Sample records for bulk shielding reactor-2

  1. Bulk shielding benchmark experiment at Frascati neutron generator (FNG)

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P.; Angelone, M.; Martone, M.; Pillon, M.; Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Santamarina, A.; Abidi, I.; Gastaldi, B.; Martini, M.; Marquette, J.P. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)


    In the framework of the European Fusion Technology Program, ENEA (Italian Agency for New Technologies, Energy and the Environment) - Frascati and CEA (Commissariat a` l`Energie Atomique) - Cadarache, in collaboration performed a bulk shielding benchmark experiment, using the 14-MeV Frascati neutron generator (FNG), aimed at obtaining accurate experimental data for improving the nuclear data base and methods used in shielding designs. The experiment consisted of the irradiation of a stainless steel block by 14-MeV neutrons. The experimental results have been compared with numerical results calculated using both Sn and Monte Carlo transport codes and the cross section library EFF.1 (european fusion file).

  2. The bulk shielding benchmark experiment at the Frascati Neutron Generator (FNG)

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Martone, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Santamarina, A. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Abidi, I. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Gastaldi, B. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Martini, M. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Marquette, J.P. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France)


    In the design of next-step fusion devices such as NET/ITER the nuclear performance of shielding blankets is of key importance in terms of nuclear heating of superconducting magnets and radiation damage. In the framework of the European Fusion Technology Program, ENEA Frascati and CEA Cadarache in collaboration performed a bulk shielding benchmark experiment using the 14MeV Frascati Neutron Generator (FNG), aimed at obtaining accurate experimental data for improving the nuclear database and methods used in shielding designs. The experiment consisted of the irradiation of a stainless steel block by 14MeV neutrons. The neutron reaction rates at various depths inside the block have been measured using fission chambers and activation foils characterized by different energy response ranges. The experimental results have been compared with numerical results calculated using both S{sub n} and Monte Carlo transport codes and the cross-section library EFF.1 (European Fusion File). (orig.).

  3. The stainless steel bulk shielding benchmark experiment at the Frascati Neutron Generator (FNG)

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Angelone, M. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Martone, M. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Petrizzi, L. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Pillon, M. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Rado, V. (Associazione Euratom-ENEA sulla Fusione, CRE Frascati, I-00044 Frascati, Rome (Italy)); Santamarina, A. (Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires Cadarache, 13108, St.-Paul-lez-Durance Cedex (France)); Abidi, I. (Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires Cadarache, 13108, St.-Paul-lez-Durance Cedex (France)); Gastaldi, G. (Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires Cadarache, 13108, St.-Paul-lez-Durance Cedex


    In the framework of the European Technology Program for NET/ITER, ENEA (Ente Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente), Frascati and CEA (Commissariat a l'Energie Atomique), Cadarache, are collaborating on a bulk shielding benchmark experiment using the 14 MeV Frascati Neutron Generator (FNG). The aim of the experiment is to obtain accurate experimental data for improving the nuclear database and methods used in the shielding designs, through a rigorous analysis of the results. The experiment consists of the irradiation of a stainless steel block by 14 MeV neutrons. The neutron flux and spectra at different depths, up to 65 cm inside the block, are measured by fission chambers and activation foils characterized by different energy response ranges. The [gamma]-ray dose measurements are performed with ionization chambers and thermo-luminescent dosimeters (TLD). The first results are presented, as well as the comparison with calculations using the cross section library EFF (European Fusion File). ((orig.))

  4. Benchmark experiment on stainless steel bulk shielding at Frascati neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P.; Angelone, M.; Martone, M.; Pillon, M.; Rado, V. [ENEA, Frascati (Italy). Centro Ricerche Energia - Area Energia e Innovazione


    In the framework of the European Technology Program for NET/ITER, ENEA (Italian Agency for New Technologies, Energy and Environment) - Frascati and CEA (Commissariat a L`Energie Atomique) - Cadarache collaborated on a Bulk Shield Benchmark Experiment using the 14-MeV Frascati Neutron Generator (FNG). The aim of the experiment was to obtain accurate experimental data for improving the nuclear database and methods used in shielding designs, through a rigorous analysis of the results. The experiment consisted of the irradiation of a stainless steel block by 14-MeV neutrons. The neutron reaction rates at different depths inside the block were measured by fission chambers and activation foils characterized by different energy response ranges. The experimental results have been compared with numerical results calculated using both S{sub N} and Monte Carlo transport codes and as transport cross section library the European Fusion File (EFF). In particular, the present report describes the experimental and numerical activity, including neutron measurements and Monte Carlo calculations, carried out by the (ENEA Italian Agency for New Technologies, Energy and Environment) team.

  5. The stainless steel bulk shielding benchmark experiment at the Frascati Neutron Generator (FNG) (United States)

    Batistoni, P.; Angelone, M.; Martone, M.; Petrizzi, L.; Pillon, M.; Rado, V.; Santamarina, A.; Abidi, I.; Gastaldi, G.; Joyer, P.; Marquette, J. P.; Martini, M.


    In the framework of the European Technology Program for NET/ITER, ENEA (Ente Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente), Frascati and CEA (Commissariat à l'Energie Atomique), Cadarache, are collaborating on a bulk shielding benchmark experiment using the 14 MeV Frascati Neutron Generator (FNG). The aim of the experiment is to obtain accurate experimental data for improving the nuclear database and methods used in the shielding designs, through a rigorous analysis of the results. The experiment consists of the irradiation of a stainless steel block by 14 MeV neutrons. The neutron flux and spectra at different depths, up to 65 cm inside the block, are measured by fission chambers and activation foils characterized by different energy response ranges. The γ-ray dose measurements are performed with ionization chambers and thermo-luminescent dosimeters (TLD). The first results are presented, as well as the comparison with calculations using the cross section library EFF (European Fusion File).

  6. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N


    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  7. The fundamental study to control the magnetic field for MDDS using shielding currents of HTS tapes and bulks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail:; Eritate, I.; Abe, T.; Shima, S.; Takahashi, M.


    Highlights: • MDDS is a key technology to reduce the side effects. • The field control method for MDDS was studied using HTS tapes and bulks. • The shielding current due to Meissner effect was used to generate the field gradient. • HTS bulks and films were combined with iron blocks, and they are very effective. • The magnetic field gradient which is higher than the external field was obtained. - Abstract: The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is a very important issue in MDDS. In general, the high magnetic field along the axial direction and high magnetic field gradient along the longitudinal direction are very useful for MDDS. So, we proposed the new magnetic force control system that consists of superconducting magnet, high temperature superconductors (HTS) bulks or tapes and ferromagnetic substances. In this new system, the shielding currents in HTS bulks and tapes due to diamagnetism of the superconductor generate the magnetic field with same direction of external magnetic field, and we can control the magnetic field gradient along the longitudinal direction by the arrangement of the HTS bulks, tapes and ferromagnetic substances. In this study, the stacked GdBCO tapes without stabilizer were used in experiments and electromagnetic analysis based on finite element method (FEM) was carried out to optimize the arrangement of the superconductors and the irons. It was confirmed that the control of magnetic field gradient along the longitudinal direction was possible by arranging the HTS bulks, tapes and irons on the superconducting magnet and then it was possible to obtain a magnetic field higher than the external field.

  8. TFCX shielding optimization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.; Gohar, Y.


    Design analyses and tradeoff studies for the bulk shield of the Tokamak Fusion Core Experiment (TFCX) were performed. Several shielding options were considered to lower the capital cost of the shielding system. Optimization analyses were carried out to reduce the nuclear responses in the TF coils and the dose equivalent in the reactor hall one day after shutdown. Two TFCX designs with different toroidal field (TF) coil configurations were considered during this work. The materials for the shield were selected based upon tradeoff studies and the results from the previous design studies. The main shielding materials are water, concrete, and steel balls (Fe1422 or Nitronic 33). Small amounts of boron carbide and lead are employed to reduce activation, nuclear heating in the TF coils, and dose equivalent after shutdown.

  9. Radiation shield

    Energy Technology Data Exchange (ETDEWEB)

    Nemezawa, Isao; Kimura, Tadahiro [Hitachi Ltd., Tokyo (Japan); Omori, Tetsu; Mizuochi, Akira


    A radiation shield is constituted by using a flexible bag made of a synthetic resin, a rubber plate or a composite member of them. Water is charged therein as a shielding liquid. Water injection ports are formed at the lower surface, and gas exhaustion ports are formed on the upper surface of the radiation shield. A plurality of vertical ribs made of the same material as the bag of the radiation shield are formed, integral with the bag, each at a space on the outer surface of the radiation shield. A reinforcing tube are inserted to the vertical ribs integral with the bag. The reinforcing tube may be made of an metal or non-metal material, but material having a bending strength greater than that of the bag is used. When wide surfaces are constituted in the horizontal direction as radiation shielding surfaces, a plurality of the radiation shields are used being in adjacent in the horizontal direction. The reinforcing tubes in adjacent with each other among the adjacent radiation shields are connected by connectors. (I.N.)

  10. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao


    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  11. Radiation Shielding for Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.T.


    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor

  12. Operating manual for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)


    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  13. Operating manual for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)


    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

  14. Radiation shielding member

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Tsutomu


    An iron box having optional width, depth and height with no back board is secured to the outer surface of an iron shielding member formed by laminating optional number of iron plates having an optional thickness. Optional number of structural walls acting also as partition walls and comprising a synthetic resin and having a neutron shielding function of a predetermined thickness is disposed between the front plate and the back face of the iron box. Pellets made of a synthetic resin having a radiation shielding function are filled in the iron box. As the synthetic resin having a neutron ray shielding function, a polyethylene resin is preferably used. The radiation shielding member thus constituted is used for a radiation shielding door. Radiation rays irradiated from a chamber are shielded except for neutron rays by the iron shielding member. Neutron rays permeate the iron shielding member, and are shielded by the layers of polyethylene pellets filled in the iron box. (I.N.)


    Fermi, E.; Zinn, W.H.


    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  16. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava


    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  17. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger


    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  18. iSHIELD - A Line Source Application of SHIELD11

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Rokni, S.H.; /SLAC


    iSHIELD11 performs a line-source numerical integration of radiation source terms that are defined by the iSHIELD11 computer code[1] . An example is provided to demonstrate how one can use iSHIELD11 to perform a shielding analysis for a 250 GeV electron linear accelerator.

  19. Adhesive particle shielding (United States)

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA


    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  20. Grounding, shielding, and bonding (United States)

    Catrysse, J.


    In the electromagnetic compatibility design (EMC) of systems and circuits, both grounding and shielding are related to the coupling mechanisms of the system with (radiated) electromagnetic fields. Grounding is more related to the source or victim circuit (or system) and determines the characteristic of the coupling mechanism between fields and currents/voltages. Shielding is a way of interacting in the radiation path of an electromagnetic field. The basic principles and practical design rules are discussed.

  1. Modelling of bulk superconductor magnetization (United States)

    Ainslie, M. D.; Fujishiro, H.


    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  2. Bulk shielding facility quarterly report, October, November, and December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, III, S. S.; Lance, E. D.; Thomas, J. R.


    The BSR operated at an average power level of 1,836 kw for 78.01 percent of the time during October, November, and December. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training programs and was operated on two occasions when the University of Kentucky students actively participated in training laboratories.

  3. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M


    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  4. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco


    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  5. Shield For Flexible Pipe (United States)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.


    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  6. Lightweight Shield Against Space Debris (United States)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.


    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  7. Roof Shield for Advance and Retreat Mining (United States)

    Lewis, E. V.


    Shield sections change their configuration to suit mining mode. Articulation cylinders raise rear shield to advance position, and locking cylinders hold it there. To change to retreat position articulation cylinders lower shield. Locking pins at edge of outermost shield plate latch shield to chock base. Shield accommodates roof heights ranging from 36 to 60 inches (0.9 to 1.52 meters).

  8. Light shielding apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Richard Dean; Thom, Robert Anthony


    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  9. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.


    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  10. Measurement of the transient shielding effectiveness of shielding cabinets

    Directory of Open Access Journals (Sweden)

    H. Herlemann


    Full Text Available Recently, new definitions of shielding effectiveness (SE for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005. Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  11. A novel self-shielding permanent-magnet rotor assembly (United States)

    Potenziani, E., II; Leupold, H. A.; Basarab, D. J.


    The use of permanent magnets in brushless motors and generators is highly desirable in that they have great potential for reducing weight and increasing efficiency. A self-shielding cylindrical permanent-magnet assembly has been designed and was found to produce high fields at the outer magnet surface and very little flux leakage into the interior rotor space. Construction of this assembly is simplified because it is composed of magnets of simple triangular cross sections, which have only four distinct orientations. The self-shielding nature of the design obviates any need for ferromagnetic material for flux shaping or shielding, thus simplifying greatly the mathematical analysis of the design and reducing its weight and bulk. Finite element methods are used to analyze a hypothetical permanent-magnet rotor assembly with regard to various design parameters.

  12. SHIELDS Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania Koleva [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.

  13. Hypervelocity impact shield (United States)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)


    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  14. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  15. Socket Shield Technique


    Ferreira, João Eduardo Freitas


    Nos dias atuais, é cada vez mais comum a realização de extrações de dentes que estejam severamente comprometidos e substituí-los por implantes dentários. Após extração, existe uma reabsorção de osso alveolar que vai resultar numa perda de osso vertical e horizontal, tornando-se um dos fatores que subsequentemente se vai colocar como uma das maiores dificuldades na colocação de implantes. A técnica Socket Shield é uma técnica de preservação de osso alveolar em situações de implantes imediatos,...

  16. Welding shield for coupling heaters (United States)

    Menotti, James Louis


    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  17. 19 CFR 149.4 - Bulk and break bulk cargo. (United States)


    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from the...

  18. Progress in Research on Lightweight Graphene-based EMI Shielding Materials

    Directory of Open Access Journals (Sweden)

    WANG Chan-yuan


    Full Text Available With rapid progresses on the advanced electronic science and technology, electromagnetic irradiations have led to considerable issues, including electromagnetic pollutions, electromagnetic interference and security concerns, in electronics, aeronautics, astronautics, information technology, communication systems and etc. Based on the fundamentals of the electromagnetic interference shielding and general methods for preparing graphene nanosheets, this review involves the recent advances in the electromagnetic interference shielding materials of various applications in four morphologies, which include bulk, lightweight foams, flexible films and those for operation at high temperature. Meanwhile, the major strategical methods and general concept for designing and fabricating graphene-based electromagnetic interference shielding materials have been overviewed, and fundamental issues of electromagnetic interference technology have been further discussed. The perspectives for fabricating novel electromagnetic interference shielding materials, including ultrathin and transparent configuration, and future development have been proposed based on the practical applications, which suggest significant conception for designing next generation lightweight EMI shielding materials.

  19. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)


    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  20. Morphometry of terrestrial shield volcanoes (United States)

    Grosse, Pablo; Kervyn, Matthieu


    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  1. SNF shipping cask shielding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Pace, J.V. III


    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan.

  2. Composite Aerogel Multifoil Protective Shielding (United States)

    Jones, Steven M.


    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  3. Integral Face Shield Concept for Firefighter's Helmet (United States)

    Abeles, F.; Hansberry, E.; Himel, V.


    Stowable face shield could be made integral part of helmet worn by firefighters. Shield, made from same tough clear plastic as removable face shields presently used, would be pivoted at temples to slide up inside helmet when not needed. Stowable face shield, being stored in helmet, is always available, ready for use, and is protected when not being used.

  4. Measuring space radiation shielding effectiveness (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven


    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  5. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir


    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  6. The SHIELD11 Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W


    SHIELD11 is a computer code for performing shielding analyses around a high-energy electron accelerator. It makes use of simple analytic expressions for the production and attenuation of photons and neutrons resulting from electron beams striking thick targets, such as dumps, stoppers, collimators, and other beam devices. The formulae in SHIELD11 are somewhat unpretentious in that they are based on the extrapolation (scaling) of experimental data using rather simple physics ideas. Because these scaling methods have only been tested over a rather limited set of conditions--namely, 1-15 GeV electrons striking 10-20 radiation lengths of iron--a certain amount of care and judgment must be exercised whenever SHIELD11 is used. Nevertheless, for many years these scaling methods have been applied rather successfully to a large variety of problems at SLAC, as well as at other laboratories throughout the world, and the SHIELD11 code has been found to be a fast and convenient tool. In this paper we present, without extensive theoretical justification or experimental verification, the five-component model on which the SHIELD11 code is based. Our intent is to demonstrate how to use the code by means of a few simple examples. References are provided that are considered to be essential for a full understanding of the model. The code itself contains many comments to provide some guidance for the informed user, who may wish to improve on the model.

  7. Bulk Nanostructured Materials (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.


    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  8. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.


    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  9. A Novel Radiation Shielding Material Project (United States)

    National Aeronautics and Space Administration — Radiation shielding simulations showed that epoxy loaded with 10-70% polyethylene would be an excellent shielding material against GCRs and SEPs. Milling produced an...

  10. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)


    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  11. WAVS radiation shielding references and assumptions

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    At ITER, the confluence of a high radiation environment and the requirement for high performance imaging for plasma and plasma-facing surface diagnosis will necessitate extensive application of radiation shielding. Recommended here is a dual-layer shield design composed of lead for gamma attenuation, surrounded by a fire-resistant polyehtylene doped with a thermal neutron absorber for neutron shielding.

  12. Neutronic design of MYRRHA reactor hall shielding (United States)

    Celik, Yurdunaz; Stankovskiy, Alexey; Eynde, Gert Van den


    The lateral shielding of a 600 MeV proton linear accelerator beam line in the MYRRHA reactor hall has been assessed using neutronic calculations by the MCNPX code complemented with analytical predictions. Continuous beam losses were considered to define the required shielding thickness that meets the requirements for the dose rate limits. Required shielding thicknesses were investigated from the viewpoint of accidental full beam loss as well as beam loss on collimator. The results confirm that the required shielding thicknesses are highly sensitive to the spatial shape of the beam and strongly divergent beam losses. Therefore shielding barrier should be designed according to the more conservative assumptions.

  13. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)


    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  14. "Understanding" cosmological bulk viscosity


    Zimdahl, Winfried


    A universe consisting of two interacting perfect fluids with the same 4-velocity is considered. A heuristic mean free time argument is used to show that the system as a whole cannot be perfect as well but neccessarily implies a nonvanishing bulk viscosity. A new formula for the latter is derived and compared with corresponding results of radiative hydrodynamics.

  15. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.


    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  16. ATLAS Award for Shield Supplier

    CERN Multimedia


    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  17. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander


    symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  18. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander


    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...

  19. Micromegas in a bulk

    CERN Document Server

    Giomataris, Ioanis; Andriamonje, Samuel A; Aune, S; Charpak, Georges; Colas, P; Giganon, Arnaud; Rebourgeard, P C; Salin, P; Rebourgeard, Ph.


    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicine

  20. Micromegas in a bulk

    Energy Technology Data Exchange (ETDEWEB)

    Giomataris, I. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)]. E-mail:; De Oliveira, R. [CERN, Geneva (Switzerland); Andriamonje, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Aune, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Charpak, G. [CERN, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Fanourakis, G. [Institute of Nuclear Physcis, NCSR Demokritos, Aghia Paraskevi 15310 (Greece); Ferrer, E. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Giganon, A. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Rebourgeard, Ph. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Salin, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)


    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine.

  1. Dynamic rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang, Wenjun [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Wu, Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)


    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  2. Radiation shielding concrete made of Basalt aggregates. (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B


    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  3. The ORNL-SNAP shielding program (United States)

    Mynatt, F. R.; Clifford, C. E.; Muckenthaler, F. J.; Gritzner, M. L.


    The effort in the ORNL-SNAP shielding program is directed toward the development and verification of computer codes using numerical solutions to the transport equation for the design of optimized radiation shields for SNAP power systems. A brief discussion is given for the major areas of the SNAP shielding program, which are cross-section development, transport code development, and integral experiments. Detailed results are presented for the integral experiments utilizing the TSF-SNAP reactor. Calculated results are compared with experiments for neutron and gamma-ray spectra from the bare reactor and as transmitted through slab shields.


    Wigner, E.P.; Ohlinger, L.A.


    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  5. Improved Electromagnetic Interference Shielding Properties of MWCNT–PMMA Composites Using Layered Structures

    Directory of Open Access Journals (Sweden)

    Saini P


    Full Text Available Abstract Electromagnetic interference (EMI shielding effectiveness (SE of multi-walled carbon nanotubes–polymethyl methacrylate (MWCNT–PMMA composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band was achieved by stacking seven layers of 0.3-mm thick MWCNT–PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT–PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material.

  6. Continuous electrodeionization through electrostatic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Dermentzis, Konstantinos [Technological Educational Institute, T.E.I. of Kavala, General Department of Sciences, Laboratory of Chemical Technology, Agios Loucas, 65404 Kavala (Greece)], E-mail:


    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency.

  7. Add-On Shielding for Unshielded Wire (United States)

    Koenig, J. C.; Billitti, J. W.; Tallon, J. M.


    Fabrication sequence used to produce compact shields slipped into place from free ends of wires already soldered into connectors at other ends. Single shields are formed into harnesses by connecting grounding jumpers. Technique is especially useful for small diameter wire attached to microminiature connectors.

  8. Thermal neutron shield and method of manufacture (United States)

    Brindza, Paul Daniel; Metzger, Bert Clayton


    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  9. Artificial Dielectric Shields for Integrated Transmission Lines

    NARCIS (Netherlands)

    Ma, Y.; Rejaei, B.; Zhuang, Y.


    We present a novel shielding method for on-chip transmission lines built on conductive silicon substrates. The shield consists of an artificial dielectric with a very high in-plane dielectric constant, built from two patterned metal layers isolated by a very thin dielectric film. Inserted below an

  10. Infrared shield facilitates optical pyrometer measurements (United States)

    Eichenbrenner, F. F.; Illg, W.


    Water-cooled shield facilitates optical pyrometer high temperature measurements of small sheet metal specimens subjected to tensile stress in fatigue tests. The shield excludes direct or reflected radiation from one face of the specimen and permits viewing of the infrared radiation only.

  11. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel


    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  12. How Concentration Shields Against Distraction. (United States)

    Sörqvist, Patrik; Marsh, John E


    In this article, we outline our view of how concentration shields against distraction. We argue that higher levels of concentration make people less susceptible to distraction for two reasons. One reason is that the undesired processing of the background environment is reduced. For example, when people play a difficult video game, as opposed to an easy game, they are less likely to notice what people in the background are saying. The other reason is that the locus of attention becomes more steadfast. For example, when people are watching an entertaining episode of their favorite television series, as opposed to a less absorbing show, attention is less likely to be diverted away from the screen by a ringing telephone. The theoretical underpinnings of this perspective, and potential implications for applied settings, are addressed.

  13. Radiation Shielding Systems Using Nanotechnology (United States)

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)


    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  14. PC based temporary shielding administrative procedure (TSAP)

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.E.; Pederson, G.E. [Sargent & Lundy, Chicago, IL (United States); Hamby, P.N. [Commonwealth Edison Co., Downers Grove, IL (United States)


    A completely new Administrative Procedure for temporary shielding was developed for use at Commonwealth Edison`s six nuclear stations. This procedure promotes the use of shielding, and addresses industry requirements for the use and control of temporary shielding. The importance of an effective procedure has increased since more temporary shielding is being used as ALARA goals become more ambitious. To help implement the administrative procedure, a personal computer software program was written to incorporate the procedural requirements. This software incorporates the useability of a Windows graphical user interface with extensive help and database features. This combination of a comprehensive administrative procedure and user friendly software promotes the effective use and management of temporary shielding while ensuring that industry requirements are met.

  15. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin


    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  16. The use of nipple shields: A review

    Directory of Open Access Journals (Sweden)

    Selina Chow


    Full Text Available A nipple shield is a breastfeeding aid with a nipple-shaped shield that is positioned over the nipple and areola prior to nursing. Nipple shields are usually recommended to mothers with flat nipples or in cases in which there is a failure of the baby to effectively latch onto the breast within the first two days postpartum. The use of nipple shields is a controversial topic in the field of lactation. Its use has been an issue in the clinical literature since some older studies discovered reduced breast milk transfer when using nipple shields, while more recent studies reported successful breastfeeding outcomes. The purpose of this review was to examine the evidence and outcomes with nipple shield use. Methods: A literature search was conducted in Ovid MEDLINE, OLDMEDLINE, EMBASE Classic, EMBASE, Cochrane Central Register of Controlled Trials and CINAHL. The primary endpoint was any breastfeeding outcome following nipple shield use. Secondary endpoints included the reasons for nipple shield use and the average/median length of use. For the analysis, we examined the effect of nipple shield use on physiological responses, premature infants, mothers’ experiences, and health professionals’ experiences. Results: The literature search yielded 261 articles, 14 of which were included in this review. Of these 14 articles, three reported on physiological responses, two reported on premature infants, eight reported on mothers’ experiences, and one reported on health professionals’ experiences. Conclusion: Through examining the use of nipple shields, further insight is provided on the advantages and disadvantages of this practice, thus allowing clinicians and researchers to address improvements on areas that will benefit mothers and infants the most.

  17. Improved Metal-Polymeric Laminate Radiation Shielding Project (United States)

    National Aeronautics and Space Administration — In this proposed Phase I program, a multifunctional lightweight radiation shield composite will be developed and fabricated. This structural radiation shielding will...

  18. Foam-Reinforced Polymer Matrix Composite Radiation Shields Project (United States)

    National Aeronautics and Space Administration — New and innovative lightweight radiation shielding materials are needed to protect humans in future manned exploration vehicles. Radiation shielding materials are...

  19. Microfabricated Bulk Piezoelectric Transformers (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  20. Radiation shield for operator under radiation circumference

    Energy Technology Data Exchange (ETDEWEB)

    Nemezawa, Isao; Kimura, Tadahiro [Hitachi Ltd., Tokyo (Japan); Omori, Tetsu; Mizuochi, Akira


    A radiation shield for an upper half of a man`s body comprises a synthetic resin clothing, a rubber plate or a composite member of them formed into a bag. The bag is formed three dimensionally in the form of an open in front vest. A radiation shielding bag for the lower half of a man`s body is formed into three dimensionally in the form of open in front half trousers. A water injection port for injecting water as shielding liquid and a gas exhaust port are formed to each of the bags. Upon operation under radiation circumstance, the water injection ports and the gas exhaustion ports are opened, and shielding liquid is injected from the water injection ports to the bag so that the shielding liquid shields radiation rays. After closing the water injection ports and the gas exhaustion ports, an operator wears and buttons up the radiation shield of the upper half and the lower half to protect radiation exposure from the front, back and the side of a man. (I.N.)

  1. Development of neutron shielding material for cask

    Energy Technology Data Exchange (ETDEWEB)

    Najima, K.; Ohta, H.; Ishihara, N. [Mitsubishi Heavy Industries Ltd., Takasago Research and Development Center, Hyogo (Japan); Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S. [Mitsubishi Heavy Industries Ltd., Kobe Shipyard and Machinery Works, Kobe (Japan)


    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized.

  2. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields (United States)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.


    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  3. PWR upper/lower internals shield

    Energy Technology Data Exchange (ETDEWEB)

    Homyk, W.A. [Indian Point Station, Buchanan, NY (United States)


    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use of lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.

  4. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.


    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  5. Intraplate Seismicity in Fennoscandian Shield (United States)

    Korja, Annakaisa; Uski, Marja


    Fennoscandian Shield is situated in a seismically quiet intraplate setting in northern Europe. Based on a subset of the most recent earthquake data (2000-2012), most of the earthquakes (80%) occur in the upper crust down to 17 km in depth, a minority (19%) in the middle crust (17-31 km) and only a few in the lower crust 31-45 km (1%). The seismogenic layer is less than 30 km in depth and has a rather uniform thickness across Fennoscandian Shield. Reflection profiles suggest only few of the outcropping deformation zones penetrate the upper-middle crustal layer boundary and even fewer reach the lower crust. We suggest that the middle to lower crustal boundary may add compositional and rheological constraints to the depth extent of the seismogenic zone The orientation of the overall maximum horizontal stress field in northern Europe is WNW-ESE to NW-SE. The current strain rates are rather low and thus cannot produce new structures but rather reactivate old structures where stress overcomes fault friction. Pre-existing deformation zones that are optimally oriented in the present stress field can potentially be reactivated. The deformation zones were analysed for their length and azimuth and they were assigned a potential reactivation type (reverse, normal or strike slip) based solely on their azimuth. The earthquakes in the seismically most active area, close to Skellefteå, Sweden along the western coast of the Gulf of Bothnia and its north-easterly continuation, appear to cluster around the shoreline and along post-glacial faults, which are mostly oriented optimally for reverse or strike slip faulting. The seismically active Kuusamo area in Finland is transacted by wealth of deformation zones all trending in directions optimal for reactivation. The fault plane solutions of the most recent moderate size surprise earthquakes (Sveg 15.9.2014 Ml 4.4, Bothnian Bay 19.3.2016 Ml 4.1) suggest strike slip movement in optimally oriented for strike slip faulting according to

  6. Long Duration Space Shelter Shielding Project (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed a ceramic composite material system that is more effective for shielding both GCR and SPE than aluminum. The composite...

