WorldWideScience

Sample records for bulk negative-index material

  1. Bulk isotropic negative-index material design for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    Responding to the strong call for isotropic bulk negative index material we propose a Split Cube in Car-cass design. It shows negative refractive index -1.5, figure-of-merit 2 and transmittivity 30% for one layer at the telecommunication wavelength 1.6 μm. Effective parameters converge fast with a...... number of layers. The effective parameters retrieval method based on the wave propagation simulation is proposed and compared with standard procedure. It is shown that standard restoration method while used for the S-parameters spectra calculations with pulse sources excitation can contain an error...

  2. Nested structures approach for bulk 3D negative index materials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a generic conceptual idea to obtain bulk 3D negative index metamaterials, which exhibit isotropic properties. The design is based on the nested structures approach, when one element providing magnetic response is inserted into another design with negative dielectric constant. Both...

  3. The split cube in a cage: bulk negative-index material for infrared applications

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, C.;

    2009-01-01

    We propose the split cube in a cage (SCiC) design for application in producing a bulk metamaterial. Applying realistic material data for thin silver films, we observe an immediate convergence of the effective parameters obtained with a number of layers towards the bulk properties. Results are obt...

  4. Energy flow in negative index materials

    Institute of Scientific and Technical Information of China (English)

    Lorenzo Bolla; Michele Midrio; Carlo G. Someda

    2004-01-01

    From Maxwell's equations, we compute the speed and the direction of propagation of active power refractedfrom air into a negative index material. We prove, both analytically and numerically that the power mayrefract positively even if phase fronts refract negatively. Considerations on the usage of ray optics inproblems involving negative index materials are drawn.

  5. Defect in photonic crystal with negative index material

    Institute of Scientific and Technical Information of China (English)

    TANG Kang-song; XIANG Yuan-jiang; WEN Shuang-chun

    2006-01-01

    The transmission property of the photonic crystal containing negative index material is analyzed by means of transfer matrix method.It is demonstrated that a defect mode appears in the conventional Bragg gap and the defect mode is sensitive to the position of the defect cell.For the first time to our knowledge we introduce two defects into such a structure and discuss the dependence of the transmission on the interval of the two defect cells.It is found that a wide degenerate defect mode appears in the Bragg gap,and this degenerate defect mode splits into two different defect modes when the two defect cells become closer.

  6. Negative Index Materials and Plasmonic Antennas Based Nanocouplers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei

    negative index material. The wave propagation retrieval method for metamaterials with linear and circular eigenpolarizations and the field averaging of the restored Bloch mode method are proposed for metamaterials effective properties characterization. The methods are based on observation of the wave...... are developed: dipole antennas outside symmetric and asymmetric waveguide, antennas gratings, antennas inside waveguide and battle axe nanocoupler. It is shown that the usage of the side and top reflectors generally increases the power captured by the nanocoupler from the incident wave. The optimized...... geometrical parameters of the nanoantenna couplers are found out. The best performance is shown by the battle axe nanocoupler that has an antenna figure of merit equal to 1.8 μm2 for five antenna periods. That is 90 times larger than antenna figure of merit for the waveguide without nanocoupler (0.02 μm2...

  7. Plasmon-Enhanced Photonic Crystal Negative Index Materials for Superlensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Negative index materials (NIMs) offer tremendous potential for the formation of highly compact as well as large-area deployable thin-film optical components. Omega...

  8. Creating double negative index materials using the Babinet principle with one metasurface

    OpenAIRE

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2013-01-01

    Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative \\epsilon, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability \\mu, with perpendicular direction. The co...

  9. Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.co [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2009-04-07

    Multiple defect modes may generate in one-dimensional dual-defective photonic crystals containing negative-index materials. The interference between the two kinds of defect states of the proposed structure is avoided. Therefore, the frequency, frequency interval and number of the defect modes corresponding to different kinds of defects can be tuned independently as desired. These defect modes inside the zero n-bar gap are insensitive to the incident angle. It thus opens a promising way to fabricate omnidirectional multichannel filters with specific channels.

  10. Physics of Negative Refraction and Negative Index Materials Optical and Electronic Aspects and Diversified Approaches

    CERN Document Server

    Krowne, Clifford M

    2007-01-01

    This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. Specific topics treated are polariton theory for LHMs (left handed materials), focusing of waves, guided-wave behavior, nonlinear optical effects, magnetic LHM composites, SRR-rod realizations, low-loss guided-wave bands using SRR-rods unit cells as LHMs, NR of electromagnetic and electronic waves in uniform media, field distributions in LHM guided-wave structures, dielectric and ferroelectric NR bicrystal heterostructures, LH metamaterial photonic-crystal lenses, subwavelength focusing of LHM/NR photonic crystals, focusing of sound with NR and NIMs, and LHM quasi-crystal materials for focusing.

  11. Aberration-free two-thin-lens systems based on negative-index materials

    Institute of Scientific and Technical Information of China (English)

    Lin Zhi-Li; Ding Jie-Chen; Zhang Pu

    2008-01-01

    Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.

  12. Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium

    CERN Document Server

    Sarma, Amarendra K

    2010-01-01

    We have investigated the modulational instability (MI) in a negative index media (NIM) using a new generalized model describing the pulse propagation in a negative index material embedded into a Kerr medium. We have found that one could control the gain of MI in a NIM by tuning the initial electric and magnetic field amplitudes simultaneously. Our model successfully recovers previously proposed models to describe pulse propagation in NIMs exhibiting Kerr nonlinearity. Moreover it contains a few additional terms connecting both the electric and magnetic field envelopes in a NIM.

  13. Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuanyuan; Wei, Yanyu; Jiang, Xuebing; Tang, Xianfeng; Shi, Xianbao; Gong, Yubin [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Li, Dazhi [Institute for Laser Technology, Suita, Osaka 565-0781 (Japan); Takano, Keisuke; Nakajima, Makoto [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0781 (Japan); Feng, Jinjun [Beijing Vacuum Electronics Research Institute, Beijing 100016 (China); Miyamoto, Shuji [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2015-08-15

    We present an analysis of a Cherenkov free-electron laser based on a single slab made from negative-index materials. In this system, a flat electron beam with finite thickness travelling close to the surface of the slab interacts with the copropagating electromagnetic surface mode. The dispersion equation for a finitely thick slab is worked out and solved numerically to study the dispersion relation of surface modes supported by negative-index materials, and the calculations are in good agreement with the simulation results from a finite difference time domain code. We find that under suitable conditions there is inherent feedback in such a scheme due to the characteristics of negative-index materials, which means that the system can oscillate without external reflectors when the beam current exceeds a threshold value, i.e., start current. Using the hydrodynamic approach, we setup coupled equations for this system, and solve these equations analytically in the small signal regime to obtain formulas for the spatial growth rate and start current.

  14. Properties of the defect modes in 1D lossy photonic crystals containing two types of negative-index-material defects

    CERN Document Server

    Aghajamali, Alireza; Wu, Chien-Jang; Barati, Mahmood

    2013-01-01

    In this paper, the characteristic matrix method is employed to theoretically investigate the propagation of electromagnetic waves through one-dimensional defective lossy photonic crystals (PCs) composed of negative index materials (NIMs) and positive index materials (PIMs). We consider symmetric and asymmetric geometric structures with two different types of NIM defect layers at the center of the structure. The effects of the polarization and the angle of incidence on the defect modes in the transmission spectra of both structures are investigated. The results show that the number of the defect modes within the photonic band gap (PBG) depends on the type of the NIM defect layer and is independent of the geometrical structure. Moreover, it is shown that the defect mode frequency increases as the angle of incidence increases. This property is also independent of the geometry of the structure. The results can lead to designing new types of narrowband and multichannel transmission filters.

  15. Bulk materials handling review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    The paper provides details of some of the most important coal handling projects and technologies worldwide. It describes development by Aubema Crushing Technology GmbH, Bedeschi, Cimbria Moduflex, DBT, Dynamic Air Conveying Systems, E & F Services, InBulk Technologies, Nord-Sen Metal Industries Ltd., Pebco Inc, Primasonics International Ltd., R.J.S. Silo Clean (International) Ltd., Takraf GmbH, and The ACT Group. 17 photos.

  16. Towards negative index self-assembled metamaterials

    CERN Document Server

    Fruhnert, Martin; Lederer, Falk; Rockstuhl, Carsten

    2016-01-01

    We investigate the magnetic response of meta-atoms that can be fabricated by a bottom-up technique. Usually such meta-atoms consist of a dielectric core surrounded by a large number of solid metallic nanoparticles. In contrast to those meta-atoms considered thus far, we study here for the first time hollow metallic nanoparticles (shells). In doing so we solve one of the most pertinent problems of current self-assembled metamaterials, namely implementing meta-atoms with sufficiently large resonance strength and small absorption. Both conditions have to be met for deep sub-wavelength meta-atoms to obtain effectively homogeneous metamaterials which may be meaningfully described by negative material parameters. Eventually we show that by using these findings self-assembled negative index materials come in reach.

  17. Structures with negative index of refraction

    Science.gov (United States)

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  18. Negative-index metamaterials: looking into the unit cell

    NARCIS (Netherlands)

    Burresi, M.; Diessel, D.; van Oosten, D.; Linden, Stefan; Wegener, M.; Kuipers, L.

    2010-01-01

    With their potential for spectacular applications, like superlensing and cloaking, metamaterials are a powerful class of nanostructured materials. All these applications rely on the metamaterials acting as a homogeneous material. We investigate a negative index metamaterial with a phase-sensitive ne

  19. Radiation Pressure and Photon Momentum in Negative-Index Media

    CERN Document Server

    Mansuripur, Masud

    2013-01-01

    Radiation pressure and photon momentum in negative-index media are no different than their counterparts in ordinary (positive-index) materials. This is because the parameters responsible for these properties are the admittance, sqrt(epsilon/mu), and the group refractive index n_g of the material (both positive entities), and not the phase refractive index, n=sqrt(epsilon*mu), which is negative in negative-index media. One approach to investigating the exchange of momentum between electromagnetic waves and material media is via the Doppler shift phenomenon. In this paper we use the Doppler shift to arrive at an expression for the radiation pressure on a mirror submerged in a negative-index medium. In preparation for the analysis, we investigate the phenomenon of Doppler shift in various settings, and show the conditions under which a so-called "inverse" Doppler shift could occur. We also argue that a recent observation of the inverse Doppler shift upon reflection from a negative-index medium cannot be correct,...

  20. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  1. PHONON ECHOES IN BULK AND POWDERED MATERIALS

    OpenAIRE

    Kajimura, K.

    1981-01-01

    Experimental and theoretical studies of phonon echoes in bulk and powdered materials are reviewed. Phonon echoes have been observed in many materials such as bulk piezoelectric crystals, paramagnets, glasses, doped semiconductors, and piezoelectric, magnetic, and metallic powders, etc. The echoes arise from a time reversal of the phase, like spin echoes, of a primary pulsed acoustic excitation due to a second acoustic or rf pulse. The phase reversal occurs through the nonlinear interactions o...

  2. Direct observation of negative-index microwave surface waves.

    Science.gov (United States)

    Dockrey, J A; Horsley, S A R; Hooper, I R; Sambles, J R; Hibbins, A P

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  3. Controlling the second-harmonic in a phase matched negative-index metamaterial

    OpenAIRE

    Rose, Alec; Huang, Da; Smith, David R.

    2011-01-01

    Nonlinear metamaterials (NLMMs) have been predicted to support new and exciting domains in the manipulation of light, including novel phase matching schemes for wave mixing. Most notable is the so-called nonlinear-optical mirror, in which a nonlinear negative-index medium emits the generated frequency towards the source of the pump. For the first time, we experimentally demonstrate the nonlinear-optical mirror effect in a bulk negative-index NLMM, along with two other novel phase matching con...

  4. Reluctance motors with bulk HTS material

    International Nuclear Information System (INIS)

    In recent years we have successfully designed, built and tested several reluctance motors with YBCO bulk material incorporated into the rotor, working at 77 K. Our last motor type SRE150 was tested up to 200 kW. The aim of our investigations is the construction of motors with extremely high power density and dynamics. In comparison to conventional motor types the advantage of HTS reluctance motors with respect to size and dynamics could be demonstrated. Some fields of possible future applications will be described. These motors show a significant improvement in performance using high quality HTS bulk elements in the rotor. Until now the motor parameters have been limited by the current density which could be obtained in the bulk material at 77 K and by the geometric dimensions of the segments available. Therefore we expect further improvements in the case of these materials. Since the total motor including stator and rotor is working at low temperature we have to optimize the windings and the magnetic circuit to these operation conditions. A new design of a 200 kW motor in order to achieve increased power density and the theoretical results of our calculations will be shown

  5. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  6. Neutron moisture gage for bulk material

    International Nuclear Information System (INIS)

    Desing and operation of neutron moisture gage of bulk materials intended for the determination of moisture of coke, agglomerated charge, and iron ore concentrate in black metallurgy is described. The moisture gage operates both under ''measurement'' and ''calibration'' conditions, contains a fast neutron source, and two groups of slow neutron detectors. Technical and economic efficiency of the moisture gage utilization consists in the improved accuracy of moisture detection at the expense of more accurate calibration, optimum arrangement of the carriage in a hopper, and stabilization of detector temperature. The device service is also simplified

  7. Advances in Processing of Bulk Ferroelectric Materials

    Science.gov (United States)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  8. Negative Index of Refraction in Optical Metamaterials

    CERN Document Server

    Shalaev, V M; Chettiar, U; Yuan, H K; Sarychev, A K; Drachev, V P; Kildishev, A V; Shalaev, Vladimir M.; Cai, Wenshan; Chettiar, Uday; Yuan, Hsiao-Kuan; Sarychev, Andrey K.; Drachev, Vladimir P.; Kildishev, Alexander V.

    2005-01-01

    An array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range, close to a wavelength of 1 micron. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and magnetic components of light. The metal rods act as inductive elements whereas the dielectric gaps perform as capacitive elements, forming an optical LC-circuit. Our experiments and simulations demonstrate the resonant behavior for an index of refraction. Above the resonance, the refractive index becomes negative. Paired metal nanorods open new opportunities for developing negative-refraction materials in optics.

  9. Focus modulation of cylindrical vector beams through negative-index grating lenses

    Science.gov (United States)

    Wang, Shengming; Xu, Ji; Zhong, Yi; Ren, Rong; Lu, Yunqing; Wan, Hongdan; Wang, Jin; Ding, Jianping

    2016-08-01

    A cylindrically symmetric negative-index grating lens composed of unitary material is proposed as an effective method to modulate the focusing of cylindrical vector beams (CVBs). The grating parameters are designed to obtain an appropriate negative index, and the lens profile is tailored to realize the constructive interference. The plano-concave lens is parameterized to achieve desired focal length and the plano-cone lens is proposed to obtain large depth of focus. An optical needle is generated with radially polarized incidence, and an optical tube is achieved with incidence of azimuthal polarization. Moreover, the presented modulation methods can be applied for any arbitrary polarized CVBs. This work offers a more flexible and effective approach to design negative-index lenses for subwavelength focusing of CVBs, which has potential application value in related areas, such as optical trapping, and other nano-optics fields.

  10. Sub-picosecond optical switching with a negative index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Dani, Keshav M [Los Alamos National Laboratory; Upadhya, Prashant C [Los Alamos National Laboratory; Zahyum, Ku [CHTM-UNM

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  11. Eco Issues in Bulk Materials Handling Technologies in Ports

    Directory of Open Access Journals (Sweden)

    Nenad Zrnić

    2011-09-01

    Full Text Available This paper deals with eco issues in bulk materials handling in ports. Solid, free-flowing materials are said to be in bulk. Bulk materials handling is very difficult, because it incorporates all the features of liquids, gasses and mass solids. Energy efficiency, dust emissions in nearby environment, dust explosions, jamming, noise, handling of hazardous materials and protection of materials from contamination are issues that will be considered in this paper. Here are also presented possible solutions for some of these issues

  12. Material profile influences in bulk-heterojunctions

    OpenAIRE

    Roehling, J.D.; Rochester, C.W.; Ro, H.W.; Wang, P.; Majewski, J; Batenburg, Joost; Arslan, I; Delongchamp, D.M.; Moulé, A.J.

    2014-01-01

    The morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualitatively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fulleren...

  13. Enhancing bulk superconductivity by engineering granular materials

    Science.gov (United States)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  14. Material Profile Influences in Bulk-Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Roehling, John D.; Rochester, Christopher W.; Ro, Hyun W.; Wang, Peng; Majewski, Jaroslaw; Batenburg, Kees J.; Arslan, Ilke; Delongchamp, Dean M.; Moule, Adam J.

    2014-10-01

    he morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualita-tively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the abso-lute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. The authors thank Luna Innovations, Inc. for donating the endohedral fullerenes used in this study and Plextronics for the P3HT. They are gratefully thank the National Science Foundation Energy for Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. This research was also supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  15. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  16. Bulk sound velocity of porous materials at high pressures

    Institute of Scientific and Technical Information of China (English)

    耿华运; 吴强; 谭华; 蔡灵仓; 经福谦

    2002-01-01

    A correction of Walsh's method for bulk sound velocity calculation for shocked porous materials is accomplishedbased on the Wu-Jing thermodynamic equation of state. The corrected bulk velocities for solid and porous sampleswith low porosities are in good agreement with the corresponding experimental data published previously. On the basisof this corrected equation, the influence of thermoelectrons on the bulk velocity of shocked materials is discussed indetail at pressures of 50, 70 and 200 GPa. Some interesting phenomena are revealed, which seem to be the uniquefeatures of a dynamic-pressure-loading process and could not be found in static experiments.

  17. Control over magnetic properties in bulk hybrid materials

    Science.gov (United States)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  18. Growth and characterization of bulk superconductor material

    CERN Document Server

    Chen, Dapeng; Maljuk, Andrey; Zhou, Fang

    2016-01-01

    This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman “cold finger” method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and supe...

  19. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  20. The homogenisation of bulk material in blending piles.

    NARCIS (Netherlands)

    Gerstel, A.W.

    1979-01-01

    In this thesis the homogenisation of bulk material in three types of piles is dealt with. The homogenisation implies that the fluctuations of a material proprety in the input flow of the pile are transformed into output fluctuations, whereby the latter ones are evened out. Analyses are presented con

  1. Bulk material engineering and procurement management of NPS

    International Nuclear Information System (INIS)

    In a nuclear power project, bulk material is often not in an outstanding position, compared to equipment, yet bulk material is one of most difficult part in engineering and procurement management. If the schedule is not in good control, it will seriously hamper the progress of the whole project. The article explores bulk material engineering and procurement management of NPS, illustrated with tables and graphs. First, major difficult aspects of bulk material procurement are described. On one hand, bulk material is really bulky in kind. We must have detail information of manufacturers, manufacture duration, and take good control of bidding schedule. On the other hand, when an order is placed, we need to make clear everything in the procurement package, such as material types, delivery batches, quantity of each batch and delivery schedule, which is a tremendous work. Then, a schedule conflict is analyzed: when an order is placed, the detail type and quantity cannot be defined (since the construction design is not finished yet). To settle this conflict, the concept 'Requirement Schedule Curve' is brought forward, along with the calculation method. To get this curve, we need to make use of the technical data of the reference power station, along with the site construction schedule, to produce a site quantity requirement curve varying from time, for each type of material. Last, based on the 'Requirement Schedule Curve', we are able to build a unified database to control the engineering, procurement, manufacturing and delivery schedule, so as to procure precisely, manufacture on time, and optimize the storage. In this way, the accurate control of bulk material engineering and procurement schedule can be achieved. (authors)

  2. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  3. On the Fourier coefficients of negative index meromorphic Jacobi forms

    CERN Document Server

    Bringmann, Kathrin; Zwegers, Sander

    2015-01-01

    In this paper, we consider the Fourier coefficients of meromorphic Jacobi forms of negative index. This extends recent work of Creutzig and the first two authors for the special case of Kac-Wakimoto characters which occur naturally in Lie theory, and yields, as easy corollaries, many important PDEs arising in combinatorics such as the famous rank-crank PDE of Atkin and Garvan. Moreover, we discuss the relation of our results to partial theta functions and quantum modular forms as introducted by Zagier, which together with previous work on positive index meromorphic Jacobi forms illuminates the general structure of the Fourier coefficients of meromorphic Jacobi forms.

  4. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the homogeniza

  5. Characterisation of ferroelectric bulk materials and thin films

    CERN Document Server

    Cain, Markys G

    2014-01-01

    This book presents a comprehensive review of the most important methods used in the characterisation of piezoelectric, ferroelectric and pyroelectric materials. It covers techniques for the analysis of bulk materials and thick and thin film materials and devices. There is a growing demand by industry to adapt and integrate piezoelectric materials into ever smaller devices and structures. Such applications development requires the joint development of reliable, robust, accurate and - most importantly - relevant and applicable measurement and characterisation methods and models. In the past f

  6. Neutron interaction and their transport with bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Esther Kalpana, E-mail: esther.kalpanarani@gmail.com [Department of Physics JNT University, Nachupally, Karimnagar, Telangana, 500055 (India); Radhika, K., E-mail: radhikanit@gmail.com [Department of Humanities and Applied Sciences, Talla Padmavathi College of Engineering, Warangal, Telangana, 506004 (India)

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  7. Accurate theoretical prediction on positron lifetime of bulk materials

    CERN Document Server

    Zhang, Wenshuai; Liu, Jiandang; Ye, Bangjiao

    2015-01-01

    Based on the first-principles calculations, we perform an initiatory statistical assessment on the reliability level of theoretical positron lifetime of bulk material. We found the original generalized gradient approximation (GGA) form of the enhancement factor and correlation potentials overestimates the effect of the gradient factor. Furthermore, an excellent agreement between model and data with the difference being the noise level of the data is found in this work. In addition, we suggest a new GGA form of the correlation scheme which gives the best performance. This work demonstrates that a brand-new reliability level is achieved for the theoretical prediction on positron lifetime of bulk material and the accuracy of the best theoretical scheme can be independent on the type of materials.

  8. Optical Properties of Synthetic Cannabinoids with Negative Indexes

    CERN Document Server

    Shen, Yao

    2016-01-01

    Some kinds of psychoactive drugs have the structures which are called split-ring resonators (SRRs). SRRs might result in negative permittivity and permeability simultaneously in electromagnetic field. Simultaneous negative indexes can lead to the famous phenomenon of negative refraction. This optical property makes it possible to distinguish synthetic cannabinoids from other abusive psychoactive drugs in the UV-vis region. This optical method is non-damaged and superior in forensic science. In this paper, we use tight-binding model calculating the permittivity and permeability of the main ingredients of synthetic cannabinoids. At the same time, we give two more results of zolpidem and caffeine. Further we discuss the negative refraction of the category of zepam qualitatively.

  9. Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W S; Magnin, W; Wang, N; Hayes, M; O' Flynn, B; O' Mathuna, C, E-mail: wensi.wang@tyndall.ie [Tyndall National Institute, Dyke Parade, Cork (Ireland)

    2011-08-17

    The trend towards smart building and modern manufacturing demands ubiquitous sensing in the foreseeable future. Self-powered Wireless sensor networks (WSNs) are essential for such applications. This paper describes bulk material based thermoelectric generator (TEG) design and implementation for WSN. A 20cm{sup 2} Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} based TEG was created with optimized configuration and generates 2.7mW in typical condition. A novel load matching method is used to maximize the power output. The implemented power management module delivers 651{mu}W to WSN in 50 deg. C. With average power consumption of Tyndall WSN measured at 72{mu}W, feasibility of utilizing bulk material TEG to power WSN is demonstrated.

