device

    Science.gov (United States)

    Bovill, E.; Scarratt, N.; Griffin, J.; Yi, H.; Iraqi, A.; Buckley, A. R.; Kingsley, J. W.; Lidzey, D. G.

    2015-02-01

    We have made a comparative study of the relative operational stability of bulk-heterojunction organic photovoltaic (OPV) devices utilising different hole transport layers (HTLs). OPV devices were fabricated based on a blend of the polymer PCDTBT with the fullerene PC70BM, and incorporated the different HTL materials PEDOT:PSS, MoOx and V2O5. Following 620 h of irradiation by light from a solar simulator, we find that devices using the PEDOT:PSS HTL retained the highest efficiency, having a projected T80 lifetime of 14 500 h.

  14. A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells

    KAUST Repository

    Schmidt, Kristin; Tassone, Christopher J.; Niskala, Jeremy R.; Yiu, Alan T.; Lee, Olivia P.; Weiss, Thomas M.; Wang, Cheng; Frechet, Jean; Beaujuge, Pierre; Toney, Michael F.

    2013-01-01

    The addition of processing additives is a widely used approach to increase power conversion efficiencies for many organic solar cells. We present how additives change the polymer conformation in the casting solution leading to a more intermixed

  15. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  16. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu

    2015-09-04

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  17. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu

    2015-09-01

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  18. Performance of spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer based bulk heterojunction organic solar cell devices

    International Nuclear Information System (INIS)

    Saitoh, Leona; Babu, R. Ramesh; Kannappan, Santhakumar; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu

    2012-01-01

    Bulk heterojunction organic solar cell devices were fabricated using the spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer. The spray coating parameters such as spraying time, substrate-nozzle distance for the deposition of active layers were analyzed. Optical absorption of the active layers was analyzed using UV–visible spectral studies in the wavelength range from 300 to 800 nm. The surface morphology of the active layers deposited with different parameters was examined using atomic force microscopy. Surface morphology of the active layers deposited with the substrate-nozzle distance of 20 cm and for 20 s shows smooth morphology with peak-valley value of 4 nm. The devices fabricated using the selected active layer show overall power conversion efficiency of 1.08%. - Graphical abstract: Current–voltage (J–V) characteristics of spray deposited PCDTBT:PC 61 BM active layer based solar cell device under illumination of AM 1.5 G, 100 mW/cm 2 . Highlights: ► Organic solar cells were fabricated using a spray deposited PCDTBT:PC61BM active layer. ► The active layers deposited with spray conditions show flat morphology. ► Using the selected active layers power conversion efficiency of 1.08% is obtained.

  19. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  20. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming; Hossain, Jaker; Ishimaru, Yoshihiro; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)

    2016-07-21

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated C{sub α} = C{sub β} configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO{sub 3} groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, I{sub qui}/I{sub ben}. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for I{sub qui}/I{sub ben} = 9–10 without employing any light harvesting methods.

  1. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    DEFF Research Database (Denmark)

    Ma, Zaifei; Sun, Wenjun; Himmelberger, Scott

    2014-01-01

    interfacial energy level offset ensures efficient exciton separation and charge generation. The structure–property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing......) in the repeating unit alters both polymer crystallinity and polymer–fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force...

  2. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    International Nuclear Information System (INIS)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya; Hasanah, Yesi Ihdina Fityatal; Prajanira, Lau Bekti; Wahyuningsih, Sayekti

    2016-01-01

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO 2 NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO 2 as an electrode. Synthesis of TiO 2 nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO 3 ) 2 .4H 2 O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperature s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO 2 NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10 −3 , 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO 2 NR-P3HT’s concentration was 10 mg/mL.

  3. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    Energy Technology Data Exchange (ETDEWEB)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya; Hasanah, Yesi Ihdina Fityatal; Prajanira, Lau Bekti; Wahyuningsih, Sayekti, E-mail: sayektiw@mipa.uns.ac.id [Chemistry Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Ir.Sutami 36A Kentingan Surakarta 57/26, Central Java (Indonesia)

    2016-04-19

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO{sub 2} NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO{sub 2} as an electrode. Synthesis of TiO{sub 2} nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO{sub 3}){sub 2}.4H{sub 2}O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperature s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO{sup 2} NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10{sup −3}, 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO{sup 2} NR-P3HT’s concentration was 10 mg/mL.

  4. Optical and electronic proprieties of thin films based on (Z-5-(4-chlorobenzylidene-3-(2-ethoxyphenyl-2 thioxothiazolidin-4-one, (CBBTZ and possible application as exciton-blocking layer in heterojunction organic solar cells

    Directory of Open Access Journals (Sweden)

    Morsli M.

    2012-06-01

    Full Text Available In this work, organic thin film solar cells with structures based on CuPc/C60 bulk heterojunctions, have been fabricated and characterized. The effect of introducing an exciton blocking layer (EBL between the active layer and the metal layer in the solar cell was investigated. For that (Z-5-(4-chlorobenzylidene-3-(2-ethoxyphenyl-2-thioxothiazolidin-4-one, that we called (CBBTZ has been synthesized, characterized and probed as EBL. It was shown that optimized structures containing EBLs resulted in an improvement in solar cell conversion efficiencies. The energy levels corresponding to the highest occupied molecular orbital (HOMO and the lowest unoccupied molecular orbital (LUMO of the CBBTZ have been determined from the first oxidation and reduction potential respectively, using cyclic voltametric (CV measurements. From CV curves, CBBTZ in dichloromethane showed a one electron reversible reduction and oxidation waves. The values of its HOMO and LUMO have been estimated to be 6.42 eV and 3.42 eV respectively. Such values show that CBBTZ could be probed as EBL in organic solar cells based on the ED/EA couple copper phthalocyanine(CuPc/fullerene (C60. The photovoltaic solar cells have been obtained by sequential deposition under vacuum of the different films where their thicknesses were measured in situ by a quartz monitor. When obtained, the averaged efficiency of the cells using the CBBTZ is higher than that achieved without EBL layer.