  7. Thermal Shield and Reactor Structure Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Collier, A.R.


    The purpose of this report is to present reactor structure and thermal shield temperature data taken during P-3 and P-5 cycles and compare them with design calculations in order to predict temperatures at higher power levels.

  8. Shielded ADR Magnets For Space Applications Project (United States)

    National Aeronautics and Space Administration — The Phase II program will concentrate on manufacturing of qualified low-current, light-weight, 10K ADR magnets for space application. Shielded ADR solenoidal magnets...

  9. Additional shielding in front of M2

    CERN Document Server

    Schmidt, B


    This note presents studies on possibilities to improve the shielding in front of M2 in order to reduce occupancy of the hottest areas of the Muon System and to mitigate the dead-time problem. Two places for installing additional shielding have been considered: behind HCAL, in place of the PMTs and their bases for the readout, and inside ECAL, in place of the innermost modules of the calorimeter. Studies on the additional shielding inside ECAL have been done for the complementarity of the research rather than for practical purpose due negative effects on the physics. Various studies have been carried out and different configurations of shielding in terms of dimensions and materials have been tested using MC simulations. Moreover the correlation between hits was studied by analysing angles of the tracks passing through M2.

  10. Long Duration Space Shelter Shielding Project (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  11. Shielded ADR Magnets For Space Applications Project (United States)

    National Aeronautics and Space Administration — An important consideration of the use of superconducting magnets in ADR applications is shielding of the other instruments in the vicinity of the superconducting...

  12. Nuclear reactor shield including magnesium oxide (United States)

    Rouse, Carl A.; Simnad, Massoud T.


    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  13. Heat shielding: a task for youngsters


    Starks, Philip T.; Johnson, Rebecca N.; Adam J. Siegel; Meridith M. Decelle


    Heat shielding is a recently identified mechanism used by worker honey bees (Apis mellifera) to help maintain constant hive temperatures. Only workers perform this behavior; in our experiment, drones actively avoided heated hive regions. Observations of marked day-old cohorts within broodcomb regions indicate that heat shielding is performed by young bees to preferentially protect advanced stage larvae and pupae. As expected, the number of heat-shielders significantly increased with both the ...

  14. In-beam background suppression shield

    DEFF Research Database (Denmark)

    Santoro, V.; Cai, Xiao Xiao; DiJulio, D. D.


    , which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative...... to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks....

  15. Numerical Models for the Study of Electromagnetic Shielding

    Directory of Open Access Journals (Sweden)

    POPA Monica


    Full Text Available The paper presents 2D and 3D models for the study of electromagnetic shielding of a coil. The magnetic fields are computed for defining the shielding effectiveness. Parametrized numerical studies were performed in order to established the influence of shield thickness and height on magnetic field in certain points located in the exterior of coil – shield setup and on induced power within the shield.

  16. Radiation effects in bulk silicon (United States)

    Claeys, Cor; Vanhellemont, Jan


    This paper highlights important aspects related to irradiation effects in bulk silicon. Some basic principles related to the interaction of radiation with material, i.e. ionization and atomic displacement, are briefly reviewed. A physical understanding of radiation effects strongly depends on the availability of appropriate analytical tools. These tools are critically accessed from a silicon bulk viewpoint. More detailed information, related to the properties of the bulk damage and some dedicated application aspects, is given for both electron and proton irradiations. Emphasis is placed on radiation environments encountered during space missions and on their influence on the electrical performance of devices such as memories and image sensors.

  17. Shielding Structures for Interplanetary Human Mission (United States)

    Tracino, Emanuele; Lobascio, Cesare


    Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the

  18. Silicon Bulk Micromachined Vibratory Gyroscope (United States)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.


    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  19. Analytic Ballistic Performance Model of Whipple Shields (United States)

    Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.


    The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.

  20. Hydrogen Induced Cracking of Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    G. De


    One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

  1. Proceedings of BulkTrans '89

    Energy Technology Data Exchange (ETDEWEB)


    Papers were presented on bulk commodity demand; steel industry bulk trades; grains and the world food economy; steam coal and cement demand; shipping profitability; bulk carrier design and economics; bulk ports and terminals; ship unloading; computers in bulk terminals; and conveyors and stockyard equipment.

  2. Combatting bulking sludge with ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Wuensch, B.; Heine, W.; Neis, U. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Sanitary and Environmental Engineering


    Bulking and floating sludge cause great problems in many waste water treatment plants with biological nutrient removal. The purification as well as the sludge digestion process can be affected. These problems are due to the interlaced structure of filamentous microorganisms, which have an impact on the sludge's settling behaviour. Foam is able to build up a stable layer, which does not settle in the secondary clarifier. Foam in digestion causes a reduction of the degree of stabilisation and of the biogas production. We use low-frequency ultrasound to combat filamentous organisms in bulking sludge. Low-frequency ultrasound is suitable to create high local shear stresses, which are capable of breaking the filamentous structures of the sludge. After preliminary lab-scale tests now a full-scale new ultrasound equipment is operating at Reinfeld sewage treatment plant, Germany. The objective of this study is to explore the best ultrasound configuration to destroy the filamentous structure of bulking and foaming sludge in a substainable way. Later this study will also look into the effects of ultrasound treated bulking sludge on the anaerobic digestion process. Up to now results show that the settling behaviour of bulking sludge is improved. The minimal ultrasound energy input for destruction of bulking structure was determined. (orig.)

  3. Analysis of Shield Construction in Spherical Weathered Granite Development Area (United States)

    Cao, Quan; Li, Peigang; Gong, Shuhua


    The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.

  4. Surface analysis of PEGylated nano-shields on nanoparticles installed by hydrophobic anchors

    DEFF Research Database (Denmark)

    Ebbesen, M F; Whitehead, Bradley Joseph; Gonzalez, Borja Ballarin


    and cellular interactions. Methods: Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared with a hydrophilic PEGylated "nano-shield" inserted at different levels by hydrophobic anchoring using either a phospholipid-PEG conjugate or the copolymer PLGA-block-PEG by an emulsification/diffusion method......Purpose: This work describes a method for functionalisation of nanoparticle surfaces with hydrophilic "nano-shields" and the application of advanced surface characterisation to determine PEG amount and accumulation at the outmost 10 nm surface that is the predominant factor in determining protein....... Surface and bulk analysis was performed including X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) and zeta potential. Cellular uptake was investigated in RAW 264.7 macrophages by flow cytometry. Results: Sub-micron nanoparticles were formed and the combination of (NMR...

  5. 3-D Monte Carlo analyses of the shielding system in a tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gallina, M.; Petrizzi, L.; Rado, V. (ENEA, Frascati (Italy). Centro Ricerche Energia)


    As part of the ITER (International Tokamak Experimental Reactor) design program, 3D neutronics calculations have been carried out to assess the shielding system performance in the basic machine configuration by means of the Monte Carlo Neutron Photon (MCNP) transport code (3-B version). The main issue is the estimation of the nuclear heat and radiation loads on the toroidal field superconducting coils. ''Self generated weight windows'' and source biasing technique have been used to treat deep penetration through the bulk shield and streaming through the system gaps and openings. The main results are reported together with a discussion of the computing methods, especially of the variance reduction techniques adopted. (author).

  6. 3-D Monte Carlo analyses of shielding system in tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gallina, M.; Petrizzi, L.; Rado, V.


    Within the framework of the ITER (International Tokamak Experimental Reactor) design program, 3D neutronics calculations were carried out to assess system shielding performances in the basic machine configuration by means of the Monte Carlo Neutron Photon (MCNP) code (3-B version). The main issue concerns the estimation of the nuclear heat and radiation loads on the toroidal field superconducting coils. 'Self generated weight windows' (w.w.) and source biasing techniques were used to treat the deep penetration through the bulk shield and streaming through the system gaps and openings. The main results are reported together with a discussion of the computing methods, especially of the variance reduction techniques adopted.

  7. Electromagnetic Shielding Efficiency Measurement of Composite Materials (United States)

    Dřínovský, J.; Kejík, Z.


    This paper deals with the theoretical and practical aspects of the shielding efficiency measurements of construction composite materials. This contribution describes an alternative test method of these measurements by using the measurement circular flange. The measured results and parameters of coaxial test flange are also discussed. The measurement circular flange is described by measured scattering parameters in the frequency range from 9 kHz up to 1 GHz. The accuracy of the used shielding efficiency measurement method was checked by brass calibration ring. The suitability of the coaxial test setup was also checked by measurements on the EMC test chamber. This data was compared with the measured data on the real EMC chamber. The whole measurement of shielding efficiency was controlled by the program which runs on a personal computer. This program was created in the VEE Pro environment produced by © Agilent Technology.

  8. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin


    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...

  9. Progress of the ITER Thermal Shields

    Energy Technology Data Exchange (ETDEWEB)

    Her, Namil, E-mail: [ITER Organisation, Route de Vinon-sur-Verdon – CS 90046, 13067 St Paul-lez-Durance Cedex (France); Hick, Robby; Le Barbier, Robin; Arzoumanian, Terenig; Choi, Chang-Ho; Sborchia, Carlo [ITER Organisation, Route de Vinon-sur-Verdon – CS 90046, 13067 St Paul-lez-Durance Cedex (France); Chung, Wooho; Nam, Kwanwoo; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Gyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Kang, Youngkil; Lim, Kisuk [SFA Engineering Corporation, Hwaseong-si, Gyeonggi-do 10060 (Korea, Republic of)


    Highlights: • Design improvement of the ITER Thermal Shields was introduced. • Design of TS manifold and TS instrumentation were summarized. • Produced main material of the TS (SS304LN) was summarized. • Status of the VVTS manufacturing and the inspection requirements were summarized. - Abstract: The role of the ITER Thermal Shields (TS) is to minimize the radiation heat load from the warm components such as vacuum vessel and cryostat to magnet operating at 4.5 K. The final design of TS was completed in 2013 and manufacturing of the vacuum vessel thermal shield (VVTS) is now on-going. This paper describes the development status of the TS in particular the design improvements, the fabrication and the requirements.

  10. Self-Shielding Of Transmission Lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos [Univ. of New Mexico, Albuquerque, NM (United States)


    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust component must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.

  11. A study on the shielding element using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Jeong [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Shim, Jae Goo [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of)


    In this research, we simulated the elementary star shielding ability using Monte Carlo simulation to apply medical radiation shielding sheet which can replace existing lead. In the selection of elements, mainly elements and metal elements having a large atomic number, which are known to have high shielding performance, recently, various composite materials have improved shielding performance, so that weight reduction, processability, In consideration of activity etc., 21 elements were selected. The simulation tools were utilized Monte Carlo method. As a result of simulating the shielding performance by each element, it was estimated that the shielding ratio is the highest at 98.82% and 98.44% for tungsten and gold.


    Energy Technology Data Exchange (ETDEWEB)

    D. Padula


    The scope of this analysis is to estimate the shielding wall, ceiling or equivalent door thicknesses that will be required in the Waste Handling Building to maintain the radiation doses to personnel within acceptable limits. The shielding thickness calculated is the minimum required to meet administrative limits, and not necessarily what will be recommended for the final design. The preliminary evaluations will identify the areas which have the greatest impact on mechanical and facility design concepts. The objective is to provide the design teams with the necessary information to assure an efficient and effective design.

  13. Experimental realization of open magnetic shielding (United States)

    Gu, C.; Chen, S.; Pang, T.; Qu, T.-M.


    The detection of extremely low magnetic fields has various applications in the area of fundamental research, medical diagnosis, and industry. Extracting the valuable signals from noises often requires magnetic shielding facilities. We demonstrated directly from Maxwell's equations that specifically designed superconductor coils can exactly shield the magnetic field to an extremely low value. We experimentally confirmed this effect in the frequency spectrum of 0.01-10 000 Hz and improved the electromagnetic environment in a hospital, a leading hospital in magnetocardiograph study in China.

  14. Novel Concepts for Radiation Shielding Materials (United States)

    Oliva-Buisson, Yvette J.


    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  15. RadShield: semiautomated shielding design using a floor plan driven graphical user interface. (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B


    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  16. Shielding Effectiveness Measurements using a Reverberation Chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Bergsma, J.G.; Bergsma, Hans; van Etten, Wim


    Shielding effectiveness measurements have been performed using a reverberation chamber. The reverberation chamber methodology as we1l as the measurement setup is described and some results are given. Samples include glass reinforced plastic panels, aluminum panels with many holes, wire mesh, among

  17. SHIELD: Observations of Three Candidate Interacting Systems

    NARCIS (Netherlands)

    Ruvolo, Elizabeth; Miazzo, Masao; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    Abstract:The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich,

  18. The Tower Shielding Facility: Its glorious past

    Energy Technology Data Exchange (ETDEWEB)

    Muckenthaler, F.J.


    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  19. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others


    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  20. MPACT Subgroup Self-Shielding Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yuxuan [Univ. of Michigan, Ann Arbor, MI (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clarno, Kevin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.


    African Journals Online (AJOL)

    Preferred Customer

    Ab initio study, investigation of NMR shielding tensors, NBO and vibrational frequency. Bull. Chem. Soc. Ethiop. 2010, 24(2). 231. Gas phase results. In order to study mechanism of the reactions, structure corresponding to reactants, transition states and products were optimized in level of theory. Figure 1 shows the ...

  2. Software Tools for Measuring and Calculating Electromagnetic Shielding Effectiveness

    National Research Council Canada - National Science Library

    Tesny, Neal


    The evaluation and the analysis of high-altitude electromagnetic pulse response of shielded enclosures require the availability of software tools able to acquire data and calculate shielding effectiveness...

  3. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephens


    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  4. Early test facilities and analytic methods for radiation shielding: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D T [comp.; Oak Ridge National Lab., TN (United States); Ingersoll, J K [comp.; Tec-Com, Knoxville, TN (United States)


    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  5. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)


    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  6. Updating the theoretical analysis of the weak gravitational shielding experiment

    CERN Document Server

    Modanese, G


    The most recent data about the weak gravitational shielding produced recently through a levitating and rotating HTC superconducting disk show a very weak dependence of the shielding value ($\\sim 1 \\%$) on the height above the disk. We show that whilst this behaviour is incompatible with an intuitive vectorial picture of the shielding, it is consistently explained by our theoretical model. The expulsive force observed at the border of the shielded zone is due to energy conservation.

  7. 30 CFR 56.14213 - Ventilation and shielding for welding. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  8. Advanced materials and design for electromagnetic interference shielding

    CERN Document Server

    Tong, Xingcun Colin


    Exploring the role of EMI shielding in EMC design, this book introduces the design guidelines, materials selection, characterization methodology, manufacturing technology, and future potential of EMI shielding. It covers an array of issues in advanced shielding materials and design solutions, including enclosures and composites.

  9. Spherical warm shield design for infrared imaging systems (United States)

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng


    The F-number matching is the primary means to suppress stray radiation for infrared imaging systems. However, it is difficult to achieve exact F-number matching, owing to the restriction from detectors, or multiple F-number design. Hence, an additional shield is required to block the certain thermal radiation. Typical shield is called flat warm shield, which is flat and operates at room temperature. For flat warm shield, it cannot suppress stray radiation while achieving F-number matching. To overcome the restriction, a spherical reflective warm shield is required. First of all, the detailed theory of spherical warm shield design is developed on basis of the principle that stray radiation cannot directly reach the infrared focal plane array. According to the theory developed above, a polished spherical warm shield, whose radius is 18 mm, is designed to match an F/2 infrared detector with an F/4 infrared imaging system. Then, the performance and alignment errors of the designed spherical warm shield are analyzed by simulation. Finally, a contrast experiment between the designed spherical warm shield and two differently processed flat warm shields is performed in a chamber with controllable inside temperatures. The experimental results indicate that the designed spherical warm shield cannot only achieve F-number matching but suppress stray radiation sufficiently. Besides, it is demonstrated that the theory of spherical warm shield design developed in this paper is valid and can be employed by arbitrary infrared imaging systems.

  10. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    National Research Council Canada - National Science Library

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou


    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding...

  11. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja


    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  12. Bulk fields with brane terms

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales (CAFPE), Universidad de Granada, E-18071 Granada (Spain); Perez-Victoria, M. [Dipartimento di Fisica ' ' G. Galilei' ' , Universita di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); Santiago, J. [Institute for Particle Physics Phenomenology, University of Durham, South Road, Durham DH1 3LE (United Kingdom)


    In theories with branes, bulk fields get in general divergent corrections localized on these defects. Hence, the corresponding brane terms are renormalized and should be included in the effective theory from the very beginning. We review the phenomenology associated to brane kinetic terms for different spins and backgrounds, and point out that renormalization is required already at the classical level. (orig.)

  13. Shielding of Electronic Systems against Transient Electromagnetic Interferences

    Directory of Open Access Journals (Sweden)

    H. Herlemann


    Full Text Available In order to protect electronic systems against the effects of transient electromagnetic interferences, shields made of electrically conductive material can be used. The subject of this paper is an electrically conductive textile. When applying the shield, a reliable measure is needed in order to determine the effectiveness of the shield to protect against electromagnetic pulses. For this purpose, a time domain measurement technique is presented using double exponential pulses. With these pulses, the susceptibility of an operating electronic device with and without the shield is determined. As a criterion of quality of a shield, the breakdown failure rate found in both cases is compared.

  14. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield (United States)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell


    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  15. Evaluation of Personal Shields Used in Selected Radiology Departments

    Directory of Open Access Journals (Sweden)

    Mohsen Salmanvandi


    Full Text Available Introduction The purpose of this study was to evaluate personal shields in radiation departments of hospitals affiliated to Mashhad University of Medical Sciences. Materials and Methods First, the information related to 109 personal shields was recorded and evaluated by imaging equipment. Afterwards, the equivalent lead thickness (ELT of 62 personal shields was assessed, using dosimeter and standard lead layers at 100 kVp. Results In this study, 109 personal shields were assessed in terms of tears, holes and cracks. The results showed that 18 shields were damaged. Moreover, ELT was evaluated in 62 shields. As the results indicated, ELT was unacceptable in 8 personal shields and lower than expected in 9 shields. Conclusion According to the results, 16.5% of personal shields had defects (tears, holes and cracks and 13% of them were unacceptable in terms of ELT and needed to be replaced. Therefore, regular quality control of personal shields and evaluation of new shields are necessary at any radiation department.

  16. Radiation shielding analyses for JT-60SU

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Neyatani, Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ishida, S.; Ashida, S.; Sawamura, H.; Tominaga, M.; Nishimura, K. [Computer Software Development Co., Ltd., Shinjuku, Tokyo (Japan)


    Radiation shielding analyses were done for JT-60 Super Upgrade (JT-60SU) of JAERI in Japan, and are reported here. From a viewpoint of the operation and the maintenance, it is important how accurately to evaluate the nuclear heating rate in the superconducting magnet and the activation of components around the vacuum vessel by irradiation of fusion neutrons. A boot-strapped calculation step was applied to the analyses to reduce the redundancy of the conservative in the results. The nuclear heating rate in the superconducting magnets and the maximum {gamma}-ray dose rate one month after shutdown in the cryostat were within the design limits of 2 mW/cc and 10 {mu}Sv/hr, respectively, in the nuclear shielding for a D-D neutron production rate of 1x10{sup 18} s{sup -1}. (author)

  17. EMC Test Report Electrodynamic Dust Shield (United States)

    Carmody, Lynne M.; Boyette, Carl B.


    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  18. Thermoforming plastic in lead shield construction. (United States)

    Abrahams, M E; Chow, C H; Loyd, M D


    Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when "set" or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist.

  19. Thermoforming plastic in lead shield construction

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, M.E.; Chow, C.H.; Loyd, M.D. (Univ. of Texas Medical Branch, Galveston (USA))


    Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when set or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist.

  20. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph


    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  1. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness (United States)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.


    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  2. New applications and developments in the neutron shielding (United States)

    Uğur, Fatma Aysun


    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  3. Deployable Debris Shields For Space Station (United States)

    Christiansen, Eric L.; Cour-Palais, Burton G.; Crews, Jeanne


    Multilayer shields made of lightweight sheet materials deployed from proposed Space Station Freedom for additional protection against orbiting debris. Deployment mechanism attached at each location on exterior where extra protection needed. Equipment withdraws layer of material from storage in manner similar to unfurling sail or extending window shade. Number of layers deployed depends on required degree of protection, and could be as large as five.

  4. Neutron streaming studies along JET shielding penetrations


    Stamatelatos Ion E.; Vasilopoulou Theodora; Batistoni Paola; Obryk Barbara; Popovichev Sergey; Naish Jonathan


    Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The ...

  5. Active shielding model for hyperbolic equations (United States)

    Ryaben'kii, Victor S.; Utyuzhnikov, Sergei V.


    The problem of active shielding (AS) in application to hyperbolic equations is analysed. According to the problem, two domains effecting each other via distributed source terms are considered. It is required to implement additional sources nearby the common boundary of the domains in order to "isolate" one domain from the action of the other domain. It is important to note that the total field of the original sources is only known. In the paper, the theory of difference potentials is applied to the system of hyperbolic equations for the first time. It allows one to obtain a one-layer AS not requiring any additional computations. Local one-layer and two-layer AS sources are obtained for an arbitrary hyperbolic system. The solution does not require either the knowledge of the Green's function or the specific characteristics of the sources and medium. The optimal one-layer AS solution is derived in the case of free space. In particular, the results are applicable to the system of acoustics equations. The questions related to a practical realization including the mutual situation of the primary and secondary sources, as well as the measurement point, are discussed. The active noise shielding can be realized via a one-layer source term requiring the measurements only at one layer nearby the domain shielded.

  6. Active Muon Shield - Preliminary Design Report

    CERN Document Server

    Bayliss, Victoria; Rawlings, T


    This report summarises the initial design study which was carried out for the SHiP magnetic muon shield – which is proposed to consist of a 40m beamline of seven magnets generating a 1.8T By field over defined cross-section. This is intended to sweep unwanted muons off the beamline to prevent them reaching the detector. The magnetic shield is an alternative to a passive tungsten shield. This work was carried out in three sections. Initially the magnets were considered in isolation to establish whether they were theoretically feasible to build and the impact of the iron yoke shape and material was considered. Next the beamline was considered as a whole; this included issues such as the impact of neighbouring magnets and the hadrons stopper, and also building a model of the complete beamline whose magnetic fields could be exported for use in particle modelling. Finally, some consideration was given to the manufacture and operational issues, including costs.

  7. An attenuation Layer for Electromagnetic Shielding in X- Band Frequency

    Directory of Open Access Journals (Sweden)

    vida Zaroushani


    Full Text Available Uncontrolled exposure to X-band frequency leads to health damage. One of the principles of radiation protection is shielding. But, conventional shielding materials have disadvantages. Therefore, studies of novel materials, as an alternative to conventional shielding materials, are required to obtain new electromagnetic shielding material. Therefore, this study investigated the electromagnetic shielding of two component epoxy thermosetting resin for the X - band frequency with workplace approach. Two components of epoxy resin mixed according to manufacturing instruction with the weight ratio that was 100:10 .Epoxy plates fabricated in three different thicknesses (2, 4 and 6mm and shielding effectiveness measured by Vector Network Analyzer. Then, shielding effectiveness measured by the scattering parameters.The results showed that 6mm thickness of epoxy had the highest and 2mm had the lowest average of shielding effectiveness in X-band frequency that is 4.48 and 1.9 dB, respectively. Also, shielding effectiveness increased by increasing the thickness. But this increasing is useful up to 4mm. Percentage shielding effectiveness of attenuation for 6, 4 and 2mm thicknesses is 64.35%, 63.31% and 35.40%. Also, attenuation values for 4mm and 6mm thicknesses at 8.53 GHz and 8.52 GHz frequency are 77.15% and 82.95%, respectively, and can be used as favourite shields for the above frequency. 4mm-Epoxy is a suitable candidate for shielding application in X-band frequency range but, in the lower section, 6mm thickness is recommended. Finely, the shielding matrix can be used for selecting the proper thickness for electromagnetic shielding in X- Band frequency.

  8. Bulk density of small meteoroids (United States)

    Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.


    Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also

  9. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S; Vanderhoek, M [Henry Ford Health System, Detroit, MI (United States)


    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beam entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.

  10. Bulk Moisture and Salinity Sensor (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John


    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  11. Gold based bulk metallic glass


    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan


    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  12. Radiation shielding for future space exploration missions (United States)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  13. Structural monitoring of metro infrastructure during shield tunneling construction. (United States)

    Ran, L; Ye, X W; Ming, G; Dong, X B


    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  14. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    Directory of Open Access Journals (Sweden)

    L. Ran


    Full Text Available Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  15. Electrodynamic Dust Shield for Space Applications (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Calle, Carlos I.; Pollard, Jacob R. S.


    The International Space Exploration Coordination Group (ISECG) has chosen dust mitigation technology as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. NASA has also included Particulate Contamination Prevention and Mitigation as a cross-cutting technology to be developed for contamination prevention, cleaning and protection. This technology has been highlighted due to the detrimental effect of dust on both human and robotic missions. During manned Apollo missions, dust caused issues with both equipment and crew. Contamination of equipment caused many issues including incorrect instrument readings and increased temperatures due to masking of thermal radiators. The astronauts were directly affected by dust that covered space suits, obscured face shields and later propagated to the cabin and into the crew's eyes and lungs. Robotic missions on Mars were affected when solar panels were obscured by dust thereby reducing the effectiveness of the solar panels. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has been developing an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. This technology has been tested in lab environments and has evolved over several years. Tests of the technology include reduced gravity flights (6g) in which Apollo Lunar dust samples were successfully removed from glass shields while under vacuum (1 millipascal). Further development of the technology is underway to reduce the size of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment X (MISSE-X). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the moon

  16. Cerrobend shielding stents for buccal carcinoma patients

    Directory of Open Access Journals (Sweden)

    Karma Yangchen


    Full Text Available Buccal carcinoma is one of the most common oral malignant neoplasms, especially in the South Asian region. Radiotherapy, which plays a significant role in the treatment of this carcinoma, has severe adverse effects. Different types of prosthesis may be constructed to protect healthy tissues from the adverse effects of treatment and concentrate radiation in the region of the tumor mass. However, the technique for fabrication of shielding stent with Lipowitz's alloy (cerrobend/Wood's alloy has not been well documented. This article describes detailed technique for fabrication of such a stent for unilateral buccal carcinoma patients to spare the unaffected oral cavity from potential harmful effects associated with radiotherapy.

  17. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji


    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  18. Neutron streaming studies along JET shielding penetrations

    Directory of Open Access Journals (Sweden)

    Stamatelatos Ion E.


    Full Text Available Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.

  19. Optimal Shielding for Minimum Materials Cost of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D. [PPPL


    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  20. Geometrical aspects of cylindric magnetic shields in strong static fields (United States)

    Zhiwei, XIA; Wei, LI; Bo, LI; Qingwei, YANG


    Motivated by ITER (the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the finite element method with a nonlinear magnetization curve. The geometrical aspects of shielding performance are identified and corresponding suggestions for application are provided. Among them, the effects of the edge and cover thickness have not been mentioned elsewhere to our knowledge.

  1. Neutron shielding for a {sup 252} Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Eduardo Gallego, Alfredo Lorente [Depto. de Ingenieria Nuclear, ETS Ingenieros Industriales, Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. e-mail:


    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source. During calculations a detailed model for the {sup 252}Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare {sup 252}Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  2. Polyolefin-Nanocrystal Composites for Radiation Shielding Project (United States)

    National Aeronautics and Space Administration — EIC Laboratories Inc. is proposing a lightweight multifunctional polymer/nanoparticle composite for radiation shielding during long-duration lunar missions. Isolated...