  10. Negative Index Refraction in the Complex Ginzburg—Landau Equation in Connection with the Experimental CIMA Reaction

    International Nuclear Information System (INIS)

    In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg—Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not

  11. Negative Index Refraction in the Complex Ginzburg—Landau Equation in Connection with the Experimental CIMA Reaction

    Science.gov (United States)

    Yuan, Xu-Jin

    2012-09-01

    In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg—Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not.

  12. High coupling materials for thin film bulk acoustic wave resonators

    OpenAIRE

    Conde, Janine

    2009-01-01

    Radio frequency (RF) filters based on bulk acoustic wave resonances in piezoelectric thin films have become indispensable components in mobile communications. The currently used material, AlN, exhibits many excellent properties for this purpose. However, its bandwidth is often a limiting factor. In addition, no tuning is possible with AlN. Ferroelectrics would offer both larger coupling to achieve larger bandwidths, and tunability. However, their acoustic properties are not well known, especi...

  13. Superconducting RF materials other than bulk niobium: a review

    Science.gov (United States)

    Valente-Feliciano, Anne-Marie

    2016-11-01

    For the past five decades, bulk niobium (Nb) has been the material of choice for superconducting RF (SRF) cavity applications. Alternatives such as Nb thin films and other higher-T c materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transition temperature T c for application to SRF cavities. This paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a superconductor-insulator-superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field H c of higher-T c superconductors without being limited with their lower H c1.

  14. Prediction of the discharge trajectories of bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Golka, K. (Pacific Power, Sydney, NSW (Australia))

    1993-11-01

    The theory of discharge trajectories of granular materials without cohesion and adhesion from material handling equipment is reviewed in terms of its application within the design process. Theoretical formulae of discharge trajectories are provided for underside and topside limits of the bulk material path. The fundamental force, velocity, and the continuity-flow relationships, are the main factors used in describing the material's trajectory functions. The analytical functions developed are for kinematic material stream conditions when discharging from: (a) head pulleys of belt conveyors; (b) chutes and cross belt samplers. To predict the trajectory path for real conditions, divergent coefficients have been introduced to the theoretical functions. Computer calculations and graphical representations indicate how the theoretical approach can be useful for practical design. 10 refs., 6 figs.

  15. Numerical simulations of negative-index refraction in a lamellar composite with alternating single negative layers

    Institute of Scientific and Technical Information of China (English)

    Dong Zheng-Gao; Zhu Shi-Ning; Liu Hui

    2006-01-01

    Negative-index refraction is demonstrated in a lamellar composite with epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively. Based on the effective medium approximation, simultaneously negative effective permittivity and permeability of such a lamellar composite are obtained theoretically and further proven by full-wave simulations. Consequently, the renowned left-handed metamaterial comprising split ring resonators and wires is interpreted as an analogy of such ENG-MNG layers. In addition, beyond the effective medium approximation, the propagating field squeezed near the ENG/MNG interface is demonstrated to be left-handed surface waves with backward phase velocity.

  16. Software Progress in the PGNAA of Bulk Materials

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Gardner; C. W. Mayo; E. S. El Sayyed; W. Zhang

    2000-06-04

    One of the primary evolving important uses of {sup 252}Cf sources is in the prompt gamma-ray neutron activation analysis (PGNAA) of the bulk materials in on-line continuous processes such as those for coal and cement. The advantages of this measurement approach for these applications are as follows: (a) it is noncontacting, (b) it is nondestructive, and (c) it is sensitive to large sample volumes. This paper describes the authors' work on the development of suitable computer software for this application.

  17. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  18. In Situ Formation of Carbon Nanomaterials on Bulk Metallic Materials

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanomaterials were synthesized in situ on bulk 316L stainless steel, pure cobalt, and pure nickel by hybrid surface mechanical attrition treatment (SMAT. The microstructures of the treated samples and the resulted carbon nanomaterials were investigated by SEM and TEM characterizations. Different substrates resulted in different morphologies of products. The diameter of carbon nanomaterials is related to the size of the nanograins on the surface layer of substrates. The possible growth mechanism was discussed. Effects of the main parameters of the synthesis, including the carbon source and gas reactant composition, hydrogen, and the reaction temperature, were studied. Using hybrid SMAT is proved to be an effective way to synthesize carbon nanomaterials in situ on surfaces of metallic materials.

  19. Effect of rare earth substitution in cobalt ferrite bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Bulai, G., E-mail: georgiana.bulai@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania); Diamandescu, L. [National Institute of Material Physics, P.O. Box MG-7, 07125 Bucharest (Romania); Dumitru, I.; Gurlui, S. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania); Feder, M. [National Institute of Material Physics, P.O. Box MG-7, 07125 Bucharest (Romania); Caltun, O.F. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania)

    2015-09-15

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm{sup −3} decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe{sub 2}O{sub 4} sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples.

  20. Basics of averaging of the Maxwell equations for bulk materials

    CERN Document Server

    Chipouline, A; Tretyakov, S

    2012-01-01

    Volume or statistical averaging of the microscopic Maxwell equations (MEs), i.e. transition from microscopic MEs to their macroscopic counterparts, is one of the main steps in electrodynamics of materials. In spite of the fundamental importance of the averaging procedure, it is quite rarely properly discussed in university courses and respective books; up to now there is no established consensus about how the averaging procedure has to be performed. In this paper we show that there are some basic principles for the averaging procedure (irrespective to what type of material is studied) which have to be satisfied. Any homogenization model has to be consistent with the basic principles. In case of absence of this correlation of a particular model with the basic principles the model could not be accepted as a credible one. Another goal of this paper is to establish the averaging procedure for bulk MM, which is rather close to the case of compound materials but should include magnetic response of the inclusions an...

  1. Bulk Density Adjustment of Resin-Based Equivalent Material for Geomechanical Model Test

    OpenAIRE

    Pengxian Fan; Haozhe Xing; Linjian Ma; Kaifeng Jiang; Mingyang Wang; Zechen Yan; Xiang Fang

    2015-01-01

    An equivalent material is of significance to the simulation of prototype rock in geomechanical model test. Researchers attempt to ensure that the bulk density of equivalent material is equal to that of prototype rock. In this work, barite sand was used to increase the bulk density of a resin-based equivalent material. The variation law of the bulk density was revealed in the simulation of a prototype rock of a different bulk density. Over 300 specimens were made for uniaxial compression test....

  2. High-throughput Z T predictions of nanoporous bulk materials as next-generation thermoelectric materials: A material genome approach

    Science.gov (United States)

    Hao, Qing; Xu, Dongchao; Lu, Na; Zhao, Hongbo

    2016-05-01

    The advancement of computational tools for material property predictions enables a broad search of novel materials for various energy-related applications. However, challenges still exist in accurately predicting the mean free paths of electrons and phonons in a high-throughput frame for thermoelectric property predictions, which largely hinders the computation-driven material search for novel materials. In this work, this need is eliminated under the limit of reduced nanostructure size within a bulk material, in which these mean free paths are restricted by the nanostructure size. A criterion for Z T evaluation is proposed for general nanoporous bulk materials and is demonstrated with representative oxides.

  3. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    Directory of Open Access Journals (Sweden)

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  4. Simulation of Singlet Exciton Diffusion in Bulk Organic Materials.

    Science.gov (United States)

    Kranz, Julian J; Elstner, Marcus

    2016-09-13

    We present a scheme for nonadiabatic direct dynamics simulation of Frenkel exciton diffusion in bulk molecular systems. The fluctuations of exciton couplings caused by the molecular motion can crucially influence exciton transport in such materials. This effect can be conveniently taken into account by computing the exciton couplings along molecular dynamics trajectories, as shown recently. In this work, we combine Molecular Dynamics simulations with a Frenkel Hamiltonian into a combined quantum-mechanical/molecular mechanics approach in order to allow for a simultaneous propagation of nuclear and electronic degrees of freedom using nonadiabatic dynamics propagation schemes. To reach the necessary time and length scales, we use classical force-fields and the semiempirical time-dependent density functional tight-binding method in combination with a fragmentation of the electronic structure. Fewest-switches surface-hopping, with adaptions to handle trivial crossings, and the Boltzmann-corrected Ehrenfest method are used to follow the excitonic quantum dynamics according to the classical evolution of the nuclei. As an application, we present the simulation of singlet exciton diffusion in crystalline anthracene, which allows us to address strengths and shortcomings of the presented methodology in detail. PMID:27434173

  5. Characterization of bulk ultrafine grained and nanocrystalline materials

    Science.gov (United States)

    Chauhan, Manish

    Thermal stability in bulk ultra fine grained (UFG) 5083 Al that exhibited initial grain size of 305 nm, and that was processed by gas atomization followed by cryomilling, consolidation and extrusion, and in bulk nanocrystalline (nc) Ni, initial grain size of 15 and 20 nm, prepared by electrodeposition was investigated. In both the materials, two grain growth regimes were identified: a low temperature region and a high temperature region. In the low temperature regime, relatively low activation energy was found: 25 +/- 5 kJ/mol for UFG 5083 Al and 11 +/- 3 kJ/mol for nc-Ni. It is suggested that this low activation energy represents the energy for the reordering of thermodynamically non-equilibrium grain boundaries in the UFG and nc-materials. In the high temperature regime the value of activation energy for UFG 5083 Al (124 +/- 5 kJ/mol) lies in between that for grain boundary diffusion and lattice diffusion of polycrystalline Al. For nc-Ni an approximate activation energy of 105 +/- 3 kJ/mol, which is close to the activation energy for grain boundary diffusion in polycrystalline Ni, was measured. The value of the grain growth exponent, n, for both the materials (deduced from the grain growth data) were higher than the value of 2 predicted from elementary grain growth theories. The discrepancy was attributed to the operation of strong pinning forces on boundaries during the annealing treatment. An examination of the microstructure suggests that the origin of the pinning forces is most likely related to the presence of impurities and dispersion-particles on the grain boundaries. Creep and ductility behavior of UFG 5083 Al were also studied in the temperature range of 523 K-648 K in the present investigation. The curve of ductility as a function of strain rate shows the presence of a maximum that shifts to higher strain rates with increasing temperature. An analysis of the experimental data indicates that the true stress exponent is about 2, and that the ductility

  6. Energy-Efficient Devices for Transporting and Feeding Bulk Materials in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Ishkov Alexander

    2016-01-01

    Full Text Available Only in the construction industry millions of tons of bulk materials that need to be transported to the place of processing, storing and evenly or dosed feeding are recycled annually. Decreasing the costs of these processes will significantly reduce the cost of the finished product. The article presents a review of studies conducted in the field of storage, transport and feed bulk materials, and it describes the innovative design of energy-efficient disc vibrating feeder bulk materials.

  7. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    Joysurya Basu; S Ranganathan

    2003-06-01

    Bulk glass-forming alloys have emerged over the past fifteen years with attractive properties and technological promise. A number of alloy systems based on lanthanum, magnesium, zirconium, palladium, iron, cobalt and nickel have been discovered. Glass-forming ability depends on various factors like enthalpy of mixing, atomic size and multicomponent alloying. A number of processes is available to synthesise bulk metallic glasses. The crystallisation behaviour and mechanical properties of these alloys pose interesting scientific questions. Upon crystallisation many of these glasses transform to bulk nanocrystals and nanoquasicrystals. A detailed study of the structure and the crystallisation behaviour of glasses has enabled the elucidation of the possible atomic configuration in liquid alloys. Their crystallisation behaviour can be exploited to synthesise novel nanocomposite microstructures and their mechanical properties can be enhanced. A broad overview of the present status of the science and technology of bulk metallic glasses and their potential technological uses is presented.

  8. Relationship between the Kramers-Kronig relations and negative index of refraction

    CERN Document Server

    Hickey, Mark C; Kussow, Adil-Gerai

    2010-01-01

    The condition for a negative index of refraction with respect to the vacuum index is established in terms of permittivity and permeability susceptibilities. It is found that the imposition of analyticity to satisfy the Kramers-Kronig relations is a sufficiently general criterion for a physical negative index. The satisfaction of the Kramers-Kronig relations is a manifestation of the principle of causality and the predicted frequency region of negative index agrees with the Depine-Lakhtakia condition for the phase velocity being anti-directed to the Poynting vector, although the conditions presented here do not assume {\\it a priori} a negative solution branch for n.

  9. Software progress in the PGNAA of bulk materials

    International Nuclear Information System (INIS)

    One of the primary evolving important uses of 252Cf sources is in the prompt gamma-ray neutron activation analysis (PGNAA) of the bulk material in on-line continuous processes such as those for coal and cement. The advantages of this measurement approach for these applications are as follows: (a) it is noncontacting, (b) it is nondestructive, and (c) it is sensitive to large sample volumes. The authors have been working on the development of suitable computer software for this application. Their primary approach has been the Monte Carlo Library Least-Squares method, in which library spectra for each element are calculated with the specific-purpose Monte Carlo code CEARPGA. These libraries are then used with experimental spectra in a standard library least-squares (LLS) approach to determine elemental amounts. Since the PGNAA response is nonlinear for these applications, one must first make an initial estimate of the sample composition. If the final calculated elemental amounts are not close enough to the initial estimate that linearity can be assumed, another iteration with a better estimate of the sample composition must be made. One of the general problems encountered in analyses of this type is the spectrum distortion introduced by the pulse pileup that occurs with light counting rates. In many applications, one desires the highest possible counting rate so that fast transient phenomena can be accurately followed. The technique of using electronic discrimination is only partially successful in that one throws away much of the data and there is some remaining distortion in the data that are kept. For this reason they developed a Monte Carlo model for the forward simulation of pulse pileup (given the true counting rate the pulse piled-up distorted spectrum is generated). The resulting computer code can give an accurate spectral result in 2 or 3 min on present personal computers. This result can either be used directly to generate model spectra that can be compared

  10. Software progress in the PGNAA of bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.P.; Mayo, C.W.; El Sayyed, E.S.; Zhang, W.

    2000-07-01

    One of the primary evolving important uses of {sup 252}Cf sources is in the prompt gamma-ray neutron activation analysis (PGNAA) of the bulk material in on-line continuous processes such as those for coal and cement. The advantages of this measurement approach for these applications are as follows: (a) it is noncontacting, (b) it is nondestructive, and (c) it is sensitive to large sample volumes. The authors have been working on the development of suitable computer software for this application. Their primary approach has been the Monte Carlo Library Least-Squares method, in which library spectra for each element are calculated with the specific-purpose Monte Carlo code CEARPGA. These libraries are then used with experimental spectra in a standard library least-squares (LLS) approach to determine elemental amounts. Since the PGNAA response is nonlinear for these applications, one must first make an initial estimate of the sample composition. If the final calculated elemental amounts are not close enough to the initial estimate that linearity can be assumed, another iteration with a better estimate of the sample composition must be made. One of the general problems encountered in analyses of this type is the spectrum distortion introduced by the pulse pileup that occurs with light counting rates. In many applications, one desires the highest possible counting rate so that fast transient phenomena can be accurately followed. The technique of using electronic discrimination is only partially successful in that one throws away much of the data and there is some remaining distortion in the data that are kept. For this reason they developed a Monte Carlo model for the forward simulation of pulse pileup (given the true counting rate the pulse piled-up distorted spectrum is generated). The resulting computer code can give an accurate spectral result in 2 or 3 min on present personal computers. This result can either be used directly to generate model spectra that can be

  11. 9 CFR 113.10 - Testing of bulk material for export or for further manufacture.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Testing of bulk material for export or for further manufacture. 113.10 Section 113.10 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Applicability § 113.10 Testing of bulk material for export or for...

  12. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    Directory of Open Access Journals (Sweden)

    Hayami Takeda

    2013-05-01

    Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  13. 75 FR 64585 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-10-19

    ..., call or e-mail Richard Bornhorst, Office of Operating and Environmental Standards, Hazardous Materials... Environmental Standards, United States Coast Guard, 2100 2nd St., SW., Stop 7126, Washington, DC 20593- 7126. CG... Homeland Security DRI Direct Reduced Iron FR Federal Register IMO International Maritime Organization...

  14. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-06-17

    ... both active (fan-induced) and passive (hatch cover vents) ventilation. The answer is yes. In this... FR 3316). D. Public Meeting We do not now plan to hold a public meeting. You may submit a request for... Environmental Protection Agency FR Federal Register HMR Hazardous Materials Regulations, 49 CFR Parts...

  15. 49 CFR 176.74 - On deck stowage of break-bulk hazardous materials.

    Science.gov (United States)

    2010-10-01

    .... (a) Packages containing hazardous materials must be secured by enclosing in boxes, cribs or cradles... 49 Transportation 2 2010-10-01 2010-10-01 false On deck stowage of break-bulk hazardous materials... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  16. Bulk Density Adjustment of Resin-Based Equivalent Material for Geomechanical Model Test

    Directory of Open Access Journals (Sweden)

    Pengxian Fan

    2015-01-01

    Full Text Available An equivalent material is of significance to the simulation of prototype rock in geomechanical model test. Researchers attempt to ensure that the bulk density of equivalent material is equal to that of prototype rock. In this work, barite sand was used to increase the bulk density of a resin-based equivalent material. The variation law of the bulk density was revealed in the simulation of a prototype rock of a different bulk density. Over 300 specimens were made for uniaxial compression test. Test results indicated that the substitution of quartz sand by barite sand had no apparent influence on the uniaxial compressive strength and elastic modulus of the specimens but can increase the bulk density, according to the proportional coarse aggregate content. An ideal linearity was found in the relationship between the barite sand substitution ratio and the bulk density. The relationship between the bulk density and the usage of coarse aggregate and barite sand was also presented. The test results provided an insight into the bulk density adjustment of resin-based equivalent materials.

  17. Positron methods for the study of defects in bulk materials

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1995-01-01

    for metals, ceramics and molecular materials, which illustrate the sensitivity of the positron annihilation techniques to vacancy type defects. For example it is shown how information can be obtained about vacancy formation energies, vacancy migration and clustering, vacancy-impurity interactions, densities...... of rare gasses in bubbles in metals, and about free volume in molecular materials....

  18. Photonic band structure and effective medium properties of doubly-resonant core-shell metallo-dielectric nanowire arrays: low-loss, isotropic optical negative-index behavior

    International Nuclear Information System (INIS)

    We investigate theoretically and numerically the photonic band structure in the optical domain of an array of core–shell metal-semiconductor nanowires. Corresponding negative-index photonic bands are calculated, showing isotropic equifrequency surfaces. The effective (negative) electric permittivity and magnetic permeability, retrieved from S-parameters, are used to compare the performance of such nanowire arrays with homogeneous media in canonical examples, such as refraction through a prism and flat-lens focusing. Very good agreement is found, confirming the effective medium behavior of the nanowire array as a low-loss, isotropic (2D) and bulk, optical negative index metamaterial. Indeed, disorder is introduced to further stress its robustness. (paper)

  19. Weighing and control of bulk material in ship-lading process at harbor

    International Nuclear Information System (INIS)

    The author describes a new weighing and control system for bulk material in ship-loading process at harbor. It adopts nuclear radiation measurement, computer control and digital signal process techniques to weigh the bulk material with no-touch with the advantages of stability and anti-jamming. The measure accuracy reaches to 0.5% - 1.0%. It is was applicable in the bad condition of ship-loading spot at harbor

  20. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties

    OpenAIRE

    Ramakrishna, S; Santhosh Kumar, K. S.; Dona Mathew; Reghunadhan Nair, C. P.

    2015-01-01

    Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile on...

  1. Basics of averaging of the Maxwell equations for bulk materials

    OpenAIRE

    Chipouline, A.; Simovski, C.; Tretyakov, S.

    2012-01-01

    Volume or statistical averaging of the microscopic Maxwell equations (MEs), i.e. transition from microscopic MEs to their macroscopic counterparts, is one of the main steps in electrodynamics of materials. In spite of the fundamental importance of the averaging procedure, it is quite rarely properly discussed in university courses and respective books; up to now there is no established consensus about how the averaging procedure has to be performed. In this paper we show that there are some b...

  2. Ab initio electronic stopping power of protons in bulk materials

    Science.gov (United States)

    Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia

    2016-01-01

    The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.

  3. Application of bulk material commodity code in nuclear engineering

    International Nuclear Information System (INIS)

    The text details the signification and current status and difficulty of commodity code in the nuclear power engineering. By the applying condition of Ling Ao Phrase 2 Nuclear Power Plant there are several ways to create commodity code. Detail how to make commodity code structure and commodity code rule. And define material style, commodity code prefix, size and thickness etc. Then create commodity code. The other way is by user define to create commodity code. Next register specification in VPRM, make size range, thickness and branch fitting consolidation in the specification, select commodity code to create part number. And introduce how the interface of VPRM and PDMS, how import the weight data, and how make owner part number press in the drawing conveniently. The part numbers are applied in the drawings of LingAo Phrase 2 Nuclear Power Plant, owner accepts them. (authors)

  4. High temperature superconductor bulk materials fundamentals, processing, properties control, applications aspects

    CERN Document Server

    Krabbes, Gernot; Canders, Wolf-Rüdiger; May, Hardo; Palka, Ryszard

    2005-01-01

    With its comprehensive review of the current knowledge and the future requirements in the field, this book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. They provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. The authors are all leading international specialists involved in the field of high TC superconductor bulk materials since the beginning. Of utmost interest to engineers, scientists, and PhD students working in this field

  5. Superhard MgB sub 2 bulk material prepared by high-pressure sintering

    CERN Document Server

    Ma, H A; Chen, L X; Zhu, P W; Ren, G Z; Guo, W L; Fu, X Q; Zou Guang Tian; Ren, Z A; Che, G C; Zhao, Z X

    2002-01-01

    Superhard MgB sub 2 bulk material with a golden metallic shine was synthesized by high-pressure sintering for 8 h at 5.5 GPa and different temperatures. Appropriate pressure and temperature conditions for synthesizing polycrystalline MgB sub 2 with high hardness were investigated. The samples were characterized by means of atomic force microscopy and x-ray diffraction. The Vickers hardness, bulk density, and electrical resistivity were measured at room temperature.

  6. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials

    Institute of Scientific and Technical Information of China (English)

    WANG Xu-Dong; YE Yong-Hong; MA Ji; JIANG Mei-Ping

    2010-01-01

    @@ We numerically study the negative index properties of sandwiched metamaterials,perforated with a square array of circle holes filled with different media.Transmission spectra indicate that the filling medium can effectively change the position of the localized resonant peak,while keeping the position of the other transmission peaks hardly changed.Reflection spectra and retrieved effective impedance verify that an appropriate choice of the filling medium can provide a perfect impedance match.Due to the perfect impedance match,the electromagnetic responses of the negative index band based on the internal surface plasmon polaritons change in many aspects,such as a stronger magnetic resonance,a higher figure of merit and a narrower negative refractive index band.

  7. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    Science.gov (United States)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  8. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Mitchell, G.E.; Dekoven, B.M. [Dow Chemical Co., Midland, MI (United States); Yeh, A.T.; Gland, J.L. [Michigan Univ., Ann Arbor, MI (United States); Moodenbaugh, A.R. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  9. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. (National Institute of Standards and Technology, Gaithersburg, MD (United States)); Mitchell, G.E.; Dekoven, B.M. (Dow Chemical Co., Midland, MI (United States)); Yeh, A.T.; Gland, J.L. (Michigan Univ., Ann Arbor, MI (United States)); Moodenbaugh, A.R. (Brookhaven National Lab., Upton, NY (United States))

    1993-01-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  10. Thermal properties measurement of dry bulk materials with a cylindrical three layers device

    Science.gov (United States)

    Jannot, Y.; Degiovanni, A.

