WorldWideScience

Sample records for bulk shielding reactor-2

  1. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  2. Bulk shielding facility quarterly report, July, August, and September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, S. S.; Lance, E. D.; Thomas, J. R.

    1982-01-01

    The Bulk Shielding Reactor (BSR) operated at an average power level of 1919 kW for 85.74% of the time during July, August, and September. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The Pool Critical Assembly (PCA) was operated on three occasions for the Pressure Vessel Simulator Benchmark experiment.

  3. Bulk shielding benchmark experiment at Frascati neutron generator (FNG)

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P.; Angelone, M.; Martone, M.; Pillon, M.; Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Santamarina, A.; Abidi, I.; Gastaldi, B.; Martini, M.; Marquette, J.P. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1994-11-01

    In the framework of the European Fusion Technology Program, ENEA (Italian Agency for New Technologies, Energy and the Environment) - Frascati and CEA (Commissariat a` l`Energie Atomique) - Cadarache, in collaboration performed a bulk shielding benchmark experiment, using the 14-MeV Frascati neutron generator (FNG), aimed at obtaining accurate experimental data for improving the nuclear data base and methods used in shielding designs. The experiment consisted of the irradiation of a stainless steel block by 14-MeV neutrons. The experimental results have been compared with numerical results calculated using both Sn and Monte Carlo transport codes and the cross section library EFF.1 (european fusion file).

  4. Shielding analyses for design of the upgraded JRR-3 research reactor, 2

    International Nuclear Information System (INIS)

    Shielding analyses of neutron beam holes have been presented for the shield design of the upgraded JRR-3 research reactor. Description is given about the calculational procedures and results for the standard beam hole, the beam hole for neutron radiography and the guide tunnels. The streaming analyses are made by using the MORSE-CG and DOT 3.5 codes. (author)

  5. Benchmark calculations of target heat deposition and bulk shielding

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-09-01

    As a first step of a design study of the neutron science research center using an intense proton accelerator of 1.5 GeV with a current of 1 mA, a benchmark calculation was carried out with the NMTC/JAERI-MCNP-4A code system for the heat deposition in thick targets of Cu, Pb and U bombarded with 1.2 GeV protons. The thickness of bulk shielding around a spallation target was also estimated with the Moyer model and Sn calculation. It was found from these calculations that the code system reproduced well the experimental heat distribution around the beam axis. However, the code gave rather lower heat deposition at peripheral region of the target. As for the bulk shielding, it was estimated that the shielding made of iron having the thickness of 4 m surrounded by ordinary concrete with the thickness of 1 m was required for the 1.5 GeV proton incidence on a stopping-length Ta target with the diameter of 15 cm. (author)

  6. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique.

    Science.gov (United States)

    Nasrabadi, M N; Mohammadi, A; Jalali, M

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required. PMID:19328700

  7. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N. [Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)], E-mail: mnnasrabadi@ast.ui.ac.ir; Mohammadi, A. [Department of Physics, Payame Noor University (PNU), Kohandej, Isfahan (Iran, Islamic Republic of); Jalali, M. [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization of Iran (Iran, Islamic Republic of)

    2009-07-15

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required.

  8. Bulk Shielding Calculation for 90 .deg. Bending Section of RISP

    International Nuclear Information System (INIS)

    The charge state of 238U beams with maximum intensity was 79+ among multi-charge states of 70+ to 89+, which were estimated by using LISE++ code. The bending section consists of twenty four quadrupoles, two dipoles, two two-cell type superconducting RF cavities and eleven slits. The complicated radiation environment is caused by the beam losses occurred normally during the stripping process and when the produced 238U beams are transported along the beam line. Secondary radiations generated by 238U beams irradiation are very important for predicting the prompt and residual doses and the radiation damage at the component. The production characteristics of neutron and photon from thin carbon and thick iron were studied to set up the shielding strategy. The dose estimation was done to the pre-designed the tunnel structure. In these calculations, major Monte Carlo codes, PHITS and FLUKA, were used. The present study provided information of shielding analysis for the 90 .deg. bending section of RISP facility. The source term was evaluated to determine fundamental parameter of the shielding analysis using PHITS and FLUKA codes. And the distribution of the dose rate at the outside of thick shielding wall was presented

  9. Activation measurements for the E.C. bulk shield benchmark experiment

    Science.gov (United States)

    Angelone, M.; Arpesella, C.; Martone, M.; Pillon, Mario

    1995-03-01

    The use of the absolute radiometric techniques for the E. C. bulk shield experiment at the 14 MeV Frascati Neutron Generator (FNG) is reported. In this application, the activity level, in some cases, results too low to be measured at the Frascati counting station. In these cases the radiometric measurements are performed using the low background HPGe detectors located at the underground laboratory of Gran Sasso d'Italia. The use of these detectors enhances the FNG capability of performing bulk shield benchmark experiments allowing the measurements of very low activation levels.

  10. Benchmarking FENDL libraries through analysis of bulk shielding experiments on large SS316 assemblies for verification of ITER shielding characteristics

    International Nuclear Information System (INIS)

    FENDL-1 data base has been developed recently for use in ITER/EDA phase and other fusion-related design activities. It is now undergoing extensive testing and benchmarking using experimental data of differential and integral measured parameters obtained from fusion-oriented experiments. As part of co-operation between UCLA (U.S.) with JAERI (Japan) on executing the required neutronics R ampersand D tasks for ITER shield design, two bulk shielding experiments on large SS316 assemblies were selected for benchmarking FENDL/MG-1 multigroup data base and FENDL/MC-1 continous energy data base. The analyses with the multigroup data (performed with S8, P5, DORT calculations with shielded and unshielded data) also included library derived from ENDF/B-VI data base for comparison purposes. The MCNP Monte Carlo code was used by JAERI with the FENDL/MC-1 data. The results of this benchmarking is reported in this paper along with the observed deficiencies and discrepancies. 20 refs., 27 figs., 1 tab

  11. Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection

    Science.gov (United States)

    Bradley, Arthur T.; Hare, Richard J.

    2009-01-01

    This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.

  12. The bulk shielding benchmark experiment at the Frascati Neutron Generator (FNG)

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Martone, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Santamarina, A. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Abidi, I. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Gastaldi, B. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Martini, M. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Marquette, J.P. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France)

    1995-03-01

    In the design of next-step fusion devices such as NET/ITER the nuclear performance of shielding blankets is of key importance in terms of nuclear heating of superconducting magnets and radiation damage. In the framework of the European Fusion Technology Program, ENEA Frascati and CEA Cadarache in collaboration performed a bulk shielding benchmark experiment using the 14MeV Frascati Neutron Generator (FNG), aimed at obtaining accurate experimental data for improving the nuclear database and methods used in shielding designs. The experiment consisted of the irradiation of a stainless steel block by 14MeV neutrons. The neutron reaction rates at various depths inside the block have been measured using fission chambers and activation foils characterized by different energy response ranges. The experimental results have been compared with numerical results calculated using both S{sub n} and Monte Carlo transport codes and the cross-section library EFF.1 (European Fusion File). (orig.).

  13. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    International Nuclear Information System (INIS)

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-Tc bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor. (paper)

  14. Simulation of radiation dose distribution and thermal analysis for the bulk shielding of an optimized molten salt reactor

    Institute of Scientific and Technical Information of China (English)

    张志宏; 夏晓彬; 蔡军; 王建华; 李长园; 葛良全; 张庆贤

    2015-01-01

    The Chinese Academy of Science has launched a thorium-based molten-salt reactor (TMSR) research project with a mission to research and develop a fission energy system of the fourth generation. The TMSR project intends to construct a liquid fuel molten-salt reactor (TMSR-LF), which uses fluoride salt as both the fuel and coolant, and a solid fuel molten-salt reactor (TMSR-SF), which uses fluoride salt as coolant and TRISO fuel. An optimized 2 MWth TMSR-LF has been designed to solve major technological challenges in the Th-U fuel cycle. Preliminary conceptual shielding design has also been performed to develop bulk shielding. In this study, the radiation dose and temperature distribution of the shielding bulk due to the core were simulated and analyzed by performing Monte Carlo simulations and computational fluid dynamics (CFD) analysis. The MCNP calculated dose rate and neutron and gamma spectra indicate that the total dose rate due to the core at the external surface of the concrete wall was 1.91 µSv/h in the radial direction, 1.16 µSv/h above and 1.33 µSv/h below the bulk shielding. All the radiation dose rates due to the core were below the design criteria. Thermal analysis results show that the temperature at the outermost surface of the bulk shielding was 333.86 K, which was below the required limit value. The results indicate that the designed bulk shielding satisfies the radiation shielding requirements for the 2 MWth TMSR-LF.

  15. The Benchmark experiment on stainless steel bulk shielding at the Frascati neutron generator

    International Nuclear Information System (INIS)

    In the framework of the European Technology Program for NET/ITER, ENEA (Italian Agency for New Technologies, Energy and Environment) - Frascati and CEA (Commissariat a L'Energie Atomique) - Cadarache collaborated on a Bulk Shield Benchmark Experiment using the 14-MeV Frascati Neutron Generator (FNG). The aim of the experiment was to obtain accurate experimental data for improving the nuclear database and methods used in shielding designs, through a rigorous analysis of the results. The experiment consisted of the irradiation of a stainless steel block by 14-MeV neutrons. The neutron reaction rates at different depths inside the block were measured by fission chambers and activation foils characterized by different energy response ranges. The experimental results have been compared with numerical results calculated using both SN and Monte Carlo transport codes and as transport cross section library the European Fusion File (EFF). In particular, the present report describes the experimental and numerical activity, including neutron measurements and Monte Carlo calculations, carried out by the ENEA Italian Agency for New Technologies, Energy and Environment) team

  16. The stainless steel bulk shielding benchmark experiment at the Frascati Neutron Generator (FNG)

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Angelone, M. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Martone, M. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Petrizzi, L. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Pillon, M. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Rado, V. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Santamarina, A. (Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires Cadarache, 13108, St.-Paul-lez-Durance Cedex (France)); Abidi, I. (Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires Cadarache, 13108, St.-Paul-lez-Durance Cedex (France)); Gastaldi, G. (Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires Cadarache, 13108, St.-Paul-lez-Durance Cedex

    1994-09-01

    In the framework of the European Technology Program for NET/ITER, ENEA (Ente Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente), Frascati and CEA (Commissariat a l'Energie Atomique), Cadarache, are collaborating on a bulk shielding benchmark experiment using the 14 MeV Frascati Neutron Generator (FNG). The aim of the experiment is to obtain accurate experimental data for improving the nuclear database and methods used in the shielding designs, through a rigorous analysis of the results. The experiment consists of the irradiation of a stainless steel block by 14 MeV neutrons. The neutron flux and spectra at different depths, up to 65 cm inside the block, are measured by fission chambers and activation foils characterized by different energy response ranges. The [gamma]-ray dose measurements are performed with ionization chambers and thermo-luminescent dosimeters (TLD). The first results are presented, as well as the comparison with calculations using the cross section library EFF (European Fusion File). ((orig.))

  17. Benchmark experiment on stainless steel bulk shielding at Frascati neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P.; Angelone, M.; Martone, M.; Pillon, M.; Rado, V. [ENEA, Frascati (Italy). Centro Ricerche Energia - Area Energia e Innovazione

    1994-11-01

    In the framework of the European Technology Program for NET/ITER, ENEA (Italian Agency for New Technologies, Energy and Environment) - Frascati and CEA (Commissariat a L`Energie Atomique) - Cadarache collaborated on a Bulk Shield Benchmark Experiment using the 14-MeV Frascati Neutron Generator (FNG). The aim of the experiment was to obtain accurate experimental data for improving the nuclear database and methods used in shielding designs, through a rigorous analysis of the results. The experiment consisted of the irradiation of a stainless steel block by 14-MeV neutrons. The neutron reaction rates at different depths inside the block were measured by fission chambers and activation foils characterized by different energy response ranges. The experimental results have been compared with numerical results calculated using both S{sub N} and Monte Carlo transport codes and as transport cross section library the European Fusion File (EFF). In particular, the present report describes the experimental and numerical activity, including neutron measurements and Monte Carlo calculations, carried out by the (ENEA Italian Agency for New Technologies, Energy and Environment) team.

  18. The stainless steel bulk shielding benchmark experiment at the Frascati Neutron Generator (FNG)

    Science.gov (United States)

    Batistoni, P.; Angelone, M.; Martone, M.; Petrizzi, L.; Pillon, M.; Rado, V.; Santamarina, A.; Abidi, I.; Gastaldi, G.; Joyer, P.; Marquette, J. P.; Martini, M.

    1994-09-01

    In the framework of the European Technology Program for NET/ITER, ENEA (Ente Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente), Frascati and CEA (Commissariat à l'Energie Atomique), Cadarache, are collaborating on a bulk shielding benchmark experiment using the 14 MeV Frascati Neutron Generator (FNG). The aim of the experiment is to obtain accurate experimental data for improving the nuclear database and methods used in the shielding designs, through a rigorous analysis of the results. The experiment consists of the irradiation of a stainless steel block by 14 MeV neutrons. The neutron flux and spectra at different depths, up to 65 cm inside the block, are measured by fission chambers and activation foils characterized by different energy response ranges. The γ-ray dose measurements are performed with ionization chambers and thermo-luminescent dosimeters (TLD). The first results are presented, as well as the comparison with calculations using the cross section library EFF (European Fusion File).

  19. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  20. Neutronics model of the bulk shielding reactor (BSR): validation by comparison of calculations with the experimental measurements

    International Nuclear Information System (INIS)

    A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with 58Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR

  1. Neutronics model of the bulk shielding reactor (BSR): validation by comparison of calculations with the experimental measurements

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Miller, L.F.; Kam, F.B.K.

    1981-05-01

    A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with /sup 58/Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR.

  2. Attenuation of reactor thermal neutrons in a bulk shield of ordinary concrete

    International Nuclear Information System (INIS)

    This work is concerned with the study of the distribution attenuation of doses of thermal neutrons emitted directly from the core of research reactor in ordinary concrete shield. In practice it is not possible to identify the reactor thermal neutrons in the emitted continuos neutron spectrum. Therefore, measurement was carried out by using a direct and cadmium filtered beam of reactor neutrons. All measurements were performed using Li2B4O7:Mn thermoluminescent dosimeters. The data obtained were analyzed and the dose distributions of reactor thermal neutrons were evaluated. A group of isodose curves constructed which give directly the shape and thickness of the shield required to attenuate the intensity of doses of reactor thermal neutrons to specific values. In addition, the thermal neutron relaxation lengths in ordinary concrete were derived for disc-collimated beam and infinite plane mono-directional sources

  3. Bulk shielding experiments on large SS316 assemblies bombarded by D-T neutrons. Volume I: experiment

    International Nuclear Information System (INIS)

    SS316 is one of the most promising candidates for the shielding and structural material of next fusion devices such as ITER. Benchmark experiments to examine the bulk shielding performance of SS316 for D-T neutrons, particularly deep penetration, were performed by using the D-T neutron source FNS in Japan Atomic Energy Research Institute as the '94 ITER/EDA task (T-16). This report compiles the experimental system, measuring procedures and the measured data. The analysis of the experiment is described separately in the Volume II. The test region of the experimental assembly was a cylindrical SS316 of 1200 mm in diameter and 1118 mm in thickness which was located at 300 mm from the D-T neutron source (Assembly no.1). A source reflector of 200 mm-thick SS316 surrounding the D-T neutron source was added to the assembly no.1 to simulate a neutron field of a fusion reactor (Assembly no.2). The measured data for i) neutron spectra in energy regions of MeV, keV and eV, ii) neutron activation reaction rates, iii) fission rates, iv) gamma-ray spectra and v) gamma-ray heating rates were obtained from the test region surface to the depth of 914 mm in the test region. The consistency of the measured data and the effect of the source reflector were examined from the comparison among the measured data. (author) 51 refs

  4. Safety analysis report for the National Low-Temperature Neutron Irradiation Facility (NLTNIF) at the ORNL Bulk Shielding Reactor (BSR)

    International Nuclear Information System (INIS)

    This report provides information concerning: the experiment facility; experiment assembly; instrumentation and controls; materials; radioactivity; shielding; thermodynamics; estimated or measured reactivity effects; procedures; hazards; and quality assurance

  5. Numerical benchmarks TRIPOLI - MCNP with use of MCAM on FNG ITER bulk shield and FNG HCLL TBM mock-up experiments

    International Nuclear Information System (INIS)

    3D Monte Carlo (MC) transport codes are of first importance for the assessment of breeding blankets neutronic performances. This article supported by the EFDA Goal Oriented Training Program Eurobreed presents the difference in results between the CEA MC code TRIPOLI-4 and MCNP on two fusion neutronics benchmarks, assessing therefore TRIPOLI-4 calculation capabilities on shielding and tritium production rate (TPR). The first selected benchmark, assessing the shielding capability, is the Frascati neutron generator (FNG) ITER bulk shield experiment whereas the second benchmark, assessing the TPR calculation, is the preliminary design of the FNG helium cooled lithium-lead (HCLL) test blanket module (TBM) mock-up. To ensure the consistency of the geometry description, MCAM tool is used for automatic TRIPOLI - MCNP geometry conversions and check. A good coherence between TRIPOLI-4 and MCNP for neutron flux, reaction rates and TPR calculations is obtained. Moreover, it appears that MCAM performs fast, automatic and appropriate TRIPOLI - MCNP geometry conversions and finally that the tabulated FNG neutron source model from KIT is appropriate for TRIPOLI-4 calculations.

  6. Numerical benchmarks TRIPOLI - MCNP with use of MCAM on FNG ITER bulk shield and FNG HCLL TBM mock-up experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fausser, Clement, E-mail: clement.fausser@cea.fr [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Lee, Yi-Kang [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Villari, Rosaria [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Zeng Qin; Zhang Junjun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Serikov, Arkady [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (Germany); Trama, Jean-Christophe; Gabriel, Franck [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France)

    2011-10-15

    3D Monte Carlo (MC) transport codes are of first importance for the assessment of breeding blankets neutronic performances. This article supported by the EFDA Goal Oriented Training Program Eurobreed presents the difference in results between the CEA MC code TRIPOLI-4 and MCNP on two fusion neutronics benchmarks, assessing therefore TRIPOLI-4 calculation capabilities on shielding and tritium production rate (TPR). The first selected benchmark, assessing the shielding capability, is the Frascati neutron generator (FNG) ITER bulk shield experiment whereas the second benchmark, assessing the TPR calculation, is the preliminary design of the FNG helium cooled lithium-lead (HCLL) test blanket module (TBM) mock-up. To ensure the consistency of the geometry description, MCAM tool is used for automatic TRIPOLI - MCNP geometry conversions and check. A good coherence between TRIPOLI-4 and MCNP for neutron flux, reaction rates and TPR calculations is obtained. Moreover, it appears that MCAM performs fast, automatic and appropriate TRIPOLI - MCNP geometry conversions and finally that the tabulated FNG neutron source model from KIT is appropriate for TRIPOLI-4 calculations.

  7. Effect of heat cycling on microstructure and thermal property of boron carbide sintered bulk as a shielding material for fusion blanket

    International Nuclear Information System (INIS)

    In the Force Free Helical Reactor (FFHR) design activity in NIFS, metallic carbides and hydrides are considered as candidate shielding materials for the fusion blankets. These materials are expected to have some advantages on neutronic and thermo-physical properties. In order to promote the blanket design, it is necessary to clarify thermal properties of the candidate materials. We studied microstructure and thermal property of boron carbide (B4C), which is one of the promising candidates shielding materials, including the effect of heat cycling. By the laser-flash method, thermal diffusivity, which is one of the properties necessary for evaluating thermal conductivity, was measured precisely for B4C samples. The thermal diffusivity of B4C around 200degC decreased to 1/3 (5 × 10-6 m2 S-1) compared with that at room temperature. The sintering density of B4C bulk was decreased slightly by the thermal cycling. It was suggested that the B4C bulk has high thermal stability and soundness of microstructure during the life-time of blanket system. (author)

  8. Shielding experiments

    International Nuclear Information System (INIS)

    Shielding mock-up experiments for Prototype Fast Breeder Reactor (PFBR) and Advanced Heavy Water Reactor (AHWR) are carried out in shielding corner facility of APSARA reactor, to assess the overall accuracy of the codes and nuclear data used in reactor shield design. As APSARA is a swimming pool-type thermal reactor, for fast reactor experiments, typical fast reactor shielding facility was created by using uranium assemblies as spectrum converter. The flux was also enhanced by replacing water by air. Experiments have been carried out to study neutron attenuation through typical fast reactor radial and axial bulk shielding materials such as steel, sodium, graphite, borated graphite and boron carbide. A large number of reaction rates, sensitive to different regions of the neutron energy spectrum, were measured using foil activation and Solid State Nuclear Track Detector (SSNTD) techniques. These experimental results were analysed using computational tools normally used in design calculations, viz., discrete ordinate transport codes with multigroup cross section sets. Comparison of measured reaction rates with calculations provided suitable bias factors for parameters relevant to shield design, such as sodium activation, fast neutron fluence, fission equivalent fluxes etc. The measured neutron spectrum on the incident face of shield model compares well with the calculated fast reactor blanket leakage neutron spectrum. The comparison of calculated reaction rates within shield model indicate that the calculations suffer from considerable uncertainties, in shield models with boron carbide/borated graphite. For AHWR shielding experiments, no spectrum converter was used as it is also a thermal reactor. Radiation streaming studies through penetrations/ducts of various shapes and sizes relevant to AHWR shielding were carried out. (author)

  9. Shielding practice

    International Nuclear Information System (INIS)

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP)

  10. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  11. Shielding Effectiveness of Laminated Shields

    OpenAIRE

    P. V. Y. Jayasree, V. S. S. N. S. Baba, B. P. Rao

    2008-01-01

    Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigatio...

  12. Shielding material

    International Nuclear Information System (INIS)

    The present invention effectively utilizes iron reinforced concrete wastes generated upon dismantling of concretes of nuclear facilities, to provide shielding material. That is, at least one of members selected from the group consisting of iron rods in iron-reinforced concretes and, regenerated aggregates regenerated from concrete wastes upon dismantling is charged in a predetermined mold. Cement pastes or cement mortars are charged therein, and solidified, cured and released from the mold. With such procedures, a block-formed shielding materials made of precast concretes can be obtained. In this case, the cements including much water of crystallization are used. Since iron reinforcing dusts and iron reinforcing dust chips are contained in the shielding materials, a great γ-ray shielding effect can be obtained. Further, since cements containing a great amount of water of crystallization are used, a great neutron shielding effect can be obtained. (I.S.)

  13. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao

    2008-12-01

    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  14. Japanese contributions to ITER shielding neutronics design

    International Nuclear Information System (INIS)

    Shielding design for superconducting magnets and personal exposure were performed in ITER nuclear design on the basis of reports presented to the 1990 winter and summer ITER specialist meetings. Inboard shield benchmark calculation, bulk inboard shielding analysis, inboard heterogeneity effect on shielding property analysis, gap streaming analysis were discussed on shielding properties for superconducting magnets. In addition to these, transport and Monte Carlo analyses in neutral beam injector duct for biological shielding were investigated with relation to the concept of cryostat. Further biological shielding were investigated in reactor room and site boundary during the maintenance when one activated module was extracted and hanged from the ceiling. As the results of these studies, ITER shielding characteristics were evaluated and problem areas and directions for future works were shown. (author)

  15. Shielded syringe

    International Nuclear Information System (INIS)

    This patent specification relates to a partially disposable shielded syringe for injecting radioactive material into a patient. It is claimed that the technique overcomes the problems of non-standardisation of syringe size. (U.K.)

  16. Operating manual for the Bulk Shielding Reactor

    International Nuclear Information System (INIS)

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR

  17. Operating manual for the Bulk Shielding Reactor

    International Nuclear Information System (INIS)

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR

  18. Technical specifications for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    Technical specifications are presented concerning the safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; and administrative controls.

  19. Shielding design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    This report first describes the basic design philosophy of radiation shields for the fusion experimental reactor (FER) which has been proposed to be the next step machine to JT-60. Next, geometrical models and calculation parameters for shielding calculations were investigated to establish the standard design calculation methods, and accuracy of the calculation was evaluated. Further, irradiation properties of in-vessel components and bulk shielding properties were summarized in the useful form for the future design works. (author)

  20. Shielding door

    International Nuclear Information System (INIS)

    An exhaust processing device disposed at the outside of a radioactive nuclide handling chamber is connected to a shielding door as an exit/inlet for the radioactive nuclide handling chamber. An exhaust chamber is disposed in the inside of the thick shielding door having a thickness. The exhaust chamber is always evacuated by an exhaustion blower and maintained at a negative pressure. The radioactive nuclides in the radiation nuclide handling facility are shielded by an inner seal of the double seals which seal the gap between the wall body and the shielding door. Even if a trace amount of radioactive nuclides leaks from the seal at the inner side, it is shielded by an outer seal, and sucked into the exhaust chamber which is maintained at the negative pressure. Then, it is passed from a ventilation channel through a flexible tube then caught and removed by the filter of the exhaust processing device. This can reduce the capacity of the exhaustion blower to reduce the scale of the exhaust processing device. (I.N.)

  1. Radiation shielding for neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Ersez, T. [Reactor Operations, ANSTO, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: tez@ansto.gov.au; Braoudakis, G. [Reactor Operations, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Osborn, J.C. [Reactor Operations, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2006-11-15

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  2. Guidebook on radiation shielding safety for nuclear fuel facilities Q and A volume

    International Nuclear Information System (INIS)

    The Q and A volume of 'Guidebook on Radiation Shielding Safety for Nuclear Fuel Facilities' describes questions and answers which are commonly raised by the novices of shielding design and shielding safety evaluation. In this report, there are about 40 sets of Q and A which are classified by 7 different subjects, namely, (1) outlines of shielding, (2) methodology of shielding design, (3) shielding materials, (4) bulk shielding, (5) streaming, (6) skyshine, and (7) certification of shielding performance. The draft of the report has been discussed and summarized by the members of the specialists group for demonstration of shielding safety by analysis, committee for safety research on nuclear facilities. (author)

  3. Handout on shielding calculation

    International Nuclear Information System (INIS)

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  4. Magnetic shielding design analysis

    International Nuclear Information System (INIS)

    Two passive magnetic-shielding-design approaches for static external fields are reviewed. The first approach uses the shielding solutions for spheres and cylinders while the second approach requires solving Maxwell's equations. Experimental data taken at LLNL are compared with the results from these shieldings-design methods, and improvements are recommended for the second method. Design considerations are discussed here along with the importance of material gaps in the shield

  5. Enhanced Whipple Shield

    Science.gov (United States)

    Crews, Jeanne L. (Inventor); Christiansen, Eric L. (Inventor); Williamsen, Joel E. (Inventor); Robinson, Jennifer R. (Inventor); Nolen, Angela M. (Inventor)

    1997-01-01

    A hypervelocity impact (HVI) Whipple Shield and a method for shielding a wall from penetration by high velocity particle impacts where the Whipple Shield is comprised of spaced apart inner and outer metal sheets or walls with an intermediate cloth barrier arrangement comprised of ceramic cloth and high strength cloth which are interrelated by ballistic formulae.

  6. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  7. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  8. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  9. Rotating shielded crane system

    Science.gov (United States)

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  10. Space reactor shield technology

    International Nuclear Information System (INIS)

    The reactor shield mass contributes a large portion (10% to 25%) to the total mass of an unmanned reactor system. Different shield materials are required to attenuate neutrons and gamma rays and still obtain a minimum mass. The shield material selection should also consider structural characteristics, physical and chemical properties, fabricability and availability. Minimum mass is achieved by using a shadow shield. Neutron capture gamma ray and heat generation are extremely important considerations. Lithium hydride was selected for the neutron shield material due to its excellent properties. It has to be canned and may be compartmentalized to reduce the probability of complete shielding effectiveness loss due to meteoroid puncture of the can. The initial shield design was based on previous SNAP shield design experience. The Monte Carlo Neutron Photon code, which includes the radiation scattering with the radiator and power conversion system, was then used to ensure that the design requirements were met. Fabrication of the shield by casting techniques is recommended to maintain shield integrity during vibration and to accommodate complex penetrations. A method for casting full-scale shields is described

  11. Bulk undercooling

    Science.gov (United States)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  12. Under the Rape Shield

    OpenAIRE

    Roman, Denise

    2011-01-01

    This article focuses on the Rape Shield Laws and their evolution in the United States, one of the pioneers in this field. The article also discusses constitutional and feminist critiques of present Rape Shield Laws, and ends with a comparative perspective throughout the Anglo-American legal space today. Finally, although the Rape Shield Laws can be approached from a variety of discourses, this article engages specifically with a discourse that intersects legal and feminist analyses.

  13. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  14. Accelerator shielding benchmark problems

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, H.; Ban, S.; Nakamura, T. [and others

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author).

  15. Rotating shielded crane system

    International Nuclear Information System (INIS)

    A rotating, radiation-shielded crane system is described comprising: a generally cylindrical, radiation-shielding wall, the top of the wall forming a first annular ledge; a second annular ledge integrally attached to the inner surface of the shielding wall; a generally cylindrical ceiling made of radiation shielding material, the ceiling including a flange portion on the top thereof and a body portion, the flange portion associated with the second annular ledge such that the ceiling is supported thereby, the volume inside the wall and the ceiling forming a test cell; a rotatable crane disposed above the ceiling such that the crane is outside of the test cell; removable access means in the ceiling for allowing the crane to access the inside of the test cell from the top of the ceiling; means for sealing the interface between the inner surface of the shielding wall and the ceiling

  16. Fusion Engineering Device (FED) first wall/shield design

    International Nuclear Information System (INIS)

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  17. Asphalt as biological shielding against fusion neutrons

    International Nuclear Information System (INIS)

    For fusion experiments, thick biological radiation protection shields are necessary due to the deep penetration capability of the 14 MeV neutrons. A (D,T) neutron generator with a moderate output of around 1012 n/sec requires a concrete shielding of a wall thickness of 2 meters laterally and at the top of an experimental assembly. The cost for this biological shield may exceed the cost for most of the equipment for a fusion and/or hybrid experimental installation. Particularly, in Saudi Arabia, asphalt is very cheap and available in bulk quantities. As it is rich in hydrogen and carbon, it is worthwhile to investigate its shielding potential against fusion neutron. In the present work different biological shield configurations of asphalt at the wall of the experimental cavity for a research program being undertaken in Saudi Arabia, are investigated. The experimental cavity is approximated by a sphere of 5 meters radius. The yield of the neutron generator is taken as 1012 - 14 MeV - neutron/sec

  18. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  19. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  20. Radiation shielding device

    International Nuclear Information System (INIS)

    Purpose: To lower the shielding cost by providing a shielding wall having cavities and charging spherical shiedling materials in the cavities only when the shielding is required. Constitution: The structure comprises two parallel steel side plates aparting from each other to form a space therebetween and reinforcements such as H-type steels vertically provided between the side plates. The upper and the lower ends of the reinforcements are aparted from the upper and the lower edges of the side plates by a predetermined distance to form lateral passage between the top plate and the bottom plate. A guide plate having a plurality of openings is mounted on the upper ends of the reinforcements. If it is required for the structure to serve as the shield, spherical radioactive shielding materials are supplied through an injection port onto the guide plate while opening the injection port is opened and closing discharge port. The spherical radioactive shielding materials are fallen through the openings and filled in the space to thereby providing the structure with shielding performance. (Yoshino, Y.)