  3. Effectiveness of the magnetostatic shielding by the cylindrical shells

    Energy Technology Data Exchange (ETDEWEB)

    Grabchikov, S.S.; Trukhanov, A.V. [SSPA “Scientific and practical materials research centre of NAS of Belarus”, 19 P. Brovki Str., 220072 Minsk (Belarus); Trukhanov, S.V., E-mail: [SSPA “Scientific and practical materials research centre of NAS of Belarus”, 19 P. Brovki Str., 220072 Minsk (Belarus); Kazakevich, I.S.; Solobay, A.A. [SSPA “Scientific and practical materials research centre of NAS of Belarus”, 19 P. Brovki Str., 220072 Minsk (Belarus); Erofeenko, V.T. [BSU Institution ' Scientific Research Institute of Applied Problems of Mathematics and Informatics ' , av. Nezavisimosti 4 – 702, 220030 Minsk (Belarus); Vasilenkov, N.A. [CJSC ' TESTPRIBOR' , st. Svobody, 31-1, 125362 Moscow (Russian Federation); Volkova, O.S. [Low temperatures physics and superconductivity department, MSU named after M.V. Lomonosov, Moscow (Russian Federation); National University of Science and Technology MISiS, 119049, Moscow, Leninsky Prospekt, 4 (Russian Federation); Shakin, A. [National University of Science and Technology MISiS, 119049, Moscow, Leninsky Prospekt, 4 (Russian Federation)


    The experimental research of the magnetostatic shielding effectiveness and the analytical calculations of the average magnetic permeability of single-layer cylindrical sample of the shields based on electrolytically deposited Ni{sub 80}Fe{sub 20} alloy are carried out. The locations of maxima on the Ef(H) and μ(H) curves do not match each other, which is difficult to interpret in terms of the shunting model. The results are explained by the non-linear distribution of the magnetic permeability through the thickness of the shield. It has been shown that in the magnetic fields range from 100 A/m up to 2700 A/m, the shields based on the Ni{sub 80}Fe{sub 20} alloy are preferred over ones based on the 84KHSR amorphous ribbon. It is concluded that at the selection of shield materials it should take into account not only the main magnetic characteristics – μ; H{sub s}; H{sub c} but also H{sub max} parameter, which is important to evaluate the effectiveness of magnetic shielding. - Highlights: • One-layer cylindrical shields based on electrodeposited Ni{sub 80}Fe{sub 20} alloy are obtained. • Magnetostatic shielding effectiveness is experimentally investigated. • Calculations of the average magnetic permeability are carried out. • Results are explained by the non-linear distribution of the magnetic permeability. • Parameters important for the magnetic shielding effectiveness are indicated.

  4. Effect of metal shielding on a wireless power transfer system (United States)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng


    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  5. Electromagnetic shielding effectiveness of 3D printed polymer composites (United States)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.


    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  6. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  7. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  8. Graphene shield enhanced photocathodes and methods for making the same (United States)

    Moody, Nathan Andrew


    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  9. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A


    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  10. Photon Shielding Features of Quarry Tuff

    Directory of Open Access Journals (Sweden)

    Vega-Carrillo Hector Rene


    Full Text Available Cantera is a quarry tuff widely used in the building industry; in this work the shielding features of cantera were determined. The shielding characteristics were calculated using XCOM and MCNP5 codes for 0.03, 0.07, 0.1, 0.3, 0.662, 1, 2, and 3 MeV photons. With XCOM the mass interaction coefficients, and the total mass attenuation coefficients, were calculated. With the MCNP5 code a transmission experiment was modelled using a point-like source located 42 cm apart from a point-like detector. Between the source and the detector, cantera pieces with different thickness, ranging from 0 to 40 cm were included. The collided and uncollided photon fluence, the Kerma in air and the Ambient dose equivalent were estimated. With the uncollided fluence the linear attenuation coefficients were determined and compared with those calculated with XCOM. The linear attenuation coefficient for 0.662 MeV photons was compared with the coefficient measured with a NaI(Tl-based γ-ray spectrometer and a 137Cs source.

  11. The AA disappearing under concrete shielding

    CERN Multimedia

    CERN PhotoLab


    When the AA started up in July 1980, the machine stood freely in its hall, providing visitors with a view through the large window in the AA Control Room. The target area, in which the high-intensity 26 GeV/c proton beam from the PS hit the production target, was heavily shielded, not only towards the outside but also towards the AA-Hall. However, electrons and pions emanating from the target with the same momentum as the antiprotons, but much more numerous, accompanied these through the injection line into the AA ring. The pions decayed with a half-time corresponding to approximately a revolution period (540 ns), whereas the electrons lost energy through synchrotron radiation and ended up on the vacuum chamber wall. Electrons and pions produced the dominant component of the radiation level in the hall and the control room. With operation times far exceeding original expectations, the AA had to be buried under concrete shielding in order to reduce the radiation level by an order of magnitude.

  12. MicroShield/ISOCS gamma modeling comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, Kenneth R


    Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberras ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

  13. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso


    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  14. ITER radiation shielding and neutronics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.T.; Iida, H.; Khripunov, V. [ITER, Garching (Germany). Joint Work Site; Sawan, M. [Fusion Technology Institute, University of Wisconsin, Madison, WI 53706 (United States); Inoue, T. [Japan Atomic Energy Research Institute, Tokai-Mura, Ibaraki-ken (Japan)


    Two dimensional radiation transport calculations have been carried out to determine radiation streaming through the ITER equatorial ports. The NBI port has been identified as the most critical. Shielding requirements were estimated to minimize the nuclear heating rates in the toroidal field (TF) coils and the activation of the cryostat, where hands-on maintenance is anticipated. The shielding efficiency of steel/water port walls was investigated as a function of port and wall dimensions and steel volume fraction. For open ports, i.e. the neutral beam injector ducts, 40-50 cm thick port walls composed of 40% SS-60% H{sub 2}O-75% SS-25% H{sub 2}O will reduce the TF coil heating to acceptable levels, while 60-65 cm thick walls are necessary for reducing the dose rates at {proportional_to}2 weeks after shutdown to levels of 750 {mu}Sv h{sup -1} at the cryostat. (orig.) 10 refs.

  15. Concrete enclosure to shield a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Villagrana M, L. E.; Rivera P, E.; De Leon M, H. A.; Soto B, T. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico)


    In the aim to design a shielding for a {sup 239}PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and the ambient dose equivalent were calculated at several distances ranging from 5 up to 150 cm, these calculations were repeated including air, and a 1 x 1 x 1 m{sup 3} enclosure that was shielded with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10{sup -8} up 0.5 MeV were the same regardless the distance from the source showing the room-return effect, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes -softer- as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated. (Author)

  16. Boron filled siloxane polymers for radiation shielding (United States)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton; Simmonds, Steve; Cox, Brad; Pacheco, Adam; Cady, Carl


    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield, and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. Our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.

  17. Enhanced radiation shielding with galena concrete

    Directory of Open Access Journals (Sweden)

    Hadad Kamal


    Full Text Available A new concrete, containing galena mineral, with enhanced shielding properties for gamma sources is developed. To achieve optimized shielding properties, ten types of galena concrete containing different mixing ratios and a reference normal concrete of 2300 kg/m3 density are studied experimentally and numerically using Monte Carlo and XCOM codes. For building galena concrete, in addition to the main composition, micro-silica and water, galena mineral (containing lead were used. The built samples have high density of 4470 kg/m3 to 5623 kg/m3 and compressive strength of 628 kg/m2 to 685 kg/m2. The half and tenth value layers (half value layer and tenth value layers for the galena concrete, when irradiated with 137Cs gamma source, were found to be 1.45 cm and 4.94 cm, respectively. When irradiated with 60Co gamma source, half value layer was measured to be 2.42 cm. The computation modeling by FLUKA and XCOM shows a good agreement between experimental and computational results.

  18. Gas Shielding Technology for Welding and Brazing (United States)

    Nunes, Arthur J.; Gradl, Paul R.


    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  19. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  20. Photon Shielding Features of Quarry Tuff (United States)

    Vega-Carrillo, Hector Rene; Hernandez-Adame, Luis; Guzman-Garcia, Karen Arlete; Ortiz-Hernandez, Arturo Agustin; Rodriguez-Rodriguez, Jose Antonio; Juarez-Alvarado, Cesar Antonio


    Cantera is a quarry tuff widely used in the building industry; in this work the shielding features of cantera were determined. The shielding characteristics were calculated using XCOM and MCNP5 codes for 0.03, 0.07, 0.1, 0.3, 0.662, 1, 2, and 3 MeV photons. With XCOM the mass interaction coefficients, and the total mass attenuation coefficients, were calculated. With the MCNP5 code a transmission experiment was modelled using a point-like source located 42 cm apart from a point-like detector. Between the source and the detector, cantera pieces with different thickness, ranging from 0 to 40 cm were included. The collided and uncollided photon fluence, the Kerma in air and the Ambient dose equivalent were estimated. With the uncollided fluence the linear attenuation coefficients were determined and compared with those calculated with XCOM. The linear attenuation coefficient for 0.662 MeV photons was compared with the coefficient measured with a NaI(Tl)-based γ-ray spectrometer and a 137Cs source.

  1. Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    Jian LI,Caichao WAN


    Full Text Available Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs were fabricated. The aerogels have a low bulk density of 58.17 mg·cm-3. The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI SEtotal value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials.

  2. Deoxyribonucleic acid-Ag nanoparticles for EMI Shielding: the effect of nanoparticle size, shape and distribution on the shielding effectiveness (United States)

    Ouchen, Fahima; Wilson, Benjamin G.; Yaney, Perry P.; Salour, Michael M.; Grote, James G.


    This study focuses on the use of silver based nanoparticle as fillers in DNA host materials to form nancomposites for applications in Electro-Magnetic Interferences (EMI) shielding. For relatively low-conductivity EMI shielding nanocomposites, silver-oxide coated cenospheres are investigated as fillers. The filler loadings are varied to determine a percolation threshold for the desired low conductivity and shielding effectiveness. Microwave absorption as well as DC surface resistivity measurements are undertaken to characterize the obtained films.

  3. Bulk Current Injection Testing of Cable Noise Reduction Techniques, 50 kHz to 400 MHz (United States)

    Bradley, Arthur T.; Hare, Richard J.; Singh, Manisha


    This paper presents empirical results of cable noise reduction techniques as demonstrated using bulk current injection (BCI) techniques with radiated fields from 50 kHz - 400 MHz. It is a follow up to the two-part paper series presented at the Asia Pacific EMC Conference that focused on TEM cell signal injection. This paper discusses the effects of cable types, shield connections, and chassis connections on cable noise. For each topic, well established theories are compared with data from a real-world physical system.

  4. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)


    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  5. Preliminary evaluation of FY98 KALIMER shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Kang, Chang Mu; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)


    This report describes a preliminary evaluation of the shielding design of FY98 KALIMER. The KALIMER shielding design includes the Inner Fixed Shield of a stainless cylinder located inside the support barrel; the Radial PSDRS Shields which are three B{sub 4}C cylinders located outside the support barrel at core level; the Lower IHX shield of a cylindrical B{sub 4}C plate located above the flow guide; and Inner and Outer IHX shields of B{sub 4}C cylinders located inside and outside of the support barrel, respectively. The DORT3.1 two-dimensional transport code was used to evaluate the KALIMER shielding design. The reactor system was represented by four axial zones, each of which was modeled in the R-Z geometry. The KAFAX-F22 library was used in the analyses, which was generated from the JEF-2.2 of OECD/NEA files for LMR applications by KAERI. The performance of the KALIMER shielding design is compared against the shielding design criteria. The results indicate that the support barrel, upper grid plate, and other reactor structures meet the maximum neutron fluence and DPA limits established in the shielding design criteria. Activities of the air effluent in the PSDRS were also evaluated and are shown to satisfy the maximum permissible concentration (MPC) limits in 10 CFR Part 20. In the future, the validation of the DORT model by a detailed three dimensional calculation such as MCNP and the justification of the current shielding design limits are needed. (author). 13 refs., 23 figs., 31 tabs.

  6. Active Shielding and Control of Environmental Noise (United States)

    Tsynkov, S. V.


    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain

  7. 30 CFR 57.14213 - Ventilation and shielding for welding. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 57.14213... welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to persons. (b) All welding operations shall be well-ventilated. ...

  8. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)



  9. Late Proterozoic extensional collapse in the Arabian-Nubian Shield

    NARCIS (Netherlands)

    Blasband, B.B.; White, S.H.; Brooijmans, P.; Boorder, H. de; Visser, W.


    A structural and petrological study of the Late Proterozoic rocks in the Wadi Kid area, Sinai, Egypt indicates the presence of an extensional metamorphic core complex in the northern Arabian–Nubian Shield. Gneissic domes throughout the Arabian–Nubian Shield resemble the core complex of the Wadi Kid

  10. Space nuclear reactor shields for manned and unmanned applications (United States)

    Mckissock, Barbara I.; Bloomfield, Harvey S.


    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary Space Station, and advanced manned lunar base.

  11. Neoproterozoic tectonics of the Arabian-Nubian Shield

    NARCIS (Netherlands)

    Blasband, B.


    The Neoproterozoic tectonic development of the Arabian-Nubian Shield (ANS) can be divided in three parts: 1) the oceanic stage; 2) the arc-accretion stage; 3) the extensional stage. Three key-areas in the Arabian-Nubian Shield, namely the Bi'r Umq Complex, The Tabalah and Tarj Complex and the Wadi

  12. Recent Improvements in the SHIELD-HIT Code

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Lühr, Armin Christian; Herrmann, Rochus


    reproduces experimental measurements with high accuracy. Conclusions: SHIELD-HIT is now faster, more user-friendly and accurate, and has an enhanced functionality with some features being currently unique to SHIELD-HIT. The possibility of data file exchange with existing treatment planning software for heavy...

  13. Sensors measure surface ablation rate of reentry vehicle heat shield (United States)

    Russel, J. M., III


    Sensors measure surface erosion rate of ablating material in reentry vehicle heat shield. Each sensor, which is placed at precise depths in the heat shield is activated when the ablator surface erodes to the location of a sensing point. Sensor depth and activation time determine ablator surface erosion rate.

  14. Thermal radiation shielding by nanoporous membranes based on anodic alumina (United States)

    Muratova, E. N.; Matyushkin, L. B.; Moshnikov, V. A.; Chernyakova, K. V.; Vrublevsky, I. A.


    The paper is devoted to infrared thermography studies of nanoporous alumina membranes with various geometric parameters of the porous layer: its thickness and average pore diameter. Thermal radiation shielding by anodic alumina membranes is presented. The result obtained showed that nanoporous alumina membranes can be used as heat shields to smooth contrast of thermal radiation of the object and the surrounding background.

  15. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua


    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  16. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Ha, Min-Su, E-mail: [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Sa-Woong; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Duck-Hoi [ITER Organization, Route de Vinon sur Verdon - CS 90046, 13067 Sant Paul Lez Durance (France)


    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K{sub e} factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  17. Solar energy apparatus with apertured shield (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)


    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  18. Response to Jakobsson on Human Body Shields

    Directory of Open Access Journals (Sweden)

    Walter E. Block


    Full Text Available A grabs B and uses him as a body shield. That is, A hides behind B (A renders B helpless to resist his grasp, and from that vantage point, shoots at C. According to libertarian theory, may B shoot at C, or, is it proper that C pull the trigger at B? In the view of Rothbard (1984, the former is correct: B is entitled to gun down C. In my (Block, forthcoming view, this is incorrect. Rather, it would be lawful to C to properly kill B. (Both Rothbard and I assume that neither B nor C can end A’s reign of terror. Jakobsson (2010 supports the Rothbardian position. The present paper is at an attempt of mine to refute Jakobsson, and, thus, also, Rothbard (1984, once again.

  19. Utilizing electromagnetic shielding textiles in wireless body area networks. (United States)

    Sung, Grace H H; Aoyagi, Takahiro; Hernandez, Marco; Hamaguchi, Kiyoshi; Kohno, Ryuji


    For privacy and radio propagation controls, electromagnetic shielding textile could be adopted in WBANs. The effect of including a commercially available electromagnetic shielding apron in WBANs was examined in this paper. By having both the coordinator and the sensor covered by the shielding apron, signal could be confined around the body; however signal strength can be greatly influenced by body movements. Placing the shielding apron underneath both antennas, the transmission coefficient could be on average enhanced by at least 10dB, with less variation comparing to the case when apron does not exist. Shielding textiles could be utilized in designing a smart suit to enhance WBANs performance, and to prevent signals travelling beyond its intended area.

  20. Parameter Study for Optimizing the Mass of a Space Nuclear Power System Radiation Shield

    National Research Council Canada - National Science Library

    Kowash, Benjamin


    A parameter study was conducted for a space nuclear reactor radiation shield. The focus of this research was to explore alternatives to current radiation shield designs to reduce the mass while maintaining the same shielding performance...

  1. Low-Frequency EM Field Penetration Through Magnetic and Conducting Cylindrical Shields

    National Research Council Canada - National Science Library

    Morgan, Michael A


    .... Example field intensities and shielding are computed for a steel pipe at frequencies of 1 Hz and I kHz. The relative effectiveness of induced magnetic shielding and eddy-current shielding is considered.

  2. 78 FR 775 - Weather Shield Manufacturing, Inc., Corporate Office, Medford, WI; Notice of Negative... (United States)


    ... Employment and Training Administration Weather Shield Manufacturing, Inc., Corporate Office, Medford, WI... investigation in Former Employees of Weather Shield Manufacturing, Inc. v. United States Secretary of Labor... workers of the Weather Shield Manufacturing, Inc., Corporate Office, Medford, Wisconsin (subject facility...

  3. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)


    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  4. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)


    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  5. A Reinforcement for Multifunctional Composites for Non-Parasitic Radiation Shielding Project (United States)

    National Aeronautics and Space Administration — Innovative lightweight radiation shielding materials are enabling to shield humans in aerospace transportation vehicles and other human habited spaces....

  6. Weakening of the diamagnetic shielding in FeSe1 -xSx at high pressures (United States)

    Yip, K. Y.; Chan, Y. C.; Niu, Q.; Matsuura, K.; Mizukami, Y.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Goh, Swee K.


    The superconducting transition of FeSe1 -xSx with three distinct sulfur concentrations x was studied under hydrostatic pressures up to ˜70 kbar via bulk ac susceptibility. The pressure dependence of the superconducting transition temperature (Tc) features a small dome-shaped variation at low pressures for x =0.04 and x =0.12 , followed by a more substantial Tc enhancement to a value of around 30 K at moderate pressures. In x =0.21 , a similar overall pressure dependence of Tc is observed, except that the small dome at low pressures is flattened. For all three concentrations, a significant weakening of the diamagnetic shielding is observed beyond the pressure around which the maximum Tc of 30 K is reached near the verge of the pressure-induced magnetic phase. This observation points to a strong competition between the magnetic and high-Tc superconducting states at high pressure in this system.

  7. Radiological characterization of the concrete biological shield of the APSARA reactor

    Directory of Open Access Journals (Sweden)

    Srinivasan Priya


    Full Text Available The first Indian research reactor, APSARA, was utilized for various R&D programmes from 1956 until its shutdown in 2009. The biological shield of the reactor developed residual activity due to neutron irradiation during the operation of the reactor. Dose rate mapping and in-situ gamma spectrometry of the concrete structures of the reactor pool were carried out. Representative concrete samples collected from various locations were subjected to high-resolution gamma spectrometry analysis. 60Co and 152Eu were found to be the dominant gamma-emitting radionuclides in most of the locations. 133Ba was also found in some of the concrete structures. The separation of 3H from concrete was achieved using an acid digestion method and beta activity measured using liquid scintillation counting. The depth profile of radionuclide specific activity in the concrete wall of the shielding corner was also studied. Specific activities of the radionuclides were found to decrease exponentially with depth inside the concrete walls. This study would be helpful in bulk waste management during the decommissioning of the reactor.

  8. Evaluation of syringe shield effectiveness in handling radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Cho Yong-In


    Full Text Available The purpose of this study was to evaluate the effectiveness of the radiation shield of radionuclide syringes and the personal dose equivalent by performing a simulation of radionuclides used in nuclear medicine diagnosis. In order to evaluate the dose depending on the distance between the radiation source and the ICRU sphere against the thickness of the shielding device, the distance at which a nuclear medicine worker may inadvertently come into contact with radiation from the radiation source was set at 0 cm to 30 cm according to the thickness of the shield, thus fixing the ICRU sphere. For a dose evaluation, Hp(10, Hp(3, and Hp(0.07 measurable in specific depth of the ICRU were evaluated. It was found that a dose measured on skin surface of nuclear medicine workers was relatively higher, that the dose varied in relation to the thickness of the radiation shield, and that the shielding effect decreased for some radiation sources such as 67Ga and 111In. It proved necessary to increase thickness of shielding device to the radiation sources such as 67Ga and 111In. It is also considered that a study of proper shielding thickness will be needed in future.

  9. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.


    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  10. The assembly of the disk shielding is finished.

    CERN Multimedia

    Vincent Hedberg

    At the end of March, the shielding project engineer, Jan Palla, could draw a sigh of relief when the fourth and final rotation of the disk shielding was carried out without incident. The two 80-ton heavy shielding assemblies were built in a horizontal position and they had to be first turned upside-down and then rotated to a vertical position during the assembly. The relatively thin disk plate with a diameter of 9 meters, made this operation quite delicate and a lot of calculation work and strengthening of the shielding was carried out before the rotations could take place. The disk shielding is being turned upside-down. The stainless steel cylinder in the centre supports the shielding as well as the small muon wheel. The two disk shielding assemblies consist of different materials such as bronze, gray steel, cast iron, stainless steel, boron doped polyethylene and lead. The project is multinational with the major pieces having been made by companies in Armenia, Serbia, Spain, Bulgaria, Italy, Slovaki...

  11. Nuclear shielding of openings in ITER Tokamak building

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Arumugam, A.P.; Beaudoin, V.; Beltran, D.; Benchikhoune, M.; Berruyer, F.; Cortes, P.; Gandini, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ghirelli, N. [ASSYSTEM E.O.S, ZAC Saint Martin, 23, rue Benjamin Franklin, 84120 Pertuis (France); Gray, A.; Hurzlmeier, H.; Le Page, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Lentini, G.; Loughlin, M.; Mita, Y.; Patisson, L.; Rigoni, G.; Rathi, D.; Song, I. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)


    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different.

  12. Implementing Dust Shielding as a Criteria for Star Formation (United States)

    Byrne, Lindsey; Christensen, Charlotte


    Star formation is observed to occur in dense regions of molecular gas. Although the exact nature of the link between star formation and molecular hydrogen is still unclear, it has been suggested that dust shielding of dense gas is the key factor enabling the presence of both. We present a model in which star formation is linked explicitly to local dust shielding, rather than molecular hydrogen abundance, in smoothed particle hydrodynamics galaxy formation simulations. We used simulations of isolated Milky-Way-mass disk galaxies to develop a dust shielding model in which the radiative shielding length was based off of the Jeans length with a T=40 K temperature cap. Using this shielding model, we compare the effects of different star formation recipes, including recipes in which star formation is based on the amount of dust shielding or the local molecular hydrogen abundance. We test our star formation models on two sets of isolated disk galaxies with solar and sub-solar metallicities and on a cosmological dwarf galaxy simulation. We find that the shielding-based model can reproduce the observed transition from atomic to molecular hydrogen at realistic surface densities, exhibits periodic bursts of star formation, and allows for star formation at higher temperatures and lower densities than a model in which star formation is tied directly to H2 abundance.

  13. 27 CFR 20.191 - Bulk articles. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  14. Face shield design against blast-induced head injuries. (United States)

    Tan, Long Bin; Tse, Kwong Ming; Tan, Yuan Hong; Sapingi, Mohamad Ali Bin; Tan, Vincent Beng Chye; Lee, Heow Pueh


    Blast-induced traumatic brain injury has been on the rise in recent years because of the increasing use of improvised explosive devices in conflict zones. Our study investigates the response of a helmeted human head subjected to a blast of 1 atm peak overpressure, for cases with and without a standard polycarbonate (PC) face shield and for face shields comprising of composite PC and aerogel materials and with lateral edge extension. The novel introduction of aerogel into the laminate face shield is explored and its wave-structure interaction mechanics and performance in blast mitigation is analysed. Our numerical results show that the face shield prevented direct exposure of the blast wave to the face and help delays the transmission of the blast to reduce the intracranial pressures (ICPs) at the parietal lobe. However, the blast wave can diffract and enter the midface region at the bottom and side edges of the face shield, resulting in traumatic brain injury. This suggests that the bottom and sides of the face shield are important regions to focus on to reduce wave ingress. The laminated PC/aerogel/PC face shield yielded higher peak positive and negative ICPs at the frontal lobe, than the original PC one. For the occipital and temporal brain regions, the laminated face shield performed better than the original. The composite face shield with extended edges reduced ICP at the temporal lobe but increases ICP significantly at the parietal lobe, which suggests that a greater coverage may not lead to better mitigating effects. Copyright © 2017 John Wiley & Sons, Ltd.

  15. EMC characteristics of composite structure - Electric/electromagnetic shielding attenuation (United States)

    Wegertseder, P.; Breitsameter, R.


    The paper reports electric/electromagnetic shielding-attenuation experiments performed on different test boxes built with the same materials and processes as those to be used for the construction of a helicopter. The measurements are performed in the frequency range of 14 to 18 GHz, and the effects of different composite materials, jointing and bonding of structure parts of the boxes, application and bonding of the mesh, the construction of access panels, and conductive seals on these panels are assessed. It is demonstrated that moderate electric/electromagnetic shielding-attenuation values can be achieved by composite structures made from carbon, and materials and procedures required for high shielding attenuation are discussed.

  16. Design of platform for removing screws from LCD display shields (United States)

    Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong


    Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.


    Energy Technology Data Exchange (ETDEWEB)



    Bellows are frequently required in accelerators and colliders. Usually RF-shields with spring fingers are employed to screen the bellows. The lack of accessibility in cryogenic systems can be a problem and asks for alternate solutions to eliminate possible overheating, sparking, etc that occurred in intensive beams. This note addresses an alternate kind of RF shield, which uses capacitive contact instead of mechanical contact. The analysis, as well as numerical example of a superconducting cavity structure, shows that the capacitive RF shield satisfies the impedance requirements of both beam and HOMs. The capability of thermal isolation is also analyzed.

  18. Shielding for neutrons produced by medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rebello, Wilson F.; Silva, Ademir X. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail:;


    The shielding system called Multileaf Shielding (MLS) was designed in Brazil to be used for protection patients, who undergo radiotherapy treatment, against undesired neutrons produced in the medical linear accelerator heads. During the conceiving of the MLS it was necessary to evaluate its efficiency. For that purpose, several simulations using the Monte Carlo N-particle radiation transport code, MCNP5, were made, in order to evaluate the response of the new shielding system. The results showed a significant neutron dose reduction after the inclusion of the MLS. This work aims to presenting these simulation results. (author)

  19. Development of epoxy resin-type neutron shielding materials (I)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Kim, Ik Soo; Shin, Young Joon; Do, Jae Bum; Ro, Seung Gy


    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear /radiation facilities. On this study, we developed epoxy resin based neutron shielding materials and their various materials properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. (author). 31 refs., 22 tabs., 17 figs.

  20. Exploring Chemical Bonds through Variations in Magnetic Shielding. (United States)

    Karadakov, Peter B; Horner, Kate E


    Differences in nuclear isotropic magnetic shieldings give rise to the chemical shifts measured in NMR experiments. In contrast to existing NMR experimental techniques, quantum chemical methods are capable of calculating isotropic magnetic shieldings not just at nuclei, but also at any point in the space surrounding a molecule. Using s-trans-1,3-butadiene, ethane, ethene, and ethyne as examples, we show that the variations in isotropic magnetic shielding around a molecule, represented as isosurfaces and contour plots, provide an unexpectedly clear picture of chemical bonding, which is much more detailed than the traditional description in terms of the total electron density.

  1. Capacitive Sensor With Driven Shields And Bridge Circuit (United States)

    Vranish, John M.


    Like other capaciflectors described in prior articles in NASA Tech Briefs, this one includes sensing electrode driven by alternating voltage, giving rise to electric field in vicinity of electrode; object entering electric field detected by its effect on capacitance between sensing electrode and electrical ground. Also includes shielding electrode (in this case, driven shield 1), excited via voltage follower at same voltage as that applied to sensing electrode to concentrate more of electric field outward from sensing electrode, increasing sensitivity and range of sensor. Because shielding electrode driven via voltage follower, it does not present significant electrical load to source of alternating voltage.

  2. Development and calibration of the shielded measurement system for fissile contents measurements on irradiated nuclear fuel in dry storage.

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, W. R.; Jensen, B. A.


    In recent years there has been a trend towards storage of Irradiated Nuclear Fuel (INF) in dry conditions rather than in underwater environments. At the same time, the Department of Energy (DOE) has begun encouraging custodians of INF to perform measurements on INF for which no recent fissile contents measurement data exists. INF, in the form of spent fuel from Experimental Breeder Reactor 2 (EBR-II), has been stored in close-fitting, dry underground storage locations at the Radioactive Scrap and Waste Facility (RSWF) at Argonne National Laboratory-West (ANL-W) for many years. In Fiscal Year 2000, funding was obtained from the DOE Office of Safeguards and Security Technology Development Program to develop and prepare for deployment a Shielded Measurement System (SMS) to perform fissile content measurements on INF stored in the RSWF. The SMS is equipped to lift an INF item out of its storage location, perform scanning neutron coincidence and high-resolution gamma-ray measurements, and restore the item to its storage location. The neutron and gamma-ray measurement results are compared to predictions based on isotope depletion and Monte Carlo neutral-particle transport models to provide confirmation of the accuracy of the models and hence of the fissile material contents of the item as calculated by the same models. This paper describes the SMS and discusses the results of the first calibration and validation measurements performed with the SMS.