    2013-09-01

    This paper presents a new method dedicated to thermal properties (conductivity and diffusivity) measurement of dry bulk materials including powders. The cylindrical three layers experimental device (brass/bulk material/stainless steel) and the principle of the measurement method based on a crenel thermal excitation are presented. The one-dimensional modeling of the system is used for a sensitivity analysis and to calculate the standard deviation of the estimation error. Experimental measurements are carried out on three bulk materials: glass beads, cork granules, and expanded polystyrene beads. The estimated thermal properties are compared with the values obtained by other measurement methods. Results are in good agreement with theoretical predictions: both thermal conductivity and diffusivity can be estimated with a good accuracy for low density material like cork granules or expanded polystyrene beads since only thermal diffusivity can be estimated for heavier materials like glass beads. It is finally shown that this method like all transient methods is not suited to the thermal characterization of wet bulk materials.

  11. Materials preparation and magnetization of Gd-Ba-Cu-O bulk high-temperature superconductors

    Science.gov (United States)

    Ida, Tetsuya; Li, Zhi; Zhou, Difan; Miki, Motohiro; Zhang, Yufeng; Izumi, Mitsuru

    2016-05-01

    The paper reports on recent achievements in the preparation and magnetization of bulk high-temperature superconductors (HTS). The melt-growth of HTS bulks has technically stabilized due to the use of buffer materials with a seed crystal and modified infiltration to supply a rich liquid phase during growth. This modified growth technology was adapted as our standard processing method. This paper describes some new aspects of both field cooling and pulsed field magnetization processes. Pulsed field magnetization uses waveform control that feeds back the transient flux around the top-center of the bulks and traps a field of 1.63 T, which is more than 90% of the field cooling value. This was achieved by applying a single step pulsed field at a liquid nitrogen temperature. For practical applications, the magnetization under a static magnetic field that is tilted from the crystallographic c-axis was investigated at liquid nitrogen temperature. The trapped flux component perpendicular to the bulk surface remains strong up to θ = 30° inclination, compared to the procedure along the axis. Information about HTS bulks is considered to be important for machine applications using bulk HTS as cryo-permanent magnets.

  12. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    Science.gov (United States)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  13. A high energy microscope for local strain measurements within bulk materials

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Martins, R.V.;

    2000-01-01

    A novel diffraction technique for local, three dimensional strain scanning within bulk materials is presented. The technique utilizes high energy, micro-focussed synchrotron radiation which can penetrate several millimeters into typical metals. The spatial resolution can be as narrow as 1 mum...

  14. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    Science.gov (United States)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  15. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    Science.gov (United States)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  16. High symmetry versus optical isotropy of a negative-index metamaterial

    DEFF Research Database (Denmark)

    Menzel, Christoph; Rockstuhl, Carsten; Lliew, Rumen;

    2010-01-01

    Optically isotropic metamaterials MMs are required for the implementation of subwavelength imaging systems. At first glance one would expect that their design should be based on unit cells exhibiting a cubic symmetry being the highest crystal symmetry. It is anticipated that this is a sufficient...... in carcass negative index MM. We show that this MM is basically optically isotropic but not in the spectral domain where it exhibits negative refraction. The primary goal of this contribution is to introduce a tool that allows to probe a MM against optical isotropy....

  17. Effects of negative index medium defect layers on the trans mission properties of one-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuan-jiang; DAI Xiao-yu; WEN Shuang-chun

    2007-01-01

    School of Computer and Communication, Hunan University, Changsha 410082, ChinaThe photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdution of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.

  18. Chalcopyrite CuGaTe{sub 2}: a high-efficiency bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Plirdpring, Theerayuth; Harnwunggmoung, Adul [Graduate School of Engineering, Osaka University, Suita (Japan); Thermoelectric and Nanotechnology Research Center, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Huntra Phranakhon Si Ayutthaya (Thailand); Kurosaki, Ken; Sugahara, Tohru; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita (Japan); Kosuga, Atsuko [Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Osaka (Japan); Day, Tristan; Snyder, G. Jeffrey [Department of Materials Science, California Institute of Technology, Pasadena, CA (United States); Firdosy, Samad [Jet Propulsion Laboratory, Pasadena, CA (United States); Ravi, Vilupanur [Jet Propulsion Laboratory, Pasadena, CA (United States); California State Polytechnic University, Pomona, CA (United States); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2012-07-17

    CuGaTe{sub 2} with a chalcopyrite structure demonstrates promising thermoelectric properties. The maximum figure of merit ZT is 1.4 at 950 K. CuGaTe{sub 2} and related chalcopyrites are a new class of high-efficiency bulk thermoelectric material for high-temperature applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Tribology of polymeric nanocomposites friction and wear of bulk materials and coatings

    CERN Document Server

    Friedrich, Klaus

    2013-01-01

    Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in a

  20. Neutron spin tomography. A tool to visualize magnetic domains in bulk materials

    International Nuclear Information System (INIS)

    The possibility of a visualization of magnetic domains in bulk materials by the recently proposed tomographic neutron depolarization technique is discussed. In particular a numerical procedure is presented which allows the analysis of tomographic tensorial data taking into account the non-Abelian character of the involved tensors in lowest order. Analyzing schematic data sets it is shown that in principle it is possible to reveal the inner magnetization by tomographic neutron depolarization measurements. (author)

  1. Calibration of DEM models for granular materials using bulk physical tests

    OpenAIRE

    Johnstone, Mical William

    2010-01-01

    From pharmaceutical powders to agricultural grains, a great proportion of the materials handled in industrial situations are granular or particulate in nature. The variety of stesses that the matierals may experience and the resulting bulk behaviours may be complex. In agricultural engineering, a better understanding into agricultural processes such as seeding, harvesting, transporting and storing will help to improve the handling of agricultural grains with optimised solutions. A detailed un...

  2. Mesoscale structural characterization within bulk materials by high-energy X-ray microdiffraction

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Kvick, Å.

    2001-01-01

    A novel diffraction technique for the local three-dimensional characterization within polycrystalline bulk materials is presented. The technique uses high-energy synchrotron radiation (40 keV ... accessible. The technique is nondestructive and allows for in situ studies of samples in complicated environments. A dedicated experimental station has been constructed at the ID11 beamline of the European Synchrotron Radiation Facility. On-line two-dimensional detectors and conical slits have been developed...

  3. Acoustic behavior of a fibrous bulk material. [Kevlar 29 sound absorber

    Science.gov (United States)

    Hersh, A. S.; Walker, B.

    1979-01-01

    A semiempirical model is presented describing the acoustic behavior of Kevlar 29, a bulk absorbing material. The model is based on an approximate solution to the one-dimensional equations representing conservation of fluctuating mass, momentum and energy. By treating the material as a momentum sink, theoretical expressions of the material complex propagation constants and characteristic impedance were derived in terms of a single constant. Evaluating the constant at a single frequency for a particular specimen, excellent agreement between prediction and measurement was achieved for a large range of sound frequencies and material porosities and thicknesses. Results show that Kevlar 29 absorbs sound efficiently even at low frequencies. This is explained in terms of a frequency dependent material phase speed.

  4. Minimization of losses in a structure having a negative index of refraction

    International Nuclear Information System (INIS)

    A structure consisting of an array of wires cladded with a nonmagnetic dielectric and embedded in a ferrimagnetic host has been calculated to have a negative index of refraction. The structure has moderate losses over a bandwidth of a few GHz. The calculation takes into account the skin effect within the wires and is valid provided the wavelength of electromagnetic waves in the structure is long compared to the radius of the cladded wires. The structure's electromagnetic response is accurately described by the ferrimagnet's permeability and a permittivity derived in the long wavelength limit. Losses can be minimized by choosing the pass band to be between 30 and 80% of the plasma frequency and by choosing wires to be of the highest possible conductivity and largest radius compatible with the required plasma frequency

  5. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    Science.gov (United States)

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here. PMID:27153184

  6. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    Science.gov (United States)

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here.

  7. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties

    Science.gov (United States)

    Ramakrishna, S.; Santhosh Kumar, K. S.; Mathew, Dona; Reghunadhan Nair, C. P.

    2015-12-01

    Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile one-step method. The well-defined nanomaterial shows SH property in the bulk and is found to heal macro-cracks on gentle heating. It retains wettability characteristics even after abrading with a sand paper. The surface regenerates SH features (due to reversible self-assembly of nano structures) quickly at ambient temperature even after cyclic water impalement, boiling water treatment and multiple finger rubbing tests. It exhibits self-cleaning properties on both fresh and cut surfaces. This kind of coating, hitherto undisclosed, is expected to be a breakthrough in the field of melt-processable SH coatings.

  8. Standard Guide for Unrestricted Disposition of Bulk Materials Containing Residual Amounts of Radioactivity

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide covers the techniques for obtaining approval for release of materials encountered in decontamination and decommissioning (D&D) from restricted use. This would be addressed in the decommissioning plan (E 1281). It applies to materials that do not meet any of the requirements for regulatory control because of radioactivity content. Fig. 1 shows the logic diagram for determining the materials that could be considered for release. Materials that negotiate this logic tree are referred to as “candidate for release based on dose.” 1.2 The objective of this guide is to provide a methodology for distinguishing between material that must be carefully isolated to prevent human contact from that that can be recycled or otherwise disposed of. It applies to material in which the radioactivity is dispersed more or less uniformly throughout the volume of the material (termed residual in bulk form) as opposed to surface contaminated objects. 1.3 Surface contaminated objects are materials externally co...

  9. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  10. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  11. Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Reece, Charles; Palczewski, Ari; Ciovati, Gianluigi; Krishnan, Mahadevan; James, Colt; Irfan, Irfan

    2013-09-01

    This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via a cathodic arc Nb plasma ions source, an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Literally, a top-surface layer of Nb films which sustains SRF function, always grows up in homo-epitaxy mode, on top of a Nb nucleation layer. Homo-epitaxy growth of Nb must be the final stage (a crystal thickening process) of any coatings of Nb film on alternative cavity structure materials. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavities were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film could be as same as the pre-coated bulk Nb surface (which received a chemically-buffered polishing plus a light electro-polishing); but quality factor of two tested cavities dropped quickly. We are investigating if the severe Q-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.

  12. Cellulose-wheat gluten bulk plastic materials produced from processing raw powders by severe shear deformation.

    Science.gov (United States)

    Zhang, Xiaoqing; Wu, Xiaolin; Xia, Kenong

    2013-02-15

    Cellulose-based renewable bulk plastics with significantly improved mechanical properties were produced by using a small proportion of wheat gluten (WG) as an additive to enhance the material processing capability. The strong shear-deformation during equal channel angular pressing (ECAP) generated effective chain penetration and strong intermolecular interactions between the amorphous cellulose and WG components. The micro-cracking of the obtained materials was minimized, and the processing temperature was reduced. The crystallinity of the cellulose component was also decreased, whereas the crystalline size and regularity was less modified. The present study has further demonstrated that ECAP is a promising methodology to produce renewable and biodegradable "wood plastics" from cellulose-based agricultural waste. PMID:23399278

  13. In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material

    Science.gov (United States)

    Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke

    2016-07-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  14. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [Temple University; Schmidt, Robert D [ORNL; Case, Eldon D [Michigan State University, East Lansing; An, Ke [ORNL

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  15. 230Th/U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material

    Science.gov (United States)

    Obert, J. Christina; Scholz, Denis; Felis, Thomas; Brocas, William M.; Jochum, Klaus P.; Andreae, Meinrat O.

    2016-04-01

    We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A

  16. Application of high power X ray generators for processing bulk materials

    International Nuclear Information System (INIS)

    High power, high energy X ray (bremsstrahlung) generators are suitable sources of ionizing radiation for processing bulk materials. The basic physical, chemical and biological effects of irradiating materials with this form of energy are essentially the same as the effects obtained with gamma rays and accelerated electrons. The choice of energy source for a particular application depends on practical aspects of the irradiation process, such as material thickness, throughput rate, dose uniformity ratio and economics. X ray photons are emitted when energetic electrons strike any material. The intensity increases with the energy of the incident electrons and with the atomic number of the target material. With electron energies greater than 1 MeV, the angular distribution of the emitted radiation is concentrated in the direction of the electron beam. The efficiency for conversion incident electron beam power to useful X ray power in the forward direction is relatively low; typically about 8% at 5.0 MeV, 13% at 7.5 MeV and 16% at 10 MeV. The low converting efficiency can be compensated by using high power electron beams. The broad energy spectrum of bremsstrahlung (braking radiation) extends up to the maximum energy of the incident electrons. Although the most probable photon energy is only about 0.3 MeV, the penetration is significantly greater than gamma rays from large area cobalt-60 sources. The penetration of high energy X rays allows large loads of high density materials to be irradiated with low dose uniformity ratios. The narrow X ray beam allows pallet-sized loads to be irradiated singly, thus shortening the irradiation time. This facilitates changing the processing conditions for different materials. In contrast to the emission of gamma rays from radioactive sources, X ray generators can be switched off when not needed for production. This saves energy and simplifies maintenance procedures. High power, high energy electron accelerators are now available, with

  17. A bulk metal/ceramic composite material with a cellular structure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhankui; YAO Kefu; LI Jingfeng

    2006-01-01

    A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.

  18. Evaluation of simulation techniques for radiation damage in the bulk of fusion first wall materials

    International Nuclear Information System (INIS)

    An international workshop on 'Evaluation of Simulation Techniques for Radiation Damage in the Bulk of Fusion First Wall Materials' was held at Interlaken, Switzerland, June 27-30 1983. The idea was to gather a small group of people (∼20) actively engaged in experimental simulation of bulk radiation damage in the first wall material (e.g. damage by fusion neutrons). Because of the very positive response the number of participants ended up at 36 (from Belgium, Denmark, Federal Republic of Germany, France, Italy (ISPRA), Japan, Switzerland, U.K. and U.S.A.). The workshop was initially rather restrictive in the definition of experimental facilities for simulation of the first wall material, as it included only those facilities which simultaneously introduce helium (at high rate) and displacement damage . At the workshop a few simulation techniques that do not fulfill this requirement were discussed together with those that do. The basic programme of the workshop was composed of a series of invited presentations intended to cover the whole spectrum of simulation techniques and some of the underlying physics and basic technology. Time was also reserved for short presentations on any subject that the participants found relevant. Throughout the workshop ample time was allocated for discussions. As it turned out, the discussions tended to focus on the evaluation of the general situation for simulation of radiation damage in the first wall. The workshop covered the following topics: the concept of simulation; the important parameters (He generation to damage rate ratio; displacement damage rate; He generation rate; total doses; H generation; solid transmutation products; cascade effects; effect of beam pulsation; specimen dimension); and the irradiation effects (mechanical properties and swelling; microstructure). There was general agreement among the participants that ideal simulation, providing unambiguous information about the behaviour of the first wall material, is at

  19. AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material

    Science.gov (United States)

    Abd El-Rahman, K. F.; Darwish, A. A. A.; Qashou, Saleem I.; Hanafy, T. A.

    2016-07-01

    The Sb2S3 bulk material was used for next-generation anode for lithium-ion batteries. Alternative current (AC) conductivity, dielectric properties and electric modulus of Sb2S3 have been investigated. The measurements were carried out in the frequency range from 40 Hz to 5 MHz and temperature range from 293 K to 453 K. The direct current (DC) conductivity, σ DC, shows an activated behavior and the calculated activation energy is 0.50 eV. The AC conductivity, σ AC, was found to increase with the increase of temperature and frequency. The conduction mechanism of σ AC was controlled by the correlated barrier hopping model. The behavior of the dielectric constant, ɛ', and dielectric loss index, ɛ'', reveal that the polarization process of Sb2S3 is dipolar in nature. The behavior of both ɛ' and ɛ'' reveals that bulk Sb2S3 has no ferroelectric or piezoelectric phase transition. The dielectric modulus, M, gives a simple method for evaluating the activation energy of the dielectric relaxation. The calculated activation energy from M is 0.045 eV.

  20. Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials.

    Science.gov (United States)

    Nikitin, A Yu; Alonso-González, P; Hillenbrand, R

    2014-05-14

    Graphene plasmons promise exciting nanophotonic and optoelectronic applications. Owing to their extremely short wavelengths, however, the efficient coupling of photons to propagating graphene plasmons-critical for the development of future devices-can be challenging. Here, we propose and numerically demonstrate coupling between infrared photons and graphene plasmons by the compression of surface polaritons on tapered bulk slabs of both polar and doped semiconductor materials. Propagation of surface phonon polaritons (in SiC) and surface plasmon polaritons (in n-GaAs) along the tapered slabs compresses the polariton wavelengths from several micrometers to around 200 nm, which perfectly matches the wavelengths of graphene plasmons. The proposed coupling device allows for a 25% conversion of the incident energy into graphene plasmons and, therefore, could become an efficient route toward graphene plasmon circuitry. PMID:24773123

  1. Effects of macroscopic bulk defects on the damping behaviors of materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A large number of macroscopic pores or graphite particulates wereintroduced into commercially pure Al and ZA27 alloy by infiltration proces s to comparatively study the influence of macroscopic defects on the damping beh aviors of the materials. The mean diameter of the bulk defects is (1.0±0.5) mm, and the volume fractions of pores and graphite particulates are in the range of 50%—75% and 19%—94%, separately. It is shown that addition of a number of por es or graphite particulates can significantly improve the damping of commerciall y pure Al, due to the comprehensive effects of the macroscopic and microscopic d efects. However, the pores have little effect on the damping capacity of high da mping ZA27 alloy, and graphite particulates make the high temperature internal f riction peak decrease. It is considered that graphite particulates may repress t he intrinsic damping mechanism of ZA27 alloy.

  2. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later

    Science.gov (United States)

    Valiev, Ruslan Z.; Estrin, Yuri; Horita, Zenji; Langdon, Terence G.; Zehetbauer, Michael J.; Zhu, Yuntian

    2016-04-01

    It is now well established that the processing of bulk solids through the application of severe plastic deformation (SPD) leads to exceptional grain refinement to the submicrometer or nanometer level. Extensive research over the last decade has demonstrated that SPD processing also produces unusual phase transformations and leads to the introduction of a range of nanostructural features, including nonequilibrium grain boundaries, deformation twins, dislocation substructures, vacancy agglomerates, and solute segregation and clustering. These many structural changes provide new opportunities for fine tuning the characteristics of SPD metals to attain major improvements in their physical, mechanical, chemical, and functional properties. This review provides a summary of some of these recent developments. Special emphasis is placed on the use of SPD processing in achieving increased electrical conductivity, superconductivity, and thermoelectricity, an improved hydrogen storage capability, materials for use in biomedical applications, and the fabrication of high-strength metal-matrix nanocomposites.

  3. Modeling the material properties at the onset of damage initiation in bulk potassium dihydrogen phosphate crystals

    Science.gov (United States)

    Demos, Stavros G.; Feit, Michael D.; Duchateau, Guillaume

    2014-10-01

    A model simulating transient optical properties during laser damage in the bulk of KDP/DKDP crystals is presented. The model was developed and tested using as a benchmark its ability to reproduce the well-documented damage initiation behaviors but most importantly, the salient behavior of the wavelength dependence of the damage threshold. The model involves two phases. During phase I, the model assumes a moderate localized initial absorption that is strongly enhanced during the laser pulse via excited state absorption and thermally driven generation of additional point defects in the surrounding material. The model suggests that during a fraction of the pulse duration, the host material around the defect cluster is transformed into a strong absorber that leads to significant increase of the local temperature. During phase II, the model suggests that the excitation pathway consists mainly of one photon absorption events within a quasicontinuum of short-lived vibronic defect states spanning the band gap that was generated after the initial localized heating of the material due to thermal quenching of the excited state lifetimes. The width of the transition (steps) between different number of photons is governed by the instantaneous temperature, which was estimated using the experimental data. The model also suggests that the critical physical parameter prior to initiation of breakdown is the conduction band electron density. This model, employing very few free parameters, for the first time is able to quantitatively reproduce the wavelength dependence of the damage initiation threshold, and thus provides important insight into the physical processes involved.

  4. (RE)BaCuO/Ag Composites: The Role of Silver in Bulk Materials and Joints

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We have investigated the phase equilibria in (RE)BaCuO/Ag systems, the influence of Ag on the processing of (RE)BaCuO/Ag composites and the resulting properties. YBaCuO/Ag composites have been grown by the modified melt crystallization process with YBa2Cu3O7, Y2O3, Pt and Ag2O in the precursor. The improved strength of the YBaCuO/Ag composites compared with the conventional YBaCuO bulk material permitted us to magnetize these materials to achieve trapped fields up to 16 T (at 24 K) in the gap of a mini-magnet. The investigation of the microstructure revealed a remarkable increase of the spacing between micro-cracks especially of those perpendicular to a/b-planes when 12 wt% Ag was added. In the case of SmBaCuO/Ag composites, Ag has a strong influence on processing and causes interactions between RE123 seeds and the sample. We show the growth of single-grain SmBaCuO/Ag composites in air and discuss the influence of post-annealing on increasing Tc and Jc. Furthermore, YBaCuO/Ag composites have been shown to be appropriate materials used as a solder to join large single grains to large arrays or to "repair" grain boundaries in arrays grown by a multiseeding technique.

  5. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  6. The role of new particle surfaces in synthesizing bulk nanostructured metallic materials by powder metallurgy

    International Nuclear Information System (INIS)

    The role of new particle surfaces in synthesizing bulk nanostructured metallic materials by consolidation of nanostructured powders and nanopowders is analysed by developing three simple mathematical equations for calculating the α factor for different thermomechanical powder consolidation processes such as hot pressing, high pressure torsion and extrusion. The α factor is the fraction of the area of the powder particle surfaces newly formed during consolidation over the total particle surface area which includes both pre-existing surface area and the newly formed surface area. It is demonstrated that the values of the α factor calculated using these equations can be reasonably used to predict the level of inter-particle atomic bonding that is likely to be achieved through cold-welding by the above mentioned typical thermomechanical powder consolidation processes which also include high energy mechanical milling. Based on this analysis, it is clear that uniaxial hot pressing of a powder compact in a rigid die at low homologous temperatures (m) is unlikely to be capable of achieving a sufficiently high level of inter-particle atomic bonding for producing a high quality consolidated material, while processes involving a large amount of plastic deformation have such capabilities.

  7. Novel low temperature processing techniques for apatite ceramics and chitosan polymer composite bulk materials and its mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Onoki, Takamasa, E-mail: onoki@mtr.osakafu-u.ac.jp [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 (Japan); Nakahira, Atsushi [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 (Japan); Kansai Center for Industrial Materials Research, Institute of Materials Research, Tohoku University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 (Japan); Tago, Tomoyuki; Hasegawa, Yoshiyuki; Kuno, Tomoaki [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer CHI and DCPD were mixed in nano-scale by co-precipitation method. Black-Right-Pointing-Pointer Bulk CHI/HA materials derived from the CHI/DCPD hybrid material were obtained by hydrothermal hot-pressing. Black-Right-Pointing-Pointer Fracture toughness of the obtained bulk materials was enhanced from 0.30 to 0.40 MPam{sup 1/2} by the CHI hybridization. - Abstract: A co-precipitation method was used for processing chitosan (CHI)/calcium hydrogen phosphate dehydrate (DCPD) hybrid material. CHI solution was mixed into 1.0-M calcium nitrate solution. CHI/DCPD hybrid material was prepared by the above explained addition of CHI and Ca ion source to 1.0-M diammonium hydrogen phosphate solution. It was observed by transmission electron microscopy that CHI and DCPD were mixed within submicron meter scale. CHI/HA bulk materials derived from the CHI/DCPD hybrid materials were obtained by using a hydrothermal hot-pressing (HHP) method. A pressure of 40 MPa was initially applied to the sample. An HHP autoclave was heated up to 150 Degree-Sign C for 2 h. Modified 3-point bending tests were conducted to obtain an easy estimate of the fracture toughness for the CHI/HA bulk materials made with the HHP method. The critical stress intensity factor K{sub c} of the fabricated CHI/HA bulk materials was enhanced from 0.30 to 0.40 MPam{sup 1/2} by the hybridization of CHI into DCPD.