  5. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array

    International Nuclear Information System (INIS)

    Tong, Fei; Kim, Kyusang; Martinez, Daniel; Thapa, Resham; Ahyi, Ayayi; Williams, John; Park, Minseo; Kim, Dong-Joo; Lee, Sungkoo; Lim, Eunhee; Lee, Kyeong K

    2012-01-01

    We report on the photovoltaic characteristics of organic/inorganic hybrid solar cells fabricated on ‘flexible’ transparent substrates. The solar cell device is composed of ZnO nanorod array and the bulk heterojunction structured organic layer which is the blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The ZnO nanorod array was grown on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates via a low-temperature (85 °C) aqueous solution process. The blend solution consisting of conjugated polymer P3HT and fullerene PCBM was spin coated at a low spinning rate of 400 rpm on top of the ZnO nanorod array structure and then the photoactive layer was slow dried at room temperature in air to promote its infiltration into the nanorod network. As a top electrode, silver was sputtered on top of the photoactive layer. The flexible solar cell with the structure of PET/ITO/ZnO thin film/ZnO nanorods/P3HT:PCBM/Ag exhibited a photovoltaic performance with an open circuit voltage (V OC ) of 0.52 V, a short circuit current density (J SC ) of 9.82 mA cm −2 , a fill factor (FF) of 35% and a power conversion efficiency (η) of 1.78%. All the measurements were performed under 100 mW cm −2 of illumination with an air mass 1.5 G filter. To the best of our knowledge, this is the first presentation of investigation into the fabrication and characterization of organic/inorganic hybrid solar cells based on bulk heterojunction structured conjugated polymer/fullerene photoactive layer and ZnO nanorod array constructed on flexible transparent substrates. (paper)

  6. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi

    2016-04-01

    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  7. Origin of the enhanced performance in poly(3-hexylthiophene) : [6,6]-phenyl C-61-butyric acid methyl ester solar cells upon slow drying of the active layer

    NARCIS (Netherlands)

    Mihailetchi, Valentin D.; Xie, Hangxing; Boer, Bert de; Popescu, Lacramioara M.; Hummelen, Jan C.; Blom, Paul W.M.; Koster, L. Jan Anton

    2006-01-01

    The origin of the enhanced performance of bulk heterojunction solar cells based on slowly dried films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C-61-butyric acid methyl ester is investigated, combining charge transport measurements with numerical device simulations. Slow drying leads to a

  8. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir; El Labban, Abdulrahman; Cruciani, Federico; Usman, Anwar; Beaujuge, Pierre; Mohammed, Omar F.

    2015-01-01

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room

  9. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir

    2017-09-22

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell\\'s configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  10. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications

    KAUST Repository

    Beaujuge, Pierre

    2011-12-21

    Organic electronics are broadly anticipated to impact the development of flexible thin-film device technologies. Among these, solution-processable π-conjugated polymers and small molecules are proving particularly promising in field-effect transistors and bulk heterojunction solar cells. This Perspective analyzes some of the most exciting strategies recently suggested in the design and structural organization of π-functional materials for transistor and solar cell applications. Emphasis is placed on the interplay between molecular structure, self-assembling properties, nanoscale and mesoscale ordering, and device efficiency parameters. A critical look at the various approaches used to optimize both materials and device performance is provided to assist in the identification of new directions and further advances. © 2011 American Chemical Society.

  11. Strategies for optimizing organic solar cells. Correlation between morphology and performance in DCV6T-C{sub 60} heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Wynands, David

    2011-02-04

    This work investigates organic solar cells made of small molecules. Using the material system {alpha}{omega}-bis(dicyanovinylene)-sexithiophene (DCV6T)-C{sub 60} as model, the correlation between the photovoltaic active layer morphology and performance of the solar cell is studied. The chosen method for controlling the layer morphology is applying different substrate temperatures (T{sub sub}) during the deposition of the layer. In neat DCV6T layers, substrate heating induces higher crystallinity as is shown by X-ray diffraction and atomic force microscopy (AFM). The absorption spectrum displays a more distinct fine structure, a redshift of the absorption peaks by up to 11 nm and a significant increase of the low energy absorption band at T{sub sub}=120 C compared to T{sub sub}=30 C. Contrary to general expectations, the hole mobility as measured in field effect transistors and with the method of charge extraction by linearly increasing voltage (CELIV) does not increase in samples with higher crystallinity. In mixed layers, investigations by AFM and UV-Vis spectroscopy reveal a stronger phase separation induced by substrate heating, leading to larger domains of DCV6T. This is indicated by an increased grain size and roughness of the topography, the increase of the DCV6T luminescence signal, and the more distinct fine structure of the DCV6T related absorption. Based on the results of the morphology analysis, the effect of different substrate temperatures on the performance of solar cells with flat and mixed DCV6T-C{sub 60} heterojunctions is investigated. In flat heterojunction solar cells, a slight increase of the photocurrent by about 10% is observed upon substrate heating, attributed to the increase of DCV6T absorption. In mixed DCV6T:C{sub 60} heterojunction solar cells, much more pronounced enhancements are achieved. By varying the substrate temperature from -7 C to 120 C, it is shown that the stronger phase separation upon substrate heating facilitates the