  3. Shield Effect Of Functional Interlining Fabric

    Directory of Open Access Journals (Sweden)

    Šaravanja Bosiljka


    Full Text Available Electromagnetic interference (EMI have become very serious in a variety of different electronic equipments, such as personal computers (frequency at several GHz, mobile devices (0.9 – 2.4 GHz and similar. This imposes the need for setting boundaries for EM emission of electric and electronic devices in order to minimize the possibility of interference with radio and wireless communications. Functional textiles can offer protective properties against EM radiation. The aim of this study is to investigate the degree of protection against EM radiation provided by polyamide copper-coated interlining fabric before and after dry cleaning treatment. EM protection efficiency of the interlining functional fabric is explored on both sides at the frequencies of 0.9; 1.8; 2.1 and 2.4 GHz. The results obtained have shown that the interlining fabric has good protective properties against EM radiation, but after dry cleaning, treatment reduction is observed. Scanning electron microscopy micrographs of the interlining surface confirms shield effect decline due to degradation and firing of the copper layers during the process of dry cleaning.

  4. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.


    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  5. Nutrient shielding in clusters of cells (United States)

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.


    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude among different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ.

  6. A Radiation shielding study for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I.; Johnstone, C.; /Fermilab


    Radiation shielding calculations are performed for the Fermilab Linac enclosure and gallery. The predicted dose rates around the access labyrinth at normal operation and a comparison to measured dose rates are presented. An accident scenario is considered as well.

  7. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    DEFF Research Database (Denmark)

    Singh, Vishvanath P.; Badiger, Nagappa M.; Gerward, Leif


    at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable......Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting...... combination of low-and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors....

  8. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.


    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...... solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide...... in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves...

  9. Shielding of electromagnetic fields of current sources by spherical enclosures (United States)

    Shastry, S. V. K.; Rao, M. N.; Katti, V. R.

    Expressions for the shielding effectiveness of a conductive spherical enclosure excited by a Hertzian dipole have been derived using the dyadic Green's function technique. This technique has the advantage that the fields inside or outside the enclosure due to arbitrary current distribution may be found by employing the same set of dyadic Green's functions. The shielding effectiveness for plane wave incidence has been determined by considering the limiting case of the current source external to the spherical shell. Computed values of shielding effectiveness deduced in this manner have been compared with those obtained by the numerical evaluation of the expressions derived by earlier authors. The theory presented here may be useful to EMC (electromagnetic compatibility) engineers who must consider electromagnetic coupling from current sources in the vicinity of shielding enclosures.

  10. Low Cost, Lightweight, Multifunctional Structural Shielding Materials Project (United States)

    National Aeronautics and Space Administration — This SBIR involves the development of a lightweight innovative material for use as structure and radiation shielding in one. APS has assembled a uniquely qualified...

  11. Thyroid shields and neck exposures in cephalometric radiography

    Directory of Open Access Journals (Sweden)

    Cunha-Cruz Joana


    Full Text Available Abstract Background The thyroid is among the more radiosensitive organs in the body. The goal of this study was twofold: (1 to evaluate age-related changes in what is exposed to ionizing radiation in the neck area, and (2 to assess thyroid shield presence in cephalometric radiographs Methods Cephalometric radiographs at one academic setting were sampled and neck exposure was related to calendar year and patient's gender and age. Results In the absence of shields, children have more vertebrae exposed than adults (p Conclusion In the absence of a thyroid shield, children have more neck structure exposed to radiation than adults. In agreement with other reports, thyroid shield utilization in this study was low, particularly in children.

  12. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  13. DNA-based frequency selective electromagnetic interference shielding (United States)

    Grote, James; Ouchen, Fahima; Kreit, Eric; Buskohl, Phillip; Steffan, Thomas; Rogers, Charles; Salour, Michael


    A method of modeling RF properties of multilayered polymer host - metal nanoparticle guest composite films, using the transmission matrix method (TMM) model is presented. This is an alternate, pattern-less, dielectric approach to frequency selective surface electromagnetic interference shielding.

  14. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  15. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon Project (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  16. Improved Metal-Polymeric Laminate Radiation Shielding Project (United States)

    National Aeronautics and Space Administration — In this proposed Phase II program, builds on the phase I feaibility where a multifunctional lightweight radiation shield composite was developed and fabricated. This...

  17. Dark Skin No Shield from Deadly Skin Cancer (United States)

    ... 166194.html Dark Skin No Shield From Deadly Skin Cancer Death rates from melanoma are higher for people ... deadly melanomas, an expert warns. This type of skin cancer can be affected by genetics and is far ...

  18. Evaluation of the efficacy of pelvic shielding in preadolescent girls. (United States)

    Liakos, P; Schoenecker, P L; Lyons, D; Gordon, J E


    A standing anteroposterior pelvic radiograph with gonadal shielding is used as a screening tool for all patients evaluated for intoeing at our institution. Sixty-two normal consecutive screening pelvic radiographs obtained in 61 female patients between the ages of 4 and 6 years were evaluated. Radiographs were evaluated for the adequacy to assess the hips as well as the protection afforded the ovaries from radiation exposure. Radiographs were judged to be inadequate because the shield covered essential landmarks in at least one hip in eight radiographs (13%). Five radiographs (8%) covered >50% of the area of both ovaries, and only one radiograph covered >75% of the area of both ovaries. Standard techniques of positioning gonadal shields in preadolescent girls are inadequate and provide minimal protection with a high rate of interference with vital landmarks. We no longer advocate using gonadal shields on initial screening radiographs of preadolescent girls.

  19. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.


    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  20. Characterizing and Manufacturing Multifunctional Radiation Shielding Materials Project (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  1. Multifunctional, Boron-Foam Based Radiation Shielding Project (United States)

    National Aeronautics and Space Administration — The NASA vision of Space Exploration requires new approaches to radiation shielding. Both Spiral 2 and Spiral 3 concepts are extremely sensitive to weight reduction....

  2. Successful public-private partnerships: The NYPD shield model. (United States)

    Amadeo, Vincent; Iannone, Stephen


    This article will identify the challenges that post 9/11 law enforcement faces regarding privatepublic partnerships and describe in detail the NYPD Shield programme, created to combat those challenges. Recommendations made by the 911 Commission included the incorporation of the private sector into future homeland security strategies. One such strategy is NYPD Shield. This programme is a nationally recognized award-winning public-private partnership dedicated to providing counterterrorism training and information sharing with government agencies, non-government organizations, private businesses, and the community. Information is shared through several platforms that include a dedicated website, instruction of counterterrorism training curricula, e-mail alerts, intelligence assessments and the hosting of quarterly conferences. This article also details how the NYPD Shield is providing its successful template to other law enforcement agencies enabling them to initiate similar programmes in their respective jurisdictions, and in doing so joining a National Shield Network.

  3. Multifunctional B/C Fiber Composites for Radiation Shielding Project (United States)

    National Aeronautics and Space Administration — Radiation shielding is an enabling technology required for extended manned missions to the Moon, Mars and the planets beyond. Multifunctional structural must protect...

  4. A Shielding Concept for the MedAustron Facility (United States)

    Jägerhofer, L.; Feldbaumer, E.; Roesler, S.; Theis, C.; Vincke, H.


    MedAustron is a synchrotron based accelerator facility for cancer therapy and research in Wiener Neustadt, 50 km south of Vienna. The facility will provide protons up to kinetic energies of 250 MeV and carbon ions up to 400 MeV/n for ion beam therapy. Additionally, protons up to 800 MeV kinetic energy will be used in a dedicated room for non-clinical research. In order to obtain a shielding concept for this facility a detailed geometry of the accelerator facility was implemented into the Monte-Carlo code FLUKA and shielding simulations were performed. In the course of these simulations the contributions of different particle types to the mixed fields around the accelerator and behind shielding were analysed. In an iterative process with the architect the final design of the shielding concept was developed until it was capable of reducing the effect of secondary radiation on humans and the environment below Austrian legal limits.


    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka


    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fi l (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and x-tra base (XB), and conventional control material X-Flow (XF). Composite samples (n=5) were polymerized for 20 s with Bluephase G2 curing unit. Vickers hardness was used to determine microhardness of each material at the surface, and at 2-mm and 4-mm depth. GSO on average recorded significantly higher microhardness values than bulk-fill materials (pcomposite XF revealed similar microhardness values as SDR, but significantly lower than XB (pmaterials was lower than microhardness of the conventional composite material (GSO). Surface microhardness of low-viscosity materials was generally even lower. The microhardness of all tested materials at 4 mm was not different from their surface values. However, additional capping layer was a necessity for low-viscosity bulk-fill materials due to their low microhardness.

  6. Research on Primary Shielding Calculation Source Generation Codes


    Zheng Zheng; Mei Qiliang; Li Hui; Shangguan Danhua; Zhang Guangchun


    Primary Shielding Calculation (PSC) plays an important role in reactor shielding design and analysis. In order to facilitate PSC, a source generation code is developed to generate cumulative distribution functions (CDF) for the source particle sample code of the J Monte Carlo Transport (JMCT) code, and a source particle sample code is deveoped to sample source particle directions, types, coordinates, energy and weights from the CDFs. A source generation code is developed to transform three di...

  7. Electromagnetic and transient shielding effectiveness for near-field sources

    Directory of Open Access Journals (Sweden)

    C. Möller


    Full Text Available The contribution deals with an investigation of the recently proposed definitions for the electromagnetic and transient shielding effectiveness (SE in the case of an electric-dipole near-field source. To this end, new factors are introduced which depend on the distance between the dipole source and the measurement point inside the shield and which are valid for perpendicularly (with respect to the distance vector polarized dipoles. Numerical results support and confirm the theoretical derivations.

  8. Evaluating the potential shielding properties of periodic metamaterial slabs




    Metamaterials can prove to be good candidates for shields in EMC applications where weight reduction is a challenge. Indeed metamaterial slabs can provide the same reflective properties as conventional metallic screens but with a lower density and reduced weight. Another advantage is that they can be tailored to exhibit required frequency-selective properties. However, their performance in terms of shielding performance has yet to be evaluated. In this paper, a method to evaluate the shieldin...

  9. Shielding calculations for changing from circular to a Rectangular ...

    African Journals Online (AJOL)

    From these calculations, the dose rates at the occupied sites ³ 5.0 m, require concrete wall shielding of thickness, t = 183.1 cm as against the 190 cm which is now in place at the RTC. This implies that the biological shi-eld in place is adequate for the replacement of the cylindrical source cage with a rectangular or plaque ...

  10. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)


    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  11. DNA based Frequency Selective Electromagnetic Interference Shielding (Preprint) (United States)


    AFRL-RX-WP-JA-2017-0495 DNA -BASED FREQUENCY SELECTIVE ELECTROMAGNETIC INTERFERENCE SHIELDING (PREPRINT) Fahima Ouchen, Eric Kreit...To) 31 October 2017 Interim 24 January 2014 – 30 September 2017 4. TITLE AND SUBTITLE DNA -BASED FREQUENCY SELECTIVE ELECTROMAGNETIC INTERFERENCE...92008 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 DNA -based frequency selective electromagnetic interference shielding

  12. Upgrade of the LHC magnet interconnections thermal shielding

    Energy Technology Data Exchange (ETDEWEB)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Michał [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)


    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  13. Enhanced plastic neutron shielding for thermal and epithermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Palomino, L A RodrIguez; Blostein, J J; Dawidowski, J [Consejo Nacional de Investigaciones CientIficas y Tecnicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de EnergIa Atomica, Universidad Nacional de Cuyo, (8400) Bariloche, Av. Bustillo 9500, S. C. de Bariloche, RIo Negro (Argentina); Cuello, G J [Institut Laue Langevin, 6, rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France)], E-mail:


    We describe a compound made of paraffin and boron carbide (boraffin) deviced to enhance epithermal neutron shielding. The compound is easily prepared and is specially suited to be adapted to particular surfaces. Transmission experiments show a favourable comparison with a commercial rubber-boron carbide compound in the epithermal range. A detector shielding built with this material is described and the achieved background reduction experimentally determined is shown.

  14. Passive magnetic shielding for the submillimeter and far infrared experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Koji; Warner, B.A.; Di Pirro, M.J.; Numazawa, Takenori


    Goddard Space Flight Center is developing the submillimeter and far infrared experiment (SAFIRE). SAFIRE will use SQUIDs as amplifiers for detectors, which must be shielded from the magnet cooling system, an adiabatic demagnetization refrigerator (ADR). The magnetic field at the detector package must remain at or below the 10{sup -7} tesla level while the detectors are operating. We discuss laboratory tests of the passive shielding and simulations.

  15. Design and Performance of a Metal-Shielded Piezoelectric Sensor


    Álvaro Sáenz de Inestrillas; Francisco Camarena; Manuel Bou Cabo; Julián M. Barreiro; Antonio Reig


    In certain circumstances when acoustic measurements are required in the presence of explosive atmospheres the sensor must be placed inside a Faraday Cage. Piezoelectric active materials are suitable for this purpose as they do not need an electrical power supply, although the metal shielding can considerably reduce sensor sensitivity, which is already low at the acoustic frequency range (<20 kHz). This paper describes a metal-shielded piezoelectric sensor designed to work in the range of f...

  16. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material (United States)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)


    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  17. High frequency electromagnetic interference shielding magnetic polymer nanocomposites (United States)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  18. Calculation of Shielding Effectiveness of Materials for Security Devices

    Directory of Open Access Journals (Sweden)

    Kovar Stanislav


    Full Text Available Currently, electromagnetic interference constitutes one of the major complications for a function of electronic or electrical devices. Because these devices are constantly exposed to effects of electromagnetic radiation, it is desirable to increase the electromagnetic immunity of device. One of the possibilities is to applicate the suitable shielding materials which can protect the device against the radiated electromagnetic emissions. This paper devotes to finding suitable materials for shielding security devices.

  19. Gonad Shielding for Patients Undergoing Conventional Radiological Examinations: Is There Cause for Concern?

    Directory of Open Access Journals (Sweden)



    Full Text Available Background Gonad shielding is one of the fundamental methods by which to protect reproductive organs in patients undergoing conventional radiological examinations. A lack of or inadequate shielding of the gonads may increase the exposure of these organs and result in malignancies future generations. Objectives The aim of this study is to investigate the prevalence of gonad shielding in patients undergoing conventional radiological examinations and the availability of gonad shields and gonad shielding protocols in radiology departments. Materials and Methods A retrospective, observational cross-sectional study on the application of gonad shielding, the availability of gonad shields and the existence of gonad shielding protocols in radiology departments was performed in five different hospitals in Ahvaz, Iran. Results The highest application of gonad shielding was 6.6% for the pediatric hospital. The prevalence of gonad shielding was less than 0.2%. In 64.3% of the radiography rooms, at least one flat-contact gonad shield of a large size was available. Only large-sized gonad shields were available. Curved-contact and shadow gonad shields did not exist. Gonad shielding protocols were not existence in any of the fourteen radiography rooms investigated. Conclusions Comprehensive protection programs with on-the-job training courses for staff members are strongly recommended, as well as, the provision of radiological shields and gonad shielding protocols in radiology departments to reduce the patient’s radiation dose during radiological examinations.

  20. Contaminant deposition building shielding factors for US residential structures. (United States)

    Dickson, Elijah; Hamby, David; Eckerman, Keith


    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.

  1. Detailed mechanical design of the LIPAc beam dump radiological shielding

    Energy Technology Data Exchange (ETDEWEB)

    Nomen, Oriol, E-mail: [IREC, Barcelona, Catalonia (Spain); CDEI-UPC, Barcelona, Catalonia (Spain); Martínez, José I.; Arranz, Fernando; Iglesias, Daniel; Barrera, Germán; Brañas, Beatriz [CIEMAT, Madrid (Spain); Ogando, Francisco [UNED, Madrid (Spain); Molla, Joaquín [CIEMAT, Madrid (Spain); Sanmartí, Manel [IREC, Barcelona, Catalonia (Spain)


    Highlights: ► Mechanical design of the IFMIF LIPAc beam dump shielding has been performed. ► Lead shutter design performed to shield radiation from beam dump when LIPAc is off. ► External loads, working and dismantling conditions, included as design constraints. -- Abstract: The LIPAc is a 9 MeV, D{sup +} linear prototype accelerator for the validation of the IFMIF accelerator design. The high intensity, 125 mA CW beam is stopped in a copper cone involving a high production of neutrons and gamma radiation and activation of its surface. The beam stopper is surrounded by a shielding to attenuate the resulting radiation so that dose rate values comply with the limits at the different zones of the installation. The shielding includes for that purpose polyethylene rings, water tanks and gray cast iron rings. A lead shutter has also been designed to shield the gamma radiation that comes through the beam tube when the linear accelerator is not in operation, in order to allow access inside the building for maintenance tasks. The present work summarizes the detailed mechanical design of the beam dump shielding and the lead shutter taking into account the design constraints, such as working conditions and other external loads, as well as including provisions for dismantling.

  2. Magnetic field shielding effect for CFETR TF coil-case

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei; Liu, Xufeng, E-mail:; Du, Shuangsong; Zheng, Jinxing


    Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.

  3. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pyoung-Chan, E-mail:; Kim, Bo-Ram; Jeoung, Sun Kyoung [Korea Automotive Technology lnstitute, Dongnam-Gu, Chonan-Si, Chungnam 330-912 (Korea, Republic of); Kim, Yeung Keun [Win& Win Co., Ltd., Anseong-Si, Gyeonggi-Do, 456-931 (Korea, Republic of)


    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  4. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.


    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  5. Communication: The absolute shielding scales of oxygen and sulfur revisited. (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen


    We present an updated semi-experimental absolute shielding scale for the (17)O and (33)S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin-rotation constants of H2(17)O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C(17)O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H2(33)S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin-rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H2(17)O is 328.4(3) ppm and for C(17)O -59.05(59) ppm. The relativistic correction for the sulfur shielding of H2(33)S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  6. AC losses of the 5 m BSCCO cables with shield (United States)

    Ryu, K.; Ma, Y. H.; Li, Z. Y.; Hwang, S. D.; Song, H. J.


    In order to research the AC loss characteristics of a multi-layered conductor and a shield in a high temperature superconductor (HTS) cable, we prepared two short cable samples, which are the same as the 22.9 kV/50 MVA HTS-cable installed at Gochang test yard of Korea Electric Power Corporation, and attached voltage-leads to both the conductor and the shield. To investigate the effect of transport period on their AC losses, we also applied current with the same magnitude and opposite direction to the conductor and the shield from a few cycles to several minutes. The tests show that the AC loss measured from the lead attached to the shield (shield-lead) is constant regardless of transport period. But the measured loss from the lead attached to the conductor (conductor-lead) is greatly dependent on transport period. It seems to be caused by difficulty in heat transfer to the surrounding coolant due to thick insulator around the conductor. As transport period becomes longer, the conductor's temperature rises and thus the AC loss measured from the conductor-lead increases. In addition, the measured loss from the conductor-lead is 1.5 times larger than that from the shield-lead, particularly for the transport period of a few cycles.

  7. Neutron shielding and its impact on the ITER machine design

    Energy Technology Data Exchange (ETDEWEB)

    Daenner, W. (NET Team, Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany)); El Guebaly, L.; Sawan, M. (Fusion Technology Inst., Univ. Wisconsin, Madison, WI (United States)); Gohar, Y. (Fusion Power Program, Argonne National Lab., IL (United States)); Maki, K. (Fusion Experimental Reactor Team, Naka Fusion Research Establishment, JAERI, Ibaraki (Japan)); Rado, V. (Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche Energia, Frascati, Rome (Italy)); Schchipakin, O.; Zimin, S. (I.V. Kurchatov Inst. of Atomic Energy, Moscow (USSR))


    This paper describes the efforts made in the frame of the ITER project to analyze the shielding of the superconducting magnets. First, the radiation limits to be achieved are specified as well as the neutron source in terms of wall loading on the first wall of the machine. Then the general shield concept is explained, including the most essential details of the various shield components. A brief section is devoted to the calculational tools, the data base, and the safety factors to be applied to the results obtained. The neutronics models of four different configurations are summarized as they were used to study the most critical parts of the machine. This section is followed by a presentation of the most important results from one-, two- and three-dimensional calculations. They are given for both the reference design and an improved one in which the critical regions are reinforced with respect to their shielding capability. It is concluded that the ITER shield layout just marginally meets the stated limits provided that some tungsten is included in the critical regions. A slight revision of the overall machine dimensions with the aim to achieve a less complex shield and a higher margin with respect to the limits is, however, seen the better solution. (orig.).

  8. Influence of Metal Fiber Content and Arrangement on Shielding Effectiveness for Blended Electromagnetic Shielding Fabric

    Directory of Open Access Journals (Sweden)

    Zhe Liu


    Full Text Available More metal fiber content of blended electromagnetic shielding (EMS fabric results in higher shielding effectiveness (SE of the fabric. However, there is little information about the influence of the metal fiber content on the SE considering the fabric structure. This study constructs an index of metal fiber content per unit area (MFCPUA, and discusses the influence of the metal fiber content on the SE of the EMS fabric when fabric parameters are changed. Computations for the MFCPUA and the thickness and porosity of the metal fiber arrangement are given, and then experiments are designed to test the SE of different EMS fabric samples. According to the experimental results, the influence of the MFCPUA on the SE is analyzed and influence mechanism is discussed when the fabric weaves, emission frequencies and weft and warp densities are changed. Results show that the MFCPUA and the SE are positive increase relation; the frequency and the SE are the negative increase relation when the metal fiber content is unchanged; the influence of the fabric weave type on the SE depends on the length of the yarn floats; the SE values of fabric with same weave are same when the MFCPUA is same regardless of the fabric density.DOI:

  9. Fast dose optimization for rotating shield brachytherapy. (United States)

    Cho, Myung; Wu, Xiaodong; Dadkhah, Hossein; Yi, Jirong; Flynn, Ryan T; Kim, Yusung; Xu, Weiyu


    To provide a fast computational method, based on the proximal graph solver (POGS) - A convex optimization solver using the alternating direction method of multipliers (ADMM), for calculating an optimal treatment plan in rotating shield brachytherapy (RSBT). RSBT treatment planning has more degrees of freedom than conventional high-dose-rate brachytherapy due to the addition of emission direction, and this necessitates a fast optimization technique to enable clinical usage. The multi-helix RSBT (H-RSBT) delivery technique was investigated for five representative cervical cancer patients. Treatment plans were generated for all patients using the POGS method and the commercially available solver IBM ILOG CPLEX. The rectum, bladder, sigmoid colon, high-risk clinical target volume (HR-CTV), and HR-CTV boundary were the structures included in our optimization, which applied an asymmetric dose-volume optimization with smoothness control. Dose calculation resolution was 1 × 1 × 3 mm3 for all cases. The H-RSBT applicator had 6 helices, with 33.3 mm of translation along the applicator per helical rotation and 1.7 mm spacing between dwell positions, yielding 17.5° emission angle spacing per 5 mm along the applicator. For each patient, HR-CTV D90 , HR-CTV D100 , rectum D2cc , sigmoid D2cc , and bladder D2cc matched within 1% for CPLEX and POGS methods. Also, similar EQD2 values between CPLEX and POGS methods were obtained. POGS was around 18 times faster than CPLEX. For all patients, total optimization times were 32.1-65.4 s for CPLEX and 2.1-3.9 s for POGS. POGS reduced treatment plan optimization time approximately 18 times for RSBT with similar HR-CTV D90 , organ at risk (OAR) D2cc values, and EQD2 values compared to CPLEX, which is significant progress toward clinical translation of RSBT. © 2017 American Association of Physicists in Medicine.

  10. A brief overview of bulk metallic glasses

    National Research Council Canada - National Science Library

    Mingwei Chen


      The discovery of bulk metallic glasses (BMGs) has stimulated widespread research enthusiasm because of their technological promise for practical applications and scientific importance in understanding glass formation and glass phenomena...

  11. Boundary-bulk relation in topological orders (United States)

    Kong, Liang; Wen, Xiao-Gang; Zheng, Hao


    In this paper, we study the relation between an anomaly-free n + 1D topological order, which are often called n + 1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n + 1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the "bulk" for a given gapped boundary phase. In this paper, we show that the n + 1D "bulk" phase is given by the "center" of the nD boundary phase. In other words, the geometric notion of the "bulk" corresponds precisely to the algebraic notion of the "center". We achieve this by first introducing the notion of a morphism between two (potentially anomalous) topological orders of the same dimension, then proving that the notion of the "bulk" satisfies the same universal property as that of the "center" of an algebra in mathematics, i.e. "bulk" = center". The entire argument does not require us to know the precise mathematical description of a (potentially anomalous) topological order. This result leads to concrete physical predictions.

  12. Hydrogen-Induced Cracking of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua


    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  13. Archaean TTG of Vodlozero Terrain, Fennoscandian Shield (United States)

    Chekulaev, Valery; Arestova, Natalia


    The Vodlozero terrain is the largest (about 270*240 km) early Archaean fragment of Fennoscandian Shield and composes its eastern part. The granitoids of TTG suite are predominant component of the terrain. The greenstone belts are placed along the margins of the terrain. Several stages of TTG formation can be distinguished in Achaean crust history. (1) The oldest TTG are trondhjemites and tonalities with age of 3240 Ma. They contain rare and small amphibolite inclusions of the same age. These TTG are characterized by high Sr (av. 412 ppm), Sr/Y (70), (La/Yb)n (54) and low Y (av. 7 ppm), Yb (0.32 ppm) and Nb (4 ppm). It was shown (Lobach-Zhuchenko et al., 2000), that the source of these TTG could be basic rocks, having composition similar with TH1 by K.Condie. (2) The tonalities and granodiorites with age of 3150 Ma are disposed near greenstone belts and contain compared to TTG of the first group less Sr (av. 250 ppm), Sr/Y (22), (La/Yb)n (18) and more K, Rb (av. 70 ppm), Ba (470 ppm), Y (11 ppm),Yb (1.16 ppm). TTG of both groups have identical T(DM)Nd (3250-3400 Ma) and differences in composition is evidently connected with lower level of source melting of the second group and also with K-metasomatism. The volcanics of the greenstone belts have age 3020 - 2940 Ma. Dykes of gabbro-amphibolites and andesites with the same age and composition cut TTG of the first and the second groups. The age of the third TTG group is about 2900 Ma ago. These rocks form leucosoma of migmatites within TTG of the second group. The composition of the third TTG and Nd isotope data suppose their origin by the melting of ancient TTG crust simultaneously with greenstone belt emplacement. The fourth TTG group with age 2780-2850 Ma forms a small intrusions, cutting older TTG and greenstone rocks. Their composition is similar to 3150 Ma TTG. Nd isotope data indicate that these TTG have younger (about 2850 Ma) source. Thus there are four TTG groups formed into interval more 400 Ma. The age and

  14. The Effect of Shielding N{sub 2} gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Young Sik [Andong National University, Andong (Korea, Republic of); Chang, Hyun Young [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)


    Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

  15. Basic EMC technology advancement for C(3) systems: SHIELD. Volume 4B. A digital computer program for computing crosstalk between shielded cables (United States)

    Paul, C. R.


    This report contains the description and verification of a digital computer program, SHIELD, to be used in the prediction of crosstalk in transmission lines consisting of unshielded wires and/or shielded cables. The line may be above a ground plane (Type 1) or within an overall, circular, cylindrical shield which may be solid or braided and a wire (the shielded wire) located concentrically on the axis of the shield. All wires may be stranded and all conductors are treated as imperfect conductors; that is, their per-unit-length impedances are nonzero. Through-braid coupling for braided shields as well as diffusion for both types are included in the model. The shielded cables may have exposed sections at either end (pigtail sections) in which the shielded wire is not covered by the shield. Over these pigtail sections, a pigtail wire, parallel to the shielded wire, connects the shield to the reference conductor at that end via either a short circuit or an open circuit. These pigtail sections are included in the representation to simulate the common practice of terminating a shielded cable in a connector via these pigtail wires. The pigtail sections may be of different lengths. The program is written in FORTRAN IV and should be implementable on a wide range of digital computers.