  8. Molecular level assessment of thermal transport and thermoelectricity in materials: From bulk alloys to nanostructures

    Science.gov (United States)

    Kinaci, Alper

    The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by

  9. Preparation of fine-grained bulk materials in the Fe-Co system by shock compression

    CERN Document Server

    Mashimo, T; Huang, X S; Murata, H; Sakakibara, M

    2002-01-01

    Fine-grained bulk alloys with no crack in the 70:30 mol% Fe-Co system were prepared by means of shock compression of water-atomized powder and mechanical alloying (MA) treated ones. The grain size of the water-atomized bulk body was smaller (<=50 mu m) than that of the molten bulk body (about 100 mu m). The grain size decreased greatly with the MA treatment time, and ones for 21 h were estimated to be about 15 nm from the x-ray diffraction patterns. The coercivity value of the water-atomized bulk body was much larger than that of the molten bulk body. The coercivity value of the MA-treated bulk body increased with the MA treatment time, and then decreased, despite the very small grain size, probably due to the effect of ferromagnetic exchange interaction.

  10. High thermoelectric performance of niobium-doped strontium titanate bulk material affected by all-scale grain boundary and inclusions

    International Nuclear Information System (INIS)

    The large thermal conductivity of SrTiO3 bulk material limits its potential application for high-temperature thermoelectricity. The effects of all-scale grain boundaries and inclusions on the thermoelectric performance of Nb-doped bulk SrTiO3 materials are investigated in this study. Nano- to microscale grain boundaries and inclusions reduce the thermal conductivity by 30%. As a result, the ZT value is enhanced 2.6 times by a combination of all-sized crystals, energy filtering effect, multilevel scattering behaviors of nano/microscale grain boundaries and inclusions

  11. Nanoscale Phase Immiscibility in High-ZT Bulk Lead Telluride Thermoelectric Materials

    Science.gov (United States)

    Girard, Steven Neal

    Renewable energy initiatives have increased interest in thermoelectric materials as an option for inexpensive and environmentally friendly waste heat-to-power generation. Unfortunately, low efficiencies have limited their wide-scale utilization. This work describes the synthesis and characterization of bulk nanostructured thermoelectric materials wherein natural phase immiscibility is manipulated to selectively generate nanoscale inclusions of a second phase that improve their efficiency through reductions in lattice thermal conductivity. The PbTe-PbS system exhibits natural phase separation by nucleation and growth or spinodal decomposition phase transformations depending on composition and temperature treatment. Through rapid quenching, nearly ideal solid solution alloys of PbTe-PbS are observed by powder X-ray diffraction. However, characterization by solid-state NMR and IR reflectivity show that solid solutions are obtained for rapidly quenched samples within the nucleation and growth region of the phase diagram, but samples within the spinodal decomposition region exhibit very slight phase immiscibility. We report the temperatures of phase separation using high temperature powder X-ray diffraction. Microscopy reveals that phase separation in PbTe-PbS naturally produces nanoinclusions. A decrease in lattice thermal conductivity is observed as a result of the solid solution-to-nanostructured phase transformation in this materials system, increasing thermoelectric figure of merit. Sn addition to PbTe-PbS produces a pseudobinary system of PbTe-PbSnS 2. This materials system produces microscale lamellae that effectively reduce lattice thermal conductivity. Unfortunately, the PbSnS2 inclusions also scatter electrons, reducing electrical conductivity and producing only a minimal increase in thermoelectric figure of merit. We additionally investigate PbSnS2 as prepared through Bridgman crystal growth. PbTe-PbS doped with Na appears to increase the kinetic rate of

  12. Analysis of continuum generation in bulk materials with a femtosecond Ti:Sapph laser

    Science.gov (United States)

    Bowman Pilkington, Sherrie; Roberson, Stephen D.; Pellegrino, Paul M.

    2016-05-01

    There is a significant need for the generation of highly stable continuum beams for a wide variety of optical diagnostic techniques. Of particular interest to this group are those techniques being used for chemical detection, such as Multiplex Coherent Anti-Stokes Raman Scattering (MCARS), stimulated Raman scattering, two-photon absorption spectroscopy, and techniques involving ultrafast optical parametric amplifiers (OPAs). While photonic crystal fibers (PCFs) are popular and provide an ample method for continuum generation under very specific conditions, they are not particularly stable in unfavorable conditions and can exhibit energy fluctuations and lack of coherence. Bulk solid materials, commonly sapphire or YAG crystals, can provide incredibly broad and smooth spectra with better temporal and spatial coherence. In this study, we present an in-depth analysis of femtosecond continuum generation in sapphire and YAG crystals using a 40fs Ti:Sapphire laser. Beam size, pump pulse energy, beam profile, and a variety of focusing conditions are considered. In addition, an analysis of the thick lens theory required for collimation of the continuum beam has been conducted and experimentally verified.

  13. Novel in situ device for investigating the tensile and fatigue behaviors of bulk materials

    Science.gov (United States)

    Ma, Zhichao; Zhao, Hongwei; Li, Qinchao; Wang, Kaiting; Zhou, Xiaoqin; Hu, Xiaoli; Cheng, Hongbing; Lu, Shuai

    2013-04-01

    For investigating the static tensile and dynamic fatigue behaviors of bulk materials, a miniaturized device with separate modular tensile and fatigue actuators was developed. The fatigue actuator presented good compatibility with the tensile actuator and mainly consisted of a special flexure hinge and piezoelectric stack. In situ fatigue tests under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. A displacement correction method of tensile actuator based on load sensor compliance was investigated, and the feasibility of the method was verified by the comparison tests with a commercial tensile instrument. The application of testing the storage and loss modulus as a function of frequency was explained, and the temperature rises of both the piezoelectric stack and specimen were obtained as a function of frequency. Output characteristics of the fatigue actuator were also investigated. Additionally, the discharge performance of piezoelectric stack based on various initial voltages and fatigue tests on C11000 copper was carried out. This paper shows a modularized example that combines a servo motor with a piezoelectric actuator attached to the specimen grip to realize the in situ fatigue tests.

  14. ES-3100: A New Generation Shipping Container for Bulk Highly Enriched Uranium and Other Fissile Materials

    Energy Technology Data Exchange (ETDEWEB)

    Arbital, J.G.; Byington, G.A.; Tousley, D.R.

    2004-07-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) is shipping bulk quantities of surplus fissile materials, primarily highly enriched uranium (HEU), over the next 15 to 20 years for disposition purposes. The U.S. Department of Transportation (DOT) specification 6M container is the package of choice for most of these shipments. However, the 6M does not conform to the Type B packaging requirements in the ''Code of Federal Regulations'' (10CFR71) and, for that reason, is being phased out for use in the secure transportation system of DOE. BWXT Y-12 is currently developing a package to replace the DOT 6M container for HEU disposition shipping campaigns. The new package is based on state-of-the-art, proven, and patented insulation technologies that have been successfully applied in the design of other packages. The new package, designated the ES-3100, will have a 50% greater capacity for HEU than the 6M and will be easier to use. Engineering analysis on the new package includes detailed dynamic impact finite element analysis (FEA). This analysis gives the ES-3100 a high probability of complying with regulatory requirements.

  15. ES-3100: a new generation shipping container for bulk highly enriched uranium and other fissile materials

    Energy Technology Data Exchange (ETDEWEB)

    Arbital, J.G.; Byington, G.A. [BWXT Y-12, L.L.C., Oak Ridge, TN (United States); Tousley, D.R. [National Nuclear Security Administration, Washington, D.C. (United States)

    2004-07-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) is shipping bulk quantities of surplus fissile materials, primarily highly enriched uranium (HEU), over the next 15 to 20 years for disposition purposes. The U.S. Department of Transportation (DOT) specification 6M container is the package of choice for most of these shipments. However, the 6M does not conform to the Type B packaging requirements in the Code of Federal Regulations (10CFR71{sup 1}) and, for that reason, is being phased out for use in the secure transportation system of DOE. BWXT Y-12 is currently developing a package to replace the DOT 6M container for HEU disposition shipping campaigns. The new package is based on state-of-the-art, proven, and patented insulation technologies that have been successfully applied in the design of other packages. The new package, designated the ES-3100, will have a 50% greater capacity for HEU than the 6M and will be easier to use. Engineering analysis on the new package includes detailed dynamic impact finite element analysis (FEA). This analysis gives the ES-3100 a high probability of complying with regulatory requirements.

  16. Novel Numerical Technique Employed in Accurate Simulations on White-Light Generation in Bulk Material

    CERN Document Server

    Zia, Haider

    2016-01-01

    An accurate simulation has been devised, employing a new numerical technique to simulate the generalised non-linear Schr\\"odinger equation in all three spatial dimensions and time. The simulations model all pertinent higher order effects such as self-steepening and plasma for the non-linear propagation of ultrafast optical radiation in bulk material. Simulation results are accurate and the novel numerical technique uses reduced computational resources. Simulation results are compared to published experimental data of an example ytterbium aluminum garnet (YAG) system at 3.1um radiation and fits to within a factor of 5. The simulation shows that there is a stability point near the end of the 2 mm crystal where the pulse is both collimated at a reduced diameter (factor of ~2) and there exists a near temporal soliton at the optical center. The temporal intensity profile within this stable region is compressed by a factor of ~4 compared to the input. This explains the reported stable regime found in the experiment...

  17. Degree of conversion of a self-adhesive endodontic sealer when used as bulk material.

    Science.gov (United States)

    Pérez-González, Silvia C; Bolaños-Carmona, Victoria; Pérez-Gómez, María M; González-López, Santiago

    2016-01-01

    This study tested the null hypothesis that the opacity of RealSeal SE (RSSE) sealer makes light-curing inefficient, while the degree of conversion (DC) is similar regardless of curing method. Fourteen uniradicular teeth were sectioned at 15 mm from the apex. Root canals were instrumented using the Reciproc file system, bulk-filled with RSSE, and divided randomly into two groups (dual-cure or self-cure). DC was determined by micro-Raman spectroscopy at 24 h, 48 h, and 1 week after filling, at 6, 9, and 12 mm from the coronal end. Contrast ratio (Yb/Yw) was used to determine the opacity of the material. Descriptive statistics and nonparametric tests were used, and significance was defined as a P value of less than 0.05. Opacity was almost total by the first section, at 6 mm. In dual-cure mode, DC values at 24 h were lower in the apical section (63.8%) than in the more coronal sections and were lower than in self-cured specimens (87.4%). Light-curing of the coronal end did not improve DC. These differences remained at 48 h and 1 week. Only a small (2%) but significant increase in DC was observed in evaluations at 24 h and 1 week. (J Oral Sci 58, 333-338, 2016). PMID:27665971

  18. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    International Nuclear Information System (INIS)

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves

  19. Bulk metamaterials: Design, fabrication and characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Alabastri, Alessandro;

    2009-01-01

    Bulk metamaterials claim a lot of attention worldwide. We report about our activity and advances in design, fabrication and characterization of metal-dielectric composites with three-dimensional lattices. The nomenclature of designs exhibiting negative index behaviour in the near infrared includes...

  20. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    Science.gov (United States)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  1. Bulk Combinatorial Synthesis and High Throughput Characterization for Rapid Assessment of Magnetic Materials: Application of Laser Engineered Net Shaping (LENS™)

    Science.gov (United States)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; Simsek, E.; Ott, R. T.

    2016-07-01

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS™; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS™ system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. The Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  2. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei

    2011-03-10

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  3. Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials

    CERN Document Server

    Sadatgol, Mehdi; Yang, Lan; Güney, Durdu Ö

    2015-01-01

    Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or \\Pi) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to arbitrary form of incident waves. The \\Pi-scheme is fundamentally different than major optical amplification schemes. It does not require gain medium, interaction with phonons, or any nonlinear medium. The \\Pi-scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These fin...

  4. Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials.

    Science.gov (United States)

    Sadatgol, Mehdi; Özdemir, Şahin K; Yang, Lan; Güney, Durdu Ö

    2015-07-17

    Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose a fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or Π) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to an arbitrary form of incident waves. The Π scheme is fundamentally different from major optical amplification schemes. It does not require a gain medium, interaction with phonons, or any nonlinear medium. The Π scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These findings open the possibility of reviving the early dreams of making "magical" metamaterials from scratch.

  5. Superconductors, analysis and applications, with special reference to the utilisation of bulk (Re)BCO materials

    Science.gov (United States)

    Coombs, T. A.

    2010-11-01

    The Electrical Power and Energy Conversion (EPEC) superconductivity group at Cambridge University has been working on the application of superconductivity to large scale devices. This work is taking place over a range of areas which cover FCLs, motors and generators, SMES, accelerator magnets and MRI. The research is underpinned by advanced modelling techniques using both pure Critical State models and E- J models to analyse the behaviour of the superconductors. As part of the device design we are concentrating on the analysis of AC losses in complicated geometries such as are found in motor windings and the magnetisation of bulk superconductors to enable their full potential to be realised. We are interested in the full range of high-temperature superconductors and have measured and predicted the performance of YBCO, MgB 2 and BSCCO at a range of temperatures and in wire, tape and bulk forms. This paper concentrates on recent work which includes: modelling of coils using formulations based on H and A. A critical state model for the analysis of coils in SMES; crossed field effects in bulk superconductors; a magnetic model together with experimental results which explain and describe the method of flux pumping whereby a bulk superconductor can be magnetised to a high flux density using a repeatedly applied field of low flux density and finally a new configuration for MRI magnets

  6. Superconductors, analysis and applications, with special reference to the utilisation of bulk (Re)BCO materials

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A., E-mail: tac1000@cam.ac.u [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2010-11-01

    The Electrical Power and Energy Conversion (EPEC) superconductivity group at Cambridge University has been working on the application of superconductivity to large scale devices. This work is taking place over a range of areas which cover FCLs, motors and generators, SMES, accelerator magnets and MRI. The research is underpinned by advanced modelling techniques using both pure Critical State models and E-J models to analyse the behaviour of the superconductors. As part of the device design we are concentrating on the analysis of AC losses in complicated geometries such as are found in motor windings and the magnetisation of bulk superconductors to enable their full potential to be realised. We are interested in the full range of high-temperature superconductors and have measured and predicted the performance of YBCO, MgB{sub 2} and BSCCO at a range of temperatures and in wire, tape and bulk forms. This paper concentrates on recent work which includes: modelling of coils using formulations based on H and A. A critical state model for the analysis of coils in SMES; crossed field effects in bulk superconductors; a magnetic model together with experimental results which explain and describe the method of flux pumping whereby a bulk superconductor can be magnetised to a high flux density using a repeatedly applied field of low flux density and finally a new configuration for MRI magnets

  7. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials

    OpenAIRE

    Nagas, Emre; Cehreli, Zafer; Mehmet Ozgur UYANIK; Veli DURMAZ

    2014-01-01

    The aim of this study was to evaluate the influence of a calcium silicate-based sealer (iRoot SP), with or without a core material, on bond strength to radicular dentin, in comparison with various contemporary root filling systems. Root canals of freshly extracted single-rooted teeth (n = 60) were instrumented using rotary instruments. The roots were randomly assigned to one of the following experimental groups: (1) a calcium silicate-based sealer without a core material (bulk-fill); (2) a ca...

  8. Cavity perturbation techniques for measurement of the microwave conductivity and dielectric constant of a bulk semiconductor material.

    Science.gov (United States)

    Eldumiati, I. I.; Haddad, G. I.

    1972-01-01

    Cavity perturbation techniques offer a very sensitive and highly versatile means for studying the complex microwave conductivity of a bulk material. A knowledge of the cavity coupling factor in the absence of perturbation, together with the change in the reflected power and the cavity resonance frequency shift, are adequate for the determination of the material properties. This eliminates the need to determine the Q-factor change with perturbation which may lead to appreciable error, especially in the presence of mismatch loss. The measurement accuracy can also be improved by a proper choice of the cavity coupling factor prior to the perturbation.

  9. Bulk and interfacial thermal transport in microstructural porous materials with application to fuel cells

    OpenAIRE

    Sadeghifar, Hamidreza

    2015-01-01

    The performance, reliability and durability of fuel cells are strongly influenced by the operating conditions, especially temperature and compression. Adequate thermal and water management of fuel cells requires knowledge of the thermal bulk and interfacial resistances of all involved components. The porous, brittle and anisotropic nature of most fuel cell components, together with the micro/nano-sized structures, has made it challenging to study their transport properties and thermal behavio...

  10. Grain size effect on electrical resistivity of bulk nanograined Bi{sub 2}Te{sub 3} material

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Oleg, E-mail: olniv@mail.ru; Maradudina, Oxana; Lyubushkin, Roman

    2015-01-15

    The bulk nanograined Bi{sub 2}Te{sub 3} material with various mean grain sizes changing from ~ 97 nm to ~ 51 nm was prepared by microwave assisted solvothermal method and hot pseudo-isostatic pressure. It was found that the specific electrical resistivity of the material increases as mean grain size decreases. Such kind of the grain effect on the resistivity can be attributed to enhanced electron scattering at the grain boundaries. The Mayadas–Shatzkes model was applied to explain experimental results. In this model the grain boundaries are regarded as potential barriers which have to be overcome by the electrons. The reflectivity R of the grain boundaries for the material under study was estimated to be equal to ~ 0.7. - Highlights: • The bulk nanograined Bi{sub 2}Te{sub 3} material with various mean grain sizes was prepared. • It was found that the electrical resistivity of the material increases as grain size decreases. • The Mayadas–Shatzkes model was applied to explain experimental results. • The reflectivity R of the grain boundaries was estimated to be equal to ~ 0.7.

  11. A Method for Determining Bulk Density, Material Density, and Porosity of Melter Feed During Nuclear Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, Zachary J.; Hrma, Pavel R.

    2016-01-31

    Abstract Glass making efficiency largely depends on heat transfer to reacting glass batch (melter feed), which in turn is influenced by the bulk density (ρb) and porosity (Φ) as functions of temperature (T). Neither b(T) nor Φ(T) functions are readily accessible to direct measurement, but they can be determined based on monitoring the profile area of heated glass batch pellets and material density of batches quenched at various stages of conversion via pycnometry. For the determination of Φb, the bulk volume must be calculated as a function of temperature. This is done via a program constructed in MATLAB which takes an image of a pellet profile at a given temperature and calculates the volume of said pellet. The quenched density measured by pycnometry must be converted to the density at heat treatment temperature. This is done by taking into account the volume change due to thermal expansion/contraction.

  12. A Quantum Chemical Study on Polythiophenes Derivatives as Donor Materials in Bulk-heterojunction Polymer Solar Cell

    Directory of Open Access Journals (Sweden)

    Bushra Mohamed Omer

    2012-09-01

    Full Text Available For the optimum design of the donor and acceptor materials in polymer solar cells, it is very important to do a theoretical calculation for the energy levels and energy gaps. In this work we used the semiempirical method Austin Model1 (AM1 to investigate the Higher Occupied Molecular Orbital (HOMO and Lower Unoccupied Molecular Orbital (LUMO of polythiophenes derivatives/fullerenes combination (bulk heterojunction polymer solar cells. The overestimation on the HOMO and LUMO values was corrected by using experimental data from literature as criteria of correctness. Using our correction method, a reasonable linear relationship between the computed energy band gaps of polythiophenes derivatives and the experimental band gaps were found. The corrected HOMO and LUMO energies of polythiophenes derivatives match well with the experimental one. This method can serve as a road map inorder to design and synthesis appropriate combination of polythiophenes derivatives/fullerenes for bulk heterojunction solar cells.

  13. Using molecular mechanics to predict bulk material properties of fibronectin fibers.

    Directory of Open Access Journals (Sweden)

    Mark J Bradshaw

    Full Text Available The structural proteins of the extracellular matrix (ECM form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional

  14. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g. reinf

  15. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Science.gov (United States)

    2010-10-01

    ... packagings containing liquid hazardous materials, single packaging fitted with vents, or open cryogenic... displayed on a package containing a liquid hazardous material. (c) The requirements of paragraph (a) of this... subchapter when packed with sufficient absorption material between the inner and outer packagings...

  16. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g. reinf

  17. First measurements of bulk and shear mechanical loss in optical thin film materials

    Science.gov (United States)

    Abernathy, Matthew; Harry, Gregory; Newport, Jonathan; Fair, Hanna; Hickey, Sam; Grettarsson, Andri; Penn, Steve; LIGO Collaboration

    As advanced gravitational wave detectors come online, and the possibility of the first gravitational wave detection nears, plans for the next generation of gravitational wave detectors are already in the works. These new detectors, and those already planned for the future, are expected to be limited in their most sensitive frequency bands by the Brownian thermal noise generated within the optical thin films used to produce the interferometer mirrors. In order to fully predict the level of this Brownian noise, it is necessary to know the two independent mechanical moduli (Young modulus and Poisson ratio, Bulk and Shear moduli, etc.) as well as their associated mechanical loss parameters. Traditional measurements of the mechanical loss of thin films has measured only one linear combination of these two loss parameters. Here, we present measurements of the bulk and shear mechanical loss of tantalum pentoxide (tantala) thin films made by taking advantage of the differing ratios of elastic deformation in the various resonant modes of a coated silica disc. These results may have immediate implications for the ultimate sensitivity of currently operated gravitational wave detectors.

  18. Carrier transport and charge transfer properties in coumarin-doped bulk-heterojunction materials

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Maeda, T.; Yamashita, K. [Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Yanagi, H. [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara 630-0192 (Japan)

    2012-12-15

    We have investigated photovoltaic properties of organic solar cells using polymer-fullerene bulk-heterojunction films doped with coumarin dyes. Whereas the coumarin molecules used in this study had similar absorption bands, evident difference was observed in the open-circuit voltage as well as in the short-circuit current. In particular, the doping of coumarin 307 was found to cause a distinct enhancement in the open-circuit voltage. On the other hand, the doping of coumarin 30 gave a serious degradation in the device performance. These results were strongly associated with calculated molecular energies of the doped dyes, especially with the highest occupied molecular orbital energy. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    Science.gov (United States)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-08-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed.

  20. Design of Yagi-Uda antennas based on high-permittivity dielectric bulk materials

    OpenAIRE

    Bueno Díez, Miguel Ángel

    2012-01-01

    [ANGLÈS] Dielectrics are insulators and they might therefore seem to be unlikely materials out of which to try and make antennas, but if they are excited in the right way they can be made to radiate very efficiently. Taking advantage of the properties of dielectric materials, a Yagi-Uda antenna based on a high-permittivity ceramic material operating at 3.68 GHz is described. The three-element array features a simulated directivity of approximately 8 dBi and a front-to-back ratio of 10.5 dB. M...