  12. Cu2O-based solar cells using oxide semiconductors

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu 2 O heterojunction solar cells fabricated using p-type Cu 2 O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu 2 O sheets under various deposition conditions using a pulsed laser deposition method. In Cu 2 O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa 2 O 4 thin-film layer. In most of the Cu 2 O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga 2 O 3 -Al 2 O 3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (V oc ) were obtained by using a relatively small amount of MgO or Al 2 O 3 , e.g., (ZnO) 0.91 –(MgO) 0.09 and (Ga 2 O 3 ) 0.975 –(Al 2 O 3 ) 0.025 , respectively. When Cu 2 O-based heterojunction solar cells were fabricated using Al 2 O 3 –Ga 2 O 3 –MgO–ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high V oc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu 2 O heterojunction solar cells fabricated using Na-doped Cu 2 O (Cu 2 O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a V oc of 0.84 V were obtained in a MgF 2 /AZO/n-(Ga 2 O 3 –Al 2 O 3 )/p-Cu 2 O:Na heterojunction solar cell fabricated using

  13. Cu2O-based solar cells using oxide semiconductors

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0

  14. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    Science.gov (United States)

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-12-17

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO 2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency of 19.2%.

  15. Fully solution-processed organic solar cells on metal foil substrates

    KAUST Repository

    Gaynor, Whitney

    2009-08-19

    We demonstrate fully solution-processed organic photovoltaic cells on metal foil substrates with power conversion efficiencies similar to those obtained in devices on transparent substrates. The cells are based on the regioregular poly- (3-hexylthiophene) and C61 butyric acid methyl ester bulk heterojunction system. The bottom electrode is a silver film whose workfunction is lowered by Cs2CO3 using spin-coating to serve as a cathode. The transparent top anode consists of a conductive polymer in combination with a solution-processed silver nanowire mesh that is laminated onto the devices. Each layer of the device, including the transparent electrode, is fabricated from solution, giving rise to the possibility of completely printed solar cells on low-cost substrates.

  16. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  17. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir; Daif, Ounsi El; Aï ssa, Brahim; Kivambe, Maulid; Tabet, Nouar; Seif, Johannes; Haschke, Jan; Cattin, Jean; Boccard, Mathieu; De Wolf, Stefaan; Ballif, Christophe

    2017-01-01

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell's configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  18. Efficiency-limiting processes in OPV bulk heterojunctions of GeNIDTBT and IDT-based acceptors

    KAUST Repository

    Al-Saggaf, Sarah M.

    2018-05-16

    The successful realization of highly efficient bulk heterojunction OPV devices requires the development of organic donor and acceptor materials with tailored properties. Recently, non-fullerene acceptors (NFAs) have emerged as an alternative to the ubiquitously used fullerene derivatives. NFAs showed a rapid increase in efficiencies, now exceeding a PCE of 13%. In my thesis research, I used two small molecule IDT-based acceptors, namely O-IDTBR and O-IDTBCN, in combination with a wide bandgap donor polymer, GeNIDT-BT, as active material in BHJ solar cells and investigated their photophysical characteristics. The polymer combined with O-IDTBR as acceptor achieved a power conversion efficiency of only 2%, which is significantly lower than that obtained for the system of GeNIDT-BT: O-IDTBCN (5.3%). Using nano- to microsecond transient absorption spectroscopy, I investigated both systems and demonstrated that GeNIDT-BT:O-IDTBR exhibits more geminate recombination of interfacial charge-transfer states, leading to lower short circuit currents. Using time-delayed collection field experiments, I studied the field dependence of charge generation and its impact on the device fill factor. Overall, my results provide a qualitative understanding of the efficiency-limiting processes in both systems and their impact on device performance.

  19. Photoinduced Bulk Polarization and Its Effects on Photovoltaic Actions in Perovskite Solar Cells.

    Science.gov (United States)

    Wu, Ting; Collins, Liam; Zhang, Jia; Lin, Pei-Ying; Ahmadi, Mahshid; Jesse, Stephen; Hu, Bin

    2017-11-28

    This article reports an experimental demonstration of photoinduced bulk polarization in hysteresis-free methylammonium (MA) lead-halide perovskite solar cells [ITO/PEDOT:PSS/perovskite/PCBM/PEI/Ag]. An anomalous capacitance-voltage (CV) signal is observed as a broad "shoulder" in the depletion region from -0.5 to +0.5 V under photoexcitation based on CV measurements where a dc bias is gradually scanned to continuously drift mobile ions in order to detect local polarization under a low alternating bias (50 mV, 5 kHz). Essentially, gradually scanning the dc bias and applying a low alternating bias can separately generate continuously drifting ions and a bulk CV signal from local polarization under photoexcitation. Particularly, when the device efficiency is improved from 12.41% to 18.19% upon chlorine incorporation, this anomalous CV signal can be enhanced by a factor of 3. This anomalous CV signal can be assigned as the signature of photoinduced bulk polarization by distinguishing from surface polarization associated with interfacial charge accumulation. Meanwhile, replacing easy-rotational MA + with difficult-rotational formamidinium (FA + ) cations largely minimizes such anomalous CV signal, suggesting that photoinduced bulk polarization relies on the orientational freedom of dipolar organic cations. Furthermore, a Kelvin probe force microscopy study shows that chlorine incorporation can suppress the density of charged defects and thus enhances photoinduced bulk polarization due to the reduced screening effect from charged defects. A bias-dependent photoluminescence study indicates that increasing bulk polarization can suppress carrier recombination by decreasing charge capture probability through the Coulombic screening effect. Clearly, our studies provide an insightful understanding of photoinduced bulk polarization and its effects on photovoltaic actions in perovskite solar cells.