  1. Simplified shielding calculation system for high-intensity proton accelerators

    International Nuclear Information System (INIS)

    A simplified shielding calculation system is developed for applying conceptual shielding design of facilities in the joint project for high-intensity proton accelerators. The system is composed of neutron transmission calculation part for bulk shielding using simplified formulas: Moyer model and Tesch's formula, and neutron skyshine calculation part using an empirical formula: Stapleton's formula. The system is made with the Microsoft Excel software for user's convenience. This report provides a manual for the system as well as calculation conditions used in the calculation such as Moyer model's parameters. In this report preliminary results based on data at December 8, 1999, are also shown as an example. (author)

  2. Shielding member for thermonuclear device

    International Nuclear Information System (INIS)

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  3. Bulk shielding facility quarterly report, October, November, and December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, III, S. S.; Lance, E. D.; Thomas, J. R.

    1977-08-01

    The BSR operated at an average power level of 1,836 kw for 78.01 percent of the time during October, November, and December. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training programs and was operated on two occasions when the University of Kentucky students actively participated in training laboratories.

  4. Alternate shield material feasibility

    International Nuclear Information System (INIS)

    The feasibility and cost/benefit of using materials other than stainless steel for in-vessel neutron shielding in large LMFBRs were investigated. Canned vibratorally compacted B4C powder shields were found to be much more economical than stainless steel (a savings of $1.1M in loop plant designs and $9.4M in pool plant designs). The helium gas pressure buildup in B4C shields placed around LMFBR in-vessel components (direct reactor heat exchangers in a loop reactor and intermediate heat exchangers in a pool reactor) would only be 0.04 atm after 40 y of reactor operation (with 80% dense powder). The irradiation-induced swelling of the B4C would only be 0.002%. No adverse reactor impact would occur if the B4C escaped from the B4C shields

  5. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  6. Alternate shield material feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Specht, E.R.; Levitt, L.B.

    1984-04-01

    The feasibility and cost/benefit of using materials other than stainless steel for in-vessel neutron shielding in large LMFBRs were investigated. Canned vibratorally compacted B/sub 4/C powder shields were found to be much more economical than stainless steel (a savings of $1.1M in loop plant designs and $9.4M in pool plant designs). The helium gas pressure buildup in B/sub 4/C shields placed around LMFBR in-vessel components (direct reactor heat exchangers in a loop reactor and intermediate heat exchangers in a pool reactor) would only be 0.04 atm after 40 y of reactor operation (with 80% dense powder). The irradiation-induced swelling of the B/sub 4/C would only be 0.002%. No adverse reactor impact would occur if the B/sub 4/C escaped from the B/sub 4/C shields.

  7. Consolidated fuel shielding calculations

    International Nuclear Information System (INIS)

    Irradiated fuel radiation dose rate and radiation shielding requirements are calculated using a validated ISOSHLD-II model. Comparisons are made to experimental measurements. ISOSHLD-11 calculations are documented

  8. Radiation shielding curtain

    International Nuclear Information System (INIS)

    A radiation shield is described in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist

  9. Shield for a medical actinometer

    International Nuclear Information System (INIS)

    The shield is designed for an actinometer enabling a kidney clearance determination. It shields the radioactive radiation coming from the kidney-bladder region opposite the measuring head. The shield consists of two plates which can be pushed together so that the dimensions of the shield are variable. (DG)

  10. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  11. Neutron shielding material

    International Nuclear Information System (INIS)

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  12. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  13. SHIELD II: VLA HI Spectral Line Observations

    Science.gov (United States)

    Lee, Eojin; Cannon, John M.; McNichols, Andrew; Teich, Yaron; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from low-resolution D-configuration VLA HI spectral line observations of 6 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from SDSS and WIYN. These data allow us to localize the HI gas and to study the bulk neutral gas kinematics.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  14. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    Science.gov (United States)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  15. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  16. Radiation shielding bricks

    International Nuclear Information System (INIS)

    A radiation shielding brick for use in building dry walls to form radiation proof enclosures and other structures is described. It is square in shape and comprises a sandwich of an inner layer of lead or similar shielding material between outer layers of plastics material, for structural stability. The ability to mechanically interlock adjacent bricks is provided by shaping the edges as cooperating external and internal V-sections. Relatively leak-free joints are ensured by enlarging the width of the inner layer in the edge region. (author)

  17. Radiation shielding and safety analysis for SPring-8

    International Nuclear Information System (INIS)

    The methods of shielding design and safety analysis applied to SPring-8 are summarized. SPring-8, a third generation synchrotron radiation facility, is the facility with the highest stored electron energy of 8 GeV and very low beam emittance of 5.5 nm·rad. Because of these distinguished features, a variety of radiation issues have to be taken up, requiring the latest information for analyses. In this technical report are described the calculational methods and the conditions for the following shielding matters as well as verification of the validity; a bulk shielding, synchrotron radiation beamline shielding, skyshine, streaming through ducts and mazes, induced activities in air, cooling water and targets, and incident analysis due to abnormal beam losses. (author)

  18. Radiation shielding and safety analysis for SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro; Sasamoto, Nobuo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1998-03-01

    The methods of shielding design and safety analysis applied to SPring-8 are summarized. SPring-8, a third generation synchrotron radiation facility, is the facility with the highest stored electron energy of 8 GeV and very low beam emittance of 5.5 nm{center_dot}rad. Because of these distinguished features, a variety of radiation issues have to be taken up, requiring the latest information for analyses. In this technical report are described the calculational methods and the conditions for the following shielding matters as well as verification of the validity; a bulk shielding, synchrotron radiation beamline shielding, skyshine, streaming through ducts and mazes, induced activities in air, cooling water and targets, and incident analysis due to abnormal beam losses. (author)

  19. Radiation shielding materials

    International Nuclear Information System (INIS)

    Purpose: To obtain putty-like shielding materials excellent in the radiation shielding and packing workability for use in penetrations of electrical wires or pipeways in a nuclear installation. Constitution: A putty-like material is prepared from 100 parts by weight of a binder comprising a grease or the like having viscosity of greater than 5000 cst or an immiscible consistency of greater than 100 (JIS K 2220 (1980) para. 5.3.4) at 25 0C and from 1200 to 4000 parts by weight of high density inorganic powder such as lead powder or lead oxide powder having a density of greater than 5 g/cm3 and such a particle size that more than 95 % thereof passes through a 145 mesh sieve. The putty-like material is adjusted such that it has 1 - 35 mm of softness (JIS A 5752) at normal temperature, more than 1 g/5 sec of injection amount and a density of greater than 4 g/cm3. In this way, non-curable radiation shielding agent with excellent X-ray or γ-ray shielding property and being capable of packed densely to void portions can be obtained. (Ikeda, J.)

  20. Shield For Flexible Pipe

    Science.gov (United States)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  1. Lightweight Shield Against Space Debris

    Science.gov (United States)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  2. Efficacy of Cosmic Ray Shields

    Science.gov (United States)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  3. Hinged Shields for Machine Tools

    Science.gov (United States)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  4. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  5. Methods for calculating radiation attenuation in shields

    International Nuclear Information System (INIS)

    general there are three types of duct geometry to be considered in reactor design: single ducts penetrating through a bulk shield; multiple duct systems; and large gas-filled voids. The streaming of neutrons and gamma rays in systems of this type can only be properly tackled by the two- and three-dimensional Monte-Carlo codes discussed above for neutrons, most of which can also handle gamma-ray problems

  6. Capacitive Proximity Sensors With Additional Driven Shields

    Science.gov (United States)

    Mcconnell, Robert L.

    1993-01-01

    Improved capacitive proximity sensors constructed by incorporating one or more additional driven shield(s). Sensitivity and range of sensor altered by adjusting driving signal(s) applied to shield(s). Includes sensing electrode and driven isolating shield that correspond to sensing electrode and driven shield.

  7. Multilayer radiation shield

    Science.gov (United States)

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  8. Shielding benchmark test

    International Nuclear Information System (INIS)

    Iron data in JENDL-2 have been tested by analyzing shielding benchmark experiments for neutron transmission through iron block performed at KFK using CF-252 neutron source and at ORNL using collimated neutron beam from reactor. The analyses are made by a shielding analysis code system RADHEAT-V4 developed at JAERI. The calculated results are compared with the measured data. As for the KFK experiments, the C/E values are about 1.1. For the ORNL experiments, the calculated values agree with the measured data within an accuracy of 33% for the off-center geometry. The d-t neutron transmission measurements through carbon sphere made at LLNL are also analyzed preliminarily by using the revised JENDL data for fusion neutronics calculation. (author)

  9. Combustor bulkhead heat shield assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zeisser, M.H.

    1990-06-19

    This paper describes a gas turbine engine having an annular combustion chamber defined by an annular, inner liner, a concentric outer liner, and an upstream annular combustor head, wherein the head includes a radially extending bulkhead having circumferentially distributed openings for each receiving an individual fuel nozzle therethrough. It comprises: a segmented heat shield assembly, disposed between the combustion chamber interior and the bulkhead, including generally planar, sector shaped heat shields, each shield abutting circumferentially with two next adjacent shields and extending radially from proximate the inner liner to proximate the outer liner, the plurality of shields collectively defining an annular protective barrier, and wherein each sector shaped shield further includes an opening, corresponding to one of the bulkhead nozzle openings for likewise receiving the corresponding nozzle therethrough, the shield opening further including an annular lip extending toward the bulkhead and being received within the bulkhead opening, raised ridges on the shield backside, the ridges contacting the facing bulkhead surface and defining a flow path for a flow of cooling air issuing from a sized supply opening disposed in the bulkhead, the flow path running ultimately from adjacent the annular lip to the edges of each shield segment, wherein the raised edges extend fully along the lateral, circumferentially spaced edges of each shield segment and about the adjacent shield segments wherein the raised ridges further extend circumferentially between the annular lip and the abutting edge ridges.

  10. Shielding calculations for SSC

    International Nuclear Information System (INIS)

    Monte Carlo calculations of hadron and muon shielding for SSC are reviewed with emphasis on their application to radiation safety and environmental protection. Models and algorithms for simulation of hadronic and electromagnetic showers, and for production and transport of muons in the TeV regime are briefly discussed. Capabilities and limitations of these calculations are described and illustrated with a few examples. 12 refs., 3 figs

  11. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. To reduce radiation exposure to operators, technological advances in remote handling and automation were employed. An industrial robot and a specially designed end effector, access port, and sealing machine were used to remotely bag waste containers out of a glove box. The system is operated from a control panel outside the work area via television cameras

  12. Shielding Benchmark Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-09-17

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC).

  13. Justification for Shielded Receiver Tube Additional Lead Shielding

    International Nuclear Information System (INIS)

    In order to reduce high radiation dose rates encountered when core sampling some radioactive waste tanks the addition of 240 lbs. of lead shielding is being considered to the shielded receiver tube on core sample trucks No.1, No.3 and No.4. The lead shielding is 4 inch diameter x 1/2 inch thick half rounds that have been installed around the SR tube over its' full length. Using three unreleased but independently reviewed structural analyses HNF-6018 justifies the addition of the lead shielding

  14. Measurement of the transient shielding effectiveness of shielding cabinets

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2008-05-01

    Full Text Available Recently, new definitions of shielding effectiveness (SE for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005. Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  15. Passive Shielding in CUORE

    International Nuclear Information System (INIS)

    The nature of neutrino mass is one of the friontier problems of fundamental physics. Neutrinoless Double Beta Decay (0νDBD) is a powerful tool to investigate the mass hierarchy and possible extensions of the Standard Model. CUORE is a 1-Ton next generation experiment, made of 1000 Te bolometers, aiming at reaching a background of 0.01 (possibly 0.001) counts keV-1kg-1y-1 and therefore a mass sensitivity of few tens of meV The background contribution due to environmental neutrons, muon-induced neutrons in the shieldings and external gamma is discussed

  16. Planar Shielded-Loop Resonators

    OpenAIRE

    Tierney, Brian B.; Grbic, Anthony

    2014-01-01

    The design and analysis of planar shielded-loop resonators for use in wireless non-radiative power transfer systems is presented. The difficulties associated with coaxial shielded-loop resonators for wireless power transfer are discussed and planar alternatives are proposed. The currents along these planar structures are analyzed and first-order design equations are presented in the form of a circuit model. In addition, the planar structures are simulated and fabricated. Planar shielded-loop ...

  17. Walls shielding against ionizing radiation

    International Nuclear Information System (INIS)

    These specifications are to help the users of lead bricks as under DIN 25407, leaf 1, with the construction of walls shielding against ionizing radiation by examples for the uses of the different types of lead bricks and by recommendations for the construction of shielding walls and for the determination of the wall thickness necessary for shielding against γ-radiation as a function of energy. (orig./AK)

  18. Shielding walls against ionizing radiation

    International Nuclear Information System (INIS)

    This standard shall be applied to closed shielding facilities which, together with the lead bricks according to DIN 25 407 part 1 and the functional elements according to this standard, are designed to make possible the setting-up of complete shieldings for hot cells in beta-gamma-technique (see DIN 25 407 part 3) according to modular principles. This standard is intended to facilitate the design and construction of hot cells with shielding walls made of lead as well as the interchangeability of individual constructional elements in existing shielding walls. (orig./HP)

  19. SHIELD verification and validation report

    Energy Technology Data Exchange (ETDEWEB)

    Boman, C.

    1992-02-01

    This document outlines the verification and validation effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system code. Along with its predecessors, SHIELD has been in use at the Savannah River Site (SRS) for more than ten years. During this time the code has been extensively tested and a variety of validation documents have been issued. The primary function of this report is to specify the features and capabilities for which SHIELD is to be considered validated, and to reference the documents that establish the validation.

  20. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  1. Iron shielded MRI optimization

    Science.gov (United States)

    Borghi, C. A.; Fabbri, M.

    1998-09-01

    The design of the main current systems of an actively shielded and of an iron shielded MRI device for nuclear resonance imaging, is considered. The model for the analysis of the magnetic induction produced by the current system, is based on the combination of a Boundary Element technique and of the integration of two Fredholm integral equations of the first and the second kind. The equivalent current magnetization model is used for the calculation of the magnetization produced by the iron shield. High field uniformity in a spherical region inside the device, and a low stray field in the neighborhood of the device are required. In order to meet the design requirements a multi-objective global minimization problem is solved. The minimization method is based on the combination of the filled function technique and the (1+1) evolution strategy algorithm. The multi-objective problem is treated by means of a penalty method. The actively shielded MRI system results to utilize larger amount of conductor and produce higher magnetic energy than the iron shield device. On veut étudier le projet du système des courants principaux d'un MRI à écran en fer et d'un MRI à écran actif. Le modèle d'analyse du champ magnétique produit par le système de courants est basé sur la combinaison d'une technique Boundary Element et de l'intégration de deux équations intégrales de Fredholm de première et de seconde sorte. On utilise pour calculer la magnétisation produite par l'écran en fer le modèle à cou rants de magné ti sa tion équivalents. On exige une élévation uniforme du champ dans une région sphérique au cœur de l'appareil et un bas champ magnétique dispersé à proximité de l'appareil. Dans le but de répondre aux impératifs du projet, on va résoudre un problème multiobjectif de minimisation globale. On utilise une technique de minimisation obtenue par la combinaison des méthodes “Filled Function” et “(1+1) Evolution Strategy”. Le probl

  2. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    Science.gov (United States)

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells. PMID:21366239

  3. Drip Shield Emplacement Gantry Concept

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  4. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  5. The shield effect

    DEFF Research Database (Denmark)

    Toft, Søren; Albo, Maria J

    2016-01-01

    Several not mutually exclusive functions have been ascribed to nuptial gifts across different taxa. Although the idea that a nuptial prey gift may protect the male from pre-copulatory sexual cannibalism is attractive, it has previously been considered of no importance based on indirect evidence and...... rejected by experimental tests. We reinvestigated whether nuptial gifts may function as a shield against female attacks during mating encounters in the spider Pisaura mirabilis and whether female hunger influences the likelihood of cannibalistic attacks. The results showed that pre-copulatory sexual...... cannibalism was enhanced when males courted without a gift and this was independent of female hunger. We propose that the nuptial gift trait has evolved partly as a counteradaptation to female aggression in this spider species....

  6. Sulphate resistant shielding material

    International Nuclear Information System (INIS)

    The shielding material of the present invention is provided with sulfuric acid resistance and contains bentonite put to ion exchange treatment with barium ions as an effective ingredient. When mortars and concretes are exposed to the circumstance of sulfate, the effective ingredient functions to take place reaction between intruding sulfate and the barium ions to form insoluble barium sulfate thereby reducing chemical corrosion of mortars and concretes caused by sulfate. Cement materials, water and aggregates can optionally be contained in addition to bentonite and bentonite put to ion exchange treatment. Chemical corrosion of concretes and mortars due to intrusion of the sulfate can be prevented, and it is useful as an artificial barrier, for example, in radioactive active waste processing facilities. (T.M.)

  7. Aladdin upgrade design study: shielding

    International Nuclear Information System (INIS)

    The object of this shielding is to examine all aspects of Aladdin operation to ensure that adequate shielding is provided to meet the design objectives. To do this, we will look at shielding necessary for radiation produced during the injection process, during normal loss of the stored beam and during accidental loss of the stored beam. It will therefore be necessary to specify shielding not only at the ring, but also along the injection line and the optical beam lines. We will also give special attention to the occupation of the accelerator Vault during injection as this may be a desirable design option. In effect, two shielding plans will be presented, permitting estimates of cost and space requirements for both

  8. Shield calculations, optimization vs. paradigm

    International Nuclear Information System (INIS)

    Many shieldings have been designed under the criteria of 'Maximum dose rates of project'. It has created the paradigm of those 'low dose rates', for the one which not few specialists would consider unacceptable levels of dose rate superior to the units of μSv.h-1, independently of the exposure times. At the present time numerous shieldings are being designed considering dose restrictions in real times of exposure. After these new shieldings, the dose rates could be notably superior to those after traditional shieldings, without it implies inadequate designs or constructive errors. In the work significant differences in levels of dose rates and thickness of shieldings estimated by both methods for some typical facilities. It was concluded that the use of real times of exposure is more adequate for the optimization of the Radiological Protection, although this method demands bigger care in its application. (Author)

  9. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  10. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author)

  11. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  12. Magnetic shielding properties of a superconducting hollow cylinder containing slits: Modelling and experiment

    OpenAIRE

    Fagnard, Jean-François; Elschner, S.; Hobl, A.; Bock, J.; Vanderheyden, Benoît; Vanderbemden, Philippe

    2012-01-01

    This paper deals with the magnetic properties of bulk high temperature superconducting cylinders used as magnetic shields. We investigate, both numerically and experimentally, the magnetic properties of a hollow cylinder with two axial slits which cut the cylinder in equal halves. Finite element method modelling has been used with a three-dimensional geometry to help us in understanding how the superconducting currents flow in such a cut cylinder and therefore how the magnetic shielding prope...

  13. Soil density and mass attenuation coefficients for use in shielding calculations at the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Compacted, backfilled soil excavated during construction may be used to provide shielding from gamma radiation at the Hanford Waste Vitrification Plant (HWVP). To provide a reasonable estimate of the shielding offered by this backfilled soil, the bulk density and the composition of the emplaced soil must be specified. This study provides an estimate of the bulk density and the mass attenuation coefficients of soil used for calculating gamma-ray shielding attenuation at the HWVP. These estimates are based on measurements taken from soil samples and underlying rock samples at the Hanford Site

  14. System for imaging plutonium through heavy shielding

    International Nuclear Information System (INIS)

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi 57Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% 240Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures

  15. Radiation protection effectiveness of a proposed magnetic shielding concept for manned Mars missions

    Science.gov (United States)

    Townsend, Lawrence W.; Wilson, John W.; Shinn, J. L.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    The effectiveness of a proposed concept for shielding a manned Mars vehicle using a confined magnetic field configuration is evaluated by computing estimated crew radiation exposures resulting from galactic cosmic rays and a large solar flare event. In the study the incident radiation spectra are transported through the spacecraft structure/magnetic shield using the deterministic space radiation transport computer codes developed at Langley Research Center. The calculated exposures unequivocally demonstrate that magnetic shielding could provide an effective barrier against solar flare protons but is virtually transparent to the more energetic galactic cosmic rays. It is then demonstrated that through proper selection of materials and shield configuration, adequate and reliable bulk material shielding can be provided for the same total mass as needed to generate and support the more risky magnetic field configuration.

  16. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.)

  17. Radiation shields for a shelter

    International Nuclear Information System (INIS)

    A simple and cheap closure and radiation shield arrangement is described for the entrance of an underground shelter. The shelter can serve as a blast-proof, biological or nuclear shelter. The radiation shield is positioned above the habitable space of the shelter and below a blast-proof, dust-proof outer cover. The shield consists of a box containing a filling, e.g. coke with a concrete screed, is closed by bolted panels and is horizontally moveable by sliding on castors. (author)

  18. New Materials for EMI Shielding

    Science.gov (United States)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  19. Noise Shielding Using Acoustic Metamaterials

    International Nuclear Information System (INIS)

    We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamaterials. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  1. AP600 Shield building

    International Nuclear Information System (INIS)

    In order to minimize capital costs and save time in the global construction time schedule for the AP600 Nuclear Power Plant, planned in 36 months from excavation up to the fuel charging, ANSALDO has developed an innovative Shield Building Conical Roof design having the following basic characteristics: i) can be erected approximately in less than two months; ii) allows the functionality of the Passive Containment Cooling System (PCSS) located in the PCCS tank and in the Valve Room anchored directly to the conical roof itself; iii) satisfies the structural loads design as Safe Shutdown Earthquake, or the Aircraft Crash and both integrated with the sloshing analysis for the tank located at the top of the conical roof. The most important aspects of this new roof are: a) use of prefabricated precast panels; b) address the erection of the formworks using temporary structures having the capability of becoming final elements; c) develop a modular rebars sizing and design in order to perform the most important portion of the job in the workshop; d) second pouring construction sequence assuring full integration with the formwork function; e) modular construction of the PCSS tank at the top of the conical roof. An interesting evaluation has been also performed in calculating sloshing phenomenon in the PCSS tank by comparing detailed 3D Finite Element Model approach and simplified qualified formulas dedicated to this phenomenon. (author). 2 figs

  2. Shielding of moving line charges

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Youmei; He, Bingyu [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Yu, Wei [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Yu, M.Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany)

    2015-07-03

    A charged object moving in plasma can excite plasma waves that inevitably modify its Debye shielding characteristics. When the excited waves propagate sufficiently fast, the shielding can even break down. Here the properties of finite amplitude plasma waves excited by a moving line charge are investigated. It is found that when the speed of the latter is close to but less than the thermal speed of the background plasma electrons, only a localized disturbance in the form of a soliton that moves together with the line charge is excited. That is, the line charge is well shielded even though it is moving at a high speed and has generated a large local electrostatic field. However, for a pair of line charges moving together, such complete shielding behavior could not be found.

  3. SNF shipping cask shielding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Pace, J.V. III

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan.

  4. SNF shipping cask shielding analysis

    International Nuclear Information System (INIS)

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan

  5. Performance test on shielding concrete

    International Nuclear Information System (INIS)

    The cylinder of the shielding concrete is made from common Portland cement and home-made coarse or fine aggregates. Orthogonal design experiment and regression analysis are adopted to study the effects of the water content, sand percentage and water-cement ratio on the property of shielding concrete and the difference between them. The test shows that the tensile strength is in inverse proportion with water-cement ratio, and the influence is quite significant. Another factor is the type of aggregates. The effect of the age on its density is not obvious. Similarly, the concrete shielding γ rays shares the same influencing factors with that shielding neutron rays on density, slump and tensile strength. And both have the same change rules regarding to mechanical property. (authors)

  6. Shielding vacuum fluctuations with graphene

    OpenAIRE

    Ribeiro, Sofia; Scheel, Stefan

    2013-01-01

    The Casimir-Polder interaction of ground-state and excited atoms with graphene is investigated with the aim to establish whether graphene systems can be used as a shield for vacuum fluctuations of an underlying substrate. We calculate the zero-temperature Casimir-Polder potential from the reflection coefficients of graphene within the framework of the Dirac model. For both doped and undoped graphene we show limits at which graphene could be used effectively as a shield. Additional results are...

  7. Composite Aerogel Multifoil Protective Shielding

    Science.gov (United States)

    Jones, Steven M.

    2013-01-01

    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  8. Shielding requirements in helical tomotherapy

    International Nuclear Information System (INIS)

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest

  9. Integral Face Shield Concept for Firefighter's Helmet

    Science.gov (United States)

    Abeles, F.; Hansberry, E.; Himel, V.

    1982-01-01

    Stowable face shield could be made integral part of helmet worn by firefighters. Shield, made from same tough clear plastic as removable face shields presently used, would be pivoted at temples to slide up inside helmet when not needed. Stowable face shield, being stored in helmet, is always available, ready for use, and is protected when not being used.

  10. Transient heat flux shielding using thermal metamaterials

    Science.gov (United States)

    Narayana, Supradeep; Savo, Salvatore; Sato, Yuki

    2013-05-01

    We have developed a heat shield based on a metamaterial engineering approach to shield a region from transient diffusive heat flow. The shield is designed with a multilayered structure to prescribe the appropriate spatial profile for heat capacity, density, and thermal conductivity of the effective medium. The heat shield was experimentally compared to other isotropic materials.

  11. Transient heat flux shielding using thermal metamaterials

    CERN Document Server

    Narayana, Supradeep; Sato, Yuki

    2013-01-01

    We have developed a heat shield based on a metamaterial engineering approach to shield a region from transient diffusive heat flow. The shield is designed with a multilayered structure to prescribe the appropriate spatial profile for heat capacity, density, and thermal conductivity of the effective medium. The heat shield was experimentally compared to other isotropic materials.

  12. Novel light-weight materials for shielding gamma ray

    Science.gov (United States)

    Chen, Shuo; Bourham, Mohamed; Rabiei, Afsaneh

    2014-03-01

    A comparison of gamma ray attenuation effectiveness of bulk aluminum, close-cell composite metal foams and open-cell aluminum foam infiltrated with variety of second phase materials were investigated and reported in this study. Mass attenuation coefficients for six sets of samples with three different areal densities of 2, 5 and 10 g/cm2 were determined at photon energies of 0.060, 0.662, 1.173, and 1.332 MeV. Theoretical values were calculated using XCOM software package. A complete agreement was observed between experimental and theoretical results. It is observed that close-cell composite metal foams exhibit a better shielding capability compared to open-cell Al foam with fillers. It is also observed that close-cell composite metal foams offer superior shielding effectiveness compared to bulk aluminum for energies below 0.662 MeV, the mass attenuation coefficients of steel-steel composite metal foam and Al-steel composite metal foam were measured 400 and 300% higher than that of aluminum A356. This study indicates the potential of utilizing the light-weight composite metal foams as shielding material replacing current heavy materials used for attenuation of low energy gamma ray with additional advantages such as high energy absorption and excellent heat rejection capabilities.

  13. Shielding analysis for ITER equatorial bio-shield plug

    International Nuclear Information System (INIS)

    ITER equatorial port cell outside bio-shield plug is a place for allowing free personnel access after shutdown which accommodates various sensitive equipment and pipes. To ensure the personnel safety in port cell after shutdown, the distribution of dose rate in port cell was studied. Based on VisualBUS (CAD-Based Multi-Functional 4D Neutronics Simulation System), dose rate calculations were completed in port cell after shutdown. The result showed that dose rates in port cell are still 2 orders of magnitude more than desired limit (10 μSv/h) after one day shutdown. The optimization of bio-shield was needed. (authors)

  14. MMW [multimegawatt] shielding design and analysis

    International Nuclear Information System (INIS)

    Reactor shielding for multimegawatt (MMW) space power must satisfy a mass constraint as well as performance specifications for neutron fluence and gamma dose. A minimum mass shield is helpful in attaining the launch mass goal for the entire vehicle, because the shield comprises about 1% to 2% of the total vehicle mass. In addition, the shield internal heating must produce tolerable temperatures. The analysis of shield performance for neutrons and gamma rays is emphasized. Topics addressed include cross section preparation for multigroup 2D S/sub n/-transport analyses, and the results of parametric design studies on shadow shield performance and mass versus key shield design variables such as cone angle, number, placement, and thickness of layers of tungsten, and shield top radius. Finally, adjoint methods are applied to the shield in order to spatially map its relative contribution to dose reduction, and to provide insight into further design optimization. 7 refs., 2 figs., 3 tabs

  15. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  16. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  17. Shielding walls against ionizing radiation

    International Nuclear Information System (INIS)

    The standard contains specifications for the shape and requirements set for lead bricks such that they can be used to construct radiation-shielding walls according to the building kit system. The dimensions of the bricks are selected in such a way as to permit any modification of the length, height and thickness of said shielding walls in units of 50 mm. The narrow side of the lead bricks juxtaposed to one another in a wall construction to shield against radiation have to form prismatic grooves and tongues; in this way, direct penetration by radiation is prevented. Only cuboid bricks (serial nos. 55-60 according to Table 10) do not have prismatic tongues and grooves. (orig.)

  18. Some benchmark shielding problems solved by the finite element method

    International Nuclear Information System (INIS)

    Some of the test cases on bulk shields for the two-dimensional codes MARC, TRIMOM and FELICIT are described. These codes use spherical harmonic expansions for neutron directions and a finite element grid over space. MARC was developed primarily as a reactor physics code with a finite element option and it assumes isotropic scattering. TRIMOM is being developed as a general purpose shielding code for anisotropic scatterers. FELICIT is being developed as a module of TRIMOM for cylindrical systems. All three codes employ continuous trial functions at present. Exploratory work on the use of discontinuous trial functions is described. Discontinuous trial functions permit the splicing of methods which use different angular expansions, so that, for example, transport theory can be used where it is necessary and diffusion theory can be used elsewhere. (author)

  19. Survivor shielding. Part B. Improvements in building shielding

    International Nuclear Information System (INIS)

    Most atomic-bomb survivor doses are affected by the shielding provided by wooden structures, either in which the survivor resides or which lie between him or her and the epicenter. In the dosimetry system, this shielding of survivors can be described by a transmission factor (TF), which is the ratio of the dose with and without the structures being present. The TF typically ranges between 0.3 and 1.0. After DS86 was implemented at RERF, several of the shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, a large bimodal uncertainty in the 9-parameter category 'FS=0' was identified. Corrective action was proposed and is now implemented in DS02. In 2002, a dose bias in large wooden buildings, such as schools, was identified and a correction is implemented in DS02. A correction is also implemented in DS02 to take care of a large uncertainty in the globe-house shielding. (J.P.N.)

  20. Manufacture of a shield prototype for primary wall modules

    International Nuclear Information System (INIS)

    In the frame of the BLANKET MODULE (BM) development for ITER, an R and D programme was implemented for the manufacture of a shield prototype by powder Hot Isostatic Pressing (HIPping). The manufactured shield is a full scale module No. 11a. Starting from a forged block of 1200 x 1200 x 500 mm, the main machining steps as deep drilling (1200 mm), 3D machining and sawing were performed. Tubes were 3D bent and large number of small parts were designed and machined. By welding together all the sub-parts we erected the main part of the water coolant circuit. Once the water circuit was built; the shield was completed using powder HIPping together with forged block embedding the tubes and their in a final solid part. The powder/solid HIP is used to minimize the number of BM seal welds in front of plasma. It increases the reliability of the components during operation. About 300 kg of stainless steel powder was densified together with the forged block. 3D measurement was done before and after the HIP cycle to collect the data to be compared with theoretical model. It allows to predict the main distortions of the solid bulk. Ultrasonic examination of the densified powder on the Stainless steel bulk and around the bended tubes was performed as well as mechanical characterization of the samples. The recess for stub key attachment on the vacuum vessel side, the hydraulic connector, the key for the primary wall panel attachment on the front side and the link between the four parallel water coolant circuits were then machined to achieve the shield prototype. (orig.)