  1. Energy relaxation of hot electrons in III-N bulk materials

    International Nuclear Information System (INIS)

    Energy relaxation of the hot electrons in GaN, AlN and InN is investigated and compared based on a simple analytical model with both the hot-phonon effect (HPE) and the nonparabolicity of the conduction band taken into account. The impact of the HPE on the energy relaxation time is estimated by using various optical phonon lifetimes. The calculation results show that for this group of III nitrides, the energy relaxation time first falls rapidly and then saturates with the increasing electron temperature, and is higher at a high electron density. The presence of the HPE slows down the power dissipation and increases the energy relaxation time of the hot electrons of the density 1 × 1018 cm−3 (or 1 × 1019 cm−3) by around one or two orders of magnitude at an electron temperature within 3000 K. In particular, the saturated energy relaxation times are 0.12 ps in the bulk GaN, 22 fs in AlN and 26 fs in InN for an electron density of 1 × 1018 cm−3, which imply a rather weak HPE in the AlGaN and AlInN alloys. (paper)

  2. Modelling of thermal emissivity of covered bulk explosive materials in the THz range

    Science.gov (United States)

    Ciurapinski, Wieslaw M.; Szustakowski, Mieczyslaw; Palka, Norbert; Zyczkowski, Marek; Ryniec, Radoslaw; Piszczek, Marek; Zagrajek, Pzemyslaw

    2009-09-01

    Detection and recognition of covered explosive materials in the THz range can be devided into two areas - passive and active systems. Passive systems in the submilimeter (100÷300 GHz) as well as the terahertz (0.3÷3 THz) range base on thermal emissivity of exemined bodies. Such devices are designed to control persons and baggage in airports mainly at the temperature about 300K. Thermal emissivity of real bodies can be obtained from the Planck's formula for perfect black bodies and an emissvity coefficient. The emissivity coefficient of the real bodies can be determined from laboratory measurements of spectral transmission and reflection for the specific materials. However, values of the thermal emissivity detected in real cases depend strongly on surface of the material, direction of detection in relation to normal to the emitting surface, atmosphere and covering materials. These factors introduce attenuation of the emissivity what can cause camouflage of the characteristic features of individual materials and makes them difficult to identify. In this paper we present the value of the emissivity of hexogen (RDX) based on transmission measurements in FTIR spectrometer. The obtained emissivity is used to simulate intensity of radiation on an aperture.

  3. Synthesis and mechanical properties of bulk quantities of electrodeposited nanocrystalline materials

    Science.gov (United States)

    Brooks, Iain

    Nanocrystalline materials have generated immense scientific interest, primarily due to observations of significantly enhanced strength and hardness resulting from Hall-Petch grain size strengthening into the nano-regime. Unfortunately, however, most previous studies have been unable to present material strength measurements using established tensile tests because the most commonly accepted tensile test protocols call for specimen geometries that exceeded the capabilities of most nanocrystalline material synthesis processes. This has led to the development of non-standard mechanical test methodologies for the evaluation of miniature specimens, and/or the persistent use of hardness indentation as a proxy for tensile testing. This study explored why such alternative approaches can be misleading and revealed how reliable tensile ductility measurements and material strength information from hardness indentation may be obtained. To do so, an electrodeposition-based synthesis method to produce artifact-reduced specimens large enough for testing in accordance with ASTM E8 was developed. A large number of 161 samples were produced, tested, and the resultant data evaluated using Weibull statistical analysis. It was found that the impact of electroforming process control on both the absolute value and variability of achievable tensile elongation was strong. Tensile necking was found to obey similar processing quality and geometrical dependencies as in conventional engineering metals. However, unlike conventional engineering metals, intrinsic ductility (as measured by maximum uniform plastic strain) was unexpectedly observed to be independent of microstructure over the grain size range 10-80nm. This indicated that the underlying physical processes of grain boundary-mediated damage development are strain-oriented phenomena that can be best defined by a critical plastic strain regardless of the strength of the material as a whole. It was further shown that the HV = 3

  4. Mobility and bulk electron-phonon interaction in two-dimensional materials

    DEFF Research Database (Denmark)

    Gunst, Tue; Brandbyge, Mads; Markussen, Troels;

    2015-01-01

    We present calculations of the phonon-limited mobility in intrinsic n-type monolayer graphene, silicene and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. Unlike graphene, the carriers in silicene show strong interaction with the out...

  5. Optimization of sintering conditions in bulk MgB{sub 2} material for improvement of critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M., E-mail: miryala1@shibaura-it.ac.jp [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Nozaki, K.; Kobayashi, H. [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Zeng, X.L.; Koblischka-Veneva, A.; Koblischka, M.R. [Experimental Physics, Saarland University, P.O. Box 151150, 66041 Saarbrücken (Germany); Inoue, K.; Murakami, M. [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan)

    2015-11-15

    The present investigation focuses on methods to further improve the J{sub c} values of disk-shaped bulk MgB{sub 2} superconductors by optimizing the sintering conditions. We prepared two sets of bulk MgB{sub 2} material from commercial high-purity powders of Mg metal and amorphous B using a single-step solid-state reaction process. To optimize the sintering time, a set of samples was sintered at 775 °C with sintering duration ranging between 1 and 10 h (pure Ar atmosphere). A second set of samples was produced similarly at 775, 780, 785, 795, 800 and 805 °C (3 h, pure argon atmosphere). X-ray diffraction analysis showed that both sets of samples were single phase MgB{sub 2}. Magnetization measurements confirmed a sharp superconducting transition with T{sub c,onset} ≈ 38.2 K–38.8 K. The critical current density (J{sub c}) values for MgB{sub 2} samples produced for 1 h were the highest in all processed materials, i.e., the high J{sub c} value of 270,000 A/cm{sup 2} and 125,000 A/cm{sup 2} (20 K, self-field and 1 T) were achieved in the sample produced at 775 °C, without any additional doping. In contrast, the second series of samples clearly indicated that at 805 °C (3 h) the highest J{sub c} of 245,000 A/cm{sup 2} and 110,000 A/cm{sup 2} (20 K, self-field and 1 T) were achieved. AFM and EBSD observations indicated that largest amount of fine grains do exist in the sample sintered at 775 °C, but the narrowest distribution of grains does exist in the sample sintered at 800 °C. The present results clearly demonstrate a strong relation between the microstructure and the pinning performance. The optimization of the sintering conditions is crucial to improve the performance of bulk MgB{sub 2} samples. - Highlights: • We had successfully improved the performance of sintered, pure bulk MgB{sub 2} materials. • EBSD observations clarified that the grain sizes are in the 100–500 nm range. • The high J{sub c} value at 20 K, 0 T and 1 T are 2.70 × 10{sup 5} A

  6. Performance Improvement of Bulk Heterojunction Organic Photovoltalc Cell by Addition of a Hole Transport Material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; LIU Qian; MAO Jie; LIU Zun-Feng; YANG Li-Ying; YIN Shou-Gen; CHEN Yong-Sheng

    2008-01-01

    @@ A novel photovoltaic cell with an active layer of poly(phenyleneethynylene)(PPE)/C60/N,N'-diphenyl-N,N'-di-(m-tolyl)-p-benzidine(TPD)is designed.In the active layer,PPE is the major component;C60 and TPD are the minor ones.Compared with a control BHJ device based on PPE/C60,the short circuit current density Jsc is increased by 1 order of magnitude,and the whole device performance is increased greatly,however the open circuit voltage Voc is largely decreased.The possible mechanism of the improved performance may be as follows:In the PPE/C60/TPD device,PPE,C60,and TPD serve as the energy harvesting material,the electron transport material,and the hole transport materiall respectively.As the TPD and C60 are spatially separated by PPE,the charge recombination is effectively retarded.

  7. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  8. CuAlTe{sub 2}: A promising bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Gudelli, Vijay Kumar [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502 205, Telangana (India); Kanchana, V., E-mail: kanchana@iith.ac.in [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502 205, Telangana (India); Vaitheeswaran, G. [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana (India)

    2015-11-05

    Transport properties of Cu-based chalcopyrite materials are presented using the full potential linear augmented plane wave method and Boltzmann Semi-classical theory. All the studied compounds appear to be direct band gap semiconductors evaluated based on the Tran-Blaha modified Becke-Johnson potential. The heavy and light band combination found near the valence band maximum (VBM) drive these materials to possess good thermoelectric properties. Among the studied compounds, CuAlTe{sub 2} is found to be more promising, in comparison with CuGaTe{sub 2}, which is reported to be an efficient thermoelectric material with appreciable figure of merit. Another interesting fact about CuAlTe{sub 2} is the comparable thermoelectric properties possessed by both n- type and p-type carriers, which might attract good device applications and are explained in detail using the electronic structure calculations. - Highlights: • Band structure calculation of Cu(Al,Ga)Ch{sub 2} compounds with the TB-mBJ functional. • Mixed heavy-light bands near Fermi level might favour good thermoelectric properties. • Among the investigated compounds CuAlTe{sub 2} appears to be more promising. • Thermoelectric properties of CuAlTe{sub 2} are almost comparable with CuGaTe{sub 2}. • Both n,p-type thermoelectric properties of CuAlTe{sub 2} can attract device applications.

  9. Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics.

    Science.gov (United States)

    Wang, Bailiang; Liu, Huihua; Zhang, Binjun; Han, Yuemei; Shen, Chenghui; Lin, Quankui; Chen, Hao

    2016-05-01

    Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials. PMID:26896654

  10. On the chemical synthesis route to bulk-scale skutterudite materials

    DEFF Research Database (Denmark)

    Tafti, Mohsen Y.; Saleemi, Mohsin; Han, Li;

    2016-01-01

    In this article an alternative high yield route for the synthesis of CoSb3-based unfilled skutterudites is presented. Using low-melting temperature salts of the constituents, melting and mixing them homogeneously in a hydrophobic liquid with postprocessing of the powders we achieve a more...... temperatures and long processing times. Several structural characterization techniques were used to assess the mechanism of synthesis, verify the purity of the material as well as the reproducibility of the process. Detailed analysis and results are presented in support of the proposed process. Additionally...

  11. Bulk moisture determination in building materials by fast neutron/gamma technique

    International Nuclear Information System (INIS)

    Fast Neutron/Gamma Transmission technique has been improved to allow to measure moisture content in building materials. In order to improve fast neutron/gamma discrimination in the transmission system employing the NE-213 scintillation detector a pulse shape discrimination system was constructed at the CEADEN. A separate neutron/gamma detection approach was used with neutron transmission measurement using an Am-Be neutron source and a BF3 detector and gamma transmission measurement using a collimated 137Cs source and a NaI scintillator

  12. A Validated TLC-Densitometric Method for the Determination of Mesterolone in Bulk Material and in Tablets

    Science.gov (United States)

    Dołowy, Małgorzata; Pyka-Pająk, Alina; Filip, Katarzyna; Zagrodzka, Joanna

    2015-01-01

    Mesterolone is a synthetic androgenic steroid indicating a weak anabolic activity. A new, simple in use, and economical TLC-densitometric method in normal phase system (NP-TLC) has been developed and validated for the identification and quantitative determination of mesterolone in bulk drug and in tablet formulation. NP-TLC analysis was performed on aluminium plates precoated with silica gel 60F254 as the stationary phase using chloroform-acetone (40 : 10, v/v) as mobile phase. Densitometric analysis was carried out at λ = 745 nm after staining with phosphomolybdic acid. These conditions were found to give visible (dark blue) spot and sharp peak, respectively, for mesterolone at RF  0.75 ± 0.02 and enabled satisfactory separation of mesterolone from its related substance (potential impurity). The proposed NP-TLC-densitometric method was validated for specificity, linearity, precision, accuracy, robustness, and sensitivity according to ICH guideline and other validation requirements. The limit of detection (LOD) and limit of quantification (LOQ) were 61.0 ng·spot−1 and 184.0 ng·spot−1, respectively. The percent content of mesterolone in marketed tablet formulation was found to be 99.40% of label claim. The developed TLC-densitometric method can be successfully used in quality control of mesterolone in bulk material and also tablet formulation. PMID:26881196

  13. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems. PMID:26387478

  14. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems.

  15. Microwave resonant technique in studies of photodielectric properties of bulk, thin film and nanoparticle materials

    Science.gov (United States)

    Pavlov, V. V.; Rakhmatullin, R. M.; Cefalas, A. C.; Semashko, V. V.

    2016-06-01

    An enhanced contactless microwave technique allows us to study the photoconductivity of materials. The transient response of the complex permittivity of matter (ε ={ε1}-j{ε2} ) under optical irradiation is measured with nanosecond time resolution. The main advantage of the novel methodology is the elimination of the polarization effect in evaluating photoconductivity. The potential of the methodology was demonstrated by photoconductivity measurements in Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal. The variations of complex permittivity (δ {ε1} and δ {ε2} ) of Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal under optical irradiation was measured and accurate values for crystalline band gaps were extracted. Finally, quantum confinement effects were observed in nano-size crystalline powders.

  16. A confocal rheoscope to study bulk or thin-film material under uniaxial or biaxial shear

    CERN Document Server

    Lin, Neil Y C; Cheng, Xiang; Leahy, Brian; Cohen, Itai

    2016-01-01

    We present a new design of a confocal rheoscope that enables us to precisely impose a uniform uniaxial or biaxial shear. The design consists of two precisely-positioned parallel plates. Our design allows us to adjust the gap between the plates to be as small as 2$\\pm$0.1 $\\mu$m, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material 3D structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions.

  17. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    International Nuclear Information System (INIS)

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument

  18. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    Science.gov (United States)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  19. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan; Liang, Yunhong [The Key Laboratory of Engineering Bionics (Ministry of Education) and the College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130025 (China); Zhao, Hongwei [College of Mechanical Science and Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130025 (China); Zhu, Bing [College of Automotive Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130025 (China)

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  20. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    Science.gov (United States)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  1. Magnetic screw rod using dual state 0.6C-13Cr-Fe bulk magnetic material

    Science.gov (United States)

    Mita, Masahiro; Hirao, Noriyoshi; Kimura, Fumio

    2002-05-01

    A magnetic screw rod that can replace a mechanical ball screw has been successfully fabricated. This type of device provides linear motion from a rotating motor. The magnetic screw rod is made from dual state 0.6C-13Cr-Fe bulk magnetic rod stock. The material, originally soft magnetically, can be heat treated to obtain a nonmagnetic region which substitutes for the groove of a conventional magnetic screw rod. This method produces a magnetic screw rod with a smooth, round outer shape and a longer, cleaner operational life. This experiment successfully yielded a 300 mm long, 25 mm diameter magnetic rod with 10 mm pitch, 4 mm width, 4 mm depth spiral nonmagnetic region.

  2. Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials

    Science.gov (United States)

    Abushgair, K.

    2015-03-01

    In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of the friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.

  3. Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials

    Energy Technology Data Exchange (ETDEWEB)

    Abushgair, K. [Khaleel. Abu-Shgair, Al-Balqa Applied University, Amman, Jordan. khaleel45@yahoo.com (Jordan)

    2015-03-30

    In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of the friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.

  4. Development of the Algorithm for Energy Efficiency Improvement of Bulk Material Transport System

    Directory of Open Access Journals (Sweden)

    Milan Bebic

    2013-06-01

    Full Text Available The paper presents a control strategy for the system of belt conveyors with adjustable speed drives based on the principle of optimum energy consumption. Different algorithms are developed for generating the reference speed of the system of belt conveyors in order to achieve maximum material cross section on the belts and thus reduction of required electrical drive power. Control structures presented in the paper are developed and tested on the detailed mathematical model of the drive system with the rubber belt. The performed analyses indicate that the application of the algorithm based on fuzzy logic control (FLC which incorporates drive torque as an input variable is the proper solution. Therefore, this solution is implemented on the newvariable speed belt conveyor system with remote control on an open pit mine. Results of measurements on the system prove that the applied algorithm based on fuzzy logic control provides minimum electrical energy consumption of the drive under given constraints. The paper also presents the additional analytical verification of the achieved results trough a method based on the sequential quadratic programming for finding a minimum of a nonlinear function of multiple variables under given constraints.

  5. Comparison of Customer Preference for Bulk Material Handling Equipment through Fuzzy-AHP Approach

    Science.gov (United States)

    Sen, Kingshuk; Ghosh, Surojit; Sarkar, Bijan

    2016-06-01

    In the present study, customer's perception has played one of the important roles for selection of the exact equipment out of available alternatives. The present study is dealt with the method of optimization of selection criteria of a material handling equipment, based on the technical specifications considered to be available at the user end. In this work, the needs of customers have been identified and prioritized, that lead to the selection of number of criteria, which have direct effect upon the performance of the equipment. To check the consistency of selection criteria, first of all an AHP based methodology is adopted with the identified criteria and available product categories, based upon which, the judgments of the users are defined to derive the priority scales. Such judgments expressed the relative strength or intensity of the impact of the elements of the hierarchy. Subsequently, all the alternatives have ranked for each identified criteria with subsequent constitution of weighted matrices. The same has been compared with the normalized values of approximate selling prices of the equipments to determine individual cost-benefit ratio. Based on the cost-benefit ratio, the equipment is ranked. With same conditions, the study is obtained again with a Fuzzy AHP concept, where a fuzzy linguistic approach has reduced the amount of uncertainty in decision making, caused by conventional AHP due to lack of deterministic approach. The priority vectors of category and criteria are determined separately and multiplied to obtain composite score. Subsequently, the average of fuzzy weights was determined and the preferences of equipment are ranked.

  6. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)], E-mail: aljymittal@yahoo.co.in; Kaur, Dipika; Mittal, Jyoti [Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)

    2009-04-30

    De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns.

  7. CMP process optimization using alkaline bulk copper slurry on a 300 mm Applied Materials Reflexion LK system

    International Nuclear Information System (INIS)

    CMP process optimization for bulk copper removal based on alkaline copper slurry was performed on a 300 mm Applied Materials Reflexion LK system. Under the DOE condition, we conclude that as the pressure increases, the removal rate increases and non-uniformity is improved. As the slurry flow rate increases, there is no significant improvement in the material removal rate, but it does slightly reduce the WIWNU and thus improve uniformity. The optimal variables are obtained at a reduced pressure of 1.5 psi and a slurry flow rate of 300 ml/min. Platen/carrier rotary speed is set at a constant value of 97/103 rpm. We obtain optimized CMP characteristics including a removal rate over 6452 Å/min and non-uniformity below 4% on blanket wafer and the step height is reduced by nearly 8000 Å/min in the center of the wafer on eight layers of copper patterned wafer, the surface roughness is reduced to 0.225 nm. (semiconductor technology)

  8. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials

    International Nuclear Information System (INIS)

    De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns

  9. Microstructures and mechanical properties of bulk nanocrystalline Fe{sub 3}Al materials with 5, 10 and 15 wt.% Cr prepared by aluminothermic reaction

    Energy Technology Data Exchange (ETDEWEB)

    La Peiqing, E-mail: pqla@lut.cn [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Wang Hongding; Bai Yaping; Yang Yang; Wei Yupeng; Lu Xuefeng; Zhao Yang; Cheng Chunjie [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)

    2011-08-15

    Highlights: {yields} We prepare bulk nanocrystalline material by aluminothermic reaction. {yields} Microstructures keep bcc disordered structure of Fe{sub 3}Al. {yields} Materials have good plastic deformation and texture changes after compression. - Abstract: Bulk nanocrystalline Fe{sub 3}Al based materials with 5, 10 and 15 wt.% Cr were prepared by aluminothermic reaction, in which melts were superheated about 1500 K before solidification. Microstructures of the materials were investigated by optical microscope, electron probe microscope, X-ray diffraction and transmission electron microscope. It was shown that microstructure of the materials consist of nanocrystalline matrix phase, which was composed of Fe, Al and Cr elements, and a small amount of contamination. The nanocrystalline phase was disordered bcc structure, and which did not change with Cr content. Average grain sizes of the nanocrystalline phase of the materials with 5, 10 and 15 wt.% Cr were 33, 21 and 37 nm, respectively. Compressive properties and hardness of the materials were tested. It indicated that the materials had a considerable plastic deformation and were not fractured in compression. Yield strength of the materials were about three times higher but hardness were a little lower than those of Fe{sub 3}Al material with coarsen grain. The hardness and yield strength of the materials varied slightly with Cr content and that of the material with 10 wt.% Cr was slightly lower. Average grain sizes of the materials decreased and texture changes appeared after the compression.

  10. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material.

    Science.gov (United States)

    Zhang, Xin; Qiao, Xiao-Fen; Shi, Wei; Wu, Jiang-Bin; Jiang, De-Sheng; Tan, Ping-Heng

    2015-05-01

    Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps and recent advances in the synthesis, characterization and device fabrication of the representative MoS2, WS2, WSe2 and MoSe2 TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atoms within each layer in 2D TMDs are joined together by covalent bonds, while van der Waals interactions keep the layers together. This makes the physical and chemical properties of 2D TMDs layer-dependent. In this review, we discuss the basic lattice vibrations of 2D TMDs from monolayer, multilayer to bulk material, including high-frequency optical phonons, interlayer shear and layer breathing phonons, the Raman selection rule, layer-number evolution of phonons, multiple phonon replica and phonons at the edge of the Brillouin zone. The extensive capabilities of Raman spectroscopy in investigating the properties of TMDs are discussed, such as interlayer coupling, spin-orbit splitting and external perturbations. The interlayer vibrational modes are used in rapid and substrate-free characterization of the layer number of multilayer TMDs and in probing interface coupling in TMD heterostructures. The success of Raman spectroscopy in investigating TMD nanosheets paves the way for experiments on other 2D crystals and related van der Waals heterostructures. PMID:25679474

  11. Impact of thermal annealing on bulk InGaAsSbN materials grown by metalorganic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. W.; Mawst, L. J., E-mail: mawst@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Kim, K.; Lee, J. J. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Kuech, T. F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wells, N. P.; LaLumondiere, S. D.; Sin, Y.; Lotshaw, W. T.; Moss, S. C. [Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, California 90245 (United States)

    2014-02-03

    Two different thermal annealing techniques (rapid thermal annealing (RTA) and in-situ post-growth annealing in the metalorganic vapor phase epitaxy (MOVPE) chamber) were employed to investigate their impact on the optical characteristics of double-heterostructures (DH) of InGaAsSbN/GaAs and on the performance of single-junction solar cell structures, all grown by MOVPE. We find that an optimized RTA procedure leads to a similar improvement in the photoluminescence (PL) intensity compared with material employing a multi-step optimized anneal within the MOVPE reactor. Time-resolved photoluminescence techniques at low temperature (LT) and room temperature (RT) were performed to characterize the carrier dynamics in bulk InGaAsSbN layers. Room temperature carrier lifetimes were found to be similar for both annealing methods, although the LT-PL (16 K) measurements of the MOVPE-annealed sample found longer lifetimes than the RTA-annealed sample (680 ps vs. 260 ps) for the PL measurement energy of 1.24 eV. InGaAsSbN-based single junction solar cells processed with the optimized RTA procedure exhibited an enhancement of the electrical performance, such as improvements in open circuit voltage, short circuit current, fill factor, and efficiency over solar cells subjected to the in-situ MOVPE annealing technique.

  12. Feasibility of introducing ferromagnetic materials to onboard bulk high-T{sub c} superconductors to enhance the performance of present maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: zgdeng@gmail.com [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Jiasu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Zheng, Jun; Zhang, Ya [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Suyu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China)

    2013-02-14

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  13. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    Science.gov (United States)

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR sensors. PMID:26007721

  14. Preparation of high performance Zn4Sb3 bulk thermoelectric materials%Zn4Sb3高性能热电材料的制备

    Institute of Scientific and Technical Information of China (English)

    陈中春; 辻村润一; 葳本遼

    2011-01-01

    A "reaction -extrusion process" has been developed to prepare Zn4Sb3 bulk materials with high thermoelectric performance. The synthesis, densification, and shape -forming of Zn4Sb3 bulk materials were realized simultaneously in one hot - extrusion process, and the resulting extrudates had high density with single β - Zn4 Sb3phase. A large extrusion ratio and a small punch speed are advantageous to enhance thermoelectric performance. The extruded Zn4Sb3 materials exhibited excellent thermoelectric performance, for example, the dimensionless thermoelectric figure of merit is 1.77 at 623 K, which is 36% higher compared to conventional hot - pressed materials. On the other hand, the incorporation of 1% SiC nanosized particles into Zn4Sb3 matrix leads to improvements in both thermoelectric and mechanical properties.

