WorldWideScience

Sample records for bulk ti substrates

  1. Through-mask anodization of titania dot- and pillar-like nanostructures on bulk Ti substrates using a nanoporous anodic alumina mask

    International Nuclear Information System (INIS)

    Sjoestroem, Terje; Su Bo; Fox, Neil

    2009-01-01

    Nanosized surface topography on an implant material has the capability of stimulating the acceptance of the material in its host surrounding. Fine-tuning of nanotopography feature size has been shown to trigger differentiation of mesenchymal stem cells into bone cells in vitro. For this purpose we have created well defined nanosized titania dot- and pillar-like structures on mechanically polished Ti substrates using a through-mask anodization technique with an anodic porous alumina template. The anodization technique allowed the titania structure dimensions to be precisely tuned in the range 15-140 nm in a single electrolyte system. The fabricated surfaces serve as good model surfaces for precise studies of in vitro cell behaviour. The through-mask anodization technique was used directly on bulk Ti surfaces, thus demonstrating a potential application for patterning of actual Ti implant surfaces.

  2. Ferroelectric BaTiO3 thin films on Ti substrate fabricated using pulsed-laser deposition.

    Science.gov (United States)

    He, J; Jiang, J C; Liu, J; Collins, G; Chen, C L; Lin, B; Giurgiutiu, V; Guo, R Y; Bhalla, A; Meletis, E I

    2010-09-01

    We report on the fabrication of ferroelectric BaTiO3 thin films on titanium substrates using pulsed laser deposition and their microstructures and properties. Electron microscopy studies reveal that BaTiO3 films are composed of crystalline assemblage of nanopillars with average cross sections from 100 nm to 200 nm. The BaTiO3 films have good interface structures and strong adhesion with respect to Ti substrates by forming a rutile TiO2 intermediate layer with a gradient microstructure. The room temperature ferroelectric polarization measurements show that the as-deposited BTO films possess nearly the same spontaneous polarization as the bulk BTO ceramics indicating formation of ferroelectric domains in the films. Successful fabrication of such ferroelectric films on Ti has significant importance for the development of new applications such as structural health monitoring spanning from aerospace to civil infrastructure. The work can be extended to integrate other ferroelectric oxide films with various promising properties to monitor the structural health of materials.

  3. Formation of hydroxyapatite on Ti-coated Ti-Zr-Cu-Pd bulk metallic glass

    International Nuclear Information System (INIS)

    Qin, F.X.; Wang, X.M.; Wada, T.; Xie, G.Q.; Asami, K.; Inoue, A.

    2009-01-01

    In this research, Ti coating was conducted on Ti 40 Zr 10 Cu 36 Pd 14 bulk metallic glass (BMG) in order to increase the formation rate of hydroxyapatite layer. The formation behavior of bone-like hydroxyapatite on Ti-coated and uncoated Ti 40 Zr 10 Cu 36 Pd 14 bulk metallic glasses (BMGs) was studied. The surface morphology of Ti-coated and uncoated Ti 40 Zr 10 Cu 36 Pd 14 BMG was investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy. The results revealed that the alkali pretreatment in 5 M NaOH solution at 60degC for 24 h had a beneficial effect on the formation of porous sodium titanate on Ti-coated Ti 40 Zr 10 Cu 36 Pd 14 BMG. A bone-like hydroxyapatite layer was able to form on the alkali-treated Ti-coated Ti 40 Zr 10 Cu 36 Pd 14 BMG after a short-time immersion in simulated body fluid (SBF). On the contrary, hydroxyapatite formation was not observed on the uncoated Ti 40 Zr 10 Cu 36 Pd 14 BMG after the same chemical treatments. (author)

  4. Electrical response of electron selective atomic layer deposited TiO2‑x heterocontacts on crystalline silicon substrates

    Science.gov (United States)

    Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit

    2018-04-01

    Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.

  5. Diffusion behavior in the films of Nb-Ti systems

    International Nuclear Information System (INIS)

    Yoshitake, Michiko; Yoshihara, Kazuhiro

    1990-01-01

    The diffusion behavior of substrate element into a deposited film was investigated. The observed systems were a Nb film/Ti substrate and a Ti film/Nb substrate. When the Nb film/Ti substrate was heated in a vacuum, Ti diffused very rapidly in the Nb film. The pre-exponential factor of the diffusion constant of Ti in the Nb film was 5.6x10 -2 m 2 s -1 , and the activation energy was 220 kJmol -1 . The observed activation energy is about 60% of that of Ti in the bulk Nb. On the other hand, when the Ti film/Nb substrate was heated in a vacuum, Nb did not diffuse so rapidly. Titanium diffused through the Nb film rapidly and was concentrated on the surface of the Nb film. The chemical state of the concentrated Ti was metallic, and neither titanium oxides nor titanium carbide was observed. Therefore, the driving force of the rapid diffusion of Ti in the Nb film is considered as the reduction of the surface energy of Nb film. The difference in the diffusion behavior between Ti through the Nb film and Nb through the Ti film is explained supposing that the segregation of Ti reduces the surface energy of the Nb film but the segregation of Nb does not reduce the surface energy of the Ti film. After heating of the Nb film/Ti substrate for a long time, a new phase was formed at the interface between the Nb film and the Ti substrate. The chemical composition of the new phase is about 50% of Ti and 50% of Nb. This phase has not been reported in the phase diagram of the bulk Ti-Nb system. The surface area of the Nb film is considered to be quite large, so the contribution of surface energy to the thermodynamic state of the Nb film cannot be neglected. Therefore, the chemical potential of the film is different from that of the bulk. Then, the new phase, which does not exist in the phase diagram of the bulk system, is formed by an interaction of the films. (author)

  6. Photocatalysis with chromium-doped TiO2: Bulk and surface doping

    KAUST Repository

    Ould-Chikh, Samy

    2014-04-15

    The photocatalytic properties of TiO2 modified by chromium are usually found to depend strongly on the preparation method. To clarify this problem, two series of chromium-doped titania with a chromium content of up to 1.56 wt % have been prepared under hydrothermal conditions: the first series (Cr:TiO2) is intended to dope the bulk of TiO2, whereas the second series (Cr/TiO2) is intended to load the surface of TiO2 with Cr. The catalytic properties have been compared in the photocatalytic oxidation of formic acid. Characterization data provides evidence that in the Cr/TiO2 catalysts chromium is located on the surface of TiO2 as amorphous CrOOH clusters. In contrast, in the Cr:TiO 2 series, chromium is mostly dissolved in the titania lattice, although a minor part is still present on the surface. Photocatalytic tests show that both series of chromium-doped titania demonstrate visible-light-driven photo-oxidation activity. Surface-doped Cr/TiO2 solids appear to be more efficient photocatalysts than the bulk-doped Cr:TiO2 counterparts. It\\'s classified! The photocatalytic properties of TiO2 modified by chromium depend strongly on the preparation method. To clarify this problem, two types of modified titania are discussed: one with CrIII doped in the bulk and one with CrOOH clusters on the TiO2 surface (see picture). Both series show visible-light-driven photo-oxidation activity. However, surface modification appears to be a more efficient strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Atomic scale investigation of planar defects in 0.95Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.05BaTiO{sub 3} thin films on SrTiO{sub 3} (001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiao-Wei; Lu, Lu [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Mi, Shao-Bo, E-mail: shaobo.mi@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Cheng, Sheng; Liu, Ming [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jia, Chun-Lin [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-08-15

    Thin films of lead-free piezoelectric 0.95Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.05BaTiO{sub 3} (0.95NBT–0.05BT) are epitaxially grown on single crystalline SrTiO{sub 3} (001) substrates at 800 °C, 850 °C and 900 °C, respectively, by a high-pressure sputtering deposition technique. The microstructure of the thin films is investigated by means of aberration-corrected scanning transmission electron microscopy. Planar defects are observed and the density of the defects increases with the increase of the film-growth temperature. Two types of planar defects in the films are studied at the atomic scale. One consists of groups of edge-sharing TiO{sub 6} octahedra with Bi atoms located between the TiO{sub 6} octahedral groups, and the other exists in the form of Na/Bi(Ba)−O{sub 2}−Na/Bi(Ba) layer parallel to the (010) plane of the films. Based on the structure feature of the planar defects, the propagation of the planar defects related to edge-sharing TiO{sub 6} octahedra within the films and from the film-substrate interface is discussed. Furthermore, the ordering of the planar defects is expected to form new structures. In comparison with the microstructure of 0.95NBT–0.05BT bulk materials, the appearance of the high-density planar defects observed within the films could be considered to be responsible for the difference in the physical properties between the bulk materials and the films. - Highlights: • NBT–BT films have been successfully prepared on SrTiO{sub 3} (001) substrates. • Complex planar defects of zigzag-like and Aurivillius-type have been determined. • The propagation of the planar defects in the films has been characterized. • The intergrowth of planar faults with NBT–BT structure units results in the formation of new structures. • The NBT–BT/SrTiO{sub 3} interface structure has been determined at the atomic scale.

  8. The effect of bulk/surface defects ratio change on the photocatalysis of TiO_2 nanosheet film

    International Nuclear Information System (INIS)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-01-01

    Highlights: • The defect behaviors of TiO_2 nanosheet array films were studied by positron annihilation spectroscopy. • Different bulk/surface defect ratios were realized by annealing at different temperature. • It was concluded that bulk defects are mainly Ti"3"+ vacancy defects. • The separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio. - Abstract: The photocatalysis behavior of TiO_2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti"3"+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO_2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  9. Facile Formation of High-quality InGaN/GaN Quantum-disks-in-Nanowires on Bulk-Metal Substrates for High-power Light-emitters

    KAUST Repository

    Zhao, Chao; Ng, Tien Khee; Wei, Nini; Prabaswara, Aditya; Alias, Mohd Sharizal; Janjua, Bilal; Shen, Chao; Ooi, Boon S.

    2016-01-01

    High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled directly on metal-substrate. The LEDs exhibited a low turn-on voltage of ~2 V without efficiency droop up to injection current of 500 mA (1.6 kA/cm2) at ~5 V. This is achieved through the direct growth and optimization of high-quality nanowires on titanium (Ti) coated bulk polycrystalline-molybdenum (Mo) substrates. We performed extensive studies on the growth mechanisms, obtained high-crystal-quality nanowires, and confirmed the epitaxial relationship between the cubic titanium nitride (TiN) transition layer and the hexagonal nanowires. The growth of nanowires on all-metal stack of TiN/Ti/Mo enables simultaneous implementation of n-metal contact, reflector and heat-sink, which greatly simplifies the fabrication process of high-power light emitters. Our work ushers in a practical platform for high-power nanowires light emitters, providing versatile solutions for multiple cross-disciplinary applications that are greatly enhanced by leveraging on the chemical stability of nitride materials, large specific surface of nanowires, chemical lift-off ready layer structures, and reusable Mo substrates.

  10. Facile Formation of High-quality InGaN/GaN Quantum-disks-in-Nanowires on Bulk-Metal Substrates for High-power Light-emitters

    KAUST Repository

    Zhao, Chao

    2016-01-08

    High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled directly on metal-substrate. The LEDs exhibited a low turn-on voltage of ~2 V without efficiency droop up to injection current of 500 mA (1.6 kA/cm2) at ~5 V. This is achieved through the direct growth and optimization of high-quality nanowires on titanium (Ti) coated bulk polycrystalline-molybdenum (Mo) substrates. We performed extensive studies on the growth mechanisms, obtained high-crystal-quality nanowires, and confirmed the epitaxial relationship between the cubic titanium nitride (TiN) transition layer and the hexagonal nanowires. The growth of nanowires on all-metal stack of TiN/Ti/Mo enables simultaneous implementation of n-metal contact, reflector and heat-sink, which greatly simplifies the fabrication process of high-power light emitters. Our work ushers in a practical platform for high-power nanowires light emitters, providing versatile solutions for multiple cross-disciplinary applications that are greatly enhanced by leveraging on the chemical stability of nitride materials, large specific surface of nanowires, chemical lift-off ready layer structures, and reusable Mo substrates.

  11. Layered Composite of TiC-TiB2 to Ti-6Al-4V in Graded Composition by Combustion Synthesis in High-gravity Field

    International Nuclear Information System (INIS)

    Huang Xuegang; Zhao Zhongmin; Zhang Long

    2013-01-01

    By taking combustion synthesis to prepare solidified TiB 2 matrix ceramic in high-gravity field, the layered composite of TiC-TiB 2 ceramic to Ti-6Al-4V substrate in graded composition was achieved. XRD, FESEM and EDS results showed that the bulk full-density solidified TiC-TiB 2 composite was composed of fine TiB 2 platelets, TiC irregular grains, a few of α-Al 2 O 3 inclusions and Cr alloy phases, and α'-Ti phases alternating with Ti-enriched carbides constituted the matrix of the joint in which fine TiB platelets were embedded, whereas some C, B atoms were also detected at the heat-affected zone of Ti-6A1-4V substrate. The layered composite of the solidified ceramic to Ti-6Al-4V substrate in graded composition with continuous microstructure was considered a result of fused joint and inter-diffusion between liquid ceramic and surface-molten Ti alloy, followed by TiB 2 -Ti peritectic reaction and subsequent eutectic reaction in TiC-TiB-Ti ternary system.

  12. Improved Plasticity of Ti-Based Bulk Metallic Glass at Room Temperature by Electroless Thin Nickel Coating

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-12-01

    Full Text Available By restricting the dilated deformation, surface modification can stimulate multiple shear banding and improve the plasticity of bulk metallic glasses (BMGs. Aimed at modifying the surface of BMGs by thin layers, a crystalline Ni coating with ultrafine grains was coated on the surface of a Ti-based BMG by electroless plating. With a thickness of about 10 μm, the prepared thin coating could effectively limit the fast propagation of primary shear bands and stimulate the nucleation of multiple shear bands. As a result, the compression plasticity of the coated Ti-based BMG was improved to about 3.7% from near 0% of the non-coated BMG. Except for a small amount of Ni coating was adhered to the BMG substrate after fracture, most of the coatings were peeled off from the surface. It can be attributed to the abnormal growth of some coarse grains/particles in local region of the coating, which induces a large tensile stress at the interface between the coating and the BMG substrate. It is suggested that, for electroless nickel plating, improving the adhesive bonding strength between the coating and the substrate has a better geometric restriction effect than simply increasing the thickness of the coating.

  13. Electronic and structural properties of TiB2: Bulk, surface, and nanoscale effects

    International Nuclear Information System (INIS)

    Volonakis, George; Tsetseris, Leonidas; Logothetidis, Stergios

    2011-01-01

    Titanium diboride (TiB 2 ), is a widely used hard material that comprises graphene-like layers of B and intercalated Ti atoms. Here we report the results of extensive first-principles calculations on key properties of bulk TiB 2 , TiB 2 surfaces, and TiB 2 nanocrystals (NCs). The computational approach is first validated based on the agreement between calculated structural and electronic properties of bulk TiB 2 and available experimental and theoretical data. We then obtain the formation energies for several surface cuts and use these values to construct TiB 2 NCs based on the Wulff theorem. Finally, we demonstrate by studying the adsorption of small molecules that hydrogen and oxygen adatoms can be attached through strongly exothermic chemisorption reactions on TiB 2 surfaces. Likewise, water molecules bind on various TiB 2 surfaces and NC facets, with an energetic preference for the latter. The results are relevant to applications that depend on reactivity-related TiB 2 properties, for example resistance to corrosion and interactions with water-based solutions.

  14. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  15. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  16. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  17. The effect of bulk/surface defects ratio change on the photocatalysis of TiO{sub 2} nanosheet film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fangfang [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ge, Wenna [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Shen, Tong [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ye, Bangjiao [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Fu, Zhengping, E-mail: fuzp@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Lu, Yalin, E-mail: yllu@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Synergetic Innovation Center of Quantum Information & Stop Quantum Physics, University of Science and Technology of China, Hefei 230026 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, Anhui (China)

    2017-07-15

    Highlights: • The defect behaviors of TiO{sub 2} nanosheet array films were studied by positron annihilation spectroscopy. • Different bulk/surface defect ratios were realized by annealing at different temperature. • It was concluded that bulk defects are mainly Ti{sup 3+} vacancy defects. • The separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio. - Abstract: The photocatalysis behavior of TiO{sub 2} nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti{sup 3+} related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO{sub 2} nanosheet films, and in turn enhancing the photocatalysis behaviors.

  18. Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates

    International Nuclear Information System (INIS)

    Yang, Chia-Jung; Tsai, Di-You; Chan, Pei-Hsuan; Wu, Chu-Tsun; Lu, Fu-Hsing

    2013-01-01

    BaTiO 3 films were synthesized on TiN-coated Si substrate below 100 °C by a hydrothermal–galvanic couple technique in barium contained alkaline solutions. X-ray diffraction and electron backscatter diffraction results show that the BaTiO 3 thin films were directionally oriented grown on the TiN/Si substrates, i.e., (111) BaTiO 3 over (111) TiN. The surface morphologies revealed that BaTiO 3 nucleated and grew over the TiN surface with a single layer. From kinetic analyses, the growth rates of BaTiO 3 films prepared by the hydrothermal–galvanic couple technique were faster than a hydrothermal method. The galvanic effects were confirmed by investigating the induced currents and energies. The galvanic currents were generated and controlled by both the dissolution of TiN and the formation of BaTiO 3 . The output electric energies increased rapidly with the reaction time and leveled off at the full coverage of BaTiO 3 . - Highlights: • Cubic BaTiO 3 films are synthesized by a hydrothermal–galvanic couple method (HT–GC). • Growth rates of BaTiO 3 films made by HT–GC are faster than a hydrothermal method. • BaTiO 3 films are directionally oriented grown on the TiN/Si substrates. • Galvanic currents are controlled by dissolution of TiN and formation of BaTiO 3

  19. Composition design and mechanical properties of ternary Cu–Zr–Ti bulk metallic glasses

    International Nuclear Information System (INIS)

    Pan, Ye; Zeng, Yuqiao; Jing, Lijun; Zhang, Lu; Pi, Jinhong

    2014-01-01

    Highlights: • Newly designed monolithic bulk metallic glasses are of good glass-forming ability. • Cu 50 Zr 44 Ti 6 exhibits excellent plastic deformation up to ∼7.4%. • Copious and intersected shear bans are observed in the fractography of Cu 50 Zr 44 Ti 6 . • Cu 50 Zr 44 Ti 6 has the best plasticity in the ternary Cu–Zr–Ti bulk metallic glasses. - Abstract: The new compositions of ternary Cu–Zr–Ti bulk metallic glasses are predicted by integrating calculation of vacancy formation energy, mixing enthalpy and configuration entropy of the alloys based on thermodynamics of glass formers. The monolithic amorphous rods of 3 mm diameter have been successfully fabricated, and characterized by X-ray diffractometry, differential scanning calorimetry, scanning electronic microscopy, transmission electronic microscopy and compression tests. The results show that the designed alloys possess good glass forming ability and excellent mechanical properties. The mechanical properties of the samples can be effectively improved by regulating their composition. The monolithic amorphous rod of Cu 50 Zr 44 Ti 6 exhibits a high fracture strength of 1855 MPa and excellent plastic deformation up to ∼7.4%. The formation and propagation of shear bands in samples are also investigated. The enhancement of plastic deformation is mainly contributed to multiplication and intersection of shear bands

  20. The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film

    Science.gov (United States)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-07-01

    The photocatalysis behavior of TiO2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti3+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  1. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti-6Al-4V Substrate

    Science.gov (United States)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.

    2015-05-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.

  2. Thin NiTi Films Deposited on Graphene Substrates

    Science.gov (United States)

    Hahn, S.; Schulze, A.; Böhme, M.; Hahn, T.; Wagner, M. F.-X.

    2017-03-01

    We present experimental results on the deposition of Nickel Titanium (NiTi) films on graphene substrates using a PVD magnetron sputter process. Characterization of the 2-4 micron thick NiTi films by electron microscopy, electron backscatter diffraction, and transmission electron microscopy shows that grain size and orientation of the thin NiTi films strongly depend on the type of combination of graphene and copper layers below. Our experimental findings are supported by density functional theory calculations: a theoretical estimation of the binding energies of different NiTi-graphene interfaces is in line with the experimentally determined microstructural features of the functional NiTi top layer.

  3. The local structure nature for a Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Chen, Yiqiang; Huang, Yongjiang; Fan, Hongbo; Wang, Dongjun; Shen, Jun

    2013-01-01

    Highlights: ► The directional bonds in TiZrNiCuBe bulk metallic glass are primarily comprised of Be-Ni and Be-Cu bonds. ► A coefficient η could be extracted from Raman scattering to characterize the glass forming ability. ► The weak directional bonds dependent on Be could increase the localized electrons, facilitating the glass forming ability. - Abstract: In the present work, the local atomic structures of a Be-containing Ti-based bulk metallic glass (BMG) have been characterized using electron spectrum for chemical analysis and Raman scattering, including directional bonds and medium range order. It might suggest that a coefficient could be extracted from Raman scattering to characterize the glass forming ability (GFA), which could be employed to interpret the enhanced GFA by Be addition of Ti-based BMG. Additionally, compared with the crystallized sample, the glassy sample exhibits larger average bond length and larger content of local bond distortion using Raman scattering.

  4. Direct band gap light emission and detection at room temperature in bulk germanium diodes with HfGe/Ge/TiN structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Maekura, Takayuki [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2016-03-01

    Direct band gap (DBG) electroluminescence (EL) and photo detection were studied at room temperature for n-type bulk germanium (Ge) diodes with a fin type lateral HfGe/Ge/TiN structure. DBG EL spectra peaked at 1.55 μm were clearly observed due to small hole and electron barrier heights of HfGe/Ge and TiN/Ge contacts. DBG EL peak intensity increased with increasing doping level of Ge substrate due to increased electron population in direct conduction band. The integrated intensity of DBG EL spectrum is proportional to the area of active region, implying a good surface-uniformity of EL efficiency. Small dark current intensity was measured as 2.4 × 10{sup −7} A under a reverse bias voltage of − 1 V, corresponding to dark current densities of 5.3 × 10{sup −10} A/μm or 3.2 × 10{sup −10} A/μm{sup 2}. At the wavelength of 1.55 μm, a linear dependence of photo current intensity on laser power was observed with a responsivity of 0.44 A/W at a reverse bias voltage of − 1 V. - Highlights: • Lateral HfGe/Ge/TiN diodes were fabricated on bulk Ge substrates. • The highest temperature was 400 °C for the entire fabrication process. • Electroluminescence spectra were measured for HfGe/Ge/TiN diodes with different parameters. • Dark current densities were 5.3 × 10{sup −10} A/μm or 3.2 × 10{sup −10} A/μm{sup 2} at − 1 V. • Responsivity was 0.44 A/W, corresponding to an external quantum efficiency of 35.2%.

  5. A study of the substrate surface chemical states at the interface TiN/Si by X-Ray Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Vinicius Gabriel; Alvarez, Fernando, E-mail: vi.antunes@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Figueroa, Carlos Alejandro [Universidade de Caxias do Sul, RS (Brazil)

    2016-07-01

    Full text: Titanium-based thin films are used for a great number of applications, such as hard coating in cutting tools, catalyst diffusion barriers, and in microelectronic devices. Although the understanding of the film adhesion mechanisms onto different substrates continue being a challenge and its atomic bonding properties are not fully understood. Furthermore, as the interface determines many characteristics of the final film by prompting the bulk properties of the grown material, a detailed study of the first atomic layers is an interesting route to gain physical inside on the adhesion properties of the coating. Also, it is important to remark that the presence of residual oxygen in standards deposition chambers is sometime unavoidable and its influence on the films properties is important to be taking in account. In this work the influence of the chemical state of the silicon surface at the interface TiN/Si have been studied. In order to this, a few atomic layers of TiN were deposited on mirror polished c-Si by ion beam deposition (IBD) sputtering of a pure Ti target in a nitrogen atmosphere during 5s (T=350C). In this conditions, a 3Å average thickness, as estimated by the material deposition rate, is obtained. The local electronic structure at the interface TiN/Si was scrutinized by XPS (X-ray photoelectron spectroscopy, 1485.6eV) in a UHV chamber attached to the IBD system, i.e the studied samples are free from atmospheric contamination. The study indicates the presence of Ti-Si, Ti-O, Si-O, Ti-N and Si-N bonds at the TiN/Si interface, where the oxygen stems from the residual chamber pressure. The nano-structuration of the Si substrate surface by noble gas ion bombardment during the pre-cleaning procedure of the substrate and its influence on the bonding structures at the TiN/Si interface will be also presented and discussed. Finally, the oxygen reduction effect obtained by introducing H2 on the interface structure is presented and discussed. (author)

  6. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile.

    Science.gov (United States)

    Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong

    2013-07-14

    The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.

  7. Electrochemical depositing rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity and heat transfer performance compared to pure Ti.

    Science.gov (United States)

    Wang, Jing; Wang, Huatao; Zhang, Wenying; Yang, Xinyi; Wen, Guangwu; Wang, Yijie; Zhou, Weiwei

    2017-02-17

    Titanium (Ti) and its alloys are widely applied in many high strength, light weight applications, but their thermal conductivity is lower compared to that of other metals, which limits their further applications. In this paper, we demonstrated experimentally that rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity, up to ∼38.8% higher than Ti, could be fabricated by electrochemical depositing rGO on their surface. The rGO layers are grown on the surface of Ti substrates, with appearance of bedclothes on the beds. The thickness of rGO layers is around 300-500 nm and around 600-1000 nm when deposited for 5 cycles and 10 cycles, respectively. According to the cooling experiment results, as-prepared Ti + rGO substrates can present excellent thermal conduction performance, and reduce the chip temperature close to 3.2 °C-13.1 °C lower than Ti alloy substrates with the heat flow density of 0.4-3.6 W cm -2 . Finally, the approach to electro-chemically deposit hundreds of nanometer rGO layers on the surface of Ti substrates can improve their thermal conductivity and heat transfer performance, which may have further application in the increasing thermal conduction of other metal-alloys, ceramics and polymers.

  8. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution

    Science.gov (United States)

    Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun

    2018-01-01

    The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.

  9. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  10. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  11. Mechanical behavior of Ti-Ta-based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system

    Science.gov (United States)

    Meisner, S. N.; Yakovlev, E. V.; Semin, V. O.; Meisner, L. L.; Rotshtein, V. P.; Neiman, A. A.; D'yachenko, F.

    2018-04-01

    The physical-mechanical properties of the Ti-Ta based surface alloy with thickness up to ∼2 μm fabricated through the multiple (up to 20 cycles) alternation of magnetron deposition of Ti70Ta30 (at.%) thin (50 nm) films and their liquid-phase mixing with the NiTi substrate by microsecond low-energy, high current pulsed electron beam (LEHCPEB: ≤15 keV, ∼2 J/cm2) are presented. Two types of NiTi substrates (differing in the methods of melting alloys) were pretreated with LEHCPEB to improve the adhesion of thin-film coating and to protect it from local delimitation because of the surface cratering under pulsed melting. The methods used in the research include nanoindentation, transmission electron microscopy, and depth profile analysis of nanohardness, Vickers hardness, elastic modulus, depth recovery ratio, and plasticity characteristic as a function of indentation depth. For comparison, similar measurements were carried out with NiTi substrates in the initial state and after LEHCPEB pretreatment, as well as on "Ti70Ta30(1 μm) coating/NiTi substrate" system. It was shown that the upper surface layer in both NiTi substrates is the same in properties after LEHCPEB pretreatment. Our data suggest that the type of multilayer surface structure correlates with its physical-mechanical properties. For NiTi with the Ti-Ta based surface alloy ∼1 μm thick, the highest elasticity falls on the upper submicrocrystalline layer measuring ∼0.2 μm and consisting of two Ti-Ta based phases: α‧‧ martensite (a = 0.475 nm, b = 0.323 nm, c = 0.464 nm) and β austenite (a = 0.327 nm). Beneath the upper layer there is an amorphous sublayer followed by underlayers with coarse (>20 nm) and fine (<20 nm) average grain sizes which provide a gradual transition of the mechanical parameters to the values of the NiTi substrate.

  12. Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Wong, P.C. [Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan (China); Chang, S.F. [Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Tsai, P.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Jang, J.S.C., E-mail: jscjang@ncu.edu.tw [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2017-06-01

    Safety and reliability are crucial issues for medical instruments and implants. In the past few decays, bulk metallic glasses (BMGs) have drawn attentions due to their superior mechanical properties, good corrosion resistance, antibacterial and good biocompatibility. However, most Zr-based and Ti-based BMGs contain Ni as an important element which is prone to human allergy problem. In this study, the Ni-free Ti-based and Zr-based BMGs, Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14}, and Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8}, were selected for systematical evaluation of their biocompatibility. Several biocompatibility tests, co-cultural with L929 murine fibroblast cell line, were carried out on these two BMGs, as well as the comparison samples of Ti6Al4V and pure Cu. The results in terms of cellular adhesion, cytotoxicity, and metallic ion release affection reveal that the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG and Ti6Al4V exhibit the optimum biocompatibility; cells still being attached on the petri dish with good adhesion and exhibiting the spindle shape after direct contact test. Furthermore, the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG showed very low Cu ion release level, in agreement with the MTT results. Based on the current findings, it is believed that Ni-free Ti-based BMG can act as an ideal candidate for medical implant. - Highlight: • Ni-free bulk metallic glass is promising material for medical implants. • Ni-free Ti-based BMG presents similar cellular adhesion as Ti6Al4V. • Ni-free Ti-based BMG shows less cytotoxicity, and metallic ion release than Ti6Al4V.

  13. TiO2 thin-films on polymer substrates and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Jae-Hun; Han, Yang-Su; Choy, Jin-Ho

    2006-01-01

    We have developed dip-coating process for TiO 2 -thin film on polymer substrates (acrylonitrile-butadiene-styrene polymer: ABS, polystyrene: PS). At first, a monodispersed and transparent TiO 2 nano-sol solution was prepared by the controlled hydrolysis of titanium iso-propoxide in the presence of acetylacetone and nitric acid catalyst at 80 deg. C. Powder X-ray diffraction patterns of the dried particles are indicative of crystalline TiO 2 with anatase-type structure. According to the XRD and transmission electron microscopy (TEM) studies, the mean particle size was estimated to be ca. 5 nm. The transparent thin films on ABS and PS substrates were fabricated by dip-coating process by changing the processing variables, such as the number of dip-coating and TiO 2 concentration in nano-sol solution. Scanning electron microscopic (SEM) analysis for the thin film samples reveals that the acetylacetone-modified TiO 2 nano-sol particles are effective for enhancing the interfacial adherence between films and polymeric substrates compared to the unmodified one. Photocatalytic degradation of methylene blue (MB) on the TiO 2 thin-films has also been systematically investigated

  14. Morphology control for highly efficient organic–inorganic bulk heterojunction solar cell based on Ti-alkoxide

    International Nuclear Information System (INIS)

    Kato, Takehito; Hagiwara, Naoki; Suzuki, Eiji; Nasu, Yuki; Izawa, Satoru; Tanaka, Kouichi; Kato, Ariyuki

    2016-01-01

    The number of publications concerned with typical bulk-heterojunction solar cells that use fullerene derivatives and inorganic materials as electron acceptors has grown very rapidly. In this work, we focus on Ti-alkoxides as electron acceptors in the photoactive layers of fullerene-free bulk-heterojunction solar cells. We show that it is possible to control the morphology by adjusting the molecular structure and size of the Ti-alkoxides. The short-circuit current density (J_s_c) increased to 191 μA/cm"2 from 25 μA/cm"2 with a maximum, when the phase-separation structure was continuously formed to within about 20 nm below the exciton diffusion length by using either titanium(IV) ethoxide or isopropoxide as an electron acceptor. Within a thickness of 30 nm, the photoactive layer is not influenced by the electron transfer ability; thus, we demonstrate that the charge-separation efficiency is equivalent to that of a fullerene system. - Highlights: • An organic–inorganic bulk-heterojunction photoactive layer was used. • Electron donor was a semiconducting polymer and electron acceptor was Ti-alkoxide. • Demonstration of morphology control by Ti-alkoxide molecules. • Determination of Jsc value by the phase-separation structure in an ultra-thin film. • Charge-separation efficiency of Ti-alkoxide system equivalent to fullerene system.

  15. Ti-based bulk metallic glass with high cold workability at room temperature

    International Nuclear Information System (INIS)

    Park, J.M.; Park, J.S.; Kim, J.H.; Lee, M.H.; Kim, D.H.; Kim, W.T.

    2005-01-01

    The cold workability of Ti-based bulk metallic glasses (BMGs) have been investigated. Ti 45 Zr 16 Be 20 Cu 10 Ni 9 BMG with a large compressive plastic strain of 4.7% shows a high cold workability, i.e. total reduction ratio of 50% by cold rolling at room temperature. The multiple shear bands formed during rolling are effective in enhancing the plasticity. The cold rolled Ti 45 Zr 16 Be 20 Cu 10 Ni 9 BMG (reduction ratio: 30%) exhibits a large plastic strain of ∝14%. (orig.)

  16. Comparative study of the interface composition of TiN and TiCN hard coatings on high speed steel substrates obtained by arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Roman, E. (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Segovia, J.L. de (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Alberdi, A. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Calvo, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Laucirica, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain))

    1993-05-15

    In this paper the composition of the interface of TiN and TiCN hard coatings deposited onto high speed steel substrates obtained by the arc discharge technique is studied using Auger electron spectroscopy at two different substrate temperatures, 520 K and 720 K. The low temperature (520 K) TiN coating developed an oxygen phase at the interface, producing a weak adherence of 40 N, while the high temperature coatings (720 K) had a less intense oxygen phase, giving a greater adherence to the substrate of 60 N. TiCN coatings at 520 K are characterized by a low oxygen intensity at the interface. However, their adherence of 50 N is lower than the value of 60 N for the high temperature TiN coatings and is independent of the substrate temperature. (orig.)

  17. Deposition of Co-Ti alloy on mild steel substrate using laser cladding

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2007-01-01

    Laser cladding of a Co-Ti alloy on a mild steel substrate is studied. Premixed powders with the composition of 85 wt% cobalt and 15 wt% titanium are pre-placed on the substrate and a moving laser beam at different velocities is used to produce clad layers well bounded to the substrate. Characteristics of the clad are investigated using optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microhardness tests. The results reveal that the intermetallic phase TiCo 3 and β (i.e. fcc) cobalt are formed in the clad layer. The clad layer can also have major dilution from the substrate depending on the laser scanning velocity. It is observed that a finer microstructure is achievable with higher laser velocities whereas higher hardness is achieved using lower velocities. The latter is due to the formation of a larger fraction of TiCo 3 phase

  18. Deposition of Co-Ti alloy on mild steel substrate using laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Alemohammad, Hamidreza [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)], E-mail: shalemoh@engmail.uwaterloo.ca; Esmaeili, Shahrzad [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Toyserkani, Ehsan [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)

    2007-05-15

    Laser cladding of a Co-Ti alloy on a mild steel substrate is studied. Premixed powders with the composition of 85 wt% cobalt and 15 wt% titanium are pre-placed on the substrate and a moving laser beam at different velocities is used to produce clad layers well bounded to the substrate. Characteristics of the clad are investigated using optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microhardness tests. The results reveal that the intermetallic phase TiCo{sub 3} and {beta} (i.e. fcc) cobalt are formed in the clad layer. The clad layer can also have major dilution from the substrate depending on the laser scanning velocity. It is observed that a finer microstructure is achievable with higher laser velocities whereas higher hardness is achieved using lower velocities. The latter is due to the formation of a larger fraction of TiCo{sub 3} phase.

  19. Pulsed Laser Deposition of BaTiO3 Thin Films on Different Substrates

    Directory of Open Access Journals (Sweden)

    Yaodong Yang

    2010-01-01

    Full Text Available We have studied the deposition of BaTiO3 (BTO thin films on various substrates. Three representative substrates were selected from different types of material systems: (i SrTiO3 single crystals as a typical oxide, (ii Si wafers as a semiconductor, and (iii Ni foils as a magnetostrictive metal. We have compared the ferroelectric properties of BTO thin films obtained by pulsed laser deposition on these diverse substrates.

  20. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4V substrates

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2014-03-01

    Full Text Available The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental...

  1. Composition dependences of crystal structure and electrical properties of epitaxial Pb(Zr,Ti)O3 films grown on Si and SrTiO3 substrates

    Science.gov (United States)

    Okamoto, Shoji; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2016-10-01

    {100}-oriented Pb(Zr x ,Ti1- x )O3 (PZT) thin films of approximately 2 µm thickness and Zr/(Zr + Ti) ratios of 0.39-0.65 were epitaxially grown on (100)cSrRuO3//(100)SrTiO3 (STO) and (100)cSrRuO3//(100)cLaNiO3//(100)CeO2//(100)YSZ//(100)Si (Si) substrates having different thermal expansion coefficients by pulsed metal-organic chemical vapor deposition (MOCVD). The effects of Zr/(Zr + Ti) ratio and type of substrate on the crystal structure and dielectric, ferroelectric and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that both films changed from having a tetragonal symmetry to rhombohedral symmetry through the coexisting region with increasing Zr/(Zr + Ti) ratio. This region showed the Zr/(Zr + Ti) ratios of 0.45-0.59 for the films on the STO substrates that were wider than the films on the Si substrates. Saturation polarization values were minimum at approximately Zr/(Zr + Ti) = 0.50 for the films on the STO substrates, and no obvious Zr/(Zr + Ti) ratio dependence was detected in the films on the Si substrates. On the other hand, the maximum field-induced strain values measured by scanning force microscopy at approximately Zr/(Zr + Ti) = 0.50 at 100 kV/cm were about 0.5 and 0.1% in the films on the Si and STO, respectively.

  2. Ti{sub 2}Al(O,N) formation by solid-state reaction between substoichiometric TiN thin films and Al{sub 2}O{sub 3} (0001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.O.A., E-mail: perpe@ifm.liu.se; Hoeglund, C.; Birch, J.; Hultman, L.

    2011-02-01

    Titanium nitride TiN{sub x} (0.1 {<=} x {<=} 1) thin films were deposited onto Al{sub 2}O{sub 3}(0001) substrates using reactive magnetron sputtering at substrate temperatures (T{sub s}) ranging from 800 to 1000 {sup o}C and N{sub 2} partial pressures (pN{sub 2}) between 13.3 and 133 mPa. It is found that Al and O from the substrates diffuse into the substoichiometric TiN{sub x} films during deposition. Solid-state reactions between the film and substrate result in the formation of Ti{sub 2}O and Ti{sub 3}Al domains at low N{sub 2} partial pressures, while for increasing pN{sub 2}, the Ti{sub 2}AlN MAX phase nucleates and grows together with TiN{sub x}. Depositions at increasingly stoichiometric conditions result in a decreasing incorporation of substrate species into the growing film. Eventually, a stoichiometric deposition gives a stable TiN(111) || Al{sub 2}O{sub 3}(0001) structure without the incorporation of substrate species. Growth at T{sub s} 1000 {sup o}C yields Ti{sub 2}AlN(0001), leading to a reduced incorporation of substrate species compared to films grown at 900 {sup o}C, which contain also Ti{sub 2}AlN(101-bar3) grains. Finally, the Ti{sub 2}AlN domains incorporate O, likely on the N site, such that a MAX phase oxynitride Ti{sub 2}Al(O,N) is formed. The results were obtained by a combination of structural methods, including X-ray diffraction and (scanning) transmission electron microscopy, together with spectroscopy methods, which comprise elastic recoil detection analysis, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy.

  3. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites

    Science.gov (United States)

    Agarwal, Shivani; Caltun, O. F.; Sreenivas, K.

    2012-11-01

    Influence of a static magnetic field (HDC) on the hysteresis and remanence in the longitudinal and transverse magneto electric voltage coefficients (MEVC) observed in [BaTiO3]1-x-[CoFe2O4]x bulk composites are analyzed. Remanence in MEVC at zero bias (HDC=0) is stronger in the transverse configuration over the longitudinal case. The observed hysteretic behavior in MEVC vs. HDC is correlated with the changes observed in the magnetostriction characteristics (λ and dλ/dH) reported for [BaTiO3]1-x-[CoFe2O4]x bulk composites.

  4. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  5. Characterization of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F. [Institute of Materials Engineering, National Taiwan Ocean University, No. 2, Beining Road, Keelung (China); Lin, H.M. [Department of Materials Engineering, Tatung University, No.40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei 104 Taiwan (China); Lee, P.Y.

    2008-11-15

    This study explored the feasibility of preparing CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} bulk metallic glass (BMG) composites though powder metallurgy route. The CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites were obtained by consolidating the 8h mechanically alloyed composite powders by vacuum hot pressing process. A significant increase in hardness (9.34 GPa) and fracture strength (1937 MPa) was achieved for the Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites containing 12 vol. % CNT. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    Science.gov (United States)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  7. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Wang Huanhua; Wick, Robert L.; Xing Baoshan

    2009-01-01

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al 2 O 3 and TiO 2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC 50 ) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC 50 for ZnO NPs (2.3 mg L -1 ) and bulk ZnO was not significantly different, but significantly different between Al 2 O 3 NPs (82 mg L -1 ) and bulk Al 2 O 3 (153 mg L -1 ), and between TiO 2 NPs (80 mg L -1 ) and bulk TiO 2 (136 mg L -1 ). Oxide solubility influenced the toxicity of ZnO and Al 2 O 3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al 2 O 3 and TiO 2 nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans

  9. Growth of TiO2 Thin Film on Various Substrates using RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2011-01-01

    The conductivity of Titanium Dioxide (TiO 2 ) thin film fabricated using Radio Frequency (RF) Magnetron Sputtering on Silicon (Si), Indium doped--Tin Oxide (ITO) and microscope glass (M) substrates is presented in this paper. The dependant of thin film thickness and type of substrate been discussed. TiO 2 was deposited using Ti target in Ar+O 2 (45:10) mixture at 250 W for 45, 60, 75, 90, 105 and 120 minute. Resultant thickness varies from 295 nm to 724 nm with deposition rate 6.4 nm/min. On the other hand, resistivity, Rs value for ITO substrate is between 5.72x10 -7 to 1.54x10 -6 Ω.m, Si substrate range is between 3.52x10 -6 to 1.76x10 -5 Ω.m and M substrate range is between 99 to 332 Ω.m. The value of resistivity increases with the thickness of the thin film.

  10. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    International Nuclear Information System (INIS)

    Morgado, Edisson Jr; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; Abreu, Marco A S de; Zotin, Jose L; Araujo, Antonio S

    2007-01-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO 2 followed by proton exchange were compared to their bulk H 2 Ti 3 O 7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H 2 Ti 3 O 7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H 2 Ti 3 O 7 converts into TiO 2 (B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 deg. C through topotactic mechanisms with the intermediate formation of nanostructured H 2 Ti 6 O 13 and H 2 Ti 12 O 25 , which are more condensed layered titanates eventually rearranging to TiO 2 (B). Our results suggest that the intermediate tunnel structure H 2 Ti 12 O 25 is the final layered intermediate phase, on which TiO 2 (B) nucleates and grows. The conversion of nanostructured TiO 2 (B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology

  11. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials.

    Science.gov (United States)

    Morgado, Edisson; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; de Abreu, Marco A S; Zotin, José L; Araújo, Antonio S

    2007-12-12

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO(2) followed by proton exchange were compared to their bulk H(2)Ti(3)O(7) counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H(2)Ti(3)O(7) nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H(2)Ti(3)O(7) converts into TiO(2)(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 degrees C through topotactic mechanisms with the intermediate formation of nanostructured H(2)Ti(6)O(13) and H(2)Ti(12)O(25), which are more condensed layered titanates eventually rearranging to TiO(2)(B). Our results suggest that the intermediate tunnel structure H(2)Ti(12)O(25) is the final layered intermediate phase, on which TiO(2)(B) nucleates and grows. The conversion of nanostructured TiO(2)(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  12. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    Science.gov (United States)

    Morgado, Edisson, Jr.; Jardim, P. M.; Marinkovic, Bojan A.; Rizzo, Fernando C.; de Abreu, Marco A. S.; Zotin, José L.; Araújo, Antonio S.

    2007-12-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO2 followed by proton exchange were compared to their bulk H2Ti3O7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H2Ti3O7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H2Ti3O7 converts into TiO2(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 °C through topotactic mechanisms with the intermediate formation of nanostructured H2Ti6O13 and H2Ti12O25, which are more condensed layered titanates eventually rearranging to TiO2(B). Our results suggest that the intermediate tunnel structure H2Ti12O25 is the final layered intermediate phase, on which TiO2(B) nucleates and grows. The conversion of nanostructured TiO2(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  13. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology

    Science.gov (United States)

    Ruffino, F.; Torrisi, V.

    2017-11-01

    Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.

  14. Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries

    International Nuclear Information System (INIS)

    Dong Shanmu; Wang Haibo; Gu Lin; Zhou Xinhong; Liu Zhihong; Han Pengxian; Wang Ya; Chen Xiao; Cui Guanglei; Chen Liquan

    2011-01-01

    Nanosized rutile TiO 2 is one of the most promising candidates for anode material in lithium-ion micro-batteries owing to their smaller dimension in ab-plane resulting in an enhanced performance for area capacity. However, few reports have yet emerged up to date of rutile TiO 2 nanorod arrays growing along c-axis for Li-ion battery electrode application. In this study, single-crystalline rutile TiO 2 nanorod arrays growing directly on Ti foil substrates have been fabricated using a template-free method. These nanorods can significantly improve the electrochemical performance of rutile TiO 2 in Li-ion batteries. The capacity increase is about 10 times in comparison with rutile TiO 2 compact layer.

  15. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  16. Effects of Nb and Sr doping on crystal structure of epitaxial BaTiO3 thin films on MgO substrates

    International Nuclear Information System (INIS)

    Kim, Yongsam; Chen, Chunhua; Saiki, Atsushi; Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2002-01-01

    Niobium (Nb) and strontium (Sr) doped barium titanate (BT) films were deposited by radio frequency (RF) magnetron sputtering with Nb and Sr doped BT ceramic targets, respectively. The effect of Nb and Sr doping on the crystal structure of epitaxial BaTiO 3 thin films on MgO substrates was investigated. The crystal structure of the films was examined using the reciprocal space mapping measurement. All the films exhibit a cube-on-cube relation with respect to the substrates. As the amount of doped Sr increased, both of the in-plane and out-of-plane lattice constants of Sr doped BT films slowly approached the BT bulk values. On the other hand, the lattice constants of Nb doped BT films were rapidly coming close to the bulk values. These indicated that the lattices of doped BT films were relaxed as the amount of doped elements increased. In addition, Nb doping had greater influence on the relaxation of the films than Sr doping for the same content of dopant. (author)

  17. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    Science.gov (United States)

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  18. Effect of Substrate Roughness on Adhesion and Structural Properties of Ti-Ni Shape Memory Alloy Thin Film.

    Science.gov (United States)

    Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil

    2018-09-01

    Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.

  19. Aspects of electron-phonon interactions with strong forward scattering in FeSe Thin Films on SrTiO3 substrates

    Science.gov (United States)

    Wang, Y.; Nakatsukasa, K.; Rademaker, L.; Berlijn, T.; Johnston, S.

    2016-05-01

    Mono- and multilayer FeSe thin films grown on SrTiO3 and BiTiO3 substrates exhibit a greatly enhanced superconductivity over that found in bulk FeSe. A number of proposals have been advanced for the mechanism of this enhancement. One possibility is the introduction of a cross-interface electron-phonon (e-ph) interaction between the FeSe electrons and oxygen phonons in the substrates that is peaked in the forward scattering (small {q}) direction due to the two-dimensional nature of the interface system. Motivated by this, we explore the consequences of such an interaction on the superconducting state and electronic structure of a two-dimensional system using Migdal-Eliashberg (ME) theory. This interaction produces not only deviations from the expectations of conventional phonon-mediated pairing but also replica structures in the spectral function and density of states, as probed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and quasiparticle interference imaging. We also discuss the applicability of ME theory for a situation where the e-ph interaction is peaked at small momentum transfer and in the FeSe/STO system.

  20. In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110 in bulk water

    Directory of Open Access Journals (Sweden)

    Giulia Serrano

    2015-02-01

    Full Text Available Despite the rising technological interest in the use of calcium-modified TiO2 surfaces in biomedical implants, the Ca/TiO2 interface has not been studied in an aqueous environment. This investigation is the first report on the use of in situ scanning tunneling microscopy (STM to study calcium-modified rutile TiO2(110 surfaces immersed in high purity water. The TiO2 surface was prepared under ultrahigh vacuum (UHV with repeated sputtering/annealing cycles. Low energy electron diffraction (LEED analysis shows a pattern typical for the surface segregation of calcium, which is present as an impurity on the TiO2 bulk. In situ STM images of the surface in bulk water exhibit one-dimensional rows of segregated calcium regularly aligned with the [001] crystal direction. The in situ-characterized morphology and structure of this Ca-modified TiO2 surface are discussed and compared with UHV-STM results from the literature. Prolonged immersion (two days in the liquid leads to degradation of the overlayer, resulting in a disordered surface. X-ray photoelectron spectroscopy, performed after immersion in water, confirms the presence of calcium.