  1. Manufacture of a shield prototype for primary wall modules

    International Nuclear Information System (INIS)

    In the frame of the blanket module (BM) development for ITER, an R and D programme was implemented for the manufacture of a shield prototype by powder hot isostatic pressing (HIPping). The manufactured shield is a full-scale module No. 11a. Starting from a forged block of 1350 mm x 1300 mm x 450 mm, the main machining steps as deep drilling (1200 mm), 3D machining and sawing were performed. Tubes were 3D bent and large number of small parts were designed and machined. By welding together all the sub-parts we erected the main part of the water coolant circuit. Once the water circuit was built; the shield was completed using powder HIPping together with forged block embedding the tubes in a final solid part. The powder/solid HIP is used to minimize the number of BM seal welds in front of plasma. It increases the reliability of the components during operation. About 300 kg of stainless steel powder was densified together with the forged block. 3D measurement was done before and after the HIP cycle to collect the data to be compared with theoretical model. It allows to predict the main distortions of the solid bulk. Ultrasonic examination of the densified powder on the stainless steel bulk and around the bended tubes was performed as well as mechanical characterization of the samples. The recess for stub key attachment on the vacuum vessel side, the hydraulic connector, the key for the primary wall panel attachment on the front side and the link between the four parallel water coolant circuits were then machined to achieve the shield prototype

  2. Preparatory works for PFBR shielding experiments Phase-IV at Apsara

    International Nuclear Information System (INIS)

    Proto-type Fast Breeder Reactor houses Radial and Axial shields inside reactor vessel to reduce the neutron flux impingement on in-vessel intermediate heat exdtanger (IHX)and toredure the activation of sodium in seoondarysystern. PFBR bulks have bcen calTied out in the shielding corner of Apsara reactor for optimizing the in-vessel radial and axial shielding. 10 experiments were conducted using shielding models of various combinations of steel, sodium, graphite and boron carbide to simulate the in-vessel radial and axial shielding in PFBR. These experiments have provided valuable data for design, in the form of bias factors to be used in the shield design. The extrapolate the bias factor to any further design change or for the design of further FBR 500 and larger size 1000 MWe fast reactors, it is essential to study the neutron transport through single shield materials. Towards this end, 10 more experiments are being conducted with single material shield models consisting of Cs, Cast Iron, graphite, B4C, Borated Graphite, Na, SS, Ni and Cr. An experiment simulating the actual shield geomctry in PFBR sub-assembly is also planned. As done in case of earlier experiments, detailed safety review and a comprehensive preparatory work were carried out prior to the commencement of the ongoing experiments as well, in order to ensure the safe and timely completion of the same. Based on experience gained in the earlier experiments certain design innovations and safety features the Phase-IV experiments with single shield models. (author)

  3. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  4. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  5. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2013-02-04

    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  6. Neutron production, shielding and activation

    International Nuclear Information System (INIS)

    This chapter contains information on neutron cross-sections, production, spectra and yields; detection and detectors; shielding with various materials, particularly with ordinary concrete; and neutron activation products of interest to health physicists. Neutron energy terminology as well as neutron energy spectrum calculations are included

  7. Validity assessment of shielding design tools for ITER through analysis of benchmark experiment on SS316/water shield conducted at FNS/JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Verzilov, Y.M.; Konno, Chikara; Wada, Masayuki; Maekawa, Hiroshi; Oyama, Yukio; Uno, Yoshitomo [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1996-12-31

    To assess validity of the shielding design tools for ITER, the benchmark experiment on SS316/water shield conducted at FNS/JAERI is analyzed. As far as a simple bulk shield of SS316/water is concerned, the followings are found assuming that no uncertainty is involved in the response functions of the design parameters. Nuclear data bases of JENDL Fusion File and FENDL/E-1.0 are valid to predict all the design parameters with uncertainties less than a factor of 1.25. At the connection legs between shield blanket modules and back plates, both MCNP and DOT calculations can predict helium production rate with uncertainties less than 10%. For the toroidal field coils on the midplane, all the nuclear parameters can be predicted with uncertainties less than a factor of 1.25 by MCNP and DOT with consideration of self-shielding correction of cross sections and energy group structure of 125-n and 40-{gamma}. The uncertainties for toroidal field coils are considerably smaller than the design margins secured to the shielding designs under ITER/EDA. 22 refs., 8 figs.

  8. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  9. A Novel Radiation Shielding Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding simulations showed that epoxy loaded with 10-70% polyethylene would be an excellent shielding material against GCRs and SEPs. Milling produced...

  10. Nuclear data relevant to shield design of FMIT facility

    International Nuclear Information System (INIS)

    Nuclear data requirements are reviewed for the design of the Fusion Materials Irradiation Test (FMIT) facility. This accelerator-based facility, now in the early stages of construction at Hanford, will provide high fluences in a fusion-like radiation environment for the testing of materials. The nuclear data base required encompasses the entire range of neutron energies from thermal to 50 MeV. In this review, we consider neutron source terms, cross sections for thermal and bulk shield design, and neutron activation for the facility

  11. Development of a new control software package for Pakistan Research Reactor-2

    International Nuclear Information System (INIS)

    The development of a new control software package for Pakistan Research Reactor-2 is presented. The software operates in different modes which comprises of surveillance, pre-operational self tests, operator, supervisor and robotic control. The control logic critically damp the system minimizing power overshoots. The software, handles multiple abnormal conditions, provides an elaborate access control and maintains startup/shutdown record. The report describes the functional details and covers the operational aspects of the new control software. (author)

  12. Environmental impact of Pakistan Research Reactor-2 following a hypothetical radiological release accident

    International Nuclear Information System (INIS)

    The environmental impact of Pakistan Research Reactor-2 (PARR-2) following a hypothetical accident is presented. It is shown that with 100% core meltdown and multiple failures, PARR-2 does not pose any catastrophic consequences. Conservative estimates show that radiation levels in the Low Population Zone (LPZ) adjacent to the PARR-2 building, which in this case is the PINSTECH building, remains below the established limits. (author)

  13. Bulk materials handling review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    The paper provides details of some of the most important coal handling projects and technologies worldwide. It describes development by Aubema Crushing Technology GmbH, Bedeschi, Cimbria Moduflex, DBT, Dynamic Air Conveying Systems, E & F Services, InBulk Technologies, Nord-Sen Metal Industries Ltd., Pebco Inc, Primasonics International Ltd., R.J.S. Silo Clean (International) Ltd., Takraf GmbH, and The ACT Group. 17 photos.

  14. Reactor cavity cleanup system shielded filter installation

    International Nuclear Information System (INIS)

    The Seabrook Station reactor cavity cleanup system provides a flow path for refueling pool purification and drain down during plant refueling evolutions. The original system design included refueling pool surface skimmers and drains, a skimmer pump, an unshielded duplex basket type pump suction strainer and interconnecting stainless steel piping. The piping design utilized socket welded joints in small bore pipe with diaphragm values installed in the horizontal pipe runs downstream of the skimmer pump. The previously installed unshielded strainer in addition to the skimmer pump downstream piping components were determined to be inconsistent with Seabrook's proactive approach to dose reduction. To be consistent with ALARA (As Low As Reasonably Achievable) policy, a plant design change was authorized to install a lead shielded filter unit as a replacement for the existing duplex strainer. This filter unit, which utilizes multiple micron rating disposable basket type cartridges, has a threefold function of protecting the skimmer pump from large solids, providing bulk filtration of activated corrosion products from the refueling water in order to minimize CRUD buildup in downstream components, and enabling retrieval of foreign material drawn into the refueling pool drains

  15. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  16. New facility shield design criteria

    International Nuclear Information System (INIS)

    The purpose of the criteria presented here is to provide standard guidance for the design of nuclear radiation shields thoughout new facilities. These criteria are required to assure a consistent and integrated design that can be operated safely and economically within the DOE standards. The scope of this report is confined to the consideration of radiation shielding for contained sources. The whole body dose limit established by the DOE applies to all doses which are generally distributed throughout the trunk of the body. Therefore, where the whole body is the critical organ for an internally deposited radionuclide, the whole body dose limit applies to the sum of doses received must assure control of the concentration of radionuclides in the building atmosphere and thereby limit the dose from internal sources

  17. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  18. Handbook of radiation shielding data

    International Nuclear Information System (INIS)

    This handbook is a compilation of data on units, conversion factors, geometric considerations, sources of radiation, and the attenuation of photons, neutrons, and charged particles. It also includes related topics in health physics. Data are presented in tabular and graphical form with sufficient narrative for a least first-approximation solutions to a variety of problems in nuclear radiation protection. Members of the radiation shielding community contributed the information in this document from unclassified and uncopyrighted sources, as referenced

  19. Light shield for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  20. How Concentration Shields Against Distraction

    OpenAIRE

    Sörqvist, Patrik; Marsh, John E.

    2015-01-01

    In this article, we outline our view of how concentration shields against distraction. We argue that higher levels of concentration make people less susceptible to distraction for two reasons. One reason is that the undesired processing of the background environment is reduced. For example, when people play a difficult video game, as opposed to an easy game, they are less likely to notice what people in the background are saying. The other reason is that the locus of attention becomes more st...

  1. Paramagnetism shielding in drilling fluid

    OpenAIRE

    Li, Zhuo

    2013-01-01

    In drilling operations, drilling fluid containing magnetic materials is used when drilling a well. The materials can significantly shield the Earth’s magnetic field as measured by magnetic sensors inside the drilling strings. The magnetic property of the drilling fluid is one of the substantial error sources for the determination of magnetic azimuth for wellbores. Both the weight material, cuttings, clay and other formation material plus metal filings from the tubular wear m...

  2. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  3. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  4. Reactor vessel head permanent shield

    International Nuclear Information System (INIS)

    A nuclear reactor is described comprising: a nuclear reactor pressure vessel closure head; control rod drive mechanisms (CRDMs) disposed within the closure head so as to project vertically above the closure head; cooling air baffle means surrounding the control rod drive mechanisms for defining cooling air paths relative to the control rod drive mechanisms; means defined within the periphery of the closure head for accommodating fastening means for securing the closure head to its associated pressure vessel; lifting lugs fixedly secured to the closure head for facilitating lifting and lowering movements of the closure head relative to the pressure vessel; lift rods respectively operatively associated with the plurality of lifting lugs for transmitting load forces, developed during the lifting and lowering movements of the closure head, to the lifting lugs; upstanding radiation shield means interposed between the cooling air baffle means and the periphery of the enclosure head of shielding maintenance personnel operatively working upon the closure head fastening means from the effects of radiation which may emanate from the control rod drive mechanisms and the cooling air baffle means; and connecting systems respectively associated with each one of the lifting lugs and each one of the lifting rods for connecting each one of the lifting rods to a respective one of each one of the lifting lugs, and for simultaneously connecting a lower end portion of the upstanding radiation shield means to each one of the respective lifting lugs

  5. Photonic Bandgap (PBG) Shielding Technology

    Science.gov (United States)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  6. Steam generator hand hole shielding.

    Science.gov (United States)

    Cox, W E

    2000-05-01

    Seabrook Station is an 1198 MWE Pressurized Water Reactor (PWR) that began commercial operation in 1990. Expensive and dose intensive Steam Generator Replacement Projects among PWR operators have led to an increase in steam generator preventative maintenance. Most of this preventative maintenance is performed through access ports in the shell of the steam generator just above the tube sheet known as secondary side hand holes. Secondary side work activities performed through the hand holes are typically performed without the shielding benefit of water in the secondary side of the steam generator. An increase in cleaning and inspection work scope has led to an increase in dose attributed to steam generator secondary side maintenance. This increased work scope and the station goal of maintaining personnel radiation dose ALARA led to the development of the shielding concept described in this article. This shield design saved an estimated 2.5 person-rem (25 person-Smv) the first time it was deployed and is expected to save an additional 50 person-rem (500 person-mSv) over the remaining life of the plant. PMID:10770158

  7. Water shielding nuclear reactor container

    International Nuclear Information System (INIS)

    The reactor container of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevated inner pressure and keeping airtightness, and shielding water is filled inside from a water injection port. It is endurable to a great inner pressure satisfactorily and keep airtightness by the two spaced relatively thin steel plates. It exhibits radiation shielding effect by filling water substantially the same as that of a conventional reactor container made of iron reinforced concretes. Then, it is no more necessary to use concretes for the construction of the reactor container, which shortens the term of the construction, and saves the construction cost. In addition, a cooling effect for the reactor container is provided. Syphons are disposed contiguously to a water injection port and the top end of the syphon is immersed in an equipment temporarily storage pool, and further, pipelines are connected to the double steel plate walls or the syphons for supplying shielding water to enhance the cooling effect. (N.H.)

  8. Seal device for shield plug

    International Nuclear Information System (INIS)

    Purpose: To surely seal cover gases at a position nearer to the reactor core of a shield plug in LMFBR type reactors. Constitution: A shield plug is formed with through holes for insertion of a stopper or a through-cylinder. A step is provided to the through hole at the interium of the thickness of the shield plug and a seal ring is disposed on the step. The seal ring is retained on the side of the stopper or the through-cylinder by means of a holding member. The seal ring is urged to the step of the stopper by the own weight of the stopper or the through-cylinder to thereby seal the cover gases. Since the seal ring is retained on the side of the stopper or the through-cylinder, the seal ring is pulled up together with the extraction of the stopper or the through-cylinder and can be maintained or repaired with ease. (Ikeda, J.)

  9. RF-transparent solar shield

    International Nuclear Information System (INIS)

    By combining durable Kapton films with quartz fibers, an effective solar shield or blanket is produced which also serves as an efficient RF-transparent window. The window consists of a series of Kapton film envelopes sandwiching thin quartz paper. Not only must the window prevent the sun from overheating the electronics and distorting mechanically aligned antennas, it must also prevent radiant heat loss from inside the satellite when it is in shadow and radiating to space at approx. 40K. The guidelines for achieving an effective high-frequency RF window are a low dielectric constant to keep reflections down, a low loss tangent so RF absorption and molecular movement will be minimal, and low mass with tin and lightweight materials. Because these guidelines were followed, the RF insertion loss of the multiple envelope shield is less than 1/4 dB at high frequency. This paper concentrates on the material and processing aspects of an RF-transparent solar shield

  10. Novel light-weight materials for shielding gamma ray

    International Nuclear Information System (INIS)

    A comparison of gamma ray attenuation effectiveness of bulk aluminum, close-cell composite metal foams and open-cell aluminum foam infiltrated with variety of second phase materials were investigated and reported in this study. Mass attenuation coefficients for six sets of samples with three different areal densities of 2, 5 and 10 g/cm2 were determined at photon energies of 0.060, 0.662, 1.173, and 1.332 MeV. Theoretical values were calculated using XCOM software package. A complete agreement was observed between experimental and theoretical results. It is observed that close-cell composite metal foams exhibit a better shielding capability compared to open-cell Al foam with fillers. It is also observed that close-cell composite metal foams offer superior shielding effectiveness compared to bulk aluminum for energies below 0.662 MeV, the mass attenuation coefficients of steel–steel composite metal foam and Al–steel composite metal foam were measured 400 and 300% higher than that of aluminum A356. This study indicates the potential of utilizing the light-weight composite metal foams as shielding material replacing current heavy materials used for attenuation of low energy gamma ray with additional advantages such as high energy absorption and excellent heat rejection capabilities. - Highlights: • Close-cell metal foams were processed by powder metallurgy and casting techniques. • Open-cell foams were infiltrated with light weight fillers: wax, polyethylene, water. • Each material with three areal densities was studied under four photon energies. • Steel–steel composite foam is 400% more effective than aluminum against 241Am. • Al–steel composite foam is 300% more effective than aluminum against 241Am

  11. Wormholes in Bulk Viscous Cosmology

    OpenAIRE

    Jamil, Mubasher

    2008-01-01

    We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Morris-Thorne wormhole. We have found that if the bulk viscosity is large then the mass of wormhole increases rapidly as compared to small or zero bulk viscosity.

  12. Heat-shield design for glovebox applications

    International Nuclear Information System (INIS)

    Heat shields can often be used in place of insulation materials as an effective means of insulating glovebox furnace vessels. If used properly, shields can accomplish two important objectives: thermal insulation of the vessel to maintain a desired process temperature and protection of the glovebox, equipment, and user. A heat-shield assembly can be described as an arrangement of thin, properly-spaced, metal sheets that reduce radiation heat transfer. The main problem encountered in the design of a heat shield assembly is choosing the number of shields. In determining the heat transfer characteristics of a heat-shield assembly, a number of factors must be taken into consideration. The glovebox or outside environment, material properties, geometry, and operating temperature all have varying effects on the expected results. A simple method, for planar-horizontal and cylindrical-vertical shields, allowing the approximation of the outermost shield temperature, the practical number of shields, and the net heat-transfer rate will be presented. Methods used in the fabrication of heat-shield assemblies will also be discussed

  13. EMI Shields made from intercalated graphite composites

    Science.gov (United States)

    Gaier, James R.; Terry, Jennifer

    1995-01-01

    Electromagnetic interference (EMI) shielding typically makes up about twenty percent of the mass of a spacecraft power system. Graphite fiber/polymer composites have significantly lower densities and higher strengths than aluminum, the present material of choice for EMI shields, but they lack the electrical conductivity that enables acceptable shielding effectiveness. Bromine intercalated pitch-based graphite/epoxy composites have conductivities fifty times higher than conventional structural graphite fibers. Calculations are presented which indicate that EMI shields made from such composites can have sufficient shielding at less than 20% of the mass of conventional aluminum shields. EMI shields provide many functions other than EMI shielding including physical protection, thermal management, and shielding from ionizing radiation. Intercalated graphite composites perform well in these areas also. Mechanically, they have much higher specific strength and modulus than aluminum. They also have shorter half thicknesses for x-rays and gamma radiation than aluminum. Thermally, they distribute infra-red radiation by absorbing and re-radiating it rather than concentrating it by reflection as aluminum does. The prospects for intercalated graphite fiber/polymer composites for EMI shielding are encouraging.

  14. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  15. Explosive bulk charge

    Science.gov (United States)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  16. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  17. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-01-01

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. PMID:25326558

  18. Custom shielding blocks - a prospective study

    International Nuclear Information System (INIS)

    In delivering radiation to the cancer patients, we need to shield the critical organs which come in the way of the radiation treatment portal. To avoid critical organs getting more than the tolerable dose, we use shielding blocks, which restrict the radiation to the tumour volume. Various metals are being used as shielding materials. The transmission through the shielding block should be less than 5% and the thickness of the material needed to achieve this transmission is 5 HVL. Lead is commonly used for shielding. Another material called Cerrobend (Low Melting Alloy) is used to prepare custom shielding blocks. The standard lead blocks supplied is of 5 cm thickness and for Cerrobend (LMA), the equivalent thickness required is 7.5 cm. In this paper, a comparison between the standard lead and LMA is described

  19. Highly heat-removing radiation shielding material

    International Nuclear Information System (INIS)

    Highly heat-removing radiation shielding material is constituted with fine particles prepared by coating metals of high heat conductivity to fine particles comprising materials having excellent radiation shielding performance. Then, the fine particles applied with the coating are mixed and filled in a shielding container or applied with hot press into a layerous form and used as a shielding member. In view of the above, since the coated fine particles provide the shielding performance against radiation such as neutrons and gamma rays, and the coating metals provide the heat removing performance, they act as a shielding material having heat removing performance as a whole. The combination of the coated fine particles and the coating metals are selected depending on the respective conditions for use. With such a constitution, radioactive wastes involving a problem of heat generation can be transported or stored safely. (T.M.)

  20. Dynamic rotating-shield brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and 192Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci192Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively.Conclusions: For cervical cancer patients, D

  1. Dynamic rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang, Wenjun [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Wu, Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  2. Shielding of medically used proton accelerators

    International Nuclear Information System (INIS)

    In several standards of the standards committee radiology (NRA) the shielding of proton accelerators (cyclotrons) for medical utilization is described. Proton beams can be used in nuclear medicine for PET (proton emission tomography) isotope production or for radiotherapeutic use. The dominating radiation from proton induced nuclear reactions is fast neutron radiation. The calculation procedure for appropriate shielding measures according to the NAR standards is described step-by-step. AN adequate shielding of fast neutrons is also sufficient for the generated gamma radiation.

  3. Radiation dose reduction by water shield

    International Nuclear Information System (INIS)

    This report is an operational manual of shielding software W-Shielder, developed at Health Physics Division (HPD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), Pakistan Atomic Energy Commission. The software estimates shielding thickness for photons having their energy in the range 0.5 to 10 MeV. To compute the shield thickness, self absorption in the source has been neglected and the source has been assumed as a point source. Water is used as a shielding material in this software. The software is helpful in estimating the water thickness for safe handling, storage of gamma emitting radionuclide. (author)

  4. Shielding for thermoacoustic tomography with RF excitation

    Science.gov (United States)

    Mitchell, M.; Becker, G.; Dey, P.; Generotzky, J.; Patch, S. K.

    2008-02-01

    Radiofrequency (RF) pulses used to generate thermoacoustic computerized tomography (TCT) signal couple directly into the pulser-receiver and oscilloscope, swamping true TCT signal. We use a standard RF enclosure housing both RF amplifier and object being imaged. This is similar to RF shielding of magnetic resonance imaging (MRI) suites and protects electronics outside from stray RF. Unlike MRI, TCT receivers are ultrasound transducers, which must also be shielded from RF. A transducer housing that simultaneously shields RF and permits acoustic transmission was developed specifically for TCT. We compare TCT signals measured with and without RF shielding.

  5. Shielding integral benchmark archive and database

    International Nuclear Information System (INIS)

    SINBAD (Shielding integral benchmark archive and database) is a new electronic database developed to store a variety of radiation shielding benchmark data so that users can easily and incorporate the data into their calculations. SINBAD is an excellent data source for users who require the quality assurance necessary in developing cross-section libraries or radiation transport codes. The future needs of the scientific community are best served by the electronic database format of SINBAD and its user-friendly interface, combined with its data accuracy and integrity. It has been designed to be able to include data from nuclear reactor shielding, fusion blankets and accelerator shielding experiments. (authors)

  6. Neutron shielding for a 252 Cf source

    International Nuclear Information System (INIS)

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252Cf isotopic neutron source. During calculations a detailed model for the 252Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare 252Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  7. Research of Bulk Erase Operation in Vertical Three-Dimensional Cell Array Architecture

    Science.gov (United States)

    Yang, Hyung-jun; Lee, Gae-hun; Kim, Kyeong-rok; Song, Yun-heub

    2013-04-01

    A bit-cost scalable (BiCS) NAND flash memory with a bulk erasing method is investigated in view of cell characteristics and uniformity. The proposed cell array has an additional electrode layer for a bulk erase operation in the middle of a vertical channel string cell. Here, under a bias condition of 20 V, a programming threshold voltage of 4.2 V at 1 ms and an erasing threshold voltage of Vth = -1.5 V at 10 ms are confirmed, which is acceptable for flash memories. Furthermore, the shielding transistor close to an erase electrode is also investigated, which gives better erase characteristics for the cells adjacent to the erase electrode. From this result, we expect that a bulk erasable-BiCS technology with a shielding transistor can be a candidate three-dimensional (3D) NAND flash memory.

  8. TPX remote maintenance and shielding

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment machine design incorporates comprehensive planning for efficient and safe component maintenance. Three programmatic decisions have been made to insure the successful implementation of this objective. First, the tokamak incorporates radiation shielding to reduce activation of components and limit the dose rate to personnel working on the outside of the machine. This allows most of the ex-vessel equipment to be maintained through conventional ''hands-on'' procedures. Second, to the maximum extent possible, low activation materials will be used inside the shielding volume. This resulted in the selection of Titanium (Ti-6Al-4V) for the vacuum vessel and PFC structures. The third decision stipulated that the primary in-vessel components will be replaced or repaired via remote maintenance tools specifically provided for the task. The component designers have been given the responsibility of incorporating maintenance design and for proving the maintainability of the design concepts in full-scale mockup tests prior to the initiation of final fabrication. Remote maintenance of the TPX machine is facilitated by general purpose tools provided by a special purpose design team. Major tools will include an in-vessel transporter, a vessel transfer system and a large component transfer container. In addition, tools such as manipulators and remotely operable impact wrenches will be made available to the component designers by this group. Maintenance systems will also provide the necessary controls for this equipment

  9. TPX remote maintenance and shielding

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) machine design incorporates comprehensive planning for efficient and safe component maintenance. Three programmatic decisions have been made to insure the successful implementation of this objective. First, the tokamak incorporates radiation shielding to reduce activation of components and limit the dose rate to personnel working on the outside of the machine. This allows most of the ex-vessel equipment to be maintained through conventional open-quotes hands-onclose quotes procedures. Second, to the maximum extent possible, low activation materials will be used inside the shielding volume. This resulted in the selection of Titanium (Ti-6Al-4V) for the vacuum vessel and Plasma Facing Components (PFC) structures. The third decision stipulated that the primary in-vessel components will be replaced or repaired via remote maintenance tools specifically provided for the task. The component designers have been given the responsibility of incorporating maintenance design and for proving the maintainability of the design concepts in full-scale mockup tests prior to the initiation of final fabrication. Remote maintenance of the TPX machine is facilitated by general purpose tools provided by a special purpose design team. Major tools will include an in-vessel transporter, a vessel transfer system and a large component transfer container. In addition, tools such as manipulators and remotely operable impact wrenches will be made available to the component designers by this group. Maintenance systems will also provide the necessary controls for this equipment

  10. Substituent effects on nuclear shielding

    International Nuclear Information System (INIS)

    The important role of nuclear magnetic resonance (NMR) spectroscopy in chemistry arises largely from the consequences of nuclear shielding. The fact that nuclei in different electronic environments have different nuclear shieldings, and hence different chemical shifts, makes NMR a powerful probe of electronic structure. Empirical rules relating chemical shifts to substituent (σ) constants, electron densities, electronegativities, and a variety of other empirical parameters have proven of great benefit to problems of organic structural elucidation, and to fundamental studies of molecular electron distributions. This review focuses on one specific application in the latter category -the study of substituent electronic effects on chemical shifts. The aim is not to provide a compendium of substituent effects on chemical shifts to aid in structural assignments, but to show how fine detail relating to the distribution and polarization of electrons in molecules may be determined from chemical shift studies. Chapters are devoted to 1H, 11B, 13C, 15N, 17O, 19F, 31P, 33S, 77Se, 95Mo and 199Hg chemical shifts. (U.K.)

  11. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lead used for shielding is often surface contaminated with radionuclides and is therefore a Resource Conservation and Recovery Act (RCRA) D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Lab. decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 100 metric tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 280 kPa (40 psig) rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a pump. A pump sends the slurry mixture back to the spray gun, creating a continuous process

  12. CYLSEC: A three dimensional shield evaluation code

    International Nuclear Information System (INIS)

    Existing point kernel gamma codes are either limited to simple geometry configurations or require rather cumbersome input. These codes also require the user to specify the mesh size used in integrating the kernel. This results in computational inefficiencies since it is difficult to establish criteria for choosing mesh size and because it is generally not possible to assure convergence without solving the problem more than once. The interactive program CYLSEC was recently developed to improve this situation. CYLSEC can be used to evaluate bulk or local shielding for radioactive components, to treat streaming problems and to calculate a variety of gamma ray response functions. It will accept three dimensional geometries that can be described in terms of orthogonal slabs, right cylinders and/or right parallelepipeds. While the problem geometry is specified in rectangular coordinates, the integration of the kernel is performed in spherical coordinates. This allows explicit integration over the radial variable, thus reducing the problem to a double integral. The integral mesh size varies and is internally determined such that a specified convergence criterion is met. CYLSEC is also designed to recognize and take advantage of any problem symmetry in order to maximize efficiency. Program input is through interactive routines that are self checking and permit the user to make corrections. A gamma ray data library is provided, however, alternate data may be specified if desired. Comparisons between CYLSEC and other point kernel codes (QAD, GRACE) show excellent agreement in results and demonstrate that CYLSEC requires significantly less CPU time. Comparisons with the discrete ordinates code ANISN also show good agreement. An additional attraction to CYLSEC is that it is suitable for conversion to mini or personal computers

  13. Applications and modelling of bulk HTSs in brushless ac machines

    International Nuclear Information System (INIS)

    The use of high temperature superconducting material in its bulk form for engineering applications is attractive due to the large power densities that can be achieved. In brushless electrical machines, there are essentially four properties that can be exploited; their hysteretic nature, their flux shielding properties, their ability to trap large flux densities and their ability to produce levitation. These properties translate to hysteresis machines, reluctance machines, trapped-field synchronous machines and linear motors respectively. Each one of these machines is addressed separately and computer simulations that reveal the current and field distributions within the machines are used to explain their operation. (author)

  14. Improved Electromagnetic Interference Shielding Properties of MWCNT–PMMA Composites Using Layered Structures

    Directory of Open Access Journals (Sweden)

    Saini P

    2009-01-01

    Full Text Available Abstract Electromagnetic interference (EMI shielding effectiveness (SE of multi-walled carbon nanotubes–polymethyl methacrylate (MWCNT–PMMA composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band was achieved by stacking seven layers of 0.3-mm thick MWCNT–PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT–PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material.

  15. Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures.

    Science.gov (United States)

    Pande, Shailaja; Singh, Bp; Mathur, Rb; Dhami, Tl; Saini, P; Dhawan, Sk

    2009-01-01

    Electromagnetic interference (EMI) shielding effectiveness (SE) of multi-walled carbon nanotubes-polymethyl methacrylate (MWCNT-PMMA) composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2-12.4 GHz (X-band) was achieved by stacking seven layers of 0.3-mm thick MWCNT-PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT-PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus) of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material. PMID:20596500

  16. Radiation shielding design calculation of gamma knife for therapy

    International Nuclear Information System (INIS)

    The author reports the method and results of radiation shielding calculation of the gamma knife for therapy which is composed of thirty 60Co sources each with 7.4 EBq, semi-spherical shield, lateral shielding cupboard and the shielding door. The shielding thicknesses of the back shield, the lateral shielding cupboard and the shielding door were calculated. The leakage radiation by test indicates that the shielding is sufficient safety for this Gamma knife and the Kerma rate of control calculated agrees with that by test

  17. Inflation from bulk viscosity

    CERN Document Server

    Bamba, Kazuharu

    2015-01-01

    We explore the perfect fluid description of the inflationary universe. In particular, we investigate a fluid model with the bulk-viscosity term. We find that the three observables of inflationary cosmology: the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be consistent with the recent Planck results. We also reconstruct the explicit equation of state (EoS) of the viscous fluid from the spectral index of the curvature perturbations compatible with the Planck analysis. In the reconstructed models of the viscous fluid, the tensor-to-scalar ratio of the density perturbations can satisfy the constraints obtained from the Planck satellite. The running of the spectral index can explain the Planck data. In addition, it is demonstrated that in the reconstructed models of the viscous fluid, the graceful exit from inflation can be realized. Furthermore, we show that the singular inflation can occur in the viscous fluid ...