  15. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    OpenAIRE

    Hu Huang; Hongwei Zhao; Chengli Shi; Boda Wu; Zunqiang Fan; Shunguang Wan; Chunyang Geng

    2012-01-01

    Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM) to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG) was studied by in situ scratch testing ...

  16. Materials process and applications of single grain (RE)-Ba-Cu-O bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li Beizhan; Zhou Difan; Xu Kun; Hara, Shogo; Tsuzuki, Keita; Miki, Motohiro; Felder, Brice; Deng Zigang [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology (TUMSAT), 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Izumi, Mitsuru, E-mail: izumi@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology (TUMSAT), 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2012-11-20

    This paper reviews recent advances in the melt process of (RE)-Ba-Cu-O [(RE)BCO, where RE represents a rare earth element] single grain high-temperature superconductors (HTSs), bulks and its applications. The efforts on the improvement of the magnetic flux pinning with employing the top-seeded melt-growth process technique and using a seeded infiltration and growth process are discussed. Which including various chemical doping strategies and controlled pushing effect based on the peritectic reaction of (RE)BCO. The typical experiment results, such as the largest single domain bulk, the clear TEM observations and the significant critical current density, are summarized together with the magnetization techniques. Finally, we highlight the recent prominent progress of HTS bulk applications, including Maglev, flywheel, power device, magnetic drug delivery system and magnetic resonance devices.

  17. Pillar Initiated Growth of High Indium Content Bulk Indium Gallium Nitride to Improve the Material Quality for Photonic Devices

    Science.gov (United States)

    McFelea, Heather Dale

    The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and density were optimized to facilitate coalescence on top of the pillars. It was expected that dislocations within the pillars would bend to side facets, thereby reducing the dislocation density in the bulk overgrowth, however this was not observed. It was also expected that pillars would be completely relaxed at the interface with the substrate. It was shown that pillars are mostly relaxed, but not completely. Mechanisms are proposed to explain why threading dislocations did not bend and how complete relaxation may have been achieved by mechanisms outside of interfacial misfit dislocation formation. Phase separation was not observed by TEM but may be related to the limitations of the sample or measurements. High indium observed at facets and stacking faults could be related to the extra photoluminescence peaks measured. This research focused on the InGaN pillars and first stages of coalescence on top of the pillars, saving bulk growth and device optimization for future research.

  18. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  19. ZnS and ZnSe immersion gratings for astronomical high-resolution spectroscopy - evaluation of internal attenuation of bulk materials in the short NIR region

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Y; Kobayashi, N; Kondo, S; Yasui, C; Kuzmenko, P J; Tokoro, H; Terada, H

    2009-08-12

    We measure the internal attenuation of bulk crystals of CVD-ZnS, CVD-ZnSe, Si, and GaAs, in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of {alpha}{sub att} = 0.01-0.03 cm{sup -1} among the major candidates. The measured attenuation is roughly in proportion to {lambda}{sup -2}, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least > 80 %, even for the spectral resolution of R = 300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  20. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    Science.gov (United States)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  1. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, V.C.; Sandquist, G.M.; Merrell, G.B.; Gozani, T.

    1984-08-01

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations.

  2. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    International Nuclear Information System (INIS)

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations

  3. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  4. Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-01-06

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement at two laser wavelengths of 1000 nm and 860 nm, we investigated carrier behavior inside the pentacene and C{sub 60} component of co-deposited pentacene:C{sub 60} bulk-heterojunctions (BHJs) organic solar cells (OSCs). The EFISHG experiments verified the presence of two carrier paths for electrons and holes in BHJs OSCs. That is, two kinds of electric fields pointing in opposite directions are identified as a result of the selectively probing of SHG activation from C{sub 60} and pentacene. Also, under open-circuit conditions, the transient process of the establishment of open-circuit voltage inside the co-deposited layer has been directly probed, in terms of photovoltaic effect. The EFISHG provides an additional promising method to study carrier path of electrons and holes as well as dissociation of excitons in BHJ OSCs.

  5. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F; Talamonti, R; Watts, S; Zanet, A

    1999-01-01

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors. (5 refs).

  6. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    International Nuclear Information System (INIS)

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors

  7. Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method

    Science.gov (United States)

    Ma, Yanwei; Gao, Zhaoshun; Qi, Yanpeng; Zhang, Xianping; Wang, Lei; Zhang, Zhiyu; Wang, Dongliang

    2009-05-01

    The recent discovery of superconductivity in the iron-based superconductors with very high upper critical fields presents a new possibility for practical applications, but fabricating fine-wire is a challenge because of mechanically hard and brittle powders and the toxicity and volatility of arsenic. In this paper, we report the synthesis and the physical characterization of iron pnictide wires and bulks prepared by the powder-in-tube method (PIT). A new class of high- Tc iron pnictide composite wires, such as LaFeAsO 1-xF x, SmFeAsO 1-xF x and Sr 1-xK xFeAs, has been fabricated by the in situ PIT technique using Fe, Ta and Nb tubes. Microscopy and X-ray analysis show that the superconducting core is continuous, and retains phase composition after wire drawing and heat treatment. Furthermore, the wires exhibit a very weak Jc-field dependence behavior even at high temperatures. The upper critical field Hc2(0) value can exceed 100 T, surpassing those of MgB 2 and all the low temperature superconductors and indicating a strong potential for applications requiring very high field. These results demonstrate the feasibility of producing superconducting pnictide composite wire. We also applied the one-step PIT method to synthesize the iron-based bulks, due to its convenience and safety. In fact, by using this technique, we have successfully discovered superconductivity at 35 K and 15 K in Eu 0.7Na 0.3Fe 2As 2 and SmCoFeAsO compounds, respectively. These clearly suggest that the one-step PIT technique is unique and versatile and hence can be tailored easily for other rare earth derivatives of novel iron-based superconductors.

  8. 49 CFR 173.243 - Bulk packaging for certain high hazard liquids and dual hazard materials which pose a moderate...

    Science.gov (United States)

    2010-10-01

    ... conforming to 46 CFR part 64 with design pressure of at least 172.4 kPa (25 psig) are authorized. Unless... dual hazard materials which pose a moderate hazard. 173.243 Section 173.243 Transportation Other... hazard liquids and dual hazard materials which pose a moderate hazard. When § 172.101 of this...

  9. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten;

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers.......Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  10. The influence of phonon thermal conductivity on thermoelectric figure of merit of bulk nanostructured materials with tunneling contacts

    OpenAIRE

    Bulat, L. P.; Kossakovski, D.; Pshenay-Severin, D. A.

    2012-01-01

    A composite material is considered which consists of conducting nanoparticles separated by tunneling dielectric barriers. The influence of the phonon thermal conductivity of dielectric matrix on the thermoelectric figure of merit of this composite material is theoretically in-vestigated. The range of values and barrier parameters that can lead to the thermoelectric figure of merit greater than unity is estimated. The influence of space charge and nonlinearity of current-voltage relations of t...

  11. Quantifying bulk electrode strain and material displacement within lithium batteries via high-speed operando tomography and digital volume correlation

    OpenAIRE

    Finegan, D. P.; Tudisco, E.; Scheel, M; Robinson, J B; Taiwo, O. O.; Eastwood, D. S.; Lee, P. D.; Di Michiel, M.; Bay, B.; Hall, S. A.; Hinds, G.; Brett, D. J. L.; Shearing, P. R.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high-speed operando synchrotron X-ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real-time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation ...

  12. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  13. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-12-01

    Full Text Available Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  14. The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications

    KAUST Repository

    Scarongella, Mariateresa

    2014-01-01

    Light-induced charge formation is essential for the generation of photocurrent in organic solar cells. In order to gain a better understanding of this complex process, we have investigated the femtosecond dynamics of charge separation upon selective excitation of either the fullerene or the polymer in different bulk heterojunction blends with well-characterized microstructure. Blends of the pBTTT and PBDTTPD polymers with PCBM gave us access to three different scenarios: either a single intermixed phase, an intermixed phase with additional pure PCBM clusters, or a three-phase microstructure of pure polymer aggregates, pure fullerene clusters and intermixed regions. We found that ultrafast charge separation (by electron or hole transfer) occurs predominantly in intermixed regions, while charges are generated more slowly from excitons in pure domains that require diffusion to a charge generation site. The pure domains are helpful to prevent geminate charge recombination, but they must be sufficiently small not to become exciton traps. By varying the polymer packing, backbone planarity and chain length, we have shown that exciton diffusion out of small polymer aggregates in the highly efficient PBDTTPD:PCBM blend occurs within the same chain and is helped by delocalization. This journal is © the Partner Organisations 2014.

  15. Optimization of a solar-blind and middle infrared two-colour photodetector using GaN-based bulk material and quantum wells

    International Nuclear Information System (INIS)

    This paper calculates the wavelengths of the interband transitions as a function of the Al mole fraction of A1xGa1–xN bulk material. It is finds that when the Al mole fraction is between 0.456 and 0.639, the wavelengths correspond to the solar-blind (250 nm to 280 nm). The influence of the structure parameters of A1yGa1–yN/GaN quantum wells on the wavelength and absorption coefficient of intersubband transitions has been investigated by solving the Schrödinger and Poisson equations self-consistently. The A1 mole fraction of the A1yGa1–yN barrier changes from 0.30 to 0.46, meanwhile the width of the well changes from 2.9 nm to 2.2 nm, for maximal intersubband absorption in the window of the air (3 μm < λ < 5 μm). The absorption coefficient of the intersubband transition between the ground state and the first excited state decreases with the increase of the wavelength. The results are finally used to discuss the prospects of GaN-based bulk material and quantum wells for a solar-blind and middle infrared two-colour photodetector. (classical areas of phenomenology)

  16. Overview of Workshop on Evaluation of Simulation Techniques for Radiation Damage in the Bulk of Fusion First Wall Materials

    DEFF Research Database (Denmark)

    Leffers, Torben; Singh, Bachu Narain; Green, W.V.;

    1984-01-01

    The main points and the main conclusions of a workshop held June 27–30 1983 at Interlaken, Switzerland, are reported. There was general agreement among the participants that ideal simulation, providing unambiguous information about the behaviour of the first wall material, is at present out of...

  17. Polydopamine-Gelatin as Universal Cell-Interactive Coating for Methacrylate-Based Medical Device Packaging Materials: When Surface Chemistry Overrules Substrate Bulk Properties.

    Science.gov (United States)

    Van De Walle, Elke; Van Nieuwenhove, Ine; Vanderleyden, Els; Declercq, Heidi; Gellynck, Karolien; Schaubroeck, David; Ottevaere, Heidi; Thienpont, Hugo; De Vos, Winnok H; Cornelissen, Maria; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-01-11

    Despite its widespread application in the fields of ophthalmology, orthopedics, and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials that ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethylene glycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials possessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.

  18. Bulk undercooling

    Science.gov (United States)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  19. Synthesis of bulk FeHfBO soft magnetic materials and its loss characterization at megahertz frequency

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yang; Kou Xiaoming; Warsi Muhammad, Asif; Lin Shuo; Harris, Brendan S.; Parsons, Paul E.; Xiao, John Q. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Mu Mingkai; Lee, Fred C. [Center for Power Electronics System, Virginia Polytechnic and State University, Blacksburg, Virginia 24060 (United States); Zhu Hao [Spectrum Magnetics LLC, Wilmington, Delaware 19804 (United States)

    2013-05-07

    Magnetic core materials with low loss, high saturation magnetization, large permeability, and operating frequency above 1 MHz are in high demands for the next generation of miniaturized power electronics. Amorphous FeHfB ribbons with thickness around 20 {mu}m have been fabricated through melt-spinning. Different heat treatments were performed on the FeHfB ribbons, and the relations among heat treatments, microstructure, and magnetic properties have been explored. Properties such as coercivity (H{sub c}) of 2.0 Oe and saturation magnetic flux density (B{sub S}) of 1.2 T have been achieved in samples with exchange coupling. The losses can be minimized by balancing the hysteretic and eddy current losses and can be further reduced with additional magnetic field annealing. At 5 MHz with peak magnetic flux density of 20 mT, the materials show core losses comparable to the best ferrites, but with higher permeability value of about 200 and superior saturation induction of more than 1 T.

  20. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  1. Feasibility study of prompt gamma neutron activation analysis (PGNAA) of explosives simulants and bulk material using DD/DT neutron generator

    Science.gov (United States)

    Bishnoi, S.; Sarkar, P. S.; Patel, T.; Adhikari, P. S.; Sinha, Amar

    2013-04-01

    Elemental characterization of low Z elements (C,H,Cl,Fe) inside bulk materials were performed using PGNAA technique. Samples having elemental composition similar to explosives were used for such experimentations using moderated DD neutrons as well as DT(14MeV) neutrons. We could observe characteristic prompt capture gamma rays of hydrogen (2.224MeV), nitrogen (10.83 MeV), chlorine (6.11 MeV) and Fe (6.02MeV and 7.63MeV) also (n,n'γ) prompt gamma signal (4.43MeV) of carbon. BGO detector has been used for gamma spectrum acquisition. These experimentations has been carried out for initial feasibility studies of detecting prompt gamma lines as a part of PGNAA technique based explosive detection system development. A detail description of experimental set up and procedure has been discussed in paper.

  2. Simulation study of a chaotic cavity transducer based virtual phased array used for focusing in the bulk of a solid material.

    Science.gov (United States)

    Delrue, Steven; Van Den Abeele, Koen; Matar, Olivier Bou

    2016-04-01

    In acoustic and ultrasonic non-destructive testing techniques, it is sometimes beneficial to concentrate sound energy at a chosen location in space and at a specific instance in time, for example to improve the signal-to-noise ratio or activate the nonlinearity of damage features. Time Reversal (TR) techniques, taking advantage of the reversible character of the wave equation, are particularly suited to focus ultrasonic waves in time and space. The characteristics of the energy focusing in solid media using principles of time reversed acoustics are highly influenced by the nature and dimensions of the medium, the number of transducers and the length of the received signals. Usually, a large number of transducers enclosing the domain of interest is needed to improve the quality of the focusing. However, in the case of highly reverberant media, the number of transducers can be reduced to only one (single-channel TR). For focusing in a non-reverberant medium, which is impossible when using only one source, an adaptation of the single-channel reciprocal TR procedure has been recently suggested by means of a Chaotic Cavity Transducer (CCT), a single element transducer glued on a cavity of chaotic shape. In this paper, a CCT is used to focus elastic energy, at different times, in different points along a predefined line on the upper surface of a thick solid sample. Doing so, all focusing points can act as a virtual phased array transducer, allowing to focus in any point along the depth direction of the sample. This is impossible using conventional reciprocal TR, as you need to have access to all points in the bulk of the material for detecting signals to be used in the TR process. To asses and provide a better understanding of this concept, a numerical study has been developed, allowing to verify the basic concepts of the virtual phased array and to illustrate multi-component time reversal focusing in the bulk of a solid material.

  3. Effect of the Side Chains and Anode Material on Thermal Stability and Performance of Bulk-Heterojunction Solar Cells Using DPP(TBFu2 Derivatives as Donor Materials

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available An optimized fabrication of bulk-heterojunction solar cells (BHJ SCs based on previously reported diketopyrrolopyrrole donor, ethyl-hexylated DPP(TBFu2, as well as two new DPP(TBFu2 derivatives with ethyl-hexyl acetate and diethyl acetal solubilizing side-chains and PC60BM as an acceptor is demonstrated. Slow gradual annealing of the solar cell causing the effective donor-acceptor reorganization, and as a result higher power conversion efficiency (PCE, is described. By replacing a hole transporting layer PEDOT:PSS with MoO3 we obtained higher PCE values as well as higher thermal stability of the anode contact interface. DPP(TBFu2 derivative containing ethyl-hexyl acetate solubilizing side-chains possessed the best as-cast self-assembly and high crystallinity. However, the presence of ethyl-hexyl acetate and diethyl acetal electrophilic side-chains stabilizes HOMO energy of isolated DPP(TBFu2 donors with respect to the ethyl-hexylated one, according to cyclic voltammetry.

  4. Atomistic simulations of thermal transport in Si and SiGe based materials: From bulk to nanostructures

    Science.gov (United States)

    Savic, Ivana; Mingo, Natalio; Donadio, Davide; Galli, Giulia

    2010-03-01

    It has been recently proposed that Si and SiGe based nanostructured materials may exhibit low thermal conductivity and overall promising properties for thermoelectric applications. Hence there is a considerable interest in developing accurate theoretical and computational methods which can help interpret recent measurements, identify the physical origin of the reduced thermal conductivity, as well as shed light on the interplay between disorder and nanostructuring in determining a high figure of merit. In this work, we investigate the capability of an atomistic Green's function method [1] to describe phonon transport in several types of Si and SiGe based systems: amorphous Si, SiGe alloys, planar and nanodot Si/SiGe multilayers. We compare our results with experimental data [2,3], and with the findings of molecular dynamics simulations and calculations based on the Boltzmann transport equation. [1] I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008). [2] S.-M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997). [3] G. Pernot et al., submitted.

  5. Competition between Kondo and indirect exchange at the edges and bulk of graphene, and 2D materials

    Science.gov (United States)

    Allerdt, Andrew; Martins, George; Feiguin, Adrian

    We study the problem of two magnetic impurities at the surface of graphene, BN, MoS2, phosphorene, silicene and germanene using exact numerical methods. We map the band structure of these materials onto one dimensional tight-binding chains in the same spirit as Wilson's numerical renormalization group. We use the density matrix renormalization group to solve the problem exactly, keeping all the information about the underlying lattice. Competition between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions is non-trivial, due to strong non-perturbative effects. Depending on the presence of a pseudogap, or gap, we identify an important directionality and position dependence of the correlations. We present scenarios and regimes where impurities prefer to form their own Kondo clouds instead of an RKKY singlet state, or remain as uncoupled local moments. In the particular case of graphene, ferromagnetism is only stable at half-filling. In addition, we study the effects of spin-orbit coupling, and the presence of edge states.

  6. Electronic structure in the bulk and at the surface of lanthanide materials. A detailed study with X-ray emission and inverse photoemission

    CERN Document Server

    Huebinger, F

    2000-01-01

    LaTe. With measurements of the O3-XE in the Lanthanum-Chalcogenides we could demonstrate the transfer of s-like valence electrons from the Lanthanum atom to the Chalcogen atom. Furthermore, the binding energy of the state at the Lanthanum atom was determined. The surface core-level shift is smaller by 25 % in the Chalcogenides than in La-metal. We also describe a theoretical model, which qualitatively explains the observed larger shifts of the core-level binding energy in PE than in IPE from Lanthan-Chalcogenides. This dissertation is concerned with the occupied and unoccupied electronic structure of lanthanide materials. With surface sensitive electron-excited x-ray emission spectroscopy (XES) we could experimentally determine a surface and bulk partial density of states (p-DOS) for the metals Lanthanum, Lutetium and Samarium. From calculations of the O3-XE transition probability we anticipate a three times higher probability for s-like than for d-like electrons to fill the 5p3/2-hole; this was confirmed exp...

  7. Determination of the easy axes of small ferromagnetic precipitates in a bulk material by combined magnetic force microscopy and electron backscatter diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Batista, L., E-mail: leonardo.batista@izfp.fraunhofer.de [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Rabe, U. [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); University of the Saarland, LZPQ, 66123 Saarbrücken (Germany); Hirsekorn, S. [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany)

    2014-11-15

    A method to determine the magnetic easy axes of micro- and nanoscopic ferromagnetic precipitates embedded in a bulk material is proposed and applied to globular cementite (Fe{sub 3}C) embedded in a ferrite matrix. The method combines magnetic force microscopy (MFM) with electron backscattered diffraction (EBSD) measurements. Magnetic domain structures in globular and in lamellar cementite precipitates in unalloyed pearlitic steels were imaged using MFM. The domain structure of the precipitates was analyzed in dependency of their size, shape and crystallographic orientation. It was found that the magnetic moments of the cementite precipitates are highly geared to their crystalline axes. The combined MFM and EBSD studies allow the conclusion that the cementite easy direction of magnetization is the long [010] axis. For fine lamellae cementite the determination of their crystallographic orientations using electron diffraction techniques is very difficult. With the previous knowledge of the behavior of the domain structure in globular cementite, the crystalline orientations of the fine lamellae cementite can be estimated by simply observing the magnetic microstructures and the topographic profiles. - Highlights: • We develop a method to determine the easy axes of nanoscopic ferromagnetic precipitates in a matrix. • We combine the magnetic force microscopy and the electron backscatter diffraction techniques. • Globular and lamellar cementite (Fe{sub 3}C) precipitates are taken as examples. • MFM images revealed different orientations of the magnetic moments in cementite. • The cementite easy direction of magnetization is the long [010] axis.