  1. Hydrogen insertion in titanium carbide based thin films (nc-TiC{sub x}/a-C:H) - comparison with bulk TiC{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Julien; Jaoul, Cédric, E-mail: jaoul@ensil.unilim.fr; Glandut, Nicolas; Lefort, Pierre

    2016-08-01

    Nanocomposites composed of titanium carbide nanosized grains embedded in an amorphous hydrogenated carbon matrix (nc-TiC{sub x}/a-C:H) are prepared by hybrid Magnetron Sputtering - PECVD process using a titanium metal target and gaseous C{sub 6}H{sub 6}. By controlling the benzene flow rate, thin films with different carbon content are obtained. The structures of nc-TiC{sub x}/a-C:H materials are analyzed by X-ray diffraction, X-ray photoelectron and Raman spectroscopic methods. The electrochemical hydrogen insertion, as studied by cyclic voltammetry, strongly depends on the carbon content in the thin films. The correlation between the hydrogen insertion ability and the structure of materials are discussed. Furthermore, we show that the hydrogen insertion in these thin films reaches values much more significant than in bulk substoichiometric titanium carbide obtained by reactive sintering. - Highlights: • nc-TiC{sub x}/a-C:H thin films are prepared hybrid Magnetron Sputtering - PECVD process. • Different carbon contents are obtained by changing the hydrocarbon flowrate. • Expanded lattice parameter of the TiC{sub x} phase and a-C:H phase are observed. • Electrochemical hydrogen insertion strongly depends on the carbon content. • The maximum insertion is 22 times more important than bulk TiC{sub x}.

  2. Bulk Synthesis and Characterization of Ti3Al Nanoparticles by Flow-Levitation Method

    Directory of Open Access Journals (Sweden)

    Shanjun Chen

    2013-01-01

    Full Text Available A novel bulk synthesis method for preparing high pure Ti3Al nanoparticles was developed by flow-levitation method (FL. The Ti and Al vapours ascending from the high temperature levitated droplet were condensed by cryogenic Ar gas under atmospheric pressure. The morphology, crystalline structure, and chemical composition of Ti3Al nanoparticles were, respectively, investigated by transmission electron microscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectrometry. The results indicated that the Ti3Al powders are nearly spherical-shaped, and the particle size ranges from several nanometers to 100 nm in diameter. Measurements of the d-spacing from X-ray (XRD and electron diffraction studies confirmed that the Ti3Al nanoparticles have a hexagonal structure. A thin oxidation coating of 2-3 nm in thickness was formed around the particles after exposure to air. Based on the XPS measurements, the surface coating of the Ti3Al nanoparticles is a mixture of Al2O3 and TiO2. The production rate of Ti3Al nanoparticles was estimated to be about 3 g/h. This method has a great potential in mass production of Ti3Al nanoparticles.

  3. Optical band gap and magnetic properties of unstrained EuTiO3 films

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Schiffer, P.; Podraza, N. J.; Kourkoutis, L. Fitting; Fennie, C. J.; Muller, D. A.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.; Freeland, J. W.

    2009-01-01

    Phase-pure, stoichiometric, unstrained, epitaxial (001)-oriented EuTiO 3 thin films have been grown on (001) SrTiO 3 substrates by reactive molecular-beam epitaxy. Magnetization measurements show antiferromagnetic behavior with T N =5.5 K, similar to bulk EuTiO 3 . Spectroscopic ellipsometry measurements reveal that EuTiO 3 films have a direct optical band gap of 0.93±0.07 eV.

  4. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  5. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    Science.gov (United States)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  6. Multistep structural transition of hydrogen trititanate nanotubes into TiO{sub 2}-B nanotubes: a comparison study between nanostructured and bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Edisson Jr [PETROBRAS S.A./CENPES, Research and Development Centre, Avenida Horacio Macedo, 950, Cidade Universitaria, Quadra 7, 21941-598 Rio de Janeiro-RJ (Brazil); Jardim, P M [Department of Materials Science and Metallurgy, Pontifical Catholic University, CP 38008, 22453-900 Rio de Janeiro-RJ (Brazil); Marinkovic, Bojan A [Department of Materials Science and Metallurgy, Pontifical Catholic University, CP 38008, 22453-900 Rio de Janeiro-RJ (Brazil); Rizzo, Fernando C [Department of Materials Science and Metallurgy, Pontifical Catholic University, CP 38008, 22453-900 Rio de Janeiro-RJ (Brazil); Abreu, Marco A S de [PETROBRAS S.A./CENPES, Research and Development Centre, Avenida Horacio Macedo, 950, Cidade Universitaria, Quadra 7, 21941-598 Rio de Janeiro-RJ (Brazil); Zotin, Jose L [PETROBRAS S.A./CENPES, Research and Development Centre, Avenida Horacio Macedo, 950, Cidade Universitaria, Quadra 7, 21941-598 Rio de Janeiro-RJ (Brazil); Araujo, Antonio S [Department of Chemistry, Federal University of Rio Grande do Norte, CP 1662, 59078-970 Natal-RN (Brazil)

    2007-12-12

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO{sub 2} followed by proton exchange were compared to their bulk H{sub 2}Ti{sub 3}O{sub 7} counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H{sub 2}Ti{sub 3}O{sub 7} nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H{sub 2}Ti{sub 3}O{sub 7} converts into TiO{sub 2}(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 deg. C through topotactic mechanisms with the intermediate formation of nanostructured H{sub 2}Ti{sub 6}O{sub 13} and H{sub 2}Ti{sub 12}O{sub 25}, which are more condensed layered titanates eventually rearranging to TiO{sub 2}(B). Our results suggest that the intermediate tunnel structure H{sub 2}Ti{sub 12}O{sub 25} is the final layered intermediate phase, on which TiO{sub 2}(B) nucleates and grows. The conversion of nanostructured TiO{sub 2}(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  7. Deformation-strengthening during rolling Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Hu, Yuyan

    2007-01-01

    Mechanical strength evolutions during rolling the Cu60Zr20Ti20 bulk metallic glass (BMG) at room temperature (RT) and cryogenic temperature (CT) have been investigated by measuring the microhardness. The hardness slightly increases during the initial rolling stage as a result of the gradually...

  8. Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation.

    Science.gov (United States)

    Sendra, M; Moreno-Garrido, I; Yeste, M P; Gatica, J M; Blasco, J

    2017-08-01

    Use of titanium dioxide nanoparticles (TiO 2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO 2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO 2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure. TiO 2 NPs and bulk TiO 2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO 2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO 2 NPs and bulk TiO 2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO 2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enhanced photocatalytic activity of wool-ball-like TiO2 microspheres on carbon fabric and FTO substrates

    Science.gov (United States)

    Zhang, Yu; Gu, Jian; Zhang, Mengqi

    2018-06-01

    The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of 50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the "sum effect" between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.

  10. Enhanced photocatalytic properties of hierarchical three-dimensional TiO{sub 2} grown on femtosecond laser structured titanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ting, E-mail: huangting@bjut.edu.cn; Lu, Jinlong; Xiao, Rongshi; Wu, Qiang; Yang, Wuxiong

    2017-05-01

    Highlights: • The hierarchical 3D-TiO{sub 2} is fabricated on femtosecond laser structured Ti substrate. • The formation mechanism of hierarchical 3D-TiO{sub 2} is proposed. • The structure-induced improvement of photocatalytic activity is reported. - Abstract: Three-dimensional micro-/nanostructured TiO{sub 2} (3D-TiO{sub 2}) fabricated on titanium substrate effectively improves its performance in photocatalysis, dye-sensitized solar cell and lithium-ion battery applications. In this study, the hierarchical 3D-TiO{sub 2} with anatase phase directly grown on femtosecond laser structured titanium substrate is reported. First, the primary columnar arrays were fabricated on the surface of titanium substrate by femtosecond laser structuring. Next, the secondary nano-sheet substructures were grown on the primary columnar arrays by NaOH hydrothermal treatment. Followed by ion-exchange process in HCl and annealing in the air, the hierarchical anatase 3D-TiO{sub 2} was achieved. The hierarchical anatase 3D-TiO{sub 2} exhibited enhanced performances in light harvesting and absorption ability compared to that of nano-sheet TiO{sub 2} grown on flat titanium surface without femtosecond laser structuring. The photocatalytic degradation of methyl orange reveals that photocatalytic efficiency of the hierarchical anatase 3D-TiO{sub 2} was improved by a maximum of 57% compared to that of nano-sheet TiO{sub 2} (55% vs 35%). Meanwhile, the hierarchical anatase 3D-TiO{sub 2} remained mechanically stable and constant in consecutive degradation cycles, which promises significance in practical application.

  11. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Shujie; Liu, Ying; Li, Haifei; Sun, Lulu [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Zhang, Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-03-15

    Highlights: • Novel Ti{sub 47}Cu{sub 38}Zr{sub 7.5}Fe{sub 2.5}Sn{sub 2}Si{sub 1}Ag{sub 2} (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti{sub 47}Cu{sub 38}Zr{sub 7.5}Fe{sub 2.5}Sn{sub 2}Si{sub 1}Ag{sub 2} (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 10{sup 5} N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications.

  12. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    International Nuclear Information System (INIS)

    Pang, Shujie; Liu, Ying; Li, Haifei; Sun, Lulu; Li, Yan; Zhang, Tao

    2015-01-01

    Highlights: • Novel Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 10 5 N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications

  13. Adhesion strength of Ni film on Ti substrate characterized by three-point bend test, peel test and theoretic calculation

    International Nuclear Information System (INIS)

    Ren, F.Z.; Liu, P.; Jia, S.G.; Tian, B.H.; Su, J.H.

    2006-01-01

    Electroplating was employed to fabricate the Ni film on the Ti substrate. Adhesion strength of Ni film on Ti substrate was determined using the three-point bend technique that was proposed in standard mechanics test. The experimental results demonstrate that the interface fracture energies obviously increase with the roughness of Ti substrates, and are independence with the thickness of Ni films. Moreover, the adhesion strength of Ni film on Ti substrate was also measured by peel test, and was evaluated by Miedema model of experiential electron theory. The intrinsic interface fracture energy measured by three-point bend test is reasonable agreement with that obtained by theoretical calculation of Miedema model, and is roughly comparable to that by peel test

  14. Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency

    CERN Document Server

    Singh, B K; Nitti, M A; Valentini, A

    2003-01-01

    We have experimentally investigated the following aspects related to the quantum efficiency of CsI photocathodes: the type of substrate, the film thickness and the effect of a 'bulk treatment' during the film growth. We discovered that, using a high reflectivity aluminium substrate, the photoemission of very thin CsI film is enhanced. Our study also revealed that photocathodes become less sensitive to moisture when a negative bias voltage is applied to the substrate during the film deposition process.

  15. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wei, X. H.; Li, Y. R.; Zhu, J.; Huang, W.; Zhang, Y.; Luo, W. B.; Ji, H.

    2007-01-01

    Epitaxial ZnO thin films with different orientations have been grown by laser molecular beam epitaxy on (001)- (011)-, and (111)-orientated SrTiO 3 single-crystal substrates. The growth behavior was in situ monitored by reflection high-energy electron diffraction, and the epitaxial orientation relations were reconfirmed by ex situ x-ray diffraction measurements. In the case of ZnO on SrTiO 3 (001), four orthogonal domains coexisted in the ZnO epilayer, i.e., ZnO(110) parallel SrTiO 3 (001) and ZnO[-111] parallel SrTiO 3 . For (011)- and (111)-orientated substrates, single-domain epitaxy with c axial orientation was observed, in which the in-plane relationship was ZnO[110] parallel SrTiO 3 [110] irrespective of the substrate orientations. Additionally, the crystalline quality of ZnO on SrTiO 3 (111) was better than that of ZnO on SrTiO 3 (011) because of the same symmetry between the (111) substrates and (001) films. The obtained results can be attributed to the difference of the in-plane crystallographic symmetry. Furthermore, those alignments can be explained by the interface stress between the substrates and the films

  16. Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO{sub 2}-host by Pb-implantation: XPS-and-DFT characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, D.A. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Boukhvalov, D.W., E-mail: danil@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Gavrilov, N.V. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Zatsepin, A.F. [Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Shur, V.Ya.; Esin, A.A. [Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, 620000 Yekaterinburg (Russian Federation); Kim, S.S. [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Kurmaev, E.Z. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation)

    2017-04-01

    Highlights: • Experiment and theory demonstrate significant difference between patterns of Pb-ion implantation in TiO{sub 2}. • In bulk TiO{sub 2} Pb-impurities leads formation of PbO phase. • On the surface of TiO{sub 2}:Pb occur formation of PbxOy configurations. • In both bulk and surface TiO{sub 2}:Pb occur decreasing of the bandgap by shift of valence band about 1 eV up. - Abstract: The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO{sub 2}-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO{sub 2} host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO{sub 2}:Pb, whereas in thin-film morphology the PbO{sub 2}-like structure becomes dominating, essentially contributing weak O/Pb bonding (Pb{sub x}O{sub y} defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity “insertion” into the structure of bulk TiO{sub 2} was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO{sub 2} because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about 1 eV up.

  17. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    Science.gov (United States)

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  18. Crystallization in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhou, T.J.; Rasmussen, Helge Kildahl

    2000-01-01

    The effect of pressure on the crystallization behavior of the bulk metallic glass-forming Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy with a wide supercooled liquid region has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction measurements using synchrotron radiation......)], reporting a decrease of the crystallization temperature under pressure in a pressure range of 0-6 GPa for the bulk glass Zr41Ti14Cu12.5Ni9Be22.5C1 alloy. Compressibility with a volume reduction of approximately 22% at room temperature does not induce crystallization in the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk...... glass alloy. This indicates that the densification effect induced by pressure in the pressure range investigated plays a minor role in the crystallization behavior of this bulk glass alloy. The different crystallization behavior of the carbon-free and the carbon-containing glassy alloys has been...

  19. Characterization of TiO2 Thin Films on Glass Substrate Growth Using DC Sputtering Technique

    International Nuclear Information System (INIS)

    Agus Santoso; Tjipto Sujitno; Sayono

    2002-01-01

    It has been fabricated and characterization a TiO 2 thin films deposited on glass substrate using DC sputtering technique. Fabrication of TiO 2 thin films were carried out at electrode voltage 4 kV, sputtering current 5 mA, vacuum pressure 5 x 10 -4 torr, deposition time 150 minutes, and temperature of the substrate were varied from 150 -350 o C, while as a gas sputter was argon. The results was tested their micro structure using SEM, and crystal structure using XRD and found that the crystal structure of TiO 2 powder before deposited on glass substrate was rutile and anatase with orientation (110) and (200) for anatase and (100) and (111) rutile structure. While the crystal structure which deposited at temperature 150 o C and deposition time 2.5 hours was anatase with orientation (001) and (200). (author)

  20. Effect of interfacial oxide thickness on the photocatalytic activity of magnetron-sputtered TiO2coatings on aluminum substrate

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Shabadi, Rajashekhara

    2015-01-01

    The influence of the coating/substrate interface on the photocatalytic behavior of Al-TiO2 coatings was investigated. The TiO2 coatings were prepared by magnetron sputtering. The nanoscale structure of the coating was analyzed using X-ray diffraction; atomic force microscopy; scanning electron...... transport between the coating and the metallic substrate. The highest photocurrents were indeed obtained when the thickness of interfacial aluminum oxide could be reduced by sputtering a thin Ti layer prior to TiO2 coating. Photocurrent plotted for different photon energy for a TiO2 coating on a Ti...

  1. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor.

    Science.gov (United States)

    Dolenc Koce, Jasna

    2017-10-01

    Nanoparticles of TiO 2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO 2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO 2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Manory, R.R.; Paterson, P.J.K.; Stuart, Sue-Anne

    1992-01-01

    Auger Electron Spectroscopy has been employed to investigate the effectiveness of thin films of TiN as barriers to carbon diffusion during Chemical Vapor Deposition (CVD) of diamond onto Fe substrates. Auger Depth Profiling was used to monitor the C concentration in the TiN layer, through the interface and into the substrate both before and after CVD diamond deposition. The results show that a layer of TiN only 250 Angstroems thick is sufficient to inhibit soot formation on the Fe surface and C diffusion into the Fe bulk. 14 refs., 4 figs

  3. Toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} to the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanhua; Wick, Robert L. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2009-04-15

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC{sub 50}) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC{sub 50} for ZnO NPs (2.3 mg L{sup -1}) and bulk ZnO was not significantly different, but significantly different between Al{sub 2}O{sub 3} NPs (82 mg L{sup -1}) and bulk Al{sub 2}O{sub 3} (153 mg L{sup -1}), and between TiO{sub 2} NPs (80 mg L{sup -1}) and bulk TiO{sub 2} (136 mg L{sup -1}). Oxide solubility influenced the toxicity of ZnO and Al{sub 2}O{sub 3} NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans.

  4. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Z. M., E-mail: azmr@utem.edu.my; Kwan, W. L., E-mail: kwailoon86@gmail.com; Juoi, J. M., E-mail: jariah@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2016-07-19

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (R{sub N}), and substrate temperature (T{sub S}). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % R{sub N}. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB{sub 2} phase within the coatings. The T{sub S}, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  5. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    International Nuclear Information System (INIS)

    Rosli, Z. M.; Kwan, W. L.; Juoi, J. M.

    2016-01-01

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (R_N), and substrate temperature (T_S). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % R_N. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB_2 phase within the coatings. The T_S, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  6. Properties of TiO{sub 2} thin films deposited by rf reactive magnetron sputtering on biased substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nezar, Sawsen, E-mail: snezar@cdta.dz [Equipe Plasma & Applications, Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, Cité du 20 Aout 1956, Baba Hassen, Alger (Algeria); Laboratoire des phénomènes de transfert, génie chimique, Faculté de Génie des procèdes, USTHB, BP 32 El-alia, Bab Ezzouar, Alger (Algeria); Saoula, Nadia [Equipe Plasma & Applications, Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, Cité du 20 Aout 1956, Baba Hassen, Alger (Algeria); Sali, Samira [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE Algiers) (Algeria); Faiz, Mohammed; Mekki, Mogtaba [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Laoufi, Nadia Aïcha [Laboratoire des phénomènes de transfert, génie chimique, Faculté de Génie des procèdes, USTHB, BP 32 El-alia, Bab Ezzouar, Alger (Algeria); Tabet, Nouar [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Doha (Qatar)

    2017-02-15

    Highlights: • TiO{sub 2} thin films were deposited on negatively biased substrates by rf magnetron sputtering technique. • The bias favors the formation of TiO{sub 2} crystalline phase. • The roughness of the films increases and the grain size decreases as the bias voltage is varied between (0 and −100 V). • XPS reveals the presence of adsorbed humidity of the surface and Ti{sup 4+} oxidation state in the as prepared samples. - Abstract: TiO{sub 2} thin films are of paramount importance due to their pervasive applications. In contrast to previous published works where the substrate was heated at high temperatures to obtain TiO{sub 2} crystalline phase, we show in this study that it is possible to deposit crystalline TiO{sub 2} thin films on biased and unbiased substrate at room temperature using reactive rf magnetron sputtering. The bias voltage was varied from 0 V to −100 V. The deposited films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and atomic force microscopy (AFM). The average crystallite size was estimated using x-ray diffraction. The results showed that the application of negative bias affects the surface roughness of the films and favors the formation of the rutile phase. The root mean square roughness (R{sub rms}), the average grain size and the optical band gap of the films decreased as the substrate bias voltage was varied from 0 to −100 V. The UV–visible transmittance spectra showed that the films were transparent in the visible range and absorb strongly in the UV range. This study shows that biasing the substrate could be a promising and effective alternative to deposit TiO{sub 2} crystallized thin films of engineered properties at room temperature.

  7. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency.

    Science.gov (United States)

    Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian

    2011-10-19

    TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.

  8. Fabrication of Organic Bulk Heterojunction Solar Cells on Flexible Substrates

    Science.gov (United States)

    Calderon, Gabriel; Merced-Sanabria, Milzaida; Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    2015-03-01

    The active layer for the organic solar cells fabricated is composed of P3HT:PCBM, poly(3-hexylthiophene) (P3HT) as electron donor and phenyl-C61-butyric acid methyl ester(PCBM) as electron acceptor. These polymers were used due to their promising characteristics for devices such as bulk heterojunction solar devices. We used polyethylene terephthalate (PET) substrates, a highly flexible plastic, with indium tin oxide (ITO) as the transparent conducting anode for the device, and UV lithography technique to pattern the ITO; this is to facilitate multiple devices on a single substrate. The fabrication process for pattern transfer incorporates developing and etching processes. We diluted the HCl and DI water to etch out the ITO. PEDOT:PSS and active layer of P3HT:PCBM were deposited on (3.0 sq-cm) patterned of ITO/PET by spin coating method. The cathode was thermally evaporated with Al. We characterized the device using a sourcemeter. We also simulated portions of the device using PET on graphene as the substrate.

  9. Influence of substrate temperature and silver-doping on the structural and optical properties of TiO_2 films

    International Nuclear Information System (INIS)

    Fischer, Dieter

    2016-01-01

    Evaporation of titanium together with activated oxygen is used to grow TiO_2 films and simultaneously with silver to grow Ag–TiO_2 films (5 at.% Ag) onto sapphire substrates at three different substrate temperatures: − 190, 30, and 200 °C. The obtained films were characterized by X-ray powder diffraction, Raman, X-ray photoelectron, ultraviolet–visible spectroscopy, and transmission electron microscope investigations. The properties of TiO_2 films varied with the substrate temperature. Amorphous, transparent TiO_2 films were grown at − 190 °C and opaque, polycrystalline films at 200 °C, respectively. Surprisingly, at room temperature black, amorphous TiO_2 films are obtained which transform at 350 °C into a mixture of the anatase and brookite polymorph. In the amorphous state of the TiO_2 films a predefined rutile arrangement is suggested by Raman investigations, and the contraction of the lattice constant c of anatase phases (tetragonal, space group I 4_1/amd) depending on the substrate temperature is experimentally observed. The silver-doped TiO_2 films deposited at − 190 and 30 °C contain Ag-particles with 2 nm in size inside the TiO_2 matrix, which after annealing segregate under increasing particle sizes. The silver-doping stabilizes the anatase polymorph and yields to reduced titanium species in the films especially during deposition at 30 °C. The Ag–TiO_2 films deposited at − 190 °C are transparent up to 350 °C. In the undoped as well as silver-doped TiO_2 films the rutile polymorph is directly formed at 200 °C as main phase. - Highlights: • At room temperature black, amorphous TiO_2 films are obtained. • A predefined rutile arrangement is suggested in amorphous TiO_2 films. • Annealed TiO_2 films crystallize to a mixture of the anatase and brookite polymorph. • In TiO_2 and Ag-doped TiO_2 films the rutile polymorph is directly formed at 200 °C. • Ag-doped TiO_2 films stabilize the anatase polymorph and reduced titanium

  10. Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.P. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Gonçalves, M.C. [State University of Campinas (Unicamp), Instituto de Química, CP 6154, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP (Brazil); Caram, R. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Bertazzoli, R., E-mail: rbertazzoli@fem.unicamp.br [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Rodrigues, C.A. [Federal University of São Paulo – Campus Diadema (UNIFESP – Campus Diadema), Departamento de Ciências Exatas e da Terra, Rua São Nicolau n° 210, 09913-030 Diadema, SP (Brazil)

    2013-11-15

    The formation of nanotubular oxide layers on Ti and Ti alloys has been widely investigated for the photocatalytic degradation of organic compounds due to their excellent catalytic efficiency, chemical stability, and low cost and toxicity. Aiming to improve the photocatalytic efficiency of this nanostructured oxide, this work investigated the influence of substrate grain size on the growth of nanotubular oxide layers. Ti and Ti alloys (Ti–6Al, Ti–6Al–7Nb) were produced by arc melting with non-consumable tungsten electrode and water-cooled copper hearth under argon atmosphere. Some of the ingots were heat-treated at 1000 °C for 12 and 24 h in argon atmosphere, followed by slow cooling rates to reduce crystalline defects and increase the grain size of their microstructures. Three types of samples were anodized: commercial substrate, as-prepared and heat-treated samples. The anodization was performed using fluoride solution and a cell potential of 20 V. The samples were characterized by optical microscopy, field-emission scanning electron microscopy and X-ray diffraction. The heat treatment preceding the anodization process increased the grain size of pure Ti and Ti alloys and promoted the formation of Widmanstätten structures in Ti{sub 6}Al{sub 7}Nb. The nanotubes layers grown on smaller grain and thermally untreated samples were more regular and homogeneous. In the case of Ti–6Al–7Nb alloy, which presents a α + β phase microstructure, the morphology of nanotubes nucleated on α matrix was more regular than those of nanotubes nucleated on β phase. After the annealing process, the Ti–6Al–7Nb alloy presented full diffusion process and the growth of equilibrium phases resulting in the appearance of regions containing higher concentrations of Nb, i.e. beta phase. In those regions the dissolution rate of Nb{sub 2}O{sub 5} is lower than that of TiO{sub 2}, resulting in a nanoporous layer. In general, heat treating reduces crystalline defects and promotes

  11. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study

    KAUST Repository

    Wang, Junsheng; Horsfield, Andrew; Lee, Peter D.; Schwingenschlö gl, Udo

    2010-01-01

    The nucleation of solid Al from the melt by TiB2 is well established and is believed to involve the formation of Al3Ti. Since the atomic-scale mechanisms involved are not fully understood, we look to computer simulation to provide insight. As there is an absence of suitable potentials for all of this complex system we have performed large-scale density-functional-theory molecular dynamics simulations of the nucleation of solid Al from the melt on TiB2 and Al3Ti substrates at undercoolings of around 2 K. Using periodic boundary conditions, we find limited ordering and no signs of incipient growth in the liquid Al close to the B-terminated surface of TiB2. By contrast, we see fcc-like ordering near the Ti-terminated surface, with growth being frustrated by the lattice mismatch between bulk Al and the TiB2 substrate. The Al interatomic distances at the Ti-terminated surface are similar to distances found in Al3Ti; we suggest that the layer encasing TiB2 observed experimentally may be strained Al on a Ti-terminated surface rather than Al3Ti. For the Al3Ti substrate, fcc-like structures are observed on both sides which extend rapidly into the melt. Periodic boundaries introduce unphysical stresses which we removed by introducing a vacuum region to separate the liquid from the solid at one of the interfaces. We see ordering in the Al on both the B-terminated (0001) surface of TiB2, and on Al3Ti(112), with the ordering able to be stronger on the Al3Ti substrate. However, we cannot draw strong conclusions as these simulations need more time to allow long-ranged fluctuations in the liquid Al to dampen out. The huge computational cost restricted the range and duration of simulations that was possible.

  12. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study

    KAUST Repository

    Wang, Junsheng

    2010-11-16

    The nucleation of solid Al from the melt by TiB2 is well established and is believed to involve the formation of Al3Ti. Since the atomic-scale mechanisms involved are not fully understood, we look to computer simulation to provide insight. As there is an absence of suitable potentials for all of this complex system we have performed large-scale density-functional-theory molecular dynamics simulations of the nucleation of solid Al from the melt on TiB2 and Al3Ti substrates at undercoolings of around 2 K. Using periodic boundary conditions, we find limited ordering and no signs of incipient growth in the liquid Al close to the B-terminated surface of TiB2. By contrast, we see fcc-like ordering near the Ti-terminated surface, with growth being frustrated by the lattice mismatch between bulk Al and the TiB2 substrate. The Al interatomic distances at the Ti-terminated surface are similar to distances found in Al3Ti; we suggest that the layer encasing TiB2 observed experimentally may be strained Al on a Ti-terminated surface rather than Al3Ti. For the Al3Ti substrate, fcc-like structures are observed on both sides which extend rapidly into the melt. Periodic boundaries introduce unphysical stresses which we removed by introducing a vacuum region to separate the liquid from the solid at one of the interfaces. We see ordering in the Al on both the B-terminated (0001) surface of TiB2, and on Al3Ti(112), with the ordering able to be stronger on the Al3Ti substrate. However, we cannot draw strong conclusions as these simulations need more time to allow long-ranged fluctuations in the liquid Al to dampen out. The huge computational cost restricted the range and duration of simulations that was possible.

  13. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  14. Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate

    OpenAIRE

    Xu, Weijia; Yin, Huaxiang; Ma, Xiaolong; Hong, Peizhen; Xu, Miao; Meng, Lingkuan

    2015-01-01

    In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs provide better electrostatic integrity in the channels than normal bulk-Si FinFETs or tri-gate devices with rectangular or trapezoidal fins. It is due to formation of quasi-surrounding gate electrod...

  15. Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate

    Science.gov (United States)

    Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.

    2018-04-01

    In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.

  16. Influence of substrate bias on the structure and properties of (Ti, Al)N films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Cheng, Y.H.; Tay, B.K.; Lau, S.P.; Shi, X.

    2001-01-01

    (Ti, Al)N films were deposited by an off-plane, double-bend, filtered cathodic vacuum arc technique in N 2 atmosphere at room temperature. The (Ti, Al)N films deposited are atomically smooth. The influence of substrate negative bias at the wide range (0-1000 V) on the deposition rate, surface morphology, crystal structure, internal stress, and mechanical properties of (Ti, Al)N films were systematically studied. Increasing substrate bias results in the decrease of deposition rate and the increase of surface roughness monotonically. At the bias of 0 V, (Ti, Al)N films are amorphous, and the internal stress, hardness, and Young's modulus for the deposited films are fairly low. With increasing substrate bias to 200 V, single-phase face-centered cubic-type nanocrystalline (Ti, Al)N films can be obtained, and the internal stress, hardness, and Young's modulus increase to the maximum of 7 GPa, 28 GPa, and 240 GPa, respectively. Further increase of substrate bias results in the decrease of intensity and the broadening of x-ray diffraction lines, and the gradual decrease of internal stress, hardness, and Young's modulus in (Ti, Al)N films

  17. Enhanced Mechanical Properties of MgZnCa Bulk Metallic Glass Composites with Ti-Particle Dispersion

    Directory of Open Access Journals (Sweden)

    Pei Chun Wong

    2016-05-01

    Full Text Available Rod samples of Mg60Zn35Ca5 bulk metallic glass composites (BMGCs dispersed with Ti particles have been successfully fabricated via injection casting. The glass forming ability (GFA and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf of Ti particles. The results showed that the compressive ductility increased with Vf. The mechanical performance of these BMGCs, with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature, can be obtained for the Mg-based BMGCs with 50 vol % Ti particles, suggesting that these dispersed Ti particles can absorb the energy of the crack propagations and can induce branches of the primary shear band into multiple secondary shear bands. It follows that further propagation of the shear band is blocked, enhancing the overall plasticity.

  18. Nitriding of Ti substrate using energetic ions from plasma focus device

    International Nuclear Information System (INIS)

    Henriquez, A; Bhuyan, H; Favre, M; Bora, B; Wyndham, E; Chuaqui, H; Mändl, S; Gerlach, J W; Manova, D

    2012-01-01

    Plasma Focus (PF) discharge is a pulsed plasma producing discharge that generates high temperature and high density plasma for a short duration. PF devices are known to emit intense ion beams pulses of characteristic energy in the keV to a few MeV range, in a time scale of tens of nanoseconds. We have previously investigated the ion flux and energy spectrum of ion beams emitted from a low energy PF, operating at 20 kV, with 1.8 kJ stored energy. It was observed that the ion beams have wide range of energy and intensity spectra with a clear angular anisotropy. Due to the wide range of ion energy and intensity spectra PF has become a subject of current interest for its applications in material sciences including surface modification and thin film deposition. The purpose of this study is the formation of titanium nitride (TiN) thin film and to investigate the structural properties of the TiN thin films in terms of PF angular positions. Substrates like Ti and Ti/Si were nitrided in a 1.8 kJ PF device at different angular positions with respect to the PF axis in order to correlate their surface properties with ion beam parameters. Preliminary characterizations of the ion implanted substrates have been conducted, using SEM, EDX and XRD. Our results indicate the formation of nanocrystalline TiN thin film only in certain angular positions. Angular dependency of the surface morphology was observed, which shows that the surface features strongly depends on ion beam energy and flux. With increasing angular positions, a reduction in the deposition rate and the sputter rate is observed. A pronounced nanostructured surface is only observed at the axis of the pinched plasma column, indicating the dominant role of sputtering and perhaps melting and fast re-crystallization of the surface in creating the nanostructures.

  19. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bimber, Beth A. [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Hamilton, Reginald F., E-mail: rfh13@psu.edu [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Keist, Jayme; Palmer, Todd A. [Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804 (United States)

    2016-09-30

    The microstructure and superelasticity in additive manufactured NiTi shape memory alloys (SMAs) were investigated. Using elementally blended Ni and Ti powder feedstock, Ni-rich build coupons were fabricated via the laser-based directed energy deposition (LDED) technique. The build volumes were large enough to extract tensile and compressive test specimens from selected locations for spatially resolving microconstituents and the underlying stress-induced martensitic phase transformation (SIMT) morphology. In the as-deposited condition, X-ray diffraction identified the B2 atomic crystal structure of the austenitic parent phase in NiTi SMAs, and Ni{sub 4}Ti{sub 3} precipitates were the predominant microconstituent identified through scanning electron microscopy. The microstructure exhibited anisotropy, which was characterized by the Ni{sub 4}Ti{sub 3} precipitate morphology being coarsest nearest the substrate, while a finer morphology was observed farthest from the substrate. In-situ full-field deformation measurements calculated using digital image correlation confirmed that the SIMT predominately occurred in the finer precipitate morphology. Heat treatment reduced the degree of anisotropy, and DIC analysis revealed localized SIMT strains increased compared to the as-deposited condition.

  20. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming

    2015-09-30

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, Perovskite solar cells based on CH3NH3PbI3-xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied with scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that pinholes in thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.

  1. Interfacial Structure and Photocatalytic Activity of Magnetron Sputtered TiO2 on Conducting Metal Substrates

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Mermoux, Michel

    2014-01-01

    The photocatalytic behavior of magnetron sputtered anatase TiO2 coatings on copper, nickel, and gold was investigated with the aim of understanding the effect of the metallic substrate and coating-substrate interface structure. Stoichiometry and nanoscale structure of the coating were investigated...

  2. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  3. Effect of substrate type on the electrical and structural properties of TiO2 thin films deposited by reactive DC sputtering

    Science.gov (United States)

    Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka

    2018-06-01

    Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.

  4. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.

    2005-01-01

    Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation is obse...... is observed in the glassy matrix when the thickness reduction exceeds 89%. Once the phase separation occurs, the microhardness of the specimen increases drastically, indicating the existence of work hardening by severe plastic deformation of the metallic glass.......Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation...

  5. Mechanical response of nitrogen ion implanted NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Kucharski, S.; Levintant-Zayonts, N.; Luckner, J.

    2014-01-01

    Highlights: • The effect of ion implantation process on shape memory alloy was investigated. • In the implantation process both surface layer and bulk material are modified. • The microstructure is modified and superelastic effect is destroyed in surface layer. • The parameters of superelastic phenomena are changed in bulk material. - Abstract: In the paper a change of material (mechanical) parameters of NiTi shape memory alloy subjected to ion implantation treatment is investigated. The spherical indentation tests in micro- and nano-scale and tension test have been performed to study an evolution of local superelastic effect in different volumes of nonimplanted and nitrogen ion implanted NiTi alloy. The differential scanning calorimetry has been applied to measure the change of characteristic temperatures due to ion implantation treatment. The structure of implanted material has been investigated using electron microscopy technique. It has been found that the ion implantation process changes the properties not only in a thin surface layer but also in bulk material. In the layer the pseudoelastic effect is destroyed, and in the substrate is preserved, however its parameters are changed. The characteristic phase transformation temperatures in substrate are also modified

  6. TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance

    Directory of Open Access Journals (Sweden)

    Matus Zelny

    2018-01-01

    Full Text Available Transfer of semiconductor thin films on transparent and or flexible substrates is a highly desirable process to enable photonic, catalytic, and sensing technologies. A promising approach to fabricate nanostructured TiO2 films on transparent substrates is self-ordering by anodizing of thin metal films on fluorine-doped tin oxide (FTO. Here, we report pulsed direct current (DC magnetron sputtering for the deposition of titanium thin films on conductive glass substrates at temperatures ranging from room temperature to 450 °C. We describe in detail the influence that deposition temperature has on mechanical, adhesion and microstructural properties of titanium film, as well as on the corresponding TiO2 nanotube array obtained after anodization and annealing. Finally, we measure the photoelectrochemical water splitting activity of different TiO2 nanotube samples showing that the film deposited at 150 °C has much higher activity correlating well with the lower crystallite size and the higher degree of self-organization observed in comparison with the nanotubes obtained at different temperatures. Importantly, the film showing higher water splitting activity does not have the best adhesion on glass substrate, highlighting an important trade-off for future optimization.

  7. Ferroelectric self-assembled PbTiO{sub 3} perovskite nanostructures onto (100)SrTiO{sub 3} substrates from a novel microemulsion aided sol-gel preparation method

    Energy Technology Data Exchange (ETDEWEB)

    Calzada, M L [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain); Torres, M [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain); Fuentes-Cobas, L E [Centro de Investigacion en Materiales Avanzados, Chihuahua (Mexico); Mehta, A [Stanford Synchrotron Radiation Laboratory, Menlo Park, CA (United States); Ricote, J [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain); Pardo, L [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain)

    2007-09-19

    A novel preparation method, which involves the use of microemulsions, sol-gel chemistry and chemical solution deposition, has been developed in this work for the preparation of layers of PbTiO{sub 3} nanostructures supported on SrTiO{sub 3} substrates. A transparent solution was first prepared by mixing a PbTiO{sub 3} precursor sol and a microemulsion formed by water, cyclohexane and the surfactant Brij 30 (polyoxyethylene(4) lauryl ether). The solution was deposited onto the SrTiO{sub 3} substrate by spin-coating and dried under controlled conditions (temperature, time and relative humidity) to favor the rearrangement of the micelles in the deposited coat. After a rapid thermal treatment of crystallization at 650 deg. C, nanostructures with uniform sizes of {approx}40 nm diameter and showing periodicity in some zones of the substrate are obtained. The analysis of these nanostructures by grazing-incidence x-ray synchrotron radiation indicates that they have a perovskite structure with a <100> preferred orientation and that they are under strained conditions. Thermal treatments at higher temperatures produce the collapse of the ordered nanoparticles' network and the formation of larger isolated particles of PbTiO{sub 3} with a truncated-pyramid morphology. Piezoresponse force microscopy studies demonstrate that the spontaneous polarization of these PbTiO{sub 3} nanostructures can be switched and that they have piezoelectric activity. These results support the fabrication strategy here proposed as a promising approach for the preparation of nanoferroelectrics onto substrates of possible interest in future nanoelectronic devices.

  8. Second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhang, P.N.

    2007-01-01

    The second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation...

  9. Effect of substrate roughness and working pressure on photocatalyst of N-doped TiOx films prepared by reactive sputtering with air

    International Nuclear Information System (INIS)

    Lee, Seon-Hong; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2015-01-01

    Highlights: • Effect of substrate roughness and working pressure on the physical properties and the photocatalytic properties of the N-doped TiO x films are investigated. • Surface roughness of glass substrate has little influence on the film properties, but significant influence on the photocatalytic ability. • Working pressure has little influence on the produced phases and the atomic bonding configurations, but significant influence on the atomic concentration of the N-doped TiO x film. • High photocatalysis of N-doped TiO x film requires the permissible range of the N doping concentration which shows the interstitial complex N doping states in TiO 2 . - Abstract: N-doped TiO x films on the glass substrate were prepared by radio-frequency (RF) magnetron reactive sputtering of Ti target in a mixed gas of argon and dry air. The effect of substrate roughness and working pressure on the physical properties and the photocatalytic properties of the N-doped TiO x films was investigated. The surface roughness of glass substrate has little influence on the film properties such as produced phases, lattice parameters, introduced nitrogen contents, and atomic bonding configurations, but significant influence on the surface roughness of film resulting in the variation of the photocatalytic ability. The working pressure has little influence on the produced phases and the atomic bonding configurations, but significant influence on the atomic concentration of the N-doped TiO x film, resulting in the large variation of optical, structural, and photocatalytic properties. It is suggested that the high photocatalysis of N-doped TiO x film requires a certain range of the N doping concentration which shows the interstitial complex N doping states in TiO 2

  10. Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering

    Science.gov (United States)

    Abdullah, S. A.; Sahdan, M. Z.; Nafarizal, N.; Saim, H.; Bakri, A. S.; Cik Rohaida, C. H.; Adriyanto, F.; Sari, Y.

    2018-04-01

    This paper highlights the defect levels using photoluminescence spectroscopy of TiO2 thin films. The TiO2 were deposited by Magnetron Sputtering system with 200, 300, 400, and 500 °C substrate temperature on microscope glass substrate. The PL result shows profound effect of various substrate temperatures to defect levels of oxygen vacancies and Ti3+ at titanium interstitial site. Increasing temperature would minimize the oxygen vacancy defect, however Ti3+ shows otherwise. Green region of PL consist of trapped hole for oxygen vacancy, while red region of PL is trapped electron associated to structural defect Ti3+. Green PL is dominant peak at temperature 200 °C, indicating that oxygen vacancy is the main defect at this temperature. However, PL peak shows slightly same value for others samples indicating that the temperature did not give high influence to other level of defect after 200 °C.

  11. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    Science.gov (United States)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  12. Measurements and removal of substrate effects on the microwave surface impedance of YBCO films on SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pompeo, N [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Muzzi, L [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Galluzzi, V [ENEA-Frascati, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Marcon, R [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Silva, E [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy)

    2007-10-15

    We reconsider the problem of the measurements of the microwave complex surface impedance in thin superconducting films deposited on SrTiO{sub 3} substrates. We perform measurements of the complex surface impedance Z{sub s}' = R{sub s}'+i{delta}X{sub s}' of thin YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films deposited by laser ablation on SrTiO{sub 3} substrates. The typical oscillations due to the strong temperature variation of the SrTiO{sub 3} permittivity are confirmed in R{sub s}' and observed in {delta}X{sub s}'. The effects of the SrTiO{sub 3} substrate are evident even well below the superconducting transition temperature of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}. Similarly to previous works, we describe the overall response in terms of impedance transformations. We extend the known results by (i) considering the measurements of the imaginary part (ii) comparing the measurements to the absolute dc resistivity measured on the same sample, and (iii) suggesting a method for measuring the intrinsic thin film surface impedance by adjusting the substrate impedance. To demonstrate the feasibility of microwave measurements of intrinsic properties of films grown onto SrTiO{sub 3} substrates, we check the proposed method by measuring the field dependent surface impedance before and after removal of the substrate resonance.

  13. Universality of electron mobility in LaAlO3/SrTiO3 and bulk SrTiO3

    Science.gov (United States)

    Trier, Felix; Reich, K. V.; Christensen, Dennis Valbjørn; Zhang, Yu; Tuller, Harry L.; Chen, Yunzhong; Shklovskii, B. I.; Pryds, Nini

    2017-08-01

    Metallic LaAlO3/SrTiO3 (LAO/STO) interfaces attract enormous attention, but the relationship between the electron mobility and the sheet electron density, ns, is poorly understood. Here, we derive a simple expression for the three-dimensional electron density near the interface, n3 D , as a function of ns and find that the mobility for LAO/STO-based interfaces depends on n3 D in the same way as it does for bulk doped STO. It is known that undoped bulk STO is strongly compensated with N ≃5 ×1018 cm-3 background donors and acceptors. In intentionally doped bulk STO with a concentration of electrons n3 DN , the mobility collapses because scattering happens on n3 D intentionally introduced donors. For LAO/STO, the polar catastrophe which provides electrons is not supposed to provide an equal number of random donors and thus the mobility should be larger. The fact that the mobility is still the same implies that for the LAO/STO, the polar catastrophe model should be revisited.

  14. Influence of ZrB2 addition on microstructural development and microhardness of Ti-SiC clad coatings on Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Farotade, GA

    2017-08-01

    Full Text Available The microstructural features and microhardness of ZrB(sub2) reinforced Ti-SiC coatings on Ti-6Al-4V substrate were studied.The deposition of these coatings was achieved via laser cladding technique. A 4.0 KW fiber delivered Nd: YAG laser was used...

  15. Bulk glass formation and crystallization in Zr54.5Cu20Al10Ni8Ti7.5 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Kumar, V.; Ranganathan, S.

    2006-01-01

    The present work was aimed at fabrication, characterization and crystallization of Zr 54.5 Cu 20 Al 10 Ni 8 Ti 7.5 bulk metallic glass. The glass forming alloy was made by arc melting and then subjected to copper mold casting into 3 mm diameter bulk glass rods. The as-cast microstructure was characterized by optical microscopy and transmission electron microscopy (TEM)

  16. Ab initio calculations of PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Eglitis, R.I.; Piskunov, S.; Zhukovskii, Yu.F. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., 1063 Riga (Latvia)

    2016-12-15

    We performed ab initio calculations for the PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructures. For both PbO and TiO{sub 2}-terminations of the PbTiO{sub 3} (001) thin film, augmented on the SrTiO{sub 3} (001) substrate, the magnitudes of atomic relaxations Δz increases as a function of the number of augmented monolayers. For both terminations of the augmented PbTiO{sub 3} (001) nanothin film, all upper, third and fifth monolayers are displaced inwards (Δz is negative), whereas all second, fourth and sixth monolayers are displaced outwards (Δz is positive). The B3PW calculated PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructure band gaps, independently from the number of augmented layers, are always smaller than the PbTiO{sub 3} and SrTiO{sub 3} bulk band gaps. For both PbO and TiO{sub 2}-terminated PbTiO{sub 3}/SrTiO{sub 3}(001) heterostructures, their band gaps are reduced due to the increased number of PbTiO{sub 3} (001) monolayers. The band gaps of PbO-terminated augmented PbTiO{sub 3} (001) films are always larger than those for TiO{sub 2}-terminated PbTiO{sub 3} (001) thin films. The only exception is the case of 7-layer PbO-terminated and 8-layer TiO{sub 2}-terminated augmented PbTiO{sub 3} (001) thin films, where their band gaps both are equal to 2.99 eV. For each monolayer of the SrTiO{sub 3} (001) substrate, charge magnitudes always are more than several times larger, than for each monolayer in the augmented PbTiO{sub 3} (001) thin film. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    Science.gov (United States)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  18. TiO2 based photo-catalysts prepared by chemical vapor infiltration (CVI) on micro-fibrous substrates

    International Nuclear Information System (INIS)

    Sarantopoulos, Ch.

    2007-10-01

    This thesis deals with micro-fibrous glass substrates functionalized with TiO 2 . The oxide is deposited as a thin film onto the micro fibres by chemical vapour infiltration (CVI), yielding a photo-catalytic material usable for cleaning polluted air. We studied the relation between the structure of the material and its photo-catalytic efficiency. TiO 2 thin films were prepared at low pressure, in a hot-wall CVD reactor, using Ti(O-iPr) 4 as a precursor. They were characterized by XRD, SEM, EDX, XPS and BET, and by recording the kinetics of decomposition of varied pollutants in solution (orange G, malic acid, imazapyr) and in air (toluene). The conditions favoring the growth of porous films through a columnar growth mode were established by MOCVD-depositing TiO 2 thin films on flat substrates. The subsequent works with micro fibrous thick substrates showed the uniformity of infiltration to be the main factor governing the photo-catalytic efficiency. Operating parameters that optimize infiltration do not yield columnar growth mode. A compromise is necessary. Our photo-catalysts are showing high efficiency comparable, if not higher, to those actually commercialized. These promising results are opening real perspectives for the proposed process. (author)

  19. Improvement of the field-trapping capabilities of bulk Nd Ba Cu O superconductors using Ba Cu O substrates

    Science.gov (United States)

    Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato

    2006-07-01

    We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.

  20. A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO{sub 2} nanorods growth

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N. [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of); Dariani, R.S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of); Rajabi, M. [Deparment of Advanced Materials and Renewable Energies, Iranian Research Organization for Science and Technology (IROST), Tehran 3353136846 (Iran, Islamic Republic of)

    2016-03-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanorods (NRs) are synthesized on silicon and porous silicon (PS) substrates by hydrothermal method. • TiO{sub 2} NRs grown on PS substrates have a better growth compared to those grown on silicon. • Also increasing substrate porosity leads to an increase in density of the NRs. • We proposed a growth mechanism to explain how can control the local surface chemical potential. - Abstract: In this study, we have synthesized TiO{sub 2} nanorods (NRs) on silicon and porous silicon (PS) substrates by hydrothermal method. The PS substrates with different porosities were fabricated by electrochemical anodization on silicon. According to the field emission electron microscopy images, TiO{sub 2} NRs grown on PS substrates have a better growth compared to those grown on silicon. Also increasing substrate porosity leads to an increase in density of the NRs. Atomic force microscopy observation demonstrates that porous layer formation due to etching of silicon surface leads to an increase of its roughness. Results indicate surface roughness evolution with porosity increasing enhances TiO{sub 2} nucleation on substrate and thus increases TiO{sub 2} NRs density. We propose a growth mechanism to explain how we can control the local surface chemical potential and thus the nucleation and alignment of TiO{sub 2} NRs by surface roughness variation. Also, photoluminescence studies show a red-shift in band gap energy of NRs compared to that of common bulk TiO{sub 2}.