  18. Shielding research at the Hanford Site

    International Nuclear Information System (INIS)

    The original three plutonium production reactors (B, D, and F) constructed at the Hanford Site in 1943--1944 had shields consisting of alternate layers of iron and a high-density pressed-wood product called Masonite *. This design was the engineering response to the scientific request for a mixture of iron and hydrogen. The design mix was based on earlier studies using iron and water or iron and paraffin; however, these materials did not have satisfactory structural characteristics. Although the shields performed satisfactorily, the fabrication cost was high. Each piece had to be machined precisely to fit within structural webs, so as not to introduce cracks through the shield. Before 1950, two additional reactors (DR and H) were built using the same shield design. At the request of R.L. Dickeman, an experimental facility was included in the top of the DR Reactor to permit evaluation of shield materials. Concurrent with the measurement of attenuation properties of materials in this facility, a program was undertaken to investigate the structural characteristics of various high-density Portland cement concretes. This research effort continued for over a decade, and led to the use of these concretes in subsequent reactor shields at the Hanford Site and elsewhere with significant savings in construction costs. Completion of the attenuation and structural measurements on the various high-density concretes provided a database that could be used in the design of shields for new reactors. At the Hanford Site, the top shield of the C Reactor was constructed of concrete, whereas the sides were constructed of iron-Masonite. As more and more data were acquired, the later rectors, KE, KW, and NPR, had shields of various tested concretes. Using concrete in these shields materially reduced the cost of the facilities. Additionally, studies on heat damage to the masonite resulted in changes that permitted increases in production, while at the same time maintaining shield integrity

  19. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and...... three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low...

  20. Water confined in carbon nanotubes: Magnetic response and proton chemical shieldings

    Science.gov (United States)

    Huang, Patrick; Schwegler, Eric; Galli, Giulia

    2009-03-01

    Carbon nanotubes (CNT) provide a well-defined environment for the study of confined water, whose behavior can differ markedly from bulk water. The application of nuclear magnetic resonance (NMR) to probe the local water structure and dynamics in these cases is hindered by ambiguities in the interpretation of the NMR spectra. We employ linear response theory to evaluate the ^1H chemical shieldings of liquid water in semiconducting CNTs, where the electronic structure is derived from density functional theory with periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions, for water in CNTs with diameters d=11 åand 14.9 å@. We find a large (˜-23 ppm) upfield shift relative to bulk liquid water, which is a consequence of strongly anisotropic magnetic fields induced in the CNT by the applied magnetic field.

  1. Deep-penetration calculation for the ISIS target station shielding using the MARS Monte Carlo code

    CERN Document Server

    Nunomiya, T; Nakamura, T; Nakao, N

    2002-01-01

    A calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation with good statistics, the following three techniques were used in this study. First, the geometry of the bulk shield was three-dimensionally divided into several layers of about 50-cm thickness, and a step-by-step calculation was carried out to multiply the number of penetrated particles at the boundaries between the layers. Second, the source particles in the layers were divided into two parts to maintain the statistical balance on the spatial-flux distribution. Third, only high-energy particles above 20 MeV were trans...

  2. Optimization of multi-layered metallic shield

    International Nuclear Information System (INIS)

    Research highlights: → We investigated the problem of optimization of a multi-layered metallic shield. → The maximum ballistic limit velocity is a criterion of optimization. → The sequence of materials and the thicknesses of layers in the shield are varied. → The general problem is reduced to the problem of Geometric Programming. → Analytical solutions are obtained for two- and three-layered shields. - Abstract: We investigate the problem of optimization of multi-layered metallic shield whereby the goal is to determine the sequence of materials and the thicknesses of the layers that provide the maximum ballistic limit velocity of the shield. Optimization is performed under the following constraints: fixed areal density of the shield, the upper bound on the total thickness of the shield and the bounds on the thicknesses of the plates manufactured from every material. The problem is reduced to the problem of Geometric Programming which can be solved numerically using known methods. For the most interesting in practice cases of two-layered and three-layered shields the solution is obtained in the explicit analytical form.

  3. ITER cryostat thermal shield detailed design

    International Nuclear Information System (INIS)

    The structural design and study on fabrication and assembly of the cryostat thermal shield for International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat thermal shield is attached to cover the cryostat inner wall in order to reduce the radiation heat loads applied to the superconducting coils operation at 4 K. The thermal shield consists of low-emissivity foils which are passively cooled and shield plates which are actively cooled with low temperature helium gas. The foils are multi-layered assemblies and are attached on both surfaces of the shield plates. The material of the foils are silver coated 304 stainless steel, polyimide or polyester. The silver coated stainless steel foils should be adopted to the foils at the locations where radiation dose is over 10 MGy. The route of coolant pipes for the shield plates is designed so as to keep the surface temperature of the shield plates below 100 K. This report describes the detailed design of the cryostat thermal shield, and outlines the fabrication and assembly procedures. (J.P.N.)

  4. ITER cryostat thermal shield detailed design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Hamada, Kazuya; Takahashi, Hiroyuki; Tada, Eisuke; Kato, Takashi [Department of Fusion Engineering Research, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Nishikawa, Akira

    1999-03-01

    The structural design and study on fabrication and assembly of the cryostat thermal shield for International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat thermal shield is attached to cover the cryostat inner wall in order to reduce the radiation heat loads applied to the superconducting coils operation at 4 K. The thermal shield consists of low-emissivity foils which are passively cooled and shield plates which are actively cooled with low temperature helium gas. The foils are multi-layered assemblies and are attached on both surfaces of the shield plates. The material of the foils are silver coated 304 stainless steel, polyimide or polyester. The silver coated stainless steel foils should be adopted to the foils at the locations where radiation dose is over 10 MGy. The route of coolant pipes for the shield plates is designed so as to keep the surface temperature of the shield plates below 100 K. This report describes the detailed design of the cryostat thermal shield, and outlines the fabrication and assembly procedures. (J.P.N.)

  5. Flexible shielding system for radiation protection

    Science.gov (United States)

    Babin, A.

    1972-01-01

    Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.

  6. Study of the concrete shielding properties

    International Nuclear Information System (INIS)

    An analysis was performed of chemical composition, production technology and operating temperature influencing the shielding properties of a number of ordinary concrete types. Computation results of radiation transmission proved the significance of detailed knowledge of all these factors in the reactor shield production. (author)

  7. Shielding augmentation of roll-on shield from NAPS to Kaiga-2

    International Nuclear Information System (INIS)

    Extensive radiation field surveys were conducted in NAPS and KAPS reactor buildings as a part of commissioning checks on radiation shielding. During such surveys, dose rate higher than the expected values were noticed in fuelling machine service areas. A movable shield, separating high field area fuelling machine vault and low field area fuelling machine service area, known as roll-on shield was identified as one of the causes of high field in fuelling machine service area along with weaker end-shield. This paper discusses systematic approach adopted in bringing down the dose rates in fuelling machine service area by augmentation of roll-on shield. (author)

  8. Radiation Shielding Systems Using Nanotechnology

    Science.gov (United States)

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)

    2011-01-01

    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  9. Neutron shielding heat insulation material

    International Nuclear Information System (INIS)

    Purpose: To improve decceleration and absorption of neutrons by incorporating neutron moderators and neutron absorbers in asbestos to thereby increase hydrogen concentration. Constitution: A mixture consisting of crysotile asbestos, surface active agent and water is well stirred and compounded to open the crysotile asbestos filaments and prepare a high viscosity slurry. After adding hydroxides such as magnesium hydroxide, hydrated salts such as magnesium borate hydrate or water containing minerals such as alumina cement hydrate, or boron compound to the slurry, the slurry is charged in a predetermined die, and dried and compressed to prepare shielding heat insulation products. The crysotile asbestos has 18 - 15 wt.% of water of crystallinity in the structure and contains a considerably high hydrogen concentration that acts as neutron moderators. (Kawakami, Y.)

  10. Electromagnetic interference shielding effectiveness of monolayer graphene.

    Science.gov (United States)

    Hong, Seul Ki; Kim, Ki Yeong; Kim, Taek Yong; Kim, Jong Hoon; Park, Seong Wook; Kim, Joung Ho; Cho, Byung Jin

    2012-11-16

    We report the first experimental results on the electromagnetic interference (EMI) shielding effectiveness (SE) of monolayer graphene. The monolayer CVD graphene has an average SE value of 2.27 dB, corresponding to ~40% shielding of incident waves. CVD graphene shows more than seven times (in terms of dB) greater SE than gold film. The dominant mechanism is absorption rather than reflection, and the portion of absorption decreases with an increase in the number of graphene layers. Our modeling work shows that plane-wave theory for metal shielding is also applicable to graphene. The model predicts that ideal monolayer graphene can shield as much as 97.8% of EMI. This suggests the feasibility of manufacturing an ultrathin, transparent, and flexible EMI shield by single or few-layer graphene. PMID:23085718

  11. Radiation Shielding for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  12. Shield verification and validation action matrix summary

    Energy Technology Data Exchange (ETDEWEB)

    Boman, C.

    1992-02-01

    WSRC-RP-90-26, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification are integral part of the certification process. This document identifies the work performed and documentation generated to satisfy these action items for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system, it is not certification of the complete SHIELD system. Complete certification will follow at a later date. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but can be found in the references. The validation and verification effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system computer code is completed.

  13. H loop shaping robust control system design. for Pakistan Research Reactor-2 (PARR-2)

    International Nuclear Information System (INIS)

    A robust nuclear reactor power controller for a range of uncertainties in control rod worth is designed using co-prime factorization technique. The controller is developed for implementation on Pakistan Research Reactor-2 (PARR-2). Robustness of the controller is verified through extensive simulations. The system performance and robustness against parameter variations are improved notably after implementation of the controller, as seen in the simulation results. The controller is synthesized by using H loop-shaping design technique. The designed system is simulated and disturbance rejection capabilities are verified. The system behaved well in spite of many uncertainties in control rod worth. The system gain and phase margin was improved considerably, thus increasing robustness of the system to desired limits. (author)

  14. The use of nipple shields: A review

    Directory of Open Access Journals (Sweden)

    Selina eChow

    2015-10-01

    Full Text Available A nipple shield is a breastfeeding aid with a nipple-shaped shield that is positioned over the nipple and areola prior to nursing. Nipple shields are usually recommended to mothers with flat nipples or in cases in which there is a failure of the baby to effectively latch onto the breast within the first two days postpartum. The use of nipple shields is a controversial topic in the field of lactation. Its use has been an issue in the clinical literature since some older studies discovered reduced breast milk transfer when using nipple shields, while more recent studies reported successful breastfeeding outcomes. The purpose of this review was to examine the evidence and outcomes with nipple shield use. Methods: A literature search was conducted in Ovid MEDLINE, OLDMEDLINE, EMBASE Classic, EMBASE, Cochrane Central Register of Controlled Trials and CINAHL. The primary endpoint was any breastfeeding outcome following nipple shield use. Secondary endpoints included the reasons for nipple shield use and the average/median length of use. For the analysis, we examined the effect of nipple shield use on physiological responses, premature infants, mothers’ experiences, and health professionals’ experiences. Results: The literature search yielded 261 articles, 14 of which were included in this review. Of these 14 articles, three reported on physiological responses, two reported on premature infants, eight reported on mothers’ experiences, and one reported on health professionals’ experiences. Conclusion: Through examining the use of nipple shields, further insight is provided on the advantages and disadvantages of this practice, thus allowing clinicians and researchers to address improvements on areas that will benefit mothers and infants the most.

  15. Shielding design for target trolley for a spallation neutron source in the J-PARC project

    International Nuclear Information System (INIS)

    To pull out a mercury target horizontally and to transfer it to hot cell for replacement, a target trolley will be installed in a spallation neutron source facility in the High-intensity Proton Accelerator Project (J-PARC). According to the progress of the target trolley design and the modification of building design, the shielding performance of the mercury target trolley was evaluated. Target doses are 25 μSv/h at a manipulator operation room behind a concrete wall of 1.5 m, and 0.5 μSv/h at a non-controlled area behind another concrete wall of 1.5 m, respectively. Bending mercury piping and gaps between the target trolley and surrounding liners, etc, were modeled 3-dimensionally in order to evaluate streaming effects. Radiation doses around the target trolley were evaluated using a 3-dimensional Monte Carlo calculation code NMTC/JAM, applying the above three-dimensional model. Since concrete walls could be considered to be simple bulk shields, doses for the manipulator room and the non-controlled area were calculated using 1-dimensional spherical model with a Monte Carlo code MCNPX by using neutron fluxes at the back of the target trolley as a source. By replacing concrete shield with iron shield and reduction of gap streaming effects, the target trolley radiation shield structures were determined, which could suppress radiation doses in the manipulator room and the non-controlled area below the target doses. (author)

  16. Improved Metal-Polymeric Laminate Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase I program, a multifunctional lightweight radiation shield composite will be developed and fabricated. This structural radiation shielding...

  17. Foam-Reinforced Polymer Matrix Composite Radiation Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New and innovative lightweight radiation shielding materials are needed to protect humans in future manned exploration vehicles. Radiation shielding materials are...

  18. A User's Manual for the NRN Shield Design Method

    International Nuclear Information System (INIS)

    This report describes a code system for bulk shield design written for a Ferranti Mercury computer and is intended as a manual for those using the programme. The idea of an 'almost direct' flux, as in the removal theory serves as a basis for further development of the theory. An important aspiration has been to minimize the manual work of administering the codes. The codes concerned are: NECO, computing necessary group constants from primary data, REFUSE and REBOX (infinite plane or cylindrical, and box geometry, respectively), computing removal flux, NEDI a one-dimensional (plane, spherical, cylindrical) diffusion multigroup code, and SALOME a Monte Carlo code computing the gamma flux. Output tapes are constructed for direct use as input tapes, when required, for a following code

  19. Qualification of the FENDL neutron cross-sections based on bulk shielding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, A.; Benmansour, L.; Gastaldi, B.; Jacqmin, R.; Camous, B.; Philibert, H. [C.E.A. Cadarache, Saint-Paul-lez-Durance (France). DRN/DER/SPRC

    1997-08-01

    The main objective of this work is to produce an improved evaluation of the Fe56 nuclear data tailored to the requirements of the engineering and development activities (EDA) of the international thermonuclear experimental reactor (ITER). This improved data, obtained through sensitivity studies and a `trend analysis` method, is intended for the final FENDL-2 library. (orig.) 13 refs.

  20. Qualification of the FENDL neutron cross-sections based on bulk shielding experiments

    International Nuclear Information System (INIS)

    The main objective of this work is to produce an improved evaluation of the Fe56 nuclear data tailored to the requirements of the engineering and development activities (EDA) of the international thermonuclear experimental reactor (ITER). This improved data, obtained through sensitivity studies and a 'trend analysis' method, is intended for the final FENDL-2 library. (orig.)

  1. Benchmarking the multipole shielding polarizability/reaction field approach to solvation against QM/MM: Applications to the shielding constants of N-methylacetamide

    Science.gov (United States)

    Kjær, Hanna; Sauer, Stephan P. A.; Kongsted, Jacob

    2011-01-01

    We present a benchmark study of a combined multipole shielding polarizability/reaction field (MSP/RF) approach to the calculation of both specific and bulk solvation effects on nuclear magnetic shielding constants of solvated molecules. The MSP/RF scheme is defined by an expansion of the shielding constants of the solvated molecule in terms of electric field and field gradient property derivatives derived from single molecule ab initio calculations. The solvent electric field and electric field gradient are calculated based on data derived from molecular dynamics simulations, thereby accounting for solute-solvent dynamical effects. The MSP/RF method is benchmarked against polarizable quantum mechanics/molecular mechanics (QM/MM) calculations. The best agreement between the MSP/RF and QM/MM approaches is found by truncating the electric field expansion in the MSP/RF approach at the linear electric field level which is due to the cancelation of errors. In addition, we investigate the sensitivity of the results due to the choice of one-electron basis set in the ab initio calculations of the property derivatives and find that these derivatives are affected by the basis set in a way similar to the shielding constants themselves.

  2. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields

    Science.gov (United States)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2016-01-01

    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  3. Shielding pebble transfer system for thermonuclear device

    International Nuclear Information System (INIS)

    In a system for supplying shielding pebbles to a vacuum vessel filled with the shielding pebbles in a gap of a double-walled structure, a supply port for the shielding pebbles is formed in a diverging shape, and a corny object is disposed at the center of the flow channel, or protrusions are formed in the vicinity of the supply port. Alternatively, a small object is disposed at the center of the flow channel of the supply port, and the small object is supported swingably and tiltably by elastic members. In addition, the upper plate of the vacuum vessel is slanted having the supply port of the shielding pebbles as a top, and a slanting angle relative to a horizontal axis is made greater than the resting angle of the shielding pebble accumulation layer. The shielding pebbles are jetted out from the supply port and spread to the peripheries, abut against the inner surface of the vacuum vessel, jump up and then accumulate. Accordingly, they can be accumulated dispersingly without being localized. An uniform accumulation layer is obtained to form a vacuum vessel having uniform and high shielding performance. (N.H.)

  4. Shielding options for the ITER conceptual design

    International Nuclear Information System (INIS)

    Several shield options were analyzed for the ITER conceptual design to minimize the nuclear responses in the toroidal field (TF) coils. The total nuclear heating in the physics phase and the insulator dose in the technology phase are the most critical parameters in the design process. The first shield option has type 316 stainless steel and water shielding material. Steel and water also serve as structural material and coolant, respectively. The second option is similar to the first except that borated water is used instead of ordinary water. The other two options include a small layer of lead or boron carbide (B4C) at the back of the shield. The last three shield options were considered to reduce the nuclear heating in the toroidal field coils relative to the steel/water shield. An optimization process was performed taking into consideration the thermal-hydraulics and the engineering- requirements to define the shield configuration. A careful integration was performed to calculate the total nuclear heating in the toroidal field coils which account for the neutron wall loading distribution, the change in the shield thickness in the poloidal direction, and the space between the toroidal field coils in the divertor zone. The results show that the steel/water/Pb and the steel/borated water shield options are very close in terms of the total nuclear heating in the toroidal field coils and the dose in the insulator material. The other two options, steel/water and steel/water/B4C deposit more nuclear heating in the toroidal field coils. 5 refs., 3 figs., 5 tabs

  5. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  6. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  7. Safety assessment of ETRR-2 shielding

    International Nuclear Information System (INIS)

    The ETRR-2 is the second Egyptian research reactor. The reactor is of an open pool type and shielding and dose calculation is one of the most important scopes of the reactor safety. The core radiation source has been calculated using the Madland-Nix model (MNM) for a prompt fission neutron spectrum. The ANISN code has been used to determine the flux and dose through the axial and radial layers of the reactor shielding. It has been found that the calculated dose in the outer area of the reactor shield does not exceed the maximum allowable dose level which is in a good agreement with the measurement. (author)

  8. Gamma Ray Shielding from Saudi White Sand

    OpenAIRE

    Al-horayess OKLA; Al-Dayel OMAR; Hefne JAMEEL; Al-Ajyan TURKI; Bagazi ALI

    2010-01-01

    This study is a comparison of gamma ray linear attenuation coefficient of two typs of shielding materials made of Saudi white and red sand. Each shield was consisted of one part of cement two parts of sand in addi-tion to water. Different thicknesses were tested. The concentrations of all elements in each shield material were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The results obtained from the ICP-MS were used in MCNP4B (Monte Carlo N-Particle Transport Computer ...

  9. Planetary surface reactor shielding using indigenous materials

    International Nuclear Information System (INIS)

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials

  10. Mining the bulk positron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Aourag, H.; Guittom, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger Gare - Algiers (Algeria)

    2009-02-15

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Advances in bulk port development

    Energy Technology Data Exchange (ETDEWEB)

    Soros, P. (Soros Associates Consulting Engineers, New York, NY (USA))

    1991-03-01

    The article features several recently developed bulk ports which illustrate aspects of new technology or concepts in maritime transport. Low handling capacity bulk terminals at Ponta da Madeira, Brazil and Kooragang Island, Australia and the low-cost bulk port at Port of Corpus Christi, Texas are described. Operations at the ports of Pecket and Tocopilla in Chile, which had special technical problems, are mentioned. Coal terminals at Port Kembla, Australia and St. Johns River in Florid Jacksonville, Florida are featured as examples of terminals which had to be designed to meet high environmental standards. 13 refs., 2 figs., 14 photos.

  13. REPOSITORY RADIATION SHIELDING DESIGN GUIDE

    International Nuclear Information System (INIS)

    The scope of this document includes radiation safety considerations used in the design of facilities for the Yucca Mountain Site Characterization Project (YMP). The purpose of the Repository Radiation Shielding Design Guide is to document the approach used in the radiological design of the Mined Geologic Disposal System (MGDS) surface and subsurface facilities for the protection of workers, the public, and the environment. This document is intended to ensure that a common methodology is used by all groups that may be involved with Radiological Design. This document will also assist in ensuring the long term survivability of the information basis used for radiological safety design and will assist in satisfying the documentation requirements of the licensing body, the Nuclear Regulatory Commission (NRC). This design guide provides referenceable information that is current and maintained under the YMP Quality Assurance (QA) Program. Furthermore, this approach is consistent with maintaining continuity in spite of a changing design environment. This approach also serves to ensure common inter-disciplinary interpretation and application of data

  14. Thermal design of top shield

    International Nuclear Information System (INIS)

    Full text of publication follows: Prototype Fast Breeder Reactor (PFBR) is a 500 MWe, sodium cooled, pool type fast reactor. The top shield forms the top cover for the main vessel (MV) and includes roof slab (RS), large rotatable plug (LRP), small rotatable plug (SRP) and control Plug (CP). RS, LRP and SRP are box type structures consisting of top and bottom plates stiffened by radial stiffeners and vertical penetration shells. TS is exposed to argon cover gas provided above sodium pool on the bottom side and reactor containment building air at the top. Heat transfer takes place through the argon cover gas to the bottom plate of TS. Annular gaps are formed between the components supported on TS and the component penetrations through which cellular convection takes place. A single thermal shield provided below TS reduces the heat flux to the bottom plate to 1.15 kW/m2. The MV (SS 316 LN) is welded to RS (carbon steel A48 P2) through a dissimilar metal weld. A step in RS and an anti convection barrier (ACB) outside RS are provided to limit the temperature at the MV-RS junction. The MV is surrounded by safety vessel (SV) and reactor vault made of concrete. Thermal insulation is provided outside SV to limit the heat transfer to the reactor vault. The design requirements of TS are to maintain the operating temperature at 383-393 K, limit the temperature difference (ΔT) across the height of TS to 20 / 100 K under normal operation/loss of cooling, provide minimum annular gap size at the component penetrations, provide a nearly linear temperature gradient in the CP portion within the height of TS, maintain the temperature of top plate of CP > 383 K, limit the ΔT across the top plate of CP to 2 K, limit the temperature near the inflatable / backup seal to 393 K, limit the temperature at the MV-RS junction and the heat flux to the reactor vault. The total heat transferred to TS is estimated to be 210 kW. A dedicated closed loop cooling system with a total flow rate of 10 m

  15. Bulk Nuclear Properties from Reactions

    OpenAIRE

    Danielewicz, P.

    2002-01-01

    Extraction of bulk nuclear properties by comparing reaction observables to results from semiclassical transport-model simulations is discussed. Specific properties include the nuclear viscosity, incompressibility and constraints on the nuclear pressure at supranormal densities.

  16. Bulk charges in eleven dimensions

    CERN Document Server

    Hawking, Stephen William

    1998-01-01

    Eleven dimensional supergravity has electric type currents arising from the Chern-Simon and anomaly terms in the action. However the bulk charge integrates to zero for asymptotically flat solutions with topological trivial spatial sections. We show that by relaxing the boundary conditions to generalisations of the ALE and ALF boundary conditions in four dimensions one can obtain static solutions with a bulk charge preserving between 1/16 and 1/4 of the supersymmetries. One can introduce membranes with the same sign of charge into these backgrounds. This raises the possibility that these generalized membranes might decay quantum mechanically to leave just a bulk distribution of charge. Alternatively and more probably, a bulk distribution of charge can decay into a collection of singlely charged membranes. Dimensional reductions of these solutions lead to novel representations of extreme black holes in four dimensions with up to four charges. We discuss how the eleven-dimensional Kaluza-Klein monopole wrapped a...

  17. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II program will concentrate on manufacturing of qualified low-current, light-weight, 10K ADR magnets for space application. Shielded ADR solenoidal...

  18. Shielding benchmark test for JENDL-3T

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1988-03-01

    The results of the shielding benchmark tests for JENDL-3T (testing stage version of JENDL-3), performed by JNDC Shielding Sub-working group, are summarized. Especially, problems of total cross-section in MeV range for O, Na, Fe, revealed from the analysis of the Broomstick's experiment, are discussed in details. For the deep penetration profiles of Fe, which is very important feature in shielding calculation, ASPIS benchmark experiment is analysed and discussed. From the study overall applicability of JENDL-3T data for the shielding calculation is confirmed. At the same time some problems still remained are also pointed out. By the reflection of this feedback information applicability of JENDL-3, forth coming official version, will be greatly improved.

  19. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An important consideration of the use of superconducting magnets in ADR applications is shielding of the other instruments in the vicinity of the superconducting...

  20. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed a ceramic composite material system that is more effective for shielding both GCR and SPE than aluminum. The composite...

  1. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  2. Shielding design for better plant availability

    International Nuclear Information System (INIS)

    Design methods are described for providing a shield system for nuclear power plants that will facilitate maintenance and inspection, increase overall plant availability, and ensure that man-rem exposures are as low as practicable

  3. Specification for lead bricks for radiation shielding

    International Nuclear Information System (INIS)

    Specification with metric dimensions for two systems of interlocking lead bricks for building permanent or temporary shielding walls including numbering system with illustrations, and schedule for ordering purposes. (author)

  4. Resonance self-shielding near zone interfaces

    International Nuclear Information System (INIS)

    A practical methodology is developed to treat the resonance self-shielding transition near zone interfaces. Based on the narrow resonance approximation, a space- and energy-dependent self-shielding factor for a single interface system is derived from the integral transport theory. Using the Wigner rational approximation, the self-shielding factor for a fine region near a zone interface is factorized into a linear combination of individual homogeneous and heterogeneous self-shielding factors. The method has been implemented in a widely used cross-section processing code that is based on the Bondarenko f-factor method. The result of the analysis was applied to a fast reactor blanket mock-up to improve the calculations near a converter-blanket interface. Comparisons of the calculation with /sup 238/U capture experimental data measured in the Purdue Fast Breeder Blanket Facility are also discussed

  5. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  6. Limiting currents in shielded source configurations

    International Nuclear Information System (INIS)

    Limiting currents for laminar flow equilibria of relativistic electron beams in shielded source configurations are discussed. Results are presented for the constant applied magnetic field case, and for the case of constant beam radius

  7. Electromagnetic shielding with polypyrrole-coated fabrics

    OpenAIRE

    Avloni, J.; L. De Florio; Henn, A. R.; R. Lau; Ouyang, M.; Sparavigna, A.

    2006-01-01

    Several shielding applications, to protect human health and electronic devices against dangerous effects of electromagnetic radiation, require solutions that fabrics can suitably fulfill. Here, we will investigate the electromagnetic interference shielding effectiveness of polypyrrole-coated polyester textiles, in the frequency range 100-1000 MHz. Insertion losses for several conductive fabrics with different surface resistivity ranging from 40 Ohm till the very low value of 3 Ohm were evalua...

  8. Evaluation of tube shielding; Utvaerdering av tubskyddsmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Hjoernhede, Anders; Westberg, Stig-Bjoern; Henderson, Pamela; Wetterstroem, Jonas; Jonasson, Anna

    2007-12-15

    Problems with soot-blowing have increased recently because of the poor fuel quality. Studies show that removing all the deposit by soot-blowing increases the metal loss of the superheaters, which drastically shortens component lifetimes. A simple, effective and common way of increasing the lifetime is to use tube shielding. Austenitic stainless steels seem to be the type of material most commonly used for tube shielding. It is thought that they give better protection against material removal than ferritic steels, but the cost of austenitics is several times greater than ferritic steels. It is clear that there is a significant economic advantage in choosing the right material for tube shielding, even though it might be expected that the cheaper materials do not perform as well as the more expensive ones. The reason for the study reported here is that very little material data exists in the literature. Few, if any tests have been performed to study the choice of material for tube shielding. The goal was to compare and evaluate a number of materials in a boiler to see if it is possible to replace the shielding material presently used with cheaper alternatives. About a dozen different shielding materials were installed and exposed for 4000 hours on primary- and secondary superheaters in a waste-fired boiler in Norrkoeping (Haendeloe Boiler 14.75MW). In total, 130 m of test material were installed and measured in several positions: a least 150 thickness measurements, before and after, were made on every tube shield. The results showed that the greatest attack was found on the secondary superheater shielding, where both the gas- and steam temperatures were higher. When considering cost and lifetime Sicromal 10 and 12 (however not Sicromal 8) and 15Mo3 are recommended as being better than 253 MA. The results should be of interest to most plants firing biomass or waste

  9. Ablating and charring of heat shield materials

    Energy Technology Data Exchange (ETDEWEB)

    Rahimian, M.H.; Shabani, M.R. [Univ. of Tehran, Faculty of Engineering, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: rahimyan@ut.ac.ir; shubani@me.ut.ac.ir

    2003-07-01

    The objective of this research is to estimate ablating and charring of heat shield materials in severe aero thermal / erosive environments. This requires an accurate and rapid technique for its serious heat transfer with moving boundary. Aerodynamic heating is obtained by an explicit relation. Fully implicit method is used for heat transfer calculation. Moving boundary is captured by VOF method. Thickness of heat shield, temperature of moving surface and radiation heat is presented. The results are in good agreement with other calculations. (author)

  10. Ablating and charring of heat shield materials

    International Nuclear Information System (INIS)

    The objective of this research is to estimate ablating and charring of heat shield materials in severe aero thermal / erosive environments. This requires an accurate and rapid technique for its serious heat transfer with moving boundary. Aerodynamic heating is obtained by an explicit relation. Fully implicit method is used for heat transfer calculation. Moving boundary is captured by VOF method. Thickness of heat shield, temperature of moving surface and radiation heat is presented. The results are in good agreement with other calculations. (author)

  11. APOLLO2 code self-shielding formalism

    International Nuclear Information System (INIS)

    This report describes the various self-shielding methods used in the APOLLO2 code for treating one resonant nucleus or a mixture of resonant nuclei. The methods are expounded in chronological order. First of all, the methods dealing with one resonant isotope are explained. Then an original method dealing directly with a resonant mixture is detailed. This new method is also convenient for one resonant nucleus and leads, in that case, to interesting improvements in the self-shielding modeling. (author)

  12. Shield structure for a nuclear reactor

    International Nuclear Information System (INIS)

    An improved nuclear reactor shield structure is described for use where there are significant amounts of fast neutron flux above an energy level of approximately 70 keV. The shield includes structural supports and neutron moderator and absorber systems. A portion at least of the neutron moderator material is magnesium oxide either alone or in combination with other moderator materials such as graphite and iron. (U.K.)