  16. Conducting wall Hall thrusters in magnetic shielding and standard configurations (United States)

    Grimaud, Lou; Mazouffre, Stéphane


    Traditional Hall thrusters are fitted with boron nitride dielectric discharge channels that confine the plasma discharge. Wall properties have significant effects on the performances and stability of the thrusters. In magnetically shielded thrusters, interactions between the plasma and the walls are greatly reduced, and the potential drop responsible for ion acceleration is situated outside the channel. This opens the way to the utilization of alternative materials for the discharge channel. In this work, graphite walls are compared to BN-SiO2 walls in the 200 W magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The magnetically shielded thruster shows no significant change in the discharge current mean value and oscillations, while the unshielded thruster's discharge current increases by 25% and becomes noticeably less stable. The electric field profile is also investigated through laser spectroscopy, and no significant difference is recorded between the ceramic and graphite cases for the shielded thruster. The unshielded thruster, on the other hand, has its acceleration region shifted 15% of the channel length downstream. Lastly, the plume profile is measured with planar probes fitted with guard rings. Once again the material wall has little influence on the plume characteristics in the shielded thruster, while the unshielded one is significantly affected.

  17. Status of reactor-shielding research in the US

    Energy Technology Data Exchange (ETDEWEB)

    Maienshein, F.C.


    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study.

  18. Novel shielding materials for space and air travel. (United States)

    Vana, N; Hajek, M; Berger, T; Fugger, M; Hofmann, P


    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005.

  19. Effects of High-Density Impacts on Shielding Capability (United States)

    Christiansen, Eric L.; Lear, Dana M.


    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  20. Eruption history of the Tharsis shield volcanoes, Mars (United States)

    Plescia, J. B.


    The Tharsis Montes volcanoes and Olympus Mons are giant shield volcanoes. Although estimates of their average surface age have been made using crater counts, the length of time required to build the shields has not been considered. Crater counts for the volcanoes indicate the constructs are young; average ages are Amazonian to Hesperian. In relative terms; Arsia Mons is the oldest, Pavonis Mons intermediate, and Ascreaus Mons the youngest of the Tharsis Montes shield; Olympus Mons is the youngest of the group. Depending upon the calibration, absolute ages range from 730 Ma to 3100 Ma for Arsia Mons and 25 Ma to 100 Ma for Olympus Mons. These absolute chronologies are highly model dependent, and indicate only the time surficial volcanism ceased, not the time over which the volcano was built. The problem of estimating the time necessary to build the volcanoes can be attacked in two ways. First, eruption rates from terrestrial and extraterrestrial examples can be used to calculate the required period of time to build the shields. Second, some relation of eruptive activity between the volcanoes can be assumed, such as they all began at a speficic time or they were active sequentially, and calculate the eruptive rate. Volumes of the shield volcanoes were derived from topographic/volume data.

  1. Integration of bulk piezoelectric materials into microsystems (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  2. Modelling the electrical properties of concrete for shielding effectiveness prediction (United States)

    Sandrolini, L.; Reggiani, U.; Ogunsola, A.


    Concrete is a porous, heterogeneous material whose abundant use in numerous applications demands a detailed understanding of its electrical properties. Besides experimental measurements, material theoretical models can be useful to investigate its behaviour with respect to frequency, moisture content or other factors. These models can be used in electromagnetic compatibility (EMC) to predict the shielding effectiveness of a concrete structure against external electromagnetic waves. This paper presents the development of a dispersive material model for concrete out of experimental measurement data to take account of the frequency dependence of concrete's electrical properties. The model is implemented into a numerical simulator and compared with the classical transmission-line approach in shielding effectiveness calculations of simple concrete walls of different moisture content. The comparative results show good agreement in all cases; a possible relation between shielding effectiveness and the electrical properties of concrete and the limits of the proposed model are discussed.

  3. Design of orbital debris shields for oblique hypervelocity impact (United States)

    Fahrenthold, Eric P.


    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  4. International Space Station (ISS) Meteoroid/Orbital Debris Shielding (United States)

    Christiansen, Eric L.


    Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.

  5. AA, radiation shielding curtain along the target area

    CERN Multimedia

    CERN PhotoLab


    At the far left is the beam tube for the high-intensity proton beam from the 26 GeV PS. The tube ends in a thin window and the proton beam continues in air through a hole in the shielding blocks (see also 8010308), behind which the target (see 7905091, 7905094)was located. After the target followed the magnetic horn, focusing the antiprotons, and the first part of the injection line with a proton dump. The antiprotons, deflected by a magnet, left the target area through another shielding wall, to make their way to the AA ring. Laterally, this sequence of components was shielded with movable, suspended, concrete blocks: the "curtain". Balasz Szeless, who had constructed it, is standing at its side.

  6. Effect of collagen shields on corneal epithelialization following penetrating keratoplasty. (United States)

    Ruffini, J J; Aquavella, J V; LoCascio, J A


    To evaluate the effects of collagen shields on corneal epithelial healing following keratoplasty, we conducted a prospective study of 89 consecutive penetrating keratoplasty patients over a 9-month period, applying collagen shields in alternate cases. Eyes were evaluated on the first and on the eighth postoperative day. The appearance of the epithelium was graded on a scale from 0 to 4. Independent variables, such as donor age, patient age, patient and donor sex, death to preservation time, and donor time in K-Sol media prior to surgery, were also evaluated. Donor corneas treated with collagen demonstrated less epithelial staining and smaller epithelial defects on the first day following surgery. The results were evaluated with a Student's t test and were found to be significant (P less than 0.001). We conclude that the application of porcine collagen shields following keratoplasty is an effective means of encouraging reepithelialization of the graft.

  7. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a function of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.

  8. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang Taoye; Chen Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Isimjan, Tayirjan T; Rohani, Sohrab, E-mail:, E-mail: [Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)


    Visible light transparent, UV-shielding and superhydrophobic nanostructured coatings have been successfully fabricated through a facile layer-by-layer deposition of TiO{sub 2} and SiO{sub 2} nanoparticles. The coatings are composed of an underlying UV-shielding TiO{sub 2} layer and a top fully covered protective SiO{sub 2} layer. The resulting coatings can block 100% of UVB and UVC and almost 85% of UVA. The fabricated surfaces have contact angles exceeding 165 deg. after coating with organic PTES (1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane) molecules. The transparent superhydrophobic surfaces exhibit extremely strong UV stability. All coatings retain the initial UV-shielding and superhydrophobic properties even after exposure to 275 nm UV light with a light intensity of 75 mW cm{sup -2} for 12 h.

  9. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties (United States)

    Wang, Taoye; Isimjan, Tayirjan T.; Chen, Jianfeng; Rohani, Sohrab


    Visible light transparent, UV-shielding and superhydrophobic nanostructured coatings have been successfully fabricated through a facile layer-by-layer deposition of TiO2 and SiO2 nanoparticles. The coatings are composed of an underlying UV-shielding TiO2 layer and a top fully covered protective SiO2 layer. The resulting coatings can block 100% of UVB and UVC and almost 85% of UVA. The fabricated surfaces have contact angles exceeding 165° after coating with organic PTES (1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane) molecules. The transparent superhydrophobic surfaces exhibit extremely strong UV stability. All coatings retain the initial UV-shielding and superhydrophobic properties even after exposure to 275 nm UV light with a light intensity of 75 mW cm - 2 for 12 h.

  10. Effect of compositional variation in plutonium on process shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.H.


    Radiation dose rate from plutonium with high {sup 239}Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations.

  11. Ab Initio Calculations of Co Shielding in Model Complexes

    Directory of Open Access Journals (Sweden)

    Elaine A. Moore


    Full Text Available Abstract: Recent ab initio calculations of cobalt NMR shielding show that DFT-GIAO calculations using hybrid functionals are found to reproduce experimental values well. This method is used to calculate the variation of the cobalt NMR shielding tensor of sqaure pyramidal nitrosyl complexes with respect to the CoNO geometry and to differing basal ligands. The isotropic shielding is shown to have a large negative derivative with respect to CoX distance where X is a ligating atom.; the derivative with respect to NO distance is smaller but still significant. The zz component where z is along the CoN(NO bond is more sensitive to the basal ligands but the other two principal components are sensitive to the CoNO geometry.

  12. The ATLAS SCT grounding and shielding concept and implementation

    CERN Document Server

    Bates, RL; Bernabeu, J; Bizzell, J; Bohm, J; Brenner, R; Bruckman de Renstrom, P A; Catinaccio, A; Cindro, V; Ciocio, A; Civera, J V; Chouridou, S; Dervan, P; Dick, B; Dolezal, Z; Eklund, L; Feld, L; Ferrere, D; Gadomski, S; Gonzalez, F; Gornicki, E; Greenhall, A; Grillo, A A; Grosse-Knetter, J; Gruwe, M; Haywood, S; Hessey, N P; Ikegami, Y; Jones, T J; Kaplon, J; Kodys, P; Kohriki, T; Kondo, T; Koperny, S; Lacasta, C; Lozano Bahilo, J; Malecki, P; Martinez-McKinney, F; McMahon, S J; McPherson, A; Mikulec, B; Mikus, M; Moorhead, G F; Morrissey, M C; Nagai, K; Nichols, A; O'Shea, V; Pater, J R; Peeters, S J M; Pernegger, H; Perrin, E; Phillips, P W; Pieron, J P; Roe, S; Sanchez, J; Spencer, E; Stastny, J; Tarrant, J; Terada, S; Tyndel, M; Unno, Y; Wallny, R; Weber, M; Weidberg, A R; Wells, P S; Werneke, P; Wilmut, I


    This paper describes the design and implementation of the grounding and shielding system for the ATLAS SemiConductor Tracker (SCT). The mitigation of electromagnetic interference and noise pickup through power lines is the critical design goal as they have the potential to jeopardize the electrical performance. We accomplish this by adhering to the ATLAS grounding rules, by avoiding ground loops and isolating the different subdetectors. Noise sources are identified and design rules to protect the SCT against them are described. A rigorous implementation of the design was crucial to achieve the required performance. This paper highlights the location, connection and assembly of the different components that affect the grounding and shielding system: cables, filters, cooling pipes, shielding enclosure, power supplies and others. Special care is taken with the electrical properties of materials and joints. The monitoring of the grounding system during the installation period is also discussed. Finally, after con...

  13. Preliminary Assessment of New Orbital Debris Shielding for Unmanned Satellites (United States)

    Wilkinson, J.; Stokes, H.; Walker, R.

    The numerous rocket launches and spacecraft deployments carried out since the dawn of the space age have generated a large orbiting population of man-made debris. Without the adoption of mitigation measures, it is likely that this population will continue to increase in the future. The ever-growing collision threat posed to operating spacecraft from these debris objects is therefore fast becoming a driver in the design of new spacecraft missions. DERA, under contract from the European Space Agency (ESA), is developing new techniques to provide mass- and cost-effective solutions to this spacecraft protection problem. Direct shielding methods such as enhancing a spacecraft's thermal blankets with strong materials and adapting the honeycomb panel structure are being investigated, as are indirect shielding methods such as reconfiguration of critical or susceptible units. This paper reports the latest results of the direct shielding research.

  14. Holographic bulk reconstruction with α' corrections (United States)

    Roy, Shubho R.; Sarkar, Debajyoti


    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  15. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini


    and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface......The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...

  16. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS


    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  17. Thermal relics in cosmology with bulk viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, A. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Lambiase, G. [Universita di Salerno, Dipartimento di Fisica E.R. Caianiello, Fisciano (Italy); INFN, Gruppo Collegato di Salerno, Fisciano (Italy)


    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, which cannot be explained by conventional cosmology and particle physics. (orig.)

  18. A mechanistic analysis of bulk powder caking (United States)

    Calvert, G.; Curcic, N.; Ghadiri, M.


    Bulk powder transformations, such as caking, can lead to numerous problems within industry when storing or processing materials. In this paper a new Environmental Caking Rig (ECR) is introduced and has been used to evaluate the caking propensity of a hygroscopic powder as a function of temperature, Relative Humidity (RH), mechanical stress and also when RH is cycled. A linear relationship exists between cake strength and the extent of bulk deformation, here defined by the engineering strain. An empirical model has been used to predict the caking behaviour based on consolidation stress and environmental conditions.

  19. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado


    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  20. The Space Radiation: Nature, Biological Effects and Shielding (United States)

    Muradian, Kh.

    The latest findings in origin, biological effects and shielding of the space ionizing radiation (SIR) are reviewed. It is stressed that after the impending implementation of artificial gravity, SIR could become the most serious concern for deep space travelers. SIR is more effective in induction of the genome- and cell-associated damages, compared with the conventional radioactive sources. The shielding of SIR is augmented due to the secondary spallation δ-radiation and possible cooperation with weightlessness and other negative impacts of a space flight. The panspermia concept postulating the existence of living organisms, e.g. bacterial spores, in space and their natural interplanetary transportation is discussed.

  1. Shielding of a hadron in a finite e-beam

    Energy Technology Data Exchange (ETDEWEB)

    Elizarov A.; Litvinenko, V.; Wang, G.


    The thorough study of coherent electron cooling, the modern cooling technique capable to deal with accelerators operating in the range of few TeVs, rises many interesting questions. One of them is a shielding dynamics of a hadron in an electron beam. Now this effect is computed analytically in the infinite beam approximation. Many effects are drastically different in finite and infinite plasmas. Here we propose a method to compute the dynamical shielding effect in a finite cylindrical plasma - the realistic model of an electron beam in accelerators.

  2. Cadmium free lead alloy for reusable radiotherapy shielding. (United States)

    Blackwell, C R; Amundson, K D


    A low melting point cadmium free fusible lead alloy suitable for custom radiotherapy shielding blocks is described. The alloy, referred to here as Alloy-203, differs in composition from the more common Lipowitz's metal (Cerrobend) by being cadmium free, having a slightly higher lead content and a 203 degrees F melting temperature. Attenuation properties have been studied for 4-18 MV X-rays. Alloy-203 has lower transmission than Lipowitz's metal, primarily due to the higher content of lead and bismuth. Daily use for the past 2 years at Mayo Clinic has not indicated any major problems associated with the use of this cadmium free alloy for custom shield fabrication.

  3. Fundamentals of active shielding based on implicit control (United States)

    Quintana, Ricardo; Lam, Yiu; Patino, Diego


    Active noise control is a methodology to attenuate low frequency noise. The attenuation is usually achieved near the sensor which is used in the controller. In order to achieve the desired attenuation inside a desired zone without locating a sensor inside, a method called active shielding can be used. It works by controlling the pressure at boundaries of the desired zone. This article presents a novel method for implementing active shielding only using pressure sensors. It is based on a new concept called implicit control, which takes into account the locations of sensors. Some simulations validate the presented method for free fields.

  4. Shielding Performance Measurements of Spent Fuel Transportation Container

    Directory of Open Access Journals (Sweden)

    SUN Hong-chao


    Full Text Available The safety supervision of radioactive material transportation package has been further stressed and implemented. The shielding performance measurements of spent fuel transport container is the important content of supervision. However, some of the problems and difficulties reflected in practice need to be solved, such as the neutron dose rate on the surface of package is too difficult to measure exactly, the monitoring results are not always reliable, etc. The monitoring results using different spectrometers were compared and the simulation results of MCNP runs were considered. An improvement was provided to the shielding performance measurements technique and management of spent fuel transport.

  5. Shielding effectiveness of original and modified building materials

    Directory of Open Access Journals (Sweden)

    T. Frenzel


    Full Text Available This contribution deals with the determination of the shielding effectiveness of building materials used for office, factory and government buildings. Besides the examination of standard materials, measurements were also performed on modified materials, e.g. ferro concrete with enhanced shielding effectiveness due to a changed mixture or structure of the reinforcement. The measurements of original and modified materials were carried out in a fully anechoic room (FAR according to IEEE 299-1997 from 80 MHz up to 10 GHz.

  6. Inverse source problem and active shielding for composite domains

    National Research Council Canada - National Science Library

    Ryaben’kii, V.S; Tsynkov, S.V; Utyuzhnikov, S.V


    ... desired in the solution is shielding of a given subdomain from the effect of the sources on the complementary domain. This problem is important for many applications. For example, in acoustics one is often interested in protecting a given region of space from the unwanted sound (i.e., noise) that originates from the sources outside of this region. As the protection, or shielding, is rendered by the specially constructed additional sources of sound (rather than, say, by insulation), it is called active shie...

  7. Incomplete optical shielding in cold sodium atom traps (United States)

    Yurovsky, Vladimir; Ben-Reuven, Abraham


    A simple two-channel model, based on the semiclassical Landau-Zener (LZ) approximation, with averaging over angle-dependent exponents, is proposed as a fast means for accounting for the incomplete optical shielding of collisions, as observed in recent experiments conducted by Weiner and co-workers on ultracold sodium-atom traps, and its dependence on the laser polarization. The model yields a reasonably good agreement with the recent quantum close-coupling calculations of Julienne and co-workers. The remaining discrepancy between both theories and the data is qualitatively attributed to a partial overlap of the collision ranges at which loss processes and optical shielding occur.

  8. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications (United States)

    Sayyed, M. I.; Lakshminarayana, G.; Kityk, I. V.; Mahdi, M. A.


    In this work, we have evaluated the γ-ray shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), half value layer (HVL), mean free path (MFP) and exposure buildup factors (EBF) for heavy metal fluoride (PbF2) based tellurite-rich glasses. In addition, neutron total macroscopic cross sections (∑R) for these glasses were also calculated. The maximum value for μ/ρ, Zeff and ∑R was found for heavy metal (Bi2O3) oxide introduced glass. The results of the selected glasses have been compared, in terms of MFP with different glass systems. The shielding effectiveness of the selected glasses is found comparable or better than of common ones, which indicates that these glasses with suitable oxides could be developed for gamma ray shielding applications.

  9. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays (United States)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou


    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  10. Cellulosic ethanol byproducts as a bulking agent (United States)

    J.M. Considine; D. Coffin; J.Y. Zhu; D.H. Mann; X. Tang


    Financial enhancement of biomass value prior to pulping requires subsequent use of remaining materials; e.g., high value use of remaining stock material after cellulosic ethanol production would improve the economics for cellulosic ethanol. In this work, use of enzymatic hydrolysis residual solids (EHRS), a cellulosic ethanol byproduct, were investigated as a bulking...


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  12. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    157–161. c Indian Academy of Sciences. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy. J K YU. ∗. , Y H WANG, G Z XING, Q QIAO, B LIU, Z J CHU, C L LI and F YOU. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,.

  13. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 1. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy. J K Yu Y H Wang G Z Xing Q Qiao B Liu Z J Chu C L Li F You. Volume 38 Issue 1 February 2015 pp 157-161 ...

  14. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin


    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  15. Thermal bulk polymerization of cholesteryl acrylate

    NARCIS (Netherlands)

    de Visser, A.C.; de Groot, K.; Feijen, Jan; Bantjes, A.


    The thermal bulk polymerization of cholesteryl acrylate was carried out in the solid phase, the mesomorphic phase, and the liquid phase to study the effect of monomer ordering on polymerization rate and polymer properties. The rate increased with decreasing ordering (or enhanced mobility) of the

  16. A large-scale biomass bulk terminal

    NARCIS (Netherlands)

    Wu, M.R.


    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials

  17. Bulk metamaterials: Design, fabrication and characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Alabastri, Alessandro


    Bulk metamaterials claim a lot of attention worldwide. We report about our activity and advances in design, fabrication and characterization of metal-dielectric composites with three-dimensional lattices. The nomenclature of designs exhibiting negative index behaviour in the near infrared includes...

  18. Polonium bulk and surface vibrational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tigrine, Rachid; Bourahla, Boualem [Laboratoire de Physique PEC UMR 6087, Universite du Maine, Le Mans (France); Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou (Algeria); Khater, Antoine


    Calculations are presented for the bulk phonons and for surface Rayleigh phonons and resonances for Polonium, the only element known to form in the simple cubic lattice. The static stability of this lattice has been confirmed recently by ab initio simulations which yield two bulk elastic constants, c{sub 11} and c{sub 12}. Constitutive equations are derived for the isotropic cubic lattice based upon the Fuchs's method. This permits effectively a numerical evaluation of central potential force constants for Polonium from the ab initio results. Numerical calculations are then made for the material vibration dynamics in the force constant model with the use of the matching method. The numerical applications yield for Polonium the bulk phonon branches along[100],[110], and [111], and the Rayleigh phonons and surface resonances along the[010] direction in an unreconstructed (001) surface. The local vibration densities of states are calculated for bulk and surface sites for this element. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Modelling ventilated bulk storage of agromaterials

    NARCIS (Netherlands)

    Grubben, N.L.M.; Keesman, K.J.


    Storage of season-dependent agro-materials is a key process in providing food, feed and biomass throughout the whole year. We review the state of the art in physical modelling, simulation and control of ventilated bulk storage facilities, and in particular the storage of potatoes, from a

  20. Teaching Advanced SQL Skills: Text Bulk Loading (United States)

    Olsen, David; Hauser, Karina


    Studies show that advanced database skills are important for students to be prepared for today's highly competitive job market. A common task for database administrators is to insert a large amount of data into a database. This paper illustrates how an up-to-date, advanced database topic, namely bulk insert, can be incorporated into a database…

  1. Transformation kinetics for surface and bulk nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Elena, E-mail: [University of Milan, Department of Mathematics, via Saldini 50, 20133 Milano (Italy); Rios, Paulo R., E-mail: [Universidade Federal Fluminense, Escola de Engenharia Industrial Metalurgica de Volta Redonda, Av. dos Trabalhadores 420, 27255-125 Volta Redonda, RJ (Brazil)] [RWTH Aachen University, Institut fuer Metallkunde und Metallphysik, D-52056 Aachen (Germany)


    A rigorous mathematical approach based on the causal cone and stochastic geometry concepts is used to derive new exact expressions for transformation kinetics theory. General expressions for the mean volume density and the volume fraction are derived for both surface and bulk nucleation in a general Borel subset of R{sup 3}. In practice, probably any specimen shape of engineering interest is going to be a Borel set. An expression is also derived for the important case of polyhedral shape, in which surface nucleation may take place on the faces, edges and vertices of the polyhedron as well as within the bulk. Moreover, explicit expressions are given for surface and bulk nucleation for three specific shapes of engineering relevance: two parallel planes, an infinitely long cylinder and a sphere. Superposition is explained in detail and it permits the treatment of situations in which surface and bulk nucleation take place simultaneously. The new exact expressions presented here result in a significant increase in the number of exactly solvable cases available to formal kinetics.

  2. Scientific computing on bulk synchronous parallel architectures

    NARCIS (Netherlands)

    Bisseling, R.H.; McColl, W.F.


    Bulk synchronous parallel architectures oer the prospect of achieving both scalable parallel performance and architecture independent parallel software. They provide a robust model on which to base the future development of general purpose parallel computing systems. In this paper, we theoretically

  3. Radiopacity of bulk fill flowable resin composite materials | Yildirim ...

    African Journals Online (AJOL)

    Objectives: The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x‑tra Base Bulk Fill). Materials and Methods: Six specimens of each material with a thickness of 1 mm were prepared, and ...

  4. Bulk sulfur (S) deposition in China (United States)

    Liu, Lei; Zhang, Xiuying; Wang, Shanqian; Zhang, Wuting; Lu, Xuehe


    A systematic dataset of an observation network on a national scale has been organized to investigate the spatial distribution of bulk sulfur (S) deposition (Sdep) throughout China during 2000-2013, representing by far the most detailed data set to track the bulk sulfur deposition throughout China since 2000. Such a dataset is needed for ecosystem studies and for developing emission control policies. Bulk Sdep values showed great variations, ranging from 2.17 to 70.55 kg ha-1 y-1, with an average of 22.99 kg ha-1 y-1. The average rate of bulk Sdep located in East Coastal region (35.97 kg ha-1 y-1), Middle Yangtze region (57.90 kg ha-1 y-1), Middle Yellow River region (23.42 kg ha-1 y-1), North Coastal region (42.19 kg ha-1 y-1), Northeast region (34.28 kg ha-1 y-1), South Coastal region (36.97 kg S ha-1 y-1), Southwest region (33.85 kg ha-1 y-1) was 4.50, 7.24, 2.93, 5.28, 4.29, 4.63 and 4.24 times than that in Northwest region (7.99 kg ha-1 y-1). Bulk Sdep over China was mainly from fossil fuel combustion (76.96%), biomass burning (7.64%), crust (6.22%), aged sea salt (5.48%) and agriculture (3.68%). A systematic observation network on a national scale should be established to conduct a long-term monitoring atmospheric Sdep (including wet and dry deposition), based on exiting ecological stations administrated by different departments in China.


    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna


    Full Text Available Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  6. The Magnetic Shielding Effect of a Re-Fuelling Pellet

    DEFF Research Database (Denmark)

    Chang, C. T.


    The magnetic shielding effect of a refuelling pellet is considered by first briefly reviewing the existing balloon model. The limitation of the model is pointed out and discussed. Since solid deuterium is an insulator and the ablated plasma is expected to be cold and dense, it is felt...

  7. Investigations on the Broadband Shielding Effectiveness of Metallized Glass Fiber

    National Research Council Canada - National Science Library

    Coburn, William


    ...) is an E-glass fiber metallized with Al and processed into a nonwoven mat. When formed into a mat, the MGFs lead to an effective sample conductivity, sigma eff, which is the parameter of interest for electromagnetic shielding in the RF region...

  8. Vibrating Intrinsic reverberation Chambers for shielding effectiveness measurements

    NARCIS (Netherlands)

    van de Beek, G.S.; Vogt-Ardatjew, R.A.; Schipper, H.; Leferink, Frank Bernardus Johannes


    A new technique for shielding effectiveness measurements is the dual VIRC method. In this method two Vibrating Intrinsic Reverberation Chambers (VIRC) are combined together via a common wall with an aperture that forms the interface between them. This particular set-up makes it possible to achieve a

  9. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program (United States)

    Ryan, Shannon


    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  10. Biopolymer Nanocomposite-Based Electromagnetic Interference shielding (Preprint) (United States)



  11. A Gravitational Shielding Based on ZnS:Ag Phosphor


    De Aquino, Fran


    It was shown that there is a practical possibility of gravity control on electroluminescent (EL) materials (physics/0109060). We present here a type Gravitational Shielding based on an EL phosphor namely zinc sulfide doped with silver (ZnS:Ag) which can reduce the cost of the Gravitational Motor previously presented.

  12. Preliminary Development of a Multifunctional Hot Structure Heat Shield (United States)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V


    Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.

  13. Shielded Metal Arc Pipe Welding. Teacher Edition. Second Edition. (United States)

    Fortney, Clarence; And Others

    This second edition of the shielded metal arc pipe welding curriculum guide presents both basic and advanced pipe welding skills. All specifications for procedure and welder qualification are presented according to national standards. The standards also include the test position for both groove and fillet pipe welding. The guide contains three…

  14. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

    DEFF Research Database (Denmark)

    Artemieva, Irina; Shulgin, Alexey


    The southern part of the Baltic Shield hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpre...

  15. Merits of partial shielding in dumping sediment spoils. (United States)

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis


    The commonly adopted method of dumping dredge spoil at sea using split-hull barges leads to considerable sediment loss to the water column and a subsequent dispersion of fine material that can pose a risk to sensitive "downstream" habitats such as coral reefs. Containing sediment loads using stitched closed geotextile bags is practiced for minimizing loss of contaminated sediment, but is expensive in terms of operational efficiency. Following promising observations from initial laboratory trials, the plunging of partially shielded sediment loads, released on open sea, was studied. The partial shielding was achieved with rigid, open containers as well as flexible, open bags. The loss of sediment from these modes of shielding was measured, and it was observed that even limited and unstitched shielding can be effective in debilitating the entrainment of water into the descending load. In particular, long-sleeved flexible bags practically self-eliminated the exposure of the load and thus losses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluation of electromagnetic shielding effectiveness of multi-axial ...

    Indian Academy of Sciences (India)

    Figure 1 introduces the graphical representation of elec- tromagnetic wave (EM) spectrum and ... Graphical representation of electromagnetic wave spectrum and related applications. [3,4]. defined by three phenomena; ... records in literature related to the electromagnetic shielding effectiveness (EMSE) of woven fabrics ...

  17. Zone 4 Study: Shielded Lift Truck Refurbishment/Replacement

    Energy Technology Data Exchange (ETDEWEB)



    The Zone 4 Stage Right Shielded Lift Trucks (SLT's) will likely need refurbishment or replacement within the next two to five years, due to wear. This document discusses the options to provide a long term and reliable means of satisfying Zone 4 material movement and inventory requirements.

  18. Geodynamic evolution and crustal growth of the central Indian Shield

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The role of slab melts (whether in interaction with the mantle wedge or not) is quite significant in this evolution (Martin 1986, 1993). In this paper we report the geochemical data of gneisses and granitoids from Bastar and Bundelk- hand craton (together called central Indian Shield) and look for evidences to discern the ...

  19. Shield Fields Within the Nemesis Tessera Quadrangle, Venus (United States)

    Polit, A. T.; Koch, N. A.; Grosfils, E. B.; Reinen, L. A.