  1. Characterization of Ag adsorption on TiC(001) substrate: an ab initio study

    International Nuclear Information System (INIS)

    Ma Shangyi; Wang Shaoqing

    2008-01-01

    Ag adsorptions at 0.25–3 monolayer (ML) coverage on a perfect TiC(001) surface and at 0.25 ML coverage on C vacancy are separately investigated by using the pseudopotential-based density functional theory. The preferential adsorption sites and the adsorption-induced modifications of electronic structures of both the substrate and adsorbate are analysed. Through the analyses of adsorption energy, ideal work of separation, interface distance, projected local density of states, and the difference electron density, the characteristic evolution of the adatom-surface bonding as a function of the amount of deposited silver is studied. The nature of the Ag/TiC bonding changes as the coverage increases from 0.25 to 3 MLs. Unlike physisorption in an Ag/MgO system, polar covalent component contributes to the Ag/TiC interfacial adhesion in most cases, however, for the case of 1–3 ML coverage, an additional electrostatic interaction between the absorption layer and the substrate should be taken into account. The value of ideal work of separation, 1.55 J/m 2 for a 3-ML-thick adlayer accords well with other calculations. The calculations predict that Ag does not wet TiC(001) surface and prefers a three-dimensional growth mode in the absence of kinetic factor. This work reports on a clear site and coverage dependence of the measurable physical parameters, which would benefit the understanding of Ag/TiC (001) interface and the analysis of experimental data. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  3. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  4. AlGaN/GaN HEMT structures on ammono bulk GaN substrate

    International Nuclear Information System (INIS)

    Kruszewski, P; Prystawko, P; Krysko, M; Smalc-Koziorowska, J; Leszczynski, M; Kasalynas, I; Nowakowska-Siwinska, A; Plesiewicz, J; Dwilinski, R; Zajac, M; Kucharski, R

    2014-01-01

    The work shows a successful fabrication of AlGaN/GaN high electron mobility transistor (HEMT) structures on the bulk GaN substrate grown by ammonothermal method providing an ultralow dislocation density of 10 4  cm −2  and wafers of size up to 2 inches in diameter. The AlGaN layers grown by metalorganic chemical vapor phase epitaxy method demonstrate atomically smooth surface, flat interfaces with reproduced low dislocation density as in the substrate. The test electronic devices—Schottky diodes and transistors—were designed without surface passivation and were successfully fabricated using mask-less laser-based photolithography procedures. The Schottky barrier devices demonstrate exceptionally low reverse currents smaller by a few orders of magnitude in comparison to the Schottky diodes made of AlGaN/GaN HEMT on sapphire substrate. (paper)

  5. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  6. Influence of substrate temperature and annealing on structural and optical properties of TiO{sub 2} films deposited by reactive e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pjević, D., E-mail: dejanp@vinca.rs [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Marinković, T.; Savić, J.; Bundaleski, N.; Obradović, M.; Milosavljević, M. [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Kulik, M. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie St. 6, Dubna 141980, Moscow Region (Russian Federation)

    2015-09-30

    The influence of deposition and post-deposition annealing parameters on the structure and optical properties of TiO{sub 2} thin films synthesized by reactive e-beam evaporation is reported. Pure Ti (99.9%) was evaporated in oxygen atmosphere to form thin films on Si (100) and glass substrates. Depositions were conducted on substrates held at room temperature and at 200–400 °C heated substrates. Post-deposition annealing was done for 3 h at 500 °C in air. Compositional and structural studies were performed by Rutherford backscattering spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy, and optical properties were studied by ultraviolet–visible spectroscopy and analytically by pointwise unconstrained minimization approach method. It was found that both the structure and optical properties of the films are strongly influenced by the deposition and processing parameters. All deposited samples showed good stoichiometry of Ti:O ~ 1:2. Depending on the substrate temperature and oxygen pressure in the chamber during the deposition, anatase–rutile mixed films were obtained, and in some cases TiO and Ti{sub 2}O{sub 3} phases were observed. Substrate deposition temperature appears to play the major role on the final structure of the films, while post-deposition annealing adds up for the lack of oxygen in some cases and invokes crystal grain growth of already initiated phases. The results can be interesting towards the development of TiO{sub 2} thin films with defined structure and optical properties. - Highlights: • TiO{sub 2} films were deposited by reactive e-beam evaporation. • Structure and properties were studied as a function of deposition temperature. • Stoichiometry of as-deposited films was Ti:O ~ 1:2, containing different Ti-O phases. • Post-deposition annealing yielded phase transformation, affecting the properties. • Refractive index increases with the substrate deposition temperature.

  7. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  8. Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016

    Science.gov (United States)

    2016-12-01

    ARL-TR-7913 ● DEC 2016 US Army Research Laboratory Fabrication and Characterization of Vertical Gallium Nitride Power Schottky...TR-7913 ● DEC 2016 US Army Research Laboratory Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk...Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  9. Surface characterization of Zr/Ti/Nb tri-layered films deposited by magnetron sputtering on Si(111) and stainless steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tallarico, Denise A.; Gobbi, Angelo L.; Filho, Pedro I. Paulin; Galtayries, Anouk; Nascente, Pedro A. P. [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905, Sao Carlos, SP (Brazil); Brazilian Synchrotron Light Laboratory, Microfabrication Laboratory, Rua Giuseppe Maximo Scolfaro 10.000, CEP 13083-100, Campinas, SP (Brazil); Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905, Sao Carlos, SP (Brazil); Ecole Nationale Superieure de Chimie de Paris (Chimie ParisTech), Laboratoire de Physico-Chimie des Surfaces, UMR CNRS 7045, F-75231 Paris cedex 05 (France); Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905, Sao Carlos, SP (Brazil)

    2012-09-15

    Among metallic materials, commercially pure titanium and titanium alloys are very often used as biomaterials for implants. Among these alloys, titanium-aluminum-vanadium alloy Ti-6 A-4 V is one of the most commonly used due to its excellent biocompatibility and ability to allow bone-implant integration. A new class of Ti alloys employs Zr for solid-solution hardening and Nb as {beta}-phase stabilizer. Metals such as Ti, Nb, and Zr-known as valve metals-usually have their surfaces covered by a thin oxide film that forms spontaneously in air. This oxide film constitutes a barrier between the metal and the medium. The Ti-Nb-Zr alloys have mechanical and corrosion resistance characteristics which make them suitable for use as implants. Tri-layered films of Ti-Nb-Zr were deposited on both Si(111) and stainless steel (SS) substrates using dc magnetron sputtering equipment, under an argon atmosphere according to the following methodology: a 100 nm thick layer of Nb was deposited on the substrate, followed by a 200 nm thick layer of Ti, and finally a 50 nm thick layer of Zr, on top of the multilayer stack. The morphology and chemical composition of the films were analyzed by atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). AFM images showed that the Zr/Ti/Nb tri-layer films presented nanostructured grains and low roughness. The ToF-SIMS depth profiles confirmed the formation of a three-layered film on Si(111) with well-defined and sharp interfaces between the layers, while the deposition on the stainless steel substrate caused slight intermixing at the different alloy/Nb, Nb/Ti and Ti/Zr interfaces, reflecting the greater roughness of the raw substrate. The XPS results for the Zr/Ti/Nb layers deposited on Si(111) and SS confirmed that the outermost layer consisted of Zr only, with a predominance of ZrO{sub 2}, as the metal layer is passivated in air. An oxidation treatment of 1000 Degree

  10. TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: Properties and effects on C. albicans growth and inactivation process

    Science.gov (United States)

    Pessoa, R. S.; dos Santos, V. P.; Cardoso, S. B.; Doria, A. C. O. C.; Figueira, F. R.; Rodrigues, B. V. M.; Testoni, G. E.; Fraga, M. A.; Marciano, F. R.; Lobo, A. O.; Maciel, H. S.

    2017-11-01

    Atomic layer deposition (ALD) surges as an attractive technology to deposit thin films on different substrates for many advanced biomedical applications. Herein titanium dioxide (TiO2) thin films were successful obtained on polyurethane (PU) and polydimethylsiloxane (PDMS) substrates using ALD. The effect of TiO2 films on Candida albicans growth and inactivation process were also systematic discussed. TiCl4 and H2O were used as precursors at 80 °C, while the reaction cycle number ranged from 500 to 2000. Several chemical, physical and physicochemical techniques were used to evaluate the growth kinetics, elemental composition, material structure, chemical bonds, contact angle, work of adhesion and surface morphology of the ALD TiO2 thin films grown on both substrates. For microbiological analyses, yeasts of standard strains of C. albicans were grown on non- and TiO2-coated substrates. Next, the antifungal and photocatalytic activities of the TiO2 were also investigated by counting the colony-forming units (CFU) before and after UV-light treatment. Chlorine-doped amorphous TiO2 films with varied thicknesses and Cl concentration ranging from 2 to 12% were obtained. In sum, the ALD TiO2 films suppressed the yeast-hyphal transition of C. albicans onto PU, however, a high adhesion of yeasts was observed. Conversely, for PDMS substrate, the yeast adhesion did not change, as observed in control. Comparatively to control, the TiO2-covered PDMS had a reduction in CFU up to 59.5% after UV treatment, while no modification was observed to TiO2-covered PU. These results pointed out that ALD chlorine-doped amorphous TiO2 films grown on biomedical polymeric surfaces may act as fungistatic materials. Furthermore, in case of contamination, these materials may also behave as antifungal materials under UV light exposure.

  11. Evaluation of surface energy state distribution and bulk defect concentration in DSSC photoanodes based on Sn, Fe, and Cu doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ako, Rajour Tanyi [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Ekanayake, Piyaisiri, E-mail: piyasiri.ekanayake@ubd.edu.bn [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Young, David James [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research -A*STAR, 3 Research Link, 117602 (Singapore); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558 (Australia); Hobley, Jonathan [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Chellappan, Vijila [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Tan, Ai Ling [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Gorelik, Sergey; Subramanian, Gomathy Sandhya [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Lim, Chee Ming [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam)

    2015-10-01

    Graphical abstract: - Highlights: • The structural, optical and optoelectronic properties of 1 mol.% Fe, Sn and Cu doped TiO{sub 2} have been compared. • Transient lifetimes for pure TiO{sub 2} and Sn doped TiO{sub 2} were considerably shorter than Fe and Cu doped TiO{sub 2}. • A good correlation between the bulk defects and transient decay for the doped TiO{sub 2} powders was observed. • Photon to current conversion efficiency of DSSC based on the metal doped TiO{sub 2} were in order Sn-TiO{sub 2} > Cu-TiO{sub 2} > Pure >> Fe-TiO{sub 2}. • DSSC based on Fe doped photoanodes is limited by a high concentration of surface free holes observed at 433 nm. - Abstract: Electron transfer dynamics in the oxide layers of the working electrodes in both dye-sensitized solar cells and photocatalysts greatly influences their performance. A proper understanding of the distribution of surface and bulk energy states on/in these oxide layers can provide insights into the associated electron transfer processes. Metal ions like Iron (Fe), Copper (Cu) and Tin (Sn) doped onto TiO{sub 2} have shown enhanced photoactivity in these processes. In this work, the structural, optical and transient properties of Fe, Cu and Sn doped TiO{sub 2} nanocrystalline powders have been investigated and compared using EDX, Raman spectroscopy, X-ray Photoelectron spectroscopy (XPS), and Transient Absorption spectroscopy (TAS). Surface free energy states distributions were probed using Electrochemical Impedance spectroscopy (EIS) on Dye Sensitized Solar Cells (DSSC) based on the doped TiO{sub 2} photoanodes. Raman and XPS Ti2p{sub 3/2} peak shifts and broadening showed that the concentration of defects were in the order: Cu doped TiO{sub 2} > Fe doped TiO{sub 2} > Sn doped TiO{sub 2} > pure TiO{sub 2}. Nanosecond laser flash photolysis of Fe and Cu doped TiO{sub 2} indicated slower transient decay kinetics than that of Sn doped TiO{sub 2} or pure TiO{sub 2}. A broad absorption peak and fast

  12. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    Science.gov (United States)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  13. Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).

    Science.gov (United States)

    Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias

    2015-08-25

    Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.

  14. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    Science.gov (United States)

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting

  15. The influence of the bulk reduction state on the surface structure and morphology of rutile TiO{sub 2}(110) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Hebenstreit, W.; Diebold, U.; Tyryshkin, A.M.; Bowman, M.K.; Dunham, G.G.; Henderson, M.A.

    2000-05-25

    The authors have investigated the relationship between different types and amounts of bulk defects and the surface morphology of TiO{sub 2}(110) single crystals prepared by annealing in ultrahigh vacuum and in oxygen. Rutile TiO{sub 2}(110) specimens were cut from the same crystal and were heated in a furnace to different temperatures which resulted in different states of reduction (colors of the crystals). After characterization of the bulk defects with electron paramagnetic resonance (EPR), the specimens were studied with scanning tunneling microscopy (STM), low-energy He{sup +} ion scattering (LEIS), and work function measurements. EPR reveals that darker rutile crystals exhibit higher concentrations of extended Ti{sup 3+} related bulk defects such as crystallographic shear planes (CSP), with a decrease in substitutional and interstitial defects as compared to lighter crystals. Surface structures with (1 x 2) features are preferably formed upon UHV annealing on these darker crystals. LEIS measurements show that all of the crystals' (110) surfaces are reoxidized upon annealing in {sup 18}O{sub 2} (573 K, 1 x 10{sup {minus}6} mbar, 10 min) and that the {sup 18}O surface content is proportional to the bulk reduction state. UV-visible adsorption spectra and resistivity measurements also scale with the reduction states of crystals. Only the (1 x 1) structure is observed on the surface of slightly reduced crystals. Annealing in oxygen induces additional metastable structures, i.e., TiO{sub 2} clusters on blue crystals and rosette networks on dark blue crystals.

  16. Epitaxial growth and dielectric properties of Bi sub 2 VO sub 5 sub . sub 5 thin films on TiN/Si substrates with SrTiO sub 3 buffer layers

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Joseph, M; Tabata, H; Kawai, T

    2000-01-01

    Bi sub 2 VO sub 5 sub . sub 5 (BVO) thin films were epitaxially grown on SrTiO sub 3 /TiN/Si substrates by using pulsed laser ablation. A TiN thin film was prepared at 700 .deg. C as a bottom electrode. The TiN film exhibited a high alpha axis orientation and a very smooth morphology. Before the preparation of the BVO thin film, a crystallized SrTiO sub 3 thin film was deposited as a buffer layer on TiN/Si. The BVO thin film grown at a substrate temperature at 700 .deg. C and an oxygen pressure of 50 mTorr was found to be epitaxial along the c-axis. Also, BVO films were observed to have flat surfaces and the step-flow modes. The dielectric constant of the BVO film on STO/TiN/Si was constant at about 8 approx 4 in the applied frequency range between 10 sup 2 and 10 sup 6 Hz.

  17. Analysis of Ti/Mo film by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Mou Fangming; Tu Bing; Yao Bing; Liu Jinhua; Long Xinggui

    2002-01-01

    Chemical elements and their electronic binding energy on surface of Ti film and bulk are analyzed by X-ray photoelectron spectroscopy (XPS) and Ar + etching. The results show that the surface of specimens is contaminated by carbon and oxygen. Mo on surface of Ti film is from substrate. The XPS spectra of Ti 2p of the etched specimens are fitted on. The results show that Ti chemical states on surface of Ti film are TiO 2 with a content of approaching to 100% and a little Ti. Some TiO 2 will be reduced to low chemical states with the increasing of etching time. The chemical states of Mo on surface of Ti film are MoO 3 and Mo. The content of Mo increases as etching time increasing. Chemical state of carbon on the surface of film is graphite and carbide with binding energy of 288.2-288.9 eV

  18. Influence of Substrate Biasing on (Ba,Sr)TiO3 Films Prepared by Electron Cyclotron Resonance Plasma Sputtering

    Science.gov (United States)

    Matsumoto, Takeshi; Niino, Atsushi; Ohtsu, Yasunori; Misawa, Tatsuya; Yonesu, Akira; Fujita, Hiroharu; Miyake, Shoji

    2004-03-01

    (Ba,Sr)TiO3 (BST) films were deposited by electron cyclotron resonance (ECR) plasma sputtering with mirror confinement. DC bias voltage was applied to Pt/Ti/SiO2/Si substrates during deposition to vary the intensity of bombardment of energetic ions and to modify film properties. BST films deposited on the substrates at floating potential (approximately +20 V) were found to be amorphous, while films deposited on +40 V-biased substrates were crystalline in spite of a low substrate temperature below 648 K. In addition, atomic diffusion, which causes deterioration in the electrical properties of the films, was hardly observed in the crystallized films deposited with +40 V bias perhaps due to the low substrate temperature. Plasma diagnoses revealed that application of a positive bias to the substrate reduced the energy of ion bombardment and increased the density of excited neutral particles, which was assumed to result in the promotion of chemical reactions during deposition and the crystallization of BST films at a low temperature.

  19. Multilayer TiC/TiN diffusion barrier films for copper

    International Nuclear Information System (INIS)

    Yoganand, S.N.; Raghuveer, M.S.; Jagannadham, K.; Wu, L.; Karoui, A.; Rozgonyi, G.

    2002-01-01

    TiC/TiN thin films deposited by reactive magnetron sputtering on Si (100) substrates were investigated by transmission electron microscopy for microstructure and by deep level transient spectroscopy (DLTS) for diffusion barrier against copper. TiN thin films deposited on Si substrates at a substrate temperature of 600 deg. C were textured, and TiC thin films deposited at the same temperature were polycrystalline. TiC/TiN multilayer films also showed the same characteristics with the formation of an additional interaction layer. The diffusion barrier characteristics of the TiC/TiN/Si were determined by DLTS and the results showed that the films completely prevented diffusion of copper into Si

  20. Formation of quasicrystals in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass

    DEFF Research Database (Denmark)

    Wanderka, N.; Macht, M. P.; Siedel, M.

    2000-01-01

    The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction and transm......The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction...... min) at high temperatures above 683 K. (C) 2000 American Institute of Physics....

  1. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  2. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    Science.gov (United States)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.

  3. DFT+U study of defects in bulk rutile TiO2

    DEFF Research Database (Denmark)

    Stausholm-Møller, Jess; Kristoffersen, Henrik Høgh; Hinnemann, Berit

    2010-01-01

    phase of bulk titanium dioxide. We find that by applying a sufficiently large value for the Hubbard-U parameter of the Ti 3d states, the excess electrons localize spatially at the Ti sites and appear as states in the band gap. At U = 2.5 eV, the position in energy of these gap states are in fair...... is that regardless of which structural defect is the origin of the gap states, at U = 2.5 eV, these states are found to have their mean energies within a few hundredths of an eV from 0.94 eV below the conduction band minimum.......We present a systematic study of electronic gap states in defected titania using our implementation of the Hubbard-U approximation in the grid-based projector-augmented wave density functional theory code, GPAW. The defects considered are Ti interstitials, O vacancies, and H dopants in the rutile...

  4. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun; Zhang, Sam; Huang Weimin

    2005-01-01

    TiNi films were prepared by co-sputtering TiNi and Ti targets. X-ray photoelectron spectroscopy (XPS) was employed to study surface chemistry of the films and interfacial structure of Si/TiNi system. Exposure of the TiNi film to the ambient atmosphere (23 deg. C and 80% relatively humidity) facilitated quick adsorption of oxygen and carbon on the surface. With time, carbon and oxygen content increased drastically at the surface, while oxygen diffused further into the layer. After a year, carbon content at the surface became as high as 65.57% and Ni dropped below the detection limit of XPS. Depth profiling revealed that significant inter-diffusion occurred between TiNi film and Si substrate with a layer of 90-100 nm. The detailed bond changes of different elements with depth were obtained using XPS and the formation of titanium silicides at the interface were identified

  5. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    A Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 alloy. The glass forming ability Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG compared to 0.15% for Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  6. Substrate-induced dielectric polarization in thin films of lead-free (Sr{sub 0.5}Bi{sub 0.5}){sub 2}Mn{sub 2-x}Ti{sub x}O{sub 6-δ} perovskites grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Serrano, I., E-mail: ias@ucm.es [Dpto. Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid (Spain); Ruiz de Larramendi, I. [Dpto. Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao (Spain); López, M.L.; Veiga, M.L. [Dpto. Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid (Spain)

    2017-03-31

    Highlights: • Highly oriented SrBiMn{sub 2-x}Ti{sub x}O{sub 6} thin films are successfully fabricated by PLD. • Thicknesses between 80 and 900 nm depending on x, substrate-type and chamber pressure. • Compositional A-segregation controlled by the STO substrate orientation. • Dielectric response analyzed under impedance and modulus formalisms. • Relaxor phenomena obtained related to NPRs formation and compositional scenario. - Abstract: Thin films of SrBiMn{sub 2-x}Ti{sub x}O{sub 6-δ} have been fabricated by Pulsed Laser Deposition on SrTiO{sub 3} [100] and [111] substrates. Their texture, width, homogeneity and morphology are evaluated by means of XRD, SEM, XPS, whereas complex impedance spectroscopy is employed to analyze their electrical response. The thickness values range between 80 and 900 nm depending on the experimental conditions. The epitaxial growing could be interpreted in terms of two contributions of microstructural origin: a matrix part and some polycrystalline surface formations (hemi-spheres). Texture studies suggest a fiber-type orientated morphology coherently with the Scanning Electron Microscopy images. XPS analyses indicate a segregation regarding A-sublattice cations, which features depend on the substrate orientation. This segregation could be connected to the development of nanopolar regions. Impedance data show the electrical polarization in the samples to be enhanced compared to bulk response of corresponding powdered samples. A relaxor behavior which fits a Vogel-Fulcher law is obtained for x = 0.50 whereas an almost frequency-independent relaxor ferroelectric behavior is registered for the thinnest film of x = 0.25 composition grown on SrTiO{sub 3} [111] substrate. The influence of compositional and structural aspects in the obtained dielectric response is analyzed.

  7. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance

    Science.gov (United States)

    Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo

    2018-02-01

    Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.

  8. A Ag synchronously deposited and doped TiO2 hybrid as an ultrasensitive SERS substrate: a multifunctional platform for SERS detection and photocatalytic degradation.

    Science.gov (United States)

    Yang, Libin; Sang, Qinqin; Du, Juan; Yang, Ming; Li, Xiuling; Shen, Yu; Han, Xiaoxia; Jiang, Xin; Zhao, Bing

    2018-06-06

    Ag simultaneously deposited and doped TiO2 (Ag-TiO2) hybrid nanoparticles (NPs) were prepared via a sol-hydrothermal method, as both a sensitive surface-enhanced Raman scattering (SERS) substrate and a superior photocatalyst for the first time. Ag-TiO2 hybrid NPs exhibit excellent SERS performance for several probe molecules and the enhancement factor is calculated to be 1.86 × 105. The detection limit of the 4-mercaptobenzoic acid (4-MBA) probe on the Ag-TiO2 substrate is 1 × 10-9 mol L-1, which is four orders of magnitude lower than that on pure TiO2 as a consequence of the synergistic effects of TiO2 and Ag. This is the highest SERS sensitivity among the reported semiconductor substrates and even comparable to noble metal substrates, and a SERS enhancement mechanism from the synergistic contribution of the semiconductor and noble metal was proposed. And importantly, the Ag-TiO2 hybrid shows excellent photocatalytic degradation activity for the detected species under UV light irradiation at lower concentration conditions, even for the hard to degrade 4-MBA molecule. This makes the Ag-TiO2 hybrid promising as a dual-function platform for both highly sensitive SERS detection and photocatalytic degradation of a pollutant system. Moreover, it also proves that the Ag-TiO2 hybrid can serve as a promising recyclable SERS-active substrate by virtue of its photocatalytic self-cleaning properties for some specific applications, for instance comparative studies of different species on the same SERS platform, in addition to the economic benefit.

  9. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  10. Nucleation and growth microstructural study of ti films on 304 SS substrates

    Directory of Open Access Journals (Sweden)

    Rogério de Almeida Vieira

    2004-09-01

    Full Text Available Coating of steel surfaces with titanium films has been studied with the objective to protect them against corrosion, and to create an intermediate film for CVD diamond and TiN film deposition. In this work, the nucleation, growth mechanisms and microstructural formation of the titanium films deposited on 304 stainless steel (304 SS substrate are presented and discussed. The titanium films of variable thickness were obtained by vapour phase deposition produced by electron beam. The surfaces of these samples were observed by scanning electron microscopy. The cross sections of these samples were observed by using an atomic force microscope. The Ti film-304 SS interfaces were analyzed by X-ray diffraction. The results showed that titanium films have a columnar growth. The Ti film-304 SS interface had a residual compression stress at room temperature due to the inter-diffusion process.

  11. Anionic or Cationic S-Doping in Bulk Anatase TiO 2 : Insights on Optical Absorption from First Principles Calculations

    KAUST Repository

    Harb, Moussab

    2013-05-02

    Using first principles calculations, we investigate the structural, electronic, optical, and energetic properties of S-doped anatase TiO2 bulk systems. To ensure accurate band gap predictions, we use the HSE06 exchange correlation functional, and the absorption spectra are obtained with density functional perturbation (DFPT) theory by employing HSE06. Various oxidation states (anionic and cationic) of sulfur are considered depending on the location in bulk TiO2: in interstitial position or in substitution for either oxygen or titanium atoms. Among the explored structures, two anionic and one cationic configurations induce an improved optical absorption response in the visible region as observed experimentally. Moreover, we undertake a thermodynamic analysis as a function of the chemical potential of oxygen and considering three relevant sulfur chemical doping agents (S 2, H2S, and thiourea). It highlights that cationic configurations (S4+ and S6+) are strongly stabilized in a wide range of oxygen chemical potential (including standard conditions), whereas anionic species are stabilized only at very low chemical potential of oxygen. The metastable cationic Ti(1-2x)O2S2x system involving the presence of S4+ species in substitution for Ti 4+, with the formation of SO2 units, should offer the best compromise between the thermodynamic conditions and the expected optical properties. © 2013 American Chemical Society.

  12. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  13. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    Science.gov (United States)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.

    2015-11-01

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.

  14. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Tan Weiwei; Yin Xiong; Zhou Xiaowen; Zhang Jingbo; Xiao Xurui; Lin Yuan

    2009-01-01

    Nanocrystalline TiO 2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 deg. C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO 2 , which plays an important role in improving the interconnection between TiO 2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO 2 films. The cell performance was further optimized by designing nanocrystalline TiO 2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm -2 (AM 1.5) simulated sunlight.

  15. New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3−δ

    International Nuclear Information System (INIS)

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO 3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr 2 O 3 versus Pr 6 O 11 ) on the synthesis and electronic transport in Pr-doped SrTiO 3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO 3 ceramics and provide new insight on further improvement of the thermoelectric power factor

  16. New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3−δ

    KAUST Repository

    Dehkordi, Arash Mehdizadeh

    2015-02-07

    Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr2O3 versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO3 ceramics and provide new insight on further improvement of the thermoelectric power factor.

  17. Substrate-induced strain effects on Pr0.6Ca0.4MnO3 films

    International Nuclear Information System (INIS)

    Nelson, C S; Hill, J P; Gibbs, Doon; Rajeswari, M; Biswas, A; Shinde, S; Greene, R L; Venkatesan, T; Millis, A J; Yokaichiya, F; Giles, C; Casa, D; Venkataraman, C T; Gog, T

    2004-01-01

    We report the characterization of the crystal structure, low-temperature charge and orbital ordering, transport and magnetization of Pr 0.6 Ca 0.4 MnO 3 films grown on LaAlO 3 , NdGaO 3 and SrTiO 3 substrates, which provide compressive (LaAlO 3 ) and tensile (NdGaO 3 and SrTiO 3 ) strain. The films are observed to exhibit different crystallographic symmetries from the bulk material and the low-temperature ordering is found to be more robust under compressive as opposed to tensile strain. In fact, bulk-like charge and orbital ordering is not observed in the film grown on NdGaO 3 , which is the substrate that provides the least amount of measured, but tensile, strain. This result suggests the importance of the role played by the Mn-O--Mn bond angles in the formation of charge and orbital ordering at low temperatures. Finally, in the film grown on LaAlO 3 , a connection between the lattice distortion associated with orbital ordering and the magnetization is reported

  18. Structural and Mössbauer spectroscopy characterization of bulk and nanostructured TiFe{sub 0.5} Ni{sub 0.5}/graphite compounds and their hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, M. A. R., E-mail: fisicorodriguez@gmail.com; André-Filho, J.; Félix, L. L.; Coaquira, J. A. H.; Garg, V. K.; Oliveira, A. C. [Universidade de Brasília, Instituto de Física, Núcleo de Física Aplicada (Brazil); Mestnik-Filho, J. [Instituto de Pesquisas energéticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2015-06-15

    The structural and hyperfine properties of bulk TiFe{sub 0.5}Ni{sub 0.5} intermetallic and ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite compounds and their hydrides have been studied. The bulk and nanostructured TiFe{sub 0.5}Ni{sub 0.5} compounds crystallize in the cubic crystal structure of CsCl (B2). After hydrogenation, the formation of hydrogen-poor phase (∝-phase) and hydride phase (β-phase) have been determined for the bulk compound. However, the formation of the ∝-phase and the hydrogen-richest phase (γ-phase) and other secondary phases have been determined for the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample. It has been determined that the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample presents a large amount of the γ-phase which indicates that the presence of graphite nearby nanostructured intermetallic grains enhances the absorption of hydrogen. Mossbauer results are consistent with the structural results. Meanwhile, no significant changes in the isomer shift (IS) value has been determined for the α-phase with respect to the intermetallic compound, a strong increase in the IS value has been determined for the β- and γ-phases with respect to the ∝-phase. That increase indicates a decrease of the s-electron density at the Fe nuclei due to the charge transfer from the metal to the nearby hydrogen atoms.

  19. Ti-dopant-enhanced photocatalytic activity of a CaFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} bulk heterojunction under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Borse, Pramod H. [International Advanced Research Center for Powder Metallurgy and New Materials, Hyderabad (India); Kim, Jae Y.; Lee, Jae S. [Pohang University of Science and Technology, Pohang (Korea, Republic of); Lim, Kwon T. [Pukyong National University, Busan (Korea, Republic of); Jeong, Euh D.; Bae, Jong S.; Yoon, Jang H.; Yu, Seong M.; Kim, Hyun G. [Korea Basic Science Institute, Busan (Korea, Republic of)

    2012-07-15

    The effect substitution of Ti{sup 4+} at the Fe{sup 3+} site in a CaFe{sub 2}O{sub 4{sup -}}MgFe{sub 2}O{sub 4} bulk hetero-junction (BH) lattice photocatalyst was explored and the Ti ion concentration was optimized to fabricate an efficient photocatalyst. A BH consisting of an optimum dopant concentration (Ti{sup +4}) level of x = 0.03 exhibited an increased band gap and generated a 1.5 times higher photocurrent. The newly fabricated Ti ion doped photocatalyst showed an enhanced quantum yield (up to ∼13.3%) for photodecomposition of a H{sub 2}O-CH{sub 3}OH mixture, as compared to its undoped BH counterpart under visible light (λ ≥ 420 nm). In contrast, the material doped with a very high Ti-dopant concentration displayed deteriorated photochemical properties. An efficient charge-separation induced by Ti-ion doping seems to be responsible for the higher photocatalytic activity in a doped bulk BH.

  20. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  1. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Chang [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Chang, Zue-Chin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Tsai, Du-Cheng [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Lin, Yi-Chen; Sung, Huan-Shin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Deng, Min-Jen [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Optometry, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2011-06-15

    The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size {approx}1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.

  2. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings

    International Nuclear Information System (INIS)

    Liang, Shih-Chang; Chang, Zue-Chin; Tsai, Du-Cheng; Lin, Yi-Chen; Sung, Huan-Shin; Deng, Min-Jen; Shieu, Fuh-Sheng

    2011-01-01

    The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size ∼1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.

  3. Macrophages adhesion rate on Ti-6Al-4V substrates: polishing and DLC coating effects

    Directory of Open Access Journals (Sweden)

    Everton Diniz dos Santos

    Full Text Available Abstract Introduction Various works have shown that diamond-like carbon (DLC coatings are able to improve the cells adhesion on prosthesis material and also cause protection against the physical wear. On the other hand there are reports about the effect of substrate polishing, in evidence of that roughness can enhance cell adhesion. In order to compare and quantify the joint effects of both factors, i.e, polishing and DLC coating, a commonly prosthesis material, the Ti-6Al-4V alloy, was used as raw material for substrates in our studies of macrophage cell adhesion rate on rough and polished samples, coated and uncoated with DLC. Methods The films were produced by PECVD technique on Ti-6Al-4V substrates and characterized by optical profilometry, scanning electron microscopy and Raman spectroscopy. The amount of cells was measured by particle analysis in IMAGE J software. Cytotoxicity tests were also carried out to infer the biocompatibility of the samples. Results The results showed that higher the surface roughness of the alloy, higher are the cells fixing on the samples surface, moreover group of samples with DLC favored the cell adhesion more than their respective uncoated groups. The cytotoxity tests confirmed that all samples were biocompatible independently of being polished or coated with DLC. Conclusion From the observed results, it was found that the rougher substrate coated with DLC showed a higher cell adhesion than the polished samples, either coated or uncoated with the film. It is concluded that the roughness of the Ti-6Al-4V alloy and the DLC coating act complementary to enhance cell adhesion.

  4. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming; Paetzold, Ulrich W; Gehlhaar, Robert; Smirnov, Vladimir; Boyen, Hans-Gerd; Tait, Jeffrey Gerhart; Conings, Bert; Zhang, Weimin; Nielsen, Christian; McCulloch, Iain; Froyen, Ludo; Heremans, Paul; Cheyns, David

    2015-01-01

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can

  5. Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Xinghua Zhu

    2017-12-01

    Full Text Available Titanium dioxide (TiO2 films have been prepared by DC reaction magnetron sputtering technique on different substrates (glass, SiO2, platinum electrode-Pt, Silicon-Si. X-ray diffraction (XRD patterns showed that all TiO2 films were grown along the preferred orientation of (110 plane. Samples on Si and Pt substrates are almost monophasic rutile, however, samples on glass and SiO2 substrates accompanied by a weak anatase structure. Atomic force microscopy (AFM images revealed uniform grain distribution except for films on Pt substrates. Photoluminescence (PL spectra showed obvious intrinsic emission band, but films on glass was accompanied by a distinct defect luminescence region. Raman spectroscopy suggested that all samples moved to high wavenumbers and films on glass moved obviously.

  6. 3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation

    International Nuclear Information System (INIS)

    Chen, Jianjun; Su, Huilan; You, Xueling; Gao, Jing; Lau, Woon Ming; Zhang, Di

    2014-01-01

    Graphical abstract: - Highlights: • Contrive a multifunctional SERS substrate with 3D sub-micrometer structure and multicomponent. • The blue wing of butterfly (Euploea mulciber) is used as template for Ag/TiO 2 nanocomposites. • The 3D submicrostructures Ag/TiO 2 presents superior SERS effect and photocatalytic activity. • Pave a facile route to prepare multifunctional material by utilizing smart structural designs in nature. - Abstract: The blue wing of butterfly Euploea mulciber is used as a template to generate Ag/TiO 2 nanocomposites. Thereinto, Ag nanoparticles are deposited uniformly onto TiO 2 substrate with three dimensional (3D) submicrometer structures. This unique 3D sub-micrometer structures featured with ridges, ribs and struts can provide a large number of active “hot spots” for enhanced Raman signal. Meanwhile, depositing Ag onto the TiO 2 surface can greatly boost its SERS effect and photocatalytic activity by bringing additional electrons into the molecules and inhibiting electrons–holes recombination. Thus, the as-prepared 3D Ag/TiO 2 submicrostructures can not only offer sensitive and reproducible SERS signals, but also present superior photocatalytic activity, which can be utilized to detect and eliminate organic pollutants

  7. SURFACE MODIFICATION OF SEMICONDUCTOR THIN FILM OF TiO2 ON GRAPHITE SUBSTRATE BY Cu-ELECTRODEPOSITION

    Directory of Open Access Journals (Sweden)

    Fitria Rahmawati

    2010-06-01

    Full Text Available Surface modification of graphite/TiO2 has been done by mean of Cu electrodeposition. This research aims to study the effect of Cu electrodeposition on photocatalytic enhancing of TiO2. Electrodeposition has been done using CuSO4 0,4 M as the electrolyte at controlled current. The XRD pattern of modified TiO2 thin film on graphite substrate exhibited new peaks at 2θ= 43-44o and 2θ= 50-51o that have been identified as Cu with crystal cubic system, face-centered crystal lattice and crystallite size of 26-30 nm. CTABr still remains in the material as impurities. Meanwhile, based on morphological analysis, Cu particles are dissipated in the pore of thin film. Graphite/TiO2/Cu has higher photoconversion efficiency than graphite/TiO2.   Keywords: semiconductor, graphite/TiO2, Cu electrodeposition

  8. Influence of pulsed substrate bias on the structure and properties of Ti-Al-N films deposited by cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.P., E-mail: princeterry@163.com [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Gao, G.J. [Changchun University of Science and Technology, College of Science, Changchun 130000 (China); Wang, X.Q.; Lv, G.H.; Zhou, L.; Chen, H.; Pang, H.; Yang, S.Z. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China)

    2012-07-15

    Ti-Al-N films were deposited by cathodic vacuum arc (CVA) technique in N{sub 2} atmosphere with different pulsed substrate bias. The influence of pulsed substrate bias (0 to -800 V) on the deposition rate, surface morphology, crystal structure, and mechanical properties of the Ti-Al-N films were systematically investigated. Increasing pulsed bias voltage resulted in the decrease of deposition rate but the increase of surface roughness. It was found that there was a strong correlation between the pulsed bias and film structure. All the films studied in this paper were composed of TiN, AlN, and Ti-Al-N ternary phases. The grains changed from equiaxial to columnar and exhibited preferred orientation when the pulsed bias increased. With the increase of pulsed bias voltage, the atomic ratio of Ti to Al element increased gradually, while the N to (Ti + Al) ratio decreased. The composite films present an enhanced nanohardness compared with binary TiN and ZrN films. The film deposited with pulsed bias of -200 V possessed the maximum scratch critical load and nanohardness. The minimum friction coefficient with pulsed bias of -300 V was obtained.

  9. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn [College of Material Science and Engineering, Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun, 130012 (China); He, L.L., E-mail: llhe@imr.ac.cn [Shenyang National Lab of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Y.S. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, SK (Canada); Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, SK (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada)

    2017-01-15

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of deposition time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.

  10. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate

    International Nuclear Information System (INIS)

    Li, X.J.; He, L.L.; Li, Y.S.; Yang, Q.; Hirose, A.

    2017-01-01

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of deposition time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.

  11. Construction of extracellular microenvironment to improve surface endothelialization of NiTi alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yan, Ying; Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2015-10-01

    To mimic extracellular microenvironment of endothelial cell, a bioactive multilayered structure of gelatin/chitosan pair, embedding with vascular endothelial growth factor (VEGF), was constructed onto NiTi alloy substrate surface via a layer-by-layer assembly technique. The successful fabrication of the multilayered structure was demonstrated by scanning electron microscopy, atomic force microscopy, contact angle measurement, attenuated total reflection-fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The growth behaviors of endothelial cells on various NiTi alloy substrates were investigated in vitro. Cytoskeleton observation, MTT assay, and wound healing assay proved that the VEGF-embedded multilayer structure positively stimulated adhesion, proliferation and motogenic responses of endothelial cells. More importantly, the present system promoted the nitric oxide production of endothelial cells. The approach affords an alternative to construct extracellular microenvironment for improving surface endothelialization of a cardiovascular implant. - Highlights: • Biofunctional multilayer films mimicking extracellular microenvironment were successfully fabricated. • Multilayered structure stimulated the biological responses of endothelial cells. • The approach affords an efficient approach for surface endothelialization of stent implant.

  12. Tensile strain induced narrowed bandgap of TiO{sub 2} films: Utilizing the two-way shape memory effect of TiNiNb substrate and in-situ mechanical bending

    Energy Technology Data Exchange (ETDEWEB)

    Du, Minshu, E-mail: dms1223@126.com [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China); Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712 (United States); Cui, Lishan; Wan, Qiong [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China)

    2016-05-15

    Graphical abstract: - Highlights: • Imposed tensile strain to anatase TiO{sub 2} nanofilm by using the two-way shape memory effect of NiTiNb substrate. • Imposed tensile strain to rutile TiO{sub 2} thin film by in-situ mechanical bending. • Tauc plot based on the PEC-tested auction spectrum was utilized to precisely determine the bandgap of TiO{sub 2}. • Tensile strain narrowed the bandgap of anatase TiO{sub 2} by 60 meV and rutile TiO{sub 2} by 70 meV. • Tensile strain contributes to a 1.5 times larger photocurrent for the water oxidation reaction. - Abstract: Elastic strain is one of the methods to alter the band gap of semiconductors. However, relevant experimental work is limited due to the difficulty in imposing strain. Two new methods for imposing tensile strain to TiO{sub 2} film were introduced here. One is by utilizing the two-way shape memory effect of NiTiNb substrate, and the other method is in-situ mechanical bending. The former method succeeded in imposing 0.4% tensile strain to anatase TiO{sub 2} nanofilm, and strain narrowed the bandgap of TiO{sub 2} by 60 meV. The latter method enabled rutile TiO{sub 2} thin film under the 0.5% biaxially tensile-strained state, which contributes to a narrowed bandgap with ΔE{sub g} of 70 meV. Also, photocurrents of both strained TiO{sub 2} films increased by 1.5 times compared to the strain-free films, which indirectly verified the previous DFT prediction proposed by Thulin and Guerra in 2008 that tensile strain could improve the mobility and separation of photo-excite carriers.

  13. Effects of pre-strain applied at a polyethylene terephthalate substrate before the coating of TiO2 film on the coating film quality and optical performance

    International Nuclear Information System (INIS)

    Li, Tse-Chang; Wu, Bo-Hsiung; Lin, Jen-Fin

    2011-01-01

    A mold was designed to create various strains in polyethylene terephthalate (PET) substrates before the deposition of TiO 2 film to simulate deposition process on a cylindrical drum. The residual stress of the PET substrate with TiO 2 film significantly increased with increasing strain, decreasing the radius of curvature. Compared to the as-received PET substrate, there was a noticeable increase in the surface roughness in the PET/TiO 2 specimens when a large strain was applied. The formation of voids or cavities in the TiO 2 layer significantly increased the roughness of the specimen. The mean cavity size and depth increased with increasing strain. For strains ≤ 4%, the specimen's hardness and Young's modulus factored by the voids/cavities increased with increasing surface roughness. The optical absorption increased with increasing surface roughness before becoming asymptotic to a constant value. The strain applied to the PET substrate before TiO 2 deposition greatly affects the optical reflection, transmittance, and absorption.

  14. Functional BaTiO{sub 3} nanostructures immobilized onto si-based substrates using sol–gel and reverse micelle techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mamana, Nadia, E-mail: nadia@fceia.unr.edu.ar; Pellegri, Nora [CONICET, FCEIyA, UNR, Laboratorio de Materiales Cerámicos IFIR (Argentina)

    2015-03-15

    The current tendency toward miniaturization of electronic devices has driven the interest in developing ferroelectric materials in low dimensions. In this work, for the preparation of lead-free BaTiO{sub 3} nanoparticles, we used a combination of the sol–gel method with the reverse micelles techniques. Moreover, previously to the thermal treatment, it was necessary to remove the surfactant. For this stage, oleic acid was used to stabilize the nanoparticles in the solution. Then, nanometer-sized particles were deposited on different substrates (Si, Pt/TiO{sub 2}/SiO{sub 2}/Si). The influence of different modes of deposition on particle size, degree of agglomeration, was analyzed. The mean particle size was 10 nm. Finally, the deposition of BaTiO{sub 3} particles on a conductive substrate such as the wafer of platinum (Pt/TiO{sub 2}/SiO{sub 2}/Si) was confirmed by several AFM techniques.

  15. Nature of adsorption on TiC(111) investigated with density-functional calculations

    Science.gov (United States)

    Ruberto, Carlo; Lundqvist, Bengt I.

    2007-06-01

    Extensive density-functional calculations are performed for chemisorption of atoms in the three first periods (H, B, C, N, O, F, Al, Si, P, S, and Cl) on the polar TiC(111) surface. Calculations are also performed for O on TiC(001), for full O(1×1) monolayer on TiC(111), as well as for bulk TiC and for the clean TiC(111) and (001) surfaces. Detailed results concerning atomic structures, energetics, and electronic structures are presented. For the bulk and the clean surfaces, previous results are confirmed. In addition, detailed results are given on the presence of C-C bonds in the bulk and at the surface, as well as on the presence of a Ti-based surface resonance (TiSR) at the Fermi level and of C-based surface resonances (CSR’s) in the lower part of the surface upper valence band. For the adsorption, adsorption energies Eads and relaxed geometries are presented, showing great variations characterized by pyramid-shaped Eads trends within each period. An extraordinarily strong chemisorption is found for the O atom, 8.8eV /adatom. On the basis of the calculated electronic structures, a concerted-coupling model for the chemisorption is proposed, in which two different types of adatom-substrate interactions work together to provide the obtained strong chemisorption: (i) adatom-TiSR and (ii) adatom-CSR’s. This model is used to successfully describe the essential features of the calculated Eads trends. The fundamental nature of this model, based on the Newns-Anderson model, should make it apt for general application to transition-metal carbides and nitrides and for predictive purposes in technological applications, such as cutting-tool multilayer coatings and MAX phases.

  16. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    Science.gov (United States)

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  17. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion

    Science.gov (United States)

    Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.

    2017-12-01

    Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.

  18. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    International Nuclear Information System (INIS)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.

    2015-01-01

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G 0 W 0 , GW 0 to partially self-consistent sc-GW 0 , as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW 0 -BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations

  19. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  20. Investigation on Parameters Affecting the Effectiveness of Photocatalytic Functional Coatings to Degrade NO: TiO2 Amount on Surface, Illumination, and Substrate Roughness

    Directory of Open Access Journals (Sweden)

    J. Hot

    2017-01-01

    Full Text Available This paper deals with the degradation of NO by photocatalytic oxidation using TiO2-based coatings. Tests are conducted at a laboratory scale through an experimental setup inspired from ISO 22197-1 standard. Various parameters are explored to evaluate their influence on photocatalysis efficiency: TiO2 dry matter content applied to the surface, nature of the substrate, and illumination conditions (UV and visible light. This article points out the different behaviors between three kinds of substrates which are common building materials: normalized mortar, denser mortar, and commercial wood. The illumination conditions are of great importance in the photocatalytic process with experiments under UV light showing the best results. However, a significant decrease in NO concentration under visible light is also observed provided that the TiO2 dry matter content on the surface is high enough. The nature of the substrate plays an important role in the photocatalytic activity with rougher substrates being more efficient to degrade NO. However, limiting the roughness of the substrate seems to be of utmost interest to obtain the highest exposed surface area and thus the optimal photocatalytic efficiency. A higher roughness promotes the surface contact between TiO2 and NO but does not necessarily increase the photochemical oxidation.

  1. Deposition and characterisation of multilayer hard coatings. Ti/TiNδ/TiCxNy/(TiC) a-C:H/(Ti) a-C:H

    International Nuclear Information System (INIS)

    Burinprakhon, T.

    2001-02-01

    Multilayer hard coatings containing Ti, TiNδ, TiC x N y , (TiC m ) a-C:H, (TiC n ) a-C:H, and (Ti) a-C:H were deposited on commercially pure titanium substrates by using an asymmetric bipolar pulsed-dc reactive magnetron sputtering of a titanium target, with Ar, Ar+N 2 , Ar+N 2 +CH 4 , and Ar+CH 4 gas mixtures. The microstructures, elemental compositions and bonding states of the interlayers and the coating surfaces were studied by using cross-sectional transmission electron microscopy (XTEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The microstructure development of the multilayer coating was strongly influenced by target poisoning. As a result of the complete poisoning of the titanium target during the deposition of TiNδ and TiC x N y interlayers, the a-C:H interlayers containing graded titanium and nitrogen contents were found to develop successively to the TiC x N y interlayer without the formation of near-stoichiometric TiC. The (TiC m ) a-C:H interlayer consisted of nano-particles of distorted fcc crystal structure embedded in the a-C:H matrix. The (TiC n ) a-C:H and (Ti) a-C:H top layers were found to be a-C:H matrix without nano-particles. In the (Ti) a-C:H top layer there was no measurable amount of Ti observed, regardless of the variation of CH 4 concentration between 37.5 and 60 % flow rate in Ar+-CH4 gas mixture. The top layer (Ti) a-C:H was found to contain approximately 10 atomic % nitrogen, due to N 2 contamination during deposition caused by low conductance of N 2 through the nominally closed valve of the mass flow controller. The change of the CH 4 concentration during deposition of the top layer (Ti) a-C:H, however, showed a strong influence on the hydrogen content. The comparison of the fluorescence background of the Raman spectra revealed that hydrogen-less (Ti) a-C:H was deposited at a CH 4 concentration of less than 50 % flow rate in Ar. The hardness

  2. Theoretical investigations of the bulk modulus in the tetra-cubic transition of PbTiO3 material

    Directory of Open Access Journals (Sweden)

    Renan A. P. Ribeiro

    2014-01-01

    Full Text Available Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.