  13. Radiation shielding of the main injector

    International Nuclear Information System (INIS)

    The radiation shielding in the Fermilab Main Injector (FMI) complex has been carried out by adopting a number of prescribed stringent guidelines established by a previous safety analysis. Determination of the required amount of radiation shielding at various locations of the FMI has been done using Monte Carlo computations. A three dimensional ray tracing code as well as a code based upon empirical observations have been employed in certain cases

  14. Shielding calculations for ETRR-1 reactor

    International Nuclear Information System (INIS)

    The flux and dose through ETRR-1 reactor shielding are calculated using ANISN code. The neutron and gamma radiation sources in the reactor core are determined by using Madland Nix Model (MNM Model ). The results show that the flux in the core is in good agreement with the reactor flux. The dose in the radial and axial shields at outside boundary is less than the maximum allowable dose

  15. Measurement accuracy in shielded magnetic fields

    International Nuclear Information System (INIS)

    The measurement error due to both the probe size averaging effect and the coil arrangement is investigated when magnetic field measurements are performed in close proximity to different planar shields. The analysis is carried on through a hybrid FEM/BEM model which employs the 'thin shield' technique. Ferromagnetic, pure conductive and multilayer screens are taken into consideration and an estimation of the errors for concentric and non-concentric coil probes is given. The numerical results are validated by experiments

  16. Foamed Nanocomposites for EMI Shielding Applications

    OpenAIRE

    Molenberg, Isabel; Huynen, Isabelle; Baudouin, Anne-Christine; Bailly, Christian; Thomassin, Jean-Michel; Detrembleur, Christophe

    2010-01-01

    Throughout this chapter, we have seen that foamed polymer/CNTs nanocomposites make very good EMI shielding materials. They exhibit a high conductivity and a relatively low dielectric constant, leading to a high Shielding Effectiveness and a relatively low Reflectivity, although a compromise in CNT content must be found between a high SE and a low R. This was confirmed by measurement results and rheological measurements but also using a simple electrical equivalent model.

  17. Influence of Shielding Arrangement on ECT Sensors

    Directory of Open Access Journals (Sweden)

    J. L. Fernandez Marron

    2006-09-01

    Full Text Available This paper presents a full 3D study of a shielded ECT sensor. The spatialresolution and effective sensing field are obtained by means of Finite Element Methodbased simulations and are the compared to a conventional sensor's characteristics. Aneffective improvement was found in the sensitivity in the pipe cross-section, resulting inenhanced quality of the reconstructed image. The sensing field along the axis of the sensoralso presents better behaviour for a shielded sensor.

  18. Radiation shielding facility and using method therefor

    International Nuclear Information System (INIS)

    A plurality of radiation shielding members are suspended and supported from a horizontally circular suspending beam by way of S-like suspending hooks. Wires are hung between the plurality of suspending fittings on the upper surface of the beam and a hook of a ceiling crane. The ceiling crane is an existent crane movably disposed to the ceiling in a building of a nuclear power plant containing a cylindrical vessel as a radiation source which is a member to be shielded. The radiation shielding member is a bag member formed by using a synthetic resin fabric or a rubber plate or a composite member thereof. A predetermined amount of a shielding material such as water is charged and kept in the bag member. The beam is suspended by the ceiling crane to transport the beam and each of the radiation shielding members altogether and lowered while being suspended so as to surround the outer circumference of the cylindrical vessel by each of the radiation shielding members. (I.N.)

  19. Reactor shielding. Report of a panel

    International Nuclear Information System (INIS)

    Reactor shielding is necessary that people may work and live in the vicinity of reactors without receiving detrimental biological effects and that the necessary materials and instrumentation for reactor operation may function properly. Much of the necessary theoretical work and experimental measurement has been accomplished in recent years. Scientists have developed some very sophisticated methods which have contributed to a more thorough understanding of the problems involved and have produced some very reliable results leading to significant reductions in shield configurations. A panel of experts was convened from 9 to 13 March 1964 in Vienna at the Headquarters of the International Atomic Energy Agency to discuss the present status of reactor shielding. The participants were prominent shielding experts from most of the laboratories engaged in this field throughout the world. They presented status reports describing the past history and plans for further development of reactor shielding in their countries and much valuable discussion took place on some of the most relevant aspects of reactor shielding. All this material is presented in this report, together with abstracts of the supporting papers read to the Panel

  20. ITER blanket, shield and material data base

    International Nuclear Information System (INIS)

    As part of the summary of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the ITER blanket, shield, and material data base. Part A, ''ITER Blanket and Shield Conceptual Design'', discusses the need for ITER of a tritium breeding blanket to supply most of the tritium for the fuel cycle of the device. Blanket and shield combined must be designed to operate at a neutron wall loading of 1MW/m2, and to provide adequate shielding of the magnets to meet the neutron energy fluence goal of 3MWa/m2 at the first wall. After a summary of the conceptual design, the following topics are elaborated upon: (1) function, design requirement, and critical issues; (2) material selection; (3) blanket and shield segmentation; (4) blanket design description; (5) design analysis; (6) shield; (7) radiation streaming analysis; and (8) a summary of benchmark calculations. Part B, ''ITER Materials Evaluation and Data Base'', treats the compilation and assessment of the available materials data base used for the selection of the appropriate materials for all major components of ITER, including (i) structural materials for the first wall, (ii) Tritium breeding materials for the blanket, (iii) plasma facing materials for the divertor and first wall armor, and (4) electric insulators for use in the blanket and divertor. Refs, figs and tabs

  1. Radiation shielding effectiveness of newly developed superconductors

    International Nuclear Information System (INIS)

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015–15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design. - Highlights: • Radiation shielding properties of superconductors were investigated. • µ/ρ, mean free path, and exposure buildup factor were calculated. • CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 were found superior for γ-ray shielding. • Tl0.6Rb0.4Fe1.67Se2 was found superior for fast neutron shielding

  2. Shielding Effectiveness of Composites Containing Flaky Inclusions

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; QU Zhaoming; WANG Yilong

    2013-01-01

    To investigate the quantitative relationship between the electromagnetic-shielding property of composites and the distribution of inclusions,a scheme for predicting the shielding effectiveness of composites containing variously-distributed flaky inclusions is proposed.The scheme is based on equivalent parameters of homogeneous comparison materials and the plane-wave shielding theory.It leads to explicit formulas for the shielding effectiveness of multi-layered composites in terms of microstructural parameters that characterize the shape,distribution and orientation of the inclusions.For single layer composite that contains random and aligned flaky silver-coated carbonyl-iron particles with fractions of different volume,the predicted shielding effectiveness agrees well with the experimental data.As for composites containing aligned flaky particles,the shielding effectiveness obtained by the proposed scheme and experiment data is higher than that the random case,e.g.about 20 dB higher at 750 MHz.The proposed scheme is a straightforward method for optimizing future composite designs.

  3. Safety analysis for core conversion (from HEU to LEU) of Pakistan research reactor-2 (PARR-2)

    International Nuclear Information System (INIS)

    PARR-2 (Pakistan Research Reactor-2), an MNSR (Miniature Neutron Source Reactor) is to be converted from HEU (High Enriched Uranium) to LEU (Low Enriched Uranium) fuel, along with all current MNSRs in various other countries. The purpose of conversion is to minimize the use of HEU for non-proliferation of high-grade nuclear fuel. The present report presents thermal hydraulic and safety analyses of PARR-2 using existing HEU fuel as well as proposed LEU fuel. Presently, the core is comprised of 90.2% enriched UAl4-Al fuel. There are 344 fuel pins of 5.5 mm diameter. The core has a total of 994.8 g of U235. Standard computer code PARET/ANL (version 1992) was employed to perform steady-state and transient analyses. Various parameters were computed, which included: coolant outlet, maximum clad surface and maximum fuel centerline temperatures; and peak power and corresponding peak core temperatures resulting from a transient initiated by 4 mK positive reactivity insertion. Results were compared with the reported data in Final Safety Analysis Report (FSAR). It was found that the PARET results were in reasonable agreement with the manufacturer's results. Calculations were also carried out for the proposed LEU core with two suggested fuel pin sizes (5.5 mm and 5.1 mm diameter with 12.6% and 12.3% enrichment, respectively). Comparison of the LEU results with the existing HEU fuel has been made and discussed.

  4. Neutronic analysis for core conversion (HEU-LEU) of Pakistan research reactor-2 (PARR-2)

    International Nuclear Information System (INIS)

    Neutronic analyses for the core conversion of Pakistan research reactor-2 (PARR-2) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel has been performed. Neutronic model has been verified for 90.2% enriched HEU fuel (UAl4-Al). For core conversion, UO2 fuel was chosen as an appropriate fuel option because of higher uranium density. Clad has been changed from aluminum to zircalloy-4. Uranium enrichment of 12.6% has been optimized based on the design basis criterion of excess reactivity 4 mk in miniature neutron source reactor (MNSR). Lattice calculations for cross-section generation have been performed utilizing WIMS while core modeling was carried out employing three dimensions option of CITATION. Calculated neutronic parameters were compared for HEU and LEU fuels. Comparison shows that to get same thermal neutron flux at inner irradiation sites, reactor power has to be increased from 30 to 33 kW for LEU fuel. Reactivity coefficients calculations show that doppler and void coefficient values of LEU fuel are higher while moderator coefficient of HEU fuel is higher. It is concluded that from neutronic point of view LEU fuel UO2 of 12.6% enrichment with zircalloy-4 clad is suitable to replace the existing HEU fuel provided that dimensions of fuel pin and total number of fuel pins are kept same as for HEU fuel

  5. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  6. Deep-penetration calculation for the ISIS target station shielding using the MARS Monte Carlo code

    International Nuclear Information System (INIS)

    A calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation with good statistics, the following three techniques were used in this study. First, the geometry of the bulk shield was three-dimensionally divided into several layers of about 50-cm thickness, and a step-by-step calculation was carried out to multiply the number of penetrated particles at the boundaries between the layers. Second, the source particles in the layers were divided into two parts to maintain the statistical balance on the spatial-flux distribution. Third, only high-energy particles above 20 MeV were transported up to approximately 1 m before the region for benchmark calculation. Finally, the energy spectra of neutrons behind the very thick shield were calculated down to the thermal energy with good statistics, and typically agree well within a factor of two with the experimental data over a broad energy range. The 12C(n,2n)11C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem. In this report, the calculation conditions, geometry and the variance reduction techniques used in the deep-penetration calculation with the MARS14 code are clarified, and several subroutines of MARS14 which were used in our calculation are also given in the appendix. The numerical data of the calculated neutron energy spectra, reaction rates, dose rates and their C/E (Calculation/Experiment) values are also summarized. The

  7. Progress and prospects of calculation methods for radiation shielding

    International Nuclear Information System (INIS)

    Progress in calculation methods for radiation shielding are reviewed based on the activities of research committees related to radiation shielding fields established in the Atomic Energy Society of Japan. A technological roadmap for the field of radiation shielding; progress and prospects for specific shielding calculation methods such as the Monte Carlo, discrete ordinate Sn transport, and simplified methods; and shielding experiments used to validate calculation methods are presented in this paper. (author)

  8. Shielding integrity testing of radioactive material transport packaging

    International Nuclear Information System (INIS)

    Although this Code of Practice is intended primarily to cover shielding integrity test requirements for off-site shielded radioactive material transport packaging, it may also be partly applicable to containers and specialised handling equipment (e.g. fuelling machines) used only on site, and to radiation shielding generally. The code is not concerned with proving adequacy of shielding design or with its absolute shielding value. (author)

  9. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  10. Under the Rape Shield: Constitutional and Feminist Critiques of Rape Shield Laws

    OpenAIRE

    Roman, Denise

    2011-01-01

    This article discusses constitutional and feminist critiques of present rape shield laws in the United States, and ends with a comparative perspective throughout the Anglo-American legal space today. Finally, although the rape shield laws can be approached from a variety of discourses, this article engages specifically with a discourse that intersects legal and feminist analyses

  11. Safety analysis for core conversion (from HEU to LEU) of Pakistan research reactor-2 (PARR-2)

    Energy Technology Data Exchange (ETDEWEB)

    Bokhari, Ishtiaq Hussain, E-mail: ishtiaq@pinstech.org.p [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Pervez, Showket [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2010-01-15

    PARR-2 (Pakistan Research Reactor-2), an MNSR (Miniature Neutron Source Reactor) is to be converted from HEU (High Enriched Uranium) to LEU (Low Enriched Uranium) fuel, along with all current MNSRs in various other countries. The purpose of conversion is to minimize the use of HEU for non-proliferation of high-grade nuclear fuel. The present report presents thermal hydraulic and safety analyses of PARR-2 using existing HEU fuel as well as proposed LEU fuel. Presently, the core is comprised of 90.2% enriched UAl{sub 4}-Al fuel. There are 344 fuel pins of 5.5 mm diameter. The core has a total of 994.8 g of U{sup 235}. Standard computer code PARET/ANL (version 1992) was employed to perform steady-state and transient analyses. Various parameters were computed, which included: coolant outlet, maximum clad surface and maximum fuel centerline temperatures; and peak power and corresponding peak core temperatures resulting from a transient initiated by 4 mK positive reactivity insertion. Results were compared with the reported data in Final Safety Analysis Report (FSAR). It was found that the PARET results were in reasonable agreement with the manufacturer's results. Calculations were also carried out for the proposed LEU core with two suggested fuel pin sizes (5.5 mm and 5.1 mm diameter with 12.6% and 12.3% enrichment, respectively). Comparison of the LEU results with the existing HEU fuel has been made and discussed.

  12. Looking for a bulk point

    CERN Document Server

    Maldacena, Juan; Zhiboedov, Alexander

    2015-01-01

    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  13. Gamma probe dry bulk densities

    International Nuclear Information System (INIS)

    The gamma density probe is a useful instrument for measuring water content in small volumes of soil. Essentially, the gamma probe measures the density of the soil and water between a source and a detector. To transpose the gamma densities into water content, the dry bulk density of the soil is needed. A nondestructive method for estimating dry bulk densities for use with the gamma probe is proposed. The procedure is based on the assumption that water content values in a field dry condition were more stable than the dry bulk density values and could be transferred from one point to another. The procedure was successfully used on three areas in Reynolds Creek Experimental Watershed in southwest Idaho. (U.S.)

  14. Verification of effectiveness of borated water shield for a cyclotron type self-shielded

    International Nuclear Information System (INIS)

    The technological advances in positron emission tomography (PET) in conventional clinic imaging have led to a steady increase in the number of cyclotrons worldwide. Most of these cyclotrons are being used to produce 18F-FDG, either for themselves as for the distribution to other centers that have PET. For there to be safety in radiological facilities, the cyclotron intended for medical purposes can be classified in category I and category II, ie, self-shielded or non-shielded (bunker). Therefore, the aim of this work is to verify the effectiveness of borated water shield built for a cyclotron accelerator-type Self-shielded PETtrace 860. Mixtures of water borated occurred in accordance with the manufacturer’s specifications, as well as the results of the radiometric survey in the vicinity of the self-shielding of the cyclotron in the conditions established by the manufacturer showed that radiation levels were below the limits. (author)

  15. Shielding Structures for Interplanetary Human Mission

    Science.gov (United States)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the

  16. Comparison of eye shields in radiotherapeutic beams

    International Nuclear Information System (INIS)

    Full text: Both MeV electrons and kV photons are used in the treatment of superficial cancers. The advantages and disadvantages for each of these modalities have been widely reported in the literature (See for example [1-2]). Of particular note in the literature is the use of lead and tungsten eye shields to protect ocular structures during radiotherapy. An investigation addressing issues raised in the literature that are relevant to the Wellington Cancer Centre method of treatment of lesions near the eye shall be summarised. Various small sized fields were irradiated to determine depth dose and profile curves in a water phantom shielded by various commercially available eye shields. Transmission factors relevant to critical ocular structures and particle distribution theories are used to further elucidate the comparison between the use of MeV electrons and kV photons in the treatment of superficial cancers. Superficial X-rays from a Pantak Therapax unit SXT 150 model of HVL 4.90mm Al were used for the lead eye shield measurements and electrons from a Varian Clinac 2100C nominal energies 6MeV and 9MeV (Rp 3.00cm and 4.34cm respectively) were used for the tungsten eye shield measurements. For the photon measurements circular applicators of 3cm, 4cm and 5cm diameter were used and for the electrons standard 6x6cm and 10x 10cm applicators were used, with no custom inserts. A Scanditronix RFA-300 water phantom and Scanditronix RFAplus version 5.3 software application were used to collect and collate all data. The eye shields were the Radiation Products Design Inc. medium lead eye shield (item 934-014) and the MED-TEC tungsten eye shields MT-T-45 M and MT-T-45 S. It is demonstrated that electron fields have appreciably greater scatter into the area directly under the eye shields than the photon fields. Similarly at the region of dmax for the electron fields the relative dose is appreciably greater than the photon fields at similar depth. The relative merits for electron

  17. Bulk Viscosity of Interacting Hadrons

    OpenAIRE

    Wiranata, A.; M. Prakash

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature ari...

  18. Bulk Viscosity of Interacting Hadrons

    CERN Document Server

    Wiranata, A

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.

  19. Shielding design to obtain compact marine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akio; Sako, Kiyoshi (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1994-06-01

    The marine reactors equipped in previously constructed nuclear ships are in need of the secondary shield which is installed outside the containment vessel. Most of the weight and volume of the reactor plants are occupied by this secondary shield. An advanced marine reactor called MRX (Marine Reactor X) has been designed to obtain a more compact and lightweight marine reactor with enhanced safety. The MRX is a new type of marine reactor which is an integral PWR (The steam generator is installed in the pressure vessel.) with adopting a water-filled containment vessel and a new shielding design method of no installation of the secondary shield. As a result, MRX is considerably lighter in weight and more compact in size as compared with the reactors equipped in previously constructed nuclear ships. For instance, the plant weight and volume of the containment vessel of MRX are about 50% and 70% of those of the Nuclear Ship MUTSU, in spite of the power of MRX is 2.8 times as large as the MUTSU's reactor. The shielding design calculation was made using the ANISN, DOT3.5, QAD-CGGP2 and ORIGEN codes. The computational accuracy was confirmed by experimental analyses. (author).

  20. Shielding Development for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  1. Analytic Ballistic Performance Model of Whipple Shields

    Science.gov (United States)

    Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.

    2015-01-01

    The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.

  2. Preliminary Thermal Design of Cryogenic Radiation Shielding

    Science.gov (United States)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  3. Space reactor shielding: an assessment of the technology

    International Nuclear Information System (INIS)

    Space power reactor systems require shielding to protect payload and reactor shielding components, and also maintenance and operating personnel. Shield composition, size, and shape are important design considerations, since the shield can dominate the overall weight of the system. Techniques for space reactor shield design analysis and optimization and experimental test facilities are available for design verification. With these tools, a shielding technology in support of current and future space power reactor systems can be developed. Efforts in this direction should begin with a generic shielding program to provide information on materials properties and geometric effects and should be followed by project-specific shielding programs to provide design optimization and prototype shield verification

  4. Intercalated graphite fiber composites as EMI shields in aerospace structures

    Science.gov (United States)

    Gaier, James R.

    1992-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are more complicated than those for ground structures because of their weight limitations. As a result, the best EMI shielding materials must combine low density, high strength, and high elastic modulus with high shielding ability. EMI shielding characteristics were calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compare to preliminary experimental results for these materials and to the characteristics of shields made from aluminum. Calculations indicate that effective EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding characteristics alone.

  5. Manufacture of blanket shield modules for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, P. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: Patrick.Lorenzetto@tech.efda.org; Boireau, B. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Boudot, C. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Bucci, P. [CEA, DTEN/S3ME/LMIC, 17 rue des Martyrs, F-38054 Grenoble (France); Furmanek, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Ioki, K. [ITER IT, Boltzmannstr. 2, D-85748 Garching (Germany); Liimatainen, J. [Metso Powdermet, P.O. Box 306, FIN-33101 Tampere (Finland); Peacock, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Sherlock, P. [NNC Ltd., Booths Hall, Knutsford, Cheshire WA16 8QZ (United Kingdom); Taehtinen, S. [VTT Industrial Systems, P.O. Box 1704, Espoo, FIN-02044 VTT (Finland)

    2005-11-15

    A research and development programme for the ITER blanket shield modules has been implemented in Europe to provide input for the design and the manufacture of the full-scale production components. It involves in particular the fabrication and testing of mock-ups (small scale and medium scale) and full-scale prototypes of shield blocks (SB) and first wall (FW) panels. The manufacturing feasibility of FW panels has been demonstrated for two copper alloy candidates. Two designs have been developed for the manufacture of the SB, one for a conventional fabrication route and one for a fabrication route based on the hot isostatic press technology. This paper presents the fabrication routes developed in Europe for the manufacture of the ITER Shield modules.

  6. Radiation safety shield for a syringe

    International Nuclear Information System (INIS)

    Safety apparatus for use in administering radioactive serums by a syringe, without endangering the health and safety of the medical operators is described. The apparatus consists of a sheath and a shield which can be retracted into the sheath to assay the radioactive serum in an assay well. The shield can be moved from the retracted position into an extended position when the serum is to be injected into the patient. To protect the operator, the shield can be constructed of tantalum or any like high density substance to attenuate the radiation, emanating from the radioactive serums contained in the syringe, from passing to the atmosphere. A lead glass window is provided so that the operator can determine the exact quantity of the radioactive serum which is contained in the syringe

  7. Shielding walls against ionizing radiation. Lead bricks

    International Nuclear Information System (INIS)

    The standard contains specifications for the shape and requirements set for lead bricks such that they can be used to construct radiation-shielding walls according to the building kit system. The dimensions of the bricks are selected in such a way as to permit any modification of the length, height and thickness of said shielding walls in units of 50 mm. The narrow side of the lead bricks juxtaposed to one another in a wall construction to shield against radiation have to form prismatic grooves and tongues: in this way, direct penetration by radiation is prevented. Only cuboid bricks (serial nos. 55-60 according to Table 10) do not have prismatic tongues and grooves. (orig.)

  8. Calculation system analysis for radiation shielding

    International Nuclear Information System (INIS)

    This work consists of the computational system implementation for nuclear reactor shielding analysis. The system has as objectives to facilitate the installation of the calculation framework, problem set-up, and results analysis. Several computational programmes commonly used for cross-section preparation and radiation transport were chosen for the system. This work represents the capacity necessary for nuclear reactor and particle accelerator shielding design, to aid in nuclear experiments and in the utilization of nuclear techniques that require the radiation field calculation. The system was implemented in PC-DOS environment and consists of the necessary and sufficient programs and data for generation of the cross sections, groups constants, self-shielding factors, activation sources, for the calculation of neutron and gamma-ray fluence, dose rates, and other types of response functions. (author). 11 refs., 8 figs

  9. Calculated shielding factors for selected European houses

    International Nuclear Information System (INIS)

    Shielding factors for gamma radiation from activity deposited on structures and ground surfaces have been calculated with the computer model DEPSHIELD for single-family and multi-storey buildings in France, United Kingdom and Denmark. For all three countries it was found that the shielding factors for single-family houses are approximately a factor of 2 - 10 higher that those for buildings with five or more storeys. Away from doors and windows the shielding factors for French, British, and Danish single-family houses are in the range 0.03 - 0.1, 0.06 - 0.4, and 0.07 - 0.3, respectively. The uncertainties of the calculations are discussed and DEPSHIELD-results are compared with other methods as well as with experimental results. (author)

  10. Radiation shielding performance of some concrete

    International Nuclear Information System (INIS)

    The energy consumption is increasing with the increased population of the world and thus new energy sources were discovered such as nuclear energy. Besides using nuclear energy, nuclear techniques are being used in a variety of fields such as medical hospital, industry, agriculture or military issue, the radiation protection becomes one of the important research fields. In radiation protection, the main rules are time, distance and shielding. The most effective radiation shields are materials which have a high density and high atomic number such as lead, tungsten which are expensive. Alternatively the concrete which produced using different aggregate can be used. The effectiveness of radiation shielding is frequently described in terms of the half value layer (HVL) or the tenth value layer (TVL). These are the thicknesses of an absorber that will reduce the radiation to half, and one tenth of its intensity respectively. In this study the radiation protection properties of different types of concrete will be discussed

  11. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  12. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...

  13. Benchmark experiment for radiation shielding around the beam dump of the SPring-8 injector

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro; Sasamoto, Nobuo [Dept. of Synchrotron Radiation Research, Japan Atomic Energy Research Inst., Mikatuki, Hyogo (Japan)

    2000-03-01

    Leakage neutron spectra outside the shield wall and dose distributions within the accelerator tunnel were measured by using multi moderated {sup 3}He high sensitivity neutron counters, TLD dose meters and CR-39 detectors using 250 MeV and 961 MeV electrons of the SPring-8 injector. The measurements were compared with Jenkins' formula with source reduction factors for the bulk shielding and the dose distributions within the tunnel. Three different types of doses (dose equivalent, effective dose equivalent and effective dose) were also compared. {sup 206}Bi production distribution due to ({gamma}, 3n) and (n, 4n) nuclear reaction around the beam dump of 250 MeV was measured and compared with EGS4 simulation. (author)

  14. Coupled Monte Carlo - Discrete ordinates computational scheme for three-dimensional shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport simulation technique. This work proposes a dedicated computational approach for coupled Monte Carlo - deterministic transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. To enable the coupling of these two different computational methods, a mapping approach has been developed for calculating the discrete ordinates angular flux distribution from the scored data of the Monte Carlo particle tracks crossing a specified surface. The approach has been implemented in an interface program and validated by means of test calculations using a simplified three-dimensional geometric model. Satisfactory agreement was obtained for the angular fluxes calculated by the mapping approach using the MCNP code for the Monte Carlo calculations and direct three-dimensional discrete ordinates calculations using the TORT code. In the next step, a complete program system has been developed for coupled three-dimensional Monte Carlo deterministic transport calculations by integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and the mapping interface program. Test calculations with two simple models have been performed to validate the program system by means of comparison calculations using the

  15. Bulk charges in eleven dimensions

    Science.gov (United States)

    Hawking, S. W.; Taylor-Robinson, M. M.

    1998-07-01

    Eleven dimensional supergravity has electric type currents arising from the Chern-Simon and anomaly terms in the action. However the bulk charge integrates to zero for asymptotically flat solutions with topological trivial spatial sections. We show that by relaxing the boundary conditions to generalisations of the ALE and ALF boundary conditions in four dimensions one can obtain static solutions with a bulk charge. Solutions involving anomaly terms preserve between 1/16 and 1/4 of the supersymmetries but Chern-Simons fluxes generally break all of the remaining supersymmetry. One can introduce membranes with the same sign of charge into these backgrounds. This raises the possibility that these generalized membranes might decay quantum mechanically to leave just a bulk distribution of charge. Alternatively and more probably, a bulk distribution of charge can decay into a collection of singly charged membranes. Dimensional reductions of these solutions lead to novel representations of extreme black holes in four dimensions with up to four charges. We discuss how the eleven-dimensional Kaluza-Klein monopole wrapped around a space with non-zero first Pontryagin class picks up an electric charge proportional to the Pontryagin number.

  16. Bulk viscosity and deflationary universes

    CERN Document Server

    Lima, J A S; Waga, I

    2007-01-01

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  17. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...

  18. Shielding in ungated field emitter arrays

    International Nuclear Information System (INIS)

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 102–104 are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays

  19. A low cost automatic shielding block cutter

    International Nuclear Information System (INIS)

    In many radiotherapy treatments it is necessary to shield certain internal organs from the radiation beam covering an area of cancer. Shields may be required to match the anatomy and shape or the region to be protected from radiation, and consequently need to be customised for individual patients. A common method of producing customised shields is to pour low melting-point alloy into polystyrene foam moulds. The moulds are produced by cutting the polystyrene shapes with a heated wire. Traditionally, foam moulds have been cut by tracing a pointer, attached to a suspended heated wire, around the required shield area on a radiograph. This suspended unit was bulky and cumbersome to use. One of the major benefits of the low cost computer-controlled shielding block cutter is the improvement in the block cutting accuracy. Using the PC to digitise the shape and regulate the temperature and speed of the wire produces accurate results independent of operator skills. Computer contol permits the use of a finer wire which further increases the precision. The speed and efficiency of block production is also better due to the rejection of fewer moulds and the ability to cut multiple moulds from a single blank. The ergonomics of the computer-controlled system greatly benefits the operator. Whilst seated, the operator is able to trace shapes on radiographs and accommodate different shielding tray heights. This contrasts with the manual system which requires physical adjustment of the block to film distance. We have built three of these units for use at each of our metropolitan centres. (author)

  20. Shielded canister transporter equipment acceptance test operations

    International Nuclear Information System (INIS)

    The defense waste processing facility (DWPF) processes high level waste at the Savannah River Plant (SRP) by vitrifying the waste and placing it in stainless stell canisters for long term storage. The shielded canister transporter (SCT) is a diesel powered mobile rubber tired self-propelled vehicle which transports the canisters from the DWPF processing facility to the on-site waste storage building. The SCT has a system of automatic programmable logic controls (PLC) which provides operational handling control with a shielded transfer cask and associated canister positional equipment

  1. Using ordinary crystals for radiation shielding

    International Nuclear Information System (INIS)

    Small volumes with lead brick and lead glass shielding are used, and in nuclear technology we call them ''hot cell''. Furthermore for separating the exposure rooms from the operator rooms lead glassed windows of heavy concreate walls can be used. Unfortunately, these glasses can not be produced in Turkey. ordinary crystals which have lead-oxide in them, can be produced in Turkey, in this essay we have investigated the usage of ordinary crystals for the radiation shielding. Crystals have been tested with different types of radiation and ''radiation absorbtion'' curves, ''half thickness'' and ''tenth value thickness'' have been calculated. (author)

  2. Novel Concepts for Radiation Shielding Materials

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  3. Alpha particle problems in shielded support systems

    International Nuclear Information System (INIS)

    Alpha particle confinement is considered in the case of internal conductor systems with magnetically shielded supports. The treatment includes problems of energy transfer to the background plasma, the balance between radiation losses and alpha particle heating, mirror confinement in the main poloidal field, the cut-off and shielding conditions at the supports, ambipolar electric fields, wall interaction, and support location. With a proper and technically realizable choice of parameter values, it should become possible to achieve alpha particle heating as well as to manage the reactor technological problems due to alpha particle interaction with the supports. (Auth.)

  4. Shielding in electron beams used in radiotherapy

    International Nuclear Information System (INIS)

    The interactions of electron beams with initial energies between 7 and 30 MeV have been studied in various materials including polystyrene, aluminium, copper and lead. The following experimental results have been found: estimation of measurement point displacement in a cylindrical chamber and of its variations with electron beam energy, empirical relations between the energy at the surface and the practical range of the electrons in various materials, an estimation of the relative ionisation due to the 'bremsstrahlung' measured behind different materials with beam complete shielding. Improvement of electron beam collimation is suggested after analysis of the dose distribution behind partial shielding

  5. Scale-PC shielding analysis sequences

    International Nuclear Information System (INIS)

    The SCALE computational system is a modular code system for analyses of nuclear fuel facility and package designs. With the release of SCALE-PC Version 4.3, the radiation shielding analysis community now has the capability to execute the SCALE shielding analysis sequences contained in the control modules SAS1, SAS2, SAS3, and SAS4 on a MS- DOS personal computer (PC). In addition, SCALE-PC includes two new sequences, QADS and ORIGEN-ARP. The capabilities of each sequence are presented, along with example applications

  6. WASTE HANDLING BUILDING SHIELD WALL ANALYSIS

    International Nuclear Information System (INIS)

    The scope of this analysis is to estimate the shielding wall, ceiling or equivalent door thicknesses that will be required in the Waste Handling Building to maintain the radiation doses to personnel within acceptable limits. The shielding thickness calculated is the minimum required to meet administrative limits, and not necessarily what will be recommended for the final design. The preliminary evaluations will identify the areas which have the greatest impact on mechanical and facility design concepts. The objective is to provide the design teams with the necessary information to assure an efficient and effective design

  7. Development and application of high performance liquid shielding materials

    International Nuclear Information System (INIS)

    We tried to manufacture gel shielding materials of 1mm width with good shielding performance for neutron and γ-rays using five kinds of monomers with high hydrogen density such as long chain fatty acid acrylate, isodecyl methacrylate, lauryl acrylate, stearyle acrylate and stearyle methacrylate, and then lead borate, lead nitrate and lead as lead compounds, and boric acid as neutron adsorbed materials. Some kinds of shielding materials were produced by experiments. Lamination of shielding materials with practical width was obtained. One of three kinds of high performance shielding materials in the fiscal year 1996 was selected. The compensated shielding was designed for double refracted cylindrical duct using one. (S.Y.)