    Here we study small edifice concentrations in parts of Nemesis Tessera to quantify their spatial distribution and density. Does this affect shield field size, and do specific density values characterize different tectonic settings? Additional information is contained in the original extended abstract.

  20. The value of thyroid shielding in intraoral radiography

    NARCIS (Netherlands)

    Hoogeveen, R.C.; Hazenoot, B.; Sanderink, G.C.H.; Berkhout, W.E.R.


    Objectives: To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation. Methods: Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO® (The Phantom Laboratory, Salem, NY) male

  1. A Shielding Concept for the MedAustron Facility

    Directory of Open Access Journals (Sweden)

    Jägerhofer L.


    Full Text Available MedAustron is a synchrotron based accelerator facility for cancer therapy and research in Wiener Neustadt, 50 km south of Vienna. The facility will provide protons up to kinetic energies of 250 MeV and carbon ions up to 400 MeV/n for ion beam therapy. Additionally, protons up to 800 MeV kinetic energy will be used in a dedicated room for non-clinical research. In order to obtain a shielding concept for this facility a detailed geometry of the accelerator facility was implemented into the Monte-Carlo code FLUKA and shielding simulations were performed. In the course of these simulations the contributions of different particle types to the mixed fields around the accelerator and behind shielding were analysed. In an iterative process with the architect the final design of the shielding concept was developed until it was capable of reducing the effect of secondary radiation on humans and the environment below Austrian legal limits.

  2. Solvent effects on the magnetic shielding of tertiary butyl alcohol ...

    African Journals Online (AJOL)

    The magnetic shielding and its polarizabilities, have been calculated for tertiary butyl alcohol and tertiary butyl amine. These have been used to rationalise the solvent shifts of the proton spectra of the interesting cosolvent systems with water recently measured by Kipkemboi, et al. Continuum solvation calculations and ...

  3. Ceramic port shields cast in an iron engine head (United States)

    Hakim, Nabil S.; Groeneweg, Mark A.


    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.


    Office of Civil Defense (DOD), Washington, DC.


  5. Elrotherm shielding systems. New pioneering material composites; Elrotherm-Abschirmsysteme. Neue Zukunftsweisende Materialkompositionen

    Energy Technology Data Exchange (ETDEWEB)

    Zika-Beyerlein, B. [ElringKlinger (Germany). Geschaeftsbereich Abschirmtechnik


    Tightly packed engine compartments put special demands on thermal and acoustic shielding systems. With new material composites allowing for particularly thin-walled and light shielding parts, ElringKlinger is well equipped for the future. (orig.)

  6. Shielding effectiveness measurements of materials and enclosures using a dual vibrating intrinsic reverberation chamber

    NARCIS (Netherlands)

    Schipper, Han; Leferink, Frank Bernardus Johannes


    Reverberation chambers create a statistical uniformly distributed field which is very useful for shielding effectiveness measurements. Two adjacent reverberation chambers made of flexible cloth have been developed and are used for shielding effectiveness measurements. The field stirring is achieved

  7. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study Project (United States)

    National Aeronautics and Space Administration — The objectives of the proposed research are to develop a space radiation shielding material system that has high efficacy for shielding radiation and also has high...

  8. Study of gamma radiation shielding properties of ZnO− TeO2 glasses

    Indian Academy of Sciences (India)

    ray EBFs in the intermediate energy region. The reported new data on radiation shielding characteristics of zinctellurite glasses should be beneficial from the point of proper gamma shield designs when intended to be used as radiationshields.

  9. 77 FR 67678 - Content Specifications and Shielding Evaluations for Type B Transportation Packages (United States)


    ... COMMISSION Content Specifications and Shielding Evaluations for Type B Transportation Packages AGENCY... Regulatory Issue Summary (RIS) 2012-XX, ``Content Specifications and Shielding Evaluations for Type B... Plan for Transport Packages for Radioactive Material,'' for the review of content specifications and...

  10. Use of a genetic algorithm in the search for a near-optimal shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeong Soo [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Moon, Joo Hyun, E-mail: [Dongguk University, 707 Seokjang-dong, Gyeongju, Gyeongbuk 780-714 (Korea, Republic of)


    An optimization method based on genetic algorithm (GA), which is referred as MACroscopic Near-Optimal Shielding design (MACNOS), is proposed for the search for an optimal radiation shield configuration subject to a given set of constraints. In MACNOS, a GA is used to search for the optimal shielding design and the penalty strategy is employed to deal with the constraints. In order to confirm its capability to search for the optimal shielding design, MACNOS is applied for solving a simple problem with regard to radiation shielding optimization of a hypothetical spaceship reactor. The application shows that, keeping the constraints satisfied, MACNOS is able to seek for the shielding design that minimizes the total weight by changing the thickness and the material of the shield. Therefore, it is expected that MACNOS is potentially useful in the search for the optimal design configuration in the conceptual design phase, where the selection of the shielding material and the estimate of the thickness are necessary.

  11. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    Directory of Open Access Journals (Sweden)

    Zhaopeng Zhong


    Full Text Available The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both

  12. Lymphatic invasion and the Shields index in predicting melanoma metastases. (United States)

    Špirić, Zorica; Erić, Mirela; Eri, Živka


    Findings of the prognostic significance of lymphatic invasion are contradictory. To determine an as efficient cutaneous melanoma metastasis predictor as possible, Shields et al. created a new prognostic index. This study aimed to examine whether the lymphatic invasion analysis and the Shields index calculation can be used in predicting lymph node status in patients with cutaneous melanoma. Lymphatic invasion of 100 melanoma specimens was detected by dual immunohistochemistry staining for the lymphatic endothelial marker D2-40 and melanoma cell S-100 protein. The Shields index was calculated as a logarithm by multiplying the melanoma thickness, square of peritumoural lymphatic vessel density and the number "2" for the present lymphatic invasion. No statistically significant difference was observed between lymph node metastatic and nonmetastatic melanomas regarding the lymphatic invasion. Metastatic melanomas showed a significantly higher Shields index value than nonmetastatic melanomas (p = 0.00). Area under the receiver operator characteristic (ROC) curve (AUC) proved that the Shields index (AUC = 0.86, 95% confidence interval (CI) 0.79-0.93, p = 0.00) was the most accurate predictor of lymph node status, followed by the melanoma thickness (AUC = 0.76, 95% CI 0.67-0.86, p = 0.00) and American Joint Committee on Cancer (AJCC) staging (AUC = 0.75, 95% CI 0.66-0.85, p = 0.00), while lymphatic invasion was not successful in predicting (AUC = 0.56, 95% CI 0.45-0.67, p = 0.31). The Shields index achieved 81.3% sensitivity and 75% specificity (cut-off mean value). Our findings show that D2-40/S-100 immunohistochemical analysis of lymphatic invasion cannot be used for predicting the lymph node status, while the Shields index calculation predicts disease outcome more accurately than the melanoma thickness and AJCC staging. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights

  13. Dimmuborgir: a rootless shield complex in northern Iceland (United States)

    Skelton, Alasdair; Sturkell, Erik; Jakobsson, Martin; Einarsson, Draupnir; Tollefsen, Elin; Orr, Tim


    The origin of Dimmuborgir, a shield-like volcanic structure within the Younger Laxá lava flow field near Lake Mývatn, in northern Iceland, has long been questioned. New airborne laser mapping (light detection and ranging (LiDAR)), combined with ground-penetrating radar results and a detailed field study, suggests that Dimmuborgir is a complex of at least two overlapping rootless shields fed by lava erupting from the nearby Lúdentarborgir crater row. This model builds upon previous explanations for the formation of Dimmuborgir and is consistent with observations of rootless shield development at Kīlauea Volcano, Hawaii. The larger rootless shields at Dimmuborgir, 1–1.5 km in diameter, elliptical in plan view, ∼30 m in height, and each with a 500-m-wide summit depression, were capable of storing as much as 2–3 × 106 m3 of lava. They were fed by lava which descended 30–60 m in lava tubes along a distance of 3 km from the crater row. The height difference generated pressure sufficient to build rootless shields at Dimmuborgir in a timescale of weeks. The main summit depressions, inferred to be drained lava ponds, could have emptied via a 30-m-wide × 5-m-deep channel, with estimated effusion rates of 0.7–7 m3 s−1 and minimum flow durations of 5–50 days. We argue that the pillars for which Dimmuborgir is famed are remnants of lava pond rims, at various stages of disintegration that formed during pond drainage.

  14. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)


    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  15. Vehicle Shield Optimization and Risk Assessment of Future NEO Missions (United States)

    Nounu, Hatem, N.; Kim, Myung-Hee; Cucinotta, Francis A.


    Future human space missions target far destinations such as Near Earth Objects (NEO) or Mars that require extended stay in hostile radiation environments in deep space. The continuous assessment of exploration vehicles is needed to iteratively optimize the designs for shielding protection and calculating the risks associated with such long missions. We use a predictive software capability that calculates the risks to humans inside a spacecraft. The software uses the CAD software Pro/Engineer and Fishbowl tool kit to quantify the radiation shielding properties of the spacecraft geometry by calculating the areal density seen at a certain point, dose point, inside the spacecraft. The shielding results are used by NASA-developed software, BRYNTRN, to quantify the organ doses received in a human body located in the vehicle in a possible solar particle events (SPE) during such prolonged space missions. The organ doses are used to quantify the risks posed on the astronauts' health and life using NASA Space Cancer Model software. An illustration of the shielding optimization and risk calculation on an exploration vehicle design suitable for a NEO mission is provided in this study. The vehicle capsule is made of aluminum shell, airlock with hydrogen-rich carbon composite material end caps. The capsule contains sets of racks that surround a working and living area. A water shelter is provided in the middle of the vehicle to enhance the shielding in case of SPE. The mass distribution is optimized to minimize radiation hotspots and an assessment of the risks associated with a NEO mission is calculated.

  16. IMRT treatment of anal cancer with a scrotal shield

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Rodney C., E-mail: [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Wu, Q. Jackie; McMahon, Ryan; Czito, Brian; Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)


    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.

  17. Experimental research of the effects of different shields on power frequency electric field mitigation

    Directory of Open Access Journals (Sweden)

    Nahman Jovan


    Full Text Available The paper describes experimental research on the effects of different shields on power frequency electric field mitigation. This research was performed in order to determine those materials that may be used for electric field mitigation in cases where the reference level is exceeded. Using measured results, the value of the shielding factor has been calculated for all tested shields and the most efficient shields were determined.

  18. When nearing the ATLAS cavern UX15 through RB16: the TX1S shielding

    CERN Multimedia

    Maximilien Brice


    Photo 01: 52 tons of ATLAS TX1S shielding with bare hands. Photos 02,03,04: Installation of the second TX1S shielding tube at Point Photos 05,06: Positioning of TX1S shielding, the first ATLAS/LHC interface component to be installed underground. Photo 07: Final adjustment of the TX1S shielding tube at the interface between the LHC tunnel and the ATLAS cavern (UX15).

  19. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding. (United States)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.


    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  20. Perbandingan tingkat kebocoran mikro resin komposit bulk-filldengan teknik penumpatan oblique incremental dan bulk

    Directory of Open Access Journals (Sweden)

    Dimas Puja Permana


    Full Text Available Micoleakage comparison of bulk-fillcomposite beetwen oblique incremental and bulk placement techniques. Resin composite bulk-fill was a new type of resin composite that speed up application process of composite. The concept of bulk-fill composite allows composite to fill at a depth of 4 mm and minimizes polymerization shrinkage. This study aims to determine the comparison of placement techniques (oblique incremental/bulk of bulk-fill composite on microleakage in class I preparations. Thirty two human maxillary premolar were stored in distilled water, then Class I preparations were made with the depth of the cavity which was 4 mm (3 x 3 x 4. The teeth were randomly divided into two groups, group 1 uses oblique incremental placement technique and group 2 with bulk placement technique. Samples were stored in an incubator at a temperature of 37 °C for 24 hours, then it was thermocycled manually, 100 cycles at temperature between 5 °C and 55 °C. Microleakage was measured using a digital microscope with a 100 X magnification in millimeters using a microscope micrometer calibration ruler with 0,1 mm level of accuracy after immersion in 0,3% methylene blue and sectioned using separating disc. The result of this study revealed that in group 1 microleakage range was 1.0 mm - 2.7 mm with an average 1.625 mm, and in group 2 microleakage range was 3.6 mm - 4.0 mm with an average of 3.763 mm. The data were analyzed using T-test. The analysis showed a significant difference between two groups (p <0.05. The conclusion of this study was bulk-fill composite in class I cavities with oblique incremental placement technique produces less microleakage than bulk placement technique.   ABSTRAK Resin komposit bulk-fill adalah resin komposit yang dirancang untuk mempercepat proses aplikasi resin komposit. Konsep bulk-fill memungkinkan resin komposit ditumpat sekaligus 4 mm dan mengalami pengerutan polimerisasi minimal. Penelitian ini bertujuan mengetahui efek teknik

  1. Changes to Tensile Strength and Electromagnetic Shielding Effectiveness in Neutron Irradiated Carbon Nanocomposites (United States)


    compatibility ( EMC ) industry uses a wave theory approach to shielding theory, which uses abstract mathematical modeling techniques to yield a value of...2012. [Online]. Available: [Accessed 14 11 2012]. [22] “ Shielding Theory”, Learn EMC , 2012. [Online...CHANGES TO TENSILE STRENGTH AND ELECTROMAGNETIC SHIELDING EFFECTIVENESS IN NEUTRON IRRADIATED

  2. Evaluation of the frequency and accuracy of gonad shield placement in patients undergoing pelvic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Karami, V.; Zabihzadeh, Mansour; Sarikhani, S. [Ahvaz Jundishapur University of Medical Sciences, Ahvaz (Iran, Islamic Republic of)


    Gonad shielding has been advocated to reduce radiation exposure in patients undergoing pelvic radiography. The aim of this study is to evaluate the frequency and accuracy of gonad shield placement in patients undergoing pelvic radiography. A retrospective study was performed on 1230 anteroposterior (AP) pelvic radiographs of 939 children under 16 years old. All the radiographs were reviewed to determine the frequency of gonad shielding and to evaluate whether gonad shields were correctly positioned when they are used. The gonad shield was present in 82 radiographs (30 girls and 52 boys) and was completely disregarded in 1148 radiographs. From 82 images which shield was present, the gonad shields adequately positioned in 28 radiographs (3 girls and 25 boys) and in the remaining 54 radiographs, the shield did not adequately protected the gonads due to incorrect placement of the shield. The inaccuracy placement and absence of gonad shields were more common in girls than boys (P-value < 0.05). More care should be taken to correctly positioning of the gonad shields in boys and its usage should be encouraged. However, the practice of ovarian shielding is not an effective way to reduce radiation exposure in girls undergoing pelvis radiography. (author)

  3. The Shielding Function of Task Sets and Its Relaxation during Task Switching (United States)

    Dreisbach, Gesine; Wenke, Dorit


    The goal of the presented experiments was to investigate the dynamic interplay of task shielding and its relaxation during task switching. Task shielding refers to the finding that single task sets in terms of 2-choice categorization rules help shielding against distraction from irrelevant stimulus attributes. During task switching, this shielding…

  4. Determination of minimum effective height of transparent radiation face shielding for fluoroscopy. (United States)

    Prater, Scott; Rees, Chet R; Bruner, Angela; Savage, Clare


    During interventional procedures, the vast majority of scatter radiation originates from the patient and table and travels in all directions in straight lines. Because the operator's head is much higher than the patient and at an angle upward and to the side of the patient (not directly above), the scatter received by the operator's head is projected in an upward angle. Thus a face shield could potentially be lower than the object it is shielding, e.g., below the eyes. This principle may be used as an advantage to design the lowest shield that effectively protects the head while providing optimum vision, appearance, acoustics, low weight, and sense of openness. A flat acrylic plate shield, 0.5 mm Pb equivalence, was suspended vertically in front of a 451P dosimeter. A phantom patient created scatter in an interventional suite while the dosimeter was placed at the level of the crowns of different operators' heads. Many different configurations were tested to determine which ones would provide effective shielding. The results confirmed that the top of the shield may reside several centimeters below the vertical height of the dosimeter (operator's crown), allowing line of sight to monitor above the shield, and still provide effective shielding equivalent to when the dosimeter is positioned directly behind the center of the shield. The image receptor functioned as an effective shield against scatter. Factors increasing the minimum height of effective shielding included shorter operator, opposite oblique projection of image receptor, and shield closer to the face (in horizontal direction).

  5. solvent effect on 14n nmr shielding of glycine, serine, leucine

    African Journals Online (AJOL)


    of 10 solvents with a wide range of dielectric constants on 4 amino acids. NMR shielding values. (ppm), isotropic and anisotropic effects, energy interaction between solute and solvent, and the effect of hydrogen bond on shielding are described. Direct and indirect solvent effects on shielding are also calculated.

  6. Structural determinants in the bulk heterojunction. (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco


    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  7. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)


    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Enhanced bulk polysilicon production using silicon tubes (United States)

    Jafri, Ijaz; Chandra, Mohan; Zhang, Hui; Prasad, Vish; Reddy, Chandra; Amato-Wierda, Carmela; Landry, Marc; Ciszek, Ted


    A novel technique using silicon tubes for the production of bulk polysilicon via chemical vapor deposition is presented. Our experimental studies with a model reactor indicate that the polysilicon growth inside the silicon tube (15.3 g) exceeds that of the calculated polysilicon growth on silicon slim rods (4.3 g) over 55 h of deposition time. A computational model is also being developed to simulate the growth rates of the model reactor. Preliminary computational results from this model show a slightly asymmetric temperature distribution at the reactor center line with a 1000 sccm argon flow at 850°C reactor temperature. Both these experimental and computational modeling studies have identified key criteria for the prototype reactor being designed for bulk polysilicon growth.

  9. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf


    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  10. Microfabricated bulk wave acoustic bandgap device (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol


    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  11. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei


    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  12. A large-scale biomass bulk terminal


    Wu, M.R.


    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials that will be the major international trade flows in the future, the characteristics of these potential biomass materials, the interaction between the material properties and terminal equipment, the pe...

  13. Raman characterization of bulk ferromagnetic nanostructured graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Helena, E-mail: [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)


    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  14. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.


    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja


    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization...... is conducted by depositing a minute mass by means of focused ion beam. The total noise in the currently applied measurement system allows for a mass resolution of 0.4 fg in air....

  16. Scaling Bulk Data Analysis with Mapreduce (United States)


    Writing Bulk_Extractor MapReduce 101 List of References 105 viii Initial Distribution List 113 ix THIS PAGE INTENTIONALLY LEFT BLANK x List of Figures...dedicated Experts -Formal definition presented -Large technology growth
 -Everyone has email, cell phones, networks Adolescence
 -Growth in Academics ...period is where we see those requirements come to fruition with an explosive growth into the academic community. This period marks a point where research

  17. An Extended Hardness Limit in Bulk Nanoceramics (United States)


    to fabricate bulk, fully dense and high-purity nanocrystalline ceramics with unprecedentedly small nanometer- sized grains. Using magnesium aluminate ...nanocrystalline ceramic sintered at 2 GPa and 795 C. The diffraction peaks correspond to stoichiometric magnesium aluminate [42] and a nickel ring that found to be 3.6005 ± 0.0079 g cm3, which is equal to that of stoichiometric magnesium aluminate [43] and reveals that the produced ceramics are

  18. Radio-Shield, il primo esperimento italiano sulla Luna. (English Title: Radio-Shield, the first Italian experiment on the Moon) (United States)

    Barbarossa, M.


    Nextly, the first Italian and European experiment will reach the lunar surface. Selected in the international contest Lab2Moon for under-25, the goal of the experiment is to investigate about the possible shielding properties of cyanobacteria against space radiations. If these microorganisms, in addition to providing oxygen and other resources, can also shield from space radiation, they can be used in the development of radiation shields in future interplanetary missions.

  19. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding (United States)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  20. Preliminary study for development of low dose radiation shielding material using liquid silicon and metallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seo Goo; Lee, Sung Soo [Dept. of Medical Science, Graduate School of Soonchunhyang University, Asan (Korea, Republic of); Han, Su Chul [Div. of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kang, Sung Jin [SoonChunHyang University Hospital, Seoul (Korea, Republic of); Lim, Sung Wook [Graduate school of SeJong University, Seoul (Korea, Republic of)


    This study measured and compared the protective clothing using Pb used for shielding in a diagnostic X-ray energy range, and the shielding rates of X-ray fusion shielding materials using Si and TiO{sub 2}. For the experiment, a pad type shielding with a thickness of 1 mm was prepared by mixing Si-TiO{sub 2}, and the X-ray shielding rate was compared with 0.5 mmPb plate of The shielding rate of shielding of 0.5 mmPb plate 95.92%, 85.26 % based on the case of no shielding under each 60kVp, 100kVp tube voltage condition. When the shielding of Si-TiO{sub 2} pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 11 mm or more, and the shielding rate of 100% or more was confirmed at a thickness of 13 nn in 60kVp condition. When the shielding of Si-TiO{sub 2} pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 17 mm or more, and a shielding rate of 0.5 mmPb plate was observed at a thickness of 23 mm in 100kVp condition. Through the results of this study, We could confirm the possibility of manufacturing radiation protective materials that does not contain lead hazard using various metallic compound and liquid Si. This study shows that possibility of liquid Si and other metallic compound can harmonize easily. Beside, It is flexible and strong to physical stress than Pb obtained radiation protective clothes. But additional studies are needed to increase the shielding rate and reduce the weight.

  1. Wetting a rail tanker behind a noise shield. (United States)

    Rosmuller, Nils


    In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, over more than 100 km noise shields are apparent. The question is to what extent this noise shield hinders the cooling of a rail tanker, carrying flammable liquid such as liquefied petroleum gas (LPG)? To answer this question, a full scale test was conducted on an already constructed part of the Betuweline [N. Rosmuller, D.W.G. Arentsen, (2005). Praktijkproeven Betuweroute: Instantane uitstroming en koeling 24 juni 2005, Nibra, Arnhem, The Netherlands]. Two railcars and a rail tanker were placed behind a 3m high noise shield. First, it was tested as to whether firemen or water canons should be used to deliver the water. Water canons were best next, four positions of the water canons to wet the rail tanker were tested. Three camera's and three observers recorded the locations and the extent of water that hit the rail tanker. The results indicate that the noise shield, to a large extent, prevents the water from hitting, and therefore cooling, the rail tanker. The upper parts of the rail tanker were minimally struck by the water canons and the small amount of water flowing down the rail tanker did not reach the lower parts of it because of the armatures at the rail tanker. Also, the amount of water in the ditches to be used for wetting was too small. The ditch nearby ran empty. These insights are both relevant to emergency responders for disaster abatement purposes and to water management organizations. The Ministry of Transport is examining the possible strategies to deal with these findings. The results are based upon one single full scale test near a 3m high noise shield. In addition, it would be valuable to determine what the influence would be of other heights of the noise shields.

  2. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects (United States)

    Barthel, Joseph; Sarigul-Klijn, Nesrin


    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  3. Tailoring Magnetic Properties in Bulk Nanostructured Solids (United States)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  4. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions (United States)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer


    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  5. A study on the shielding of lodine 131 using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Dong Gun; Yang, Seoung Oh; Kim, Jung Ki; Lee, Sang Ho; Choi, Hyung Seok; Bae, Cheol Woo [Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of)


    This study was designated to investigate the Bremsstrahlung and radiation dose by beta rays. Radiation attenuation from I-131 treatment ward was analyzed using radio protective apron. Shielding materials which is included lead or water were simulated in Monte Carlo Simulation then the spectrum on interaction was analyzed. The shielding materials were categorized according to the thickness. 0.25 mm and 0.5 mm thick lead and 0.1 mm and 0.2 mm thick water shielding materials were configured in Monte Carlo Simulation for this study. Only lead shielding method and water plus lead shielding method were carried. As a results, when 0.5 mm thick lead shielding method was performed, the radiation dose was similar to the results with water plus lead shielding method. In case of using 0.25 mm thick lead shielding, the shielding effect was somewhat less. However, that shielding method cause dose reduction of about 60% compare with non-shielding material.

  6. Research on Primary Shielding Calculation Source Generation Codes

    Directory of Open Access Journals (Sweden)

    Zheng Zheng


    Full Text Available Primary Shielding Calculation (PSC plays an important role in reactor shielding design and analysis. In order to facilitate PSC, a source generation code is developed to generate cumulative distribution functions (CDF for the source particle sample code of the J Monte Carlo Transport (JMCT code, and a source particle sample code is deveoped to sample source particle directions, types, coordinates, energy and weights from the CDFs. A source generation code is developed to transform three dimensional (3D power distributions in xyz geometry to source distributions in r θ z geometry for the J Discrete Ordinate Transport (JSNT code. Validation on PSC model of Qinshan No.1 nuclear power plant (NPP, CAP1400 and CAP1700 reactors are performed. Numerical results show that the theoretical model and the codes are both correct.

  7. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined (United States)


    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  8. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup


    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, w...... that the aminoglycoside tolerance mediated by the presence of extracellular DNA is not caused by activation of the pmr genes in our P. aeruginosa biofilms but rather by a protective shield effect of the extracellular DNA....... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release...

  9. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho


    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  10. Shadow-Shielding Compensation for Moving Sources Detection (United States)

    Coulon, Romain; Dumazert, Jonathan


    To monitor radioactivity emitted by a vehicle such as a pedestrian, a car, a train, or a truck, radiation portal monitors (RPMs) are commonly employed. It has been noted that these RPM suffer from a shadow-shielding effect when the source is transported by a dense and large vehicle such as a truck or a train. While methods using databases are listed as state of the art, we have developed an approach based on a state model, ensuring a gain in performance and flexibility. This new study presents a technique applied to RPM, efficiently compensating the shadow-shielding effect. A simulation study has been performed to highlight the efficiency and reliability of the method.

  11. Research on Primary Shielding Calculation Source Generation Codes (United States)

    Zheng, Zheng; Mei, Qiliang; Li, Hui; Shangguan, Danhua; Zhang, Guangchun


    Primary Shielding Calculation (PSC) plays an important role in reactor shielding design and analysis. In order to facilitate PSC, a source generation code is developed to generate cumulative distribution functions (CDF) for the source particle sample code of the J Monte Carlo Transport (JMCT) code, and a source particle sample code is deveoped to sample source particle directions, types, coordinates, energy and weights from the CDFs. A source generation code is developed to transform three dimensional (3D) power distributions in xyz geometry to source distributions in r θ z geometry for the J Discrete Ordinate Transport (JSNT) code. Validation on PSC model of Qinshan No.1 nuclear power plant (NPP), CAP1400 and CAP1700 reactors are performed. Numerical results show that the theoretical model and the codes are both correct.

  12. Superconducting shielded core reactor with reduced AC losses (United States)

    Cha, Yung S.; Hull, John R.


    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.


    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K; Joseph Murphy, J


    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding that was induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species used in the construction of the packaging, followed by polyvinyl acetate (PVAc) glue. Fiberboard material, also used in the construction of the packaging induced corrosion to a much lesser extent than the PVAc glue and RTV sealant, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water. In light of these corrosion mechanisms, the lead shielding was sheathed in a stainless steel liner to mitigate against corrosion.

  14. Approximate design calculation methods for radiation streaming in shield irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro [Ship Research Inst., Mitaka, Tokyo (Japan); Yoritsune, Tsutomu


    Investigation and assessment are made for approximate design calculation methods of radiation streaming in shield irregularities. Investigation is made for (1) source, (2) definition of streaming radiation components, (3) calculation methods of streaming radiation, (4) streaming formulas for each irregularity, (5) difficulties in application of streaming formulas, etc. Furthermore, investigation is made for simple calculation codes and albedo data. As a result, it is clarified that streaming calculation formulas are not enough to cover various irregularities and their accuracy or application limit is not sufficiently clear. Accurate treatment is not made in the formulas with respect to the radiation behavior for slant incidence, bend part, offset etc., that results in too much safety factors in the design calculation and distrust of the streaming calculation. To overcome the state and improve the accuracy of the design calculation for shield irregularities, it is emphasized to assess existing formulas and develop better formulas based on systematic experimental studies. (author)

  15. The value of thyroid shielding in intraoral radiography. (United States)

    Hoogeveen, Reinier C; Hazenoot, Bart; Sanderink, Gerard C H; Berkhout, W Erwin R


    To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation. Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO(®) (The Phantom Laboratory, Salem, NY) male phantom with a dosemeter. Four protocols were tested: round collimation and rectangular collimation, both with and without thyroid shield. Five exposure positions were deployed: upper incisor (Isup), upper canine (Csup), upper premolar (Psup), upper molar (Msup) and posterior bitewing (BW). Exposures were made with 70 kV and 7 mA and were repeated 10 times. The exposure times were as recommended for the exposure positions for the respective collimator type by the manufacturer for digital imaging. The data were statistically analyzed with a three-way ANOVA test. Significance was set at p radiography.