  20. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  1. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Talkenberg, Florian, E-mail: florian.talkenberg@ipht-jena.de; Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Radnóczi, György Zoltán; Pécz, Béla [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest (Hungary); Dikhanbayev, Kadyrjan; Mussabek, Gauhar [Department of Physics and Engineering, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty (Kazakhstan); Gudovskikh, Alexander [Nanotechnology Research and Education Centre, St. Petersburg Academic University, Russian Academy of Sciences, Hlopina Str. 8/3, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  2. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi

    2016-12-27

    Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.

  3. Morphology versus vertical phase segregation in solvent annealed small molecule bulk heterojunction organic solar cells

    Czech Academy of Sciences Publication Activity Database

    Kovalenko, A.; Stoyanova, V.; Pospisil, J.; Zhivkov, I.; Fekete, Ladislav; Karashanova, D.; Kratochvílová, Irena; Vala, M.; Weiter, M.

    2015-01-01

    Roč. 2015, Oct (2015), s. 238981 ISSN 1110-662X R&D Projects: GA ČR(CZ) GA15-05095S; GA TA ČR TA04020156; GA MŠk LO1409 Institutional support: RVO:68378271 Keywords : organic solar cells Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.226, year: 2015

  4. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    Science.gov (United States)

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho; Han, Hyemi; Seo, Jooyeok; Song, Myeonghun; Kim, Hwajeong; Anthopoulos, Thomas D.; McCulloch, Iain; Bradley, Donal D C; Kim, Youngkyoo

    2016-01-01

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  6. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  7. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.

    Science.gov (United States)

    Gärtner, Stefan; Clulow, Andrew J; Howard, Ian A; Gilbert, Elliot P; Burn, Paul L; Gentle, Ian R; Colsmann, Alexander

    2017-12-13

    Nanoparticle dispersions open up an ecofriendly route toward printable organic solar cells. They can be formed from a variety of organic semiconductors by using miniemulsions that employ surfactants to stabilize the nanoparticles in dispersion and to prevent aggregation. However, whenever surfactant-based nanoparticle dispersions have been used to fabricate solar cells, the reported performances remain moderate. In contrast, solar cells from nanoparticle dispersions formed by precipitation (without surfactants) can exhibit power conversion efficiencies close to those of state-of-the-art solar cells processed from blend solutions using chlorinated solvents. In this work, we use small-angle neutron scattering measurements and transient absorption spectroscopy to investigate why surfactant-free nanoparticles give rise to efficient organic solar cells. We show that surfactant-free nanoparticles comprise a uniform distribution of small semiconductor domains, similar to that of bulk-heterojunction films formed using traditional solvent processing. This observation differs from surfactant-based miniemulsion nanoparticles that typically exhibit core-shell structures. Hence, the surfactant-free nanoparticles already possess the optimum morphology for efficient energy conversion before they are assembled into the photoactive layer of a solar cell. This structural property underpins the superior performance of the solar cells containing surfactant-free nanoparticles and is an important design criterion for future nanoparticle inks.

  8. Optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Y.; Warasawa, M. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Takakura, K. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Kimura, S. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, S.F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Ohyama, H. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Sugiyama, M., E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2011-08-31

    The optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 x 10{sup 18} cm{sup -2}. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing J{sub SC} and increasing R{sub s} reflected the influence of irradiated ZnO:Al, and decreasing V{sub OC} and increasing R{sub sh} mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.

  9. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  10. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  11. Tuning Optoelectronic Properties of Ambipolar Organic Light-Emitting Transistors Using a Bulk-Heterojunction Approach

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Rost-Bietsch, Constance; Murgia, Mauro; Karg, Siegfried; Riess, Walter; Muccini, Michele

    2006-01-01

    Bulk-heterojunction engineering is demonstrated as an approach to producing ambipolar organic light-emitting field-effect transistors with tunable electrical and optoelectronic characteristics. The electron and hole mobilities, as well as the electroluminescence intensity, can be tuned over a large

  12. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  13. Investigation of Annealing and Blend Concentration Effects of Organic Solar Cells Composed of Small Organic Dye and Fullerene Derivative

    Directory of Open Access Journals (Sweden)

    Yasser A. M. Ismail

    2011-01-01

    Full Text Available We have fabricated bulk heterojunction organic solar cells using coumarin 6 (C6 as a small organic dye, for light harvesting and electron donation, with fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM, acting as an electron acceptor, by spin-coating technique. We have investigated thermal annealing and blend concentration effects on light harvesting, photocurrent, and performance parameters of the solar cells. In this work, we introduced an experimental method by which someone can easily detect the variation in the contact between active layer and cathode due to thermal annealing after cathode deposition. We have showed, in this work, unusual behavior of solar cell composed of small organic molecules under the influence of thermal annealing at different conditions. This behavior seemed uncommon for polymer solar cells. We try from this work to understand device physics and to locate a relationship between production parameters and performance parameters of the solar cell based on small organic molecules.

  14. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.

    Science.gov (United States)

    Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander

    2016-03-28

    The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.

  15. Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn; Wang, Shun; Zheng, Haiwu; Cheng, Xiuying; Gu, Yuzong, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn [Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2015-12-14

    Photochemical charges generation, separation, and transport at nanocrystal interfaces are central to energy conversion for solar cells. Here, Zn{sub 2}SnO{sub 4} nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZTO/CBS), ZTO nanowires/CBS-reduced graphene oxide (ZTO/CBS-RGO), and bulk heterojunction (BHJ) solar cells were measured. The signals of steady state and electric field-induced surface photovoltage indicate that RGO with high electron mobility can evidently improve the photovoltaic response. Besides, ZTO/CBS and ZTO/CBS-RGO cells exhibit the excellent performance and the highest efficiencies of 1.2% and 2.8%, respectively. The internal relations of photoelectric properties to some factors, such as film thickness, direct paths, RGO conductive network, energy level matching, etc., were discussed in detail. Qualitative and quantitative analyses further verified the comprehensive effect of RGO and other factors. Importantly, the fine bendable characteristic of BHJ solar cells with excellent efficiency and facile, scalable production gives the as-made flexible solar cells device potential for practical application in future.