  3. Adsorption-controlled growth of ferroelectric PbTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12} films for nonvolatile memory applications by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Theis, C.D.; Yeh, J.; Schlom, D.G. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Hawley, M.E.; Brown, G.W. [Los Alamos National Lab., NM (United States). Center for Materials Science

    1997-09-01

    Epitaxial PbTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12} thin films have been grown on (100) SrTiO{sub 3} and (100) LaAlO{sub 3} substrates by reactive molecular beam epitaxy (MBE). Titanium is supplied to the film in the form of shuttered bursts each containing a one monolayer dose of titanium atoms for the growth of PbTiO{sub 3} and three monolayers for the growth of Bi{sub 4}Ti{sub 3}O{sub 12}. Lead, bismuth, and ozone are continuously supplied to the surface of the depositing film. Growth of phase pure, c-axis oriented epitaxial films with bulk lattice constants is achieved using an overpressure of these volatile species. With the proper choice of substrate temperature (600--650 C) and ozone background pressure (P{sub O{sub 3}} = 2 {times} 10{sup {minus}5} Torr), the excess of the volatile metals and ozone desorb from the surface of the depositing film leaving a phase-pure stoichiometric crystal. The smooth PbTiO{sub 3} surface morphology revealed by atomic force microscopy (AFM) suggests that the PbTiO{sub 3} films grow in a layer-by-layer fashion. In contrast the Bi{sub 4}Ti{sub 3}O{sub 12} films contain islands which evolve either continuously or around screw dislocations via a spiral-type growth mechanism.

  4. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    International Nuclear Information System (INIS)

    García-Rosales, C.; López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N.; Koch, F.; Brinkmann, J.

    2014-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO 3 in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr 2 O 3 layer is found at the outer surface, below which a Cr 2 WO 6 scale and Ti 2 CrO 5 layers alternating with WO 3 are formed. The Cr 2 O 3 , Cr 2 WO 6 and Ti 2 CrO 5 scales act as protective barriers against fast inward O 2− diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W

  5. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    Science.gov (United States)

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  6. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    Science.gov (United States)

    Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.

    2016-04-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.

  7. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    International Nuclear Information System (INIS)

    Sarma, Bimal K; Das, Apurba; Barman, Pintu; Pal, Arup R

    2016-01-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO 2 substrates. The possibility of TiO 2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO 2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO 2 /nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO 2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite. (paper)

  8. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  9. Second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass.

    Science.gov (United States)

    Cao, Q P; Li, J F; Zhang, P N; Horsewell, A; Jiang, J Z; Zhou, Y H

    2007-06-20

    The second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu(51)Zr(14) and Cu(2)TiZr, having an effective activation energy of the order of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled.

  10. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass

    Science.gov (United States)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-02-01

    The effect of alloying elements (e.g. Fe, Al, and Ni) on the room temperature creep behavior of a lightweight Ti41Zr25Be34 bulk metallic glass (BMG) was investigated via nanoindentation tests. The generalized Kelvin model was adopted to describe the creep curves. The strain rate sensitivity m has been derived as a measure of the creep resistance. The compliance spectrum and retardation spectrum were also derived. The results show that the creep resistance of Ti41Zr25Be34 alloy can be obviously improved with the addition of alloying elements, and the most effective element is found to be Al. The mechanism for enhancing the creep resistance was discussed in terms of the scale variation of the shear transformation zone induced by alloying.

  11. Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte–insulator–semiconductor for bio-sensing applications

    International Nuclear Information System (INIS)

    Pan, Tung-Ming; Liao, Pei-You; Chang, Kung-Yuan; Chi, Lifeng

    2013-01-01

    Highlights: ► The structural and sensing properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 and Lu 2 Ti 2 O 7 sensing films grown on Si substrates by reactive co-sputtering. ► The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity, a larger drift rate, a higher hysteresis voltage, and a larger hysteresis gap than other sensing films. ► The impedance effect of EIS sensors has been investigated using C–V method. -- Abstract: This paper describes the structural and sensing characteristics of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 sensing membranes deposited on Si substrates through reactive co-sputtering for electrolyte–insulator–semiconductor (EIS) pH sensors. In this work, the structural properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 membranes were investigated by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. The observed structural properties were then correlated with the resulting pH sensing performances. The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity (59.32 mV pH −1 ), a larger drift rate (0.55 mV h −1 ), a higher hysteresis voltage (5 mV), and a larger hysteresis gap (∼70 mV) compared to those of the other sensing films. This result is attributed to the higher surface roughness and the formation of a thicker interfacial layer at the oxide–Si interface. Furthermore, the impedance effect of EIS sensors has been investigated using capacitance–voltage (C–V) method (frequency-dependent C–V curves). From the impedance spectroscopy analysis, we find that the diameter of a semicircle of an EIS sensor becomes smaller due to a gradual decrease in the bulk resistance of the device with degree of pH value

  12. MgTiO3 filled PTFE composites for microwave substrate applications

    International Nuclear Information System (INIS)

    Yuan, Y.; Zhang, S.R.; Zhou, X.H.; Li, E.Z.

    2013-01-01

    MgTiO 3 filled PTFE composite substrates were fabricated for microwave circuit applications. The filler content in the PTFE matrix was varied from 30 to 70 wt%. Low loss MgTiO 3 ceramic powder was prepared by the solid state ceramic route. The phase formation of MgTiO 3 was studied by powder X-ray diffraction analysis. Morphology of the composites and dispersion of filler in the PTFE matrix was studied using scanning electron microscopy. Microwave dielectric properties of the composites with respect to filler loading were measured by stripline resonator method using Vector Network Analyzer. Different theoretical modeling approaches were used to predict the dielectric constant of PTFE ceramic composites with respect to filler loading. The linear coefficient of thermal expansion of the composites was investigated. Moisture absorption of the composites was found out conforming to IPC-TM-650 2.6.2. - Highlights: • We prepare MT/PTFE composite by cold pressing and hot treating. • Increasing MT will increase ε r , tan δ and moisture absorption. • Increasing MT will decrease thermal expansion coefficient. • MT/PTFE composite has an ε r of 4.3 and a tan δ of 0.00097 at 50 wt% filler loading. • MT/PTFE composite are promising candidates for microwave circuit applications

  13. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  14. Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Roseker, W.; Sikorski, M.

    2004-01-01

    Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition was det...... range of 0-2.2 GPa. This method opens a possibility to study the pressure effect of glass transition process in glassy systems under high pressures (>1 GPa). (C) 2004 American Institute of Physics.......Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition...... was detected from the change of the slope of peak position as a function of temperature. It is found that the glass transition temperature increases with pressure by 4.4 K/GPa for the Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass, and the supercooled liquid range decreases with pressure by 2.9 K/GPa in a pressure...

  15. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    Science.gov (United States)

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  16. 3D TiO{sub 2} submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianjun [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Su, Huilan, E-mail: hlsu@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); You, Xueling; Gao, Jing [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Lau, Woon Ming [Chengdu Green Energy and Green Manufacturing Technology R and D Center, Sichuan 610207 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Zhang, Di, E-mail: zhangdi@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-01-01

    Graphical abstract: - Highlights: • Contrive a multifunctional SERS substrate with 3D sub-micrometer structure and multicomponent. • The blue wing of butterfly (Euploea mulciber) is used as template for Ag/TiO{sub 2} nanocomposites. • The 3D submicrostructures Ag/TiO{sub 2} presents superior SERS effect and photocatalytic activity. • Pave a facile route to prepare multifunctional material by utilizing smart structural designs in nature. - Abstract: The blue wing of butterfly Euploea mulciber is used as a template to generate Ag/TiO{sub 2} nanocomposites. Thereinto, Ag nanoparticles are deposited uniformly onto TiO{sub 2} substrate with three dimensional (3D) submicrometer structures. This unique 3D sub-micrometer structures featured with ridges, ribs and struts can provide a large number of active “hot spots” for enhanced Raman signal. Meanwhile, depositing Ag onto the TiO{sub 2} surface can greatly boost its SERS effect and photocatalytic activity by bringing additional electrons into the molecules and inhibiting electrons–holes recombination. Thus, the as-prepared 3D Ag/TiO{sub 2} submicrostructures can not only offer sensitive and reproducible SERS signals, but also present superior photocatalytic activity, which can be utilized to detect and eliminate organic pollutants.

  17. Stabilization of stoichiometric LaTiO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Matthias; Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Like in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. In contrast to LAO, the stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen-rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of oxidizing and reducing background atmospheres and the influence of the substrate on LaTi{sup 3+}O{sub 3} thin film growth by pulsed laser deposition. In situ x-ray photoelectron spectroscopy of the films prepared on STO exhibit overoxidation probably due to oxygen out-diffusion from the STO substrate, which is reduced for growth on DyScO{sub 3} due to the lower oxygen mobility. In addition, we found that a LAO capping layer of a few unit cells thickness acting like a diffusion barrier for oxygen prevents the LTO film from overoxidation during storage in air.

  18. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali; Thomas, Reji, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca; Ruediger, Andreas, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650 Lionel-Boulet, Varennes, Québec, J3X1S2 (Canada)

    2016-06-15

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.

  19. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  20. Production of TiO2 films with bactericidal properties deposited on paper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lisboa, A.J.T.; Vasconcelos, J.S.; Vasconcelos, A.C.S.; Vasconcelos, N.S.L.S.; Rangel, J.H.G.; Oliveira, M.M.O. [Universidade Federal do Maranha (UFMA), MA (Brazil); Longo, E.; Varela, J. A. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2014-07-01

    The main objective of this work was to obtain anatase-phase titanium oxide films deposited on paper substrates, using the polymeric precursor (Pechini) method. The oxide was mixed with a polyvinyl alcohol (PVA) solution and deposited on a paper substrate. The samples were then characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and energy dispersive spectroscopy (EDS), to check their surface phase. Bactericidal assays using Staphylococcus aureus and Escherichia coli bacteria for the anatase TiO2 film deposited on paper substrate indicated that the method was efficient, since the bacteria were eliminated after a given exposure time. However, the method proved to be more efficient when exposing samples contaminated with E. coli to UV irradiation for 30 and 45 min and then to sunlight for 90 min, since this resulted in the elimination of all the bacteria. (author)

  1. Production of TiO2 films with bactericidal properties deposited on paper substrate

    International Nuclear Information System (INIS)

    Lisboa, A.J.T.; Vasconcelos, J.S.; Vasconcelos, A.C.S.; Vasconcelos, N.S.L.S.; Rangel, J.H.G.; Oliveira, M.M.O.; Longo, E.; Varela, J. A.

    2014-01-01

    The main objective of this work was to obtain anatase-phase titanium oxide films deposited on paper substrates, using the polymeric precursor (Pechini) method. The oxide was mixed with a polyvinyl alcohol (PVA) solution and deposited on a paper substrate. The samples were then characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and energy dispersive spectroscopy (EDS), to check their surface phase. Bactericidal assays using Staphylococcus aureus and Escherichia coli bacteria for the anatase TiO2 film deposited on paper substrate indicated that the method was efficient, since the bacteria were eliminated after a given exposure time. However, the method proved to be more efficient when exposing samples contaminated with E. coli to UV irradiation for 30 and 45 min and then to sunlight for 90 min, since this resulted in the elimination of all the bacteria. (author)

  2. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  3. Free volume and elastic properties changes in Cu-Zr-Ti-Pd bulk glassy alloy on heating

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Yavari, Alain Reza; Fukuhara, Mikio; Ota, Katsumi; Xie, Guoqiang; Vaughan, Gavin; Inoue, Akihisa

    2007-01-01

    The variation of free volume and elastic properties of the Cu 55 Zr 30 Ti 10 Pd 5 glassy alloy on heating was studied. The structure changes on heating were studied by synchrotron X-ray diffraction, differential scanning and isothermal calorimetries. The studied glassy alloy shows a rather high Poisson's ratio exceeding 0.42 which is maintained after the structure relaxation and primary devitrification. Young's and Shear modules decrease upon primary devitrification while Bulk modulus exhibits a maximum after structural relaxation

  4. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    Energy Technology Data Exchange (ETDEWEB)

    García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Koch, F.; Brinkmann, J. [Max-Planck-Institut für Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany)

    2014-10-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO{sub 3} in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr{sub 2}O{sub 3} layer is found at the outer surface, below which a Cr{sub 2}WO{sub 6} scale and Ti{sub 2}CrO{sub 5} layers alternating with WO{sub 3} are formed. The Cr{sub 2}O{sub 3}, Cr{sub 2}WO{sub 6} and Ti{sub 2}CrO{sub 5} scales act as protective barriers against fast inward O{sup 2−} diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W.

  5. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    Science.gov (United States)

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  6. Effect of substrate temperature and deposition rate on the morphology and optical properties of Ti films

    Energy Technology Data Exchange (ETDEWEB)

    Einollahzadeh-Samadi, M.; Dariani, R.S., E-mail: dariani@alzahra.ac.ir

    2013-09-01

    Titanium films are deposited on transparent fluorine-doped tin oxide (FTO) glass substrates by DC magnetron sputtering process. Influences imposed by sputtering rate and substrate temperature on surface morphology and optical properties of the deposited Ti films are investigated. We observed that all the sputtered films exhibit uniform and compact surface morphology without peeling and cracking. Morphology of the films is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD). The optical properties of the films are investigated using UV–vis spectroscopy. The morphological studies indicate that by increasing the substrate temperature from room temperature to 250 °C and/or decreasing sputtering rate from 660 Å/min to 540 Å/min the surface roughness decreased from 73.4 to 31.0 nm and the grain size increases from 50.76 nm to 163.93 nm. An important effect of the root mean square (RMS) surface roughness and grain size is modification of the films optical properties. In fact, an enhancement of refractive index n for the Ti films deposited at high substrate temperature and/or high deposition rate is observed, that is attributed to reduction of RMS roughness. This effect is attributed to increment of fractional volume which leads to an increase in density of deposited film. Thus, by controlling the sputtering conditions one can reach to the desired morphological and optical properties.

  7. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  8. Optical properties of titanium trisulphide (TiS3) thin films

    International Nuclear Information System (INIS)

    Ferrer, I.J.; Ares, J.R.; Clamagirand, J.M.; Barawi, M.; Sánchez, C.

    2013-01-01

    Titanium trisulphide thin films have been grown on quartz substrates by sulphuration of electron-beam evaporated Ti layers (d ∼ 300 nm) in a vacuum sealed ampoule in the presence of sulphur powder at 550 °C for different periods of time (1 to 20 h). Thin films were characterized by X-ray diffraction, energy dispersive analyses of X-ray and scanning electron microscopy. Results demonstrate that films are composed by monoclinic titanium trisulphide. Films show n-type conductivity with a relatively high resistivity (ρ ∼ 4 ± 2 Ω·cm) and high values of the Seebeck coefficient (− 600 μV/K) at room temperature. Values of the optical absorption coefficient about α ∼ 10 5 cm −1 , determined from reflectance and transmittance measurements, have been obtained at photon energies hυ > 2 eV. The absorption coefficient dependence on the photon energy in the range of 1.6–3.0 eV hints the existence of a direct transition with an energy gap between 1.35 and 1.50 eV. By comparing these results with those obtained from bulk TiS 3 , a direct transition with lower energy is also found which could have been hidden due to the low value of the absorption coefficient in this energy range. - Highlights: ► Thin films of TiS 3 have been obtained by sulphuration of Ti layers. ► Optical properties of TiS 3 thin films have been determined. ► Optical energy gap of TiS 3 has been obtained. ► Optical properties of bulk TiS 3 have been measured and compared with those of films

  9. Effect of nano-CeO 2 on microstructure properties of TiC/TiN+TiCN ...

    Indian Academy of Sciences (India)

    TiC/TiN+TiCN-reinforced composite coatings were fabricated on Ti–6Al–4V alloy by laser cladding, which improved surface performance of the substrate. ... X-ray diffraction results indicated that Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0.3N0.7, Ce(CN)3 and CeO2, this ...

  10. Reactive sputtering of TiN films at large substrate to target distances

    International Nuclear Information System (INIS)

    Musil, J.; Kadlec, S.

    1990-01-01

    This paper is a critical review of the present status of the magnetron ion sputter plating of thin CiN films. Thus different possibilities of extracting high ion currents 1 s from the magnetron discharge to substrates located not only at standard target to substrate distances d S-T of about 50 mm but also at larger distances d S-T are discussed in detail. Special attention is devoted to magnetron sputtering systems with enhanced ionization, to plasma confinement in the magnetron sputtering systems and to the discharge characteristics of an unbalanced magnetron (UM). It is shown that a UM can be operated in the regime of a double-site-sustained discharge (DSSD) and in this case large 1 s can be extracted to substrates located in large D S-T of about 200 mm and even at high pressures p = 5 Pa. A physical comparison of the conventional magnetron (CM), UM and DSSD is also given. Considerable attention is also devoted to the effect of ion bombardment on properties of TiN films created in the sputtering system using DSSD. (author)

  11. Theoretical prediction of Grüneisen parameter for SiO_2.TiO_2 bulk metallic glasses

    International Nuclear Information System (INIS)

    Singh, Chandra K.; Pandey, Brijesh K.; Pandey, Anjani K.

    2016-01-01

    The Grüneisen parameter (γ) is very important to decide the limitations for the prediction of thermoelastic properties of bulk metallic glasses. It can be defined in terms of microscopic and macroscopic parameters of the material in which former is based on vibrational frequencies of atoms in the material while later is closely related to its thermodynamic properties. Different formulation and equation of states are used by the pioneer researchers of this field to predict the true sense of Gruneisen parameter for BMG but for SiO_2.TiO_2 very few and insufficient information is available till now. In the present work we have tested the validity of two different isothermal EOS viz. Poirrior-Tarantola EOS and Usual-Tait EOS to predict the true value of Gruneisen parameter for SiO_2.TiO_2 as a function of compression. Using different thermodynamic limitations related to the material constraints and analyzing obtained result it is concluded that the Poirrior-Tarantola EOS gives better numeric values of Grüneisen parameter (γ) for SiO_2.TiO_2 BMG.

  12. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    International Nuclear Information System (INIS)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-01-01

    The (Ba, Sr) TiO 3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 deg. C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 deg. C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO 3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO 3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 deg. C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 deg. C. The (Ba, Sr) TiO 3 film deposited at higher temperatures (upwards of 400 deg. C) shows preferred orientation, while the film deposited at 330 deg. C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO 3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO 3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO 3 film on the ruthenium electrode at low temperatures of less than 400 deg. C

  13. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    Science.gov (United States)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-05-01

    The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.

  14. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-06-01

    Full Text Available We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100 substrates with a TiN buffer layer. A 50-nm-thick (200-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200-orientated TiN buffer layer and had a highly crystalline structure with the (200 orientation.

  15. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Makise, Kazumasa; Terai, Hirotaka [Advanced ICT Research Institute, National Institute of Information and Communications Technology (Japan); Zhang, Lu [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Wang, Zhen, E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Tech University, Shanghai 201210 (China)

    2016-06-15

    We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large I{sub c}R{sub N} product of 3.8 mV, a sharp quasiparticle current rise with a ΔV{sub g} of 0.4 mV, and a small subgap leakage current. The junction quality factor R{sub sg}/R{sub N} was about 23 for the junction with a J{sub c} of 47 A/cm{sup 2} and was about 6 for the junction with a J{sub c} of 3.0 kA/cm{sup 2}. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.

  16. Integration of epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on GaN/AlGaN/GaN/Si(111) substrates using rutile TiO{sub 2} buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Elibol, K. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Nguyen, M.D. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522NB Enschede (Netherlands); International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1 Dai Co Viet road, Hanoi 10000 (Viet Nam); Hueting, R.J.E. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Gravesteijn, D.J. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); NXP Semiconductors Research, High Tech Campus 46, 5656AE Eindhoven (Netherlands); Koster, G., E-mail: g.koster@utwente.nl [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Rijnders, G. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2015-09-30

    The integration of ferroelectric layers on gallium nitride (GaN) offers a great potential for various applications. Lead zirconate titanate (PZT), in particular Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}, is an interesting candidate. For that a suitable buffer layer should be grown on GaN in order to prevent the reaction between PZT and GaN, and to obtain PZT with a preferred orientation and phase. Here, we study pulsed laser deposited (100) rutile titanium oxide (R-TiO{sub 2}) as a potential buffer layer candidate for ferroelectric PZT. For this purpose, the growth, morphology and the surface chemical composition of R-TiO{sub 2} films were analyzed by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We find optimally (100) oriented R-TiO{sub 2} growth on GaN (0002) using a 675 °C growth temperature and 2 Pa O{sub 2} deposition pressure as process conditions. More importantly, the R-TiO{sub 2} buffer layer grown on GaN/Si substrates prevents the unwanted formation of the PZT pyrochlore phase. Finally, the remnant polarization and coercive voltage of the PZT film on TiO{sub 2}/GaN/Si with an interdigitated-electrode structure were found to be 25.6 μC/cm{sup 2} and 8.1 V, respectively. - Highlights: • Epitaxial rutile TiO{sub 2} films were grown on GaN layer buffered Si substrate using pulsed laser deposition. • The rutile-TiO{sub 2} layer suppresses the formation of the pyrochlore phase in the epitaxial PZT film grown on GaN/Si. • An epitaxial PZT film on GaN/Si substrate with rutile TiO{sub 2} buffer layer exhibits good ferroelectric properties.

  17. Fabrication and characterizations of ZnO nanorods/Au nanoparticle composites on the electropolished Ti substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiang, E-mail: hchen@ncnu.edu.tw [National Chi Nan University, No.1, Daxue Rd., Puli Township, Nantou County 545, Taiwan, ROC (China); Yeh, Yih-Min [WuFeng University, No. 117, Sec 2, Chiankuo Rd, Minhsiung, Chiayi County 62153, Taiwan, ROC (China); Chen, Jian-Zhi [National Chi Nan University, No.1, Daxue Rd., Puli Township, Nantou County 545, Taiwan, ROC (China); Liu, Song-Ming [WuFeng University, No. 117, Sec 2, Chiankuo Rd, Minhsiung, Chiayi County 62153, Taiwan, ROC (China); Huang, Bo Yun; Wu, Zhi-Huei; Tsai, Shaung-Lin; Chang, Hung-Wei; Chu, Yu-Cheng; Liao, Chuan Hao [National Chi Nan University, No.1, Daxue Rd., Puli Township, Nantou County 545, Taiwan, ROC (China)

    2013-12-31

    Au nanoparticles (NPs) were spread on ZnO nanorods (NRs) on the polished Ti substrate to form Au/ZnO nanocomposites. Multiple material analyses including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, Fourier-transform infrared spectrometer (FTIR) and images taken by optical microscope were performed on Au NPs of 2 nm and 20 nm on ZnO NRs. The FESEM and optical images under optical microscope indicate that 20 nm NPs can form more and larger clusters than 2 nm NPs on ZnO nanorod. Furthermore, more Au can be detected by EDS and XRD. We studied the behaviors of Au NPs on ZnO NR applications for future potential biosensing and antiseptic devices. - Highlights: • Nanocomposites of Au nanoparticles were spread on ZnO nanorods on Ti substrate. • Multiple material analyses were performed on 2 nm and 20 nm nanoparticles. • 20 nm nanoparticles formed more and larger clusters. • Optical images show well-distributed nanoparticle ZnO nanorods.

  18. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, R., E-mail: ryazdi@ut.ac.ir; Kashani-Bozorg, S.F.

    2015-02-15

    Tungsten inert gas (TIG) technique was conducted on commercially pure (CP)-Ti substrate, which was coated with h-BN-based powder mixture prior to the treatment. The treated surfaces were evaluated and characterized by means of scanning electron microscope (SEM), X-ray diffraction analysis, and electron dispersive spectrometry (EDS). The microhardness and wear experiment were also performed by using a microhardness machine and pin-on-disk tribometer. As h-BN reacted with titanium, an in-situ hybrid composite layer was formed showing near stoichiometric dendrites of TiN, platelets of TiB and interdendritic regions of α′-Ti martensite crystal structures. The population level of TiN and TiB regions were found to increase using a pre-placed powder mixture with greater h-BN content. However, the fabricated layers exhibited cracking and porosity; these were minimized by adjusting arc energy density and h-BN content of powder mixture. The microhardness value of the fabricated hybrid composite layers was found to be in the range of ∼650 HV{sub 0.2}–1000 HV{sub 0.2}; this is three to five times higher than that of the untreated CP-Ti substrate. In addition, the in-situ hybrid composite layers exhibited superior wear behavior over CP-Ti substrate; this is attributed to the formation of newly formed ceramic phases in the solidified surface layers and good coherent interface between the composite layer and CP-substrate. Meanwhile, severe adhesive wear mechanism of CP-titanium surface changed to mild abrasive one as a result of surface treatment. - Highlights: • In-situ Ti/(TiN + TiB) hybrid composite layers were synthesized by TIG processing on commercially pure titanium. • The microstructure features were characterized by several methods. • Microhardness enhanced three to five times higher than that of the CP-Ti substrate after surface modification. • The fabricated composite layers improved wear resistance of CP-titanium. • Severe adhesive wear mechanism of

  19. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Being part of a larger project on using different forms of nickel titanium (NiTi) in the surface modification of stainless steel for enhancing cavitation erosion resistance, the present study employs NiTi strips as the cladding material. Our previous study shows that laser surfacing using NiTi powder can significantly increase the cavitation erosion resistance of AISI 316 L stainless steel [K.Y. Chiu, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 392 (2005) 348-358]. However, from an engineering point of view, NiTi strips are more attractive than powder because NiTi powder is very expensive due to high production cost. In the present study, NiTi strips were preplaced on AISI 316 L samples and remelted using a high-power CW Nd:YAG laser to form a clad layer. To lower the dilution due to the substrate material, samples doubly clad with NiTi were prepared. The volume dilution ratio in the singly clad sample was high, being in the range of 13-30% depending on the processing parameters, while that of the doubly clad sample was reduced to below 10%. Analysis by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) reveals that the clad layer is composed of a NiTi B2 based matrix together with fine precipitates of a tetragonal structure. Vickers indentation shows a tough cladding/substrate interface. The microhardness of the clad layer is increased from 200 HV of the substrate to about 750 HV due to the dissolution of elements like Fe, Cr and N in the matrix. Nanoindentation tests record a recovery ratio near to that of bulk NiTi, a result attributable to a relatively low dilution. The cavitation erosion resistance of the doubly clad samples is higher than that of 316-NiTi-powder (samples laser-surfaced with NiTi powder) and approaches that of NiTi plate. The high erosion resistance is attributed to a high hardness, high indentation recovery ratio and the absence of cracks or pores

  20. Surface modeling and chemical solution deposition of SrO(SrTiO3)n Ruddlesden-Popper phases

    International Nuclear Information System (INIS)

    Zschornak, M.; Gemming, S.; Gutmann, E.; Weissbach, T.; Stoecker, H.; Leisegang, T.; Riedl, T.; Traenkner, M.; Gemming, T.; Meyer, D.C.

    2010-01-01

    Strontium titanate (STO) is a preferred substrate material for functional oxide growth, whose surface properties can be adjusted through the presence of Ruddlesden-Popper (RP) phases. Here, density functional theory (DFT) is used to model the (1 0 0) and (0 0 1) surfaces of SrO(SrTiO 3 ) n RP phases. Relaxed surface structures, electronic properties and stability relations have been determined. In contrast to pure STO, the near-surface SrO-OSr stacking fault can be employed to control surface roughness by adjusting SrO and TiO 2 surface rumpling, to stabilize SrO termination in an SrO-rich surrounding or to increase the band gap in the case of TiO 2 termination. RP thin films have been epitaxially grown on (0 0 1) STO substrates by chemical solution deposition. In agreement with DFT results, the fraction of particular RP phases n = 1-3 changes with varying heating rate and molar ratio Sr:Ti. This is discussed in terms of bulk formation energy.

  1. Contribution of thickness dependent void fraction and TiSixOy interlayer to the optical properties of amorphous TiO2 thin films

    International Nuclear Information System (INIS)

    Zhang, Fan; Zhang, Rong-Jun; Zheng, Yu-Xiang; Xu, Zi-Jie; Zhang, Dong-Xu; Wang, Zi-Yi; Yu, Xiang; Chen, Liang-Yao

    2013-01-01

    The optical properties of TiO 2 thin films prepared by electron beam evaporation were studied by spectroscopic ellipsometry and analyzed quantitatively using effective medium approximation theory and an effective series capacitance model. The refractive indices of TiO 2 are essentially constant and approach to those of bulk TiO 2 for films thicker than 40 nm, but drop sharply with a decrease in thickness from 40 to 5.5 nm. This phenomenon can be interpreted quantitatively by the thickness dependence of the void fraction and interfacial oxide region. The optical band gaps calculated from Tauc law increase with an increase of film thickness, and can be attributed to the contribution of disorder effect. - Highlights: • Amorphous TiO 2 thin films fabricated on Si substrate by electron beam evaporation • The refractive index and band gap are obtained from spectroscopic ellipsometry. • The refractive index decreases with decreasing film thickness. • Effective medium approximation theory and effective series capacitance model introduced • A band gap increases gradually with an increase in film thickness

  2. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  3. Metastable honeycomb SrTiO_3/SrIrO_3 heterostructures

    International Nuclear Information System (INIS)

    Anderson, T. J.; Ryu, S.; Podkaminer, J. P.; Ma, Y.; Eom, C. B.; Zhou, H.; Xie, L.; Irwin, J.; Rzchowski, M. S.; Pan, X. Q.

    2016-01-01

    Recent theory predictions of exotic band topologies in (111) honeycomb perovskite SrIrO_3 layers sandwiched between SrTiO_3 have garnered much attention in the condensed matter physics and materials communities. However, perovskite SrIrO_3 film growth in the (111) direction remains unreported, as efforts to synthesize pure SrIrO_3 on (111) perovskite substrates have yielded films with monoclinic symmetry rather than the perovskite structure required by theory predictions. In this study, we report the synthesis of ultra-thin metastable perovskite SrIrO_3 films capped with SrTiO_3 grown on (111) SrTiO_3 substrates by pulsed laser deposition. The atomic structure of the ultra-thin films was examined with scanning transmission electron microscopy (STEM), which suggests a perovskite layering distinct from the bulk SrIrO_3 monoclinic phase. In-plane 3-fold symmetry for the entire heterostructure was confirmed using synchrotron surface X-ray diffraction to measure symmetry equivalent crystal truncation rods. Our findings demonstrate the ability to stabilize (111) honeycomb perovskite SrIrO_3, which provides an experimental avenue to probe the phenomena predicted for this material system.

  4. Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Zhu, Man; Li, Junjie; Yao, Lijuan; Jian, Zengyun; Chang, Fang’e; Yang, Gencang

    2013-01-01

    Highlights: • Non-isothermal crystallization kinetics of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 BMGs was studied. • Two-stage of crystallization process is confirmed by DSC. • The nucleation process is difficult than growth process during crystallization. • The second crystallization process is the most sensitive to heating rate. • Kinetic fragility index is evaluated suggesting it is an intermediate glass. - Abstract: In this paper, bulk metallic glasses with the composition of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 were prepared by copper mold casting technique. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate its structure and non-isothermal crystallization kinetics. DSC traces revealed that it undergoes two-stage crystallization. The activation energies corresponding to the characteristic temperatures have been calculated, and the results reveal that the as-cast alloys have a good thermal stability in thermodynamics. Based on Kissinger equation, the activation energies for glass transition, the first and second crystallization processes were obtained as 485 ± 16 kJ/mol, 331 ± 7 kJ/mol and 210 ± 3 kJ/mol, respectively, suggesting that the nucleation process is more difficult than the grain growth process. The fitting curves using Lasocka's empirical relation show that the influence of the heating rate for crystallization is larger than glass transition. Furthermore, the kinetic fragility for (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses is evaluated. Depending on the fragility index, (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses should be considered as “intermediate glasses”

  5. Wear evaluation of WC inserts coated with TiN/TiAlN multinanolayers

    OpenAIRE

    Moreno, L. H.; Ciacedo, J. C.; Martinez, F.; Bejarano, G.; Battaille, T. S.; Prieto, P.

    2010-01-01

    TiN/TiAlN multilayers were deposited by radio frequency, r.f., reactive magnetron sputtering by using titanium and aluminum targets with 10 cm diameter and 99.99% purity in an argon/nitrogen atmosphere, applying a substrate temperature of 300 ºC. WC inserts were used as substrates to improve the mechanical and tribological properties of TiN/TiAlN multilayered coatings compared to other types of coatings like TiAlN monolayers and to manage greater efficiency of these coatings in different indu...

  6. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal-oxide...

  7. Interdiffusion within model TiN/Cu and TiTaN/Cu systems synthesized by combinatorial thin film deposition

    International Nuclear Information System (INIS)

    Mühlbacher, M.

    2015-01-01

    Continued device miniaturization in microelectronics calls for a fundamental understanding of diffusion processes and damage mechanisms in the Cu metallization/TiN barrier layer system. Thus, the starting point of the present study is a combined experimental and theoretical examination of lattice diffusion in ideal single-crystal TiN/Cu stacks grown on MgO(001) by unbalanced DC magnetron sputter deposition. After a 12 h annealing treatment at 1000 °C, a uniform Cu diffusion layer of 7-12 nm is observed by scanning transmission electron microscopy and atom probe tomography (APT). Density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio of 0.92. These findings are extended to a comparison of grain boundary diffusion of Cu in dense polycrystalline TiN sputter-deposited on Si at 700 °C and underdense polycrystalline TiN grown on Si without external substrate heating. While the Cu diffusion path along dense TiN grain boundaries can be restricted to approximately 30 nm after a 1 h annealing treatment at 900 °C as visualized by 3D APT reconstructions, it already exceeds 500 nm after annealing at 700 °C in the underdense low-temperature TiN barrier. In this case, the formation of the Cu3Si phase, which characteristically grows along the close-packed directions in Si, is identified as the main damage mechanism leading to complete barrier failure. To meet the low-temperature processing needs of semiconductor industry and at the same time exploit the improved performance of dense polycrystalline barrier layers, deposition of TiTaN barriers on Si is demonstrated by a reactive hybrid high-power impulse/DC magnetron sputtering process, where barrier densification is achieved by pulsed irradiation of the growth surface with only a few at.% of energetic Ta ions without external substrate heating. These barrier layers delay the onset of Cu grain

  8. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation

    Science.gov (United States)

    Fang, Qihong; Yi, Ming; Li, Jia; Liu, Bin; Huang, Zaiwang

    2018-06-01

    The deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass (HE-BMG) during the nanoindentation are presented via the large-scale molecular dynamics (MD) simulations. The indentation tests are carried out using spherical rigid indenter to investigate the microstructural evolution on the mechanical properties of HE-BMGs in terms of shear strain, indentation force, and surface morphology as well as radial distribution function (RDF). Based on the Hertzian fitting the load-displacement curve, HE-BMG Cu29Zr32Ti15Al5Ni19 has the Young's modulus of 93.1 GPa and hardness of 8.8 GPa. The indentation force requiring for the continual increasing contacted area between the indenter and the substrate goes up with the increasing of indentation depth. In addition, the symmetrical distribution of atomic displacement reveals the isotropic of HE-BMG after the indentation treatment. In the deformation region, the Al element would lead to the serious fluctuation in the first peak of RDF, which is much stronger than the other elements. The severe distortion from the atomic size difference maybe reduce the activation energy to the occurrence of shear deformation in HE-BMG, leading to the transition from brittle to ductile observed by the whole sliding of the local atom group. Through the indentation load-displacement curves at various temperatures, the softening of HE-BMG at high temperatures is in qualitative agreement with the experimental findings. Moreover, this effective strategy is used to accelerate the discovery of excellent mechanical properties of HE-BMGs by means of MD simulation, as well as understand the fundamental nanoindentation response of HE-BMGs.

  9. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  10. Blood Compatibility of ZrO2 Particle Reinforced PEEK Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Jian Song

    2017-11-01

    Full Text Available Titanium (Ti and its alloys are widely used in biomedical devices. As biomaterials, the blood compatibility of Ti and its alloys is important and needs to be further improved to provide better functionality. In this work, we studied the suitability of zirconia (ZrO2 particle reinforced poly-ether-ether-ketone (PEEK coatings on Ti6Al4V substrates for blood-contacting implants. The wettability, surface roughness and elastic modulus of the coatings were examined. Blood compatibility tests were conducted by erythrocytes observation, hemolysis assay and clotting time of recalcified human plasma, to find out correlations between the microstructure of the ZrO2-filled PEEK composite coatings and their blood compatibilities. The results suggested that adding ZrO2 nanoparticles increased the surface roughness and improved the wettability and Derjaguin-Muller-Toporov (DMT elastic modulus of PEEK coating. The PEEK composite matrix coated Ti6Al4V specimens did not cause any aggregation of erythrocytes, showing morphological normal shapes. The hemolysis rate (HR values of the tested specimens were much less than 5% according to ISO 10993-4 standard. The values of plasma recalcification time (PRT of the tested specimens varied with the increasing amount of ZrO2 nanoparticles. Based on the results obtained, 10 wt % ZrO2 particle reinforced PEEK coating has demonstrated an optimum blood compatibility, and can be considered as a candidate to improve the performance of existing PEEK based coatings on titanium substrates.

  11. Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications

    International Nuclear Information System (INIS)

    Bait, L.; Azzouz, L.; Madaoui, N.; Saoula, N.

    2017-01-01

    Highlights: • TiO 2 films were deposited on stainless steel 304L RF magnetron sputtering at different substrate bias. • The hardness of TiO 2 coated 304L are higher than those obtained for uncoated substrate. • TiO 2 films provide good protection for stainless steel against corrosion in Ringer solution. - Abstract: The aim of this paper is to investigate the effect of the substrate bias, varied from 0 to −100 V, on the structure and properties of the TiO 2 thin films for biomaterials applications. The TiO 2 films were grown onto 304L stainless steel substrate using radio-frequency (rf) magnetron sputtering from a pure titanium target in Ar-O 2 gas mixture. The variation of substrate bias voltage from 0 to −100 V produces variations of structure and mechanical properties of the films. The deposited films were characterized by X-rays diffraction, nanoindentation and potentiodynamic polarization. Also, the friction and wear properties of TiO 2 films sliding against alumina ball in air were investigated. Experimental results showed that the thickness increases for non-biased substrate voltage to Vs = −100 V from 820 nm to 1936 nm respectively. The roughness is in the range of 50 nm and 14 nm. XRD results show that all structures of the films are crystalline and changed with varying the bias voltage. The anatase phase is predominant in the low negative bias range (0–50 V). The hardness significantly increased from 2.2 to 6.4 GPa when the bias voltage was increased from 0 to 75 V and then slightly decrease to 5.1 GPa as further increased to 100 V. At the same time, the results indicate that TiO 2 films deposited at −100 V exhibited better wear resistance compared to the other samples, i.e. the minimum wear rates and the lower coefficient of friction of 0.16. In order to simulate natural biological conditions, physiological serum (pH = 6.3), thermostatically controlled at 37 °C, was used as the electrolyte for the study of the electrochemical properties

  12. Impact of symmetry on the ferroelectric properties of CaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biegalski, Michael D.; Qiao, Liang [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gu, Yijia; Chen, Long-Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16801 (United States); Mehta, Apurva [Stanford Synchrotron Lightsource SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); He, Qian; Borisevich, Albina [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Takamura, Yayoi, E-mail: ytakamura@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California Davis, Davis, California 95616 (United States)

    2015-04-20

    Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO{sub 3}, through the careful control of the biaxial strain state and TiO{sub 6} octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO{sub 3} films grown on La{sub 0.18}Sr{sub 0.82}Al{sub 0.59}Ta{sub 0.41}O{sub 3} (LSAT) and NdGaO{sub 3} (NGO) substrates experienced a 1.1% biaxial strain state but differed in their octahedral tilt structures. A suppression of the out-of-plane rotations of the TiO{sub 6} octahedral in films grown on LSAT substrates resulted in a robust ferroelectric I4 mm phase with remnant polarization ∼5 μC/cm{sup 2} at 10 K and T{sub c} near 140 K. In contrast, films grown on NGO substrates with significant octahedral tilting showed reduced polarization and T{sub c}. These results highlight the key role played by symmetry in controlling the ferroelectric properties of perovskite oxide thin films.

  13. Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    We report the growth of single-phase (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated ⟨001⟩ oriented SrTiO3 substrates by using pulsed laser deposition. Films grown at 600°C under low laser fluence exhibit a ⟨001⟩ textured columnar grained nanostructure, which coalesce with increasing deposition temperature, leading to a uniform fully epitaxial highly stoichiometric film at 750°C. However, films deposited at lower temperatures exhibit compositional fluctuations as verified by Rutherford backscattering spectroscopy. The epitaxial films of 400-600nm thickness have a room temperature relative permittivity of ˜750 and a loss tangent of ˜6% at 1kHz. The room temperature remnant polarization of the films is 4μC /cm2, while the saturation polarization is 7.1μC/cm2 at 24kV/cm and the coercive field is ˜7.3kV/cm. The results indicate that approximately 50% of the bulk permittivity and 20% of bulk spontaneous polarization can be retained in submicron epitaxial KNN-LT-LS thin film, respectively. The conductivity of the films remains to be a challenge as evidenced by the high loss tangent, leakage currents, and broad hysteresis loops.

  14. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties

    International Nuclear Information System (INIS)

    Xu Cailing; Li Hua; Xue Tong; Li Hulin

    2006-01-01

    An anodic aluminum oxide/Ti/Si substrate was successfully synthesized by the anodization of an aluminum film on a Ti/Si substrate and then used as a template to grow 10 nm diameter CoPd alloy nanowires. X-ray diffraction and energy-dispersed X-ray patterns indicated that Co 0.97 Pd 0.03 nanowire arrays with a preferential orientation of (0 0 2) were formed during electrodeposition. High coercivity (about 1700 Oe) and squareness (about 0.85) were obtained in the samples when the magnetic field was applied parallel to the axis of the nanowires; these values are much larger than those of pure Co nanowire arrays with the same diameters

  15. A study on the change in the phase transition temperature of TiSi sub 2 by adding the Zr element on different Si substrates

    CERN Document Server

    Yoon, S H

    1999-01-01

    The stabilization of C49 TiSi sub 2 at high temperature was investigated by adding Zr element to Ti-silicide both on single crystalline Si(100) and amorphous Si substrates. This stabilization of the C49 TiSi sub 2 phase, which exhibits lower surface and interface energies than those of the C54 TiSi sub 2 phase, was expected to suppress the problems of Ti-silicide, such as the phase transition and the agglomeration. Ti and Zr films of 40 nm were co-deposited on Si substrates in a dual e-beam evaporation system equipped with an ion pump and at a base pressure of approx 5x10 sup - sup 9 Torr. The amounts of Zr contents added to the Ti-silicide were 5, 10 and 20 atomic %, and the thicknesses were monitored by in-situ quartz-crystal thickness monitors. After the deposition, films were annealed by using an ex-situ vacuum furnace at temperatures between 600 .deg. C and 900 .deg. C in 100 .deg. C increments. The phase identification and the chemical compositions were investigated by X-ray diffraction (XRD) and Auger ...

  16. Anisotropy in elastic properties of TiSi2 (C49, C40 and C54), TiSi and Ti5Si3: an ab-initio density functional study

    International Nuclear Information System (INIS)

    Niranjan, Manish K

    2015-01-01

    We present a comparative study of the anisotropy in the elastic properties of the C49, C54 and C40 phases of TiSi 2 , as well as orthorhombic TiSi and hexagonal Ti 5 Si 3 . The elastic constants, elastic moduli, Debye temperature and sound velocities are computed within the framework of density functional theory. The computed values of the elastic constants and moduli are found to be in excellent agreement with available experimental values. The average elastic moduli, such as Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio, of polycrystalline aggregates are computed using the computed elastic constants of single crystals. The anisotropy in elastic properties is analyzed using estimates of shear anisotropic factors, bulk modulus anisotropic factors and variations in Young’s and bulk moduli in different crystallographic directions. Among the Ti–Si phases, the computed directional Young’s modulus profiles of C49 TiSi 2 and C40 TiSi 2 are found to be quite similar to those of bulk Si and Ti, respectively. In addition to the elastic properties, the electronic structure of five Ti–Si phases is studied. The density of states and planar charge density profiles reveal mixed covalent–metallic bonding in all Ti–Si phases. (paper)

  17. Molten Salt-Based Growth of Bulk GaN and InN for Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Waldrip, Karen Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources Technology Dept.; Tsao, Jeffrey Yeenien [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Sciences Dept.; Kerley, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Dept.

    2006-09-01

    An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The technique described herein relies on the production of the nitride precursor (N3-) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (July 2004-September 2005) focused on the initial measurement of the solubility of GaN in molten LiCl as a function of temperature, the construction of electrochemical cells, the modification of a commercial glove box (required for handling very hygroscopic LiCl), and on securing intellectual property for the technique.

  18. Luminescent properties of CaTiO3:Pr thin-film phosphor deposited on ZnO/ITO/glass substrate

    International Nuclear Information System (INIS)

    Chung, Sung Mook; Han, Sang Hyuk; Song, Kuk Hyun; Kim, Eung Soo; Kim, Young Jin

    2005-01-01

    Red-emitting CaTiO 3 :Pr phosphor thin films were deposited on glass, ZnO/ITO/glass, and ITO/glass substrates by RF magnetron sputtering. The effects of various substrates and heat treatment on the structural and luminous properties were investigated. The films deposited on ZnO/ITO/glass exhibited superior crystallinity and more enhanced PL and CL properties compared with those on ITO/glass. The intermediate ZnO layer between phosphor film and ITO contributed to the growing behaviors and the roughening of CaTiO 3 :Pr phosphor thin films, and consequently, to the excellent luminescence. The luminescent properties of the films were improved by following heat-treatment due to a combination of factors, namely the transformation from amorphous to poly crystalline phases, the activation of the activators, and the elimination of microdefects

  19. Electrospun TiO{sub 2} nanofibers decorated Ti substrate for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Dumitriu, Cristina [Åbo Akademi University, Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, Åbo-Turku FI-20500 (Finland); Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania); Stoian, Andrei Bogdan [Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania); Titorencu, Irina; Pruna, Vasile; Jinga, Victor V. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B. P. Hasdeu, district 5, Bucharest Ro-050568 (Romania); Latonen, Rose-Marie; Bobacka, Johan [Åbo Akademi University, Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, Åbo-Turku FI-20500 (Finland); Demetrescu, Ioana, E-mail: i_demetrescu@chim.upb.ro [Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania)

    2014-12-01

    Various TiO{sub 2} nanofibers on Ti surface have been fabricated via electrospinning and calcination. Due to different elaboration conditions the electrospun fibers have different surface feature morphologies, characterized by scanning electronic microscopy, surface roughness, and contact angle measurements. The results have indicated that the average sample diameters are between 32 and 44 nm, roughness between 61 and 416 nm, and all samples are hydrophilic. As biological evaluation, cell culture with MG63 cell line originally derived from a human osteosarcoma was performed and correlation between nanofibers elaboration, properties and cell response was established. The cell adherence and growth are more evident on Ti samples with more aligned fibers, higher roughness and strong hydrophilic character and such fibers have been elaborated with a high speed rotating cylinder collector, confirming the idea that nanostructure elaboration conditions guide the cells' growth. - Highlights: • Processing Ti surface via electrospinning and calcination leads to TiO{sub 2} nanofibers. • The TiO{sub 2} electrospun fibers on Ti have diameters between 10 and 100 nm. • Elaboration with high speed rotating cylinder collector leads to aligned fibers. • The samples have roughness between 61 and 416 nm and all of them are hydrophilic. • Cell adherence and viability is more evident on Ti samples with aligned fibers.

  20. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji, E-mail: shi.j.aa@m.titech.ac.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Xie, Qian; Zhang, Zhengjun [Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jian [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glass substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.

  1. Hypervelocity impact on Zr51Ti5Ni10Cu25Al9 bulk metallic glass

    International Nuclear Information System (INIS)

    Zheng, W.; Huang, Y.J.; Pang, B.J.; Shen, J.