  16. Active-passive gradient shielding for MRI acoustic noise reduction. (United States)

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A


    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB. Copyright 2005 Wiley-Liss, Inc.

  17. Application of individual lead shield in radiotherapy of eyelid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Tadashi; Taniguchi, Hisashi; Inoue, Takaaki; Ohyama, Takashi [Tokyo Medical and Dental Univ. (Japan). Hospital; Oki, Meiko; Takeda, Masamune; Shibuya, Hitoshi


    In the treatment of the maxillofacial tumors, radiotherapy plays an important role in the achievement of good local control and to keep the normal shape and function. For the tumors occurring in or adjacent to the orbit, especially the tumors of eyelids, radiotherapy combined with/without surgery also yields better results than surgery alone, but the lens of the eye is a radiosensitive organ. Loss of vision could occur when radiation beam is directed at the eye, so radiotherapy prostheses must be used in the radiotherapy of eyelid tumor. An individual lead shield for the lens of eye was made for each of the 10 eyelid tumor patients and it was carefully placed in the conjunctival sac after anaesthesia with a few drops of oxybuprocaine (Benoxil) to avoid irradiation of the globe. The lead shield was applied to protect the normal surrounding structures. Excellent cosmetic and functional results were achieved during and after radiotherapy. (author)

  18. Nano-Rheology: Stress Shielding and Stick-Slip Dynamics (United States)

    Cheng, Xinguang; Chang, Hsueh-Chia


    A molecular Langevin theory explains the rich and nonlinear viscoelastic rheology exhibited by monolayers and bilayers of water confined between two charged mica surfaces. Elastic storage endowed by asymmetric water-surface and water-water interaction is shown to produce a curious stress shielding phenomenon. Noise-sensitive stick-slip dynamics occurs when the surface speed is comparable to the molecular equilibration speed, with distinct hopping statistics between surface sites captured by a Fokker-Planck analysis. At large displacement, two-time asymptotics shows that sliding dynamics over multiple sites is responsible for the viscous properties but the elastic component is due to slow near-equilibrium dynamics at the slow intervals. Scaling theories for the rheological moduli are favorably compared to literature data. Both stress shielding and slip at large amplitudes are responsible for the 1e4-1e5 order difference in reported viscosity.

  19. Topography of the shield volcano, Olympus Mons on Mars (United States)

    Wu, S. S. C.; Garcia, P. A.; Jordan, R.; Schafer, F. J.; Skiff, B. A.


    Olympus Mons, one of the largest known shield volcanoes in the solar system, covers an area of more than 3.2 x 10 to the 5th sq km and has a diameter of more than 600 km, excluding its vast aureole deposits. The structure is five times larger than the largest shield volcano on the earth. It is situated on the north-west flank of the Tharsis volcanic region, a broad topographic rise on the Martian surface. The volcano has three physical subdivisions: the summit caldera, the terraced upper flanks, and the lower flanks, which terminate in a scarp 2-10 km high that nearly surrounds the structure. A large block of images of the Tharsis region, including Olympus Mons, was obtained by the Viking mission. A topographic map of Olympus Mons is presented here, which has been compiled using various combinations of stereo pairs of these images, together with stereoscopic perspective views generated by image processing techniques.

  20. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de


    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  1. Measurement of the transient shielding effectiveness of enclosures using UWB pulses inside an open TEM waveguide

    Directory of Open Access Journals (Sweden)

    H. Herlemann


    Full Text Available Recently, new definitions of shielding effectiveness (SE for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005. Numerical results were shown for closed as well as for non closed cylindrical shields. In the present work, a measurement procedure is introduced using ultra wideband (UWB electromagnetic field pulses. The procedure provides a quick way to determine the transient shielding effectiveness of an enclosure without performing time consuming frequency domain measurements. For demonstration, a cylindrical enclosure made of conductive textile is examined. The field pulses are generated inside an open TEM-waveguide. From the measurement of the transient electric and magnetic fields with and without the shield in place, the electric and magnetic shielding effectiveness of the shielding material as well as the transient shielding effectiveness of the enclosure are derived.

  2. Capsule Shields the Function of Short Bacterial Adhesins


    Schembri, Mark A; Dalsgaard, Dorte; Klemm, Per


    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can occur in other gram-negative bacteria. Likewise, we show that other short adhesins exemplified by the AIDA-I protein are blocked by the presence of a capsule. The results support the notion that cap...

  3. New combination of composite nanoparticles for improved electromagnetic interference shielding


    Azadmanjiri, Jalal


    The scope of this research is to investigate generation and use of new “composite” nanoparticles, in particular conductive and magnetic nanoparticles, and study their potential to improve electromagnetic interference absorption for the high frequency range applications. EMI (electromagnetic interference) shielding is a method to prevent electromagnetic fields flowing between two locations by means of a barrier composed of functional materials. This dissertation presents research finding...

  4. Study on the effectiveness of QPS electronics shielding

    CERN Document Server

    Versaci, R


    About 30% of the 2011 LHC downtime is due to failures of the Quench Protection System (QPS) induced by the radiation affecting the electronics located below the LHC main dipoles (MB). In the view of LHC technical stop foreseen for December 2011, we have investigated, by means of FLUKA simulations, the efficiency of an iron shielding to reduce the radiation affecting the QPS electronics. These are situated in the Dispersion Suppressors where the use of radiation resistant hardware is not immediately possible.

  5. Ballistic limit curve regression for Freedom Station orbital debris shields (United States)

    Jolly, William H.; Williamsen, Joel W.


    A procedure utilized at Marshall Space Flight Center to formulate ballistic limit curves for the Space Station Freedom's manned module orbital debris shields is presented. A stepwise linear least squares regression method similar to that employed by Burch (1967) is used to relate a penetration parameter to various projectile and target descriptors. A stepwise regression was also conducted with the model reduced to lower forms, thus eliminating the effects of generalized assumptions.

  6. Shielding simulation of the CDTN cyclotron bunker using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Dalle, Hugo M.; Campolina, Daniel de A.M., E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Div. de Reatores e Radiacoes


    The Nuclear Technology Development Centre (CDTN/CNEN) has contracted services from General Electric in order to install a cyclotron for radioisotopes production and PET radiopharmaceutical synthesis. The Monte Carlo code MCNP5 was used to determine the TVL (tenth value layer) of the concrete and verify shielding calculations performed by GE. The simulations results show values of equivalent dose rates in agreement with those calculated using the methodology adopted by GE, the NCRP-144 and the NCRP-51. (author)

  7. Design and Testing of Improved Spacesuit Shielding Components


    Ware, J.; Ferl, J.; Wilson, J W; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.


    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We...

  8. Model experiment of upward leaders; Shielding effects of tall objects

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, T.; Aihara, Y.; Suzuki, T. (Central Research Inst. of Electric Power Industry, Tokyo (Japan))


    Discharges originating from laboratory upward leaders are studied experimentally with a configuration consisting of two parallel vertical rods at ground and an elevated plane. Flashover probability of each rod, the effect of gap configuration on that probability, and the shielding effect of the taller rod on the smaller one are investigated. Experimental results are analyzed taking into account the deviation of time to flashover of the gap. Application of the results to the case of natural lightning is also discussed.

  9. Improved Assembly for Gas Shielding During Welding or Brazing (United States)

    Gradl, Paul; Baker, Kevin; Weeks, Jack


    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  10. High-Permeability Magnetic Polymer Additives for Lightweight Electromagnetic Shielding (United States)


    generally light. Polymers have densities around 1–2 g/cm3, while those of copper (Cu) and mu-metal are almost 9 g/cm3. Polymers can also be easily...interfaces that can cause poor dispersion and nonuniform shielding. As an example of a lightweight alternative, graphene can be made ferromagnetic by...chemically bonding metal atoms (both high- and low-spin ions) onto the surface.6 Enhanced ferromagnetism in graphene can be elicited by

  11. Shielding Performance Measurements of Spent Fuel Transportation Container


    Sun, Hong-chao; Li, Guo-qiang; Yan, Feng; ZHUANG Da-jie


    The safety supervision of radioactive material transportation package has been further stressed and implemented. The shielding performance measurements of spent fuel transport container is the important content of supervision. However, some of the problems and difficulties reflected in practice need to be solved, such as the neutron dose rate on the surface of package is too difficult to measure exactly, the monitoring results are not always reliable, etc. The monitoring results using differe...

  12. Attenuation of high-energy x rays by iron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Bespalov, V.I.; Chakhlov, V.L.; Shtein, M.M.


    Monte Carlo calculations are presented on electron-accelerator x-ray spectra for actual target thicknesses and electron energies of 4-50 MeV. Effective attenuation coefficients have been obtained as well as build-up factors for collimated beams andiron shielding of thickness form 1 to 80 cm. The radiation contrast has been determined as a function of thickness for this energy range.

  13. Effect of CSR shielding in the compact linear collider

    CERN Document Server

    Esberg, J; Apsimon, R; Schulte, D


    The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.

  14. CAD-Based Shielding Analysis for ITER Port Diagnostics (United States)

    Serikov, Arkady; Fischer, Ulrich; Anthoine, David; Bertalot, Luciano; De Bock, Maartin; O'Connor, Richard; Juarez, Rafael; Krasilnikov, Vitaly


    Radiation shielding analysis conducted in support of design development of the contemporary diagnostic systems integrated inside the ITER ports is relied on the use of CAD models. This paper presents the CAD-based MCNP Monte Carlo radiation transport and activation analyses for the Diagnostic Upper and Equatorial Port Plugs (UPP #3 and EPP #8, #17). The creation process of the complicated 3D MCNP models of the diagnostics systems was substantially accelerated by application of the CAD-to-MCNP converter programs MCAM and McCad. High performance computing resources of the Helios supercomputer allowed to speed-up the MCNP parallel transport calculations with the MPI/OpenMP interface. The found shielding solutions could be universal, reducing ports R&D costs. The shield block behind the Tritium and Deposit Monitor (TDM) optical box was added to study its influence on Shut-Down Dose Rate (SDDR) in Port Interspace (PI) of EPP#17. Influence of neutron streaming along the Lost Alpha Monitor (LAM) on the neutron energy spectra calculated in the Tangential Neutron Spectrometer (TNS) of EPP#8. For the UPP#3 with Charge eXchange Recombination Spectroscopy (CXRS-core), an excessive neutron streaming along the CXRS shutter, which should be prevented in further design iteration.


    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.


    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  16. Characterization of the ballistic limit curve for metallic Whipple shield

    Directory of Open Access Journals (Sweden)

    Lee M.


    Full Text Available It has been known that space debris or meteoroid impact damage can have significant effects on spacecraft. Experimental test has been conducted up to 7 km/s, and numerical simulations are performed at higher velocities. Studies on the hypervelocity impact onto single plate, double spaced plates (Whipple shield, and multiple plates (MS shield have been performed and ballistic limit curves (BLCs are proposed. Last 15 years SPH (Smoothed Particle Hydrodynamics has been applied to the hypervelocity impact problems because of cost of test and numerical efficiency especially in the hypervelocity impact regime. Although most of the simulations captured the debris shape well, somehow they do not seem to match well with the empirical ballistic limit curves. We have recently developed a new axisymmetric SPH hydrocode. In order to assess the confidence that should be placed in such simulations we simulated the hypervelocity impacts on aluminum Whipple shields and compared with the empirical BLCs. The SPH simulations indicated an improved accuracy compared with the previously published SPH simulation results. Other effort we put was using different types of equation of state, however no further improvement was achieved.

  17. Pb-free Radiation Shielding Glass Using Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Watcharin Rachniyom


    Full Text Available In this work, Pb-free shielding glass samples were prepared by the melt quenching technique using subbituminous fly ash (SFA composed of xBi2O3 : (60-xB2O3 : 10Na2O : 30SFA (where x = 10, 15, 20, 25, 30 and 35 by wt%. The samples were investigated for their physical and radiation shielding properties. The density and hardness were measured. The results showed that the density increased with the increase of Bi2O3 content. The highest value of hardness was observed for glass sample with 30 wt% of Bi2O3 concentration. The samples were investigated under 662 keV gamma ray and the results were compared with theoretical calculations. The values of the mass attenuation coefficient (μm, the atomic cross section (σe and the effective atomic number (Zeff were found to increase with an increase of the Bi2O3 concentration and were in good agreement with the theoretical calculations. The best results for the half-value layer (HVL were observed in the sample with 35 wt% of Bi2O3 concentration, better than the values of barite concrete. These results demonstrate the viability of using coal fly ash waste for radiation shielding glass without PbO in the glass matrices.

  18. Variability of lithospheric structure in the Baltic Shield (United States)

    Pedersen, Helle; Debayle, Eric; Maupin, Valérie


    We present the shear velocity structure down to 250km depth beneath the dense LAPNET array in northern Finland, located at the northern end of the Baltic Shield. We analysed phase velocity dispersion of fundamental mode Rayleigh waves, using data from 46 seismic broadband stations and almost 200 magnitude >6 events. The inversion of the dispersion curve shows a well resolved low velocity zone starting at approximately 150km depth, while the shear velocities above are typical for cratonic lithosphere. The comparison to other parts of the Baltic Shield show strong variability of the lithospheric structure. Immediately south of LAPNET, in an area dominated by paleaproterozoic rocks at surface, the lithosphere is fast to a depth of 225-250km, while cratonic lithosphere seems to be absent beneath southern Norway, in spite of Proterozoic age tectonic ages. The low velocity zone beneath northern Finland indicates that the lithosphere in this area is either modified at depth, for example through metasomatism, or that it is thinner than the more internal part of the Baltic shield. We suggest that the modification of the cratonic lithosphere beneath northern Finland is not related to continental breakup at the opening of the Atlantic Ocean, as the continental shelf continues north, beneath the Barents Sea. We rather favour the hypothesis that subduction and/or collision could potentially modify (by fluid injection) or remove (by erosion/dripping) otherwise stable cratonic lithosphere.

  19. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.


    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  20. Neutron and gamma ray transport calculations in shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)

  1. Multi-domain active sound control and noise shielding. (United States)

    Lim, H; Utyuzhnikov, S V; Lam, Y W; Turan, A


    This paper describes an active sound control methodology based on difference potentials. The main feature of this methodology is its ability to automatically preserve "wanted" sound within a domain while cancelling "unwanted" noise from outside the domain. This method of preservation of the wanted sounds by active shielding control is demonstrated with various broadband and realistic sound sources such as human voice and music in multiple domains in a one-dimensional enclosure. Unlike many other conventional active control methods, the proposed approach does not require the explicit characterization of the wanted sound to be preserved. The controls are designed based on the measurements of the total field on the boundaries of the shielded domain only, which is allowed to be multiply connected. The method is tested in a variety of experimental cases. The typical attenuation of the unwanted noise is found to be about 20 dB over a large area of the shielded domain and the original wanted sound field is preserved with errors of around 1 dB and below through a broad frequency range up to 1 kHz.

  2. Chemistry and radiative shielding in star-forming galactic discs (United States)

    Safranek-Shrader, Chalence; Krumholz, Mark R.; Kim, Chang-Goo; Ostriker, Eve C.; Klein, Richard I.; Li, Shule; McKee, Christopher F.; Stone, James M.


    To understand the conditions under which dense, molecular gas is able to form within a galaxy, we post-process a series of three-dimensional galactic-disc-scale simulations with ray-tracing-based radiative transfer and chemical network integration to compute the equilibrium chemical and thermal state of the gas. In performing these simulations, we vary a number of parameters, such as the interstellar radiation field strength, vertical scaleheight of stellar sources, and cosmic ray flux, to gauge the sensitivity of our results to these variations. Self-shielding permits significant molecular hydrogen (H2) abundances in dense filaments around the disc mid-plane, accounting for approximately ˜10-15 per cent of the total gas mass. Significant CO fractions only form in the densest, nH≳ 10^3 cm^{-3}, gas where a combination of dust, H2, and self-shielding attenuates the far-ultraviolet background. We additionally compare these ray-tracing-based solutions to photochemistry with complementary models where photoshielding is accounted for with locally computed prescriptions. With some exceptions, these local models for the radiative shielding length perform reasonably well at reproducing the distribution and amount of molecular gas as compared with a detailed, global ray-tracing calculation. Specifically, an approach based on the Jeans length with a T = 40 K temperature cap performs the best in regard to a number of different quantitative measures based on the H2 and CO abundances.

  3. Materials for Bulk Acoustic Resonators and Filters (United States)

    Loebl, Hans-Peter


    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  4. Extraordinary plasticity of ductile bulk metallic glasses. (United States)

    Chen, Mingwei; Inoue, Akihisa; Zhang, Wei; Sakurai, Toshio


    Shear bands generally initiate strain softening and result in low ductility of metallic glasses. In this Letter, we report high-resolution electron microscope observations of shear bands in a ductile metallic glass. Strain softening caused by localized shearing was found to be effectively prevented by nanocrystallization that is in situ produced by plastic flow within the shear bands, leading to large plasticity and strain hardening. These atomic-scale observations not only well explain the extraordinary plasticity that was recently observed in some bulk metallic glasses, but also reveal a novel deformation mechanism that can effectively improve the ductility of monolithic metallic glasses.

  5. "Work-Hardenable" ductile bulk metallic glass. (United States)

    Das, Jayanta; Tang, Mei Bo; Kim, Ki Buem; Theissmann, Ralf; Baier, Falko; Wang, Wei Hua; Eckert, Jürgen


    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  6. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole


    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainabl...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  7. Towards bulk based preconditioning for quantum dotcomputations

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang


    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  8. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo


    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  9. Binary Ni-Nb bulk metallic glasses (United States)

    Xia, L.; Li, W. H.; Fang, S. S.; Wei, B. C.; Dong, Y. D.


    We studied the glass forming ability of Ni-Nb binary alloys and found that some of the alloys can be prepared into bulk metallic glasses by a conventional Cu-mold casting. The best glass former within the compositional range studied is off-eutectic Ni62Nb38 alloy, which is markedly different from those predicted by the multicomponent and deep eutectic rules. The glass formation mechanism for binary Ni-Nb alloys was studied from the thermodynamic point of view and a parameter γ* was proposed to approach the ability of glass formation against crystallization.

  10. Cosmological Brane World Solutions with Bulk Scalar Fields


    Davis, Stephen C.


    Cosmological brane world solutions are found for five-dimensional bulk spacetimes with a scalar field. A supergravity inspired method for obtaining static solutions is combined with a method for finding brane cosmologies with constant bulk energies. This provides a way to generate full (bulk and brane) cosmological solutions to brane worlds with bulk scalar fields. Examples of these solutions, and their cosmological evolution, are discussed.

  11. Design and analysis of electromagnetic interference filters and shields (United States)

    McDowell, Andrew Joel

    Electromagnetic interference (EMI) is a problem of rising prevalence as electronic devices become increasingly ubiquitous. EMI filters are low pass filters intended to prevent the conducted electric currents and radiated electromagnetic fields of a device from interfering with the proper operation of other devices. Shielding is a method, often complementary to filtering, that typically involves enclosing a device in a conducting box in order to prevent radiated EMI. This dissertation includes three chapters related to the use of filtering and shielding for preventing electromagnetic interference. The first chapter deals with improving the high frequency EMI filtering performance of surface mount capacitors on printed circuit boards (PCBs). At high frequencies, the impedance of a capacitor is dominated by a parasitic inductance, thus leading to poor high frequency filtering performance. Other researchers have introduced the concept of parasitic inductance cancellation and have applied this concept to improving the filtering performance of volumetrically large capacitors at frequencies up to 100 MHz. The work in this chapter applies the concept of parasitic inductance cancellation to much smaller surface mount capacitors at frequencies up to several gigahertz. The second chapter introduces a much more compact design for applying parasitic inductance cancellation to surface mount capacitors that uses inductive coupling between via pairs as well as coplanar traces. This new design is suited for PCBs having three or more layers including solid ground and/or power plane(s). This design is demonstrated to be considerably more effective in filtering high frequency noise due to crosstalk than a comparable conventional shunt capacitor filter configuration. Finally, chapter 3 presents a detailed analysis of the methods that are used to decompose the measure of plane wave shielding effectiveness into measures of absorption and reflection. Textbooks on electromagnetic

  12. Physical analysis of the radiation shielding for the medical accelerators (United States)

    Li, Q. F.; Xing, Q. Z.; Kong, C. C.


    Radiation safety standards today require comprehensive shielding protection schemes for all particle accelerators. The original shielding system of BJ-20 (BeiJing-20 MeV), the high-energy medical electron linac, was designed only for the 18 MeV level. And the dose caused by the lost electrons in the 270° bending magnet system was neglected. In this paper, the leakage dose of BJ-20 is carefully analyzed. The radiation leakage dose distribution of the photons coming from the accelerator head is obtained for energy levels of 6, 12, 14, and 18 MeV. The dose of the photoneutrons is especially analyzed for the 18 MeV level. The result gives that even neglecting the dose from the 270° bending magnet system, the shielding system is still not enough for the energy levels lower than 18 MeV. The radiation leakage produced by electrons that are lost in the 270° bending magnet system has been particularly studied. Using beam transport theory and Monte Carlo sampling methods, which have been combined in calculations, we have obtained the distribution of the energy, position, and direction of the lost electrons. These data were then further processed by the Monte Carlo N-particle (MCNP) code as input data. The results show that when the electron loss rate in the 270° bending magnet system is 13.5%, the radiation leakage dose of the photons generated by the lost electrons is 0.1% higher than that at the isocenter, and the corresponding relative leakage dose of the photoneutrons reaches 0.045% around an angle of 170° at 18 MeV level. Both of these parameters exceed radioprotection safety standards for medical accelerators. The original shielding design is therefore not suitable and is also incomplete since the radiation produced by the electrons being lost in the 270° bending magnet system was neglected and the leakage dose for the low-energy levels was not considered in the original design. Our calculations provide a very useful tool for further optimization and design

  13. 19 CFR 151.24 - Unlading facilities for bulk sugar. (United States)


    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  14. WAPDEG Analysis of Waste Package and Drip shield Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon


    As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of

  15. Use of containers to carry bulk and break bulk commodities and its impact on gulf region ports and international trade. (United States)


    The University of New Orleans Transportation Institute was tasked by the Louisiana Transportation Research Center (LTRC) in mid-2012 to assess the use of containers to transport bulk and break bulk commodities and to determine what their impact would...

  16. Measurements of the electrostatic and electromagnetic fields of Faraday shielding half-turn loop type ICRF antennae

    Energy Technology Data Exchange (ETDEWEB)

    Fortgang, C.M.; Hwang, D.Q.


    Detailed measurements of both the electrostatic and electromagnetic fields are performed for various types of Faraday shields mounted on PLT ICRF antennae. The data show that the shields have little effect on the electromagnetic fields when the antenna is driven such that it is generating a constant total flux for the various cases. A new type of shield (Type II) is investigated that has no effect on the antenna inductance and performs equally as well as the conventional shields (Type I) in shielding out the electrostatic fields. Measurements indicate, for the shields investigated, that each layer of shield strips degrade the Q by approximately a factor of two.

  17. Bulk magnetic domain stability controls paleointensity fidelity (United States)

    Paterson, Greig A.; Muxworthy, Adrian R.; Yamamoto, Yuhji; Pan, Yongxin


    Nonideal, nonsingle-domain magnetic grains are ubiquitous in rocks; however, they can have a detrimental impact on the fidelity of paleomagnetic records—in particular the determination of ancient magnetic field strength (paleointensity), a key means of understanding the evolution of the earliest geodynamo and the formation of the solar system. As a consequence, great effort has been expended to link rock magnetic behavior to paleointensity results, but with little quantitative success. Using the most comprehensive rock magnetic and paleointensity data compilations, we quantify a stability trend in hysteresis data that characterizes the bulk domain stability (BDS) of the magnetic carriers in a paleomagnetic specimen. This trend is evident in both geological and archeological materials that are typically used to obtain paleointensity data and is therefore pervasive throughout most paleomagnetic studies. Comparing this trend to paleointensity data from both laboratory and historical experiments reveals a quantitative relationship between BDS and paleointensity behavior. Specimens that have lower BDS values display higher curvature on the paleointensity analysis plot, which leads to more inaccurate results. In-field quantification of BDS therefore reflects low-field bulk remanence stability. Rapid hysteresis measurements can be used to provide a powerful quantitative method for preselecting paleointensity specimens and postanalyzing previous studies, further improving our ability to select high-fidelity recordings of ancient magnetic fields. BDS analyses will enhance our ability to understand the evolution of the geodynamo and can help in understanding many fundamental Earth and planetary science questions that remain shrouded in controversy.

  18. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong


    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  19. Substantial bulk photovoltaic effect enhancement via nanolayering (United States)

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.


    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1-x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  20. Perovskite oxides: Oxygen electrocatalysis and bulk structure (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest


    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  1. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mengge [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Xue, Xiangxin, E-mail: [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Yang, He; Liu, Dong [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Wang, Chao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhefu [Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)


    Highlights: • A novel comprehensive utilization method for vanadium slag is proposed. • Shielding properties of vanadium slag are better than ordinary concrete. • HVL of vanadium slag is between Lead and concrete to shield {sup 60}Co gamma ray. • HVL of composite is higher than concrete when adding amount of vanadium slag is 900. • Composite can be used as injecting mortar for cracks developed in concrete shields. - Abstract: New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001 MeV–100000 MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by {sup 60}Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield {sup 60}Co gamma ray, also the resistance temperature of composite was about 215 °C and the bending strength was over 10 MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

  2. Is lead shielding of patients necessary during fluoroscopic procedures? A study based on kyphoplasty. (United States)

    Smith, Joshua R; Marsh, Rebecca M; Silosky, Michael S


    To determine the benefits, risks, and limitations associated with wrapping a patient with lead shielding during fluoroscopy-guided kyphoplasty procedures as a way to reduce operator radiation exposure. An anthropomorphic phantom was used to mimic a patient undergoing a kyphoplasty procedure under fluoroscopic guidance. Radiation measurements of the air kerma rate (AKR) were made at several locations and under various experimental conditions. First, AKR was measured at various angles along the horizontal plane of the phantom and at varying distances from the phantom, both with and without a lead apron wrapped around the lower portion of the phantom (referred to here as phantom shielding). Second, the effect of an operator's apron was simulated by suspending a lead apron between the phantom and the measurement device. AKR was measured for the four shielding conditions-phantom shielding only, operator apron only, both phantom shielding and operator apron, and no shielding. Third, AKR measurements were made at various heights and with varying C-arm angle. At all locations, the phantom shielding provided no substantial protection beyond that provided by an operator's own lead apron. Phantom shielding did not reduce AKR at a height comparable to that of an operator's head. Previous reports of using patient shielding to reduce operator exposure fail to consider the role of an operator's own lead apron in radiation protection. For an operator wearing appropriate personal lead apparel, patient shielding provides no substantial reduction in operator dose.

  3. Design and optimization of HPLWR high pressure Turbine gamma ray shield

    Energy Technology Data Exchange (ETDEWEB)

    Kebwaro, Jeremiah Monari; Zhao, Yaolin, E-mail:; He, Chaohui


    Highlights: • Shield around HPLWR high pressure turbine optimized by Monte Carlo method. • The occupancy period in the turbine building was considered in the optimization. • Shield thickness is significantly reduced when heavy concretes are used. • Shield thickness for BWRs is sufficient for HPWR if heavy concrete is used. - Abstract: This work proposes the optimum gamma ray shield thickness around the HPLWR high pressure turbine for different occupancy periods in the turbine building. Monte Carlo method was employed in the design process and only radioactive nitrogen-16 was considered as the source of radiation. Five grades of concrete (ordinary, magnetite, heavy magnetite, steel magnetite and barite) were used as shielding materials. The isotope source term in the high pressure turbine was estimated by modeling the HPLWR three pass core in MCNP and tracking the inventory using a simple algorithm. The high pressure turbine was thereafter modeled in MCNP with a concrete shield arrayed in layers around it. The surface flux tally and ICRP74 dose conversion coefficients were employed to estimate the dose profile across the shield. For some shielding materials, exponential functions were fitted on the calculated data to extrapolate dose values beyond the model thickness. The optimum shield thickness was determined by comparing the calculated dose profiles with dose limit proposals in the IAEA standard (NS-G-1.13) on radiation protection considerations during nuclear power plant design. It was observed that with a 120 cm thick heavy concrete shield, the turbine building would be safe for most occupancy periods. However for ordinary concrete the shield would require some extension to guarantee safety. For very long occupancy (more than 10 person hours per week), magnetite shield may also require slight extension. It can therefore be concluded that the shield thickness recommended for BWR turbines (which operate on a direct cycle like HPLWR) could be sufficient

  4. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S


    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have also provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be

  5. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields (United States)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick


    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  6. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes... (United States)


    ... IAEA International Atomic Energy Agency IMDG Code International Maritime Dangerous Goods Code IMO... authorized for bulk transportation by vessel and include special handling procedures based on the IMSBC Code... Management Facility (M-30), U.S. Department of Transportation, West Building Ground Floor, Room W12-140, 1200...