  16. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells

    Czech Academy of Sciences Publication Activity Database

    Löper, P.; Moon, S.J.; de Nicolas, S.M.; Niesen, B.; Ledinský, Martin; Nicolay, S.; Bailat, J.; Yum, J. H.; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 17, č. 3 (2015), s. 1619-1629 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : perovskites * solar cells * silicon solar cells * silicon heterojunction solar cells * photovoltaics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.449, year: 2015

  17. Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer

    International Nuclear Information System (INIS)

    Tian, Yiyao; Zhang, Yijie; Lin, Yizhao; Gao, Kuo; Zhang, Yunpeng; Liu, Kaiyi; Yang, Qianqian; Zhou, Xiao; Qin, Donghuan; Wu, Hongbin; Xia, Yuxin; Hou, Lintao; Lan, Linfeng; Chen, Junwu; Wang, Dan; Yao, Rihui

    2013-01-01

    CdTe nanocrystal (NC)/CdS p–n hetero-junction solar cells with an ITO/ZnO-In/CdS/CdTe/MoO x /Ag-inverted structure were prepared by using a layer-by-layer solution process. The CdS thin films were prepared by chemical bath deposition on top of ITO/ZnO-In and were found to be very compact and pin-hole free in a large area, which insured high quality CdTe NCs thin-film formation upon it. The device performance was strongly related to the CdCl 2 annealing temperature and annealing time. Devices exhibited power conversion efficiency (PCE) of 3.08 % following 400 °C CdCl 2 annealing for 5 min, which was a good efficiency for solution processed CdTe/CdS NC-inverted solar cells. By carefully designing and optimizing the CdCl 2 -annealing conditions (370 °C CdCl 2 annealing for about 15 min), the PCE of such devices showed a 21 % increase, in comparison to 400 °C CdCl 2 -annealing conditions, and reached a better PCE of 3.73 % while keeping a relatively high V OC of 0.49 V. This PCE value, to the best of our knowledge, is the highest PCE reported for solution processed CdTe–CdS NC solar cells. Moreover, the inverted solar cell device was very stable when kept under ambient conditions, less than 4 % degradation was observed in PCE after 40 days storage

  18. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Zawacka, Natalia Klaudia

    2014-01-01

    lifetime in flexible large area roll-coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2-hexyldecyloxy (BDTHDO) (P1-P3) or 2-hexyldecylthiophene (BDT THD) (P4-P6). The photochemical stability clearly shows that the stability enhances along...... with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium-tin-oxide-free plastic substrates. Solar cells based on the P4-P6 series...... in the performance followed by a much slower decay rate, still retaining 40-55% of their initial performance after 250 h of testing under ISOS-L-1 conditions. © 2014 Wiley Periodicals, Inc....

  19. Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells

    International Nuclear Information System (INIS)

    Sears, Kallista; Fanchini, Giovanni; Watkins, Scott E.; Huynh, Chi P.; Hawkins, Stephen C.

    2013-01-01

    Bulk heterojunction solar cells were fabricated with flexible webs of aligned multiwalled carbon nanotubes (MWNTs). These webs were drawn from a forest of MWNTs and placed directly onto the device substrate to form the hole collecting electrode. Devices were fabricated on glass substrates with one or two MWNT web layers to study the trade-off between transparency and resistivity on device performance. Devices with two web layers performed better with a fill factor of 0.47 and a device power conversion efficiency of 1.66% due to their higher conductivity. Flexible devices on Mylar substrates were also demonstrated with an efficiency of 1.2% indicating the potential of MWNT webs as a flexible alternative to the more conventional indium tin oxide. - Highlights: ► Drawable carbon nanotube webs were used as an anode in bulk heterojunction cells. ► One and two layers of carbon nanotube webs were compared. ► A thick active layer of ∼ 530 nm was needed to avoid shunting through nanotubes. ► Two layers of web gave the better efficiency of 1.6%. ► Flexible devices on Mylar were demonstrated with 1.2% efficiency

  20. Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Kallista, E-mail: kallista.sears@csiro.au; Fanchini, Giovanni; Watkins, Scott E.; Huynh, Chi P.; Hawkins, Stephen C.

    2013-03-01

    Bulk heterojunction solar cells were fabricated with flexible webs of aligned multiwalled carbon nanotubes (MWNTs). These webs were drawn from a forest of MWNTs and placed directly onto the device substrate to form the hole collecting electrode. Devices were fabricated on glass substrates with one or two MWNT web layers to study the trade-off between transparency and resistivity on device performance. Devices with two web layers performed better with a fill factor of 0.47 and a device power conversion efficiency of 1.66% due to their higher conductivity. Flexible devices on Mylar substrates were also demonstrated with an efficiency of 1.2% indicating the potential of MWNT webs as a flexible alternative to the more conventional indium tin oxide. - Highlights: ► Drawable carbon nanotube webs were used as an anode in bulk heterojunction cells. ► One and two layers of carbon nanotube webs were compared. ► A thick active layer of ∼ 530 nm was needed to avoid shunting through nanotubes. ► Two layers of web gave the better efficiency of 1.6%. ► Flexible devices on Mylar were demonstrated with 1.2% efficiency.