  8. Compilation of the computing methods in radiation shielding

    International Nuclear Information System (INIS)

    In order to update the KAERI radiation shielding technology, the calculational shielding methods were surveyed throughly. Computer codes and data libraries for radiation shielding calculation were collected and some model calculations were carried out with them. So far the following materials were ensured for our future use: 23 shielding codes, 7 data libraries, 7 data processing codes and 11 peripheral shielding codes. All of these were compiled again for the CYBER-73 computer system, and will be widely used in shielding analysis of accelerators, shipping casks as well as nuclear power plant. (author)

  9. Design of ITER vacuum vessel neutron shielding structure

    International Nuclear Information System (INIS)

    Neutron shielding structure of the ITER vacuum vessel (VV) will be applied to shielding neutron and gamma-ray and reducing the toroidal field ripple. The features of ITER vacuum vessel and the material selection for shielding structures are briefly discussed. A shielding conceptual design and some correlative support structures have been developed. The layout of ferromagnetic inserts was performed. Filling ratios of shielding materials between VV shells were acquired according to ITER VV physics calculation results. In term of the ITER VV design criteria, the detailed design work for library of the shielding blocks and the emulational structure have been finished based on the 3D modeling software. (authors)

  10. Polymerisationseigenschaften von Bulk-Fill Kompositen

    OpenAIRE

    Maier, Eva

    2015-01-01

    Hintergrund und Ziele: Untersuchung der Polymerisationseigenschaften von Bulk-Fill Kompositen bzgl. Konversionsrate (degree of conversion = DC), Vickers-Härte (HV), Polymerisationsschrumpfungsstress (PSS) und Polymerisationsvolumenschrumpfung (PVS) im Vergleich zu konventionellen Kompositen. Material und Methode: Untersucht wurden die Bulk-Fill Komposite Filtek Bulk Fill Flowable (FBF, 3M ESPE, Seefeld), Surefil Smart Dentin Replacement (SDR, Dentsply, Konstanz), Tetric EvoCeram Bulk Fill...

  11. Subsurface Shielding Source Term Specification Calculation

    International Nuclear Information System (INIS)

    The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M and O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations

  12. The Tower Shielding Facility: Its glorious past

    Energy Technology Data Exchange (ETDEWEB)

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  13. Advances in self-shielded accelerators

    International Nuclear Information System (INIS)

    The use of lead in lieu of concrete for shielding has enabled a significant segment of the electron beam (EB) processing industry to continue to grow. Self-shielded accelerators of 300 kV or less are used in the curing of environmentally-friendly thin-film coatings and in crosslinking extruded polymeric films. New low-voltage accelerator systems have been developed, including very economic modular units, which are expanding market interests. Transportable systems based on placing self-shielded accelerators on vans have found only minor interest for use in environmental remediation, with no commercial success to date. Higher-voltage, around 600 to 800 kV, self-shielded systems have found minimal acceptance in historic markets as in the crosslinking wire insulation and processing of tire components. However, new developments in higher energy, 2.5 MeV, modest current, self-contained systems may find use for in-house sterilization and treatment of products. (author)

  14. Oxygen Abundance Measurements of SHIELD Galaxies

    CERN Document Server

    Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

    2015-01-01

    We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

  15. Internally shielded beam transport and support system

    International Nuclear Information System (INIS)

    Due to environmental concerns, the Advanced Photon Source has a policy that disallows any exposed lead within the facility. This creates a real problem for the beam transport system, not so much for the pipe but for the flexible coupling (bellows) sections. A complete internally shielded x-ray transport system, consisting of long transport lines joined by flexible coupling sections, has been designed for CARS sector 14 to operate either at high vacuum or as a helium flight tube. It can effectively shield against air scattering of wiggler or undulator white beam with proper placement of apertures, collimators, and masks for direct beam control. The system makes use of male- and female-style fittings that create a labyrinth allowing for continuous shielding through the flexible coupling sections. These parts are precision machined from a ternary hypereutectic lead alloy (cast under 15 inches of head pressure to assure a pinhole-free casting) then pressed into either end (rotatable vacuum flanges) of the bellows assembly. The transport pipe itself consists of a four part construction using a stepped transition ring (Z-ring) to connect an inner tube to the vacuum flange and also to a protective and supportive outer tube. The inner tube is wrapped with 1/16 double-prime pure lead sheet to a predetermined thickness following the shape of the stepped transition ring for continuous shielding. This design has been prototyped and radiation tested. copyright 1996 American Institute of Physics

  16. Bose-Einstein Condensate and Gravitational Shielding

    OpenAIRE

    De Aquino, Fran

    2014-01-01

    In this work we show that when possible transform some types of substance into a Bose-Einstein condensate at room temperature, which exists long enough to be used in practice then will be possible to use these substances in order to create efficient Gravitational Shieldings.

  17. The Tower Shielding Facility: Its glorious past

    International Nuclear Information System (INIS)

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports

  18. Technical specifications: Tower Shielding Reactor II

    International Nuclear Information System (INIS)

    The technical specifications define the key limitations that must be observed for safe operation of the Tower Shielding Reactor II (TSR-II) and an envelope of operation within which there is reasonable assurance that these limits cannot be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  19. Neutron shielding for particle astrophysics experiments

    CERN Document Server

    McMillan, J E

    2005-01-01

    Particle astrophysics experiments often require large volume neutron shields which are formed from hydrogenous material. This note reviews some of the available materials in an attempt to find the most cost effective solution. Raw polymer pellets and Water Extended Polyester (WEP) ae discussed in detail. Suppliers for some materials are given.

  20. Design and analysis of ITER shield blanket

    International Nuclear Information System (INIS)

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  1. EMP coupling to multiconductor shielded cables

    International Nuclear Information System (INIS)

    A method is presented for calculating EMP coupling to multiconductor shielded cables by electromagnetic pulse. The induced voltage of inner conductor of the SYV-50-7 cable and SYVZ-9 cable placed on the ground are computed. The computed results agree with those measured

  2. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  3. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  4. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  5. Summary of Prometheus Radiation Shielding Nuclear Design Analyses , for information

    International Nuclear Information System (INIS)

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL and Bettis) shielding nuclear design analyses done for the project

  6. Early test facilities and analytic methods for radiation shielding: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T. (comp.) (Oak Ridge National Lab., TN (United States)); Ingersoll, J.K. (comp.) (Tec-Com, Knoxville, TN (United States))

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  7. A new ceramic material for shielding pulsed neutron scattering instruments

    International Nuclear Information System (INIS)

    We propose a new ceramic composite, based on boron carbide, to use as a shielding material for pulsed neutron scattering instrumentation. The measured transmission data show characteristics equivalent to crispy mix, a common shielding material used at ISIS (UK)

  8. Multihelix rotating shield brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D90 of HR-CTV) were the two metrics used as the basis for evaluation and

  9. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  10. Improved Electromagnetic Interference Shielding Properties of MWCNT–PMMA Composites Using Layered Structures

    OpenAIRE

    Saini P; Dhawan SK; Pande Shailaja; Singh BP; Mathur RB; Dhami TL

    2009-01-01

    Abstract Electromagnetic interference (EMI) shielding effectiveness (SE) of multi-walled carbon nanotubes–polymethyl methacrylate (MWCNT–PMMA) composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band) was achieved by stacking seven layers of 0.3-mm thick MWCNT–PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT–PMMA bulk composite. The characteristic EMI...

  11. Shielding consideration for the SSCL experimental halls

    International Nuclear Information System (INIS)

    The Superconducting Super Collider which is being designed and built in Waxahachie, Texas consists Of series of proton accelerators, culminating in a 20 Te proton on proton collider. The collider will be in a tunnel which will be 87 km in circumference and. on average about 30 meters underground. The present design calls for two large interaction halls on the east side of the ring. The shielding for these halls is being designed for an interaction rate of 109 Hz or 1016 interactions per year, based on 107 seconds per operational year. SSC guidelines require that the shielding be designed to meet the criterion of 1mSv per year for open areas off site 2mSv per year for open areas on site, and 2mSv per year for controlled areas. Only radiation workers will be routinely allowed to work in controlled areas. It should be pointed that there is a potential for an accidental full beam loss in either of the experimental halls, and this event would consist of the loss of the full circulating beam up to 4 x 1014 protons. With the present design. the calculated dose equivalent for this event is about 10% of the annual dose equivalent for the normal p-p interactions, so that die accident condition does not control the shielding. If, for instance, local shielding within the experimental hall is introduced into the calculations, this could change. The shielding requirements presented here are controlled by the normal p-p interactions. Three important questions were addressed in the present calculations. They are (1) the thickness of the roof over the experimental halls, (2) the configuration of the shafts and adits which give access to the halls, and (3) the problem of ground water and air activation

  12. Flux trapping and shielding in irreversible superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, D.J.

    1978-05-01

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior.

  13. Flux trapping and shielding in irreversible superconductors

    International Nuclear Information System (INIS)

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior

  14. Shielding of the child's head during x-ray studies

    International Nuclear Information System (INIS)

    Three devices for X-ray shielding of child's head are suggested; the first one is a protective attachment for shielding a child being in horizontal position on an X-ray table; the second one is a protective stand for shielding head and body at roentgenofraphy of upper extremities of a child sitting near the X-ray table; the third one is a prot ctive suspension for shielding the head of a child being in vertical position

  15. Layered shielding design for an active neutron interrogation system

    Science.gov (United States)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  16. Proceedings of a meeting on radiation shielding and related topics

    International Nuclear Information System (INIS)

    This is a proceedings of a meeting on radiation shielding and related topics held on Feb. 22 and 23 in 1978 at Nuclear Engineering Research Laboratory of University of Tokyo. The reports includes the following items (1) studies on neutronics with accelerators (2) radiation damage (3) shielding design (4) radiation streaming (5) shielding experiments from a point of view of radiation measurements (6) shielding benchmark experiments (7) prospects on the study of neutronics. All items are written in Japanese. (auth.)

  17. Development of radiation shielding standards in the American Nuclear Society

    International Nuclear Information System (INIS)

    The American Nuclear Society (ANS) is a standards-writing organization-member of the American National Standards Institute (ANSI). The ANS Standards Committee has a subcommittee denoted ANS-6, Shielding, whose charge is to establish standards in connection with radiation protection and shielding, to provide shielding information to other standards writing groups, and to prepare recommended sets of shielding data and test problems. This paper is a progress report of this subcommittee

  18. On New Limits of the Coefficient of Gravitation Shielding

    Indian Academy of Sciences (India)

    Michele Caputo

    2006-12-01

    New limits of the shielding coefficients in the supposed phenomenon of gravitation shielding have recently become available. The new values are briefly reviewed and discussed in order to update the state of art since some new limits for gravitation shielding are not necessarily the lowest ones which, instead, are those of interest when planning new experimental research or studying theoretically the possible effects of gravitation shielding.

  19. Combination of self-shielded and gas-shielded flux-cored arc welding

    OpenAIRE

    Lian, Atle Korsnes

    2011-01-01

    This master thesis have consisted of experimental and theoretical studies of the change in microstructure and mechanical properties in intermixed weld metal from self-shielded and gas-shielded flux-cored welding wires. The main objective of the present thesis has been to do detailed metallographic analysis on different weld metal combinations, and find out and give an explanation why satisfying values were achieved or not achieved.The report is divided into four parts. Part one consists of re...

  20. Advanced materials and design for electromagnetic interference shielding

    CERN Document Server

    Tong, Xingcun Colin

    2008-01-01

    Exploring the role of EMI shielding in EMC design, this book introduces the design guidelines, materials selection, characterization methodology, manufacturing technology, and future potential of EMI shielding. It covers an array of issues in advanced shielding materials and design solutions, including enclosures and composites.

  1. System for detecting and processing abnormality in electromagnetic shielding

    International Nuclear Information System (INIS)

    The present invention relates to a system for detecting and processing an abnormality in electromagnetic shielding of an intelligent building which is constructed using an electromagnetic shielding material for the skeleton and openings such as windows and doorways so that the whole of the building is formed into an electromagnetic shielding structure. (author). 4 figs

  2. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous...

  3. 21 CFR 886.4750 - Ophthalmic eye shield.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic eye shield. 886.4750 Section 886.4750...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4750 Ophthalmic eye shield. (a) Identification. An ophthalmic eye shield is a device that consists of a plastic or aluminum eye covering intended...

  4. Magnetic shielding effect from multiple configurations of open-type magnetic shielding walls compared to solid plates

    International Nuclear Information System (INIS)

    It was determined that a wall composed of aligned strips with gaps could achieve almost the same magnetic shielding effect as a conventional solid plate wall. This new shielding system is called the 'open-type magnetic shielding method.' This study reports the experimental results for the magnetic shielding effect of open-type magnetic shielding walls in comparison with conventional solid plates. The magnetic field generator of the experimental model is an approximately 1/15 scale reduced train system. The magnetic shielding structure is composed of a maximum of four walls around this train model. The magnetic flux density leakage from the structures was measured. In the case of multiple walls, the results show that the open-type magnetic shielding method has a little better shielding performance than the conventional method.

  5. Bulk metallic glass tube casting

    International Nuclear Information System (INIS)

    Research highlights: → Tubular specimens of Zr55Cu30Al10Ni5 cast in custom arc-melting furnace. → Tilt casting supplemented by suction casting. → Bulk metallic glass formed only with optimized processing parameters. → Fully amorphous tubes with 1.8 mm wall thickness and 25 mm diameter. - Abstract: Tubular bulk metallic glass specimens were produced, using a custom-built combined arc-melting tilt-casting furnace. Zr55Cu30Al10Ni5 tubes with outer diameter of 25 mm and 0.8-3 mm wall thicknesses were cast, with both tilt and suction casting to ensure mold filling. Tilt casting was found to fill one side of the tube mold first, with the rest of the tube circumference filled subsequently by suction casting. Optimized casting parameters were required to fully fill the mold and ensure glass formation. Too small melt mass and too low arc power filled the mold only partially. However, too large melt mass and higher arc power which lead to the best mold filling also lead to partial crystallization. Variations in processing parameters were explored, until a glassy ring with 1.8 mm thickness was produced. Different sections of the as-cast ring were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and instrumented indentation to ensure amorphous microstructure. Atomic force microscopy (AFM) was used to compare the surface qualities of the first- and last-filled sections. These measurements confirmed the glassy structure of the cast ring, and that, the tilt cast tube section consistently showed better surface quality than the suction cast section. Optimized casting parameters are required to fully realize the potential of directly manufacturing complex shapes out of high-purity bulk metallic glasses by tilt casting.

  6. Bulk Moisture and Salinity Sensor

    Science.gov (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  7. Gold based bulk metallic glass

    OpenAIRE

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-01-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  8. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  9. ANS shielding standards for light-water reactors

    International Nuclear Information System (INIS)

    The purpose of the American Nuclear Society Standards Subcommittee, ANS-6, Radiation Protection and Shielding, is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. A total of seven published ANS-6 standards are now current. Additional projects of the subcommittee, now composed of nine working groups, include: standard reference data for multigroup cross sections, gamma-ray absorption coefficients and buildup factors, additional benchwork problems for shielding problems and energy spectrum unfolding, power plant zoning design for normal and accident conditions, process radiation monitors, and design for postaccident radiological conditions

  10. Shield Insertion to Minimize Noise Amplitude in Global Interconnects

    Directory of Open Access Journals (Sweden)

    Kalpana.A.B

    2012-09-01

    Full Text Available Shield insertion is an effective technique for minimise crosstalk noise and signal delay uncertainty .To reduce the effects of coupling uniform or simultaneous shielding may be used on either or both sides of a signal line. Shields are ground or power lines placed between two signal wires to prevent direct coupling between them as the shield width increases, the noise amplitude decreases, in this paper inserting a shield line between two coupled interconnects is shown to be more effective in reducing crosstalk noise for different technology nodes .

  11. Calculating tax shields from financial expenses with losses carried forward

    OpenAIRE

    Ignacio Velez Pareja

    2010-01-01

    When calculating the Weighted Average Cost of Capital (WACC), the well-known textbook formula includes tax shields with the (1-T) factor affecting the contribution of debt to WACC. In this work we develop a procedure for properly calculating tax shields including the case when Losses Carried Forward are allowed and there is Other Income. The proper calculation of tax shields is relevant because the value of tax shields might be a substantial part of firm value. We show that tax shields depend...

  12. A study on the shielding mechanisms of SOI pixel detector

    CERN Document Server

    Lu, Yunpeng; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measurement results proved that using shielding layer is indispensable for counting type pixel and Double-SOI is superior to Nested-well in terms of shielding effectiveness and design flexibility.

  13. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Cox, Rachel E.; Calle, Carlos I.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Hogue, Michael D.; Pollard, Jacob R. S.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  14. SHIELD II: WSRT HI Spectral Line Observations

    Science.gov (United States)

    Gordon, Alex Jonah Robert; Cannon, John M.; Adams, Elizabeth A.; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from WSRT HI spectral line observations of 22 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from HST, SDSS, and WIYN. In most cases the HI and stellar populations are cospatial; projected rotation velocities range from less than 10 km/s to roughly 30 km/s.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  15. EMC Test Report Electrodynamic Dust Shield

    Science.gov (United States)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  16. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  17. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  18. HTS SQUID gradiometer for application without shielding

    International Nuclear Information System (INIS)

    An HTS SQUID gradiometer consisting of a series gradiometer pickup loop in flip-chip configuration with a small washer SQUID is presented. The series gradiometer configuration is advantageous for applications without shielding because of the avoidance of circulating shielding currents in the pickup loop. With a 20 mm x 10 mm substrate for the pickup loop a large effective area of 1.25 mm2 and a gradiometer baseline of 9.6 mm are achieved. The balance of the gradiometer impaired by the washer read-out SQUID can significantly be enhanced by the weighted subtraction of a reference SQUID's signal. With this a balance of 5x104 is reached. The noise-limited magnetic field gradient resolution of the balanced SQUID gradiometer is 38 fT cm-1 Hz-1/2. (author)

  19. Benchmark calculation of CANDU end shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyuhong; Choi, Hangbok [KAERI, Taejon (Korea, Republic of)

    1998-05-01

    A shielding analysis was performed for the end shield of CANDU 6 reactor. The one-dimensional discrete ordinate code ANISN with a 38-group neutron-gamma library, extracted from DLC-37D library, was used to estimate the dose rate for the natural uranium CANDU reactor. For comparison, MCNP-4B calculation was performed for the same system using continuous, discrete and multi-group libraries. The comparison has shown that the total dose rate of the ANISN calculation agrees well with that of the MCNP calculation. However, the individual dose rate (neutron and gamma) has shown opposite trends between ANISN and MCNP estimates, which may require a consistent library generation for both codes.

  20. Methodology of shielding calculation for nuclear reactors

    International Nuclear Information System (INIS)

    A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author)

  1. Radioisotope Power System Facility shielding analysis

    International Nuclear Information System (INIS)

    A series of calculations for the Radioisotope Power System Facility have been performed. These analyses have determined the shielding required for storage, testing, and transport of 238Pu heat source modules using the Monte Carlo code MCNP3B. The source terms and the assumptions used have been verified by comparison of calculated dose rates with measured ones. This paper describes the methodology used for shielding designs and the utilization of available variance reduction techniques to improve the computational efficiency. The new version of MCNP (MCNP3B) with a repeated structure capability was used. It decreased the chance for computer model errors and greatly decreased the model setup time. 2 refs., 3 figs., 2 tabs

  2. In-Beam Background Suppression Shield

    CERN Document Server

    Santoro, V; DiJulio, D D; Ansell, S; Bentley, P M

    2015-01-01

    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .

  3. Shielding performance of metal fiber composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; WU Bin; CHEN Ze-fei

    2004-01-01

    Metal fibers have been applied to construct composites with desirable electromagnetic interference shiel ding effectiveness and mechanical properties. Copper and stainless steel fibers were prepared with micro-saw fiberpulling combined cutting method. The cross section of the fibers is hook-like, which is beneficial to the improvement of bonding strength. Cement-based composites with copper and stainless steel fibers were fabricated and their electromagnetic shielding effectiveness was measured in the frequency range of 1 - 5 GHz. The results show that the electromagnetic interference shielding effectiveness of those composites is enhanced by the addition of metal fibers,which functions mainly due to the absorption. At some frequencies, 20 dB or more difference is obtained between the materials with and without metal fibers.

  4. Operating manual for the Tower Shielding Facility

    International Nuclear Information System (INIS)

    This manual provides information necessary to operate and perform maintenance on the reactor systems and all equipment or systems which can affect their operation or the safety of personnel at the Tower Shielding Facility. The first four chapters consist of introductory and descriptive material of benefit to personnel in training, the qualifications required for training, the responsibilities of the personnel in the organization, and the procedures for reviewing proposed experiments. Chapter 8, Emergency Procedures, is also a necessary part of the indoctrination of personnel. The procedures for operation of the Tower Shielding Reactor (TSR-II), its water cooling system, and the main tower hoists are outlined in Chapters 5, 6, and 7. The Technical Specification surveillance requirements for the TSR-II are summarized in Chapter 9. The maintenance and calibration schedule is spelled out in Chapter 10. The procedures for assembly and disassembly of the TSR-II are outlined in Chapter 11

  5. Shielding analyses of the IFMIF test cell

    International Nuclear Information System (INIS)

    Full 3-D shielding calculations of the IFMIF test cell were performed using a computational scheme for coupled Monte Carlo/deterministic transport calculations that enables the use of a detailed geometry model of the test cell in the Monte Carlo calculation and is suitable, at the same time, to handle the deep penetration transport through the thick surrounding concrete walls. Calculations for the test cell cover, which includes numerous penetrations through which neutrons stream, were performed by the Monte Carlo method. The results demonstrate that the dose rate limit for work personnel access to the access/maintenance room can be safely met during IFMIF operation assuming the test modules are surrounded by a horseshoe shield and the back heavy concrete wall is no less than 250 cm thick. No work personnel access to the room above the cover will be permitted during IFMIF operation due to the strong neutron streaming through the cover penetrations

  6. Bulk dynamics for interfacial growth models

    OpenAIRE

    López, Cristóbal; Santos, Fernando; Garrido, P. L.

    2000-01-01

    We study the influence of the bulk dynamics of a growing cluster of particles on the properties of its interface. First, we define a general bulk growth model by means of a continuum Master equation for the evolution of the bulk density field. This general model just considers an arbitrary addition of particles (though it can be easily generalized to consider subtraction) with no other physical restriction. The corresponding Langevin equation for this bulk density field is derived where the i...

  7. SINBAD: Shielding integral benchmark archive and database

    International Nuclear Information System (INIS)

    SINBAD is a new electronic database developed to store a variety of radiation shielding benchmark data so that users can easily retrieve and incorporate the data into their calculations. SINBAD is an excellent data source for users who require the quality assurance necessary in developing cross-section libraries or radiation transport codes. The future needs of the scientific community are best served by the electronic database format of SINBAD and its user-friendly interface, combined with its data accuracy and integrity

  8. Adopting Number Sequences for Shielding Information

    OpenAIRE

    Mrs. Sandhya Maitra; Manish Bansal; Ms. Preety Gupta

    2014-01-01

    The advancement of technology and global communication networks puts up the question of safety of conveyed data and saved data over these media. Cryptography is the most efficient and feasible mode to transfer security services and also Cryptography is becoming effective tool in numerous applications for information security. This paper studies the shielding of information with the help of cryptographic function and number sequences. The efficiency of the given method is examined,...

  9. Deployable Debris Shields For Space Station

    Science.gov (United States)

    Christiansen, Eric L.; Cour-Palais, Burton G.; Crews, Jeanne

    1993-01-01

    Multilayer shields made of lightweight sheet materials deployed from proposed Space Station Freedom for additional protection against orbiting debris. Deployment mechanism attached at each location on exterior where extra protection needed. Equipment withdraws layer of material from storage in manner similar to unfurling sail or extending window shade. Number of layers deployed depends on required degree of protection, and could be as large as five.

  10. Grounding and shielding in the accelerator environment

    International Nuclear Information System (INIS)

    Everyday features of the accelerator environment include long cable runs, high power and low level equipment sharing building space, stray electromagnetic fields and ground voltage differences between the sending and receiving ends of an installation. This paper pictures some Fermilab installations chosen to highlight significant features and presents practices, test methods and equipment that have been helpful in achieving successful shielding. Throughout the report are numbered statements aimed at summarizing good practices and avoiding pitfalls

  11. Shielding calculations for the antiproton target area

    International Nuclear Information System (INIS)

    Shielding calculations performed in conjunction with the design of the Fermilab antiproton target hall are summarized. The following radiological considerations were examined: soil activation, residual activity of components, and beam-on radiation. In addition, at the request of the designers, the energy deposition in the proposed graphite beam dump was examined for several targeting conditions in order to qualitatively determine its ability to survive

  12. Hypervelocity impact simulations of Whipple shields

    Science.gov (United States)

    Segletes, Steven B.; Zukas, Jonas A.

    1992-01-01

    The problem associated with protecting space vehicles from space debris impact is described. Numerical simulation is espoused as a useful complement to experimentation: as a means to help understand and describe the hypervelocity impact phenomena. The capabilities of a PC-based hydrocode, ZeuS, are described, for application to the problem of hypervelocity impact. Finally, results of ZeuS simulations, as applied to the problem of bumper shield impact, are presented and compared with experimental results.

  13. Spallation Neutron Source Radiation Shielding Issues

    International Nuclear Information System (INIS)

    This paper summarizes results of Spallation Neutron Source calculations to estimate radiation hazards and shielding requirements for activated Mercury, target components, target cooling water, and 7Be plateout. Dose rates in the accelerator tunnel from activation of magnets and concrete were investigated. The impact of gaps and other streaming paths on the radiation environment inside the test cell during operation and after shutdown were also assessed

  14. Shielding design for ETOILE hadron therapy centre

    International Nuclear Information System (INIS)

    The Ion Beam Applications Company is developing a compact superconducting cyclotron for hadron therapy able to deliver various ion beams with an energy of 400 MeV per nucleon and proton beams with an energy of 260 MeV. This system is being proposed to equip ETOILE hadron therapy centre in Lyon. Shielding design based on PHITS and MCNPX Monte Carlo simulation codes is presented, together with some performance figures for the energy degrader. (authors)

  15. SQUID holder with high magnetic shielding

    Science.gov (United States)

    Rigby, K. W.; Marek, D.; Chui, T. C. P.

    1990-01-01

    A SQUID holder designed for high magnetic shielding is discussed. It is shown how to estimate the attenuation of the magnetic field from the normal magnetic modes for an approximate geometry. The estimate agrees satisfactorily with the attenuation measured with a commercial RF SQUID installed in the holder. The holder attenuates external magnetic fields by more than 10 to the 9th at the SQUID input. With the SQUID input shorted, the response to external fields is 0.00001 Phi(0)/G.

  16. SINBAD: Shielding integral benchmark archive and database

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Ingersoll, D.T.; Roussin, R.W. [and others

    1996-04-01

    SINBAD is a new electronic database developed to store a variety of radiation shielding benchmark data so that users can easily retrieve and incorporate the data into their calculations. SINBAD is an excellent data source for users who require the quality assurance necessary in developing cross-section libraries or radiation transport codes. The future needs of the scientific community are best served by the electronic database format of SINBAD and its user-friendly interface, combined with its data accuracy and integrity.

  17. Overview of CSEWG shielding benchmark problems

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.

    1979-01-01

    The fundamental philosophy behind the choosing of CSEWG shielding benchmarks is that the accuracy of a certain range of cross section data be adequately tested. The benchmarks, therefore, consist of measurements and calculations of these measurements. Calculations for which there are no measurements provide little information on the adequacy of the data, although they can perhaps indicate the sensitivity of results to variations in data.

  18. Experimental verification of FOREV-2D simulations for the plasma shield

    International Nuclear Information System (INIS)

    Analysis of experiments in the MK-200UG facility dedicated to verify the FOREV-2D simulations of ITER core contamination with carbon vaporized during ELMs has been performed. In these experiments the carbon fibre composite (CFC) of NB31 grade have been treated with plasma heat fluxes relevant for ITER ELMs. The analysis revealed that thin layer of few hundred microns on CFC surface is damaged and its thermoconductivity effectively reduced approximately three times, but the CFC bulk has the reference thermoconductivity. Good agreement between the measured and the calculated profiles for carbon plasma electron density at various hydrogen plasma heat loads as well as the agreement between the measured and the simulated dependences of the absorbed energy density on the applied heat load provide reliable validation of the carbon plasma shields simulated with the FOREV-2D code. High carbon plasma shield densities of 1023-1024 m-3 predicted in the simulations for ELM-produced shields has been proved in these MK-200UG experiments.

  19. Hydrogen-induced cracking of drip shield

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S C

    1999-08-01

    A simple and conservative model has been developed to evaluate the effects of hydrogen-induced cracking on the drip shield. The basic premise of the model is that failure will occur once the hydrogen content exceeds a certain limit or critical value, HC. This model is very conservative because it assumes that, once the environmental and material conditions can support that particular corrosion process, failure will be effectively instantaneous. In the description of the HIC model presented in Section 6.1, extensive evidence has been provided to support a qualitative assessment of Ti-7 as an excellent choice of material for the drip shield with regard to degradation caused by hydrogen-induced cracking. LTCTF test data observed at LLNL, although unqualified, provides additional indication beyond a qualitative level that hydrogen concentration appears to be low in titanium materials. Quantitative evaluation based on the HIC model described in Section 6.1 indicates that the hydrogen concentration does not exceed the critical value. It is concluded that drip shield material (Ti-7) is able to sustain the effects of hydrogen-induced cracking.

  20. Shielding benchmark test of JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, M. (Toshiba Corp., Kawasaki, Kanagawa (Japan)); Hasegawa, A.; Ueki, K. (and others)

    1990-02-01

    The integral test of JENDL-3 for shielding application was made on a cross sections of carbon, sodium and iron by analyzing the various shielding benchmark experiments: Broomstick experiments at ORNL for iron and sodium, neutron transmission experiments for sodium at ORNL, iron and carbon, ASPIS deep penetration experiments for iron, measurements of leakage spectrum from iron spheres at KfK, angular neutron spectrum measurements in graphite block at RPI. Analyses were made with radiation transport codes ANISN (1D, Sn), DIAC (1D, Sn), DOT-3.5 (2D, Sn) and MCNP (3D, point Monte Carlo). It was observed that revising JENDL-3T iron data resulted in an improvement in reproducing the experimental data, particularly in the MeV neutron energy region. For sodium, JENDL-3 gave better results than JENDL-2 and ENDF/B-IV. For carbon, JENDL-3 gave better agreement, compared to ENDF/B-IV. The conclusion is that JENDL-3 is highly applicable to the reactor shielding analyses. (author).