    2011-01-01

    Highlights: → Hypervelocity impact experiments were performed on a bulk metallic glass. → Morphology of the bullet hole presents three different regions. → The post-impact samples keep glassy structure. → Mechanical properties of the post-impact samples were studied by nanoindentation. → Mechanical properties of the post-impact samples were discussed by free-volume model. - Abstract: In this study, the hypervelocity impact experiments were performed on Zr 51 Ti 5 Ni 10 Cu 25 Al 9 bulk metallic glass using a two-stage light gas gun. The morphologies of the bullet holes exhibit three different regions: melting area, vein-pattern area, and radiating core feature area, suggesting that various regions experience different stress states during the hypervelocity impact. For the post-impact samples, the nano-hardness increases and plastic deformability decreases both with the increase in the distance from the bullet hole and with the decrease in the impact velocity, which is discussed by means of spherical stress wave theory and free-volume model.

  2. Tribological behavior of the kinetic sprayed Ni59Ti16Zr20Si2Sn3 bulk metallic glass

    International Nuclear Information System (INIS)

    Choi, Hanshin; Jo, Hyungho; An, Kyoungjun; Yoon, Sanghoon; Lee, Changhee

    2007-01-01

    Gas atomized amorphous Ni 59 Ti 16 Zr 20 Si 2 Sn 3 feedstock particles were fed into warm gas dynamics and they were successfully overlaid onto the mild steel substrate. Through the X-ray diffractometry and differential scanning calorimetry, it could be confirmed that thermally activated processes such as crystallization and in-flight particle oxidation were effectively suppressed during the modified kinetic spraying process. In order to evaluate the tribological behavior of the kinetic sprayed Ni 59 Ti 16 Zr 20 Si 2 Sn 3 BMG coating, a partially crystallized coating and a fully crystallized coating were prepared by isothermal heat treatments

  3. Molecular-mediated crystal growth of PbTiO3 nanostructure on silicon substrate

    International Nuclear Information System (INIS)

    Chao Chunying; Ren Zhaohui; Liu Zhenya; Xiao Zhen; Xu Gang; Li Xiang; Wei Xiao; Shen Ge; Han Gaorong

    2011-01-01

    A simple approach based on an organically modified sol-gel process has been developed to fabricate PbTiO 3 (PT) nanocrystals on Si (1 0 0) substrate, where the amorphous powder modified by acetylacetone (acac) was used as precursor. After dropping the amorphous powder precursor prepared by freeze-drying process, PT nanocrystals on Si (1 0 0) substrate were obtained after heat treatment at 720 deg. C for 30 min in air. PT nanocrystals have been detected by XRD to be tetragonal perovskite structure. With the increase of acac/Pb molar ratio, the relative (1 0 0)/(0 0 1) diffraction peak intensity gradually increases, which probably suggested an oriented growth of PT nanocrystal along [1 0 0] on Si (1 0 0) substrates. In addition, Atomic force microscopy (AFM) results indicated that the height and the average lateral size of PT nanocrystal increased and then decreased as the acac/Pb molar ratio increased. Piezoelectric force microscopy (PFM) results demonstrated that all the samples show obvious piezoelectric activity. These results implied that the acetylacetone molecular mediated the growth of PT nanocrystals on Si (1 0 0) substrates possibly by the acac/Pb molar ratio. This simple method has been suggested to be attractive for tailoring an oriented growth of the nanostructures of perovskite oxide systems on Si substrates.

  4. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CN{sub x} multilayer grown by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Alemón, B.; Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, Mexico, DF 07738 (Mexico); Broitman, E. [Thin Films Physics Division, IFM, Linköping University, SE-58183 Linköping (Sweden)

    2014-07-15

    A novel TiAlCN/CN{sub x} multilayer coating, consisting of nine TiAlCN/CN{sub x} periods with a top layer 0.5 μm of CN{sub x}, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti{sub 0.5}Al{sub 0.5} and C targets respectively in a N{sub 2}/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  5. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  6. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUE Qi; JIN Yong; HU Dong-ping; HUANG Ben-sheng; DENG Bai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported.The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  7. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUEQi; JINYong; HUDong-ping; HUANGBen-sheng; DENGBai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainlesss teel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2 to 2.0. The Ti [C,N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion hetween the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  8. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    Science.gov (United States)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  9. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-05-01

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  10. Ferroelectric properties of sandwich structured (Bi, La)4T3O12/Pb(Zr, Ti)O3/ (Bi, La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Bao Dinghua; Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2002-01-01

    Sandwich structured (Bi, La) 4 Ti 3 O 12 /Pb(Zr, Ti)O 3 /(Bi, La) 4 Ti 3 O 12 thin films were fabricated on Pt/Ti/SiO 2 /Si substrates, with the intention of simultaneously utilizing the advantages of both (Bi, La) 4 Ti 3 O 12 (BLT) and Pb(Zr, Ti)O 3 (PZT) thin films such as non-fatigue behaviours of BLT and good ferroelectric properties of PZT. Both BLT and PZT layers were prepared by a chemical solution deposition technique. The experiments demonstrated that the sandwich structure showed fatigue-free characteristics at least up to 10 10 switching bipolar pulse cycles under 8 V and excellent retention properties. The sandwich structured thin films also exhibited well-defined hysteresis loops with a remanent polarization (2P r ) of 8.8 μC cm -2 and a coercive field (E c ) of 47 kV cm -1 . The room-temperature dielectric constant and dissipation factor were 210 and 0.031, respectively, at a frequency of 100 kHz. These results suggest that this sandwich structure is a promising material combination for ferroelectric memory applications. (author)

  11. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jianrui; Lu Haiyan [College of Chemistry, Jilin University, Changchun 130012 (China); Du Lili [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Lin Haibo, E-mail: lhb910@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2011-05-15

    The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp{sup 3}-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.

  12. Enhancement of Ti-containing hydrogenated carbon (Ti-C:H) films by high-power plasma-sputtering

    International Nuclear Information System (INIS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-01-01

    Ti-containing amorphous hydrogenated carbon (Ti-C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C 2 H 2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Ti-TiC-DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Ti-C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  13. Substrate temperature study in the crystallinity of BaTiO{sub 3} thin films; Estudio de la temperatura de crecimiento sobre la cristalinidad en peliculas delgadas de BaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Herrera, Alfredo [Coordinacion Academica Region Altiplano (COARA), Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: amarquez@mixteco.utm.mx; Hernandez-Rodriguez, Eric Noe; Zapata-Torres, Martin Guadalupe [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional (Mexico)]. E-mails: noehmx@hotmail.com; mzapatat@ipn.mx; Cruz-Jauregui, Maria de la Paz [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico (Mexico)]. E-mail: mcruz@cnyn.unam.mx; Melendez-Lira, Miguel angel [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional (Mexico)]. E-mail: mlira@fis.cinvestav.mx

    2013-07-15

    Ferroelectric thin films of BaTiO{sub 3} (BTO) were grown on quartz and nichrome substrates using a BaTiO{sub 3} target by RF-Sputtering technique. It was studied the effect of the substrate temperature in the crystallization of the material. These samples were compared with films deposited at room temperature and heat treated out of the growth Chamber. Their crystallinity were studied by X-ray diffraction. Additionally, the optical characterizations were carried out by UV-Vis spectrophotometer. The growth of thin films with substrate temperature allows the obtaining of crystalline materials at temperatures below those reported by other authors. [Spanish] Peliculas delgadas Ferroelectricas de BaTiO{sub 3} (BTO) se depositaron a partir de un blanco de BaTiO{sub 3} mediante la tecnica de RF-Sputtering (erosion catodica por radio frecuencia) sobre substratos de nicromel y cuarzo. Se estudio el efecto de la temperatura de sustrato in-situ en la cristalinidad del material durante su deposito. Estas muestras fueron comparadas con peliculas depositadas a temperatura ambiente y tratadas termicamente posterior al deposito fuera de la camara de crecimiento. El estudio de la cristalinidad fue realizado mediante la tecnica de difraccion de rayos-X. Adicionalmente, se llevaron a cabo caracterizaciones opticas mediante un espectrofotometro UV-Vis. El crecimiento de peliculas delgadas con temperatura de sustrato permite la obtencion de materiales cristalinos a temperaturas por debajo de las reportadas por otros autores.

  14. Fretting wear behaviour of TiC/Ti(C,N)/TiN multi-layer coatings at elevated temperature in gross slip regime

    International Nuclear Information System (INIS)

    Liu Hanwei; Huang Kunpeng; Zhu Minhao; Zhou Zhongrong

    2005-01-01

    Tic/Ti(C,N)/TiN multi-layer coatings are prepared on the 1Cr13 stainless steel substrate by the technique of Chemical Vapour Deposition, and the fretting wear behaviour of 1Cr13 stainless steel and TiC/Ti(C,N)/TiN coatings are investigated and studied controversially from 25 degree C to 400 degree C in the gross slip regime. It shows that the temperature has great influence on the fretting wear in the gross slip regime for the 1Cr13 stainless steel but little for Ti/C/Ti(C,N)/TiN multi-layer coatings. With the temperature increasing, the friction coefficient and the wear volume of the 1Cr13 alloy decreases and the wear volume of TiC/Ti(C, N)/TiN multi-layer coatings is invariant. TiC/Ti(C,N)/TiN multi-layer coatings have better wear-resistant capability than the 1Cr13 stainless steel, but the wear volume of the substrate increases greatly because of the grain-abrasion resulted from hard debris when TiC/Ti(C,N)/TiN multi-layer coatings are ground off. (authors)

  15. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    Energy Technology Data Exchange (ETDEWEB)

    Demchishin, A.V., E-mail: ademch@meta.ua [Institute of Problems in Material Science, NASU, Kiev (Ukraine); Gnilitskyi, I., E-mail: iaroslav.gnilitskyi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Orazi, L., E-mail: leonardo.orazi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Ascari, A., E-mail: a.ascari@unibo.it [DIN – Department of Industrial Engineering, University of Bologna, Bologna (Italy)

    2015-07-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics.

  16. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    International Nuclear Information System (INIS)

    Demchishin, A.V.; Gnilitskyi, I.; Orazi, L.; Ascari, A.

    2015-01-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics

  17. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO_2 films

    International Nuclear Information System (INIS)

    Chen, Xian; Zhang, Jing; Zhao, Yu-Qing

    2017-01-01

    Highlights: • The surface roughness of a-TiO_2 films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO_2 films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO_2 thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  18. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation

    Energy Technology Data Exchange (ETDEWEB)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C–C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C–C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C–C bonding over C–Cu bonding, which results in C–C dimer pair formation near the surface. The dramatically different C–C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  19. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation.

    Science.gov (United States)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  20. Influence of the Ti microstructure on anodic self-organized TiO{sub 2} nanotube layers produced in ethylene glycol electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Macak, J.M., E-mail: jan.macak@upce.cz [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Jarosova, M. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the CAS, v.v.i., Na Slovance 2, 18221 Prague 8 (Czech Republic); Jäger, A. [Department of Structure analysis, Institute of Physics of the CAS, v.v.i., Cukrovarnicka 10, 16200 Prague 6 (Czech Republic); Sopha, H. [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Klementová, M. [Institute of Inorganic Chemistry of the CAS, v.v.i., Husinec-Rez 1001, Rez 25068 (Czech Republic)

    2016-05-15

    Highlights: • The microstructure of Ti substrates investigated by EBSD. • Comparison of polished vs. unpolished substrates was carried out. • Grain orientation influences the uniformity of self-organized TiO{sub 2} nanotubes. • Tubes with different average diameter grow on grains with different orientation. • Grain size and boundaries influence the number of flaws in the tube layers. - Abstract: The relationship between the microstructure of Ti substrates and the anodic growth of self-organized TiO{sub 2} nanotube layers obtained upon their anodization in the ethylene glycol based electrolytes on these substrates is reported for the first time. Polished Ti sheets with mirror-like surface as well as unpolished Ti foils were considered in this work. Grains with a wide range of crystallographic orientations and sizes were revealed by Electron Backscatter Diffraction (EBSD) and correlated with nanotube growth on both types of substrates. A preferred grain orientation with [0 0 0 1] axis perpendicular to the surface was observed on all substrates. Surfaces of all substrates were anodized for 18 h in ethylene glycol electrolytes containing 88 mM NH{sub 4}F and 1.5% water and thoroughly inspected by SEM. By a precise comparison of Ti substrates before and after anodization, the uniformity of produced self-organized TiO{sub 2} nanotube layers was evaluated in regard to the specific orientation of individual grains. Grains with [0 0 0 1] axis perpendicular to the surface turned out to be the most growth-promoting orientation on polished substrates. No orientation was found to be strictly growth-retarding, but sufficient anodization time (24 h) was needed to obtain uniform nanotube layers on all grains without remnant porous initial oxide. In contrast with polished Ti sheets, no specific orientation was found to significantly promote or retard the nanotube growth in the case of unpolished Ti foils. Finally, the difference between the average nanotube diameters of

  1. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  2. Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors.

    Science.gov (United States)

    Banerjee, Arghya Narayan; Anitha, V C; Joo, Sang W

    2017-10-16

    Ti substrate surface is modified into two-dimensional (2D) TiO 2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO 2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO 2 . Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO 2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO 2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm -2 ) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.

  3. Multiphase nanodomains in a strained BaTiO3 film on a GdScO3 substrate

    Science.gov (United States)

    Kobayashi, Shunsuke; Inoue, Kazutoshi; Kato, Takeharu; Ikuhara, Yuichi; Yamamoto, Takahisa

    2018-02-01

    Controlling the crystal structure of ferroelectric materials via epitaxial strain, which is a well-known technique in strain engineering, can lead to the formation of unique domain structures generating non-intrinsic phenomena such as electronic conductivity, photovoltages, and enhanced piezoelectric characteristics. Strained BaTiO3 films are promising ferroelectric materials as theoretical modeling predicts that different domain morphologies can introduce additional properties not observed in conventional BaTiO3 ceramics. To rationally design materials for practical application, a thorough understanding of the formation mechanisms and stabilities of different domain structures in strained BaTiO3 films is required. However, there have been very few experimental reports on this topic, and details about the domain structures in strained BaTiO3 films are currently lacking. In this paper, we report multiphase nanodomains in a strained BaTiO3 film deposited on an orthorhombic GdScO3 substrate. The phase-transition behavior of the strained BaTiO3 film reveals that it contains multiple phases at room temperature; the film first undergoes a phase-transition upon heating at around 550 K, and then a paraelectric phase forms at temperatures above 690 K. A picometer-scale analysis of the Ti ion displacements, using an advanced scanning transmission electron microscopy technique, is used to characterize the complex multiphase nanodomains, providing useful insights into the control of domain structures in BaTiO3 films by applying epitaxial strain.

  4. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    Science.gov (United States)

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  5. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  6. TiO{sub 2} based photo-catalysts prepared by chemical vapor infiltration (CVI) on micro-fibrous substrates; Photocatalyseurs a base de TiO{sub 2} prepares par infiltration chimique en phase vapeur (CVI) sur supports microfibreux

    Energy Technology Data Exchange (ETDEWEB)

    Sarantopoulos, Ch

    2007-10-15

    This thesis deals with micro-fibrous glass substrates functionalized with TiO{sub 2}. The oxide is deposited as a thin film onto the micro fibres by chemical vapour infiltration (CVI), yielding a photo-catalytic material usable for cleaning polluted air. We studied the relation between the structure of the material and its photo-catalytic efficiency. TiO{sub 2} thin films were prepared at low pressure, in a hot-wall CVD reactor, using Ti(O-iPr){sub 4} as a precursor. They were characterized by XRD, SEM, EDX, XPS and BET, and by recording the kinetics of decomposition of varied pollutants in solution (orange G, malic acid, imazapyr) and in air (toluene). The conditions favoring the growth of porous films through a columnar growth mode were established by MOCVD-depositing TiO{sub 2} thin films on flat substrates. The subsequent works with micro fibrous thick substrates showed the uniformity of infiltration to be the main factor governing the photo-catalytic efficiency. Operating parameters that optimize infiltration do not yield columnar growth mode. A compromise is necessary. Our photo-catalysts are showing high efficiency comparable, if not higher, to those actually commercialized. These promising results are opening real perspectives for the proposed process. (author)

  7. BaxSr1-xTi1.02O3 metal-insulator-metal capacitors on planarized alumina substrates

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Mauczok, R.; Keur, W.; Hueting, Raymond Josephus Engelbart

    2010-01-01

    Nanocrystalline barium strontium titanate (BaxSr1−xTi1.02O3) thin films with a barium content of x=0.8, 0.9 and 1 have been fabricated in a metal–insulator–metal configuration on glass-planarized alumina substrates. Cost-effective processing measures have been utilized by using poly-crystalline

  8. Unusual glass-forming ability induced by changes in the local atomic structure in Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Y C; Chang, H J; Kim, D H; Kim, W T; Cha, P R

    2007-01-01

    The effect of partial replacement of Cu by Be in Ti 50 Cu 32 Ni 15 Sn 3 alloy on the thermal properties, structure, and forming ability of an amorphous phase were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and high-resolution transmission electron microscopy (HRTEM). Ti 50 Cu 25 Ni 15 Sn 3 Be 7 alloy shows enhanced glass-forming ability, enabling one to fabricate a fully amorphous bulk metallic glass sample 2 mm in diameter by injection casting. With the replacement, the supercooled liquid region ΔT x (= T x -T g , where T x is the crystallization temperature and T g is the glass transition temperature) decreased from 73 to 45 K and the reduced glass transition temperature T rg (= T g /T 1 , where T 1 is the liquidus temperature) increased from 0.53 to 0.57. The amorphous Ti 50 Cu 25 Ni 15 Sn 3 Be 7 phase showed a formation of short-range-ordered clusters 1-2 nm in size, which is attributed to the strong interaction between Ti and Be. The results show that ΔT x can be used as a thermal parameter reflecting the glass-forming ability of the alloy only when the phase formed during crystallization is the same as the phase competing with the glass transition during solidification

  9. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Jiang, Shuwen; Jiang Bin; Li Yan; Li Yanrong; Yin Guangfu; Zheng Changqiong

    2004-01-01

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy

  10. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, B.; Chen, T.; Shklovskii, B. I., E-mail: shklovsk@physics.spa.umn.edu [University of Minnesota, Fine Theoretical Physics Institute (United States)

    2013-09-15

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

  11. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  12. Sputtering characteristics, crystal structures, and transparent conductive properties of TiO{sub x}N{sub y} films deposited on {alpha}-Al{sub 2}O{sub 3}(0 0 0 1) and glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp [NTT Microsystem Integration Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Reactive sputtering of TiO{sub x}N{sub y} films was achieved under metal-mode conditions. Black-Right-Pointing-Pointer Partially substituting O in TiO{sub 2} with N formed anatase rather than rutile. Black-Right-Pointing-Pointer TiO{sub 2-x}N{sub x} on Al{sub 2}O{sub 3}(0 0 0 1) was more transparent and conductive than on glass substrate. Black-Right-Pointing-Pointer Nb{sup 5+} ions could be doped as donors in TiO{sub 2-x}N{sub x} anatase crystals. - Abstract: Adding N{sub 2} gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO{sub 1-x}N{sub x} having a face-centered cubic (fcc) structure to TiO{sub 2-x}N{sub x} having an anatase structure. Titanium oxynitride films deposited on an Al{sub 2}O{sub 3}(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO{sub 1-x}N{sub x} and (1 1 2) for anatase-TiO{sub 2-x}N{sub x}. Intermediately oxidized films between TiO{sub 1-x}N{sub x} and TiO{sub 2-x}N{sub x} were amorphous on the glass substrate but crystallized into a Magneli phase, Ti{sub n}O(N){sub 2n-1}, on the Al{sub 2}O{sub 3}(0 0 0 1) substrate. Partially substituting oxygen in TiO{sub 2} with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO{sub 2-x}N{sub x} films on Al{sub 2}O{sub 3}(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of Ti

  13. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tallarico, D.A. [Federal University of Sao Carlos, Materials Science and Engineering Graduation Program, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Gobbi, A.L. [Brazilian Nanotechnology National Laboratory, Rua Giuseppe Máximo Scolfaro 10.000, CEP 13083-100 Campinas, SP (Brazil); Paulin Filho, P.I. [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Maia da Costa, M.E.H. [Pontifical Catholic University of Rio de Janeiro, Department of Physics, CEP 22451-900 Rio de Janeiro, RJ (Brazil); Nascente, P.A.P., E-mail: nascente@ufscar.br [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil)

    2014-10-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness.

  14. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    International Nuclear Information System (INIS)

    Tallarico, D.A.; Gobbi, A.L.; Paulin Filho, P.I.; Maia da Costa, M.E.H.; Nascente, P.A.P.

    2014-01-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness

  15. Influence of substrate bias voltage on the properties of TiO{sub 2} deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications

    Energy Technology Data Exchange (ETDEWEB)

    Bait, L. [Division Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, CDTA,Cité du 20 aout 1956, Baba Hassen, BP n°. 17, Alger (Algeria); Azzouz, L. [Université de Amar Telidji, Laghouat (Algeria); Madaoui, N. [Division Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, CDTA,Cité du 20 aout 1956, Baba Hassen, BP n°. 17, Alger (Algeria); Saoula, N., E-mail: nsaoula@cdta.dz [Division Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, CDTA,Cité du 20 aout 1956, Baba Hassen, BP n°. 17, Alger (Algeria)

    2017-02-15

    Highlights: • TiO{sub 2} films were deposited on stainless steel 304L RF magnetron sputtering at different substrate bias. • The hardness of TiO{sub 2} coated 304L are higher than those obtained for uncoated substrate. • TiO{sub 2} films provide good protection for stainless steel against corrosion in Ringer solution. - Abstract: The aim of this paper is to investigate the effect of the substrate bias, varied from 0 to −100 V, on the structure and properties of the TiO{sub 2} thin films for biomaterials applications. The TiO{sub 2} films were grown onto 304L stainless steel substrate using radio-frequency (rf) magnetron sputtering from a pure titanium target in Ar-O{sub 2} gas mixture. The variation of substrate bias voltage from 0 to −100 V produces variations of structure and mechanical properties of the films. The deposited films were characterized by X-rays diffraction, nanoindentation and potentiodynamic polarization. Also, the friction and wear properties of TiO{sub 2} films sliding against alumina ball in air were investigated. Experimental results showed that the thickness increases for non-biased substrate voltage to Vs = −100 V from 820 nm to 1936 nm respectively. The roughness is in the range of 50 nm and 14 nm. XRD results show that all structures of the films are crystalline and changed with varying the bias voltage. The anatase phase is predominant in the low negative bias range (0–50 V). The hardness significantly increased from 2.2 to 6.4 GPa when the bias voltage was increased from 0 to 75 V and then slightly decrease to 5.1 GPa as further increased to 100 V. At the same time, the results indicate that TiO{sub 2} films deposited at −100 V exhibited better wear resistance compared to the other samples, i.e. the minimum wear rates and the lower coefficient of friction of 0.16. In order to simulate natural biological conditions, physiological serum (pH = 6.3), thermostatically controlled at 37 °C, was used as the electrolyte for the

  16. Evaluating the residual stress in PbTiO3 thin films prepared by a polymeric chemical method

    International Nuclear Information System (INIS)

    Valim, D; Filho, A G Souza; Freire, P T C; Filho, J Mendes; Guarany, C A; Reis, R N; Araujo, E B

    2004-01-01

    We report a study of residual stress in PbTiO 3 (PT) thin films prepared on Si substrates by a polymeric chemical method. The E(1TO) frequency was used to evaluate the residual stress through an empirical equation available for bulk PT. We find that the residual stress in PT films increases as the film thickness decreases and conclude that it originates essentially from the contributions of extrinsic and intrinsic factors. Polarized Raman experiments showed that the PT films prepared by a polymeric chemical method are somewhat a-domain (polar axis c parallel to the substrate) oriented

  17. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian, E-mail: mus_c@qq.com [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhang, Jing [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhao, Yu-Qing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’AN, 710049 (China)

    2017-05-15

    Highlights: • The surface roughness of a-TiO{sub 2} films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO{sub 2} films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO{sub 2} thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  18. Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications

    International Nuclear Information System (INIS)

    Cho, Sung-Dong; Lee, Joo-Yeon; Hyun, Jin-Gul; Paik, Kyung-Wook

    2004-01-01

    Embedded capacitor films (ECFs) were newly designed for high dielectric constant and low capacitance tolerance (less than ±5%) embedded capacitor fabrication for organic substrates. ECFs are transferable and B-stage films which can be coated on a releasing film. In terms of materials formulation, ECFs are composed of high dielectric constant BaTiO 3 (BT) powder, specially formulated epoxy resin, and latent curing agent. And in terms of coating process, a roll coating method is used for obtaining film thickness uniformity in a large area. Differential scanning calorimeter (DSC) thermal analysis was conducted to determine the optimum amount of curing agent, curing temperature, and curing time. Changes in the dielectric constant of epoxy/BaTiO 3 composite ECFs with BT particle sizes and contents were investigated. Dielectric constant of 90 was obtained using two different size BaTiO 3 powders mixture. Typically, capacitors of 12 μm thick film with 8 nF/cm 2 with less than ±5% capacitance tolerance and low leakage current (less than 10 -7 A/cm 2 at 10 V) were successfully demonstrated on PCBs using epoxy/BaTiO 3 composite embedded capacitor films

  19. Magnetic resonance study of bulk and thin film EuTiO3

    International Nuclear Information System (INIS)

    Laguta, V V; Kamba, S; Maryško, M; Andrzejewski, B; Kachlík, M; Maca, K; Lee, J H; Schlom, D G

    2017-01-01

    Magnetic resonance spectra of EuTiO 3 in both bulk and thin film form were taken at temperatures from 3–350 K and microwave frequencies from 9.2–9.8 and 34 GHz. In the paramagnetic phase, magnetic resonance spectra are determined by magnetic dipole and exchange interactions between Eu 2+ spins. In the film, a large contribution arises from the demagnetization field. From detailed analysis of the linewidth and its temperature dependence, the parameters of spin–spin interactions were determined: the exchange frequency is 10.5 GHz and the estimated critical exponent of the spin correlation length is  ≈0.4. In the bulk samples, the spectra exhibited a distinct minimum in the linewidth at the Néel temperature, T N   ≈  5.5 K, while the resonance field practically does not change even on cooling below T N . This is indicative of a small magnetic anisotropy ∼320 G in the antiferromagnetic phase. In the film, the magnetic resonance spectrum is split below T N into several components due to excitation of the magnetostatic modes, corresponding to a non-uniform precession of magnetization. Moreover, the film was observed to degrade over two years. This was manifested by an increase of defects and a change in the domain structure. The saturated magnetization in the film, estimated from the magnetic resonance spectrum, was about 900 emu cm −3 or 5.5 µ B /unit cell at T   =  3.5 K. (paper)

  20. Influence of the substrate on the morphological evolution of gold thin films during solid-state dewetting

    International Nuclear Information System (INIS)

    Nsimama, Patrick D.; Herz, Andreas; Wang, Dong; Schaaf, Peter

    2016-01-01

    Highlights: • Dewetting of thin gold films is faster on TiO_2 than on SiO_2. • Dewetting of thin gold films is faster on amorphous TiO_2 than on crystalline TiO_2. • The kinetics is attributed to the energy of adhesion. • The morphology of thin Au films deposited on TiO_2 substrates is different to those deposited on SiO_2 substrates. • The dewetting activation energy of Au films deposited on crystalline substrates was higher than the activation energy of Au nanofilms deposited on amorphous TiO_2 substrates. - Abstract: The evolution of electron-beam evaporated Au thin films deposited on crystalline TiO_2 (c-TiO_2) and amorphous TiO_2 (a-TiO_2) as well as amorphous SiO_2 substrates are investigated. The kinetic of dewetting is clearly dependent on the type of substrate and is faster on TiO_2 substrates than on SiO_2 substrates. This difference can result from the difference in adhesion energy. Furthermore, the kinetic of dewetting is faster on a-TiO_2 than on c-TiO_2, possibly due to the crystallization of TiO_2 during annealing induced dewetting process. The morphologies of dewetted Au films deposited on crystalline TiO_2 are characterized by branched holes. The XRD patterns of the Au films deposited on TiO_2 substrates constituted peaks from both metallic Au and anatase TiO_2. The activation energy of Au films deposited on crystalline TiO_2 substrates was higher than that that of the films deposited on amorphous TiO_2 substrates.

  1. Initial testing of TiB2 and TiC coated limiters in ISX-B

    International Nuclear Information System (INIS)

    Langley, R.A.; Emerson, R.A.; Whitley, J.B.; Mullendore, A.W.

    1980-01-01

    Low-Z coatings on graphite substrates have been developed for testing as limiters in the Impurity Study Experiment (ISX-B) tokamak. Laboratory and tokamak testings have been accomplished. The laboratory tests included thermal shock experiments by means of pulsed e-beam irradiation, arcing experiments, and hydrogen and xenon ion erosion experiments. The tokamak testing consisted of ohmically heated plasma exposures with energy depositions up to 10 kJ/discharge on the limiters. The coatings, applied by chemical vapor deposition, consisted of TiB 2 and TiC deposited on POCO graphite substrates. The limiter samples were interchanged through the use of a transfer chamber without atmospheric exposure of the ISX-B tokamak. Limiter samples were baked out in the transfer chamber before use in the tokamak. Provisions for both heating and cooling the limiter during tokamak discharge were made. Initial testing of the limiter samples consisted of exposure to only ohmically heated plasma; subsequent testing will be performed in neutral-beam-heated plasmas having up to 3 MW of injected power. Bulk and surface temperatures of the samples were measured to allow the determination of energy deposition. Extensive plasma and edge diagnostics were used to evaluate the effect of the limiter on the plasma (e.g. vacuum ultraviolet spectrometry to determine plasma impurity concentrations, Thomson scattering to determine Z effective, IR camera to measure limiter surface temperature, and laser fluorescence spectrometry to determine neutral impurity concentration and velocity distribution in the limiter region). (orig.)

  2. Graphene on insulating crystalline substrates

    International Nuclear Information System (INIS)

    Akcoeltekin, S; El Kharrazi, M; Koehler, B; Lorke, A; Schleberger, M

    2009-01-01

    We show that it is possible to prepare and identify ultra-thin sheets of graphene on crystalline substrates such as SrTiO 3 , TiO 2 , Al 2 O 3 and CaF 2 by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On the substrates under consideration we find a similar distribution of single layer, bilayer and few-layer graphene and graphite flakes as with conventional SiO 2 substrates. The optical contrast C of a single graphene layer on any of those substrates is determined by calculating the optical properties of a two-dimensional metallic sheet on the surface of a dielectric, which yields values between C = -1.5% (G/TiO 2 ) and C = -8.8% (G/CaF 2 ). This contrast is in reasonable agreement with experimental data and is sufficient to make identification by an optical microscope possible. The graphene layers cover the crystalline substrate in a carpet-like mode and the height of single layer graphene on any of the crystalline substrates as determined by atomic force microscopy is d SLG = 0.34 nm and thus much smaller than on SiO 2 .

  3. Microstructural evolution and wear behaviors of laser cladding Ti_2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    International Nuclear Information System (INIS)

    Song, R.; Li, J.; Shao, J.Z.; Bai, L.L.; Chen, J.L.; Qu, C.C.

    2015-01-01

    Graphical abstract: - Highlights: • A TiC+TiB reinforced intermetallic matrix coating was fabricated by laser cladding. • The microstructural evolution of the reinforcements was analyzed. • A formula was established in term of wear loss, sliding time and applied load. • Wear behaviors were investigated by in situ continuing tests in different time intervals. • The transformation of wear mechanism at different applied loads was revealed. - Abstract: The Ti_2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements’ microstructure, namely TiC_p+(TiB+TiC)_e, (TiB+TiC)_e and TiB_p+(TiB+TiC)_e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  4. Influence of the substrate on the morphological evolution of gold thin films during solid-state dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Nsimama, Patrick D. [TU Ilmenau, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, Chair Materials for Electrical Engineering and Electronics, 98693 Ilmenau (Germany); Dar Es Salaam Institute of Technology, P.O. Box 2958, Dar Es Salaam (Tanzania, United Republic of); Herz, Andreas; Wang, Dong [TU Ilmenau, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, Chair Materials for Electrical Engineering and Electronics, 98693 Ilmenau (Germany); Schaaf, Peter, E-mail: peter.schaaf@tu-ilmenau.de [TU Ilmenau, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, Chair Materials for Electrical Engineering and Electronics, 98693 Ilmenau (Germany)

    2016-12-01

    Highlights: • Dewetting of thin gold films is faster on TiO{sub 2} than on SiO{sub 2}. • Dewetting of thin gold films is faster on amorphous TiO{sub 2} than on crystalline TiO{sub 2}. • The kinetics is attributed to the energy of adhesion. • The morphology of thin Au films deposited on TiO{sub 2} substrates is different to those deposited on SiO{sub 2} substrates. • The dewetting activation energy of Au films deposited on crystalline substrates was higher than the activation energy of Au nanofilms deposited on amorphous TiO{sub 2} substrates. - Abstract: The evolution of electron-beam evaporated Au thin films deposited on crystalline TiO{sub 2} (c-TiO{sub 2}) and amorphous TiO{sub 2} (a-TiO{sub 2}) as well as amorphous SiO{sub 2} substrates are investigated. The kinetic of dewetting is clearly dependent on the type of substrate and is faster on TiO{sub 2} substrates than on SiO{sub 2} substrates. This difference can result from the difference in adhesion energy. Furthermore, the kinetic of dewetting is faster on a-TiO{sub 2} than on c-TiO{sub 2}, possibly due to the crystallization of TiO{sub 2} during annealing induced dewetting process. The morphologies of dewetted Au films deposited on crystalline TiO{sub 2} are characterized by branched holes. The XRD patterns of the Au films deposited on TiO{sub 2} substrates constituted peaks from both metallic Au and anatase TiO{sub 2}. The activation energy of Au films deposited on crystalline TiO{sub 2} substrates was higher than that that of the films deposited on amorphous TiO{sub 2} substrates.

  5. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Huang, Yongjiang; Zhou, Binjun; Chiu, YuLung; Fan, Hongbo; Wang, Dongjun; Sun, Jianfei; Shen, Jun

    2014-01-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory

  6. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongjiang, E-mail: yjhuang@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Zhou, Binjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chiu, YuLung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Fan, Hongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Dongjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Sun, Jianfei; Shen, Jun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-09-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory.

  7. Combinatorial processing libraries for bulk BiFeO3-PbTiO3 piezoelectric ceramics

    International Nuclear Information System (INIS)

    Hu, W.; Tan, X.; Rajan, K.

    2010-01-01

    A high throughput approach for generating combinatorial libraries with varying processing conditions for bulk ceramics has been developed. This approach utilized the linear temperature gradient in a tube furnace to screen a whole temperature range for optimized preparation. With this approach, the processing of 0.98[0.6BiFeO 3 -0.4PbTiO 3 ]-0.02Pb(Mg 1/3 Nb 2/3 )O 3 ceramic powders and pellets for high-temperature piezoelectric applications was demonstrated to identify the best synthesis conditions for phase purity. The dielectric property measurement on the as-processed solid solution ceramics confirmed the high Curie temperature and the improved loss tangent with the Pb(Mg 1/3 Nb 2/3 )O 3 doping. (orig.)

  8. Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Diana Di Gioia

    2013-08-01

    Full Text Available The photocatalytic effect of TiO2 has great potential for the disinfection of surfaces. Most studies reported in the literature use UV activation of TiO2, while visible light has been used only in a few applications. In these studies, high concentrations of TiO2, which can compromise surface properties, have been used. In this work, we have developed an acrylic-water paint dispersion containing low TiO2 content (2 vol % for the inactivation of microorganisms involved in hospital-acquired infections. The nanoparticles and the coating have been characterized using spectroscopic techniques and transmission electron microscopy, showing their homogenous dispersion in the acrylic urethane coating. A common fluorescent light source was used to activate the photocatalytic activity of TiO2. The paint dispersion showed antimicrobial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The coating containing the TiO2 nanoparticles maintained good UV stability, strong adhesion to the substrate and high hardness. Therefore, the approach used is feasible for paint formulation aimed at disinfection of healthcare surfaces.

  9. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Chaudhary, Dhirendra K.; Kumar, Pankaj; Kumar, Lokendra

    2017-10-01

    We report here the impact of CH3NH3PbI3-PCBM bulk heterojunction (BHJ) active layer on the photovoltaic performance of perovskite solar cells. The solar cells were prepared in normal architecture on FTO coated glass substrates with compact TiO2 (c-TiO2) layer on FTO as electron transport layer (ETL) and poly(3-hexylthiophene) (P3HT) as hole transport layer (HTL). For comparison, a few solar cells were also prepared in planar heterojunction structure using CH3NH3PbI3 only as the active layer. The bulk heterojunction CH3NH3PbI3-PCBM active layer exhibited very large crystalline grains of 2-3 μm compared to ∼150 nm only in CH3NH3PbI3 active layer. Larger grains in bulk-heterojunction solar cells resulted in enhanced power conversion efficiency (PCE) through enhancement in all the photovoltaic parameters compared to planar heterojunction solar cells. The bulk-heterojunction solar cells exhibited ∼9.25% PCE with short circuit current density (Jsc) of ∼18.649 mA/cm2, open circuit voltage (Voc) of 0.894 V and Fill Factor (FF) of 0.554. There was ∼36.9% enhancement in the PCE of bulk-heterojunction solar cells compared to that of planar heterojunction solar cells. The larger grains are formed as a result of incorporation on PCBM in the active layer.

  10. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    Science.gov (United States)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  11. First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx

    International Nuclear Information System (INIS)

    Dridi, Z.; Bouhafs, B.; Ruterana, P.; Aourag, H.

    2002-01-01

    First-principles calculations have been used to study the effect of vacancies on the structural and electronic properties in substoichiometric TiC x and TiN x . The effect of vacancies on equilibrium volumes, bulk moduli, electronic band structures and density of states of the substoichiometric phases was studied using a full-potential linear augmented plane-wave method. A model structure of eight-atom supercells with ordered vacancies within the carbon and nitrogen sublattices is used. We find that the lattice parameters of the studied stoichiometries in both TiC x and TiN x are smaller than that of ideal stoichiometric TiC and TiN. Our results for the variation of the lattice parameters and the bulk moduli for TiC x are found to be in good agreement with experiment. The variation of the energy gaps with the atomic concentration ratio shows that these compounds present the same trends. Results for TiC x are compared to a recent full-potential calculation with relaxed 16-atom supercells

  12. Microstructural evolution and wear behaviors of laser cladding Ti{sub 2}Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    Energy Technology Data Exchange (ETDEWEB)

    Song, R.; Li, J., E-mail: jacob_lijun@sina.com; Shao, J.Z.; Bai, L.L.; Chen, J.L.; Qu, C.C.

    2015-11-15

    Graphical abstract: - Highlights: • A TiC+TiB reinforced intermetallic matrix coating was fabricated by laser cladding. • The microstructural evolution of the reinforcements was analyzed. • A formula was established in term of wear loss, sliding time and applied load. • Wear behaviors were investigated by in situ continuing tests in different time intervals. • The transformation of wear mechanism at different applied loads was revealed. - Abstract: The Ti{sub 2}Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements’ microstructure, namely TiC{sub p}+(TiB+TiC){sub e}, (TiB+TiC){sub e} and TiB{sub p}+(TiB+TiC){sub e} (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  13. Using Ag-embedded TiO{sub 2} nanotubes array as recyclable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Zhuo, Yuqing; Huang, Liang [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Mao, Duolu [School of Physical and Electronic Information Engineering, Qinghai Nationalities University, Xining, Qinghai 810007 (China)

    2016-12-01

    Highlights: • Ag embedded nanoparticles inside nanotube have better SERS enhancement than surface cap. • Ag NPs reconstruction via self-migration with UV and humidity control. • Self-cleaning effects both on organic molecule photo-oxidation as well as Ag ions photo-reduction. - Abstract: A simple strategy for synthesizing Ag-loaded TiO{sub 2} nanotube film for use as multifunctional photocatalyst and recyclable surface-enhanced Raman scattering (SERS) substrate is introduced. Highly aligned TiO{sub 2} nanotube arrays (TNTA) prepared via electrochemical anodization were used as a 3D rough host for silver nanoparticles. Ag deposits were sputtered in a vacuum, and it was found that their morphologies were mainly influenced by the diameters of nanotubes and the UV irradiation induced aging process, especially the self-migration of silver along the tubular wall. SERS and the self-cleaning effect were observed using Rhodamine 6G (R6G) as the probe molecule. The results showed that narrow nanotube and silver nanoparticles embedment contributed significantly to both the phenomenal SERS and recyclability.

  14. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    Science.gov (United States)

    Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.

    2014-09-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.

  15. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    Science.gov (United States)

    Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.

    2012-12-01

    Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  16. Nanoindentation studies on Cu-Ti-Zr-Ni-Si-Sn bulk metallic glasses

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Belger, A.; Paufler, P.; Kim, D.H.

    2007-01-01

    In the present investigation, Cu 47 Ti 33 Ni 6 Sn 2 Si 1 (numbers indicate at.%) bulk metallic glass (BMG), fabricated by injection casting has been used for indentation experiments. Microindentation and nanoindentation tests were conducted to study the indentation responses of this material. The nanohardness and the Young's modulus were calculated following the standard procedure in literature. Around the indent, shear bands can be clearly observed under scanning electron microscopy examination. Atomic-force microscopy shows the pile of the material in a step-wise manner. The thinned sample near the indent shows the evolution of nanocrystals (∼20-30 nm) by transmission electron microscopy. During nanoindentation (in single- and multi-indent mode) experiments, the load-displacement P-h curves show displacement bursts, which are also known as pop-ins or serrations. The total displacement during indentation can be accounted for by sum total effect of the individual displacement of all the displacement-bursts observed in the P-h curve. Thus the plastic deformation of this glassy material appears to proceed in a discrete manner unlike ductile metallic alloys

  17. Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate

    International Nuclear Information System (INIS)

    Hitosugi, T.; Ueda, A.; Nakao, S.; Yamada, N.; Furubayashi, Y.; Hirose, Y.; Konuma, S.; Shimada, T.; Hasegawa, T.

    2008-01-01

    We report on transparent conducting properties of anatase Ti 0.94 Nb 0.06 O 2 (TNO) polycrystalline films on glass substrate, and discuss the role of grain crystallinity and grain boundary on resistivity. Thin films of TNO were deposited using pulsed laser deposition at substrate temperature ranging from room temperature to 350 deg. C, with subsequent H 2 -annealing at 500 deg. C. Polycrystalline TNO films showed resistivity of 4.5 x 10 -4 Ω cm and 1.5 x 10 -3 Ω cm for films prepared at substrate temperature of room temperature and 250 deg. C, respectively. X-ray diffraction measurements and transmission electron microscopy reveal that grain crystallinity and grain boundary play key roles in conductive films

  18. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    Science.gov (United States)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  19. Residual stress in coated low-Z films of TiC and TiN. Pt. 2

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Kabeya, Z.; Kamada, K.

    1984-01-01

    The correlations of the residual stresses with microstructures of TiC and TiN films deposited onto various substrates were examined by means of observations of SEM micrographs, X-ray back-reflected Debye rangs and diffraction line profile of X-ray spectrometer chart. It was found that specimens with lower residual stress generally show sharp line profile and good separation between Ksub(α1) and Ksub(α2) diffraction peaks in both TiN and TiC films, indicating better crystalline perfection. PVD coated TiC films on Mo and Inconel substrates show poor separation of Ksub(α1) and Ksub(α2) peaks, namely due to higher residual stresses in comparison with those of CVD coated TiN and TiC films on Mo or Inconel substrate. In CVD TiC/Pocographite system, with film thickness ranging from 10 to 100 μm, the grain size increase with increasing the thickness, except 100 μm thick specimen which has the smallest grain size in this group. However, the sharpness of diffraction profile is best in 20 μm thick film, and worst in 100 μm thick film. This is in good correlation with the amount of residual stress. (orig.)

  20. Magneto-optical spectroscopy of diluted magnetic oxides TiO{sub 2-{delta}}: Co

    Energy Technology Data Exchange (ETDEWEB)

    Gan' shina, E.A. [Faculty of Physics, Moscow State M.V. Lomonosov University, Moscow 119991 (Russian Federation)], E-mail: Eagan@magn.ru; Granovsky, A.B. [Faculty of Physics, Moscow State M.V. Lomonosov University, Moscow 119991 (Russian Federation); Orlov, A.F. [State Research Institute for the Rare-Metal Industry, Moscow 119017 (Russian Federation); Perov, N.S.; Vashuk, M.V. [Faculty of Physics, Moscow State M.V. Lomonosov University, Moscow 119991 (Russian Federation)

    2009-04-15

    We report an experimental study on transversal Kerr effect (TKE) in magnetic oxide semiconductors TiO{sub 2-{delta}}:Co. The TiO{sub 2-{delta}}: Co thin films were deposited on LaAlO{sub 3} (0 0 1) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2x10{sup -6}-2x10{sup -4} Torr. It was obtained that TKE spectra in ferromagnetic samples are extremely sensitive to the Co-volume fraction, the crystalline structure, and technology parameters. The observed well-pronounced peaks in TKE spectra for anatase Co-doped TiO{sub 2-{delta}} films at low Co (<1%) volume fraction are not representative for bulk Co or Co clusters in TiO{sub 2-{delta}} matrix that indicates on intrinsic ferromagnetism in these samples. With increase of Co-volume fraction up to 5-8% the fine structure of TKE spectra disappears and magneto-optical response in reflection mode becomes larger than that for thick Co films.

  1. 1020 steel coated with Ti/TiN by Cathodic Arc and Ion Implantation

    International Nuclear Information System (INIS)

    Bermeo, F; Quintana, J P; Kleiman, A; Márquez, A; Sequeda, F

    2017-01-01

    TiN coatings have been widely studied in order to improve mechanical properties of steels. In this work, thin Ti/TiN films were prepared by plasma based immersion ion implantation and deposition (PBII and D) with a cathodic arc on AISI 1020 steel substrates. Substrates were exposed to the discharge during 1 min in vacuum for the deposition of a Tiunderlayer with the aim of improving the adhesion to the substrate. Then, a TiN layer was deposited during 6 min in a nitrogen environment at a pressure of 3xl0 -4 mbar. Samples were obtained at room temperature and at 300 °C, and with or without ion implantation in order to analyze differences between the effects of each treatment on the tribological properties. The mechanical and tribological properties of the films were characterized. The coatings deposited by PBII and D at 300 °C presented the highest hardness and young modulus, the best wear resistance and corrosion performance. (paper)

  2. Half-metallic magnetism in Ti3Co5-xFexB2

    Directory of Open Access Journals (Sweden)

    Rohit Pathak

    2017-05-01

    Full Text Available Bulk alloys and thin films of Fe-substituted Ti3Co5B2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti3Co5B2, Ti3Co4FeB2 and Ti3CoFe4B2, whereas Ti3Fe5B2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti3CoFe4B2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti3Co5B2 may be linked to the emerging half-metallicity due to Fe substitution.

  3. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property.

    Science.gov (United States)

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-06-08

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples.

  4. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2017-06-01

    Full Text Available Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS, water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples.

  5. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property

    Science.gov (United States)

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-01-01

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples. PMID:28772987

  6. The permeation behavior of deuterium through 1Cr18Ni9Ti stainless steel with TiN+TiC-TiN multiple films

    International Nuclear Information System (INIS)

    Xiong, Y.; Song, J.; Luo, D.; Lei, Q.; Chen, C.

    2015-01-01

    The prevention of tritium losses via permeation through structure components is an important issue in fusion technology. The production of thin layers on materials with low diffusivity and/or low surface recombination constants (so-called permeation barriers) seems to be the most practical method to reduce or hinder the permeation of tritium through materials. TiN+TiC+TiN multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel by ion-beam assisted deposition technology. The characteristics of films are tested by XPS ASEM and XRD, which shows that the film are compact and uniform with a thickness of about 15 μm, and have a good adherence with the substrate below 773 K. The diffraction peaks in the XRD patterns for TiC and TiN are broadened, implying that the multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel. Meanwhile, the C-H bonded CH 4 -appears in the infrared spectra of multiple films, suggesting that the CH 4 - is in a static state, so hydrogen atom cannot migrate from the site bonded with carbon to a neighboring site. The measured deuterium permeability in 1Cr18Ni9Ti stainless steel coated with multiple films is 2-3 orders of magnitude lower than that of pure 1Cr18Ni9Ti stainless steel substrate from 473 K to 773 K. However, this barrier is partly destroyed above 773 K

  7. Strain-dependence of the structure and ferroic properties of epitaxial Ni1−xTi1−yO3 thin films grown on sapphire substrates

    International Nuclear Information System (INIS)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO 3 (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO 3 epitaxially on sapphire Al 2 O 3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni 1−x Ti 1−y O 3 films of different Ni/Ti ratios and thicknesses were deposited on Al 2 O 3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO 3 thin films by film stoichiometry and thickness. - Highlights: • NiTiO 3 epitaxial thin films with LiNbO 3 -type structure by pulsed laser deposition. • Strain varied by film thickness, stoichiometry, and synthesis temperature. • Systematic study of the effect of strain on film structure and physical properties. • Manipulation of ferroic properties by strain confirmed

  8. Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures

    Science.gov (United States)

    Boikov, Yu. A.; Claeson, T.