  1. Interfacial and Electrode Modifications in P3HT:PC61BM based Organic Solar Cells: Devices, Processing and Characterization

    Science.gov (United States)

    Das, Sayantan

    The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious attention owing to the use of inexpensive light-weight materials, exhibiting high mechanical flexibility and compatibility with low temperature roll-to-roll manufacturing techniques on flexible substrates. The most widely studied material to date is the blend of regioregular P3HT and PC61BM used as donor and acceptor materials. The object of this study was to investigate and improve the performance/stability of the organic solar cells by use of inexpensive materials. In an attempt to enhance the efficiency of organic solar cells, we have demonstrated the use of hexamethyldisilazane (HMDS) modified indium tin oxide (ITO) electrode in bulk heterojunction solar cell structure The device studies showed a significant enhancement in the short-circuit current as well as in the shunt resistance on use of the hexamethyldisilazane (HMDS) layer. In another approach a p-type CuI hole-transport layer was utilized that could possibly replace the acidic PEDOT:PSS layer in the fabrication of high-efficiency solar cells. The device optimization was done by varying the concentration of CuI in the precursor solution which played an important role in the efficiency of the solar cell devices. Recently a substantial amount of research has been focused on identifying suitable interfacial layers in organic solar cells which has efficient charge transport properties. It was illustrated that a thin layer of silver oxide interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The optoelectronic properties and morphological features of indium-free Zn

  2. Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells.

    Science.gov (United States)

    Chen, Lung-Chien; Lin, Yu-Shiang; Tang, Po-Wen; Tai, Chao-Yi; Tseng, Zong-Liang; Lin, Ja-Hon; Chen, Sheng-Hui; Kuo, Hao-Chung

    2017-11-23

    Comprehensive studies were carried out to understand the origin of the current hysteresis effects in highly efficient C 60 -CH 3 NH 3 PbI 3 (MAPbI 3 ) heterojunction solar cells, using atomic-force microscopy, transmittance spectra, photoluminescence spectra, X-ray diffraction patterns and a femtosecond time-resolved pump-probe technique. The power conversion efficiency (PCE) of C 60 -MAPbI 3 solar cells can be increased to 18.23% by eliminating the point (lattice) defects in the MAPbI 3 thin film which is fabricated by using the one-step spin-coating method with toluene washing treatment. The experimental results show that the point defects and surface defects of the MAPbI 3 thin films can be minimized by varying the dropping time of the washing solvent. The point defects (surface defects) can be reduced with an (a) increase (decrease) in the dropping time, resulting in an optimized dropping time for obtaining the defect-minimized MAPbI 3 thin film deposited on top of the C 60 thin film. Consequently, the formation of the defect-minimized MAPbI 3 thin film allows for high-efficiency MAPbI 3 solar cells.

  3. Effects of Different Solvents on the Planar Hetero-junction Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Shunquan

    2015-01-01

    Full Text Available The perovskite (CH3NH3PbI3 films on the planar hetero-junction perovskite solar cells (PHJ-PSCs are fabricated by “two-steps” process with the wet spin-coating method. The precursor (PbI2 solutions are compounded with 4 types of solvents: N-Methyl Pyrrolidone (NMP, γ-butyrolactone (GBL, Dimethyl Sulfoxide (DMSO and N, N-dimethylformamide (DMF. All the solutions have the same concentration. The influences of different precursor solvents to the micro-structures of CH3NH3PbI3 films and device performance are studied. Atomic force microscopy (AFM and scanning electron microscope (SEM are used to characterize the CH3NH3PbI3 films. The results indicate that the CH3NH3PbI3 film using DMF solvent possesses more rough morphology and thickest thickness. The monolithic PHJ-PSCs devices based on DMF solvent are tested under a standard one sun of simulated solar irradiation (AM1.5. The results show that the open-circuit voltage (Voc reaches 872mV, the short-circuit current (Jsc reaches 9.35mA/cm2, the filling factor(FF is 0.62 and the photo-current conversion efficiency (PCE is 5.05%. DMF is the best one among these 4 types of solvents for PHJ-PSCs.

  4. Sodium bromide electron-extraction layers for polymer bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Gao, Zhi; Qu, Bo; Xiao, Lixin; Chen, Zhijian; Zhang, Lipei; Gong, Qihuang

    2014-01-01

    Inexpensive and non-toxic sodium bromide (NaBr) was introduced into polymer solar cells (PSCs) as the cathode buffer layer (CBL) and the electron extraction characteristics of the NaBr CBL were investigated in detail. The PSCs based on NaBr CBL with different thicknesses (i.e., 0 nm, 0.5 nm, 1 nm, and 1.5 nm) were prepared and studied. The optimal thickness of NaBr was 1 nm according to the photovoltaic data of PSCs. The open-circuit voltage (V oc ), short-circuit current density (J sc ), fill factor (FF), and power conversion efficiency (PCE) of the PSC with 1 nm NaBr were evaluated to be 0.58 V, 7.36 mA/cm 2 , 0.63, and 2.70%, respectively, which were comparable to those of the reference device with the commonly used LiF. The optimized photovoltaic performance of PSC with 1 nm NaBr was ascribed to the improved electron transport and extraction capability of 1 nm NaBr in PSCs. In addition, the NaBr CBL could prevent the diffusion of oxygen and water vapor into the active layer and prolong the lifetime of the devices to some extent. Therefore, NaBr layer could be considered as a promising non-toxic CBL for PSCs in future

  5. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    Science.gov (United States)

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume

    2015-11-11

    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  6. A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells

    KAUST Repository

    Schmidt, Kristin

    2013-10-31

    The addition of processing additives is a widely used approach to increase power conversion efficiencies for many organic solar cells. We present how additives change the polymer conformation in the casting solution leading to a more intermixed phase-segregated network structure of the active layer which in turn results in a 5-fold enhancement in efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Numerical analysis of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells

    International Nuclear Information System (INIS)

    Lin, Shuo; Li, Xirong; Pan, Huaqing; Chen, Huanting; Li, Xiuyan; Li, Yan; Zhou, Jinrong

    2016-01-01

    Highlights: • In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS solar cells are studied by numerical analysis. • Performances of In_xGa_1_−_xN/SnS solar cells enhanced with decreasing In content. • The electron barrier leads to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. • GaN/SnS solar cell exhibits the highest efficiency 26.34%. - Abstract: In this work the photovoltaic properties of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells are studied by numerical analysis. The photovoltaic performances of In_xGa_1_−_xN/SnS solar cells are enhanced with the decreasing In content and the GaN/SnS solar cell exhibits the highest efficiency. The efficiencies of GaN/SnS solar cell improve with the increased SnS thickness and the reduced GaN thickness. For the Al_xGa_1_−_xN/SnS solar cells, there is electron barrier in the Al_xGa_1_−_xN/SnS interface. The electron barrier becomes larger with increasing Al content and lead to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. The simulation contributes to designing and fabricating SnS solar cells.

  8. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    Science.gov (United States)

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells

    KAUST Repository

    Wang, Hsin Ping

    2016-03-02

    The Si heterojunction (SHJ) solar cell is presently the most popular design in the crystalline Si (c-Si) photovoltaics due to the high open-circuit voltages (V). Photon management by surface structuring techniques to control the light entering the devices is critical for boosting cell efficiency although it usually comes with the V loss caused by severe surface recombination. For the first time, the periodic inverted pyramid (IP) structure fabricated by photolithography and anisotropic etching processes was employed for SHJ solar cells, demonstrating concurrent improvement in optical and electrical characteristics (i.e., short-circuit current density (J) and V). Periodic IP structures show superior light-harvesting properties as most of the incident rays bounce three times on the walls of the IPs but only twice between conventional random upright pyramids (UPs). The high minority carrier lifetime of the IP structures after a-Si:H passivation results in an enhanced V by 28 mV, showing improved carrier collection efficiency due to the superior passivation of the IP structure over the random UP structures. The superior antireflective (AR) ability and passivation results demonstrate that the IP structure has the potential to replace conventional UP structures to further boost the efficiency in solar cell applications.

  10. Heterojunction Diodes and Solar Cells Fabricated by Sputtering of GaAs on Single Crystalline Si

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2015-04-01

    Full Text Available This work reports fabrication details of heterojunction diodes and solar cells obtained by sputter deposition of amorphous GaAs on p-doped single crystalline Si. The effects of two additional process steps were investigated: A hydrofluoric acid (HF etching treatment of the Si substrate prior to the GaAs sputter deposition and a subsequent annealing treatment of the complete layered system. A transmission electron microscopy (TEM exploration of the interface reveals the formation of a few nanometer thick SiO2 interface layer and some crystallinity degree of the GaAs layer close to the interface. It was shown that an additional HF etching treatment of the Si substrate improves the short circuit current and degrades the open circuit voltage of the solar cells. Furthermore, an additional thermal annealing step was performed on some selected samples before and after the deposition of an indium tin oxide (ITO film on top of the a-GaAs layer. It was found that the occurrence of surface related defects is reduced in case of a heat treatment performed after the deposition of the ITO layer, which also results in a reduction of the dark saturation current density and resistive losses.

  11. Simple Photovoltaic Cells for Exploring Solar Energy Concepts

    Science.gov (United States)

    Appleyard, S. J.

    2006-01-01

    Low-efficiency solar cells for educational purposes can be simply made in school or home environments using wet-chemistry techniques and readily available chemicals of generally low toxicity. Instructions are given for making solar cells based on the heterojunctions Cu/Cu[subscript 2]O, Cu[subscript 2]O/ZnO and Cu[subscript 2]S/ZnO, together with…

  12. OPTOELECTRONIC PROPERTIES OF CdS – AgInS2 SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    M. A. Abdullaev

    2016-01-01

    Full Text Available Aim. To conduct experimental studies of optoelectronic properties of CdS - AgInS2 solar cells.Methods. AgInS2 films for solar cell CdS-AgInS2 were obtained by magnetron sputtering of crystalline targets derived from bulk ingots. Cadmium sulfide layers were deposited on the AgInS2 films by an electrochemical method in cadmium salts solution, thiourea and ammonia. AgInS2 bulk crystals were obtained in two stages: a direct fusion of the primary components (99,999 in a stoichiometric ratio, followed by directional solidification in a vertical furnace; re-synthesis has been performed on a staggered basis by heating the obtained ingots at temperatures close to the melting points of elements in the two-zone horizontal furnace.Findings. The paper presents the results of experimental studies of the electrical properties and photosensitivity of CdS-AgInS2 film heterojunction obtained by the magnetron. We measured the current-voltage characteristics and quantum efficiency of photoconversion at temperatures up to 250-356 K. We also identified the short circuit current of up to 25 mA/cm2 and open circuit voltage of 0.38 V.Conclusions. The study of the properties of solar cells in recent years has an important place. The results presented in the work would contribute to more efficient conversion of solar energy into electricity.