  8. Determination of the easy axes of small ferromagnetic precipitates in a bulk material by combined magnetic force microscopy and electron backscatter diffraction techniques

    International Nuclear Information System (INIS)

    A method to determine the magnetic easy axes of micro- and nanoscopic ferromagnetic precipitates embedded in a bulk material is proposed and applied to globular cementite (Fe3C) embedded in a ferrite matrix. The method combines magnetic force microscopy (MFM) with electron backscattered diffraction (EBSD) measurements. Magnetic domain structures in globular and in lamellar cementite precipitates in unalloyed pearlitic steels were imaged using MFM. The domain structure of the precipitates was analyzed in dependency of their size, shape and crystallographic orientation. It was found that the magnetic moments of the cementite precipitates are highly geared to their crystalline axes. The combined MFM and EBSD studies allow the conclusion that the cementite easy direction of magnetization is the long [010] axis. For fine lamellae cementite the determination of their crystallographic orientations using electron diffraction techniques is very difficult. With the previous knowledge of the behavior of the domain structure in globular cementite, the crystalline orientations of the fine lamellae cementite can be estimated by simply observing the magnetic microstructures and the topographic profiles. - Highlights: • We develop a method to determine the easy axes of nanoscopic ferromagnetic precipitates in a matrix. • We combine the magnetic force microscopy and the electron backscatter diffraction techniques. • Globular and lamellar cementite (Fe3C) precipitates are taken as examples. • MFM images revealed different orientations of the magnetic moments in cementite. • The cementite easy direction of magnetization is the long [010] axis

  9. GSM 光束在负折射率介质中的传输特性研究%Study on propagation properties of Gaussian-Schell model beams in negative index medium

    Institute of Scientific and Technical Information of China (English)

    许森东; 徐弼军

    2014-01-01

    In order to study the propagation characteristics of Gaussian-Schell model(GSM) beams in negative index medium, the analytical expression was obtained for the cross-spectral density function of GSM beam passing through negative index medium based on the matrix optics theory , diffraction integral theory and unification theory of coherence and polarization .The spectral density and the spectral coherence degree of the beam passing through the negative index medium were obtained with the formula .Numerical examples show that both the spectral density and the coherence spectral degree of GSM beam can be modulated by the frequency of the negative index medium .The results provide a new modulation method for the beam propagation .%为了研究高斯-谢尔模型光束在负折射率介质中的传输特性,利用矩阵光学理论、衍射积分理论、相干偏振统一理论推导了高斯-谢尔模型光束通过负折射率介质中传输交叉谱密度方程的解析表达式,并利用该解析表达式得到了高斯-谢尔模型光束通过负折射率介质的谱密度和谱相干度。结果表明,高斯-谢尔模型光束的谱密度和谱相干度都可以通过负折射率介质的工作频率调控。此研究结果提供了一种新的调控光传输的方法和技术。

  10. Mechanically induced self-propagating reaction and consequent consolidation for the production of fully dense nanocrystalline Ti{sub 55}C{sub 45} bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Sherif El-Eskandarany, M., E-mail: msherif@kisr.edu.kw; Al-Hazza, Abdulsalam

    2014-11-15

    We employed a high-energy ball mill for the synthesis of nanograined Ti{sub 55}C{sub 45} powders starting from elemental Ti and C powders. The mechanically induced self-propagating reaction that occurred between the reactant materials was monitored via a gas atmosphere gas-temperature-monitoring system. A single phase of NaCl-type TiC was obtained after 5 h of ball milling. To decrease the powder and grain sizes, the material was subjected to further ball milling time. The powders obtained after 200 h of milling possessed spherical-like morphology with average particle and grain sizes of 45 μm and 4.2 nm, respectively. The end-products obtained after 200 h of ball milling time, were then consolidated into full dense compacts, using hot pressing and spark plasma sintering at 1500 and 34.5 MPa, with heating rates of 20 °C/min and 500 °C/min, respectively. Whereas hot pressing of the powders led to severe grain growth (∼ 436 nm in diameter), the as-spark plasma sintered powders maintained their nanograined characteristics (∼ 28 nm in diameter). The as-synthesized and as-consolidated powders were characterized, using X-ray diffraction, high-resolution electron microscopy, and scanning electron microscopy. The mechanical properties of the consolidated samples obtained via the hot pressing and spark plasma sintering techniques were characterized, using Vickers microhardness and non-destructive testing techniques. The Vickers hardness, Young's modulus, shear modulus and fracture toughness of as-spark plasma sintered samples were 32 GPa, 358 GPa, 151 GPa and 6.4 MPa·m{sup 1/2}, respectively. The effects of the consolidation approach on the grain size and mechanical properties were investigated and are discussed. - Highlights: • Room-temperature synthesizing of NaCl-type TiC • Dependence on the grain size on the ball milling time • Fabrication of equiaxed nanocrystalline grains with a diameter of 4.2 nm • Fabrication of nanocrystalline bulk TiC material

  11. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  12. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  13. Corrosion of lanthanum magnesium hexaaluminate as plasma-sprayed coating and as bulk material when exposed to molten V2O5-containing salt

    International Nuclear Information System (INIS)

    Highlights: • Corrosion behavior of LaMgAl11O19 bulk and plasma sprayed coating has been compared. • Degradation mechanism is investigated based on LaMgAl11O19’s crystal chemistry. • LaMgAl11O19 coating displays inferior corrosion resistance to well crystallized bulk. - Abstract: Corrosion of LaMgAl11O19 (LaMA) bulk and plasma sprayed coating was studied in molten V2O5-containing salt at 710–1050 °C in air. Results indicate that the well crystallized LaMA bulk exhibited prior corrosion resistance to the plasma sprayed LaMA coating with amorphous phase and reduced chemical bond strength in its crystal structure. La–O chemical bonds with the lowest bond energies were the easiest bonds in the LaMA crystal to be broken by molten V2O5-containing salt attack to form LaVO4 at each temperature level for both LaMA bulk and coating. Corrosion products of the LaMA coating were much different at temperature below 900 °C

  14. Development of Sundries Online Separator Used in Bulk Materials Conveying System%散装物料输送系统用杂物在线分离装置研制

    Institute of Scientific and Technical Information of China (English)

    王维国; 陈悦军; 王秀文; 解文芳; 谯正武; 雷昊天

    2013-01-01

    钻井用散装物料(水泥、膨润土、重晶石)中含有固体物质和化纤织物等杂物,需要分离.目前,海上钻井平台的散装物料输送系统配有杂物分离器,由于隔栅板是与罐体焊接,可以分离杂物,但不能在线清除,容易造成系统堵塞和安全问题.研制了散装物料输送系统用在线分离装置,其罐体分为工作腔和清理维修腔,设计有可旋转的隔栅、岩石料盒.试验证明:该装置可以在线分离并清除散装物料中混合的杂物,工作效率高,安全、可靠、环保.%Bulk materials used in well drilling participate of solid materials,chemical & blended fabric and the like required to be separated.The bulk materials conveying system used in the offshore drilling platforms is matched sundries separator which gratings and the tank were welded.The matched sundries separator can separate sundries but not online,which is inclinable to result in system locking and safety problem.Aimed to the existing situation,the online separator used in bulk materials conveying system is developed,whose tank splits into working space and clearing service space,and matched rotatable gratings and rocking box.The practices show that the device can online separate sundries in bulk materials,which is high efficiency,safety,reliable and environmental.

  15. Preparation of novel bulk carbon nano tubes dental materials for implant%新型牙用碳纳米管种植体材料的制备

    Institute of Scientific and Technical Information of China (English)

    陈蕾; Mian Farrukh Imran; 蔡惠; 徐国富

    2008-01-01

    , Japanese MitutoyoHM-101 little burden Vickers hardness meter was used to test the apparent bulk density, specific surface area, Vickers hardness at the different contents of PCS and sintering pressures. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to observe the microstructure of the material.RESULTS: ① Microstructure: SEM and TEM indicated that the nanotube structure of the material was retained after sintered. ② Conforming phase of material: X-ray diffractometer indicated that carbon nanotubes were felt by PCS pyrolysis product of SiC; along with the PCS content and sintering pressure increased, the specific surface area was reduced, and Vickers hardness and density increased. Specific surface area decreased. ③ Histological compatibility: The inflammatory reactions of the CNTs/PCS were little more serious along with the increase of the content of PCS. The physical property of carbon nanotubes was prepared in this way, it was closed to bone tissues, it had the better biocompatibility, and it was the suitable candidate implant denture material.CONCLUSION: Appropriate to PCS for the bonding agent, through SPS, at 1 200 ℃, 20-60 MPa sintering pressure, CNTs/PCS which the material property is closed to bone tissues can be prepared, and CNTs/PCS subcutaneous implantation in rats does not show significant rejection; therefore, it is suitable candidate for dental implants material.%背景:碳纳米管是一种直径约1 nm,长1~10 μm的圆筒状物质,具有比石墨还小的密度;加上足够高的强度,碳纳米管有望用于骨替代材料.目的:初步考察聚碳硅烷含量和烧结压力对碳纳米管材料性能的影响,寻求大块碳纳米管材料的最适制备条件,并分析所制备的碳纳米管材料的物理性能和生物相容性,为临床候选牙用种植体材料提供选择依据.设计:实验通过调整结合剂的含量和烧结压力,确定材料的最适制备条件,

  16. Applying Effect of Insulating Material Made of Mineral Binder and Expanded Polystyrene Granule in Bulk Curing Barn%胶粉聚苯颗粒保温材料在密集烤房中应用效果研究

    Institute of Scientific and Technical Information of China (English)

    张丽英; 杨启冰; 谢帮金; 刘勇; 李立新; 齐飞

    2013-01-01

    In order to know applying effect of insulating material made of mineral binder and expanded polystyrene granule in bulk curing barn,the curing effects of bulk curing barn covered with or without insulating material made of mineral binder and expanded polystyrene granule were compared.The results showed that insulating material made of mineral binder and expanded polystyrene granule can reduce the heat loss for bulk curing barn,and coal saving rate and power saving rate reached 26% and 21.89%,respectively.Therefore,it effectively reduce the curing cost,moreover,it also improved the curing quality of top layer leaves through lowering green degree.%为了了解胶粉聚苯颗粒保温材料在密集烤房中的使用效果,试验对比了涂抹、不涂抹胶粉聚苯颗粒保温材料密集烤房中烟叶的烘烤效果.结果表明:胶粉聚苯颗粒保温材料可以减少密集烤房的热量损失,节煤26%,节电21.89%,有效地降低了烘烤成本,且能降低顶层烟叶烘烤后的含青度,提高顶层烟叶烘烤质量.

  17. 核电建设阶段大宗材料采购缺失分析和改进建议%Analysis and Improvement Suggestion for the Lack of Bulk Material Procurement during the Construction of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    李冠英; 顾健

    2015-01-01

    Aiming at the importance and influence of lack of procurement for bulk materials during nuclear power plant construction, the design, procurement and construction management for bulk material are analyzed. Through analysis, referring to the problems during design, procurement and construction management, suggestions are given to countermeasures for all stage of work, with an aim to increase procurement efficiency and decrease the lack of procurement for bulk materials.%文章针对核电建设阶段大宗材料采购缺失重要性及缺失影响,进行了大宗材料采购时设计、采购、施工管理方面问题的分析.通过分析,针对大宗材料采购时设计、采购、施工管理问题提出了各阶段的工作对策,旨在提高采购效率、减小大宗材料的缺失率.

  18. Study on the characteristics of magnetic levitation for permanent magnets and ferromagnetic materials with various sizes using stacked HTS bulk annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail: kim@elec.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Matsunaga, J.; Doi, A.; Ikegami, T. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Onodera, H. [JST-CREST, K’s Gobancho 6F, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2013-01-15

    Highlights: ► We achieved the stable levitation of irons by magnetized HTS bulk annuli. ► The relationship between magnetized field and sample size was cleared. ► The iron samples smaller than 1 mm diameter could not levitate stably. ► The spherical solenoid magnet was fabricated to levitate small iron samples. -- Abstract: We achieved stable levitation of cylindrical permanent magnets and irons using stacked ring-shaped high temperature superconducting (HTS) bulks with 20 mm ID, 60 mm OD and 50 mm height, and those were magnetized by field cooling method. The levitation characteristics of permanent magnets and iron samples located in the inner space of that levitation system were investigated experimentally. Iron samples with needle-shape and smaller than 1 mm diameter could not levitate stably. However, we found that the high strength of magnetized field was not necessary to levitate small needle-shaped irons. In order to levitate them, we need a uniform magnetic field in radial direction, so, a spherical solenoid magnet that can easily make a homogeneous magnetic field in inner space of HTS bulk annuli was developed. The spherical solenoid magnet, composed of seven solenoid coils with different inner and outer diameters, was designed by an electromagnetic analysis and fabricated.

  19. Simple top-down preparation of magnetic Bi0.9Gd0.1Fe1−xTixO3 nanoparticles by ultrasonication of multiferroic bulk material

    DEFF Research Database (Denmark)

    Basith, M. A.; Ngo, Duc-The; Quader, A.;

    2014-01-01

    We present a simple technique to synthesize ultrafine nanoparticles directly from bulk multiferroic perovskitepowder. The starting materials, which were ceramic pellets of the nominal compositions Bi0.9Gd0.1-Fe1−xTixO3 (x = 0.00–0.20), were prepared initially by a solid state reaction technique......, then ground intomicrometer-sized powders and mixed with isopropanol or water in an ultrasonic bath. The particle sizewas studied as a function of sonication time with transmission electron microscopic imaging and electrondiffraction that confirmed the formation of a large fraction of single......-crystalline nanoparticles with a meansize of 11–13 nm. A significant improvement in the magnetic behavior of Bi0.9Gd0.1Fe1−xTixO3 nanoparticlescompared to their bulk counterparts was observed at room temperature. This sonication technique may beconsidered as a simple and promising route to prepare ultrafine nanoparticles...

  20. Contribution of organic bulking materials on chemical quality of sewage sludge vermicompost Efeito de materiais de volume na qualidade química do vermicomposto de lodo de esgoto

    Directory of Open Access Journals (Sweden)

    Kazem Hashemimajd

    2011-12-01

    Full Text Available Vermicomposting is at suitable methods for stabilization and converting of sewage sludge into useful products. To investigate the effects of bulking material on vermicompost quality, an experiment was conducted in a factorial design with three replications. In this experiment, the final dried sludge in lagoons was mixed with bulking materials (woodchips, three leaves, and wheat straw in four mixing proportion with swage sludge (0, 15, 30 and 45%, V/V. Chemical properties of bulking materials, sewage sludge, and produced vermicomposts were determined. Vermicomposts had relatively low pH and electrical conductivity (EC. The nutrients content of vermicompost, especially N, P, Fe, and Zn, were high. These properties showed its suitable quality for use in agriculture. Heavy metals concentrations of vermicomposts, except Zn, were lower than recommended values by EPA. Mixing of Bulking materials with sewage sludge decreased pH, N, Pb, Co, and Cd, but increased Ca, Mg, Fe, Cu, Mn, Zn, and Ni content of produced vermicomposts. In most cases, the concentrations of nutrients were higher in 30% mixing proportion. Therefore, 30% (v/v mixing of bulking material with sewage sludge is recommended for vermicompost production.A vermicompostagem é um métodos adequados para a estabilização e conversão de lodo de esgoto em produtos úteis. Para investigar o efeito de aumentar o volume de material sobre a qualidade do vermicomposto, foi conduzido um experimento em esquema fatorial com três repetições. Neste experimento, o lodo final seco em lagoas foi misturado com materiais de volume (lascas de madeira, três folhas e palha de trigo em quatro proporções de mistura (0, 15, 30 e 45% V / V com lodo de esgoto. Propriedades químicas dos materiais de amontoamento, lodo de esgoto e vermicompostos produzidos foram determinados. Vermicomposto apresentaram pH relativamente baixo e CE. O seu teor de nutrientes, especialmente N, P, Fe e Zn foram elevados. Essas

  1. Discussion on centralized bulk materials purchase management of building construction enterprises%谈建筑施工企业的大宗材料物资集中采购管理

    Institute of Scientific and Technical Information of China (English)

    罗宗平

    2015-01-01

    In light of problems existing decentralized construction materials procurement for building construction enterprises,the thesis puts for-ward centralized bulk materials purchase management countermeasures including establishing scientific benefits concept,cultivating professional agency and talents,implementing high efficient tender system and so on,and finally summarizes advantages of centralized bulk materials pur-chase,with a view to provide some guidance.%针对建筑施工企业建材分散采购中存在的问题,提出了确立科学的效益观念、培育专业化的机构与人才、推行高效的招投标制度等实施大宗材料物资集中采购管理的对策,并总结了大宗材料物资集中采购的优势,以供参考。

  2. The bulk radio expansion of Cassiopeia A

    International Nuclear Information System (INIS)

    Comparison, in the visibility plane, or radio observations of Cassiopeia A made at 151 MHz over a 2.3 yr interval indicates that the bulk of the radio emitting material has not been decelerated strongly

  3. Movimento e inativação do metribuzin em materiais de dois solos, sob diferentes densidades aparentes Movement and inactivation of metribuzin in two soil materials with different bulk densities

    Directory of Open Access Journals (Sweden)

    L.E.F. Fontes

    1980-06-01

    Full Text Available Numa série de ensaios em laboratório e casa-de-vegetação, estudou-se a mobilidade e a inativação do herbicida metribuzin em materiais de um Latossolo e de um Podzólico representativos de duas regiões do Estado de Minas Gerais, em função de diferentes densidades aparentes. Ensaios biológicos foram utilizados para medir a inativação e a mobilidade do metribuzin nos diferentes solos e densidades. A densidade aparente alterou de forma pronunciada a quantidade de herbicida lixiviado através das colunas dos materiais dos solos estudados. Quanto maior a densidade, menor a quantidade de herbicida lixiviado. A quantidade de herbicida que permaneceu biologicamente ativo ao longo da coluna foi diretamente relacionada com a densidade, em cada solo. A mobilidade do metribuzin no material do Latossolo foi maior que no de Podzólico, em consequência de maior atividade coloidal deste.The leaching and inactivation of metribuzin were studied with materials of two mineral soilsat different bulk densities. Plastic tubing of' 7.25 cm diameter and 10 cm height were filled up with different amounts of soil to get different bulk densities. One kg/ha of a.i. of metribuzin placed on the surface are a of the column was le ached through these soil colums using 250 ml of water. The cotyledon disk bioassay method was used to detect the metribuzin leachet. The biological active metribuzin in the soil colunn at different depths, and the inativation abil ity of the soils were determined using the assay with cucumber (Cucumis sativus L. as test-plant. The increase of bulk density reduced the leaching and enhanced the biologically active metribuzin in the soil column. Metribuzin was more mobil in the Red -yellow Lato ssol and more inactivated in the Red-yellow Podzolic soils.

  4. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  5. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (Eg) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  6. 细晶Bi2Te3块体材料的制备及其热电性能%Preparation and Thermoelectric Properties of Bi2Te3 Fine-grained Bulk Materials

    Institute of Scientific and Technical Information of China (English)

    马旭颐; 张忻; 路清梅; 张久兴

    2012-01-01

    Bismuth and Tellurium nanoparticles were prepared by evaporation-condensation method in argon atmosphere, and n-type Bi2Te3 fine-grained thermoelectric bulk materials were fabricated by spark plasma sintering (SPS) at different temperatures from 663 to 723 K using mechanically alloyed (MA) powders. The phase compositions of powder and bulk samples were characterized by X-ray diffraction (XRD). The sizes and microscopic structures of nanoparticles and fractured cross section of the bulk samples were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The thermoelectric transport properties were measured at 323-473 K. The results show that electrical transport properties are almost unchanged but thermal conductivity is reduced significantly from 1.93 W/m-K to 1.29 W/m-K at 423 K for the fine-grained bulks prepared by nanoparticles comparing with coarse-grained materials. The maximum ZT value after SPS at 693 K reaches 0.68 at 423 K.%采用惰性气体保护蒸发-冷凝(IGC)法制备了纳米Bi及Te粉末,结合机械合金化(MA)和放电等离子烧结(SPS)工艺,在不同烧结温度(663~723 K)下制备出了n型Bi2Te3细晶块体材料.利用X射线衍射分析(XRD)确定机械合金化粉末和SPS烧结块体的物相组成,借助TEM观察了粉体的粒度及形貌,SEM观察了块体试样断口显微组织结构.在323~473 K温度范围内测试了烧结块体的电热输运特性.实验结果表明:纳米粉末合成的细晶Bi2Te3与粗晶材料相比,电输运性能变化不大,热导率大幅度降低,在423 K时,热导率由粗晶材料的1.93W/m·K降至1.29W/m·K,并且在693K烧结的细晶块体的无量纲热电优值(ZT)在423K时取得最高ZT值达到0.68.

  7. 30 CFR 56.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 56.6802 Section 56.6802... § 56.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has been removed. Before welding...

  8. 30 CFR 57.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 57.6802 Section 57.6802...-Surface and Underground § 57.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has...

  9. Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti{sub 9}Ni{sub 7}Sn{sub 8}: A bulk nanocomposite thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Misra, D. K., E-mail: misradk@nplindia.org, E-mail: dakkmisra@gmail.com; Rajput, A.; Bhardwaj, A.; Chauhan, N. S. [CSIR Network of Institutes for Solar Energy, Division of Materials Physics and Engineering, CSIR National Physical Laboratory, Dr. Krishnan Marg, New Delhi 110012 (India); Singh, Sanjay [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, D-01187 Dresden (Germany)

    2015-03-09

    We report a half-Heusler (HH) derivative Ti{sub 9}Ni{sub 7}Sn{sub 8} with VEC = 17.25 to investigate the structural changes for the optimization of high thermoelectric performance. The structural analysis reveals that the resulting material is a nanocomposite of HH and full-Heusler with traces of Ti{sub 6}Sn{sub 5} type-phase. Interestingly, present nanocomposite exhibits a significant decrease in thermal conductivity due to phonon scattering and improvement in the power factor due to combined effect of nanoinclusion-induced electron injection and electron scattering at interfaces, leading to a boost in the ZT value to 0.32 at 773 K, which is 60% higher than its bulk counterpart HH TiNiSn.

  10. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  11. Evaluation and prevention of self-ignition and emission of combustion gases during storing bulk goods and landfill materials; Beurteilung und Verhinderung von Selbstentzuendung und Brandgasemission bei der Lagerung von Massenschuettguetern und Deponiestoffen

    Energy Technology Data Exchange (ETDEWEB)

    Schossig, Joerg; Berger, Anka; Malow, Marcus; Krause, Ulrich

    2010-05-27

    The authors of the contribution under consideration report on a new method for the risk assessment for self-ignition with the storage of bulk goods, landfill materials and recycling materials. This method consists of three components: (a) Experimental determination of the relevant physicochemical characteristics of the material; (b) Experimental determination of the reaction behaviour by means of thermal analysis behaviour; (c) Prediction of the self-ignition and the process of combustion. Fundamental realizations to the thermal behaviour and reaction behaviour of recycling storages were obtained. Thus, mixtures from plastics with cellulose containing or fibre-like materials or with inert materials, respectively, have an increased danger to self-ignition in comparison to pure plastics. A dangerous heat release also is observed with very small portions of inflammable materials. Under consideration of heterogeneous distribution of the inflammable components, the ignition can be transferred between inflammable inclusions. By means of a mathematical model, self-inflammation processes can be protected in arbitrary arrangements of the recycling storages. [German] Im Ergebnis des Vorhabens steht fuer die praktische Anwendung eine wissenschaftlich fundierte Methode der Gefahrenbewertung fuer Selbstentzuendungsvorgaenge bei der Lagerung von Massenschuettguetern, Deponiestoffen und Recyclingmaterialien zur Verfuegung. Diese Methode besteht aus drei Bestandteilen: - Experimentelle Bestimmung der relevanten physiko-chemischen Eigenschaften des Materials, - Experimentelle Bestimmung des Reaktionsverhaltens mittels thermischer Analyseverfahren, - Vorhersage der Selbstentzuendung und des Brandverlaufes durch numerische Simulation anhand der realen Geometrie der Lageranordnung. Eine solche Methode wurde bisher nicht systematisch angewendet, weshalb sowohl bei der Erstellung von Brandschutzkonzepten durch die Betreiber von Deponien oder Recyclinglagern als auch bei der Genehmigung

  12. 采用模板法制备块状炭纳米材料的研究%STUDY ON THE PREPARATION OF BULK NANOSTRUCTURED CARBON MATERIALS USING TEMPLATE METHOD

    Institute of Scientific and Technical Information of China (English)

    陈伟; 王海旺; 路国忠; 付民

    2011-01-01

    采用四重高吸水树脂作有机模板,葡萄糖为炭源制备了新型块状纳米炭材料,研究了四重高吸水树脂的高分子网络结构及葡萄糖溶液的浓度对新型纳米炭材料微观结构的影响.研究结果表明:葡萄糖的浓度对所制备的炭材料的微观结构有较大的影响.%New bulk nanostructured carbon materials were prepared using a superabsorbent polymer with fourfold polymer network as an organic template and glucose as a carbon precursor. The influence of the polymer networks of the superabsorbent polymer on the microstructures of the carbons was studied.The results showed that concentration of the glucose solution influenced the microstructure of the nanostructured carbon materials greatly as well.

  13. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  14. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  15. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  16. Development and validation of a single RP-HPLC assay method for analysis of bulk raw material batches of four parabens that are widely used as preservatives in pharmaceutical and cosmetic products.

    Science.gov (United States)

    Kumar, S; Mathkar, S; Romero, C; Rustum, A M

    2011-05-01

    A stability-indicating, robust, fast, and user friendly reversed-phase high-performance liquid chromatographic (RP-HPLC) assay method has been developed and validated for the analysis of commercial raw material batches of methylparaben, ethylparaben, propylparaben, and butylparaben. These four parabens are widely used as preservatives in pharmaceutical and cosmetic products. Accurate assay value of each of the parabens in their respective commercial lots is critical to determine the correct weight of the paraben that is needed to obtain the target concentration of the paraben in a specific lot of pharmaceutical or cosmetic products. Currently, there are no single HPLC assay methods (validated as per ICH requirements) available in the literature that can be used to analyze the commercial lots of each of the four parabens. The analytical method reported herein analyzes all four parabens in less than 10 min. The method presented in this report was successfully validated as per ICH guidelines. Therefore, this method can be implemented in QC laboratories to analyze and assay the commercial bulk lots of the four parabens.