    2001-05-01

    Epitaxial films of ferroelectric barium titanate are desirable in a number of applications but their properties are inferior to those of bulk material. Relations between microstructure and dielectric properties may give better understanding of limitations. Trilayer heterostructures SrRuO3/BaTiO3/SrRuO3 were grown by laser ablation on (100)LaAlO3 and (100)MgO substrates. The BaTiO3 layer was granular in structure. When grown on (100)SrRuO3/(100)LaAlO3, it was preferentially a-axis oriented due to tensile mechanical stress. Using (100)MgO as a substrate, on the other hand, produced a mixture of about equal value of a-axis and c-axis oriented grains of BaTiO3. The dielectric permittivity, ɛ, of the BaTiO3 layer was almost twice as large, at T>200 K and f=100 kHz, for the LaAlO3 substrate as compared to the MgO one. Its maximum value (ɛ/ɛ0≈6200) depended on temperature of growth, grain size, and electric field and compares well with optimal values commonly used for ceramic material. The maximum in the ɛ(T) shifted from about 370 to 320 K when the grain size in the BaTiO3 film decreased from 100 to 40 nm. At T300 K, hysteresis loops in polarization versus electric field were roughly symmetric. The BaTiO3 films grown on (100)SrRuO3/(100)MgO exhibit the largest remnant polarizations and coercive fields in the temperature range 100-380 K.

  9. Incorporation of La in epitaxial SrTiO{sub 3} thin films grown by atomic layer deposition on SrTiO{sub 3}-buffered Si (001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Martin D.; Ngo, Thong Q.; Ekerdt, John G., E-mail: ekerdt@utexas.edu [University of Texas at Austin, Department of Chemical Engineering, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [University of Texas at Austin, Department of Physics, Austin, Texas 78712 (United States); Karako, Christine M. [University of Dallas, Department of Chemistry, Irving, Texas 75062 (United States); Bruley, John; Frank, Martin M.; Narayanan, Vijay [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-06-14

    Strontium titanate, SrTiO{sub 3} (STO), thin films incorporated with lanthanum are grown on Si (001) substrates at a thickness range of 5–25 nm. Atomic layer deposition (ALD) is used to grow the La{sub x}Sr{sub 1−x}TiO{sub 3} (La:STO) films after buffering the Si (001) substrate with four-unit-cells of STO deposited by molecular beam epitaxy. The crystalline structure and orientation of the La:STO films are confirmed via reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional transmission electron microscopy. The low temperature ALD growth (∼225 °C) and post-deposition annealing at 550 °C for 5 min maintains an abrupt interface between Si (001) and the crystalline oxide. Higher annealing temperatures (650 °C) show more complete La activation with film resistivities of ∼2.0 × 10{sup −2} Ω cm for 20-nm-thick La:STO (x ∼ 0.15); however, the STO-Si interface is slightly degraded due to the increased annealing temperature. To demonstrate the selective incorporation of lanthanum by ALD, a layered heterostructure is grown with an undoped STO layer sandwiched between two conductive La:STO layers. Based on this work, an epitaxial oxide stack centered on La:STO and BaTiO{sub 3} integrated with Si is envisioned as a material candidate for a ferroelectric field-effect transistor.

  10. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    Energy Technology Data Exchange (ETDEWEB)

    Ochonogor, O.F. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Meacock, C. [Council for Scientific and Industrial Research, National Laser Centre, Pretoria (South Africa); Abdulwahab, M. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Pityana, S. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Council for Scientific and Industrial Research, National Laser Centre, Pretoria (South Africa); Popoola, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The wear resistance of the laser clad surfaces was enhanced significantly with fifteen-folds wear rate reduction. Black-Right-Pointing-Pointer Micro-hardness of the clad zones indicated a significant improvement of over two-folds greater than the substrate. Black-Right-Pointing-Pointer Microstructures showed fine crystal grains distribution of ceramic particles that formed interstitial carbides in the titanium matrix composites. - Abstract: Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV{sub 0.1}for the substrate reaching a peak as high as 922.2 HV{sub 0.1} for 60%Ti + 40%TiC and the least 665.3 HV{sub 0.1} for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  11. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  12. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Paterson, P.J.K.

    1993-01-01

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs

  13. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  14. Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.6

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Hartley, J.; Howell, R.; Sterne, P. A.; Nieh, T. G.

    2000-01-01

    We provide direct experimental evidence for a nonrandom distribution of atomic constituents in Zr 52.5 Ti 5 Al 10 Cu 17.9 Ni 14.6 bulk metallic glass using positron annihilation spectroscopy. The Ti content around the open-volume regions is significantly enhanced at the expense of Ni and Cu. Our results indicate that Ni and Cu atoms closely occupy the volume bounded by their neighboring atoms while Al, Ti, and Zr are less closely packed, and more likely to be associated with the open-volume regions. The overall distribution of elements seen by the positron is not significantly altered by annealing or by crystallization. Theoretical calculations indicate that the observed elemental distribution is not consistent with the known crystalline phases Zr 2 Cu and NiZr 2 , while Al 3 Zr 4 shows some of the characteristics seen in the experiment. (c) 2000 American Institute of Physics

  15. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C 2 H 2 PIII is composed of mainly TiC x with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti 4+ , Ti 3+ and Ti 2+

  16. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer

    International Nuclear Information System (INIS)

    Ma, W. J.; Zhang, X. Y.; Wang, Ying; Zheng, Yue; Lin, S. P.; Luo, J. M.; Wang, B.; Li, Z. X.

    2013-01-01

    Nanoscale multilayer structure TiO 2 /BaTiO 3 /TiO 2 has been fabricated on Pt/Ti/SiO 2 /Si substrate by chemical solution deposition method. Highly uniform bipolar resistive switching (BRS) characteristics have been observed in Pt/TiO 2 /BaTiO 3 /TiO 2 /Pt cells. Analysis of the current-voltage relationship demonstrates that the space-charge-limited current conduction controlled by the localized oxygen vacancies should be important to the resistive switching behavior. X-ray photoelectron spectroscopy results indicated that oxygen vacancies in TiO 2 play a crucial role in the resistive switching phenomenon and the introduced TiO 2 /BaTiO 3 interfaces result in the high uniformity of bipolar resistive switching characteristics

  17. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3.

    Science.gov (United States)

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO 3 and iron doped SrTiO 3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO 3 and compared it to DOS of iron-doped SrTiO 3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO 3 and iron-doped SrTiO 3 . Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO 3 , are accessible only on TiO 2 terminated SrTiO 3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction.

  18. Characterization of laser deposited Ti6Al4V/TiC composite powders on a Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Mahamood, RM

    2014-01-01

    Full Text Available This paper reports the material characterization of Ti6Al4V/TiC composite produced by laser metal deposition. The Ti6Al4V/TiC composites were deposited with a composition ratio of 50 wt.% Ti64l4V and 50 wt.% TiC. The depositions were achieved...

  19. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Chopra, A.; Bijkerk, Frederik; Rijnders, Augustinus J.H.M.

    2014-01-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In

  20. RBS study of Ti/ZnO interface

    International Nuclear Information System (INIS)

    Rahman, A.M.A.; Narusawa, T.

    2008-01-01

    We have studied the interface stability of the Ti(overlayer)/ZnO(substrate) system. Ti thin film was grown on the Zn face of single crystal ZnO(0 0 0 1) substrate by the vacuum deposition technique. The Ti film thickness was typically 16 nm. Then the samples were annealed in air at 300 and 400 deg. C for 15 min, respectively. The deposition and annealing effects on the interface structure were investigated with Rutherford backscattering and channeling spectroscopy using 2 MeV He + ion beam. After Ti deposition the minimum yield from the ZnO substrate increased from 2% to 7%. This suggests severe damage caused by deposition, i.e. the interface reaction between Ti and ZnO (even at room temperature). A significant amount of Zn (approximately 6.4 x 10 16 atoms/cm 2 ) moved onto the surface after post-annealing at 400 deg. C. Since Ti has a stronger tendency to react with O than Zn, it is expected that Ti reacts with substrate oxygen leaving behind free Zn atoms, which can easily migrate onto the surface. We discuss how the Ti/ZnO interface reaction in detail, and seek to find another good metallic contact for ZnO devices, which are attracting much attention recently for practical applications as well as scientific aspects

  1. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  2. Piezoelectric characterization of Pb(Zr,Ti)O3 thin films deposited on metal foil substrates by dip coating

    Science.gov (United States)

    Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku

    2017-10-01

    We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.

  3. Surface desorption and bulk diffusion models of tritium release from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)

    2010-10-30

    The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.

  4. AlTiN layer effect on mechanical properties of Ti-doped diamond-like carbon composite coatings

    International Nuclear Information System (INIS)

    Pang Xiaolu; Yang Huisheng; Gao Kewei; Wang Yanbin; Volinsky, Alex A.

    2011-01-01

    Ti/Ti-doped diamond-like carbon (DLC) and Ti/AlTiN/Ti-DLC composite coatings were deposited by magnetron sputtering on W18Cr4V high speed steel substrates. The effect of the AlTiN support layer on the properties of these composite coatings was investigated through microstructure and mechanical properties characterization, including hardness, elastic modulus, coefficient of friction and wear properties measured by scanning electron microscopy, Raman spectroscopy, scratch and ball-on-disk friction tests. Ti and AlTiN interlayers have a columnar structure with 50-80 nm grains. The hardness and elastic modulus of Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings is 25.9 ± 0.4, 222.2 ± 6.3 GPa and 19.3 ± 1, 205.6 ± 6.7 GPa, respectively. Adhesion of Ti-DLC, Ti/AlTiN/Ti-DLC and AlTiN/Ti-DLC coatings expressed as the critical lateral force is 26.5 N, 38.2 N, and 47.8 N, respectively. Substrate coefficient of friction without coatings is 0.44, and it is 0.1 for Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings. Wear resistance of Ti/AlTiN/Ti-DLC composite coatings is much higher than Ti/Ti-DLC coatings based on the wear track width of 169.8 and 73.2 μm, respectively, for the same experimental conditions.

  5. Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, Baran, E-mail: b.sarac@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Bera, Supriya [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Balakin, Sascha [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); ETH Zurich, Department of Materials, Metal physics und Technology, Vladimir-Prelog-Weg 4, HCI J 492, 8093 Zürich (Switzerland); Stoica, Mihai [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Politehnica University of Timisoara, P-ta Victoriei 2, RO-300006 Timisoara (Romania); Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277, Dresden (Germany); Calin, Mariana, E-mail: m.calin@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, A-8700 Leoben (Austria)

    2017-04-01

    In order to establish a strong cell-material interaction, the surface topography of the implant material plays an important role. This contribution aims to analyze the formation kinetics of nickel and beryllium-free Ti- and Zr-based Bulk Metallic Glasses (BMGs) with potential biomedical applications. The surface patterning of the BMGs is achieved by thermoplastic net-shaping (TPN) into anisotropically etched cavities of silicon chips. The forming kinetics of the BMG alloys is assessed by thermal and mechanical measurements to determine the most suitable processing temperature and time, and load applied. Array of pyramidal micropatterns with a tip resolution down to 50 nm is achievable for the Zr-BMG, where the generated hierarchical features are crucial for surface functionalization, acting as topographic cues for cell attachment. The unique processability and intrinsic properties of this new class of amorphous alloys make them competitive with the conventional biomaterials. - Highlights: • Micro to nano-scale hierarchical surface patterns achieved by TPN of BMGs • Ni- and Be-free Zr-/Ti-BMGs with different GFA compared in terms of flow kinetics • Correlation between filling depths of Zr- and Ti-BMGs best described by formability • Multi-scale hierarchical patterning envisaged to facilitate BMG-cell interaction.

  6. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R.; Comes, Ryan B.; Ramuhalli, Pradeep; Henager, Charles H.

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-ray diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.

  7. Ti, Al

    Indian Academy of Sciences (India)

    In the present study, authors report on the effect that substrate bias voltage has on the microstructure and mechanical properties of (Ti, Al)N hard coatings deposited with cathodic arc evaporation (CAE) technique. The coatings were deposited from a Ti0.5Al0.5 powder metallurgical target in a reactive nitrogen atmosphere at ...

  8. Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films

    Science.gov (United States)

    Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi

    2018-03-01

    Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.

  9. Channelling study of La{sub 1−x}Sr{sub x}CoO{sub 3} films on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Szilágyi, E., E-mail: szilagyi.edit@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, P.O.Box 49, H-1525 Budapest (Hungary); Kótai, E. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, P.O.Box 49, H-1525 Budapest (Hungary); Rata, D. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Németh, Z.; Vankó, G. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, P.O.Box 49, H-1525 Budapest (Hungary)

    2014-08-01

    The cobalt oxide system LaCoO{sub 3} and its Sr-doped child compounds have been intensively studied for decades due to their intriguing magnetic and electronic properties. Preparing thin La{sub 1−x}Sr{sub x}CoO{sub 3} (LSCO) films on different substrates allows for studies with a new type of perturbation, as the films are subject to substrate-dependent epitaxial strain. By choosing a proper substrate for a thin film grow, not only compressing but also tensile strain can be applied. The consequences for the fundamental physical properties are dramatic: while compressed films are metallic, as the bulk material, films under tensile strain become insulating. The goal of this work is to determine the strain tensor in LSCO films prepared on LaAlO{sub 3} and SrTiO{sub 3} substrates by pulsed laser deposition using RBS/channelling methods. Apart from the composition and defect structure of the samples, the depth dependence of the strain tensor, the cell parameters, and the volume of the unit cell are also determined. Asymmetric behaviour of the strained cell parameters is found on both substrates. This asymmetry is rather weak in the case of LSCO film grown on LaAlO{sub 3}, while stronger on SrTiO{sub 3} substrate. The strain is more effective at the interface, some relaxation can be observed near to the surface.

  10. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  11. MICROSTRUCTURE AND WEAR RESISTANCE OF COMPOSITE COATING BY LASER CLADDING Al/TiN ON THE Ti–6Al–4V SUBSTRATE

    OpenAIRE

    H. X. ZHANG; H. J. YU; C. Z. CHEN

    2015-01-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti–6Al–4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there...

  12. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    Science.gov (United States)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  13. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  14. Application of TiN/TiO2 coatings on stainless steel: composition and mechanical reliability

    Science.gov (United States)

    Nikolova, M. P.; Genov, A.; Valkov, S.; Yankov, E.; Dechev, D.; Ivanov, N.; Bezdushnyi, R.; Petrov, P.

    2018-03-01

    The paper reports on the effect of the substrate temperature (350 °C, 380 °C and 420 °C) during reactive magnetron sputtering of a TiN film on the phase composition, texture and mechanical properties of TiN/TiO2 coatings on 304L stainless steel substrates. Pure Ti was used as a cathode source of Ti. The texture and unit cell parameters of both TiN and TiO2 phases of the coating are discussed in relation with the tribological properties and adhesion of the coating. The scratch tests performed showed that the nitride deposited at 380 °C, having the highest unit cell parameter and a predominant (111) texture, possessed the lowest friction coefficient (μ), tangential force and brittleness. The anatase-type TiO2 with predominant (101) pole density and increased c unit cell parameter showed the highest stability on the nitride deposited at 420 °C. The results indicated that the friction coefficient, tangential force and critical forces of fracture could be varied by controlling the coating deposition temperature.

  15. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  16. The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application

    Directory of Open Access Journals (Sweden)

    Pham Van Viet

    2016-04-01

    Full Text Available In this research, we directly synthesized TiO2 nanotubes film on Fluorine doped Tin oxide (FTO substrate via hydrothermal method from commercial TiO2 in NaOH solution at 135 ℃ for 24 hours. The samples were characterized by X-ray diffraction (XRD pattern, field emission scanning electron microscopy (FESEM and transmitting electron microscopy (TEM. The average diameter of TiO2 nanotubes (TNTs is about 10–12 nm and their length is about a few hundred nanometers. The sensitivity ability of TNTs increases as the gas concentration increases and developing to the highest sensitivity of TNTs is 2.4 at 700 ppm of the ethanol concentration. The same as the gas concentration, the sensitivity of TNTs increases when the temperature increases. Besides, the sensitivity of samples at 250 ℃ is doubled compared to samples determined at 100 ℃.

  17. Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding

    Science.gov (United States)

    Lin, Yinghua; Lei, Yongping; Fu, Hanguang; Lin, Jian

    2015-10-01

    Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.

  18. Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications

    Science.gov (United States)

    Bait, L.; Azzouz, L.; Madaoui, N.; Saoula, N.

    2017-02-01

    The aim of this paper is to investigate the effect of the substrate bias, varied from 0 to -100 V, on the structure and properties of the TiO2 thin films for biomaterials applications. The TiO2 films were grown onto 304L stainless steel substrate using radio-frequency (rf) magnetron sputtering from a pure titanium target in Ar-O2 gas mixture. The variation of substrate bias voltage from 0 to -100 V produces variations of structure and mechanical properties of the films. The deposited films were characterized by X-rays diffraction, nanoindentation and potentiodynamic polarization. Also, the friction and wear properties of TiO2 films sliding against alumina ball in air were investigated. Experimental results showed that the thickness increases for non-biased substrate voltage to Vs = -100 V from 820 nm to 1936 nm respectively. The roughness is in the range of 50 nm and 14 nm. XRD results show that all structures of the films are crystalline and changed with varying the bias voltage. The anatase phase is predominant in the low negative bias range (0-50 V). The hardness significantly increased from 2.2 to 6.4 GPa when the bias voltage was increased from 0 to 75 V and then slightly decrease to 5.1 GPa as further increased to 100 V. At the same time, the results indicate that TiO2 films deposited at -100 V exhibited better wear resistance compared to the other samples, i.e. the minimum wear rates and the lower coefficient of friction of 0.16. In order to simulate natural biological conditions, physiological serum (pH = 6.3), thermostatically controlled at 37 °C, was used as the electrolyte for the study of the electrochemical properties. Comparison between the corrosion resistance of the uncoated and coated samples showed a reduction in corrosion current density for coated samples compared to the uncoated one. The best corrosion current density of the film deposited at -75 V was 5.9 nA/cm2, which is about 11 times less than that of the uncoated steel 68.3 nA/cm2). The

  19. Tuning structure in epitaxial Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} thin films by using miscut substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mietschke, M., E-mail: m.mietschke@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Oswald, S.; Fähler, S. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schultz, L. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Hühne, R. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2015-08-31

    Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (PMN–PT) is one of the most promising ferroelectric material for actuator, dielectric and electrocaloric applications. However, oriented and phase pure thin films are essential to use the outstanding properties of these compounds. In this work it is demonstrated that the use of miscut substrates influences the growth mechanism leading to a significantly broader deposition window to achieve the required film quality. Therefore, epitaxial 0.68Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.32PbTiO{sub 3} films were grown by pulsed laser deposition on (001)-oriented single crystalline SrTiO{sub 3} (STO) substrates with a miscut angle between 0 and 15° towards the [100] direction using a conducting La{sub 0.7}Sr{sub 0.3}CoO{sub 3} buffer layer. The influence of the vicinal angle on the PMN–PT structure was studied by high resolution X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. A nearly pure perovskite phase growth with a cube-on-cube epitaxial relationship was obtained on all miscut STO substrates, whereas a significant volume fraction of the pyrochlore phase was present on the standard substrate. Reciprocal space measurements revealed a peak split of the perovskite reflections indicating structural variants of PMN–PT with different c/a ratios. An additional tilting of the PMN–PT planes with respect to the buffer layer was observed on some samples, which might be explained with the incorporation of dislocations according to the Nagai model. Polarization loops were measured in a temperature range between room temperature and 150 °C showing a sharp drop of the remanent polarization above 65 °C on vicinal substrates. - Highlights: • Epitaxial growth of pure perovskite Pb (Mg{sub 1}/{sub 3}Nb{sub 2}/{sub 3})O{sub 3}–PbTiO{sub 3} on miscut SrTiO{sub 3}. • Significant broadening of the deposition window for pyrochlore-free films. • Dependence of the structural parameters

  20. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  1. Enhanced Optical and Electrical Properties of TiO_2 Buffered IGZO/TiO_2 Bi-Layered Films

    International Nuclear Information System (INIS)

    Moon, Hyun-Joo; Kim, Daeil

    2016-01-01

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO_2-deposited glass substrate to determine the effect of the thickness of a thin TiO_2 buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO_2 buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO_2 buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO_2 bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO_2 bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  2. Facile Synthesis of Photofunctional Nanolayer Coatings on Titanium Substrates

    Directory of Open Access Journals (Sweden)

    Kyong-Hoon Choi

    2016-01-01

    Full Text Available We developed a two-step chemical bonding process using photosensitizer molecules to fabricate photofunctional nanolayer coatings on hematoporphyrin- (HP- coated Ti substrates. In the first step, 3-aminopropyltriethoxysilane was covalently functionalized onto the surface of the Ti substrates to provide heterogeneous sites for immobilizing the HP molecules. Then, HP molecules with carboxyl groups were chemically attached to the amine-terminated nanolayer coatings via a carbodiimide coupling reaction. The microstructure and elemental and phase composition of the HP-coated Ti substrates were investigated using field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The photophysical properties of the photofunctional nanolayer coatings were confirmed using reflectance ultraviolet-visible absorption and emission spectrophotometry. The singlet oxygen generation efficiency of the photofunctional nanolayer coatings was determined using the decomposition reaction of 1,3-diphenylisobenzofuran. The HP-coated Ti substrates exhibited good biocompatibility without any cytotoxicity, and these nanolayer coatings generated singlet oxygen, which can kill microorganisms using only visible light.

  3. Air stability and magnetic properties of GdN, TiN, and (Gd,Ti)N nanoparticles

    International Nuclear Information System (INIS)

    Si Pingzhan; Choi, C. J.; Tegus, O.; Brueck, E.; Geng, D. Y.; Zhang, Z. D.

    2008-01-01

    GdN, TiN, and (Gd,Ti)N nanoparticles were prepared by arc evaporating Gd, Ti, and Gd-Ti alloys in N 2 , respectively. Most of these nanoparticles show narrow size distribution with average diameter of 20 nm. Shell/core structure was observed in the (Gd,Ti)N nanoparticles, in which the shell was formed by surface reaction with air. (Gd,Ti)N nanoparticles are more stable than GdN nanoparticles in air due partially to the formation of the protective shell. The Curie temperature of GdN nanoparticles is lower than that of the bulk GdN. Both GdN and (Gd, Ti)N nanoparticles are difficult to reach magnetic saturation and show zero coercivity

  4. Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu system

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang, Q.S.; Zhang, W.; Yubuta, K.; Son, K.S.; Wang, X.M.

    2009-01-01

    Bulk glassy alloy rods with a diameter of 20 mm were produced for Zr 61 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 17.5 and Zr 60 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 18.5 by a tilt casting method. The replacement of Zr by a small amount of Ti and Nb caused a distinct increase in the maximum diameter from 16 mm for Zr 65 Al 7.5 Ni 10 Cu 17.5 to 20 mm, accompanying the decrease in liquidus temperature and the increase in reduced glass transition temperature. The primary precipitation phase from supercooled liquid also shows a distinct change, i.e., from coexistent Zr 2 Cu, Zr 2 Ni and Zr 6 NiAl 2 phases for the 65%Zr alloy to an icosahedral phase for the 61%Zr and 60%Zr alloys. These results allow us to presume that the enhancement of the glass-forming ability is due to an increase in the stability of supercooled liquid against crystallization caused by the development of icosahedral short-range ordered atomic configurations. The 60%Zr specimens taken from the central and near-surface regions in the transverse cross section at the site which is 15 mm away from the bottom surface of the cast glassy rod with a diameter of 20 mm exhibit good mechanical properties under a compressive deformation mode, i.e., Young's modulus of 81 GPa, large elastic strain of 0.02, high yield strength of 1610 MPa and distinct plastic strain of 0.012. Besides, a number of shear bands are observed along the maximum shear stress plane on the peripheral surface near the final fracture site. The finding of producing the large scale Zr-based bulk glassy alloys exhibiting reliable mechanical properties is encouraging for future advancement of bulk glassy alloys as a new type of functional material. (author)

  5. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  6. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  7. Characterization and tribocorrosion behavior of sputtered NiTi coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, XiaoMin; Gao, Lizhen [Taiyuan University of Technology (China). College of Environmental Science and Engineering; Wang, Hefeng [Taiyuan University of Technology (China). College of Mechanics; Liu, Erqiang [Taiyuan University of Technology (China). Inst. of Applied Mechanics and Biomedical Engineering

    2016-02-15

    In this study, NiTi coatings were deposited onto AISI 316L stainless steel substrates by closed field unbalanced magnetron sputtering. The microstructure and properties of the coatings were characterized by means of X-ray diffraction, scanning electron microscopy, and nano-indentation. The tribocorrosion resistance and corrosion behavior of the stainless steel substrates and NiTi coatings were investigated in Hanks' solution. The experimental results indicated the NiTi coatings show higher corrosion polarization resistance and a more stable corrosion potential in the Hanks' solution than the uncoated stainless steel substrate. The NiTi coatings also exhibited excellent wear resistance and chemical stability in sliding tests with an Si{sub 3}N{sub 4} ball in the Hanks' solution. The tested samples showed different wear mechanisms in the sliding tests. Compared to the SS substrates, the NiTi coatings were more compatible with the Si{sub 3}N{sub 4} ball.

  8. Effect of nano-CeO2 on microstructure properties of TiC/TiN+nTi(CN) reinforced composite coating

    International Nuclear Information System (INIS)

    Jianing, Li; Chuanzhong, Chen; Cuifang, Zhang

    2012-01-01

    TiC/TiN+TiCN reinforced composite coatings were fabricated on Ti-6Al-4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO 2 was able to suppress crystallization and growth of the crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO 2 , this coating exhibited fine microstructure. In this study, the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coatings were studied by means of X-ray diffraction and scanning electron microscope. The X-ray diffraction results indicated that the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coating consisted of Ti 3 Al, TiC, TiN, Ti 2 Al 20 Ce, TiC 0.3 N 0.7 , Ce(CN) 3 and CeO 2 , this phase constituent was beneficial to increase the microhardness and wear resistance of Ti-6Al-6V alloy. (author)

  9. Water on Graphene-Coated TiO2: Role of Atomic Vacancies

    Science.gov (United States)

    2018-01-01

    Beyond two-dimensional (2D) materials, interfaces between 2D materials and underlying supports or 2D-coated metal or metal oxide nanoparticles exhibit excellent properties and promising applications. The hybrid interface between graphene and anatase TiO2 shows great importance in photocatalytic, catalytic, and nanomedical applications due to the excellent and complementary properties of the two materials. Water, as a ubiquitous and essential element in practical conditions and in the human body, plays a significant role in the applications of graphene/TiO2 composites for both electronic devices and nanomedicine. Carbon vacancies, as common defects in chemically prepared graphene, also need to be considered for the application of graphene-based materials. Therefore, the behavior of water on top and at the interface of defective graphene on anatase TiO2 surface was systematically investigated by dispersion-corrected hybrid density functional calculations. The presence of the substrate only slightly enhances the on-top adsorption and reduces the on-top dissociation of water on defective graphene. However, at the interface, dissociated water is largely preferred compared with undissociated water on bare TiO2 surface, showing a prominent cover effect. Reduced TiO2 may further induce oxygen diffusion into the bulk. Our results are helpful to understand how the presence of water in the surrounding environment affects structural and electronic properties of the graphene/TiO2 interface and thus its application in photocatalysis, electronic devices, and nanomedicine. PMID:29368503

  10. Diffusion and adhesion properties of Cu films on polyimide substrates

    International Nuclear Information System (INIS)

    Liang, T.X.; Liu, Y.Q.; Fu, Z.Q.; Luo, T.Y.; Zhang, K.Y.

    2005-01-01

    Copper thin films were prepared on polyimide (PI) substrates by physical vapor deposition (PVD) and chemical vapor deposition (CVD). Titanium nitride (TiN) diffusion barrier layers were deposited between the copper films and the PI substrates by PVD. Auger electron spectroscopy compositional depth profile showed that TiN barrier layer was very effective in preventing copper diffusion into PI substrate even after the Cu/TiN/PI samples were annealed at 300 deg. C for 5 h. For the as-deposited CVD-Cu/PI, CVD-Cu/TiN/PI, and as-deposited PVD-Cu/PI samples, the residual stress in Cu films was very small. Relatively larger residual stress existed in Cu films for PVD-Cu/TiN/PI samples. For PVD-Cu/TiN/PI samples, annealing can increase the peeling strength to the level observed without a diffusion barrier. The adhesion improvement of Cu films by annealing treatment can be attributed to lowering of the residual tensile stress in Cu films

  11. Deposition of Au/TiO2 film by pulsed laser

    International Nuclear Information System (INIS)

    Zhao Chongjun; Zhao Quanzhong; Zhao Qitao; Qiu Jianrong; Zhu Congshan

    2006-01-01

    Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl 4 solution containing TiO 2 colloid and accompanied by the TiO 2 particles, were deposited on the substrate surface. The film consisting of Au/TiO 2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO 2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO 2 film was also discussed

  12. Effect of substrate temperature in the structural, optical and ferroelectric properties of thin films of BaTiO{sub 3} deposited by RF sputtering; Efecto de la temperatura de substrato en las propiedades estructurales, opticas y ferroelectricas de peliculas delgadas de BaTiO{sub 3} depositadas por RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Marquez H, A. [Universidad Autonoma de San Luis Potosi, Coordinacion Academica Region Altiplano, Carretera a Cedral Km. 5 -600, Matehuala, 78800 San Luis Potosi (Mexico); Hernandez R, E.; Zapata T, M. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Calz. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Calzadilla A, O. [Universidad de la Habana, Facultad de Fisica-IMRE, San Lazaro y L. Municipio Plaza de la Revolucion, La Habana (Cuba); Melendez L, M. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14-740, 07000 Mexico D. F. (Mexico)

    2012-07-01

    Thin films of Barium Titanate (BaTiO{sub 3}) were grown on nichrome and quartz substrates, using a BaTiO{sub 3} target, by RF sputtering technique. We varied the substrate temperature in order to study its effect on the structural, optical and ferroelectric properties of the samples. The results of the X-ray diffraction showed tetragonal structure with increases of the crystallinity as increases the substrate temperature. Furthermore, it observed by ultraviolet-visible spectroscopy that the band gap decreased as the substrate temperature increases showing abrupt sharp decrease at 494.8{sup o} C. The ferroelectric properties of the films showed a dependence with substrate temperature, the best ferroelectric answer was obtained at 494.8{sup o} C. (Author)

  13. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Science.gov (United States)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  14. Interfacial Characteristics of TiN Coatings on SUS304 and Silicon Wafer Substrates with Pulsed Laser Thermal Shock

    International Nuclear Information System (INIS)

    Seo, Nokun; Jeon, Seol; Choi, Youngkue; Shin, Hyun-Gyoo; Lee, Heesoo; Jeon, Min-Seok

    2014-01-01

    TiN coatings prepared on different substrates that had different coefficients of thermal expansion were subjected to pulsed laser thermal shock and observed by using FIB milling to compare the deterioration behaviors. TiN coating on SUS304, which had a larger CTE (⁓17.3 × 10 - 6 /℃) than the coating was degraded with pores and cracks on the surface and showed significant spalling of the coating layer over a certain laser pulses. TiN coating on silicon wafer with a smaller CTE value, ⁓4.2 × 10‒6 /℃, than the coating exhibited less degradation of the coating layer at the same ablation condition. Cracks propagated at the interface were observed in the coating on the silicon wafer, which induced a compressive stress to the coating. The coating on the SUS304 showed less interface cracks while the tensile stress was applied to the coating. Delamination of the coating layer related to the intercolumnar cracks at the interface was observed in both coatings through bright-field TEM analysis.

  15. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  16. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Qiaoqiao Zhuang

    2017-10-01

    Full Text Available The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy and EDS (energy dispersive spectrometer. It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  17. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: kazuhide.ozeki.365@vc.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Aoki, H. [International Apatite Institute Co., Ltd., 2-12-9, Misaki-cho, Chiyoda-ku, Tokyo 101-0061 (Japan)

    2017-03-01

    Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. A thin titanium (Ti) intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film to the PEEK substrate. The coated films were recrystallized using a hydrothermal treatment to reduce the dissolution of the HA film. The films were then characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and a UV-Vis spectrophotometer. A pull-out test was performed to measure the film-to-substrate adhesion strength, and an immersion test was performed in ultra-pure water. In the XRD patterns of the sputtered film with the Ti intermediate layer on the PEEK substrate, small HA peaks and large Ti peaks were observed. After the hydrothermal treatment, the intensity of the HA peaks increased. The transmittance of the HA films with 5 and 10 nm Ti intermediate layers was > 79% and 68%, respectively, in the visible light wavelength region (400–700 nm) after the hydrothermal treatment. The adhesion strength of the hydrothermally treated HA films increased with decreasing thickness of the Ti intermediate layer, and the strength reached 2.7 MPa with the 5-nm-thick Ti intermediate layer. In the immersion test, the HA film with a 5-nm-thick Ti intermediate layer without hydrothermal treatment exhibited a released Ti concentration of 42.0 ± 2.4 ppb. After hydrothermal treatment, the released Ti concentration decreased to 17.3 ± 1.1 ppb. - Highlights: • Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. • A thin Ti intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film. • The adhesion strength of the HA films with the Ti intermediate layer increased with decreasing thickness of the Ti layer.

  18. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique

    International Nuclear Information System (INIS)

    Ozeki, K.; Masuzawa, T.; Aoki, H.

    2017-01-01

    Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. A thin titanium (Ti) intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film to the PEEK substrate. The coated films were recrystallized using a hydrothermal treatment to reduce the dissolution of the HA film. The films were then characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and a UV-Vis spectrophotometer. A pull-out test was performed to measure the film-to-substrate adhesion strength, and an immersion test was performed in ultra-pure water. In the XRD patterns of the sputtered film with the Ti intermediate layer on the PEEK substrate, small HA peaks and large Ti peaks were observed. After the hydrothermal treatment, the intensity of the HA peaks increased. The transmittance of the HA films with 5 and 10 nm Ti intermediate layers was > 79% and 68%, respectively, in the visible light wavelength region (400–700 nm) after the hydrothermal treatment. The adhesion strength of the hydrothermally treated HA films increased with decreasing thickness of the Ti intermediate layer, and the strength reached 2.7 MPa with the 5-nm-thick Ti intermediate layer. In the immersion test, the HA film with a 5-nm-thick Ti intermediate layer without hydrothermal treatment exhibited a released Ti concentration of 42.0 ± 2.4 ppb. After hydrothermal treatment, the released Ti concentration decreased to 17.3 ± 1.1 ppb. - Highlights: • Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. • A thin Ti intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film. • The adhesion strength of the HA films with the Ti intermediate layer increased with decreasing thickness of the Ti layer.

  19. Effect Of Ti Powder Addition On The Fabrication Of TiO2 Nanopowders

    Directory of Open Access Journals (Sweden)

    Raihanuzzaman R.M.

    2015-06-01

    Full Text Available Sintered samples of Ti added TiO2 nanopowders were fabricated by combined application of magnetic pulsed compaction (MPC and sintering. The effect of Ti nano powder on density, shrinkage and hardness of the samples were investigated as part of the study. The optimum processing conditions were found to be around 0.5 GPa MPC pressure and 1450°C sintering temperature, illustrating maximum density, hardness and minimum shrinkage. High pressure compaction using MPC was found to enhance density with increasing MPC pressure up to 0.9 GPa, and significantly reduce the total shrinkage (about 16% in this case in the sintered bulks compared to other general processes (about 18%. While sintered samples blended with micro Ti showed presence of microstructural cracks, the samples with 1-2% nano Ti had less or no cracks on them. Overall, the inclusion of nano Ti indicated improvement in mechanical properties of TiO2 nanopowders sintered preforms as opposed to micro Ti-added TiO2.

  20. Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.

    2006-01-01

    Bulk Cu60Zr20Ti20 metallic glass has been rolled at room temperature (RT) and cryogenic temperature (CIF) up to 97% in thickness reduction, and the dependences of microstructure on the strain and temperature have been investigated. It is revealed that as the deformation proceeds below a critical...... thickness reduction, which is 87% at RT and 89% at CT, only the shear band density and the free-volume content increase, whereas the thermal stability of the deformed glass remains unchanged. Deformation above the critical thickness reduction results in phase separation plus nanocrystallization at RT...

  1. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  2. Orthorhombic strontium titanate in BaTiO sub 3 -SrTiO sub 3 superlattices

    CERN Document Server

    Rios, S; Jiang, A Q; Scott, J F; Lü, H; Chen, Z

    2003-01-01

    It has been suggested by several authors that SrTiO sub 3 layers in SrTiO sub 3 -BaTiO sub 3 superlattices should be tetragonal and ferroelectric at ambient temperatures, like the BaTiO sub 3 layers, rather than cubic, as in bulk SrTiO sub 3 , and that free-energy minimization requires continuity of the polarization direction. A recent ab initio calculation constrained solutions to this structure. Surprisingly, our x-ray study shows that the SrTiO sub 3 layers are orthorhombic with 0.03% in-plane strain, with the BaTiO sub 3 c-axis matching the SrTiO sub 3 a- and b-axis better than the c-axis; strain energy overcomes the cost in electrostatic energy. (letter to the editor)

  3. Direct quantification of TiO{sub 2} nanoparticles in suspension by grazing-incidence X-ray fluorescence spectrometry: Influence of substrate pre-treatment in the deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Motellier, S., E-mail: Sylvie.motellier@cea.fr [Commissariat à l' Energie Atomique et aux Energies alternatives, DRT/LITEN/DTNM/LCSN, 17 rue des martyrs, F-38054 GRENOBLE CEDEX (France); Derrough, S.; Locatelli, D. [Commissariat à l’Energie Atomique et aux Energies alternatives, DRT/NanoSafety Plateform, 17 rue des martyrs, F-38054 GRENOBLE CEDEX (France); Amdaoud, M.; Lhaute, K. [Commissariat à l' Energie Atomique et aux Energies alternatives, DRT/LITEN/DTNM/LCSN, 17 rue des martyrs, F-38054 GRENOBLE CEDEX (France)

    2013-10-01

    X-ray fluorescence at grazing incidence (GIXRF) was investigated as a method for the quantification of TiO{sub 2} nanoparticles in aqueous suspensions. One of the major advantages of this technique is the possibility to analyze the particles without pre-treatment, like harsh acid digestion, as required by most other conventional methods. However, reliable quantitative measurements require a number of precautions. Particularly, the deposition process of the sample on the flat reflecting substrate must maintain homogeneity in composition and concentration over the entire surface of the deposition residue once dried. Scanning electron microscopy showed that using an adhesive coating of the substrate significantly improves the morphology and chemical homogeneity of the residue, hence leading to better performance of the method from a quantitative point of view. Linear calibration curves using internal standardization were established with ionic Ti and with two different types of TiO{sub 2} nanoparticles. Low limits of detections of 18 μg L{sup −1} and 52 μg L{sup −1} at incident angles of 0.20° and 0.75°, respectively, were obtained. It was found that correlation factors of the calibration linear fits were particle-size dependent, which was assigned to sampling problems due to possible incomplete dispersion of the particles in suspensions. The measured fluorescence of the dried deposits changed within a 4-month timespan for both types of TiO{sub 2} nanoparticles, demonstrating the very peculiar behavior of these particulate samples. - Highlights: • Suspensions of TiO{sub 2} nanoparticles were quantitatively analyzed by GIXRF. • The substrate was coated with an adhesive film prior to sample deposition. • Improved spatial homogeneity of the dry spot residue was confirmed by SEM/EDX. • Linear calibration curves were obtained with ionic Cr as internal standard. • Ti low limits of detections were in the 20–50 μg L{sup −1}.

  4. Semi-transparent ordered TiO_2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    International Nuclear Information System (INIS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-01-01

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO_2 were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO_2 layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO_2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO_2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO_2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm"−"2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  5. Ultra-low leakage and high breakdown Schottky diodes fabricated on free-standing GaN substrate

    International Nuclear Information System (INIS)

    Wang, Yaqi; Alur, Siddharth; Sharma, Yogesh; Tong, Fei; Thapa, Resham; Gartland, Patrick; Issacs-Smith, Tamara; Ahyi, Claude; Williams, John; Park, Minseo; Johnson, Mark; Paskova, Tanya; Preble, Edward A; Evans, Keith R

    2011-01-01

    Vertical Schottky diodes were fabricated on the bulk GaN substrate with decreasing impurity concentration from N-face to Ga-face. An array of circular Pt Schottky contacts and a full backside Ti/Al/Ni/Au ohmic contact were prepared on the Ga-face and the N-face of the n-GaN substrate, respectively. The Schottky diode exhibits a minimum specific on-state resistance of 1.3 mΩ cm 2 and a maximum breakdown voltage of 600 V, resulting in a figure-of- merit of 275 MW cm −2 . An ultra-low reverse leakage current density of 3.7 × 10 −4 A cm −2 at reverse bias of 400 V was observed. Temperature-dependent I–V measurements were also carried out to study the forward and reverse transportation mechanisms. (fast track communication)

  6. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  7. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  8. Electrode interface controlled electrical properties in epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown on Si substrates with SrTiO{sub 3} buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Andra Georgia, E-mail: andra.boni@infim.ro [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); University of Bucharest, Faculty of Physics, Magurele 077125 (Romania); Chirila, Cristina; Pasuk, Iuliana; Negrea, Raluca; Trupina, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); Le Rhun, Gwenael [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Vilquin, Bertrand [Université de Lyon, Ecole Centrale de Lyon, INL, CNRS UMR5270, 36 avenue Guy de Collongue, F-69134 Ecully cedex (France); Pintilie, Ioana; Pintilie, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania)

    2015-10-30

    Electrical properties of ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films grown by pulsed laser deposition on silicon substrate with SrTiO{sub 3} buffer layer grown by molecular beam epitaxy were studied. A SrRuO{sub 3} layer was deposited as bottom electrode also by pulse laser deposition and Pt, Ir, Ru, SrRuO{sub 3} were used as top contacts. Electrical characterization comprised hysteresis and capacitance–voltage measurements in the temperature range from 150 K to 400 K. It was found that the macroscopic electrical properties are affected by the electrode interface, by the choice of the top electrode. However, even for metals with very different work functions (e.g. Pt and SrRuO{sub 3}) the properties of the top and bottom electrode interfaces remain fairly symmetric suggesting a strong influence from the bound polarization charges located near the interface. - Highlights: • Ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} were deposited on Si substrate. • The structural characterization proved the epitaxial growth of the layers. • Macroscopic electrical properties are affected by the choice of the top electrode. • The difference on imprint field, dielectric constant are analyzed depending on the electrode-ferroelectric interface.

  9. Nature in corrosion-erosion surface for [TiN/TiAlN]n nanometric multilayers growth on AISI 1045 steel

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: jcaicedoangulo@gmail.com [Thin Films Group Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360, Cali (Colombia); Advanced Materials for Micro and NanoTechnology Research Group Universidad Autonoma de Occidente (Colombia); Cabrera, G. [Thin Films Group Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360, Cali (Colombia); Caicedo, H.H. [Department of Bioengineering, University of Illinois at Chicago, IL 60612 (United States); Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612 (United States); Amaya, C. [Thin Films Group Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360, Cali (Colombia); Hard Coating Laboratory CDT-ASTIN SENA, Cali (Colombia); Aperador, W. [Ingenieria Mecatronica, Universidad Militar Nueva Granada, Bogota (Colombia)

    2012-04-30

    The aim of this work is to characterize the electrochemical behavior of [TiN/TiAlN]n multilayer coatings under corrosion-erosion condition. The multilayers with bilayer numbers (n) of 2, 6, 12, and 24 and/or bilayer period ({Lambda}) of 1500 nm, 500 nm, 250 nm, 150 nm and 125 nm were deposited by magnetron sputtering technique on Si (100) and AISI 1045 steel substrates. Both, the TiN and the TiAlN structures for multilayer coatings were evaluated via X-ray diffraction analysis. Mechanical and tribological properties were evaluated via nanoindentation measurements and scratch test respectively. Silica particles were used as abrasive material on corrosion-erosion test in 0.5 M of H{sub 2}SO{sub 4} solution at impact angles of 30 Degree-Sign and 90 Degree-Sign over surface. The electrochemical characterization was carried out using polarization resistance technique (Tafel), in order to observe changes in corrosion rate as a function of the bilayer number (n) or the bilayer period ({Lambda}) and the impact angle. Corrosion rate values of 9115 {mu}m y for uncoated steel substrate and 2615 {mu}m y for substrate coated with n = 24 ({Lambda} = 125 nm) under an impact angle of 30 Degree-Sign were found. On the other hand, for an impact angle of 90 Degree-Sign the corrosion rate exhibited 16401 {mu}m y for uncoated steel substrate and 5331 {mu}m y for substrate coated with n = 24 ({Lambda} = 125 nm). This behavior was correlated with the curves of mass loss for both coated samples and the surface damage was analyzed via scanning electron microscopy images for the two different impact angles. These results indicate that TiN/TiAlN multilayer coatings deposited on AISI 1045 steel represent a practical solution for applications in corrosive-erosive environments. - Highlights: Black-Right-Pointing-Pointer Determination of superficial phenomenon that occurs in surface of multilayer films. Black-Right-Pointing-Pointer Innovative multilayer system [TiN/TiAlN]n electrochemical

  10. Nature in corrosion–erosion surface for [TiN/TiAlN]n nanometric multilayers growth on AISI 1045 steel

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Cabrera, G.; Caicedo, H.H.; Amaya, C.; Aperador, W.

    2012-01-01

    The aim of this work is to characterize the electrochemical behavior of [TiN/TiAlN]n multilayer coatings under corrosion–erosion condition. The multilayers with bilayer numbers (n) of 2, 6, 12, and 24 and/or bilayer period (Λ) of 1500 nm, 500 nm, 250 nm, 150 nm and 125 nm were deposited by magnetron sputtering technique on Si (100) and AISI 1045 steel substrates. Both, the TiN and the TiAlN structures for multilayer coatings were evaluated via X-ray diffraction analysis. Mechanical and tribological properties were evaluated via nanoindentation measurements and scratch test respectively. Silica particles were used as abrasive material on corrosion–erosion test in 0.5 M of H 2 SO 4 solution at impact angles of 30° and 90° over surface. The electrochemical characterization was carried out using polarization resistance technique (Tafel), in order to observe changes in corrosion rate as a function of the bilayer number (n) or the bilayer period (Λ) and the impact angle. Corrosion rate values of 9115 μm y for uncoated steel substrate and 2615 μm y for substrate coated with n = 24 (Λ = 125 nm) under an impact angle of 30° were found. On the other hand, for an impact angle of 90° the corrosion rate exhibited 16401 μm y for uncoated steel substrate and 5331 μm y for substrate coated with n = 24 (Λ = 125 nm). This behavior was correlated with the curves of mass loss for both coated samples and the surface damage was analyzed via scanning electron microscopy images for the two different impact angles. These results indicate that TiN/TiAlN multilayer coatings deposited on AISI 1045 steel represent a practical solution for applications in corrosive–erosive environments. - Highlights: ► Determination of superficial phenomenon that occurs in surface of multilayer films. ► Innovative multilayer system [TiN/TiAlN]n electrochemical response. ► Improvement of surface mechanical properties and response to surface corrosion attack. ► Nature of [TiN/Ti

  11. Transparent conducting properties of anatase Ti{sub 0.94}Nb{sub 0.06}O{sub 2} polycrystalline films on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hitosugi, T. [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: hitosugi@chem.s.u-tokyo.ac.jp; Ueda, A. [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Nakao, S.; Yamada, N.; Furubayashi, Y.; Hirose, Y.; Konuma, S. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Shimada, T.; Hasegawa, T. [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2008-07-01

    We report on transparent conducting properties of anatase Ti{sub 0.94}Nb{sub 0.06}O{sub 2} (TNO) polycrystalline films on glass substrate, and discuss the role of grain crystallinity and grain boundary on resistivity. Thin films of TNO were deposited using pulsed laser deposition at substrate temperature ranging from room temperature to 350 deg. C, with subsequent H{sub 2}-annealing at 500 deg. C. Polycrystalline TNO films showed resistivity of 4.5 x 10{sup -4} {omega} cm and 1.5 x 10{sup -3} {omega} cm for films prepared at substrate temperature of room temperature and 250 deg. C, respectively. X-ray diffraction measurements and transmission electron microscopy reveal that grain crystallinity and grain boundary play key roles in conductive films.