  1. Active Muon Shield - Preliminary Design Report

    CERN Document Server

    Bayliss, Victoria; Rawlings, T

    2015-01-01

    This report summarises the initial design study which was carried out for the SHiP magnetic muon shield – which is proposed to consist of a 40m beamline of seven magnets generating a 1.8T By field over defined cross-section. This is intended to sweep unwanted muons off the beamline to prevent them reaching the detector. The magnetic shield is an alternative to a passive tungsten shield. This work was carried out in three sections. Initially the magnets were considered in isolation to establish whether they were theoretically feasible to build and the impact of the iron yoke shape and material was considered. Next the beamline was considered as a whole; this included issues such as the impact of neighbouring magnets and the hadrons stopper, and also building a model of the complete beamline whose magnetic fields could be exported for use in particle modelling. Finally, some consideration was given to the manufacture and operational issues, including costs.

  2. Shielded electron microprobe analyzer for plutonium fuel

    International Nuclear Information System (INIS)

    Design, construction and performance test of a shielded electron microprobe analyzer for plutonium fuel are described. In the analyzer, the following modifications were made to Shimadzu ASM-SX (analyzer): (1) a shield of tungsten alloy is incorporated between the sample and the X-ray detector to examine highly radioactive fuel, (2) a magnetic shield against β-rays from the fuel is fitted to the electron detector, (3) a small sample-loading glove box is installed to transfer plutonium fuel safely to the analyzer, (4) a glove box containing a sample-surface treatment apparatus and a balance is connected to the sample-loading glove box, (5) for maintenance and repair of the analyzer by means of closed method, about thirty modifications are made. The performance test with nonradioactive materials showed that despite the above modifications, abilities of the original analyzer are all retained. And furthermore, the simulation test for irradiated fuel with 226Ra of dose rate 40 mR/hr at 30 cm showed that the X-ray peaks to noise ratios are unchanged by using a pulse height selector of the X-ray detector. (author)

  3. Topographic evidence for shield volcanism on Io

    International Nuclear Information System (INIS)

    Similarities between terrestrial shield volcanoes and a volcano on Io observed in Voyager I imagery of the satellite at 300 S, 2460 W are delineated. A photoclinometry model was used to numerically estimate the slope based on the Minnaert photometric function. The slope values are accurate to within 10 deg on the sun-facing slope and 1 deg on the shadow side. As found with shield volcanoes, the feature has a central edifice, 40-50 km in diameter, and a broad, elliptical base, 77 x 90 km across. The summit of the Io volcano is 2.2-2.8 km above the surrounding plane and contains a caldera about 5 km in diameter. The similarity in shape between basaltic terrestrial shield volcanoes and the Io volcano indicates that the Io feature may also be composed of basalt. The composition could be sulfur if the heat flow was under 0.05 W/sq m, as it might have been in later stages of formation. 9 references

  4. Development of flexible neutron-shielding resin as an additional shielding material

    International Nuclear Information System (INIS)

    A soft-type neutron-shielding resin has been developed by improving an existing hard-type neutron-shielding material using the epoxy-based resin as an additional shielding material. A flexible heat-resistant neutron-shielding material has been developed, which consists of a new polymer-based resin with boron. The neutron shielding performance of the developed flexible heat-resistant resin with the 252Cf neutron source is almost the same as that of polyethylene. The outgases of H, H2, NH4, H2O, CO, O2, C4H10, and CO2 from the developed resin have been measured at high temperature (up to 250degC) by thermal desorption spectroscopy methods. The soft-type resin and the newly developed heat-resistant resin will be applied to prevent the effects of neutron streaming and to control the movement of a vibrated pipe as the seal material around the plumbing in the future fast reactor and innovative fission reactor. (author)

  5. Photon attenuation characteristics of radiation shielding materials

    International Nuclear Information System (INIS)

    In the design and construction of installation housing high intensity radiation sources and other radiation generating equipment, a variety of shielding materials are used to minimise exposure to individual. Among the materials, lead is best known for radiation shielding characteristics due to their high density and atomic number. Commercial and barium enriched cement, apart from better compressive strength, smoother surface finish and high abrasion resistance, offers adequate shielding to gamma radiations. Although photon attenuation data are available in literature, it is necessary to test these commercially available material experimentally for their radiation shielding efficiency before putting them in to regular use. In the present work, attenuation characteristics of lead. commercial cement and barium enriched cement supplied by a manufacturing firm have been studied for photons of 662 and 1250keV from Cs-137 and Co-60. The radiographic sources of Cs-137 and Co-60 of radioactive strength of 260 and 30 mCi respectively were utilised in the present investigation. Experimental measurements were done with gamma radiography survey meter MR 4500A placed at a distance of 2 meters from the source. Attenuation coefficients for photons in commercial cement, barite and lead were determined experimentally through photon transmission measurements performed under broad beam counting geometry. The absorbers used were in form of thin sheets of lead, commercial cements and barite of uniform thicknesses. These thin sheets were weighed accurately on an analytical balance and from their measured area, thicknesses proportional to area density in gram.cm-2 were determined. The average thickness of each absorber varied from a few milligram to several gram per cm-2. Higher thicknesses were obtained by stacking the absorbers with each other. Each absorber of specified thickness was interposed between the source and detector such that the primary beam is incident normally on its

  6. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  7. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  8. Gold based bulk metallic glass

    International Nuclear Information System (INIS)

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system is ∼350 Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry

  9. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  10. Shielding Contributions of Mono-Energetic Source Neutrons Attenuated by Most Common Shielding Materials

    International Nuclear Information System (INIS)

    Calculations of neutron fluxes and dose rates of plane mono-energetic source neutrons attenuated by most common shielding materials have been carried out in this work by using two methods; ANISN computer codes (VAX version) and the three group method. The attenuation behaviour of neutron from thermal energies up to 14.9 MeV in finite and infinite shield of water, paraffin wax, ordinary concrete, graphite, iron and lead were examined by the two methods at deep penetrations. The obtained results in both cases were compared with some available data. Almost all the earlier works were concerned with the study of finite thickness (from 5 to 100 cm)of the shielding made from the local materials beside water and iron, but the present work is concerned with the study of previous materials besides paraffin, lead and graphite. Moreover, the thicknesses studied here are from 30 to 500 cm for all the above mentioned materials

  11. Isotopic signatures by bulk analyses

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally

  12. Guidelines for Measuring Bulk Density of Soil

    International Nuclear Information System (INIS)

    Bulk density is defined as the dry weight of soil per unit volume of undisturbed soil. • Bulk density can be used to give an indication of the porosity and structure of the soil influencing O2 and H2O movement in the soil. • Soils with a bulk density higher than 1.6 g/cm3 may restrict root development. • Bulk density is also a measurement of the degree of compaction of the soil. • Bulk density increases with compaction and tends to increase with soil depth. • Sandy soils tend to have higher bulk density (1.4-1.5 g/cm3) than clay soils (1.2-1/3g/cm3). The measurement of soil bulk density is carried out by collecting undisturbed soil samples through inserting metal rings (with a known volume) into the soil, and determining the weight of the collected soil after drying

  13. Critical Dimensionless Shields Values for Bankfull Flow

    Science.gov (United States)

    Bunte, K.; Abt, S. R.; Swingle, K. W.

    2009-12-01

    The critical dimensionless shear stress τ*c (depicted in the Shields curve as a function of the Reynolds particle number Rep) quantifies the slope - flow depth product at which particles from a relatively well-sorted bed with a mean particle size Dm visually start to move. Contrary to many applications of the Shields curve, τ*c was not designed to predict the bed particle size becoming mobile at bankfull flow. This study sketches a bankfull and a critical bankfull Shields-type curve needed to predict the bankfull mobile particle size. Most studies on bedmaterial entrainment are performed in streams that are wadeable at low flow, but exceed wadeability around bankfull flow. Within the bounds of these stream dimensions, the study drafts a relationship of τ*bf versus Rep (bankfull Shields curve) for a sequence of stream types (in sensu Montgomery and Buffington 1997) ranging from steep cobble headwater streams to plane-bed and pool-riffle gravel-beds to low gradient valley streams with sand and silt beds. Probable values of stream gradient, bed D50 size, and a (roughness corrected) hydraulic radius can be assigned to each stream type. The resulting bankfull curve takes values of τ*bf near 10 for silt and 1 for sand-bedded streams, drops to around 0.05 - 0.02 for mobile gravel-bed streams and then increases towards 0.1 and 0.2 for the steepest streams. Transforming τ*bf into the critical bankfull curve τ*cbf from which to predict the bankfull entrainable particle size requires information on the bedload particle size that becomes mobile at bankfull flow. To estimate τ*cbf over a variety of coarse gravel- and cobble-bed mountain streams, the authors used flow competence curves measured with bedload traps at 10 sites. Bedload traps have a 0.3 m by 0.2 m opening, and 1-1.6 m long trailing net with a 4 mm mesh; mounting traps onto ground plates anchored to the stream bottom permits 1-hr sampling times; 4 to 6 traps are typically installed across the stream width

  14. Method Development and Validation of Montelukast in Bulk and Pharmaceutical Dosage form by RP-HPLC

    OpenAIRE

    Minaketan Sahoo

    2012-01-01

    The present work describes a simple, precise and accurate HPLC method for estimation of montelukast sodium in bulk and in tablet dosage form. Montelukast sodium is a selective and orally active leukotriene receptor antagonist that inhibits the cysteinyl leukotriene (CysLT1) receptor. The separation was achieved by using Waters symmetry shield RP-C8 column and acetonitrile: sodium di-hydrogen Phosphate dehydrate (pH 3.7) in proportion of 70:30 v/v as mobile phase, at a flow rate of 1.5 ml/min....

  15. Bulk Current Injection Testing of Cable Noise Reduction Techniques, 50 kHz to 400 MHz

    Science.gov (United States)

    Bradley, Arthur T.; Hare, Richard J.; Singh, Manisha

    2009-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated using bulk current injection (BCI) techniques with radiated fields from 50 kHz - 400 MHz. It is a follow up to the two-part paper series presented at the Asia Pacific EMC Conference that focused on TEM cell signal injection. This paper discusses the effects of cable types, shield connections, and chassis connections on cable noise. For each topic, well established theories are compared with data from a real-world physical system.

  16. Shielding benchmark tests of JENDL-3

    International Nuclear Information System (INIS)

    The integral test of neutron cross sections for major shielding materials in JENDL-3 has been performed by analyzing various shielding benchmark experiments. For the fission-like neutron source problem, the following experiments are analyzed: (1) ORNL Broomstick experiments for oxygen, iron and sodium, (2) ASPIS deep penetration experiments for iron, (3) ORNL neutron transmission experiments for iron, stainless steel, sodium and graphite, (4) KfK leakage spectrum measurements from iron spheres, (5) RPI angular neutron spectrum measurements in a graphite block. For D-T neutron source problem, the following two experiments are analyzed: (6) LLNL leakage spectrum measurements from spheres of iron and graphite, and (7) JAERI-FNS angular neutron spectrum measurements on beryllium and graphite slabs. Analyses have been performed using the radiation transport codes: ANISN(1D Sn), DIAC(1D Sn), DOT3.5(2D Sn) and MCNP(3D point Monte Carlo). The group cross sections for Sn transport calculations are generated with the code systems PROF-GROUCH-G/B and RADHEAT-V4. The point-wise cross sections for MCNP are produced with NJOY. For comparison, the analyses with JENDL-2 and ENDF/B-IV have been also carried out. The calculations using JENDL-3 show overall agreement with the experimental data as well as those with ENDF/B-IV. Particularly, JENDL-3 gives better results than JENDL-2 and ENDF/B-IV for sodium. It has been concluded that JENDL-3 is very applicable for fission and fusion reactor shielding analyses. (author)

  17. Shielding benchmark tests of JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Masayoshi [Toshiba Corp., Kawasaki, Kanagawa (Japan); Hasegawa, Akira; Ueki, Kohtaro; Yamano, Naoki; Sasaki, Kenji; Matsumoto, Yoshihiro; Takemura, Morio; Ohtani, Nobuo; Sakurai, Kiyoshi

    1994-03-01

    The integral test of neutron cross sections for major shielding materials in JENDL-3 has been performed by analyzing various shielding benchmark experiments. For the fission-like neutron source problem, the following experiments are analyzed: (1) ORNL Broomstick experiments for oxygen, iron and sodium, (2) ASPIS deep penetration experiments for iron, (3) ORNL neutron transmission experiments for iron, stainless steel, sodium and graphite, (4) KfK leakage spectrum measurements from iron spheres, (5) RPI angular neutron spectrum measurements in a graphite block. For D-T neutron source problem, the following two experiments are analyzed: (6) LLNL leakage spectrum measurements from spheres of iron and graphite, and (7) JAERI-FNS angular neutron spectrum measurements on beryllium and graphite slabs. Analyses have been performed using the radiation transport codes: ANISN(1D Sn), DIAC(1D Sn), DOT3.5(2D Sn) and MCNP(3D point Monte Carlo). The group cross sections for Sn transport calculations are generated with the code systems PROF-GROUCH-G/B and RADHEAT-V4. The point-wise cross sections for MCNP are produced with NJOY. For comparison, the analyses with JENDL-2 and ENDF/B-IV have been also carried out. The calculations using JENDL-3 show overall agreement with the experimental data as well as those with ENDF/B-IV. Particularly, JENDL-3 gives better results than JENDL-2 and ENDF/B-IV for sodium. It has been concluded that JENDL-3 is very applicable for fission and fusion reactor shielding analyses. (author).

  18. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    Directory of Open Access Journals (Sweden)

    L. Ran

    2014-01-01

    Full Text Available Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  19. Development of neutron shielding material using metathesis-polymer matrix

    International Nuclear Information System (INIS)

    A neutron shielding material using a metathesis-polymer matrix, which is a thermosetting resin, was developed. This shielding material has characteristics that can be controlled for different mixing ratios of neutron absorbers and for formation in the laboratory. Additionally, the elastic modulus can be changed at the hardening process, from a flexible elastoma to a mechanically tough solid. Experiments were performed at the Kyoto University Research Reactor in order to determine the important characteristics of this metathesis-polymer shielding material, such as neutron shielding performance, secondary gamma-ray generation and activation. The metathesis-polymer shielding material was shown to be practical and as effective as the other available shielding materials, which mainly consist of thermoplastic resin

  20. Radiation shielding properties of barite coated fabric by computer programme

    Energy Technology Data Exchange (ETDEWEB)

    Akarslan, F.; Molla, T. [Suleyman Demirel University, Engineering Fac. Textile Dep., Isparta (Turkey); Üncü, I. S. [Suleyman Demirel University, Technological Fac. Electrical-Electronic Eng. Dep., Isparta (Turkey); Kılıncarslan, S., E-mail: seref@tef.sdu.edu.tr [Suleyman Demirel University, Engineering Fac. Civil Eng. Dep., Isparta (Turkey); Akkurt, I. [Suleyman Demirel University, Art and Science Fac., Physics Dep., Isparta (Turkey)

    2015-03-30

    With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by using computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.

  1. RADSHI: shielding calculation program for different geometries sources

    International Nuclear Information System (INIS)

    A computer code written in pascal language for IBM/Pc is described. The program calculates the optimum thickness of slab shield for different geometries sources. The Point Kernel Method is employed, which enables the obtention of the ionizing radiation flux density. The calculation takes into account the possibility of self-absorption in the source. The air kerma rate for gamma radiation is determined, and with the concept of attenuation length through the equivalent attenuation length the shield is obtained. The scattering and the exponential attenuation inside the shield material is considered in the program. The shield materials can be: concrete, water, iron or lead. It also calculates the shield for point isotropic neutron source, using as shield materials paraffin, concrete or water. (authors). 13 refs

  2. Radiation shielding analysis for conceptual design of HIC transport package

    International Nuclear Information System (INIS)

    KHNP(Korea Hydro and Nuclear Power Ltd., Co.) is developing a HIC transport package which is satisfying domestic and IAEA regulations and NETEC(Nuclear Environment Technology Institute) is conducting a conceptual design. In this study, the shielding thickness was calculated using the data from radionuclide assay program which is currently using in nuclear sites and Micro Shield code. Considering the structural safety, carbon steel was chosen as shielding material and the shielding thickness was calculated for 500 R/hr and 100 R/hr at HIC surface, respectively. Through the shielding analysis, it was evaluated that the regulation limit is satisfied when the shielding thickness is 22 cm for 500 R/hr and 17 cm for 100/hr

  3. Radiation shielding properties of barite coated fabric by computer programme

    International Nuclear Information System (INIS)

    With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by using computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained

  4. Cross Section Evaluation Group shielding benchmark compilation. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.F.; Roussin, R.W.

    1983-12-01

    At the time of the release of ENDF/B-IV in 1974, the Shielding Subcommittee had identified a series of 12 shielding data testing benchmarks (the SDT series). Most were used in the ENDF/B-IV data testing effort. A new concept and series was begun in the interim, the so-called Shielding Benchmark (SB) series. An effort was made to upgrade the SDT series as far as possible and to add new SB benchmarks. In order to be designated in the SB class, both an experiment and analysis must have been performed. The current recommended benchmark for Shielding Data Testing are listed. Until recently, the philosophy has been to include only citations to published references for shielding benchmarks. It is now our intention to provide adequate information in this volume for proper analysis of any new benchmarks added to the collection. These compilations appear in Section II, with the SB5 Fusion Reactor Shielding Benchmark as the first entry.

  5. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites.

    Science.gov (United States)

    Yang, Yonglai; Guptal, Mool C; Dudley, Kenneth L; Lawrence, Roland W

    2007-02-01

    Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4-18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band. PMID:17450793

  6. Shield design development of nuclear propulsion merchant ship

    International Nuclear Information System (INIS)

    Shielding design both in Japan and abroad for nuclear propulsion merchant ships is explained, with emphasis on the various technological problems having occurred in the shield design for one-body type and separate type LWRs as conceptual design. The following matters are described: the peculiarities of the design as compared with the case of land-based nuclear reactors, problems in the design standards of shielding, the present status and development of the design methods, and the instances of the design; thereby, the trends of shielding design are disclosed. The following matters are pointed out: Importance of the optimum design, of shielding, significance of radiation streaming through large voids, activation of the secondary water in built-in type steam generators, and the need of the guides for shield design. (Mori, K.)

  7. Self-shielding clumps in starburst clusters

    CERN Document Server

    Palouš, Jan; Ehlerová, Soňa; Tenorio-Tagle, Guillermo

    2016-01-01

    Young and massive star clusters above a critical mass form thermally unstable clumps reducing locally the temperature and pressure of the hot 10$^{7}$~K cluster wind. The matter reinserted by stars, and mass loaded in interactions with pristine gas and from evaporating circumstellar disks, accumulate on clumps that are ionized with photons produced by massive stars. We discuss if they may become self-shielded when they reach the central part of the cluster, or even before it, during their free fall to the cluster center. Here we explore the importance of heating efficiency of stellar winds.

  8. ORNL fusion reactor shielding integral experiments

    International Nuclear Information System (INIS)

    Integral experiments that measure the neutron and gamma-ray energy spectra resulting from the attenuation of approx. 14 MeV T(D,n) 4He reaction neutrons in laminated slabs of stainless steel type 304, borated polyethylene, and a tungsten alloy (Hevimet) and from neutrons streaming through a 30-cm-diameter iron duct (L/D = 3) imbedded in a concrete shield have been performed. The facility, the NE-213 liquid scintillator detector system, and the experimental techniques used to obtain the measured data are described. The two-dimensional discrete ordinates radiation transport codes, calculational models, and nuclear data used in the analysis of the experiments are reviewed

  9. Radiation-Shielding Polymer/Soil Composites

    Science.gov (United States)

    Sen, Subhayu

    2007-01-01

    It has been proposed to fabricate polymer/ soil composites primarily from extraterrestrial resources, using relatively low-energy processes, with the original intended application being that habitat structures constructed from such composites would have sufficient structural integrity and also provide adequate radiation shielding for humans and sensitive electronic equipment against the radiation environment on the Moon and Mars. The proposal is a response to the fact that it would be much less expensive to fabricate such structures in situ as opposed to transporting them from Earth.

  10. Near zero magnetic fields with superconducting shields

    International Nuclear Information System (INIS)

    The author's original motivation for developing the ultra low magnetic shielding was for an experiment to precisely determine h/me using rotating superconducting rings. The author first used the technique for precise magnetic charge measurements of the niobium sphere fractional electrical charge candidates from the Fairbank--Hebard--LaRue--Phillips experiments. A brief description of the technique is presented, together with a summary of work on absolute magnetometry using SQUID sensors and its application to the design of other instruments which use the ultra low field environment. Prospects for future improvements are discussed

  11. Nutrient Shielding in Clusters of Cells

    CERN Document Server

    Lavrentovich, Maxim O; Nelson, David R

    2013-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness $\\ell$ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter $\

  12. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  13. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  14. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  15. X-ray shielding considerations in mammography

    International Nuclear Information System (INIS)

    Mammography is the imaging of the breast used for the diagnosis of the breast cancer or in other conditions. Most mammography installations, due to the unit's low energy do not require wall shielding in addition to the conventional 12 cm brick of density 1.6 gm/cc. However, this does not mean that the mammography, unit can be installed along with other medical units without any radiation safety consideration to staff and public. The patient workload sometimes may be of the order of 1000 mA-min/week. It is therefore, important to take into account, the staff and public protection issues in a mammography installation

  16. Two dimensional shielding benchmark analysis for sodium

    International Nuclear Information System (INIS)

    Results of the analysis of a shielding benchmark experiment on 'fast reactor source' neutron transport through 1.8 metres of sodium is presented in this paper. The two dimensional discrete ordinates code DOT and DLC 37 coupled neutron-gamma multigroup cross sections were used in the analyses. These calculations are compared with measurements on: (i) neutron spectral distribution given by activation detector response, and (ii) gamma ray doses. The agreement is found to be within ± 30 per cent in the fast spectrum region, and within a factor 3.5 in thermal region. For gammas these calculations overpredict the dose rate by a factor of four. (author)

  17. Boron-containing neutron shielding building ceramics

    International Nuclear Information System (INIS)

    The data are presented on the composition of raw materials as well as on the properties and chemical composition of finished products of ceramics intended for neutron shielding. It is shown that 0.8 % content of B2O3 in bricks of ceramic mass proposed halves neutron radiation from the source of 106 neutr·s-1 close rate compared to bricks of boron free ceramic mass. Results of tests on water absorption and compression strength make it possible to recommend new ceramics to be used as tiles and facade building materials

  18. Studies of magnetic shielding for phototubes

    Science.gov (United States)

    Denisov, S.; Dickey, J.; Dzierba, A.; Gohn, W.; Heinz, R.; Howell, D.; Mikels, M.; O'Neill, D.; Samoylenko, V.; Scott, E.; Smith, P.; Teige, S.

    2004-11-01

    Phototubes associated with a Cherenkov counter, with a wall of scintillation counters for time-of-flight measurements and with a wall of lead glass blocks of an electro-magnetic calorimeter will operate in the fringe field of a superconducting solenoid in the GlueX experiment. The solenoid will be operated with a central magnetic field of ≈ 2.5 T. The maximum fringe field in the vicinity of the phototubes will be approximately 150 G. Various techniques for magnetic shielding of phototubes were studied using a 1-m diameter Helmholtz coil arrangement operated with a maximum central field of 200 G. Results are presented.

  19. Studies of magnetic shielding for phototubes

    International Nuclear Information System (INIS)

    Phototubes associated with a Cherenkov counter, with a wall of scintillation counters for time-of-flight measurements and with a wall of lead glass blocks of an electro-magnetic calorimeter will operate in the fringe field of a superconducting solenoid in the GlueX experiment. The solenoid will be operated with a central magnetic field of ∼2.5T. The maximum fringe field in the vicinity of the phototubes will be approximately 150G. Various techniques for magnetic shielding of phototubes were studied using a 1-m diameter Helmholtz coil arrangement operated with a maximum central field of 200G. Results are presented

  20. Inner Shielding of the COMET Cosmic Veto System

    OpenAIRE

    Markin, Oleg

    2015-01-01

    A simulation of neutrons traversing a shield beneath the COMET scintillator strip cosmic-veto counter is accomplished using the Geant4 toolkit. A Geant4 application is written with an appropriate detector construction and a possible spectrum of neutron's energy. The response of scintillator strips to neutrons is studied in detail. A design of the shield is optimized to ensure the time loss concerned with fake veto signals caused by neutrons from muon captures is tolerable. Materials of shield...

  1. The heterogeneous anti-radiation shield for spacecraft*

    Science.gov (United States)

    Telegin, S. V.; Draganyuk, O. N.

    2016-04-01

    The paper deals with modeling of elemental composition and properties of heterogeneous layers in multilayered shields to protect spacecraft onboard equipment from radiation emitted by the natural Earth’s radiation belt. This radiation causes malfunctioning of semiconductor elements in electronic equipment and may result in a failure of the spacecraft as a whole. We consider four different shield designs and compare them to the most conventional radiation-protective material for spacecraft - aluminum. Out of light and heavy chemical elements we chose the materials with high reaction cross sections and low density. The mass attenuation coefficient of boron- containing compounds is 20% higher than that of aluminum. Heterogeneous shields consist of three layers: a glass cloth, borated material, and nickel. With a protective shield containing heavy metal the output bremsstrahlung can be reduced. The amount of gamma rays that succeed to penetrate the shield is 4 times less compared to aluminum. The shields under study have the thicknesses of 5.95 and 6.2 mm. A comparative analysis of homogeneous and multilayered protective coatings of the same chemical composition has been performed. A heterogeneous protective shield has been found to be advantageous in weight and shielding properties over its homogeneous counterparts and aluminum. The dose characteristics and transmittance were calculated by the Monte Carlo method. The results of our study lead us to conclude that a three-layer boron carbide shield provides the most effective protection from radiation. This shield ensures twice as low absorbed dose and 4 times less the number of penetrated gamma-ray photons compared to its aluminum analogue. Moreover, a heterogeneous shield will have a weight 10% lighter than aluminum, with the same attenuation coefficient of the electron flux. Such heterogeneous shields can be used to protect spacecraft launched to geostationary orbit. Furthermore, a protective boron-containing and

  2. Methods and procedures for shielding analyses for the SNS

    International Nuclear Information System (INIS)

    In order to provide radiologically safe Spallation Neutron Source operation, shielding analyses are performed according to Oak Ridge National Laboratory internal regulations and to comply with the Code of Federal Regulations. An overview of on-going shielding work for the accelerator facility and neutrons beam lines, methods used for the analyses, and associated procedures and regulations are presented. Methods used to perform shielding analyses are described as well. (author)

  3. A study on the shielding mechanisms of SOI pixel detector

    OpenAIRE

    Lu, Yunpeng; Liu, Yi; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measuremen...

  4. Optimal Shielding for Minimum Materials Cost of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D. [PPPL

    2014-08-01

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  5. Using natural local materials for developing special radiation shielding concretes, and deduction of its shielding characteristics

    International Nuclear Information System (INIS)

    Concrete is considered as the most important material to be used for radiation shielding in facilities contain radioactive sources and radiation generating machines. The concrete shielding properties may vary depending on the construction of the concrete, which is highly relative to the composing aggregates i.e. aggregates consist about 70 - 80% of the total weight of normal concrete. In this project tow types of concrete used in Syria (in Damascus and Aleppo) had been studied and their shielding properties were defined for gamma ray from Cs-137 and Co-60 sources, and for neutrons from Am-Be source. About 10% reduction in HVL was found in the comparison between the tow concrete types for both neutrons and gammas. Some other types of concrete were studied using aggregates from different regions in Syria, to improve the shielding properties of concrete, and another 10% of reduction was achieved in comparison with Damascene concrete (20% in comparison with the concrete from Aleppo) for both neutrons and gamma rays. (author)

  6. Revised neutral gas shielding model for pellet ablation - combined neutral and plasma shielding

    International Nuclear Information System (INIS)

    The ablation and penetration of pellets in early ORMAK and ISX-A experiments were reliably predicted by the neutral gas shielding model of Milora and Foster. These experiments demonstrated that the principle components of the model - a self-generated shield which reduces the heat flux at the plasma surface - were correct. In more recent experiments with higher temperature plasmas, this model consistently predicts greater penetration than observed in the experiments. Upgarding known limitations of the original model brings the predicted and observed penetration values into agreement. These improvements include: (1) treating the incident electrons as having distribution in energy rather than being monoenergetic; (2) including the shielding effects of cold, dense plasma extending along the magnetic field outside the neutral shield; and (3) modifying the finite plasma, self-limiting incident heat flux so that it represents a collisionless plasma limit rather than a collisional limit. Comparisons are made between the models for a selection of ISX-B Alcator-C, and TFTR shots. The net effect of the changes in the model is an increase in pellet ablation rates and decrease in penetration for current and future experiments

  7. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the Oppenheim Electrical Networkmethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  8. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  9. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  10. Thermal top shield for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Proposed is a thermal top shield for gas-cooled nuclear reactors which together with the thermal side and bottom shield forms an almost gas-tight room for taking up the core structure and which protects the top of the concrete vessel sufficiently against overheating. The thermal top shield consists of top shield elements put closely together, which are made of at least two horizontal metal layers and at least one moderator layer located between the metal layers and which are fixed to the top liner by means of drawbars. (orig.)

  11. Effects of realistic satellite shielding on SEE rates

    International Nuclear Information System (INIS)

    Realistic models of satellite shielding have been used to calculate SEE rates for Galactic Cosmic Rays (GCR) and solar flare protons. The results are compared with those obtained with a nominal 0.1 inch spherical shield. The rates for GCR (solar minimum) are systematically lower than those calculated with the nominal shield. The ratio of rates is greater than 75% for lightly shielded devices, but may be as high as a factor of two where there is shielding by other circuit boards. A more nearly realistic estimate of the rates would be obtained with a spherical shield with a thickness of at least 0.4 inches (3 gm/cm2) for the typical satellites considered. The calculation of the SEE rate due to protons was reformulated to expedite shielding calculations. When the method was applied to the 93L422 RAM for various flare spectra, it was apparent that shielding has a first order effect on rate predictions. The calculated flare upset rates for the TDRS satellite were within 20% of the observed rates. A spherical shield of thickness 0.3 inches (2 gm/cm2) would reproduce the rates. The method was also applied to a trapped proton environment predicted from standard models for CRRES. The predicted rate was consistent with the uncertainties of the environment

  12. Shielding of the contralateral breast during tangential irradiation.

    Science.gov (United States)

    Goffman, Thomas E; Miller, Michael; Laronga, Christine; Oliver, Shelly; Wong, Ping

    2004-08-01

    The purpose of this study was to investigate both optimal and practical contralateral breast shielding during tangential irradiation in young patients. A shaped sheet of variable thickness of lead was tested on a phantom with rubber breasts, and an optimized shield was created. Testing on 18 consecutive patients 50 years or younger showed shielding consistently reduced contralateral breast dose to at least half, with small additional reduction after removal of the medial wedge. For younger patients in whom radiation exposure is of considerable concern, a simple shield of 2 mm lead thickness proved practical and effective. PMID:15289741

  13. Graphene shield enhanced photocathodes and methods for making the same

    Science.gov (United States)

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  14. Investigation of shielding analysis method for fusion reactors

    International Nuclear Information System (INIS)

    An investigation has been made, at the shielding laboratory, into the status of shielding analysis method for fusion reactor based on conceptual designs of a variety of fusion power reactors and fusion experimental facilities, in cooperation with the Fusion Reactor Shielding Working Group in the Research Committee on Fast Neutron Shielding of the Atomic Energy Society of Japan. The reactors and facilities considered are CULHAM MKII(U.K), SPTR (Japan), TFTR(U.S.A.), STARFIRE(U.S.A.) and INTOR-USA(U.S.A.). (author)

  15. Multifunctional B/C Fiber Composites for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding is an enabling technology required for extended manned missions to the Moon, Mars and the planets beyond. Multifunctional structural must...