  7. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes


    diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across......%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all...... of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10...

  8. Organoboron polymers for photovoltaic bulk heterojunctions. (United States)

    Cataldo, Sebastiano; Fabiano, Simone; Ferrante, Francesco; Previti, Francesco; Patanè, Salvatore; Pignataro, Bruno


    We report on the application of three-coordinate organoboron polymers, inherently strong electron acceptors, in flexible photovoltaic (PV) cells. Poly[(1,4-divinylenephenylene)(2,4,6-triisopropylphenylborane)] (PDB) has been blended with poly(3-hexylthiophene-2,5-diyl) (P3HT) to form a thin film bulk heterojunction (BHJ) on PET/ITO substrates. Morphology may be modulated to give a high percentage of domains (10-20 nm in size) allowing exciton separation. The photoelectric properties of the BHJs in devices with aluminium back electrodes were imaged by light beam induced current (LBIC) and light beam induced voltage (LBIV) techniques. Open circuit voltages, short circuit currents and overall external quantum efficiencies obtained are among the highest reported for all-polymer PV cells. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo


    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias


    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  11. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K


    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  12. Interface control of bulk ferroelectric polarization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P [University of California, Berkeley; Luo, Weidong [ORNL; Yi, D. [University of California, Berkeley; Zhang, J.-X. [University of California, Berkeley; Rossell, M.D. [Lawrence Berkeley National Laboratory (LBNL); Yang, C.-H. [Korea Advanced Institute of Science and Technology; You, L. [University of California, Berkeley; Singh-Bhalla, G. B. [University of California, Berkeley & LBNL; Yang, S.Y [University of California, Berkeley; He, Q [University of California, Berkeley; Ramasse, Q. M. [Lawrence Berkeley National Laboratory (LBNL); Erni, R. [Lawrence Berkeley National Laboratory (LBNL); Martin, L. W. [University of Illinois, Urbana-Champaign; Chu, Y. H. [University of California, Berkeley; Pantelides, Sokrates T [ORNL; Pennycook, Stephen J [ORNL; Ramesh, R. [University of California, Berkeley


    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.

  13. Criticality in Bulk Metallic Glass Constituent Elements (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan


    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  14. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James


    In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram...... range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  15. How Many Bulk Metallic Glasses Are There? (United States)

    Li, Yanglin; Zhao, Shaofan; Liu, Yanhui; Gong, Pan; Schroers, Jan


    Quantitative prediction of glass forming ability using a priori known parameters is highly desired in metallic glass development; however proven to be challenging because of the complexity of glass formation. Here, we estimate the number of potential metallic glasses (MGs) and bulk metallic glasses (BMGs) forming systems and alloys, from empirically determined alloy design rules based on a priori known parameters. Specifically, we take into account atomic size ratio, heat of mixing, and liquidus temperature, which we quantify on binary glasses and centimeter-sized BMGs. When expanding into higher order systems that can be formed among 32 practical elements, we reduce the composition space for BMG formation using developed criteria by 106 times and estimate ∼3 million binary, ternary, quaternary, and quinary BMGs alloys.

  16. Rotary adsorbers for continuous bulk separations (United States)

    Baker, Frederick S [Oak Ridge, TN


    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  17. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio


    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  18. Generation and Stability of Bulk Nanobubbles. (United States)

    Oh, Seung Hoon; Kim, Jong-Min


    Recently, extremely small bubbles, referred to as nanobubbles, have drawn increased attention due to their novel properties and great potential for various applications. In this study, a novel method for the generation of bulk nanobubbles (BNBs) was introduced, and stability of fabricated BNBs was investigated. BNBs were created from CO2 gas with a mixing method; the chemical identity and phase state of these bubbles can be determined via infrared spectroscopy. The presence of BNBs was observed with a nanoparticle tracking analysis (NTA). The ATR-FTIR spectra of BNBs indicate that the BNBs were filled with CO2 gas. Furthermore, the BNB concentration and its ζ-potential were about 2.94 × 108 particles/mL and -20 mV, respectively (24 h after BNB generation with a mixing time of 120 min). This indicates the continued existence and stability of BNBs in water for an extended period of time.

  19. Assessment of bioburden encapsulated in bulk materials (United States)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond


    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  20. Investigation of Shielding Properties of Yarns, Twisted with Metal Wire

    Directory of Open Access Journals (Sweden)



    Full Text Available The development level of the modern techniques and information technologies creates diverse nature electromagnetic fields and electric field accumulations in the human environment. Electrically conductive textiles that protect against electromagnetic waves and electric charge accumulations can be usable as protective covers for work in computer equipment rooms, measuring stands, air and gas filters and so on. One of the methods used in increase of electrical conductivity in textiles is the development of their specific structures (including the development of threads with the metal component. In this paper, unlike the currently used in the world conductive material production method, where different metal fibres are used as an additives to the main fibre composition in order to create a variety of fibres and yarns, a spun yarn with metal wire was prototyped as samples for this research and the parameters of protective properties of these samples were investigated (such as surface resistivity, vertical resistance, etc.. The protective and shielding properties of woven network with prototyped twisted electro conductive thread with a wire (metal wire diameter of 15 microns were investigated. During the investigation the influence of the following factors, such as conductive fibre composition, electrically conductive thread distribution frequency of the longitudinal and transverse direction, on the protective shielding properties of conductive network were analyzed. The research enabled the assessment of influence of electrically conductive fibre yarn composition and its distribution in the woven mesh on protective shielding properties. DOI:

  1. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)


    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  2. Rare metal granites and related rocks of the Ukrainian shield

    Directory of Open Access Journals (Sweden)

    Esipchuk, K.Ye.


    Full Text Available Two rare metal leucocratic granites, Perga and Kamennaya complexes, can be distinquished on the Ukrainian shield. The Perga complex consists of medium- and coarse grained, mainly porphyric, biotite, riebeckite and aegirine granites, granite porphyries, microclinites and albitites with rare metal mineralization (genthelvite, phenacite, tantalite, cassiterite and wolframite etc.. Granites from several stocks (up to 30 km2 in the northwestern part of the shield, situated along the fracture zone, restricted the large Korosten pluton of rapakivi granites to the northwest. The age of these granites (Pb-Pb and U-Pb methods on zircon and monazite practically coincide with the age of rapakivi granites being 1750 Ma. Within the Korosten complex of rapakivi granites we consider that zinnwaldite granites, which are characterized by fluorite and topazine mineralization, represent the final phase of pluton. These granites differ from the Perga ones by their low content of rare metals. The Kamennaya Mogila complex lies in the southeastern part of the Ukrainian shield. It consists of biotite and muscovite-biotite, medium- and coarse-grained (also porphyric, and occasionally greisining granites with rare metal mineralization (cassiterite, columbite, molybdenite, wolframite and beryl. Granites form several stocks (5-30 km2 situated 10-30 km to the west-northwest of the South-Kalchik gabbro-syenite-granite pluton. Granitoids in both of these complexes have similar isotopic ages (1800 Ma. Leucocratic subalkaline granites (the Novoyanisol type are known within the pluton itself, occupying an intermediate position between the above mentioned in terms of mineral and geochemical composition. The gabbro-syenite-granite formation of the Nearazov region has a substantial similarity to the anorthosite-rapakivi-granite formation. In this respect the relation of each of them to rare metal granites is rather remarkable. This relation is, most probably, not only spatial, but

  3. Clinical Benefits of the Immediate Implant Socket Shield Technique. (United States)

    Saeidi Pour, Reza; Zuhr, Otto; Hürzeler, Markus; Prandtner, Otto; Rafael, Caroline Freitas; Edelhoff, Daniel; Liebermann, Anja


    Extraction-socket resorption is considered a major problem that can limit implantological rehabilitation options and compromise the esthetic outcome. Surgical techniques to reduce remodeling are of restricted predictability and commonly require several surgical interventions and grafting. This increases the treatment cost and places a physical and psychological strain on the patient. This clinical case report presents a replacement of an upper canine using the socket-shield technique (SST) with a CAD/CAM surgical guide, resulting in a predictable, high esthetic, and functional result. The SST is an alternative approach to curbing remodeling and resorption by retaining the facial part of the root during tooth extraction. An immediately placed implant supports the facial root fragment, preventing the collapse of the buccal wall. The SST with digital precision planning in combination with a CAD/CAM surgical guide benefits patients by preserving their tissue architecture and causing only insignificant trauma. Furthermore, the SST reduces the number of surgical and prosthetic interventions required to one each for pre-operative planning, surgical procedures, and prosthetic rehabilitation. The socket shield technique is a minimally invasive implantological approach offers patients and clinicians multiple benefits. The socket-shield technique (SST) represents an alternative approach to intervene remodeling and resorption processes by the maintenance of the facial part of the root during tooth extraction. The immediate placement of an implant supports the facial root fragment and thereby prevents a collapse of the buccal wall. The SST associated with a CAD/CAM fabricated surgical guide, can reduce the amount of appointments, due to the immediate fabrication of the definitive restoration with the existing model. Therefore, no further necessary appointments are required apart from first pre-operative planning, second for surgical treatment, and third for prosthetic

  4. Shielding considerations for the small animal radiation research platform (SARRP). (United States)

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron


    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1-3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field.

  5. Specification of the Surface Charging Environment with SHIELDS (United States)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.


    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.

  6. Remote Recession Sensing of Ablative Heat Shield Materials (United States)

    Winter, Michael W.; Stackpoole, Margaret; Nawaz, Anuscheh; Gonzales, Gregory Lewis; Ho, Thanh


    Material recession and charring are two major processes determining the performance of ablative heat shield materials. Even in ground testing, the characterization of these two mechanisms relies on measurements of material thickness before and after testing, thus providing only information integrated over the test time. For recession measurements, optical methods such as imaging the sample surface during testing are under investigation but require high alignment and instrument effort, therefore being not established as a standard measurement method. For char depth measurements, the most common method so far consists in investigation of sectioned samples after testing or in the case of Stardust where core extractions were performed to determine char information. In flight, no reliable recession measurements are available, except total recession after recovering the heat shield on ground. Developments of mechanical recession sensors have been started but require substantial on board instrumentation adding mass and complexity. In this work, preliminary experiments to evaluate the feasibility of remote sensing of material recession and possibly char depth through optically observing the emission signatures of seeding materials in the post shock plasma is investigated. It is shown that this method can provide time resolved recession measurements without the necessity of accurate alignment procedures of the optical set-up and without any instrumentation on board of a spacecraft. Furthermore, recession data can be obtained without recovering flight hardware which would be a huge benefit for inexpensive heat shield material testing on board of small re-entry probes, e.g. on new micro-satellite re-entry probes as a possible future application of Cubesats or RBR


    Directory of Open Access Journals (Sweden)



    Full Text Available Public concerns on Extremely Low Frequency (ELF Electromagnetic Field (EMF exposure have been elongated since the last few decades. Electrical substations and high tension rooms in commercial buildings were among the contributing factors emanating ELF magnetic fields. This paper discussed various shielding methods conventionally used in mitigating the ELF exposure. Nevertheless, the standard methods were found to be impractical and incapable of meeting currents shielding demands. In response to that, remarkable researches were conducted in effort to invent novel methods which is more convenient and efficient such as magnetic aqueous shielding or paint, textiles and papers shielding. A magnetic aqueous substrate, Manganese Zinc Ferrite was used as shielding material. The magnetic field and flux distribution inside the aqueous magnetic material are evaluated to optimize shielding against ELFEMF exposure, as to mitigate its exposure.

  8. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application (United States)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar


    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  9. Structural Integrity Evaluation of Cold Neutron Laboratory Building by Design Change of Guide Shielding Room

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Youngki; Kim, Harkrho


    This report summarizes the results of the structural integrity evaluation for the cold neutron laboratory building by design change of guide shielding room. The design of the guide shielding room was changed by making its structure members in normal concrete (2.3 g/cc) instead of heavy concrete (3.5 g/cc) because the heavy concrete could be not supplied to meet its design specification. Therefore, it was decided that the guide shielding room is made of the normal concrete. And, the shielding performance of the normal concrete was recalculated to confirm satisfying its design specification, which is of a 9000 zone according to HANARO radiation region classification. The change makes the shielding wall thicker than existing design, and then it is caused to qualify the structural integrity evaluation of the CNLB. Finally, the structural integrity of the CNLB was re-evaluated by considering the design change of the guide shielding room.

  10. A study on the calculation of the shielding wall thickness in medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Ins. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological science, college of health sciences, Catholic University of Pusan, Busan (Korea, Republic of)


    The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50⁓100 cm for pure concrete and concrete with Boron+polyethylene at 80⁓100 cm. The neutron shielding was calculated 100⁓140 cm for pure concrete and concrete with Boron+polyethylene at 90⁓100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.


    Directory of Open Access Journals (Sweden)

    V.S. Grinchenko


    Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.

  12. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.


    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  13. News from the Library: Facilitating access to a program for radiation shielding - the Library can help

    CERN Multimedia

    CERN Library


    MicroShield® is a comprehensive photon/gamma ray shielding and dose assessment programme. It is widely used for designing shields, estimating source strength from radiation measurements, minimising exposure to people, and teaching shielding principles.   Integrated tools allow the graphing of results, material and source file creation, source inference with decay (dose-to-Bq calculations accounting for decay and daughter buildup), the projection of exposure rate versus time as a result of decay, access to material and nuclide data, and decay heat calculations. The latest version is able to export results using Microsoft Office (formatted and colour-coded for readability). Sixteen geometries accommodate offset dose points and as many as ten standard shields plus source self-shielding and cylinder cladding are available. The library data (radionuclides, attenuation, build-up and dose conversion) reflect standard data from ICRP 38 and 107* as well as ANSI/ANS standards and RSICC publicat...

  14. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. (United States)

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin


    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  15. Reflector and Shield Material Properties for Project Prometheus

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash


    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  16. Capsule shields the function of short bacterial adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Dalsgaard, D.; Klemm, Per


    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can...... occur in other gram-negative bacteria. Likewise, we show that other short adhesins exemplified by the AIDA-I protein are blocked by the presence of a capsule. The results support the notion that capsule polysaccharides sterically prevent receptor-target recognition of short bacterial adhesins...

  17. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.


    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  18. Comparative study of radiation shielding parameters for bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaundal, Rajinder Singh, E-mail: [Department of Physics, School of Physical Sciences, Lovely Professional University, Phagwara, Punjab (India)


    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi{sub 2}O{sub 3-}(1-x) B{sub 2}O{sub 3} where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  19. Design and Testing of Improved Spacesuit Shielding Components

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.


    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  20. Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data

    Energy Technology Data Exchange (ETDEWEB)

    Zourari, K.; Peppa, V.; Papagiannis, P., E-mail: [Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, 11527 Athens (Greece); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel 24105 (Germany)


    Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions

  1. Capsule shields the function of short bacterial adhesins. (United States)

    Schembri, Mark A; Dalsgaard, Dorte; Klemm, Per


    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can occur in other gram-negative bacteria. Likewise, we show that other short adhesins exemplified by the AIDA-I protein are blocked by the presence of a capsule. The results support the notion that capsule polysaccharides sterically prevent receptor-target recognition of short bacterial adhesins. This negative interference has important biological consequences, such as affecting the ability of bacteria to form biofilms.

  2. On the interaction between two oppositely signed, shielded, monopolar vortices

    DEFF Research Database (Denmark)

    Schmidt, M.R.; Beckers, M.; Nielsen, A.H.


    solutions of the two-dimensional Navier-Stokes equations. A comparative study between the laboratory experiments and numerical simulations is performed. The vorticity distribution measured in the early stage of the evolution in the laboratory is used as initial data for the simulations, and an additional...... damping term in the Navier-Stokes equations, that accounts for the vertical diffusion in the laboratory experiments, is used. The results show that, depending on the initial separation between the vortices, the shields of the monopoles are peeled off and indeed a compact dipole with a linear (omega...

  3. Light weight polarized polypropylene foam for noise shielding (United States)

    Zelfer, Travis J.; Warne, Derik S.; Korde, Umesh A.


    The high levels of noise generated during launch can destroy sensitive equipment on space craft. Passive damping systems, like acoustic blankets, work to reduce the high frequency noise but do little to the low frequency noise (active" approach that will reduce low frequency noise levels. Combining layers of conventional nonpiezoelectric foam and ferroelectret materials with a multiple loop feedback system will give a total damping effect that is adaptable over a wide band of low frequencies. This paper covers the manufacturing methods that were used to make polarized polypropylene foam, to test the foam for its polarized response and its noise shielding ability.

  4. Self sensing composites with emi shielding and self repair (United States)

    Dry, Carolyn


    Emi shielding provided by metal coating on repair fibers and conductive repair chemical maintained overall emi resistance of structural panels as well as provided the basis for eddy current and ultrasonic sensing/monitoring of structural panels. The sensing/repair system was easily inserted into composite processing and survived the heat and pressure of VARTM, resin infusion /pressing and pultrusion processing. The panels were tested with a commercial emi test lab, a commercial non-destructive testing lab, and a structural testing lab, The results were positive and will be presented in the paper.

  5. Gravity, antigravity and gravitational shielding in (2+1) dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Accioly, Antonio; Helayel-Neto, Jose; Lobo, Matheus, E-mail: accioly@cbpf.b, E-mail: helayel@cbpf.b, E-mail: lobo@ift.unesp.b [Group of Field Theory from First Principles, Centro Brasileiro de Pesquisas FIsicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)


    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  6. Gravity, antigravity and gravitational shielding in (2+1) dimensions (United States)

    Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus


    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  7. Radiation predictions and shielding calculations for RITS-6

    Energy Technology Data Exchange (ETDEWEB)

    Maenchen, John Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Malley, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kensek, Ronald Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fan, Wesley C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bollinger, Lance [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electron beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access

  8. Predicting Shielding Effectiveness of Populated Enclosures Using Absorption Cross Section of PCBs


    Parker, Sarah L; Flintoft, Ian D; Marvin, Andy C; Dawson, John F; Bale, Simon J; Robinson, Martin P; Ye, Ming; Wan, Changyong; Zhang, Mengze


    Shielding effectiveness (SE) is an important measure of how well an enclosure reduces the electromagnetic (EM) field incident upon it. Commonly, when the shielding effectiveness of an enclosure is stated it is for the case when the enclosure is empty. Including contents such as printed circuit boards (PCBs) in the enclosure will affect the shielding effectiveness as the PCB absorbs EM energy. One technique of determining how much energy a PCB absorbs is to measure its absorption cross section...

  9. Improve Shielding Effectiveness with Suitable Designing Apertures for Air Conditions in Antenna and EMC Laboratory


    Kasra Pahlavan; M. R. Moniri


    This paper presents the electromagnetic interference shielding impact due to air vent holes on electronic systems chassis .In designing and building EMC labs one of the important factors is S.E (shielding effectiveness), if this parameter improves shielding performance of enclosure will be better and leakage of energy will reduce. If the vent hole size become larger much more air can come to the room and electronic instruments become cooler, button the other hand with growing of the size of t...

  10. Shielding and radiation protection at the SSRL 3 GeV injector

    Energy Technology Data Exchange (ETDEWEB)

    Ipe, N.E.; Liu, J.C.


    The Stanford Synchrotron Radiation Laboratory (SSRL) Injector is comprised of a linear accelerator (linac) capable of energies {le} 150 MeV, a 3 GeV booster synchrotron, and a beam line to transport the electrons into the storage ring SPEAR. The injector is shielded so that under normal operating conditions, the annual dose equivalent at the shield surface does not exceed 10 mSv. This paper describes the shielding and radiation protection at the injector.

  11. Effects of various radiation source characteristics on shielding requirements at the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.W.; Miller, D.D. [Bechtel National, Inc., San Francisco, CA (United States); Hill, R.R. [Sandia National Labs., Albuquerque, NM (United States)


    This radiation shielding study provides dose rate information that can be used to estimate required shielding thicknesses for different repository configurations, including various hot cells and vaults in the waste-handling building, the boreholes in the underground emplacement area, and the transfer casks. The study determines gamma and neutron source strengths for various waste types and source geometries representative of conditions at the repository and determines dose rates as a function of shielding thickness for selected materials.

  12. Comparative analysis of the radiation shield effect in an abdominal CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Chil; Kim, Young-Jae [Daegu Health College, Daegu (Korea, Republic of); Lee, Joon-Seok [Daegu Fatima Hospital, Daegu (Korea, Republic of); Dong, Kyung-Rae [Gwangju Health University, Gwangju (Korea, Republic of); Chosun University, Gwangju (Korea, Republic of); Chung, Woon-Kwan [Chosun University, Gwangju (Korea, Republic of); Lim, Chang-Seon [Konyang University, Daejeon (Korea, Republic of)


    This study measured and compared the dose on the eyeballs and the thyroid with and without the use of a shield by applying the abdominal examination protocol used in an actual examination to a 64-channel computed tomography (CT) scan. A dummy phantom manufactured from acryl was used to measure the dose to the eyeballs and the thyroid of a patient during a thoraco-abdominal CT scan. The dose was measured using three dosimeters (optically-stimulated luminescence dosimeter (OSLD), thermoluminescence dosimeter (TLD) and photoluminescence dosimeter (PLD)) attached to the surfaces of three parts (left and right eyeballs and thyroid) in a phantom with and without the use of a shield for the eyeballs and the thyroid. Two types of shields (1-mm barium shielding sheet and 1-mm tungsten shielding sheet) were used for the measurements. The goggles and the lead shield, which are normally used in clinical practice, were used to compare the shield ratios of the shields. According to the results of the measurements made by using the OSLD, the shield ratios of the barium and the tungsten sheets were in the range of 34 - 36%. The measurements made by using the TLD showed that the shield ratio of the barium sheet was 6.25% higher than that of the tungsten sheet. When the PLD was used for the measurement, the shield ratio of the barium sheet was 33.34%, which was equivalent to that of the tungsten sheet. These results confirmed that the cheap barium sheet had a better shielding effect than the expensive tungsten sheet.

  13. Method and system for determining radiation shielding thickness and gamma-ray energy (United States)

    Klann, Raymond T.; Vilim, Richard B.; de la Barrera, Sergio


    A system and method for determining the shielding thickness of a detected radiation source. The gamma ray spectrum of a radiation detector is utilized to estimate the shielding between the detector and the radiation source. The determination of the shielding may be used to adjust the information from known source-localization techniques to provide improved performance and accuracy of locating the source of radiation.

  14. Radiopacity of bulk fill flowable resin composite materials. (United States)

    Yildirim, T; Ayar, M K; Akdag, M S; Yesilyurt, C


    The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x-tra Base Bulk Fill). Six specimens of each material with a thickness of 1 mm were prepared, and digital radiographs were taken, using a CCD sensor along with an aluminum stepwedge and 1 mm-thick tooth slice. The mean gray level of each aluminum stepwedge and selected materials was measured, using the equal-density area tool of Kodak Dental Imaging software. The equivalent thickness of aluminum for each material was then calculated by using the stepwedge values in the CurveExpert version 1.4 program. The radiopacity of bulk fill flowable composites sorted in descending order as follows: Beautifil Bulk Flowable (2.96 mm Al) = x-tra base bulk fill (2.92 mm Al) = SureFil SDR Flow (2.89 mm Al) > Filtek Bulk Fill Flow (2.51 mm Al) (P materials had a radiopacity greater than dentin and enamel; their adequate radiopacity will help the clinicians during radiographic examination of restorations. Bulk fill composite materials have greater radiopacity, enabling clinicians to distinguish the bulk fill composites from dentin and enamel.

  15. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)


    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  16. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield

    Directory of Open Access Journals (Sweden)

    Vahid Karami


    Full Text Available Background: The use and effectiveness of traditional lead gonad shields in pediatric pelvic radiography has been challenged by several literatures over the past two decades. The aim of this study was to develop a new radioprotective gonad shields to be use in pediatric pelvic radiography. Materials and Methods: The commercially available 0.06 mm lead equivalent bismuth garment has cropped squarely and used as ovarian shield to cover the entire region of pelvis. In order to prevent deterioration of image quality due to beam hardening artifacts, a 1-cm foam as spacer was located between the shield and patients pelvis. Moreover, we added a lead piece at the cranial position of the bismuth garment to absorb the scatter radiations to the radiosensitive organs. In girls, 49 radiographs with shield and 46 radiographs without shield was taken. The radiation dose was measured using thermoluminescent dosimeters (TLDs. Image quality assessments were performed using the European guidelines. For boys, the lead testicular shields was developed using 2 cm bismuth garment, added to the sides. The prevalence and efficacy of testicular shields was assessed in clinical practice fromFebruary 2016 to June 2016. Results: Without increasing the dose to the breast, thyroid and the lens of the eyes, the use of bismuth shield has reduced the entrance skin dose(ESD of the pelvis and radiation dose to the ovaries by 62.2% and 61.7%, respectively (P

  17. Optimum Design of ThinWideband Multilayer Electromagnetic Shield Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    K. S. Kola


    Full Text Available This paper describes the method of optimum design of multilayer perforated electromagnetic shield using Evolutionary algorithms, namely Particle Swarm Optimization Algorithm (PSO and Genetic Algorithm (GA. Different parameters which are inherently conflicting in nature corresponds to the multilayer structure of the electromagnetic shields have been considered. The goal is to minimize the overall mass of the shield with respect to its shielding effectiveness and cost. Three different models are considered and synthesized using evolutionary algorithms. Numerical optimal results for each model using different algorithms are presented and compared with each other to establish the effectiveness of the proposed method of designing.

  18. Environment Impact Analysis of Shield Passing Alongside Bridge Pile Platform Using Three Dimensional Numerical Simulation (United States)

    Shang, Yanliang; Shi, Wenjun; Han, Tongyin; Qin, Zhichao; Du, Shouji


    The shield method has many advantages in the construction of urban subway, and has become the preferred method for the construction of urban subway tunnel. Taking Shijiazhuang metro line 3 (administrative center station - garden park station interval) Passing alongside bridge as the engineering background, double shield crossing the bridge pile foundation model was set up. The deformation and internal force of the pile foundation during the construction of the shield were analyzed. Pile stress caused by shield construction increases, but the maximum stress is less than the design strength; the maximum surface settlement caused by the construction of 10.2 mm, the results meet the requirements of construction.

  19. The dose penumbra of a custom-made shield used in hemibody skin electron irradiation. (United States)

    Rivers, Charlotte I; AlDahlawi, Ismail; Wang, Iris Z; Singh, Anurag K; Podgorsak, Matthew B


    We report our technique for hemibody skin electron irradiation with a custom-made plywood shield. The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed at 50 cm from the patient. The shield is made of three layers of stan-dard 5/8'' thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield's transmission factor and the extent of the dose penumbra region for two different shield-phantom gaps. The shield transmission factor was found to be about 10%. The width of the penumbra (80%-to-20% dose falloff) was measured to be 12 cm for a 50 cm shield-phantom gap, and reduced slightly to 10 cm for a 35 cm shield-phantom gap. In vivo dosimetry of a real case confirmed the expected shielded area dose. © 2016 The Authors.

  20. Early Results from the Advanced Radiation Protection Thick GCR Shielding Project (United States)

    Norman, Ryan B.; Clowdsley, Martha; Slaba, Tony; Heilbronn, Lawrence; Zeitlin, Cary; Kenny, Sean; Crespo, Luis; Giesy, Daniel; Warner, James; McGirl, Natalie; hide


    The Advanced Radiation Protection Thick Galactic Cosmic Ray (GCR) Shielding Project leverages experimental and modeling approaches to validate a predicted minimum in the radiation exposure versus shielding depth curve. Preliminary results of space radiation models indicate that a minimum in the dose equivalent versus aluminum shielding thickness may exist in the 20-30 g/cm2 region. For greater shield thickness, dose equivalent increases due to secondary neutron and light particle production. This result goes against the long held belief in the space radiation shielding community that increasing shielding thickness will decrease risk to crew health. A comprehensive modeling effort was undertaken to verify the preliminary modeling results using multiple Monte Carlo and deterministic space radiation transport codes. These results verified the preliminary findings of a minimum and helped drive the design of the experimental component of the project. In first-of-their-kind experiments performed at the NASA Space Radiation Laboratory, neutrons and light ions were measured between large thicknesses of aluminum shielding. Both an upstream and a downstream shield were incorporated into the experiment to represent the radiation environment inside a spacecraft. These measurements are used to validate the Monte Carlo codes and derive uncertainty distributions for exposure estimates behind thick shielding similar to that provided by spacecraft on a Mars mission. Preliminary results for all aspects of the project will be presented.