  12. Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite

    Science.gov (United States)

    Wang, Daqun; Sun, Dongli; Han, Xiuli; Wang, Qing; Wang, Guangwei

    2018-03-01

    Different oxidation layers on the Ti2AlN/TiAl substrate which was fabricated by in situ synthesis were prepared through thermal oxidation process. The microstructure, phase identification and elements distribution of the oxidation layers were analyzed. The tribological performance of pre-oxidized composites against Si3N4 ball at 25 and 600 °C, as well as the effect of pre-oxidation layers on tribological performance was systematically investigated. The results show that, compared to Ti2AlN/TiAl, the pre-oxidized composites present more excellent tribological properties, especially the wear resistance at 600 °C. It is a significant finding that, different from severe abrasive wear and plastic deformation of Ti2AlN/TiAl, the tribo-films formed by the pre-oxidation layers on the worn surface of pre-oxidized composites weaken abrasive wear and suppress the development of plastic deformation to protect the underlying composite substrate from wear. Moreover, the stable cooperation on the interface between tribo-films and Si3N4 ball results in the relatively steady friction coefficient.

  13. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  14. Quantum and Classical Magnetoresistance in Ambipolar Topological Insulator Transistors with Gate-tunable Bulk and Surface Conduction

    Science.gov (United States)

    Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.

    2014-01-01

    Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663

  15. Titanium diboride coatings and their interaction with the substrates

    International Nuclear Information System (INIS)

    Pierson, H.O.; Randich, E.

    1978-01-01

    An experimental investigation of the chemical vapor deposition (CVD) of titanium diboride (TiB 2 ) on metallic substrates, using the hydrogen reduction of TiCl 4 and BCl 3 at 1 atmosphere and at temperatures between 850 0 C and 1050 0 C is described. To be coated, the substrate had to meet the following requirements: (1) ability to withstand the deposition temperature without detrimental transformation, (2) chemical inertness to the by-products of the reaction (mostly HCl), (3) reasonable matching of its thermal expansion with that of TiB 2 . The latter requirement may be partially circumvented by using a ductile intermediate coating such as Cu or Ni. Substrates meeting these requirements were W, Ta, Ni, WC, TiC, Kovar and some high chrome steels. Coatings on these substrates were examined by metallographic techniques, scanning electron microscope, x-ray diffraction and electron microprobe. The structures and the degree of interdiffusion were determined. In most cases, intermediate borides of the type M 3 B and M 2 B were formed. The hardness of the coatings was 3330 +- 310 kg/mm 2 (VHN 50 ). Coatings of TiB 2 have already been used successfully on letdown valves in a bench scale coal liquefaction reactor at Sandia Laboratories

  16. The Influence of a TiN Film on the Electronic Contribution to the Thermal Conductivity of a TiC Film in a TiN-TiC Layer System

    Science.gov (United States)

    Jagannadham, K.

    2018-01-01

    TiC and TiN films were deposited by reactive magnetron sputtering on Si substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of the microstructure and interface structure have been carried out and the stoichiometric composition of TiC is determined. Thermal conductivity and interface thermal conductance between different layers in the films are evaluated by the transient thermo reflectance (TTR) and three-omega (3- ω) methods. The results showed that the thermal conductivity of the TiC films increased with temperature. The thermal conductivity of TiC in the absence of TiN is dominated by phonon contribution. The electronic contribution to the thermal conductivity of TiC in the presence of TiN is found to be more significant. The interface thermal conductance of the TiC/TiN interface is much larger than that of interfaces at Au/TiC, TiC/Si, or TiN/Si. The interface thermal conductance between TiC and TiN is reduced by the layer formed as a result of interdiffusion.

  17. Structural and thermal characterization of La5Ca9Cu24O41 thin films grown by pulsed laser deposition on (1 1 0) SrTiO3 substrates

    International Nuclear Information System (INIS)

    Svoukis, E.; Athanasopoulos, G.I.; Altantzis, Th.; Lioutas, Ch.; Martin, R.S.; Revcolevschi, A.; Giapintzakis, J.

    2012-01-01

    In the present study stoichiometric, b-axis oriented La 5 Ca 9 Cu 24 O 41 thin films were grown by pulsed laser deposition on (1 1 0) SrTiO 3 substrates in the temperature range 600–750 °C. High resolution transmission electron microscopy was employed to investigate the growth mechanism and the epitaxial relationship between the SrTiO 3 substrates and the La 5 Ca 9 Cu 24 O 41 films grown at 700 °C. The 3-ω method was used to measure the cross-plane thermal conductivity of La 5 Ca 9 Cu 24 O 41 films in the temperature range 50–350 K. The observed glass-like behavior is attributed to atomic-scale defects, grain boundaries and an interfacial layer formed between film and substrate.

  18. Strong composition dependence of resistive switching in Ba1-xSrxTiO3 thin films on semiconducting substrates and its thermodynamic analysis

    OpenAIRE

    Mohammad Moradi, Omid; Şen, Canhan; Sen, Canhan; Boni, A. G.; Pintilie, L.; Mısırlıoğlu, Burç; Misirlioglu, Burc

    2018-01-01

    In this work, we report on the variability of the Schottky effect in solution processed Ba1-xSrxTiO3 films (BST, x = 0, 0.5) grown on 0.5% Nb doped SrTiO3 substrates with top Pt electrodes (NSTO/BST/Pt). The films display leakage currents accompanied by varying degrees of hystereses in the current-voltage measurements. The magnitude of the leakage and hystereses depend on the Sr content. We focus on the current-voltage (I-V) behavior of our samples in the light of thermodynamic theory of ferr...

  19. Influence of substrate temperature on the electronic and optical properties of Cr doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sagar; Gupta, Ratnesh, E-mail: gratnesh-ioi@yahoo.com [School of Instrumentation, Devi Ahilya University, Khandwa Road, Indore-452001 (India); Gupta, M. [UGC-DAE CSR Indore Centre, Indore 452 001 (India)

    2016-05-23

    We report the effects of substrate temperature on electrical and optical properties of the Cr-doped TiO{sub 2} film by pulsed laser deposition on Si(100). X-ray reflectivity pattern suggest that the single layer film have been deposited. Total thickness of 86 nm have been obtained. UV-Vis reflectance technique has been used to obtain its optical properties. From the Tauc plot, the bandgap for the film deposited at 150°C is higher compared to the film deposited at lower temperature.

  20. Effects of Annealing Temperature on Properties of Ti-Ga-Doped ZnO Films Deposited on Flexible Substrates.

    Science.gov (United States)

    Chen, Tao-Hsing; Chen, Ting-You

    2015-11-03

    An investigation is performed into the optical, electrical, and microstructural properties of Ti-Ga-doped ZnO films deposited on polyimide (PI) flexible substrates and then annealed at temperatures of 300 °C, 400 °C, and 450 °C, respectively. The X-ray diffraction (XRD) analysis results show that all of the films have a strong (002) Ga doped ZnO (GZO) preferential orientation. As the annealing temperature is increased to 400 °C, the optical transmittance increases and the electrical resistivity decreases. However, as the temperature is further increased to 450 °C, the transmittance reduces and the resistivity increases due to a carbonization of the PI substrate. Finally, the crystallinity of the ZnO film improves with an increasing annealing temperature only up to 400 °C and is accompanied by a smaller crystallite size and a lower surface roughness.

  1. Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O3 films

    International Nuclear Information System (INIS)

    Yamada, Tomoaki; Yasumoto, Jun; Ito, Daisuke; Yoshino, Masahito; Nagasaki, Takanori; Sakata, Osami; Imai, Yasuhiko; Kiguchi, Takanori; Shiraishi, Takahisa; Shimizu, Takao; Funakubo, Hiroshi

    2015-01-01

    The converse piezoelectric responses of (111)- and (001)-epitaxial tetragonal Pb(Zr 0.35 Ti 0.65 )O 3 [PZT] films were compared to investigate the orientation dependence of the substrate clamping effect. Synchrotron X-ray diffraction (XRD) and piezoelectric force microscopy revealed that the as-grown (111)-PZT film has a polydomain structure with normal twin boundaries that are changed by the poling process to inclined boundaries, as predicted by Romanov et al. [Phys. Status Solidi A 172, 225 (1999)]. Time-resolved synchrotron XRD under bias voltage showed the negligible impact of substrate clamping on the piezoelectric response in the (111)-PZT film, unlike the case for (001)-PZT film. The origin of the negligible clamping effect in the (111)-PZT film is discussed from the viewpoint of the elastic properties and the compensation of lattice distortion between neighboring domains

  2. Sn and Cu oxide nanoparticles deposited on TiO{sub 2} nanoflower 3D substrates by Inert Gas Condensation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kusior, A., E-mail: akusior@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kollbek, K. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kowalski, K. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Borysiewicz, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Wojciechowski, T. [Institute of Physics Polish Academy of Science, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Inert Gas Condensation method yields non-agglomerated nanoparticles. • The growth of nanoparticles is controllable at the level of deposition. • Electrical conductivity increases with respect to pure nanostructured TiO{sub 2}. - Abstract: Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO{sub 2} 3D substrates obtained in the oxidation process of Ti-foil in 30% H{sub 2}O{sub 2}. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  3. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  4. Characteristics of Ti films for transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Ukibe, M.; Koyanagi, M.; Ohkubo, M.; Pressler, H.; Kobayashi, N.

    1999-01-01

    We are developing X-ray microcalorimeters using superconducting transition-edge sensors (TESs), which can be operated at relatively high base temperatures of a 3 He cryostat. For this purpose, we have selected Ti films to be used as TESs. The Ti films were deposited on different substrates by RF-sputtering. It was found that the superconducting properties of the Ti films depended on Ar pressure, film thickness, and substrate surface roughness

  5. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Kato, Hidemi; Inoue, Akihisa

    2005-01-01

    High-strength Ti-Fe-Co alloys were produced in the shape of arc-melted ingots with the dimensions of about 20-25mm in diameter and 7-10mm in height. The structure of the Ti-Fe-Co alloys (at Fe/Co ratio >1) studied by X-ray diffractometry and scanning electron microscopy consisted of an ordered Pm3-bar m Ti(FeCo) compound and a disordered body-centered cubic Im3-bar m β-Ti solid solution. The optimization of the Ti-Fe-Co alloy composition is performed from the viewpoint of both high strength and ductility. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength of about 2000MPa and a plastic deformation of 15%. The high strength and ductility values can be achieved without using the injection mould casting or rapid solidification procedure. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail

  6. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    International Nuclear Information System (INIS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-01-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al 2 O 3 -13 wt%TiO 2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces

  7. Bipolar and unipolar resistive switching behaviors of sol–gel-derived SrTiO3 thin films with different compliance currents

    International Nuclear Information System (INIS)

    Tang, M H; Wang, Z P; Zeng, Z Q; Xu, X L; Wang, G Y; Zhang, L B; Xiao, Y G; Yang, S B; Jiang, B; Li, J C; He, J

    2011-01-01

    The SrTiO 3 (STO) thin films on a Pt/Ti/SiO 2 /Si substrate were synthesized using a sol–gel method to form a metal–insulator–metal structure. This device shows the bipolar resistance switching (BRS) behavior for a compliance current I cc of less than 0.1 mA but exhibits soft breakdown at a higher level of compliance current. A transition from the BRS behavior to the stable unipolar resistive switching behavior (URS) was also observed. We found that the BRS behavior may be controlled by the structure interface while the URS behavior is likely bulk controlled. Our study indicates that the external compliance current is a key factor in resistance switching phenomenon of STO thin films

  8. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate

    International Nuclear Information System (INIS)

    Huang, Can; Zhang, Yongzhong; Vilar, Rui; Shen, Jianyun

    2012-01-01

    Highlights: ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V) 5 Si 3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. -- Abstract: Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V) 5 Si 3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V) 5 Si 3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.

  9. Defects, stoichiometry, and electronic transport in SrTiO{sub 3-δ} epilayers: A high pressure oxygen sputter deposition study

    Energy Technology Data Exchange (ETDEWEB)

    Ambwani, P.; Xu, P.; Jeong, J. S.; Deng, R.; Mkhoyan, K. A.; Jalan, B.; Leighton, C., E-mail: leighton@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Haugstad, G. [Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-08-07

    SrTiO{sub 3} is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO{sub 3}, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry, defects, and structure in SrTiO{sub 3} synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO{sub 3}, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO{sub 3} films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO{sub 3} crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.

  10. Site preference of Zr in Ti 3 Al and phase stability of Ti 2 ZrAl

    Indian Academy of Sciences (India)

    Calculated values of equilibrium lattice parameters, heat of formation and bulk modulus of Ti2ZrAl are presented. The basis for the structural stability and bonding are analysed in terms of the density of states. Between the two possible 2-like structures, Ti2ZrAl shows enhanced stability for the one where Zr is substituted in ...

  11. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; David, Adrian; Lin, Weinan; Wu, Tao

    2014-01-01

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our

  12. A miniaturized Microwave Bandpass Filter Based on Modified (Mg0.95Ca0.05TiO3 Substrate

    Directory of Open Access Journals (Sweden)

    Hu Mingzhe

    2016-01-01

    Full Text Available A microwave miniaturized bandpass filter using (Mg0.95Ca0.05TiO3 (abbreviated as 95MCT hereafter ceramic substrate is investigated in the present paper. The paper studies the sintering and microwave dielectric properties of Al2O3, La2O3 and SiO2 co-doped 95MCT. The XRD pattern shows that a secondary phase MgTi2O5 is easily segregated in 95MCT ceramic, however, through co-doping it can be effectively suppressed, and the microwave dielectric properties, especially, the Qf value can be significantly improved. Through optimizing the co-doping ratio of Al2O3, La2O3 and SiO2, the sintering temperature of 95MCT ceramic can be lowered by 80°C, and the microwave dielectric properties can reach Qf=61856GHz and εr=19.84, which indicates the modified 95MCT ceramic have a great potential application in microwave communication devices. Based on this, we also designed a miniaturized microwave bandpass filter (BPF on modified 95MCT substrate. Through a full wave electromagnetic structure simulation, the results show that the center frequency of the BPF is 2.45GHz and the relative bandwidth is 4.09% with the insertion loss of less than 0.2dB in the whole bandpass.

  13. Structural evolution of Ti/TiC multilayers

    International Nuclear Information System (INIS)

    Dahan, I.; Frage, N.; Dariel, M.P.

    2004-01-01

    Hard coatings based on metal/ceramic multilayers with periods in the nanometer range have been shown to possess some potential for improved tribological and mechanical properties. The present work is concerned with the structural evolution of (Ti/TiC) multilayers. Two kinds of multilayers consisting of 30 equithick (40 nm)TiC layers and 20 and 60 nm thick Ti layers, respectively, were sputter deposited on Mo substrates. The structural and the compositional evolution of these multilayers were examined by x-ray diffraction, transition electron microscopy (TEM), high-resolution TEM, Auger electron microscopy spectroscopy and differential thermal analysis (DTA), in the as-deposited state and after various heat treatments up to 500 deg. C. Initially, the Ti layers had a crystalline columnar grain structure displaying a (002) texture. The TiC layers displayed weak crystallinity with a pronounced (111) texture. In the course of the heat treatments, carbon diffused from the carbide layer into the adjacent Ti layers transforming the latter into off-stoichiometric TiC x with x≅0.5 and simultaneously depleting the carbon content of the initial carbide layer. The formed TiC x layers maintained the textural relationship with the neighboring TiC layers, consistent with a transformation that involved only a ABAB to ABC stacking change of the Ti sublattice. Increased mobility of the Ti atoms in carbon-depleted original TiC layers led to their full or partial recrystallization. The thermal effects associated both with the transformation of Ti layers into TiC, due to the influx of carbon atoms, and with the recrystallization of the original TiC layers were clearly revealed by the DTA measurements

  14. Enhanced ferro-and piezoelectric properties of Bi4Ti3O12-CaBi4Ti4O15 thin film on Pt(111)/Ti/SiO2/Si substrate

    Science.gov (United States)

    Yan, J.; Hu, G. D.

    2018-05-01

    Bi4Ti3O12-CaBi4Ti4O15 (BT-CBTi) film was fabricated on Pt(111)/Ti/SiO2/Si substrate by the sol-gel method. The intergrowth structure was demonstrated to be obtained both in the film and corresponding powder sample according to x-ray diffraction (XRD) patterns. The good fatigue resistance as well as a strong charge-retaining ability can be obtained in the intergrowth BT-CBTi film. The remanent polarization (P r ) and coercive field (E c ) for BT-CBTi film was about 28 μC cm‑2 and 150 kV cm‑1 under an electric field of 540 kV cm‑1, respectively. The P r value of purely (100)-oriented BT-CBTi film can be roughly estimated to be higher than 50 μC cm‑2 based on both the volume fraction of (100)-oriented grains and the piezoelectric properties. The P r value of BT-CBTi film is about 50 μC cm‑2 under an electric field of 1100 kV cm‑1 in predominently (100)-oriented BT-CBTi film. It means that it is reasonable to predict the performance of (100)-oriented BT-CBTi films based on the ferroelectric and piezoelectric properties of the polycrystalline BT-CBTi film. The spontaneous polarization is larger than 80 μC cm‑2 under an electric field of 1100 kV cm‑1.

  15. Pressure effect on crystallization kinetics in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Xu, Y.S.

    2002-01-01

    Crystallization kinetics of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass in the supercooled liquid region have been investigated by performing in situ high-temperature and high-pressure x-ray diffraction measurements using synchrotron radiation. A pressure-time-temperature-transformation diagram......, describing the onset of crystallization as a function of time during isothermal annealing under pressure, is presented. Different pressure dependences of crystallization kinetics in the temperature range for the glass have been observed and further be explained by a model of competing processes...

  16. Oxygen stoichiometry of LaTiO{sub 3} thin films studied by in-situ photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2015-07-01

    As in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. The stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of the oxygen background atmosphere on LaTi{sup 3+}O{sub 3} thin film growth by PLD. Reflection high-energy diffraction intensity oscillations of the specular spot indicate a layer by layer growth mode for thin films, which merges into the formation of islands for thicker films. In-situ photoemission measurements enables us to determine the oxidation state of Ti indicating excess or lack of oxygen present in the prepared samples. Our experiments show that even for films grown in vacuum, strong oxygen excess is present probably due to oxygen out-diffusion from the STO substrate. We find that an LAO buffer layer serves as an effective barrier for this process. The spectral weight of the lower Hubbard band, being a characteristic feature for the Mott insulating phase, is found to scale inversely with the amount of excess oxygen.

  17. Effects of doping on ferroelectric properties and leakage current behavior of KNN-LT-LS thin films on SrTiO3 substrate

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2009-05-01

    We report the effects of Ba, Ti, and Mn dopants on ferroelectric polarization and leakage current of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) thin films deposited by pulsed laser deposition. It is shown that donor dopants such as Ba2+, which increased the resistivity in bulk KNN-LT-LS, had an opposite effect in the thin film. Ti4+ as an acceptor B-site dopant reduces the leakage current by an order of magnitude, while the polarization values showed a slight degradation. Mn4+, however, was found to effectively suppress the leakage current by over two orders of magnitude while enhancing the polarization, with 15 and 23 μC/cm2 remanent and saturated polarization, whose values are ˜70% and 82% of the reported values for bulk composition. This phenomenon has been associated with the dual effect of Mn4+ in KNN-LT-LS thin film, by substituting both A- and B-site cations. A detailed description on how each dopant affects the concentrations of vacancies in the lattice is presented. Mn-doped KNN-LT-LS thin films are shown to be a promising candidate for lead-free thin films and applications.

  18. Preparation of single-crystal TiC (111) by radio frequency magnetron sputtering at low temperature

    International Nuclear Information System (INIS)

    Qi, Q.; Zhang, W.Z.; Shi, L.Q.; Zhang, W.Y.; Zhang, W.; Zhang, B.

    2012-01-01

    Single-crystal films of TiC (111) have been synthesized at room temperature on Al 2 O 3 (0001) substrates by radio frequency magnetron sputtering using a compound Ti–C target. The substrate temperature and bias were varied to explore the influence of deposition parameters on the crystal structure. Both Al 2 O 3 (0001) and Si (100) substrates were used for epitaxial growth of TiC films. A series of characterizations of TiC films were carried out, including Rutherford backscattering spectroscopy, X-ray diffraction, Raman and X-ray photoelectron spectroscopy. Single-crystal films of TiC (111) on the Al 2 O 3 (0001) were demonstrated. - Highlights: ► Single-crystal films of TiC (111) have been synthesized by RF magnetron sputtering. ► Both temperature and bias affect greatly the TiC crystal structure. ► Al 2 O 3 substrate is much better than Si substrate for TiC epitaxial growth. ► TiC (111) epitaxial film can be grown on Al 2 O 3 (0001) at room temperature.

  19. Ferroelectric properties of NaNbO3-BaTiO3 thin films deposited on SrRuO3/(001)SrTiO3 substrate by pulsed laser deposition

    International Nuclear Information System (INIS)

    Yamazoe, Seiji; Oda, Shinya; Sakurai, Hiroyuki; Wada, Takahiro; Adachi, Hideaki

    2009-01-01

    (NaNbO 3 ) 1-x (BaTiO 3 ) x (NN-xBT) thin films with low BaTiO 3 (BT) concentrations x (x=0.05 and 0.10) were fabricated on SrRuO 3 /(001)SrTiO 3 (SRO)/(001)STO) substrate by pulsed laser deposition (PLD). X-ray diffraction pattern (XRD) and transmission electron diffraction pattern (TED) showed that NN-0.10BT thin film was epitaxially grown on SRO/(001)STO substrate with a crystallographic relationship of [001] NN-xBT parallel [001] STO . From reciprocal space maps, the lattice parameters of the out-of-plane direction of NN-xBT thin films became larger with an increase in BT concentration, although the lattice parameter of the in-plane was hardly changed by the BT concentration. The value of relative dielectric constant ε r of the NN-xBT thin films were increased with BT concentration. The ε r and the dielectric loss tanδ of NN-0.10BT were 1220 and 0.02 at 1 kHz, respectively. The P-E hysteresis loops of the NN-xBT thin films showed clear ferroelectricity. Although the value of remanent polarization P r decreased with the BT concentration, the behaviors of ε r , P r , and coercive electric field E c of the NN-xBT thin films against the BT concentration accorded with those of NN-xBT ceramics, in which NN-0.10BT ceramics exhibited the largest piezoelectric property. Therefore, the NN-0.10BT thin film is expected to show high piezoelectricity. (author)

  20. Characteristics of Ti films for transition-edge sensor microcalorimeters

    CERN Document Server

    Ukibe, M; Ohkubo, M; Pressler, H; Kobayashi, N

    1999-01-01

    We are developing X-ray microcalorimeters using superconducting transition-edge sensors (TESs), which can be operated at relatively high base temperatures of a sup 3 He cryostat. For this purpose, we have selected Ti films to be used as TESs. The Ti films were deposited on different substrates by RF-sputtering. It was found that the superconducting properties of the Ti films depended on Ar pressure, film thickness, and substrate surface roughness.

  1. Semi-transparent ordered TiO{sub 2} nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Szkoda, Mariusz, E-mail: mariusz-szkoda@wp.pl [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Lisowska-Oleksiak, Anna [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Grochowska, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland); Skowroński, Łukasz [Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland)

    2016-09-15

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO{sub 2} were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO{sub 2} layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO{sub 2} nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO{sub 2} formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO{sub 2} films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm{sup −2}) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  2. Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates

    Directory of Open Access Journals (Sweden)

    C. Adamo

    2015-06-01

    Full Text Available We investigate the suitability of an epitaxial CaTiO3 buffer layer deposited onto (100 Si by reactive molecular-beam epitaxy (MBE for the epitaxial integration of the colossal magnetoresistive material La0.7Sr0.3MnO3 with silicon. The magnetic and electrical properties of La0.7Sr0.3MnO3 films deposited by MBE on CaTiO3-buffered silicon (CaTiO3/Si are compared with those deposited on SrTiO3-buffered silicon (SrTiO3/Si. In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO3 buffer layer. These results are relevant to device applications of La0.7Sr0.3MnO3 thin films on silicon substrates.

  3. Enhanced Optical and Electrical Properties of TiO{sub 2} Buffered IGZO/TiO{sub 2} Bi-Layered Films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun-Joo; Kim, Daeil [University of Ulsan, Ulsan (Korea, Republic of)

    2016-08-15

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO{sub 2}-deposited glass substrate to determine the effect of the thickness of a thin TiO{sub 2} buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO{sub 2} buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO{sub 2} buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO{sub 2} bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO{sub 2} bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  4. Characterising μ-AlTiN coating and assessing its performance during Ti-6Al-4V milling

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Moreno Téllez

    2013-05-01

    Full Text Available This study investigated the mechanical properties and performance of μ-AlTiN coating deposited by PVD cathodic arc technique for a specific Al0, 67Ti0, 33N composition deposited on a WC-Co and AISI D2 steel substrate. The structure of the coating was analysed using SEM, EDAX, XRD, AFM and TEM. Nano indentation measurements were used for analysing mechanical properties; the coating’s performance was evaluated during the milling of a titanium alloy (Ti6Al4V. The TiN film was initially deposited to improve adhesion between coating and substrate, where columnar grains ranging in size from 200 to 500 nm were observed having NaCl-type struc-ture. μ-AlTiN grain growth was also columnar but had ~50 nm grain size. The μ-AlTiN coated tool life was compared to an uncoated tool to determine the coating’s influence during Ti6Al4V milling. The μ-AlTiN coating improved tool life by 100% compared to that of an uncoated tool due to aluminium oxide and TiC formation on the surface and a decrease in friction coefficient between the chip and the tool.

  5. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  6. Microstructure, electrical and optical characteristics of Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films grown on Si substrate by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ching-Fang, E-mail: cftseng@nuu.edu.tw; Chen, Wen-Shiush; Lee, Chih-Wen

    2011-05-31

    Optical properties and microstructures of Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films prepared by sol-gel method on n-type Si(100) substrates at different annealing temperatures have been investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscope (AFM) were found to be sensitive to the deposition conditions, such as annealing temperature (600-800 deg. C). The optical transmittance spectra of the Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films were measured by using UV-visible recording spectro-photometer. The diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} peaks orientation perpendicular to the substrate surface and the grain size with the increase in the annealing temperature. The dependence of the microstructure and dielectric characteristics on annealing temperature was also investigated.

  7. Fabrication of TiN/AlN/TiN tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Takeru; Naruse, Masato; Myoren, Hiroaki; Taino, Tohru, E-mail: taino@mail.saitama-u.ac.jp

    2016-11-15

    Highlights: • We have fabricated TiN/AlN/TiN tunnel junctions with an epitaxial layer. • TiN and AlN films were deposited by dc and rf magnetron sputtering at ambient substrate temperatures. • The junctions have a V{sub g} = 1.1 mV, J{sub c} = 0.24 A/cm{sup 2}, R{sub sg}/R{sub n} of 7.2, and low subgap leakage current of 180 nA. - Abstract: We have fabricated TiN/AlN/TiN tunnel junctions with an epitaxial layer. The critical temperature of TiN can be changed in the range from 0.5 to 5.0 K. Therefore, it is easy to set 5.0 K as the target critical temperature. When a Superconducting Tunnel Junction (STJ) is operated as a photon detector, it is necessary to cool it to within 0.1 K of the critical temperature in consideration of the noise of the thermally stimulated currents. Because 0.3 K was desirable, as for the manufacture of general purpose photon detectors, the critical temperature 5.0 K. TiN and AlN films were deposited by dc and rf magnetron sputtering in a load-lock sputtering system at ambient substrate temperatures. The junctions have a gap voltage of V{sub g} = 1.1 mV, and critical current density of J{sub c} = 0.24 A/cm{sup 2}, and R{sub sg}/R{sub n} of 7.2, and low subgap leakage current (I{sub sub}@ 500 µV = 180 nA). We report our experiment system, the manufacture method and the junction properties in this paper.

  8. Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition

    International Nuclear Information System (INIS)

    McDaniel, M.D.; Posadas, A.; Wang, T.; Demkov, A.A.; Ekerdt, J.G.

    2012-01-01

    Epitaxial anatase titanium dioxide (TiO 2 ) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO 2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225–250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10 −7 Pa) for 1–2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO 2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO 2 growth. X-ray diffraction revealed that the TiO 2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO 2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates. - Highlights: ► Epitaxial anatase films are grown by atomic layer deposition (ALD) on Si(001). ► Four unit cells of SrTiO 3 on silicon create a stable template for ALD. ► TiO 2 thin films have a compressed c-axis and an expanded a-axis. ► Up to 100 nm thick TiO 2 films remain highly ordered in the (001) direction.

  9. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process

    Energy Technology Data Exchange (ETDEWEB)

    Monfared, A., E-mail: amirmonfared25@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Kokabi, A.H.; Asgari, S. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Tungsten Inert Gas (TIG) process and titanium cored wires filled with micro size TiC particles were employed to produce surface composite coatings on commercial pure Ti substrate for wear resistance improvement. Wire drawing process was utilized to produce several cored wires from titanium strips and titanium carbide powders. Subsequently, these cored wires were melted and coated on commercial pure Ti using TIG process. This procedure was repeated at different current intensities and welding travel speeds. Composite coating tracks were found to be affected by TIG heat input. The microstructural studies using optical and scanning electron microscopy supported by X-ray diffraction showed that the surface composite coatings consisted of {alpha} Prime -Ti, spherical and dendritic TiC particles. Also, greater volume fractions of TiC particles in the coatings were found at lower heat input. A maximum microhardness value of about 1100 HV was measured which is more than 7 times higher than the substrate material. Pin-on-disk wear tests exhibited a better performance of the surface composite coatings than the untreated material which was attributed to the presence of TiC particles in the microstructure. -- Highlights: Black-Right-Pointing-Pointer Ti/TiC composite coatings were produced on the CP-Ti. Black-Right-Pointing-Pointer Titanium cored wire and TIG process were employed for production of the coatings. Black-Right-Pointing-Pointer Decreasing heat input, increased the volume fraction of TiC in the coatings. Black-Right-Pointing-Pointer The maximum microhardness obtained in the lowest heat input. Black-Right-Pointing-Pointer The wear resistance of the coatings improved due to the formation of TiC particles.

  10. Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles

    Science.gov (United States)

    Reinholdt, A.; Pecenka, R.; Pinchuk, A.; Runte, S.; Stepanov, A. L.; Weirich, Th. E.; Kreibig, U.

    2004-10-01

    We present results of an investigation of TiN nanoparticles, which were produced by laser ablation/evaporation and adiabatic expansion with the nanoparticle beam apparatus LUCAS. Compositional and structural characterization, using secondary ion mass spectrometry (SIMS), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and selected area electron diffraction (SAED), revealed that crystalline and almost stoichiometric particles were formed and that they are susceptible to oxidation. Furthermore, transmission electron microscopy (TEM) analysis showed that TiN nanoparticles exhibit cuboid shapes. The size distributions were obtained using the edge length as parameter. They are fairly broad and the mean particle diameter depends on the seeding gas flow (the pressure) that is applied to the ablation chamber during production. In situ optical transmission spectra of the TiN nanoparticles deposited on a quartz substrate indicate a pronounced single Mie resonance at around 1.7 eV and an absorption flank starting at approximately 3.0 eV. The experimental optical extinction spectra of different samples were fitted using Mie theory calculations. The dielectric function of bulk TiN was modified to account for size and interface damping of the Mie resonance. Due to the distinct absorption band, TiN may be used as a color pigment. The dependence of the color stimulus on the extinction cross-section as well as on the product of the particle concentration and the sample thickness were examined. Chromaticity coordinates were derived according to the CIE 1976 (L^*a^*b^*) color space from the in situ optical transmission spectra.

  11. Near Infrared Lateral Photovoltaic Effect in LaTiO3 Films

    Directory of Open Access Journals (Sweden)

    Wujun Jin

    2013-01-01

    Full Text Available We have reported on the lateral photovoltaic effect of LaTiO3 films epitaxially grown on (100 SrTiO3 substrates. Under illumination of continuous 1064 nm laser beam on the LaTiO3 film through SrTiO3 substrate, the open-circuit photovoltage depended linearly on the illuminated position. The photosensitivity can be modified by bias current. These results indicated that the LaTiO3 films give rise to a potentially photoelectronic device for near infrared position-sensitive detection.

  12. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  13. Sol-gel synthesis, characterization and optical properties of mercury-doped TiO{sub 2} thin films deposited on ITO glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Sedrine, N.; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    The Hg-doped and undoped nano-crystalline TiO{sub 2} films on ITO glass substrates surface and polycrystalline powders were prepared by sol-gel dip coating technique. The crystal structure and surface morphology of TiO{sub 2} were characterized by means of X-ray diffractometer (XRD), atomic force microscope (AFM), spectrophotometer, Fourier-transform infrared (FTIR), and spectroscopic ellipsometry (SE). The results indicated that the powder of TiO{sub 2}, doped with 5% Hg in room temperature was only composed of the anatase phase whereas in the undoped powder exhibits an amorphous phase were present. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 400 {sup o}C. The average crystallite size of the undoped TiO{sub 2} films was about 8.17 nm and was increased with Hg-doping in the TiO{sub 2} films. Moreover, the grains distributed more uniform and the surface roughness was greater in the Hg-doped TiO{sub 2} films than in the undoped one. Refractive index and porosity were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range (1.95-2.49) and the porosity is in the range (47-2.8). The coefficient of transmission varies from 60 to 90%. SE study was used to determine the annealing temperature effect on the optical properties in the wavelength range from 0.25 to 2 {mu}m and the optical gap of the Hg-doped TiO{sub 2} thin films.

  14. Nonstoichiometry of Epitaxial FeTiO(3+delta) Films

    Science.gov (United States)

    2003-01-01

    nonstoichiometry of the FeTiO3 +8 films was probably produced by cation vacancies and disarrangement of Fe3+ and Ti4 ions, which randomly occupied both interstitial...and substitutional sites of the FeTiO 3 related structure. INTRODUCTION Solid solutions of ot-Fe20 3- FeTiO3 (hematite-ilmenite) series are known to...tried to confirm preparation conditions of stoichiometric FeTiO 3 films. According to a literature on bulk crystal growth of FeTiO3 [5], very low oxygen

  15. Enhanced piezoelectricity in plastically deformed nearly amorphous Bi{sub 12}TiO{sub 20}-BaTiO{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dan; Zhao, Minglei, E-mail: zhaoml@sdu.edu.cn; Wang, Chunlei; Wang, Lihai; Su, Wenbin; Gai, Zhigang; Wang, Chunming; Li, Jichao; Zhang, Jialiang [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2016-07-18

    Bulk Bi{sub 12}TiO{sub 20}-BaTiO{sub 3} (BTO-BT) nanocomposites are fabricated through the high-temperature interfacial reaction between nanometer-sized BaTiO{sub 3} particles and melting Bi{sub 12}TiO{sub 20}. Although the obtained BTO-BT nanocomposites are nearly amorphous and display very weak ferroelectricity, they exhibit relatively strong piezoelectricity without undergoing the electrical poling process. The volume fraction of crystalline Bi{sub 12}TiO{sub 20} is reduced to less than 10%, and the piezoelectric constant d{sub 33} is enhanced to 13 pC/N. Only the presence of the macroscopic polar amorphous phases can explain this unusual thermal stable piezoelectricity. Combining the results from X-ray diffraction, Raman spectroscopy, and thermal annealing, it can be confirmed that the formation of macroscopic polar amorphous phases is closely related to the inhomogeneous plastic deformation of the amorphous Bi{sub 12}TiO{sub 20} during the sintering process. These results highlight the key role of plastically deformed amorphous Bi{sub 12}TiO{sub 20} in the Bi{sub 12}TiO{sub 20}-based polar composites, and the temperature gradient driven coupling between the plastic strain gradient and polarization in amorphous phases is the main poling mechanism for this special type of bulk polar material.

  16. Production of hard hydrophilic Ni-B coatings on hydrophobic Ni-Ti and Ti-6Al-4V alloys by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Buelbuel, Ferhat; Karabudak, Filiz; Yesildal, Ruhi [Ataturk Univ., Erzurum (Turkey). Mechanical Engineering Dept.

    2017-07-01

    This paper is mainly focused on the wetting state of liquid droplets on Ni-Ti and Ti-6Al-4V hierarchical structured hydrophobic surfaces in micro/nanoscale. Electroless Ni-B deposition as a surface coating treatment has recently drawn considerable attention of researchers owing to remarkable advantages when compared with other techniques such as low price, conformal ability to coat substrates, good bath stability and relatively easier plating process control. The Ni-Ti and Ti-6Al-4V substrates were plated by electroless Ni-B plating process. The coated films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness testing and static contact angle measurement. Results obtained from the analyses show that electroless Ni-B deposition may improve the hardness and wettability of the Ni-Ti and Ti-6Al-4V alloy surfaces.

  17. Thin films preparation of the Ti-Al-O system by rf-sputtering;Preparacion de peliculas delgadas del sistema Ti-Al-O mediante rf-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Montes de Oca, J. A.; Ceballos A, J.; Galaviz P, J. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamaulipas (Mexico); Manaud, J. P.; Lahaye, M. [Centre National de la Recherche Scientifique, Institut de Chimie de la Matiere Condensee, Universite Bordeaux I, 87, Av. du Dr. Schweitzer, F-33608 Pessac-Cedex (France); Munoz S, J., E-mail: jmontedeocacv@ipn.m [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico)

    2010-07-01

    In the present work Ti-Al-O thin films were synthesized by rf-sputtering technique on glass and silicon (Si) substrates using Ti Al and Ti{sub 3}Al targets in a sputtering chamber with an Ar-O{sub 2} atmosphere. Ti-Al-O thin films were obtained varying experimental parameters such as oxygen percent fed to the reaction chamber, plasma power density and substrate temperature. The films deposited on glass substrates were used to evaluate their optical properties, while those deposited on Si substrates were used to evaluate mechanical and morphological properties. The crystalline structure, morphology, chemical composition and optical properties of the films were evaluated by X-ray diffraction, high-resolution scanning electron microscopy, Auger electron microscopy and visible UV spectroscopy. Films thicknesses were measured using a profiler. The roughness and mechanical properties such as hardness and Young modulus were analyzed by atomic force microscopy and nano indentation technique, respectively. (Author)

  18. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate

    International Nuclear Information System (INIS)

    Zhang, Wenli; Kong, Haishen; Lin, Haibo; Lu, Haiyan; Huang, Weimin; Yin, Jian; Lin, Zheqi; Bao, Jinpeng

    2015-01-01

    In this study, PbO 2 electrode was prepared on porous Ti/SnO 2 –Sb 2 O 5 substrate (denoted as 3D-Ti/PbO 2 electrode), and its electrochemical properties were investigated in detail. The electrodeposition mechanism of 3D-Ti/PbO 2 electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscope (SEM) result showed that the 3D-Ti/PbO 2 electrode possessed porous structure when it was electrodeposited for time less than 30 min. The 3D-Ti/PbO 2 electrode prepared for 10 min had more active sites than the lead dioxide electrode electrodeposited on planar titanium substrate (denoted as 2D-Ti/PbO 2 electrode) and its electrochemical porosity is about 54%. The embedded structure between porous Ti/SnO 2 –Sb 2 O 5 substrate and PbO 2 coating increased the stability of 3D-Ti/PbO 2 electrode. The service life of 3D-Ti/PbO 2 electrode was about 350 h which was much longer than 2D-Ti/PbO 2 electrode. What's more, 3D-Ti/PbO 2 electrode had better electrocatalytic activity towards phenol degradation than 2D-Ti/PbO 2 electrode. - Highlights: • 3D-Ti/PbO 2 electrode was prepared on a porous titanium substrate. • The electrochemical active surface area was investigated. • The activity of 3D-Ti/PbO 2 electrode towards phenol oxidation was investigated. • 3D-Ti/PbO 2 electrode shows superior electrocatalytic activity.

  19. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate

    Science.gov (United States)

    Nabhani, Mohammad; Razavi, Reza Shoja; Barekat, Masoud

    2018-03-01

    In this article, Ti-6Al-4V powder alloy was directly deposited on Ti-6Al-4V substrate using laser cladding process. In this process, some key parameters such as laser power (P), laser scanning rate (V) and powder feeding rate (F) play important roles. Using linear regression analysis, this paper develops the empirical-statistical relation between these key parameters and geometrical characteristics of single clad tracks (i.e. clad height, clad width, penetration depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). The results indicated that the clad width linearly depended on PV-1/3 and powder feeding rate had no effect on it. The dilution controlled by a combined parameter as VF-1/2 and laser power was a dispensable factor. However, laser power was the dominant factor for the clad height, penetration depth, and wetting angle so that they were proportional to PV-1F1/4, PVF-1/8, and P3/4V-1F-1/4, respectively. Based on the results of correlation coefficient (R > 0.9) and analysis of residuals, it was confirmed that these empirical-statistical relations were in good agreement with the measured values of single clad tracks. Finally, these relations led to the design of a processing map that can predict the geometrical characteristics of the single clad tracks based on the key parameters.

  20. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  1. Highly oriented as-deposited superconducting laser ablated thin films of Y1Ba2Cu3O/sub 7-//sub δ/ on SrTiO3, zirconia, and Si substrates

    International Nuclear Information System (INIS)

    Koren, G.; Polturak, E.; Fisher, B.; Cohen, D.; Kimel, G.

    1988-01-01

    KrF excimer laser ablation of an Y 1 Ba 2 Cu 3 O/sub 7-//sub δ/ pellet in 0.1--0.2 Torr of O 2 ambient was used to deposit thin superconducting films onto SrTiO 3 , yttria-stabilized zirconia (YSZ), and silicon substrates at 600--700 0 C. The as-deposited 1-μm-thick films at 650--700 0 C substrate temperature were superconducting, without further high-temperature annealing. All films had a similar T/sub c/ onset of ∼92 K but different zero-resistance T/sub c/ of 90, 85, and 70 K for the films on SrTiO 3 , YSZ, and Si substrates, respectively. Angular x-ray diffraction analysis showed that all the films were highly oriented with the c axis perpendicular to their surface. Critical current densities at 77 K were about 40 000 and 10 000 A/cm 2 for the films on SrTiO 3 and YSZ, respectively. Smooth surface morphology was observed in all films, with occasional defects and cracks in the films on YSZ, which seems to explain the lower critical current in these films

  2. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Canto, C.E., E-mail: carloscanto2012@yahoo.com.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Rocha, M.F. [ESIME-Z, IPN, U.P. ALM, Gustavo A. Madero, C.P. 07738 México D.F. (Mexico); Alemón, B. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Huegel, J.C. [Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico)

    2016-03-15

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  3. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    International Nuclear Information System (INIS)

    Canto, C.E.; Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C.; Rocha, M.F.; Alemón, B.; Flores, M.; Huegel, J.C.

    2016-01-01

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  4. Role of electrode metallization in the performance of bulk semi-insulating InP radiation detectors

    International Nuclear Information System (INIS)

    Zatko, B.; Dubecky, F.; Prochazkova, O.; Necas, V.

    2007-01-01

    This work deals with the study of three different electrode metallizations with the aim to form a Schottky barrier contact. Electrode geometry corresponds to the requirements of digital radiography systems. As substrates bulk Liquid Encapsulated Czochralski (LEC) SI InP wafers doped with Fe and Fe+Zn are used. Results of this study show that no one of the used metallization performs as a blocking contact. However, detectors with Ti/Pt/Au metallization attained a relatively good energy resolution of 7.0 keV in full-width at half-maximum (FWHM) and the charge collection efficiency (CCE) higher than 83% for 122 keV γ-photons at 255 K. The development of SI InP radiation detectors and in particular their electrode technology is discussed in the light of observed results

  5. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  6. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  7. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    Science.gov (United States)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  8. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds

    International Nuclear Information System (INIS)

    Zou Minmin; Li Jingfeng; Du Bing; Liu Dawei; Kita, Takuji

    2009-01-01

    Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 μW m -1 K -2 at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

  9. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Alat, Ece, E-mail: exa179@psu.edu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Motta, Arthur T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Comstock, Robert J.; Partezana, Jonna M. [Westinghouse Electric Co., Beulah Rd, Pittsburgh, PA 1332 (United States); Wolfe, Douglas E. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Applied Research Laboratory, The Pennsylvania State University, 119 Materials Research Building, University Park, PA 16802 (United States)

    2016-09-15

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO{sup ®} coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti{sub 1-x}Al{sub x}N (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm{sup 2} weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO{sup ®} which showed a weight gain of 40.2 mg/dm{sup 2}. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance. - Highlights: • The first study on multilayer TiAlN and TiN ceramic coatings on ZIRLO{sup ®} coupons. • Corrosion tests were performed at 360°C and 18.7 MPa for up to 90 days. • Coatings adhered well to the substrate, and showed no spallation/delamination. • Weight gains were six times lower than those of uncoated ZIRLO{sup ®} samples. • Longer and higher temperature corrosion tests will be discussed in a further paper.

  10. Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells

    Science.gov (United States)

    Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin

    2014-09-01

    Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.

  11. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  12. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films.

    Science.gov (United States)

    Kaspar, Tiffany C; Hong, Seungbum; Bowden, Mark E; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R; Comes, Ryan B; Ramuhalli, Pradeep; Henager, Charles H

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200 °C due to the low Curie temperature of the piezoelectric material. Strengthening the piezoelectric coupling of high-temperature piezoelectric materials, such as La 2 Ti 2 O 7 (LTO), would allow sensors to operate across a broad temperature range. The crystalline orientation and piezoelectric coupling direction of LTO thin films can be controlled by epitaxial matching to SrTiO 3 (001), SrTiO 3 (110), and rutile TiO 2 (110) substrates via pulsed laser deposition. The structure and phase purity of the films are investigated by x-ray diffraction and scanning transmission electron microscopy. Piezoresponse force microscopy is used to measure the in-plane and out-of-plane piezoelectric coupling in the films. The strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO 2 (110) results in epitaxial La 2/3 TiO 3 , an orthorhombic perovskite of interest as a microwave dielectric material and an ion conductor. La 2/3 TiO 3 can be difficult to stabilize in bulk form, and epitaxial stabilization on TiO 2 (110) is a promising route to realize La 2/3 TiO 3 for both fundamental studies and device applications. Overall, these results confirm that control of the crystalline orientation of epitaxial LTO-based materials can govern the resulting functional properties.

  13. Ab initio hybrid DFT calculations of BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eglitis, Roberts I., E-mail: rieglitis@gmail.com

    2015-12-15

    Highlights: • Surface energies for AO{sub 3}-term (111) surfaces are larger than for Ti (Zr)-term surfaces. • A increase of Ti−O (Zr−O) bond covalency near the ABO{sub 3} (111) surface relative to the bulk is observed. • The ABO{sub 3} (111) surface energy is larger than the earlier calculated (001) surface energy. • Band gap for PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces becomes smaller, but for BaTiO{sub 3} (111) larger with respect to the bulk . - Abstract: The results of ab initio calculations for polar BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces using the CRYSTAL code are presented. By means of the hybrid B3LYP approach, the surface relaxation has been calculated for two possible B (B = Ti or Zr) or AO{sub 3} (A = Ba, Pb or Sr) BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surface terminations. According to performed B3LYP calculations, all atoms of the first surface layer, for both terminations, relax inwards. The only exception is a small outward relaxation of the PbO{sub 3}-terminated PbTiO{sub 3} (111) surface upper layer Pb atom. B3LYP calculated surface energies for BaO{sub 3}, PbO{sub 3}, SrO{sub 3} and PbO{sub 3}-terminated BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces are considerably larger than the surface energies for Ti (Zr)-terminated (111) surfaces. Performed B3LYP calculations indicate a considerable increase of Ti−O (Zr−O) chemical bond covalency near the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surface relative to the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} bulk. Calculated band gaps at the Γ-point near the PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces are reduced, but near BaTiO{sub 3} (111) surfaces increased, with respect to the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} bulk band gap at the Γ-point values.

  14. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    International Nuclear Information System (INIS)

    Pan Mingli; Kong Xiangdong; Cai Yurong; Yao Juming

    2011-01-01

    Research highlights: → Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. → The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. → Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  15. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Pan Mingli [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kong Xiangdong [College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yao Juming, E-mail: yaoj@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2011-04-15

    Research highlights: {yields} Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. {yields} The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. {yields} Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  16. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  17. A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges

    Energy Technology Data Exchange (ETDEWEB)

    Audronis, M., E-mail: m.audronis@yahoo.co.uk [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Hinder, S.J. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Mack, P. [ThermoFisher Scientific Ltd, Imberhorne Lane, East Grinstead, Sussex, RH19 1UB (United Kingdom); Bellido-Gonzalez, V. [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Bussey, D.; Matthews, A. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Baker, M.A. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2011-12-30

    PET web samples have been treated by magnetically enhanced glow discharges powered using either medium frequency pulse direct current (p-DC) or low frequency high power pulse (HIPIMS) sources. The plasma pre-treatment processes were carried out in an Ar-O{sub 2} atmosphere using either Cu or Ti sputter targets. XPS, AFM and sessile drop water contact angle measurements have been employed to examine changes in surface chemistry and morphology for different pre-treatment process parameters. Deposition of metal oxide onto the PET surface is observed as a result of the sputter magnetron-based glow discharge web treatment. Using the Cu target, both the p-DC and HIPIMS processes result in the formation of a thin CuO layer (with a thickness between 1 and 11 nm) being deposited onto the PET surface. Employing the Ti target, both p-DC and HIPIMS processes give rise to a much lower concentration of Ti (< 5 at.%), in the form of TiO{sub 2} on the PET treated surface. The TiO{sub 2} is probably distributed as an island-like distribution covering the PET surface. Presence of Cu and Ti oxide constituents on the treated PET is beneficial in aiding the adhesion but alone (i.e. without oxygen plasma activation) is not enough to provide very high levels of hydrophilicity as is clear from sessile drop water contact angle measurements on aged samples. Exposure to the plasma treatments leads to a small amount of roughening of the substrate surface, but the average surface roughness in all cases is below 2.5 nm. The PET structure at the interface with a coating is mostly or wholly preserved. The oxygen plasma treatment, metal oxide deposition and surface roughening resulting from the HIPIMS and p-DC treatments will promote adhesion to any subsequent thin film that is deposited immediately following the plasma treatment.