  13. Low-temperature atomic layer deposition of MoO{sub x} for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Vos, M.F.J.; Thissen, N.F.W.; Bol, A.A. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2015-07-15

    The preparation of high-quality molybdenum oxide (MoO{sub x}) is demonstrated by plasma-enhanced atomic layer deposition (ALD) at substrate temperatures down to 50 C. The films are amorphous, slightly substoichiometric with respect to MoO{sub 3}, and free of other elements apart from hydrogen (<11 at%). The films have a high transparency in the visible region and their compatibility with a-Si:H passivation schemes is demonstrated. It is discussed that these aspects, in conjunction with the low processing temperature and the ability to deposit very thin conformal films, make this ALD process promising for the future application of MoO{sub x} in hole-selective contacts for silicon heterojunction solar cells. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  15. Tailor-Made Additives for Morphology Control in Molecular Bulk-Heterojunction Photovoltaics

    KAUST Repository

    Graham, Kenneth R.

    2013-01-09

    Tailor-made additives, which are molecules that share the same molecular structure as a parent molecule with only slight structural variations, have previously been demonstrated as a useful means to control crystallization dynamics in solution. For example, tailor-made additives can be added to solutions of a crystallizing parent molecule to alter the crystal growth rate, size, and shape. We apply this strategy as a means to predictably control morphology in molecular bulk-heterojunction (BHJ) photovoltaic cells. Through the use of an asymmetric oligomer substituted with a bulky triisobutylsilyl end group, the morphology of BHJ blends can be controlled resulting in a near doubling (from 1.3 to 2.2%) in power conversion efficiency. The use of tailor-made additives provides promising opportunities for controlling crystallization dynamics, and thereby film morphologies, for many organic electronic devices such as photovoltaics and field-effect transistors. © 2012 American Chemical Society.

  16. Tailor-Made Additives for Morphology Control in Molecular Bulk-Heterojunction Photovoltaics

    KAUST Repository

    Graham, Kenneth R.; Stalder, Romain; Wieruszewski, Patrick M.; Patel, Dinesh G.; Salazar, Danielle H.; Reynolds, John R.

    2013-01-01

    Tailor-made additives, which are molecules that share the same molecular structure as a parent molecule with only slight structural variations, have previously been demonstrated as a useful means to control crystallization dynamics in solution. For example, tailor-made additives can be added to solutions of a crystallizing parent molecule to alter the crystal growth rate, size, and shape. We apply this strategy as a means to predictably control morphology in molecular bulk-heterojunction (BHJ) photovoltaic cells. Through the use of an asymmetric oligomer substituted with a bulky triisobutylsilyl end group, the morphology of BHJ blends can be controlled resulting in a near doubling (from 1.3 to 2.2%) in power conversion efficiency. The use of tailor-made additives provides promising opportunities for controlling crystallization dynamics, and thereby film morphologies, for many organic electronic devices such as photovoltaics and field-effect transistors. © 2012 American Chemical Society.

  17. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  18. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Banavoth, Murali; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif D.; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre; Sargent, Edward H.; Amassian, Aram

    2017-01-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies

  19. Preparation of porous titania film and its application in solar cells.

    Science.gov (United States)

    Zhang, Tianhui; Zhao, Suling; Piao, Lingyu; Xu, Zheng; Liu, Xiaodong; Kong, Chao; Xu, Xurong

    2011-11-01

    Polymer/nanocrystal bulk heterojunction photovoltaic cells have attracted substantial interest because the hybrid active layer combines the advantages of inorganic materials and polymers. In this work, a porous TiO2 was prepared via the sol-gel method with a polyethylene glycol 2000 (PEG2000) template. A kind of polymer/inorganic solar cell based on poly (3-hexylthiophene) (P3HT)/TiO2 was fabricated on the indium-tin-oxide (ITO) glass substrate and the structure of device was ITO/TiO2/P3HT/Au. The device showed the performance with a short circuit current (J(SC)) of 1.29 mA/cm2, an open circuit voltage (V(OC)) of 0.55 V and a fill factor (FF) of 28.7%.

  20. Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yiyao; Zhang, Yijie; Lin, Yizhao; Gao, Kuo; Zhang, Yunpeng; Liu, Kaiyi; Yang, Qianqian [South China University of Technology, School of Materials Science and Engineering (China); Zhou, Xiao; Qin, Donghuan, E-mail: qindh@scut.edu.cn; Wu, Hongbin [South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices (China); Xia, Yuxin; Hou, Lintao [Jinan University, College of Science and Engineering (China); Lan, Linfeng; Chen, Junwu; Wang, Dan; Yao, Rihui [South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices (China)

    2013-11-15

    CdTe nanocrystal (NC)/CdS p–n hetero-junction solar cells with an ITO/ZnO-In/CdS/CdTe/MoO{sub x}/Ag-inverted structure were prepared by using a layer-by-layer solution process. The CdS thin films were prepared by chemical bath deposition on top of ITO/ZnO-In and were found to be very compact and pin-hole free in a large area, which insured high quality CdTe NCs thin-film formation upon it. The device performance was strongly related to the CdCl{sub 2} annealing temperature and annealing time. Devices exhibited power conversion efficiency (PCE) of 3.08 % following 400 °C CdCl{sub 2} annealing for 5 min, which was a good efficiency for solution processed CdTe/CdS NC-inverted solar cells. By carefully designing and optimizing the CdCl{sub 2}-annealing conditions (370 °C CdCl{sub 2} annealing for about 15 min), the PCE of such devices showed a 21 % increase, in comparison to 400 °C CdCl{sub 2}-annealing conditions, and reached a better PCE of 3.73 % while keeping a relatively high V{sub OC} of 0.49 V. This PCE value, to the best of our knowledge, is the highest PCE reported for solution processed CdTe–CdS NC solar cells. Moreover, the inverted solar cell device was very stable when kept under ambient conditions, less than 4 % degradation was observed in PCE after 40 days storage.