  16. Measurement of Neutron Tissue Dose Outside the Reactor Shielding

    International Nuclear Information System (INIS)

    Intermediate neutrons form an important part of the neutron-tissue dose outside the reactor shielding. Equipment developed in the RUS series makes it possible to measure the flux and the tissue dose rate of intermediate neutrons. In experiments on the 1RT-1000 reactor the neutron-dose composition was studied and it was shown that this depends greatly on the composition of the shielding. It was found that the neutron-tissue dose calculated from data obtained by means of RPN-1 apparatus is in reality too low by a factor of up to 1.5 for water shielding and 5 for concrete shielding. (author)

  17. Polyolefin-Nanocrystal Composites for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — EIC Laboratories Inc. is proposing a lightweight multifunctional polymer/nanoparticle composite for radiation shielding during long-duration lunar missions....

  18. 14-MeV neutron streaming through shield gaps

    International Nuclear Information System (INIS)

    Monte Carlo calculations have been performed to determine the neutron streaming through straight and single-bend gaps for three different shield thicknesses. A uniform plane source emitting 14-MeV neutrons with a cosine angular distribution was used in the analyses. The results obtained are discussed in terms of how they might be used in the early stages of a shield design to obtain approximate solutions to design questions. These results have direct implications regarding neutron-streaming problems that will be encountered in the shielding analyses of tokamak fusion reactors which are constructed from pie-shaped shield/vacuum chamber segments

  19. Aircraft shielding experiments at general dynamics Fort Worth

    International Nuclear Information System (INIS)

    The Nuclear Aircraft Research Facility was established by Convair, Fort Worth, in 1950 under U.S. Air Force auspices to support the Aircraft Nuclear Propulsion Program in the areas of shielding and radiation effects problems affecting the airframe. The company subsequently became General Dynamics, Fort Worth. In 1954, an experimental shielding program was developed by B.P. Leonard and N.M. Schaeffer that incorporated air, ground, and structure scattering experiments with three sources: a large Co source, the gorund test reactor (GTR), and finally, the aircraft shield test reactor (ASTR). Shield penetration measurements were also planned with the GTR. Principal elements of this program are summarized in the paper

  20. Relative entropy equals bulk relative entropy

    CERN Document Server

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine

    2015-01-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  1. Coupling brane fields to bulk supergravity

    International Nuclear Information System (INIS)

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  2. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  3. Neutron shielding calculation for VVER NPP

    International Nuclear Information System (INIS)

    There are two methods for neutron transport (shielding) calculation used in Energoproject, Prague, the method of discrete ordinates (code TORT-DORT) and the Monte Carlo method (codes MCNP and module within the code SCALE). The task concerning neutron dose rates calculation near casks with VVER spent fuel are presented as an example. Measured neutron dose rates of real loaded C-30 casks for VVER spent fuel assemblies are compared with calculated values in the frame of the international benchmark calculation task. A part of the task realized by the Atomic Energy Research (AER) organization concerning neutron shielding is calculated. The cask C-30 is used in Slovak Jaslovske Bohunice NPP for transport of spent fuel assemblies to the storage facility. The benchmark task has been calculated by the two-dimensional code DORT originated from Oak Ridge National Laboratory. The code solves transport problems using the method of discrete ordinates (SN - method). Calculated neutron dose rates in azimuth and vertical directions show good agreement with the experiment within the range of the measurement errors. In comparison with the other codes the results of DORT are approximately 20% lower. There have been analysed differences between one- and two- dimensional approach and influence of the flux-to-dose rate conversion factors set

  4. The AA disappearing under concrete shielding

    CERN Multimedia

    1982-01-01

    When the AA started up in July 1980, the machine stood freely in its hall, providing visitors with a view through the large window in the AA Control Room. The target area, in which the high-intensity 26 GeV/c proton beam from the PS hit the production target, was heavily shielded, not only towards the outside but also towards the AA-Hall. However, electrons and pions emanating from the target with the same momentum as the antiprotons, but much more numerous, accompanied these through the injection line into the AA ring. The pions decayed with a half-time corresponding to approximately a revolution period (540 ns), whereas the electrons lost energy through synchrotron radiation and ended up on the vacuum chamber wall. Electrons and pions produced the dominant component of the radiation level in the hall and the control room. With operation times far exceeding original expectations, the AA had to be buried under concrete shielding in order to reduce the radiation level by an order of magnitude.

  5. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  6. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  7. SHIELD: Neutral Gas Kinematics and Dynamics

    Science.gov (United States)

    McNichols, Andrew; Teich, Yaron; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we present new results of detailed kinematic analyses of these systems using multi-configuration, high spatial (˜300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array. For each source, we produce velocity fields and dispersion maps using different spatial and spectral resolution representations of the data in order to attempt derivation of an inclination-corrected rotation curve. While both two- and three-dimensional fitting techniques are employed, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make multiple position-velocity cuts across each galaxy to determine the maximum circular rotation velocity (≤ 30 km-1 for the survey population). Baryonic masses are calculated using single-dish H I fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are contextualized on the baryonic Tully-Fisher relation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  8. Earth pressure balance control for EPB shield

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theoretical principle for EPB control is proposed. Dynamic equilibrium of intake volume and discharge volume generated by thrust and discharge is modeled theoretically to simulate the earth pressure variation during excavating. The thrust system and the screw conveyor system for earth pressure control are developed based on the electro-hydraulic technique. The control models of the thrust speed regulation of the cylinders and the rotating speed adjustment of the screw conveyor are also presented. Simulation for earth pressure control is conducted with software AMESim and MATLAB/Simulink to verify the models. Experiments are carried out with intake control in clay soil and discharge control in sandy gravel section, respectively. The experimental results show that the earth pressure variations in the working chamber can be kept at the expected value with a practically acceptable precision by means of real-time tuning the thrust speed or the revolving speed of discharge system.

  9. Oxidative shielding and the cost of reproduction.

    Science.gov (United States)

    Blount, Jonathan D; Vitikainen, Emma I K; Stott, Iain; Cant, Michael A

    2016-05-01

    Life-history theory assumes that reproduction and lifespan are constrained by trade-offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta-analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non-breeders reveal that transition to the reproductive state is associated with a step-change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally-derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life-history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life-history trade-offs. PMID:25765468

  10. Shielding analysis of the advanced voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Park, J. J.; Lee, J. W.; Shin, J. M.; Park, G. I.; Song, K. C

    2008-09-15

    This report deals describes how much a shielding benefit can be obtained by the Advanced Voloxidation process. The calculation was performed with the MCNPX code and a simple problem was modeled with a spent fuel source which was surrounded by a concrete wall. The source terms were estimated with the ORIGEN-ARP code and the gamma spectrum and the neutron spectrum were also obtained. The thickness of the concrete wall was estimated before and after the voloxidation process. From the results, the gamma spectrum after the voloxidation process was estimated as a 67% reduction compared with that of before the voloxidation process due to the removal of several gamma emission elements such as cesium and rubidium. The MCNPX calculations provided that the thickness of the general concrete wall could be reduced by 12% after the voloxidation process. And the heavy concrete wall provided a 28% reduction in the shielding of the source term after the voloxidation process. This can be explained in that there lots of gamma emission isotopes still exist after the advanced voloxidation process such as Pu-241, Y-90, and Sr-90 which are independent of the voloxidation process.

  11. Concrete enclosure to shield a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Villagrana M, L. E.; Rivera P, E.; De Leon M, H. A.; Soto B, T. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: emmanuelvillagrana@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    In the aim to design a shielding for a {sup 239}PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and the ambient dose equivalent were calculated at several distances ranging from 5 up to 150 cm, these calculations were repeated including air, and a 1 x 1 x 1 m{sup 3} enclosure that was shielded with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10{sup -8} up 0.5 MeV were the same regardless the distance from the source showing the room-return effect, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes -softer- as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated. (Author)

  12. Development of spatially dependent resonance shielding method

    International Nuclear Information System (INIS)

    A new spatially dependent resonance self-shielding method (SDDM: Spatially Dependent Dancoff Method) was developed based on the generalization of the conventional Dancoff method to multi-regions in a fuel pellet based on the Stoker/Weiss technique. SDDM correctly accounts for radial power distribution within fuel rods in a fuel assembly. SDDM is fully consistent with the conventional method if the pellet is not sub-divided. It also has the advantage of being less computing time consuming when compared to more rigorous resonance shielding method such as sub-group and special fine energy mesh methods. Moreover, it can be installed easily into the lattice physics code widely used in commercial LWR design. To validate the method, spatial concentration of isotopes and burnup distribution within a rod are evaluated using SDDM and the results are compared to the destructive measurement data. From the comparison, it is concluded that the spatially dependent Dancoff method, SDDM, is appropriate for generating the effective cross-sections in the fuel rings. (author)

  13. Deep saline groundwater within the Canadian Shield

    International Nuclear Information System (INIS)

    Groundwaters have been sampled from depths greater than 1000 m within the Canadian Shield. The samples were obtained from boreholes in mines and from test drilling programs carried out as part of the Canadian Nuclear Fuel Waste Management Program. At the depths explored, water is found in fractures, shear zones and similar structural features. The salinity of the water is frequently very high, with total dissolved solids often exceeding 200 g.L-1. These saline waters can be classified as Ca-Na-Cl brines. Isotopic analyses for 2H and 18O show that these fluids are not modern, local meteoric waters which dissolve salts in sedimentary, metasedimentary or metamorphic rocks. The chemical and isotopic data suggest that all saline waters analyzed to date have a similar origin. This source is not well-understood but could be highly modified Paleozoic seawater, residual metamorphic fluids, or less likely, groundwaters that have been in contact with the rocks in the Canadian Shield for millions of years. In all cases the fluids appear to have been isolated from the biosphere for geological time periods. The existence of these highly saline fluids influences the Nuclear Fuel Waste Management Program in several areas. A major concern is the corrosion resistance of the radioactive waste containers. Saline waters may also influence the buffer and backfill and vault sealing materials, the rock mass and the waste form itself, although the effects may not always be deleterious. Corrosion of underground test equipment during the geoscience research phase is also a concern

  14. Bulk scalar field in DGP braneworld cosmology

    CERN Document Server

    Ansari, Rizwan ul Haq

    2007-01-01

    We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .

  15. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  16. Deoxyribonucleic acid-Ag nanoparticles for EMI Shielding: the effect of nanoparticle size, shape and distribution on the shielding effectiveness

    Science.gov (United States)

    Ouchen, Fahima; Wilson, Benjamin G.; Yaney, Perry P.; Salour, Michael M.; Grote, James G.

    2014-09-01

    This study focuses on the use of silver based nanoparticle as fillers in DNA host materials to form nancomposites for applications in Electro-Magnetic Interferences (EMI) shielding. For relatively low-conductivity EMI shielding nanocomposites, silver-oxide coated cenospheres are investigated as fillers. The filler loadings are varied to determine a percolation threshold for the desired low conductivity and shielding effectiveness. Microwave absorption as well as DC surface resistivity measurements are undertaken to characterize the obtained films.

  17. Polymer Nanocomposite Based Multi-layer Neutron Shields

    International Nuclear Information System (INIS)

    It is important to shield radiations generated from the various radiation sources including nuclear reactors, transportation and storage systems for the radioactive wastes, accelerator, hospital, and defense systems etc. In this regard, development of efficient, light and durable radiation shielding materials has been an issue for many years. High energy neutrons (fast neutrons) can be thermalized by colliding with the light elements such as hydrogen, and thermalized neutrons can be efficiently captured by neutron absorbers such as boron, lithium, or gadolinium, etc. To shield neutrons, it is common to use hydrogen rich polymer based shields containing thermal neutron absorbers. It is also necessary to shield secondary gamma radiations produced from nuclear reaction of neutrons with various materials. Hence, high density elements such as Fe, Pb, or W might be dispersed in the polymer base as well as with neutron absorbers at the same time. However, the particle sizes of these elements are in the range of several tens and hundreds micrometers causing possible leakage of radiation. To enhance radiation shielding efficiency, it is useful to use ultrafine particles to increase collision probability of radiation with the particles. Furthermore, it is theoretically possible to enhance radiation shielding efficiency by using the multi-layer structured shields whose constituents are different for each layer depending upon the shielding purpose under the same overall density. Also, material properties of the nanocomposites can be enhanced compared to the normal composites. This investigation is focused on characterization of the nanocomposite based multi-layer structured radiation shields compared to the conventional radiation shields

  18. Metallogeny of gold in the Fennoscandian Shield

    Science.gov (United States)

    Gaál, G.; Sundblad, K.

    1990-12-01

    Gold occurs in a number of different ore types in the Fennoscandian Shield ranging in age from Late Archean to Late Proterozoic. Until recently, the metal was exploited primarily as a byproduct in volcanogenic massive sulphide deposits but during the 1980s more gold mines have been opened than during any other episode in the mining history of northern Europe. The occurrence of gold in the Fennoscandian Shield is reviewed in the context of the major tectonostratigraphic units: 1. In the Karelian Province, gold is hosted by greenstone belts of the Archean basement complex e.g. at Ilomantsi, eastern Finland. Greenstone belts of the Nordkalott Province, which are interpreted as part of an Early Proterozoic cover sequence, contain gold deposits associated with copper (Bidjovagge, Saattopora and Pahtohavare). Gold is also associated with cobalt in the metasomatically altered Early Proterozoic cover in north-eastern Finland (Meurastuksenaho and Juomasuo). 2. In the Svecofennian Domain, the major gold deposits were generated during the emplacement of 1.92 1.87 Ga old accretional magmatism. These deposits occur in the northeastern part of the Svecofennian Domain, close to the Archean-Proterozoic boundary. They comprise two major types: (a) the porphyry-type and shear-zone gold hosted by tonalite at Tallberg, Laivakangas, Kopsa and Osikonmäki; (b) as a component of volcanogenic massive sulphide deposits (e.g. Holmtjärn, Boliden and Pyhäsalmi). Other types are: (c) gold-bearing quartz-alumina alteration zones formed during the 1.92 1.87 Ga magmatic period (Enåsen); (d) gold in massive sulphide and iron ore deposits in Bergslagen. 3. Gold associated with 1.84 1.54 Ga granites has been reported from several sites in the Shield, including quartz veins and contact-metasomatic deposits. In addition, shear-zone-related gold deposits post-dating these granites have been identified in southeastern Sweden (Ädelfors). 4. In the Sveconorwegian Domain, the gold deposits at Bleka

  19. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  20. Radiation shielding for 250 MeV protons

    International Nuclear Information System (INIS)

    This paper is targetted at personnel who have the responsibility of designing the radiation shielding against neutron fluences created when protons interact with matter. Shielding of walls and roofs are discussed, as well as neutron dose leakage through labyrinths. Experimental data on neutron flux attenuation are considered, as well as some calculations using the intranuclear cascade calculations and parameterizations

  1. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  2. Shielding effect of mineral schungite during electromagnetic irradiation of rats.

    Science.gov (United States)

    Kurotchenko, S P; Subbotina, T I; Tuktamyshev, I I; Tuktamyshev, I Sh; Khadartsev, A A; Yashin, A A

    2003-11-01

    We studied the effect of nonthermal 37-GHz radiation on hemopoiesis in schungite-shielded Wistar rats. Radiation with right-handed or left-handed rotation of the polarization plane of electromagnetic wave was used. Shielding with schungite decreased the severity of damage produced by high-frequency electromagnetic radiation. PMID:14968159

  3. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  4. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  5. 21 CFR 892.6500 - Personnel protective shield.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Personnel protective shield. 892.6500 Section 892.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Miscellaneous Devices § 892.6500 Personnel protective shield....

  6. Analysis and evaluation of a shielding for scum mensurations

    International Nuclear Information System (INIS)

    In this work the evaluation of a shielding is presented developed by the Nuclear Technology Center of carry out scum mensurations in systems of mensuration gamma spectrometric. The evaluation of the capacity of attenuation of the shielding one carries out starting from the comparisons of the count rates with systems used by anteriority by the Laboratory of Environmental Radiological Surveillance

  7. Optimized Design of the Shielded-Loop Resonator

    DEFF Research Database (Denmark)

    Stensgaard, Anders

    1996-01-01

    The shielded-loop resonator is known to have low capacitive sample loss due to perfect balancing. We present a new analysis of the unbalanced driven shielded-loop resonator that calculates the resonance frequencies and also determines some design considerations. The analysis enables us to optimize...

  8. Planar quadrature coil design using shielded-loop resonators

    DEFF Research Database (Denmark)

    Stensgaard, A

    1997-01-01

    The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...

  9. Optimal shield mass distribution for space radiation protection

    Science.gov (United States)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  10. Performance study of galactic cosmic ray shield materials

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-01-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  11. Building with electromagnetic shield structure for individual floors

    International Nuclear Information System (INIS)

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs

  12. The sword-shield strategy of the early 1960s

    International Nuclear Information System (INIS)

    The sword and shield strategy of the post WWII German Federal Republic is discussed. The effort to rebuild the German air force following WWII is outlined. This effort was initiated in 1956 with material furnished by the US through the Nash Plan. The debate surrounding the validity of the sword-shield concept is described

  13. Analysis and improvement of cyclotron thallium target room shield

    International Nuclear Information System (INIS)

    Because of high neutron and gamma ray intensities during thallium-203 target bombardment, thallium target room shield and its improvement have been investigated. Leakage neutron and gamma-ray dose rates in various points behind the shield are calculated by simulating the transport of neutrons and photons using Monte Carlo MCNP4C computer code. By considering target room geometry, its associated shield, neutron and gamma rays source strengths and spectra, three designs for enhancing shield performance have been analyzed; A door as a shield in maze entrance, covering maze walls with layers of some effective materials and adding a shadow shield in target room in front of the radiation source, have been considered as the parallel to the maze. Dose calculations carried out for each kind of suggested shields separately for different materials and dimensions, then the shield with better than has been constructed and It has been found that the deviation between calculated and measured dose values after upgrading is less than 20%

  14. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 57.14213... welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to persons. (b) All welding operations shall be well-ventilated....

  15. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2011-03-15

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality.

  16. Bulk equations of motion from CFT correlators

    CERN Document Server

    Kabat, Daniel

    2015-01-01

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  17. VHF Injector Pumping Slot RF Shielding Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Staples, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2007-08-08

    The effectiveness of the shielding of the pumping slots is calculated for two radial depths of the slots with Mafia-2 and compared to a simple recipe that calculates the RF attenuation in a slot. CBP Technical Note 378 describes the pumping configuration of the 100 MHz VHF photoinjector. The cavity is surrounded by 36 slots, 4.9 cm wide, separated by bars, also 4.9 cm wide. The radial depth of the bars controls the attenuation of the RF from the cavity proper to the annular plenum outside the bars where the getter pumps are located. This note describes calculations of the level of RF fields in the plenum for two different values of the radial depth of the bars and two different values of the spacing between the outer dimension of the bars and the outer plenum wall.

  18. Response to Jakobsson on Human Body Shields

    Directory of Open Access Journals (Sweden)

    Walter E. Block

    2010-10-01

    Full Text Available A grabs B and uses him as a body shield. That is, A hides behind B (A renders B helpless to resist his grasp, and from that vantage point, shoots at C. According to libertarian theory, may B shoot at C, or, is it proper that C pull the trigger at B? In the view of Rothbard (1984, the former is correct: B is entitled to gun down C. In my (Block, forthcoming view, this is incorrect. Rather, it would be lawful to C to properly kill B. (Both Rothbard and I assume that neither B nor C can end A’s reign of terror. Jakobsson (2010 supports the Rothbardian position. The present paper is at an attempt of mine to refute Jakobsson, and, thus, also, Rothbard (1984, once again.

  19. Preliminary Shielding Analysis for HCCB TBM Transport

    Science.gov (United States)

    Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming

    2015-09-01

    A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  20. Graphene: the ultimately thin sputtering shield

    Science.gov (United States)

    Herbig, Charlotte; Michely, Thomas

    2016-06-01

    Scanning tunneling microscopy methods are applied to investigate the potential of monolayer graphene as a sputtering shield for the underlying metal substrate. To visualize the effect, a bare and a graphene protected Ir(111) surface are irradiated with 500 eV Xe+, as well as 200 eV Xe+ and Ar+ ions, all at 1000 K. By quantitatively evaluating the sputtered material from the surface vacancy island area, we find a drastic decrease in metal sputtering for the graphene protected surface. It is demonstrated that efficient sputter protection relies on self-repair of the ion damage in graphene, which takes place efficiently in the temperature range of chemical vapor deposition growth. Based on the generality of the underlying principles of ion damage, graphene self-repair, and graphene growth, we speculate that efficient sputter protection is possible for a broad range of metals and alloys.

  1. Optimized shielding for space radiation protection

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  2. On the accuracy of the Debye shielding

    CERN Document Server

    Martínez-Fuentes, M A

    2012-01-01

    The expression for the Debye shielding in plasma physics is usually derived under the assumptions that the plasma particles are weakly coupled, so their kinetic energy is much larger than the potential energy between them, and that the velocity distributions of the plasma species are Maxwellian. The first assumption also establishes that the plasma parameter ND, the number of particles within a sphere with a Debye radius should be greater than 1, and determines the difference between weakly and strongly coupled plasmas. Under such assumptions, Poisson's equation can be linearised, and a simple analytic expression obtained for the electrostatic potential. However, textbooks rarely discuss the accuracy of this approximation. In this work we compare the linearised solution with the exact one, obtained numerically, and show that the linearisation, which underestimates the exact solution, is reasonably good even for ND ~ 40. We give quantitative criteria to set the limit of the approximation when the number of par...

  3. Shielding integral benchmark archive and database (SINBAD)

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, B.L.; Grove, R.E. [Radiation Safety Information Computational Center RSICC, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6171 (United States); Kodeli, I. [Josef Stefan Inst., Jamova 39, 1000 Ljubljana (Slovenia); Gulliford, J.; Sartori, E. [OECD NEA Data Bank, Bd des Iles, 92130 Issy-les-Moulineaux (France)

    2011-07-01

    The shielding integral benchmark archive and database (SINBAD) collection of experiments descriptions was initiated in the early 1990s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development's Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD was designed to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD can serve as a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories - fission, fusion, and accelerator experiments. Many experiments are described and analyzed using deterministic or stochastic (Monte Carlo) radiation transport software. The nuclear cross sections also play an important role as they are necessary in performing computational analysis. (authors)

  4. Shielding Integral Benchmark Archive and Database (SINBAD)

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Grove, Robert E [ORNL; Kodeli, I. [International Atomic Energy Agency (IAEA); Sartori, Enrico [ORNL; Gulliford, J. [OECD Nuclear Energy Agency

    2011-01-01

    The Shielding Integral Benchmark Archive and Database (SINBAD) collection of benchmarks was initiated in the early 1990 s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development s Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD is a major attempt to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD is also a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories fission, fusion, and accelerator benchmarks. Where possible, each experiment is described and analyzed using deterministic or probabilistic (Monte Carlo) radiation transport software.

  5. Shielding Integral Benchmark Archive and Database (SINBAD)

    International Nuclear Information System (INIS)

    The Shielding Integral Benchmark Archive and Database (SINBAD) collection of benchmarks was initiated in the early 1990s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development's Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD is a major attempt to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD is also a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories fission, fusion, and accelerator benchmarks. Where possible, each experiment is described and analyzed using deterministic or probabilistic (Monte Carlo) radiation transport software.

  6. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  7. Shielding integral benchmark archive and database (SINBAD)

    International Nuclear Information System (INIS)

    The shielding integral benchmark archive and database (SINBAD) collection of experiments descriptions was initiated in the early 1990s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development's Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD was designed to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD can serve as a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories - fission, fusion, and accelerator experiments. Many experiments are described and analyzed using deterministic or stochastic (Monte Carlo) radiation transport software. The nuclear cross sections also play an important role as they are necessary in performing computational analysis. (authors)

  8. Overview of the SHIELDS Project at LANL

    Science.gov (United States)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  9. SUBURFACE SHIELDING-SPECIFIC SOURCE TERM EVALUATION

    International Nuclear Information System (INIS)

    The purpose of this work is to provide supporting calculations for determination of the radiation source terms specific to subsurface shielding design and analysis. These calculations are not intended to provide the absolute values of the source terms, which are under the charter of the Waste Package Operations (WPO) Group. Rather, the calculations focus on evaluation of the various combinations of fuel enrichment, burnup and cooling time for a given decay heat output, consistent with the waste package (WP) thermal design basis. The objective is to determine the worst-case combination of the fuel characteristics (enrichment, burnup and cooling time) which would give the maximum radiation fields for subsurface shielding considerations. The calculations are limited to PWR fuel only, since the WP design is currently evolving with thinner walls and a reduced heat load as compared to the viability assessment (VA) reference design. The results for PWR fuel will provide a comparable indication of the trend for BWR fuel, as their characteristics are similar. The source term development for defense high-level waste and other spent nuclear fuel (SNF) is the responsibility of the WPO Group, and therefore, is not included this work. This work includes the following items responsive to the stated purpose and objective: (1) Determine the possible fuel parameters (initial enrichment, burnup and cooling time), that give the same decay heat value as specified for the waste package thermal design; (2) Obtain the neutron and gamma source terms for the various combinations of the fuel parameters for use in radiation field calculations; and (3) Calculate radiation fields on the surfaces of the waste package and its transporter to quantify the effects of the fuel parameters with the same decay heat value for use in identifying the worst-case combination of the fuel parameters

  10. Characteristics simulation of wireless power transfer system considering shielding distance

    International Nuclear Information System (INIS)

    Wireless power transfer technology is using the magnetic resonance recently drawing increased attention. It uses the resonance between transmitter and receiver coils to transfer power. Thus, it can improve the transfer distance and efficiency compared with the existing magnetic induction technique. The authors found from the previous study that the application of the superconductor coil to the magnetic resonance wireless power transfer system improved its efficiency. Its application to real life, however, requires the additional study on the effects of adjacent materials. In this study, the two resonance coils made by superconductor coils were used to aluminum and plastic shielding materials was placed between the coils. S-parameters were analyzed according to the position of the shielding material between the transmitter and receiver coils. As a result, the plastic of shielding material had no effect, but the aluminum of shielding material affected the wireless power transfer due to the shielding effectiveness

  11. Experimental Tests of Neutron Shielding for the ATLAS Forward Region

    CERN Document Server

    Pospísil, S; Cechák, T; Cermák, P; Jakubek, J; Kluson, J; Konícek, J; Kubasta, J; Linhart, V; Sinor, M; Leroy, C; Dolezal, Z; Leitner, R; Lukianov, G A; Soustruznik, K; Lokajícek, M; Némécek, S; Pálla, G; Sodomka, J

    1999-01-01

    Experimental tests devoted to the optimization of the neutron shielding for the ATLAS forward region were performed at the CERN-PS with a 4 GeV/c proton beam. Spectra of fast neutrons, slow neutrons and gamma rays escaping a block of iron (40$\\times$40$\\times$80 cm$^3$) shielded with different types of neutron and gamma shields (pure polyethylene - PE, borated polyethylene - BPE, lithium filled polyethylene - LiPE, lead, iron) were measured by means of plastic scintillators, a Bonner spectrometer, a HPGe detector and a slow neutron detector. Effectiveness of different types of shielding agaisnt neutrons and $\\gamma$-rays were compared. The idea of a segmented outer layer shielding (iron, BPE, iron, LiPE) for the ATLAS Forward Region was also tested.

  12. Design of ITER vacuum vessel in-wall shielding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: xiaoyu.wang@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Morimoto, M. [Mitsubishi Heavy Industries, 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe (Japan); Choi, C.H.; Utin, Y.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); TaiLhardat, O. [Assystem EOS, ZAC SAINT MARTIN, 23 rue Benjamin Franklin, 84120 Pertuis (France); Mille, B.; Terasawa, A.; Gribov, Y.; Barabash, V.; Polunovskiy, E.; Dani, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H.; Raval, J. [ITER-India, Institute for Plasma Research, Gandhinagar 382025 (India); Liu, S.; Lu, M.; Du, S. [Institute of Plasma Physics, China Academy of Sciences, Shushanhu Road 350, Hefei (China)

    2014-10-15

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS.

  13. Shielding body for a ducts through prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    A radiation shielding for breaking-through or taking-out part of a wall in nuclear reactors, in particular in gas-cooled nuclear reactors in prestressed concrete containments is to be developed providing safe shielding of the radiation diffusing through gaps between components. Furthermore, such shielding must be simple in its structure and easy to apply, irrespective of the shape of the gap. This is achieved by providing the gap between the penetration liner covering the lateral sides of the break-through and the component introduced into it with a chase to be filled with shielding matter, and by introducing several bolts into the chase in order to displace the shielding matter. (orig./RW)

  14. Design of ITER vacuum vessel in-wall shielding

    International Nuclear Information System (INIS)

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS

  15. Magnetic shielding and exotic spin-dependent interactions

    CERN Document Server

    Kimball, D F Jackson; Li, Y; Thulasi, S; Pustelny, S; Budker, D; Zolotorev, M

    2016-01-01

    Experiments searching for exotic spin-dependent interactions typically employ magnetic shielding between the source of the exotic field and the interrogated spins. We explore the question of what effect magnetic shielding has on detectable signals induced by exotic fields. Our general conclusion is that for common experimental geometries and conditions, magnetic shields should not significantly reduce sensitivity to exotic spin-dependent interactions, especially when the technique of comagnetometry is used. However, exotic fields that couple to electron spin can induce magnetic fields in the interior of shields made of a soft ferro- or ferrimagnetic material. This induced magnetic field must be taken into account in the interpretation of experiments searching for new spin-dependent interactions and raises the possibility of using a flux concentrator inside magnetic shields to amplify exotic spin-dependent signals.

  16. Benchmark calculations of the shielding constants in the water dimer

    Science.gov (United States)

    Pecul, Magdalena; Lewandowski, Józef; Sadlej, Joanna

    2001-01-01

    The NMR shielding constants in (H 2O) 2 have been calculated using GIAO-SCF, MP2, MP4 and CCSD methods and for a range of basis sets. According to the obtained results the 6-311++G ** or aug-cc-pVDZ basis sets are recommended for SCF calculations, and the aug-cc-pVXZ series is suggested for correlated calculations of the interaction-induced changes in the shielding constants. The counterpoise correction improves the results towards the basis set limit and is essential in the case of 17O shielding. Correlation effects are substantial for the changes in 17O shielding, less so for 1H shielding. They are overestimated by the MP2 method.

  17. Analytic flux formulas and tables of shielding functions

    International Nuclear Information System (INIS)

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments

  18. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  19. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  20. Homogeneity test on heavy concrete shield wall for ACP facility

    International Nuclear Information System (INIS)

    The hot cell facility for research activities related to the electrolytic reduction of spent fuel, which is designed to permit a safe handling of radioactive materials up to 1,385 TBq, is scheduled to be constructed in 2005. The design features of the radiation safety are reviewed for the shield wall, rear door, shielding window, penetrations, toboggan, and the storage vault. The calculations by QAD-CGGP and MCNP-4C are used to evaluate the proposed engineering design concepts and the gamma scanning test is described to examine the integrity of the shielding structure for the hot cell. The gamma scanning test is especially good at detecting any void and cracks in a heavy concrete wall and finding crevices between the wall and the devices frames. The shielding effectiveness and homogeneity of the hot cell wall, shield window, rear door etc., shall be measured by reading the activity level of the radiation