  18. Advances in developing TiNi nanoparticles

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2006-01-01

    The elaboration of nanoparticles has become a field of great interest for many scientists. Nanoparticles possess different properties than those ones shown in bulk materials. Shape memory alloys have the exceptional ability to recuperate its original shape by simple heating after being 'plastically' deformed. When this process is originated, important changes in properties, as mechanical and electrical, are developed in bulk material. If there is possible to obtain nanoparticles with shape memory effects, these nanoparticles could be used in the elaboration of nanofluids with the ability to change their electrical and thermal conductivity with temperature changes, i.e., smart nanofluids. In this work, some recent results and discussion of TiNi nanoparticles obtained by ion beam milling directly from a TiNi wire with shape memory are presented. The nanoparticles obtained by this process are about 2 nm of diameter with a composition of Ti-41.0 at.% Ni. Synthesized nanoparticles elaborated by this method have an ordered structure

  19. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    Science.gov (United States)

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  20. Low-temperature sputtering of crystalline TiO2 films

    International Nuclear Information System (INIS)

    Musil, J.; Herman, D.; Sicha, J.

    2006-01-01

    This article reports on the investigation of reactive magnetron sputtering of transparent, crystalline titanium dioxide films. The aim of this investigation is to determine a minimum substrate surface temperature T surf necessary to form crystalline TiO 2 films with anatase structure. Films were prepared by dc pulsed reactive magnetron sputtering using a dual magnetron operating in bipolar mode and equipped with Ti(99.5) and ceramic Ti 5 O 9 targets. The films were deposited on unheated glass substrates and their structure was characterized by x-ray diffraction and surface morphology by atomic force microscopy. Special attention is devoted to the measurement of T surf using thermostrips pasted to the glass substrate. It was found that (1) T surf is considerably higher (approximately by 100 deg. C or more) than the substrate temperature T s measured by the thermocouple incorporated into the substrate holder and (2) T surf strongly depends on the substrate-to-target distance d s-t , the magnetron target power loading, and the thermal conductivity of the target and its cooling. The main result of this study is the finding that (1) the crystallization of sputtered TiO 2 films depends not only on T surf but also on the total pressure p T of sputtering gas (Ar+O 2 ), partial pressure of oxygen p O 2 , the film deposition rate a D , and the film thickness h (2) crystalline TiO 2 films with well developed anatase structure can be formed at T surf =160 deg. C and low values of a D ≅5 nm/min (3) the crystalline structure of TiO 2 film gradually changes from (i) anatase through (ii) anatase+rutile mixture, and (iii) pure rutile to x-ray amorphous structure at T surf =160 deg. C and p T =0.75 Pa when p O 2 decreases and a D increases above 5 nm/min, and (4) crystallinity of the TiO 2 films decreases with decreasing h and T surf . Interrelationships between the structure of TiO 2 film, its roughness, T surf , and a D are discussed in detail. Trends of next development are

  1. Alloying effects on structural and thermal behavior of Ti1-xZrxC: A first principles study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti 1-x Zr x C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti 1-x Zr x C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  2. XAFS Studies of Fe Doped PhTiO3 Nanoparticles

    International Nuclear Information System (INIS)

    Shibata, Tomohiro; Chattopadhyay, Soma; Lin Bin; Palkar, V. R.

    2007-01-01

    Fe K and Ti K edge XAFS studies are reported on Fe doped PbTiO3 nanoparticles down to the 10 nm size. Fe forms Fe3+ ions and substitute for Ti4+ ions. For 18 nm nanoparticles, the Fe and Ti environment is found to be quite different. For PbFe0.5Ti0.5O3, locally the structure remains distorted from bulk to 10 nm size although the average structure changes

  3. Characterization of a biomimetic coating on dense and porous titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.N. da; Pereira, L.C. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Ribeiro, A.A.; Oliveira, M.V. de, E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Andrade, M.C. de [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  4. Characterization of a biomimetic coating on dense and porous titanium substrates

    International Nuclear Information System (INIS)

    Rocha, M.N. da; Pereira, L.C.; Andrade, M.C. de

    2010-01-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  5. Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomoaki, E-mail: t-yamada@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Yasumoto, Jun; Ito, Daisuke; Yoshino, Masahito; Nagasaki, Takanori [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8 and Synchrotron X-ray Group, National Institute for Materials Science, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Department of Innovative and Engineered Material, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Imai, Yasuhiko [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kiguchi, Takanori [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Shiraishi, Takahisa; Shimizu, Takao; Funakubo, Hiroshi [Department of Innovative and Engineered Material, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2015-08-21

    The converse piezoelectric responses of (111)- and (001)-epitaxial tetragonal Pb(Zr{sub 0.35}Ti{sub 0.65})O{sub 3} [PZT] films were compared to investigate the orientation dependence of the substrate clamping effect. Synchrotron X-ray diffraction (XRD) and piezoelectric force microscopy revealed that the as-grown (111)-PZT film has a polydomain structure with normal twin boundaries that are changed by the poling process to inclined boundaries, as predicted by Romanov et al. [Phys. Status Solidi A 172, 225 (1999)]. Time-resolved synchrotron XRD under bias voltage showed the negligible impact of substrate clamping on the piezoelectric response in the (111)-PZT film, unlike the case for (001)-PZT film. The origin of the negligible clamping effect in the (111)-PZT film is discussed from the viewpoint of the elastic properties and the compensation of lattice distortion between neighboring domains.

  6. Effect of RF power and substrate temperature on physical properties of Zr0.8Sn0.2TiO4 films by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Hsu Cheng-Shing; Huang Cheng-Liang

    2001-01-01

    Physical properties of rf-sputtered crystalline (Zr 0.8 Sn 0.2 )TiO 4 (ZST) thin films deposited on n-type Si(100) substrates at different rf powers and substrate temperatures have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were found to be sensitive to deposition conditions, such as rf power from 300 W to 400 W and substrate temperature (400degC, 450degC). Highly oriented ZST (111) and (002) perpendicular to the substrate surface were identified at a rf power of 400 W and a substrate temperature of 450degC. The selected-area diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. The grain size as well as the deposition rate of the film increased with the increase in both the rf power and the substrate temperature. The leakage current decreased with increasing rf power and substrate temperature. As rf power = 400 W and substrate temperature = 450degC, a leakage current of 7.2x10 -11 A was obtained at 1 V. (author)

  7. Novel GIMS technique for deposition of colored Ti/TiO₂ coatings on industrial scale

    Directory of Open Access Journals (Sweden)

    Zdunek Krzysztof

    2016-03-01

    Full Text Available The aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm is fully acceptable form the point of view of expected applications e.g. for architectural glazing.

  8. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  9. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  10. Thermally Oxidized C, N Co-Doped ANATASE-TiO2 Coatings on Stainless Steel for Tribological Properties

    Science.gov (United States)

    Wang, Hefeng; Shu, Xuefeng; Li, Xiuyan; Tang, Bin; Lin, Naiming

    2013-07-01

    Ti(C, N) coatings were prepared on stainless steel (SS) substrates by plasma surface alloying technique. Carbon-nitrogen co-doped titanium dioxide (C-N-TiO2) coatings were fabricated by oxidative of the Ti(C, N) coatings in air. The prepared C-N-TiO2 coatings were characterized by SEM, XPS and XRD. Results reveal that the SS substrates were entirely shielded by the C-N-TiO2 coatings. The C-N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The tribological behavior of the coatings was tested with ball-on-disc sliding wear and compared with substrate. Such a C-N-TiO2 coatings showed good adhesion with the substrate and tribological properties of the SS in terms of much reduced friction coefficient and increased wear resistance.

  11. Synthesis and mechanical properties of bulk Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinfu; Wang, Kun; Li, Zhendong; Wang, Xingfu; Wang, Dan; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2015-05-25

    Graphical abstract: Different regions indentation morphologies under 50 g load consolidated at 723 K (left), nanohardness of the Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy as a function consolidation temperature (right). It can be seen from the above figures that the consolidated sample presents white regions, and the microhardness in the white regions is a little lower than the matrix, which could be caused by the difference of the chemical composition and chemical bonding forces between them. Interestingly, the cracks were formed around the indentation periphery in the white regions, which are not shown in the matrix. The nanohardness of the bulk composites increased from 11.16 to 13.27 GPa with the consolidation temperature increasing, mechanical softening was also found in the present alloys. - Highlights: • Bulk amorphous–nanocrystalline Al-based alloys were prepared by HPS process. • The Vickers microhardness of bulk samples is in the range of 945–1177HV0.1. • The nanohardness agrees well with the Vickers hardness testing results. - Abstract: Mechanically alloyed amorphous Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} (at.%) alloy powder was consolidated by high-pressure sintering process. The influence of the consolidation temperature on the structure and mechanical properties of the consolidated bulk alloys was examined by X-ray diffraction (XRD), Optical microscopy (OM), Scanning electron microscopy (SEM), Vickers Hardness Tester and Nano Indenter. Structural investigations of the bulk materials revealed that most of the amorphous structure was retained after consolidation at 623 K, however, compaction at 723 K and 823 K caused crystallization of the amorphous phase with the appearance of white regions. The results also indicate that application of high pressure affected the crystallization products of the present alloy. Micro mechanical analysis showed that the microhardness of the bulk composites increased from 945HV{sub 0.1} to 1177HV

  12. Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V alloy using laser surface cladding technique

    CSIR Research Space (South Africa)

    Adesina, OS

    2017-11-01

    Full Text Available properties can be enhanced by appropriate enhancement of the microstructure via surface modification technique without altering the bulk material. In this work, Cp-Ti and Co powders were deposited at different admixed percentages by laser cladding on Ti-6Al-4...

  13. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al{sub 2}O{sub 3}-13 wt%TiO{sub 2}/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Energy Technology Data Exchange (ETDEWEB)

    Palanivelu, R.; Ruban Kumar, A., E-mail: arubankumarvit@gmail.com

    2014-10-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al{sub 2}O{sub 3}-13 wt%TiO{sub 2} (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  14. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.G.; Santos, M.C.; Oliveira, R.T.S.; Bulhoes, L.O.S.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica. Universidade Federal de Sao Carlos, C.P. 676, CEP 13565-905, Sao Carlos, SP (Brazil)

    2006-07-14

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600{sup o}C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (420) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (200) and (420) were displaced by approximately -0.3{sup o}. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1M HClO{sub 4} showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk. (author)

  15. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Science.gov (United States)

    Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.

  16. Ti substrate coated with composite Cr–MoO2 coatings as highly selective cathode materials in hypochlorite production

    International Nuclear Information System (INIS)

    Lačnjevac, U.Č.; Jović, B.M.; Gajić-Krstajić, Lj.M.; Kovač, J.; Jović, V.D.; Krstajić, N.V.

    2013-01-01

    Highlights: ► Composite Cr–MoO 2 coatings were prepared by electrodeposition onto mild steel and Ti substrates. ► Ti/Cr–MoO 2 electrodes were investigated as cathode materials for the hypochlorite production. ► Selectivity of electrodes increased with the increase of the content of MoO 2 in the coating. ► The current efficiency for the HER exceeded 97% at the best cathode. ► The suppression of hypochlorite reduction is caused by the presence of Cr 2 O 3 at the surface. -- Abstract: The aim of this work was to investigate the possibility of preparation of the composite Cr–MoO 2 coatings onto steel and titanium substrates as cathode materials with high selective properties which imply the suppression of hypochlorite reduction as a side reaction during hypochlorite commercial production. The electrodes were prepared by simultaneous deposition of chromium and suspended MoO 2 particles on titanium substrate from acid chromium (VI) bath. The current efficiency for electrodeposition of the composite coatings did not vary significantly with the concentration of suspended MoO 2 particles. The content of molybdenum in the deposits was relatively low (0.2–1.5 at.%) and increased with increasing the concentration of suspended MoO 2 particles in the bath, in the range from 0 to 10 g dm −3 . With further increase in the concentration of MoO 2 , the content of molybdenum in the coating varied insignificantly. X-ray photoelectron spectroscopy-XPS and EDS analysis were applied to analyze elemental composition and chemical bonding of elements on the surface and in the sub-surface region of obtained coatings. When the concentration of MoO 2 particles in the bath was raised above 5 g dm −3 , the appearance of the coating changed from the typical pure chromium deposit to needle-like deposit with the appearance of black inclusions on the surface. XPS analysis and corresponding Cr 2p spectra showed the presence of chromium oxide, probably Cr 2 O 3 with Cr(3

  17. Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate

    Science.gov (United States)

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-01

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.

  18. Effect of TiO{sub 2} thickness on nanocomposited aligned ZnO nanorod/TiO{sub 2} for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saurdi, I., E-mail: saurdy788@gmail.com; Ishak, A. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); UiTM Sarawak Kampus Kota Samarahan Jalan Meranek, Sarawak (Malaysia); Shafura, A. K.; Azhar, N. E. A.; Mamat, M. H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); Malek, M. F.; Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), (Centre for Nano-Science and Nano-Technology), Institute of Science - IOS, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, A. H. Salman; Khan, Haseeb A. [Department of Biochemistry, College of Science, Bldg. 5, King Saud University (KSU) P.O: 2455 Riyadh 1145 (Saudi Arabia)

    2016-07-06

    The TiO{sub 2} films were deposited on glass substrate at different thicknesses with different deposition frequencies (1, 2, 3 and 4 times) using spin coating technique and their structural properties were investigated. Subsequently, the nanocomposited aligned ZnO nanorods and TiO{sub 2} were formed by deposited the TiO{sub 2} on top of aligned ZnO Nanorod on ITO-coated glass at different thicknesses using the same method of TiO{sub 2} deposited on glass substrate. The nanocomposited aligned ZnO nanorod/TiO{sub 2} were coated with different thicknesses of 900µm, 1815µm, 2710µm, 3620µm and ZnO without TiO{sub 2}. The dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO{sub 2} with thickness of 900µm, 1815µm, 2710µm and 3620µm and ZnO without TiO{sub 2} and their photovoltaic properties of the DSSCs were investigated. From the solar simulator measurement the solar energy conversion efficiency (η) of 2.543% under AM 1.5 was obtained for the ZnO nanorod/TiO{sub 2} photoanode-2710µm Dye-Sensitized solar cell.

  19. Thin films preparation of the Ti-Al-O system by rf-sputtering

    International Nuclear Information System (INIS)

    Montes de Oca, J. A.; Ceballos A, J.; Galaviz P, J.; Manaud, J. P.; Lahaye, M.; Munoz S, J.

    2010-01-01

    In the present work Ti-Al-O thin films were synthesized by rf-sputtering technique on glass and silicon (Si) substrates using Ti Al and Ti 3 Al targets in a sputtering chamber with an Ar-O 2 atmosphere. Ti-Al-O thin films were obtained varying experimental parameters such as oxygen percent fed to the reaction chamber, plasma power density and substrate temperature. The films deposited on glass substrates were used to evaluate their optical properties, while those deposited on Si substrates were used to evaluate mechanical and morphological properties. The crystalline structure, morphology, chemical composition and optical properties of the films were evaluated by X-ray diffraction, high-resolution scanning electron microscopy, Auger electron microscopy and visible UV spectroscopy. Films thicknesses were measured using a profiler. The roughness and mechanical properties such as hardness and Young modulus were analyzed by atomic force microscopy and nano indentation technique, respectively. (Author)

  20. Nanomorphological study of polymer bulk heterojuntion used in flexible solar devices

    Science.gov (United States)

    Calderón-Ortiz, Gabriel; Carrasco, Hector; Vedrine-Pauleus, Josee

    2014-03-01

    Solar cells fabricated with organic polymeric materials can enable large area fabrication on printable and flexible substrates, but increasing their efficiency is coupled to understanding their electrical properties and mechanical function on the nanoscale. In this study we measure the nanoscale conducting and mechanical properties of organic bulk heterojunction polymers coated on graphene and flexible PET or Si substrates. We characterize the nanomorphology of bulk heterojunction conducting polymers by applying conductive atomic force microscope (c-AFM), and force volume mapping for quantitative nanomechanical property calculations.

  1. Characterization of ultra-thin TiO2 films grown on Mo(112)

    International Nuclear Information System (INIS)

    Kumar, D.; Chen, M.S.; Goodman, D.W.

    2006-01-01

    Ultra-thin TiO 2 films were grown on a Mo(112) substrate by stepwise vapor depositing of Ti onto the sample surface followed by oxidation at 850 K. X-ray photoelectron spectroscopy showed that the Ti 2p peak position shifts from lower to higher binding energy with an increase in the Ti coverage from sub- to multilayer. The Ti 2p peak of a TiO 2 film with more than a monolayer coverage can be resolved into two peaks, one at 458.1 eV corresponding to the first layer, where Ti atoms bind to the substrate Mo atoms through Ti-O-Mo linkages, and a second feature at 458.8 eV corresponding to multilayer TiO 2 where the Ti atoms are connected via Ti-O-Ti linkages. Based on these assignments, the single Ti 2p 3/2 peak at 455.75 eV observed for the Mo(112)-(8 x 2)-TiO x monolayer film can be assigned to Ti 3+ , consistent with our previous results obtained with high-resolution electron energy loss spectroscopy

  2. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    Science.gov (United States)

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  3. Epitaxial Fe{sub 3-x}Ti{sub x}O{sub 4} films from magnetite to ulvöspinel by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Droubay, T.C.; Pearce, C.I.; Ilton, E.S.; Engelhard, M.H.; Engelhard, M.H.; Heald, S.M.; Arenholz, E.; Rosso, K.M.

    2011-07-21

    Epitaxial films along the Fe{sub 3-x}Ti{sub x}O{sub 4} (titanomagnetite) compositional series from pure end-members magnetite (Fe{sub 3}O{sub 4}) to ulvöspinel (Fe{sub 2}TiO{sub 4}) were successfully grown by pulsed laser deposition on MgO(100) substrates. Spectroscopic characterization including high resolution x-ray diffraction, x-ray photoelectron spectroscopy, and synchrotron-based x-ray absorption and magnetic circular dichroism consistently shows that Ti(IV) substitutes for Fe(III) in the inverse spinel lattice with a proportional increase in lattice Fe(II) concentration. No evidence of Ti interstitials, spinodal decomposition, or secondary phases was found in the bulk of the grown films. At the uppermost few nanometers of the Ti-bearing film surfaces, evidence suggests that Fe(II) is susceptible to facile oxidation, and that an associated lower Fe/Ti ratio in this region is consistent with surface compositional incompleteness or alteration to a titanomaghemite-like composition and structure. The surface of these films nonetheless appear to remain highly ordered and commensurate with the underlying structure despite facile oxidation, a surface condition that is found to be reversible to some extent by heating in low oxygen environments.

  4. Influence of Ni doping on phase transformation and optical properties of TiO2 films deposited on quartz substrates by sol-gel process

    International Nuclear Information System (INIS)

    Tian Jianjun; Deng Hongmei; Sun Lin; Kong Hui; Yang Pingxiong; Chu Junhao

    2012-01-01

    The Ni-doped TiO 2 films were synthesized on quartz substrates by the sol-gel method. Results from X-ray diffraction and Raman spectra indicate that Ni doping catalyzes the anatase-to-rutile transformation. When Ni content is up to 10 mol%, the transformation has been finished. The dielectric functions of Ni-doped TiO 2 films were extracted by fitting transmittance spectra according to the Adachi's dielectric function model. The optical band gap decreases from 3.64 eV to 3.51 eV with increasing Ni content. The results suggest that the acceleration of phase change and variation of optical properties may be related to defects due to Ni doping.

  5. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Science.gov (United States)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  6. Laser processing of in situ TiN/Ti composite coating on titanium.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates

    Directory of Open Access Journals (Sweden)

    Chuantong Liu

    2012-04-01

    Full Text Available In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2 double layer coatings were successfully developed on titanium (Ti substrates intended for biomedical applications. A TiO2 coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings on Ti substrates might be a promising material for bone replacement.

  8. High pressure synthesis of amorphous TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Bingbing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Liu, Jing [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-09-15

    Amorphous TiO{sub 2} nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO{sub 2} nanotubes. The structural phase transitions of anatase TiO{sub 2} nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO{sub 2} nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO{sub 2} phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B{sub 0} = 158 GPa) of the anatase TiO{sub 2} nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO{sub 2} nanotubes.

  9. Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

    International Nuclear Information System (INIS)

    Uchida, Hiroshi; Patel, Mehul N.; May, R. Alan; Gupta, Gaurav; Stevenson, Keith J.; Johnston, Keith P.

    2010-01-01

    Highly ordered mesoporous titanium dioxide (titania, TiO 2 ) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO 2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO 2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO 2 -buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO 2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO 2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO 2 (∼ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

  10. Microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Park, Ji Yoon; Kim, Kwan Hyu; Choe, Han Cheol

    1999-01-01

    The microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steels have been studied. AISI 304 stainless steels containing 0.1∼1.0 wt% Ti were fabricated by using vacuum furnace and followed by solutionization treatment at 1050 .deg. C for 1hr. The specimens were coated by Ti and TiN with 1 μm and 2 μm thickness by electron-beam PVD method. The microstructure and phase analysis were carried out by using XRD, WDS and SEM. Mechanical properties such as hardness (micro-Vickers) and wear resistance were examined. Coated films showed fine columnar structure and some defects. Surface roughness increased in all specimens after TiN coating. XRD patterns showed that the TiN(111) peak was major in TiN single-layer and the other peaks were very weak, but TiN(220) and TiN(200) peaks were developed in Ti/TiN double-layer. The hardness of the coating film was higher in Ti/TiN double-layer than in TiN single-layer and not affected by the Ti content of substrate. Ti/TiN double-layer showed better wear resistance than TiN single-layer. The observed wear traces were sheared type in all coated specimens

  11. IR emission and electrical conductivity of Nd/Nb-codoped TiO{sub x} (1.5 < x < 2) thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tchiffo-Tameko, C.; Cachoncinlle, C. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Perriere, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 P.O. Box MG-36, 77125 Bucharest-Magurele (Romania); Petit, A.; Aubry, O. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Pérez Casero, R. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Millon, E., E-mail: eric.millon@univ-orleans.fr [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France)

    2016-12-15

    Highlights: • Nd/Nb-codoped TiO{sub 2} PLD films are electrically insulating and transparent in the UV visible NIR spectral domain. • Nd/Nb-codoped oxygen deficient TiO{sub x} (x ≈ 1.5) films are conductive and absorbent. • IR emission of Nd{sup 3+} in codoped TiO{sub x} films is quenched due to oxygen deficiency. • High Nb-doping rate decreases the IR emission of Nd{sup 3+} in Nd/Nb-codoped TiO{sub 2} films. - Abstract: The effect of the co-doping with Nd and Nb on electrical and optical properties of TiO{sub x} films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO{sub 2}) or highly oxygen deficient (TiO{sub x} with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10{sup −1} and 10{sup −6} mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO{sub 2} were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV–vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd{sup 3+} emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiO{sub x} films by Nb{sup 5+} ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO{sub 2} films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10{sup −6} mbar).

  12. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH2/Nanocarved Ti Self-Supported Electrocatalysts for Highly Efficient H2 Generation.

    Science.gov (United States)

    Amin, Mohammed A; Fadlallah, Sahar A; Alosaimi, Ghaida S; Ahmed, Emad M; Mostafa, Nasser Y; Roussel, Pascal; Szunerits, Sabine; Boukherroub, Rabah

    2017-09-06

    Self-supported electrocatalysts are a new class of materials exhibiting high catalytic performance for various electrochemical processes and can be directly equipped in energy conversion devices. We present here, for the first time, sparse Au NPs self-supported on etched Ti (nanocarved Ti substrate self-supported with TiH 2 ) as promising catalysts for the electrochemical generation of hydrogen (H 2 ) in KOH solutions. Cleaned, as-polished Ti substrates were etched in highly concentrated sulfuric acid solutions without and with 0.1 M NH 4 F at room temperature for 15 min. These two etching processes yielded a thin layer of TiH 2 (the corrosion product of the etching process) self-supported on nanocarved Ti substrates with different morphologies. While F - -free etching process led to formation of parallel channels (average width: 200 nm), where each channel consists of an array of rounded cavities (average width: 150 nm), etching in the presence of F - yielded Ti surface carved with nanogrooves (average width: 100 nm) in parallel orientation. Au NPs were then grown in situ (self-supported) on such etched surfaces via immersion in a standard gold solution at room temperature without using stabilizers or reducing agents, producing Au NPs/TiH 2 /nanostructured Ti catalysts. These materials were characterized by scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). GIXRD confirmed the formation of Au 2 Ti phase, thus referring to strong chemical interaction between the supported Au NPs and the substrate surface (also evidenced from XPS) as well as a titanium hydride phase of chemical composition TiH 2 . Electrochemical measurements in 0.1 M KOH solution revealed outstanding hydrogen evolution reaction (HER) electrocatalytic activity for our synthesized catalysts, with Au NPs/TiH 2 /nanogrooved Ti catalyst being the best one among them. It exhibited fast kinetics

  13. Growth and characterization of hydroxyapatite nanorice on TiO2 nanofibers

    KAUST Repository

    Chetibi, Loubna; Hamana, Djamel; Achour, Slimane

    2014-01-01

    with anatase TiO2 nanofibers. These nanofibers were prepared by in situ oxidation of Ti foils in a concentrated solution of H 2O2 and NaOH, followed by proton exchange and calcinations. Afterward, TiO2 nanofibers on Ti substrate were coated with HA

  14. Temperature dependence of residual stress in TiC coated Mo

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Fukutomi, M.; Kamada, K.

    1984-01-01

    The effects of fabrication temperature and heat treatment on the residual stress in TiC coated Mo have been studied by using X-ray diffractometry. TiC coatings on Mo single crystal substrates with (100) and (111) surfaces were carried out with the Activated Reactive Evaporation (ARE) method. It was found that all Mo substrates measured show tensile residual stresses, and their values decrease as the fabrication temperature increases from 300 to 700 0 C. On the other hand, TiC films measured showed compressive residual stresses, for both TiC/Mo(100) and TiC/Mo(111) specimens. These compressive stresses also decreased with increasing the fabrication temperature. The residual stresses measured were higher in TiC/Mo(100) than in TiC/Mo(111). It was found that the compressive stresses in as-grown TiC films change to the tensile stresses after annealing at 1700 0 C for 30 min. The preferred orientations of TiC films were observed to depend on the fabrication temperature. However, no epitaxial growth of TiC films was found as far as the present experiment was concerned. (orig.)

  15. Transparent TiO2 nanowire networks via wet corrosion of Ti thin films for dye-sensitized solar cells

    Science.gov (United States)

    Shin, Eunhye; Jin, Saera; Hong, Jongin

    2017-09-01

    Transparent TiO2 nanowire networks were prepared by corrosion of Ti thin films on F-doped SnO2 glass substrates in an alkaline (potassium hydroxide: KOH) solution. The formation of the porous TiO2 nanostructures from the Ti thin films was thoroughly investigated. Dye-sensitized solar cells with a photoanode of 1.2-μm-thick nanowire networks exhibit an average optical transmittance of 40% in the visible light region and a power conversion efficiency of 1.0% under one sun illumination.

  16. Effects of Ti and TiC ceramic powder on laser-cladded Ti–6Al–4V in situ intermetallic composite

    International Nuclear Information System (INIS)

    Ochonogor, O.F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A.P.I.

    2012-01-01

    Highlights: ► The wear resistance of the laser clad surfaces was enhanced significantly with fifteen-folds wear rate reduction. ► Micro-hardness of the clad zones indicated a significant improvement of over two-folds greater than the substrate. ► Microstructures showed fine crystal grains distribution of ceramic particles that formed interstitial carbides in the titanium matrix composites. - Abstract: Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti–6Al–4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV 0.1 for the substrate reaching a peak as high as 922.2 HV 0.1 for 60%Ti + 40%TiC and the least 665.3 HV 0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  17. Molecular dynamics study of the interactions of incident N or Ti atoms with the TiN(001) surface

    International Nuclear Information System (INIS)

    Xu, Zhenhai; Zeng, Quanren; Yuan, Lin; Qin, Yi; Chen, Mingjun; Shan, Debin

    2016-01-01

    Graphical abstract: - Highlights: • Interactions of incident N or Ti atoms with TiN(001) surface are studied by CMD. • The impact position of incident N on the surface determines the interaction modes. • Adsorption could occur due to the atomic exchange process. • Resputtering and reflection may simultaneously occur. • The initial sticking coefficient of N on TiN(001) is much smaller than that of Ti. - Abstract: The interaction processes between incident N or Ti atoms and the TiN(001) surface are simulated by classical molecular dynamics based on the second nearest-neighbor modified embedded-atom method potentials. The simulations are carried out for substrate temperatures between 300 and 700 K and kinetic energies of the incident atoms within the range of 0.5–10 eV. When N atoms impact against the surface, adsorption, resputtering and reflection of particles are observed; several unique atomic mechanisms are identified to account for these interactions, in which the adsorption could occur due to the atomic exchange process while the resputtering and reflection may simultaneously occur. The impact position of incident N atoms on the surface plays an important role in determining the interaction modes. Their occurrence probabilities are dependent on the kinetic energy of incident N atoms but independent on the substrate temperature. When Ti atoms are the incident particles, adsorption is the predominant interaction mode between particles and the surface. This results in the much smaller initial sticking coefficient of N atoms on the TiN(001) surface compared with that of Ti atoms. Stoichiometric TiN is promoted by N/Ti flux ratios larger than one.

  18. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F. [University of Tsukuba, Institute of Applied Physics, Tsukuba, Ibaraki 305-8573 (Japan)

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerance of GaAs and that Ti can protected GaAs from erosion by NH{sub 3}. By depositing Ti on GaAs(111)A surface, a mirror-like GaN layer could be grown at 1000 C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Alloying effects on structural and thermal behavior of Ti{sub 1-x}Zr{sub x}C: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011(India)

    2016-05-06

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  20. A study of TiB2/TiB gradient coating by laser cladding on titanium alloy

    Science.gov (United States)

    Lin, Yinghua; Lei, Yongping; Li, Xueqiao; Zhi, Xiaohui; Fu, Hanguang

    2016-07-01

    TiB2/TiB gradient coating has been fabricated by a laser cladding technique on the surface of a Ti-6Al-4V substrate using TiB2 powder as the cladding material. The microstructure and mechanical properties of the gradient coating were analyzed by SEM, EPMA, XRD, TEM and an instrument to measure hardness. With the increasing distance from the coating surface, the content of TiB2 particles gradually decreased, but the content of TiB short fibers gradually increased. Meanwhile, the micro-hardness and the elastic modulus of the TiB2/TiB coating showed a gradient decreasing trend, but the fracture toughness showed a gradient increasing trend. The fracture toughness of the TiB2/TiB coating between the center and the bottom was improved, primarily due to the debonding of TiB2 particles and the high fracture of TiB short fibers, and the fracture position of TiB short fiber can be moved to an adjacent position. However, the debonding of TiB2 particles was difficult to achieve at the surface of the TiB2/TiB coating.

  1. Dielectric Performance of High Permitivity Nanocomposites: Impact of Polystyrene Grafting on BaTiO3 and TiO2

    Science.gov (United States)

    2016-09-22

    prepared using high-shear mixing (Ultra-Turrax T18, IKA). All BaTiO3 nanocomposites were solution cast from DMF onto aluminum-coated glass substrates...coated from chlorobenzene onto aluminum-coated glass substrates. Figure 3 a Real dielectric permittivity ε′ measured at 1 kHz for PS@BaTiO3 HNPs... SiO2 nanocomposites, where 15% v/v PS  +  SiO2 blends exhibited degraded energy storage efficiencies when driven above 100 V/μm, while 18% v/v PS@ SiO2

  2. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  3. Effect of Nb-doped TiO{sub 2} on nanocomposited aligned ZnO nanorod/TiO{sub 2}:Nb for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saurdi, I., E-mail: saurdy788@gmail.com; Ishak, A. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); UiTM Sarawak Kampus Kota Samarahan Jalan Meranek, Sarawak (Malaysia); Shafura, A. K.; Azhar, N. E. A.; Mamat, M. H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); Malek, M. F.; Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), (Centre for Nano-Science and Nano-Technology), Institute of Science, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, A. H. Salman; Khan, Haseeb A. [Department of Biochemistry, College of Science, Bldg. 5, King Saud University (KSU) P.O: 2455 Riyadh 1145 (Saudi Arabia)

    2016-07-06

    The Nb-doped TiO{sub 2} films were deposited on glass substrate at different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively and their electrical and structural properties were investigated. Subsequently, the Nb-doped TiO{sub 2} films were deposited on top of aligned ZnO Nanorod on ITO glass substrates using spin coating technique. The nanocomposited aligned ZnO nanorod/Nb-doped TiO{sub 2} (TiO{sub 2}:Nb) were coated with different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively. The Dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO{sub 2}:Nb photoanodes and their effects on the performance of the DSSCs were investigated. From the solar simulator measurement of DSSC the solar energy conversion efficiency (η) of 5.376% under AM 1.5 was obtained for the ZnO nanorod/TiO{sub 2}:Nb-5at.%.

  4. Diffusion characteristics in the Cu-Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Laik, Arijit; Kale, Gajanan Balaji [Bhabha Atomic Reseach Centre, Mumbai (India). Materials Science Div.; Bhanumurthy, Karanam [Bhabha Atomic Reseach Centre, Mumbai (India). Scientific Information Resource Div.; Kashyap, Bhagwati Prasad [Indian Institute of Technology Bombay, Mumbai (India). Dept. of Metallurgical Engineering

    2012-06-15

    The formation and growth of intermetallic compounds by diffusion reaction of Cu and Ti were investigated in the temperature range 720 - 860 C using bulk diffusion couples. Only four, out of the seven stable intermediate compounds of the Cu-Ti system, were formed in the diffusion reaction zone in the sequence CuTi, Cu{sub 4}Ti, Cu{sub 4}Ti{sub 3} and CuTi{sub 2}. The activation energies required for the growth of these compounds were determined. The diffusion characteristics of Cu{sub 4}Ti, CuTi and Cu{sub 4}Ti{sub 3} and Cu(Ti) solid solution were evaluated. The activation energies for diffusion in these compounds were 192.2, 187.7 and 209.2 kJ mol{sup -1} respectively, while in Cu(Ti), the activation energy increased linearly from 201.0 kJ mol{sup -1} to 247.5 kJ mol{sup -1} with increasing concentration of Ti, in the range 0.5 - 4.0 at.%. The impurity diffusion coefficient of Ti in Cu and its temperature dependence were also estimated. A correlation between the impurity diffusion parameters for several elements in Cu matrix has been established. (orig.)

  5. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    Science.gov (United States)

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided

  6. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey

    2014-02-24

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show that the interface between LaAlO3 and SrTiO3 is sharper when the oxygen pressure is lower. Over time, the formation of various crystalline phases is observed while the crystalline thickness of the LaAlO3 layer remains unchanged. X-ray scattering as well as atomic force microscopy measurements indicate three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer present in as-grown samples.

  7. Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses

    International Nuclear Information System (INIS)

    Jiang, W.H.; Liu, F.X.; Wang, Y.D.; Zhang, H.F.; Choo, H.; Liaw, P.K.

    2006-01-01

    As-cast bulk and as-spun ribbon Cu 60 Zr 30 Ti 10 metallic glasses were characterized using differential-scanning calorimetry and instrumented nanoindentation. Two alloys show a significant difference in the amount of free volume, which is attributed to the difference in a cooling rate, while exhibiting a similar serrated plastic flow. Atomic-force-microscopy observations demonstrate the pile-ups containing shear bands around the indents in both alloys. The as-cast bulk alloy has higher hardness and elastic modulus than the as-spun ribbon alloy. The difference in the strengths of two alloys may be related to the different amount of free volume. The strength seems to be more sensitive to a cooling rate during solidification than the plastic-flow behavior in the Cu 60 Zr 30 Ti 10

  8. Corrosion Behavior of Ti/TiN Film Coated on AISI 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Han Cheol [Kwangyang College, Gwangyang (Korea, Republic of); Park, Ji Yoon; Kim, Kwan Hyu [Chonnam National University, Gwangju (Korea, Republic of)

    2000-06-15

    Effects of the Ti content and the presence of Ti underlayer on the corrosion behaviors of TiN coated AISI 304 stainless steel have been studied. The stainless steel containing 0.1{approx}1.0 wt% Ti were melted with a vacuum furnace and heat treated at 1050 .deg. C for 1hr for solutionization. The specimens were coated with Ti and TiN with thickness of 1 {mu}m and 2 {mu}m respectively by electron-beam physical vapour deposition (EB-PVD) method. The microstructures and phase analysis were conducted by using SEM and WDS. The coated films showed fine columnar structure. The corrosion potential obtained from the anodic polarization curves measured in H{sub 2}SO{sub 4} solution increased in proportion to the Ti content of substrate and was much higher in the specimen coated with Ti underlayer compared to the specimen without Ti underlayer. The potential-time and the current-time curves which were obtained in 0.1M H{sub 2}SO{sub 4} + 0.1M HCI solution showed that both the increase in Ti content and the presence of Ti underlayer increased the potential and decreased the current density resulting in a dense passive film and a suppress of pit formation respectively.

  9. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O{sub 3} antiferroelectric bulk ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin, E-mail: xldong@mail.sic.ac.cn [Key laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai (China)

    2016-05-15

    The dielectric and energy-storage properties of Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.60}Sn{sub 0.40}){sub 0.95}Ti{sub 0.05}]{sub 0.98}O{sub 3} (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T{sub 0}, T{sub C}, T{sub 2} are obtained from the dielectric temperature spectrum. At different temperature regions (below T{sub 0}, between T{sub 0} and T{sub C}, and above T{sub C}), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ∼T{sub 0}. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.

  10. Crystal structure of TiNi nanoparticles obtained by Ar ion beam deposition

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2008-01-01

    Nanoparticles are a state of matter that have properties different from either molecules or bulk solids, turning them into a very interesting class of materials to study. In the present work, the crystal structure of TiNi nanoparticles obtained by ion beam deposition is characterized. TiNi nanoparticles were obtained from TiNi wire samples by sputtering with Ar ions using a Gatan precision ion polishing system. The TiNi nanoparticles were deposited on a Lacey carbon film that was used for characterization by transmission electron microscopy. The nanoparticles were characterized by high-resolution transmission electron microscopy, high-angle annular dark-field imaging, electron diffraction, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Results of nanodiffraction seem to indicate that the nanoparticles keep the same B2 crystal structure as the bulk material but with a decreased lattice parameter

  11. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    Science.gov (United States)

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-08

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently.

  12. First-principles study on the thermodynamic stability, magnetism, and half-metallicity of full-Heusler alloy Ti{sub 2}FeGe (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yan; Zhang, Jian-Min, E-mail: jmzhang@snnu.edu.cn

    2017-05-10

    For the Ti{sub 2}FeGe Heusler alloy, the surface stability, electronic and magnetic properties of the various (001) surfaces have been studied by using first-principles calculations. The TiGe termination is the most stable one while the GeGe* termination is the most unstable one. Both the density of states (DOS) and atomic magnetic moments (AMMs) of the central layers are similar to the corresponding bulk characters due to no influence of surface effect as we expected. The TiGe termination has the highest spin polarization 96.67%, followed by the TiFe (67.17%), GeGe* (66.51%) and FeFe* terminations (62.02%). The TiTi* terminations has the lowest spin polarization 61.31%. The magnetic moments for atoms on the surfaces and subsurfaces of these terminations are different from the bulk case. - Highlights: • TiGe termination is the most stable while GeGe* termination is the most unstable. • TiGe termination has the highest spin polarization followed by TiFe, GeGe*, FeFe* and TiTi*. • Atomic magnetic moments at the (001) surfaces are greatly different from the bulk values.

  13. Formation of Ti(III) and Ti(IV) states in Ti{sub 3}O{sub 5} nano- and microfibers obtained from hydrothermal annealing of C-doped TiO{sub 2} on Si

    Energy Technology Data Exchange (ETDEWEB)

    Stem, Nair, E-mail: nairstem@hotmail.com [Laboratório de Sistemas Integráveis (LSI), Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto 158, 05508900 São Paulo, SP (Brazil); Souza, Michele L.; Araújo de Faria, Dalva Lúcia Araújo [Laboratório de Espectroscopia Molecular (LEM), Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508900 São Paulo, SP (Brazil); Santos Filho, Sebastião G. dos [Laboratório de Sistemas Integráveis (LSI), Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto 158, 05508900 São Paulo, SP (Brazil)

    2014-05-02

    In this work, it is investigated the formation of Ti(III) and Ti(IV) states at the surface and in the bulk of the Ti{sub 3}O{sub 5} material grown as meshes of nano- and micro-fibers obtained from hydrothermal annealing of C-doped TiO{sub 2} on Si. The topography and distribution of the fibers in the meshes were characterized by atomic force microscopy. When the fiber distribution was more compact, a higher photoluminescence signal at 850 nm (1.46 eV) was obtained, indicating the presence of a higher number of defects corresponding to the Ti(III) sites. From X-ray photoelectron spectroscopy, it was obtained a Ti(III)/Ti(IV) ratio much lower than the expected value for the Ti{sub 3}O{sub 5} phase (2 Ti(III): 1 Ti(IV)). The discrepancy was mainly attributed to the reaction of surface Ti(III) states of the Ti{sub 3}O{sub 5} fibers with water during the hydrothermal annealing, resulting in surface Ti(IV) with -OH radicals. On the other hand, X-ray photoelectron spectroscopy also indicated that substitutional and interstitial carbon atoms coexist, elemental carbon exists in the samples due to the co-deposition process and, as a result, the carbon inside of the TiO{sub 2} rutile lattice is acting as one of the precursors for the formation of Ti{sub 3}O{sub 5}. - Highlights: • Ti(III) states are detected inside of Ti{sub 3}O{sub 5} nano- and microfibers. • Ti(IV) states are predominantly detected on the surface of Ti{sub 3}O{sub 5} nano- and microfibers. • Photoluminescence at 850 nm for Ti{sub 3}O{sub 5} is due to defects associated to Ti(III). • Rutile possibly changes to C2/m Ti{sub 3}O{sub 5} during the hydrothermal annealing of C-doped TiO{sub 2}.

  14. Surface morphology and in-plane-epitaxy of SmBa2Cu3O7-δ films on SrTiO3 (001) substrates studied by STM and grazing incidence x-ray diffraction

    DEFF Research Database (Denmark)

    Jiang, Q.D.; Smilgies, D.M.; Feidenhans'l, R.

    1996-01-01

    The surface morphology and in-plane epitaxy of thin films of SmBa(2)Cu3O(7-delta) (Sm-BCO) grown on SrTiO3 (001) substrates with various thicknesses have been investigated by scanning tunneling microscopy (STM) and grazing incidence x-ray diffraction (GIXRD). As revealed by GIXRD, SmBCO films as ...... films above h(c2), introduction of screw dislocations leads to spiral growth.......The surface morphology and in-plane epitaxy of thin films of SmBa(2)Cu3O(7-delta) (Sm-BCO) grown on SrTiO3 (001) substrates with various thicknesses have been investigated by scanning tunneling microscopy (STM) and grazing incidence x-ray diffraction (GIXRD). As revealed by GIXRD, SmBCO films...... substrate. Three different types of surface morphology were observed by STM with increasing film thickness h: a) 2D growth for hh(c2). With GIXRD, a density modulation is observed in the films with a thickness below h(c2). For thicker...

  15. TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells

    NARCIS (Netherlands)

    Iraj, M.; Kolahdouz, M.; Asl-Soleimani, E.; Esmaeili, E.; Kolahdouz Esfahani, Z.

    2016-01-01

    In this paper, we present the synthesis of TiO2 nanotube (NT) arrays formed by anodization of Ti film deposited on a fluorine-doped tin oxide-coated glass substrate by direct current magnetron sputtering. NH4F/ethylene glycol electrolyte was used to demonstrate the growth of stable nanotubes at room

  16. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys.

    Science.gov (United States)

    V V, Anusha Thampi; Bendavid, Avi; Martin, P J; Vaithilingam, Vijay; Bean, Penelope A; Evans, Margaret D M; Subramanian, B

    2017-07-01

    Surface modifications of metallic implants are important in order to protect the underlying metals from the harsh corrosive environment inside the human body and to minimize the losses caused by wear. Recently, researches are carried out in developing bioactive surfaces on metallic implants, which supports the growth and proliferation of cells on to these surfaces. Titanium silicon nitride (TiSiN) hard nanocomposites thin films were fabricated on Ti alloys (Ti-6Al-4V) by pulsed direct current (DC) reactive magnetron sputtering. The films were characterized for its microstructural and electrochemical behavior. The higher charge transfer resistance (Rct) and positive shift in Ecorr value of TiSiN/Ti alloys than the bare Ti-alloys indicates a better corrosion resistance offered by the TiSiN thin films to the underlying substrates. The biological response to TiSiN/Ti alloys and control bare Ti-alloys was measured in vitro using cell-based assays with two main outcomes. Firstly, neither the Ti alloy nor the TiSiN thin film was cytotoxic to cells. Secondly, the TiSiN thin film promoted differentiation of human bone cells above the bare control Ti alloy as measured by alkaline phosphatase and calcium production. TiSiN thin films provide better corrosion resistance and protect the underlying metal from the corrosive environment. The thin film surface is both biocompatible and bioactive as indicated from the cytotoxicity and biomineralization studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.-C. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China); Chang, L.-S. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China)], E-mail: lschang@dragon.nchu.edu.tw; Lin, H.C. [Department of Materials Science and Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, 106 Taipei, Taiwan (China)

    2008-03-30

    Titanium oxynitride (TiN{sub x}O{sub y}) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN{sub x}O{sub y} films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm{sup 2} to 7 W/cm{sup 2}. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN{sub x}O{sub y} films deposited at power densities above 4 W/cm{sup 2} show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN{sub x}O{sub y} films reach values as low as 0.98 g/m{sup 2}-day-atm and 0.60 cm{sup 3}/m{sup 2}-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al{sub 2}O{sub 3} barrier films. Therefore, TiN{sub x}O{sub y} films are potential candidates to be used as a gas permeation barrier for PET substrate.

  18. Effect of the out-of-plane stress on the properties of epitaxial SrTiO{sub 3} films with nano-pillar array on Si-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, Dongmei [School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China)

    2015-08-21

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO{sub 3} films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO{sub 3} films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO{sub 3} films similar to PZT and other lead-based ferroelectrics can be expected.

  19. In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid

    Directory of Open Access Journals (Sweden)

    Wei Yi

    2014-09-01

    Full Text Available 3D Ti-mesh has been coated with bioceramics under different coating conditions, such as material compositions and micro-porosity, using a dip casting method. Hydroxyapatite (HA, micro-HA particles (HAp, a bioglass (BG and their different mixtures together with polymer additives were used to control HA-coating microstructures. Layered composites with the following coating-to-substrate designs, such as BG/Ti, HA + BG/BG/Ti and HAp + BG/BG/Ti, were fabricated. The bioactivity of these coated composites and the uncoated Ti-mesh substrate was then investigated in a simulated body fluid (SBF. The Ti-mesh substrate and BG/Ti composite did not induce biomimetic apatite deposition when they were immersed in SBF for the selected BG, a pressable dental ceramic, used in this study. After seven days in SBF, an apatite layer was formed on both HA + BG/BG/Ti and HAp + BG/BG/Ti composites. The difference is the apatite layer on the HAp + BG/BG/Ti composite was rougher and contained more micro-pores, while the apatite layer on the HA + BG/BG/Ti composite was dense and smooth. The formation of biomimetic apatite, being more bioresorbable, is favored for bone regeneration.

  20. Tailoring the piezoelectric and relaxor properties of (Bi1/2 Na1/2) TiO3- BaTiO3 via zirconium doping

    DEFF Research Database (Denmark)

    Glaum, Julia; Simons, Hugh; Acosta, Matias

    2013-01-01

    This article details the influence of zirconium doping on the piezoelectric properties and relaxor characteristics of 94(Bi1/2Na1/2)TiO3-6Ba(ZrxTi1-x)O3 (BNT-6BZT) bulk ceramics. Neutron diffraction measurements of BNT-6BZT doped with 0%-15% Zr revealed an electric-field-induced transition...