  17. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    Energy Technology Data Exchange (ETDEWEB)

    Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar

    2008-03-31

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.

  18. Nonlinear variation influence factors for induced airflow of bulk materials in transfer station%转运点落料诱导气流非线性变化影响因素

    Institute of Scientific and Technical Information of China (English)

    李小川; 李强; 张栋; 胡亚非; 熊建军; 罗会清; 贾彬彬; 胡海彬

    2014-01-01

    转运点诱导气流是散料输送过程扬尘的主要诱因,本文以半封闭转运点为研究对象,通过对落料质量流量mp、有效诱导气流量Q、落料高度h及密闭罩阻力系数ξ等的研究,探讨转运点落料诱导气流非线性变化影响因素。结果表明:诱导气流随物料质量流量增加而增加;受物料相互作用对气流流动的影响和落料管有效流动空间变化影响,有效诱导气流随质量流量增加而减小,在量值上与物料质量流量的-0.77次方近似成正比;转运点落差的有限性使落料过程处于加速阶段,物料曳力系数处于Allen区,诱导气流速度随落料高度的变化趋势基本相同;对平均阻力系数ξ=2.12的密闭罩系统,诱导气流速度与下落高度的0.86次方近似成正比;物料下落初期颗粒间相互碰撞、接触等作用较强,对3.6~11.1 mm的落料,诱导气流随粒度增大有减小趋势,但关联性较弱。%Induced airflow of free-falling particles process serving as the chief temptation of dust fugitive in transfer station of conveying process for bulk materials. The semi-closed transfer station was chosen as the study object in the present paper. Nonlinear variation influence factors for induced airflow were explored through the study of mass flow rate of bulk material mp, specific induced air flow Q, drop height h and resistance coefficient of suction hoodξ. The primary conclusions are as follows: With the mass flow increasing, the induced airflow increases, and the specific induced air flow decreases due to the influences of the interaction between the particles for airstream and the change of effective flow space of blanking tube. The specific induced air flow is found to be proportional to the mass flow raised to the power of approximately -0.77. Owing to the finiteness of the drop height of the transfer station the falling particles is in the acceleration phase all along. The drag

  19. Remedial investigations for quarry bulk wastes

    International Nuclear Information System (INIS)

    The US Department of Energy proposes, as a separate operable unit of the Weldon Spring Site Remedial Action Project, to remove contaminated bulk wastes from the Weldon Spring quarry and transport them approximately four miles to the chemical plant portion of the raffinate pits and chemical plant area. The wastes will be held in temporary storage prior to the record of decision for the overall remedial action. The decision on the ultimate disposal of these bulk wastes will be included as part of the decision for management of the waste materials resulting from remedial action activities at the raffinate pits and chemical plant area. 86 refs., 71 figs., 83 tabs

  20. Wormholes in Bulk Viscous Cosmology

    OpenAIRE

    Jamil, Mubasher

    2008-01-01

    We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Morris-Thorne wormhole. We have found that if the bulk viscosity is large then the mass of wormhole increases rapidly as compared to small or zero bulk viscosity.

  1. Nanocomposite RE-Ba-Cu-O bulk superconductors

    OpenAIRE

    Iida, Kazumasa

    2016-01-01

    Nanocomposite oxide high-temperature bulk superconductors can be used as quasi-magnets. Thanks to the recent progress of material processing, quasi-magnet with 26 mm diameter can generate a large field of 17.6 T at 26 K. These results are highly attractive for applications, involving levitation of permanent magnets on the bulk superconductors. Indeed, several other applications such as motors and magnetic resonance microscope using bulk superconductors have been proposed and demonstrated. In ...

  2. Engineering nanostructural routes for enhancing thermoelectric performance: bulk to nanoscale

    Directory of Open Access Journals (Sweden)

    Rajeshkumar eMohanraman

    2015-11-01

    Full Text Available Thermoelectricity is a very important physical property, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement.

  3. Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale

    Science.gov (United States)

    Mohanraman, Rajeshkumar; Lan, Tian-Wey; Hsiung, Te-Chih; Amada, Dedi; Lee, Ping-Chung; Ou, Min-Nan; Chen, Yang-Yuan

    2015-01-01

    Thermoelectricity is a very important phenomenon, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage, and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement. PMID:26913280

  4. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  5. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar......Assimilates synthesized in the mesophyll of mature leaves move along the pre-phloem transport pathway to the bundle sheath of the minor veins from which they are loaded into the phloem. The present review discusses the most probable driving force(s) for the pre-phloem pathway, diffusion down...

  6. Import and Export of Bulk Pharmaceuticals in 2006

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ According to customs statistics, the total import and export value of bulk pharmaceuticals (excluding chemical raw materials and bulk pesticides) in China was US$10.346 billion in 2006. The export value was US$7.482 billion - an increase of 22% over the 2005.

  7. 27 CFR 24.301 - Bulk still wine record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk still wine record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.301 Bulk still wine record. A proprietor who produces or receives still wine in bond, (including wine intended for use as distilling material or...

  8. Performance and applications of quench melt-growth bulk magnets

    Science.gov (United States)

    Nariki, S.; Teshima, H.; Morita, M.

    2016-03-01

    This paper describes the progress in quench melt-growth (QMG) bulk magnets, developed by the Nippon Steel & Sumitomo Metal Corporation, which consist of single crystalline RE123 phase and finely dispersed RE211 particles. QMG bulks can trap high magnetic fields. The field-trapping ability of QMG bulks is largely increased with an improvement in its J c and size, promising the realization of various applications such as flywheel energy-storage systems, ship motors, NMR/MRI spectrometers, wind-power generators and so on. Intensive research has revealed that the optimal RE element is different depending on application requirements. Gd-QMG bulk is the most promising material for several high-field engineering applications. The trapped magnetic field of Gd-QMG bulk 60 mm in diameter at 77 K is twice as large as that of Y-QMG bulk with a similar size due to its excellent J c properties. The large Gd-based QMG bulks up to 150 mm in diameter are fabricated by incorporating the RE compositional gradient method. Compact NMR/MRI spectrometers are one of the promising applications of bulk superconductors. Eu-QMG bulks are suitable for NMR magnets. NMR applications require extremely homogeneous magnetic fields. In the Eu-system, the small paramagnetic moment of a Eu ion compared to a Gd ion improves the field homogeneity in the bulk. For the application of current leads, Dy-based QMG is available by utilizing a low thermal conductivity.

  9. Bulk metallic glass for low noise fluxgate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The team of Prime Photonics, Virginia Tech, and Utron Kinetics propose to demonstrate a method for fabrication of a bulk, amorphous, cobalt-rich material that...

  10. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  11. Negative Dielectric Constant Material Based on Ion Conducting Materials

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  12. Mining the bulk positron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Aourag, H.; Guittom, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger Gare - Algiers (Algeria)

    2009-02-15

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Advances in bulk port development

    Energy Technology Data Exchange (ETDEWEB)

    Soros, P. (Soros Associates Consulting Engineers, New York, NY (USA))

    1991-03-01

    The article features several recently developed bulk ports which illustrate aspects of new technology or concepts in maritime transport. Low handling capacity bulk terminals at Ponta da Madeira, Brazil and Kooragang Island, Australia and the low-cost bulk port at Port of Corpus Christi, Texas are described. Operations at the ports of Pecket and Tocopilla in Chile, which had special technical problems, are mentioned. Coal terminals at Port Kembla, Australia and St. Johns River in Florid Jacksonville, Florida are featured as examples of terminals which had to be designed to meet high environmental standards. 13 refs., 2 figs., 14 photos.

  15. Bulk Nuclear Properties from Reactions

    OpenAIRE

    Danielewicz, P.

    2002-01-01

    Extraction of bulk nuclear properties by comparing reaction observables to results from semiclassical transport-model simulations is discussed. Specific properties include the nuclear viscosity, incompressibility and constraints on the nuclear pressure at supranormal densities.

  16. Introduction to bulk metallic glass composite and its recent applications

    OpenAIRE

    Lu, Shijing

    2011-01-01

    Bulk metallic glass (BMG) materials are hot topics in recent years, not to mention BMG matrix composites, which further improve the magnetic and mechanical properties of BMG materials. BMG and BMG matrix materials are fast developing and promising materials in modern industry due to their extraordinary properties such as high strength, low density, excellent resistibility to high temperature and corrosion. In this paper, I reviewed processing and application of several recently developed BMG ...

  17. Experimental study of bulk storage ignition by hot points

    OpenAIRE

    Janes, Agnès; Carson, Douglas

    2013-01-01

    International audience An experimental study of ignition risk due to hot points in the storage of bulk materials is required to ensure fire safety. Many parameters are involved in this phenomenon: nature of the material, storage volume and temperature, type and size of hot point, etc. The aim of this study is to determine critical ignition temperatures of hot spots embedded in powder materials for different conditions and with several types of hot points. Materials selected for this study ...

  18. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  19. Substantial bulk photovoltaic effect enhancement via nanolayering.

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  20. Substantial bulk photovoltaic effect enhancement via nanolayering

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1-x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  1. Substantial bulk photovoltaic effect enhancement via nanolayering.

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition. PMID:26791545

  2. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.

    Science.gov (United States)

    Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U

    2015-01-01

    The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.

  3. Looking for a bulk point

    CERN Document Server

    Maldacena, Juan; Zhiboedov, Alexander

    2015-01-01

    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  4. Bulk Viscosity of Interacting Hadrons

    OpenAIRE

    Wiranata, A.; M. Prakash

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature ari...

  5. Bulk Viscosity of Interacting Hadrons

    CERN Document Server

    Wiranata, A

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.

  6. Bulk viscosity and deflationary universes

    CERN Document Server

    Lima, J A S; Waga, I

    2007-01-01

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  7. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...

  8. Enhancement of the Bulk Photovoltaic Effect in Topological Insulators

    Science.gov (United States)

    Tan, Liang Z.; Rappe, Andrew M.

    2016-06-01

    We investigate the shift current bulk photovoltaic response of materials close to a band inversion topological phase transition. We find that the bulk photocurrent reverses direction across the band inversion transition, and that its magnitude is enhanced in the vicinity of the phase transition. These results are demonstrated with first principles density functional theory calculations of BiTeI and CsPbI3 under hydrostatic pressure, and explained with an analytical model, suggesting that this phenomenon remains robust across disparate material systems.

  9. Enhancement of the Bulk Photovoltaic Effect in Topological Insulators.

    Science.gov (United States)

    Tan, Liang Z; Rappe, Andrew M

    2016-06-10

    We investigate the shift current bulk photovoltaic response of materials close to a band inversion topological phase transition. We find that the bulk photocurrent reverses direction across the band inversion transition, and that its magnitude is enhanced in the vicinity of the phase transition. These results are demonstrated with first principles density functional theory calculations of BiTeI and CsPbI_{3} under hydrostatic pressure, and explained with an analytical model, suggesting that this phenomenon remains robust across disparate material systems.

  10. Soft 3D acoustic metamaterial with negative index.

    Science.gov (United States)

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of 'ultra-slow' Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices. PMID:25502100

  11. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  12. Thermal neutron diffusion parameters for media of variable bulk density

    International Nuclear Information System (INIS)

    Thermal neutron diffusion parameters (the macroscopic cross sections, and the diffusion cooling coefficients) for a given medium are dependent on the mass density. Therefore, thermal neutron experiments are influenced by the density of samples used. In the case of measurement series with bulk materials it is difficult to keep the same bulk density for all samples of the material. The classic thermal neutron pulsed experiment is considered in the paper. A method is shown to eliminate the influence of the variable bulk density on the results. A concept of the generalised decay constant and geometric buckling, and of the so-called density-removed neutron parameters, is used. Preliminary results of the Monte Carlo computer simulations of experimental series for polyethylene spherical samples of different porosity are presented. (author)

  13. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  14. 块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为%COMPRESSIVE-SHEAR BEHAVIOR AND SELF-SHARPENING OF BULK METALLIC GLASSES AND THEIR COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    李继承; 陈小伟

    2011-01-01

    块体金属玻璃及其复合材料以其优异的力学、物理和化学性能, 正成为国内外科技和工程领域的研究热点. 特别是金属玻璃复合材料具有高剪切敏感性和剪切 “自锐” 特性, 使其有可能成为新型穿甲弹芯材料,因而具有重要的军事意义. 本文综述了针对块体金属玻璃及其复合材料的压缩剪切变形和断裂特性及高速冲击、侵彻/穿甲过程中剪切 “自锐” 行为等方面的研究进展, 包括相关实验研究、理论分析及有限元模拟等, 最后给出未来相关工作的一些建议.%For their excellent mechanical, physical and chemic performance, bulk metallic glasses and their composite materials is now becoming an active research focus. Especially, metallic glass matrix composite may be employed as the material of kinetic enrgy penetrator for its intensive shear banding sensitivity. The present paper presents advances in the research on compressive shear deformation and fracture characteristics and self-sharpening behavior during the high-speed impact of bulk metallic glasses and their composite materials. Related experimental research, theoretical analysis and FEM simulations are reviewed, and some proposals are made for future studies.

  15. Bulk characterization of pharmaceutical powders by low-pressure compression

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Sonnergaard, Jørn; Hovgaard, L.

    2005-01-01

    Low-pressure compression of pharmaceutical powders using small amounts of sample (50 mg) was evaluated as an alternative to traditional bulk powder characterization by tapping volumetry. Material parameters were extrapolated directly from the compression data and by fitting with the Walker, the K...

  16. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato;

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage...

  17. Organic bulk heterojunction photovoltaic structures: design, morphology and properties

    International Nuclear Information System (INIS)

    Main approaches to the design of organic bulk heterojunction photovoltaic structures are generalized and systematized. Novel photovoltaic materials based on fullerenes, organic dyes and related compounds, graphene, conjugated polymers and dendrimers are considered. The emphasis is placed on correlations between the chemical structure and properties of materials. The effect of morphology of the photoactive layer on the photovoltaic properties of devices is analyzed. Main methods of optimization of the photovoltaic properties are outlined. The bibliography includes 338 references

  18. Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools.

    Science.gov (United States)

    Meagher, Philip; O'Cearbhaill, Eoin D; Byrne, James H; Browne, David J

    2016-07-01

    With increasing knowledge of the materials science of bulk metallic glasses (BMGs) and improvements in their properties and processing, they have started to become candidate materials for biomedical devices. A dichotomy in the types of medical applications has also emerged, in which some families of BMGs are being developed for permanent devices whilst another family - of Mg-based alloys - is showing promise in bioabsorbable implants. The current status of these metallurgical and technological developments is summarized.

  19. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  1. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  2. Growth Techniques for Bulk ZnO and Related Compounds

    OpenAIRE

    Klimm, Detlef; Schulz, Detlev; Ganschow, Steffen; Galazka, Zbigniew; Uecker, Reinhard

    2011-01-01

    ZnO bulk crystals can be grown by several methods. 1) From the gas phase, usually by chemical vapor transport. Such CVT crystals may have high chemical purity, as the growth is performed without contact to foreign material. The crystallographic quality is often very high (free growth). 2) From melt fluxes such as alkaline hydroxides or other oxides (MoO3, V2O5, P2O5, PbO) and salts (PbCl2, PbF2). Melt fluxes offer the possibility to grow bulk ZnO under mild conditions (

  3. Homogenizer of cement mix with liquid and bulk radioactive wastes

    International Nuclear Information System (INIS)

    The lid of the homogenizer vessel with a stirrer and with bulk and liquid inlets is firmly attached to the homogenizer frame. The mixing vessel is screwed onto the lid and is connected to the frame with two moving arms. This allows to separate the mixing vessel from the lid without having to disconnect the supplies of bulk and liquid materials. The vessel is attached to swing arms pivoted in joints, which allows servicing, turning and tipping the vessel, thereby facilitating its emptying. This facilitates cleaning and reduces the maintenance time, thus increasing the safety of personnel. (J.B.). 2 figs

  4. Optimization of PGNAA instrument design for bulk coal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.; Salgado, J.; Carvalho, F.G. (National Laboratory for Industrial Technology and Engineering, Sacavem (Portugal). Physics Dept.)

    1993-06-01

    A simulation study of a PGNAA system for bulk coal analysis has been carried out using the MCNP code to investigate the dependence of the system's performance on design parameters for different coal compositions and bulk densities. Calculations were performed for simulated arrangements using a naked point [sup 252]Cf source and the source surrounded by a sphere of moderating material. Results for different sample sizes and different radii of the moderating sphere are reported. The system's optimization based upon the proper choice of sample size and amount of external thermalization is discussed. 3 refs., 18 figs., 1 tab.

  5. Magnetic levitation force between a superconducting bulk magnet and a permanent magnet

    OpenAIRE

    J. J. Wang; C. Y. He; Meng, L F; C Li; Han, R. S.; Gao, Z X

    2002-01-01

    The current density in a disk-shaped superconducting bulk magnet and the magnetic levitation force exerted on the superconducting bulk magnet by a cylindrical permanent magnet are calculated from first principles. The effect of the superconducting parameters of the superconducting bulk is taken into account by assuming the voltage-current law and the material law. The magnetic levitation force is dominated by the remnant current density, which is induced by switching off the applied magnetizi...

  6. Bulk fabrication and properties of solar grade silicon microwires

    Directory of Open Access Journals (Sweden)

    F. A. Martinsen

    2014-11-01

    Full Text Available We demonstrate a substrate-free novel route for fabrication of solar grade silicon microwires for photovoltaic applications. The microwires are fabricated from low purity starting material via a bulk molten-core fibre drawing method. In-situ segregation of impurities during the directional solidification of the fibres yields solar grade silicon cores (microwires where the concentration of electrically detrimental transition metals has been reduced between one and two orders of magnitude. The microwires show bulk minority carrier diffusion lengths measuring ∼40 μm, and mobilities comparable to those of single-crystal silicon. Microwires passivated with amorphous silicon yield diffusion lengths comparable to those in the bulk.

  7. Low-Temperature Cationic Rearrangement in a Bulk Metal Oxide.

    Science.gov (United States)

    Li, Man-Rong; Retuerto, Maria; Stephens, Peter W; Croft, Mark; Sheptyakov, Denis; Pomjakushin, Vladimir; Deng, Zheng; Akamatsu, Hirofumi; Gopalan, Venkatraman; Sánchez-Benítez, Javier; Saouma, Felix O; Jang, Joon I; Walker, David; Greenblatt, Martha

    2016-08-16

    Cationic rearrangement is a compelling strategy for producing desirable physical properties by atomic-scale manipulation. However, activating ionic diffusion typically requires high temperature, and in some cases also high pressure in bulk oxide materials. Herein, we present the cationic rearrangement in bulk Mn2 FeMoO6 at unparalleled low temperatures of 150-300 (o) C. The irreversible ionic motion at ambient pressure, as evidenced by real-time powder synchrotron X-ray and neutron diffraction, and second harmonic generation, leads to a transition from a Ni3 TeO6 -type to an ordered-ilmenite structure, and dramatic changes of the electrical and magnetic properties. This work demonstrates a remarkable cationic rearrangement, with corresponding large changes in the physical properties in a bulk oxide at unprecedented low temperatures. PMID:27203790

  8. New fermions in the bulk

    CERN Document Server

    de Brito, K P S

    2016-01-01

    Spinor fields on 5-dimensional Lorentzian manifolds are classified, according to the geometric Fierz identities that involve their bilinear covariants. Based upon this classification that generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are, hence, found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density, through the truncated exterior bundle. In order to accomplish a realisation of these new spinors, a Killing vector field is constructed on the horizon of 5-dimensional Kerr black holes. This Killing vector field is shown to reach the time-like Killing vector field at the spatial infinity, through a current 1-form density, constructed with the derived new spinor fields. The current density is, moreover, expressed as the f\\"unfbein components, assuming a condensed for...

  9. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... setup, that autophagy specifically can remove certain subcellular components. We used an unbiased quantitative proteomics approach relying on stable isotope labeling by amino acids in cell culture (SILAC) to study global protein dynamics during amino acid starvation-induced autophagy. Looking...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  10. Microwave disinfestation of bulk timber.

    Science.gov (United States)

    Plaza, Pedro Jose; Zona, Angela Tatiana; Sanchís, Raul; Balbastre, Juan Vicente; Martínez, Antonio; Muñoz, Eva Maria; Gordillo, Javier; de los Reyes, Elías

    2007-01-01

    In this paper a complete microwave system for bulk timber disinfestation is developed and tested. A commercial FEM simulator has been used to design the applicator, looking for structures providing uniform field distributions, which is a factor of capital relevance for a successful treatment. Special attention has also been given to the reduction of electromagnetic energy leakage. A dual polarized cylindrical applicator with a corrugated flange has been designed. The applicator has also been numerically tested emulating some real-life operating conditions. A prototype has been built using two low-cost magnetrons of 900 W and high power coaxial cables and it has been tested inside a shielded semianechoic chamber. The tests have been carried out in three stages: validation of the applicator design, determination of the lethal dosage as a function of the insect position and the maximum wood temperature allowed and statement of safe operation procedures. PMID:18351001

  11. Isotopic signatures by bulk analyses

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally

  12. Evaluation and remediation of bulk soap dispensers for biofilm.

    Science.gov (United States)

    Lorenz, Lindsey A; Ramsay, Bradley D; Goeres, Darla M; Fields, Matthew W; Zapka, Carrie A; Macinga, David R

    2012-01-01

    Recent studies evaluating bulk soap in public restroom soap dispensers have demonstrated up to 25% of open refillable bulk-soap dispensers were contaminated with ~ 6 log(10)(CFU ml(-1)) heterotrophic bacteria. In this study, plastic counter-mounted, plastic wall-mounted and stainless steel wall-mounted dispensers were analyzed for suspended and biofilm bacteria using total cell and viable plate counts. Independent of dispenser type or construction material, the bulk soap was contaminated with 4-7 log(10)(CFU ml(-1)) bacteria, while 4-6 log(10)(CFU cm(-2)) biofilm bacteria were isolated from the inside surfaces of the dispensers (n = 6). Dispenser remediation studies, including a 10 min soak with 5000 mg l(-1) sodium hypochlorite, were then conducted to determine the efficacy of cleaning and disinfectant procedures against established biofilms. The testing showed that contamination of the bulk soap returned to pre-test levels within 7-14 days. These results demonstrate biofilm is present in contaminated bulk-soap dispensers and remediation studies to clean and sanitize the dispensers are temporary.

  13. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  14. Recent developments of film bulk acoustic resonators

    Science.gov (United States)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  15. Unpaired Majorana Modes in Josephson-Junction Arrays with Gapless Bulk Excitations

    Science.gov (United States)

    Pino, M.; Tsvelik, A. M.; Ioffe, L. B.

    2015-11-01

    The search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L ˜10 .

  16. Permanent magnet with MgB{sub 2} bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  17. Business Pattern Innovation in Bulk Production Material Circulation Enterprises under the Trend of Disintermediation in China——The Business Practice of Zhejiang Material Industry Group%流通脱媒趋势下生产资料流通企业商业模式创新——来自浙江物产集团的商业实践

    Institute of Scientific and Technical Information of China (English)

    刘庆岩

    2016-01-01

    In recent years,with the rise of ICT and the increasing pressure brought by higher upstream cost and inefficient downstream demand,to shorten circulation channel,reduce circulation links,reduce circulation cost,or extent to the field of service to pursue"the third profit source",manufacturing enterprises increasingly strengthen their power of control on channels, and directly establish the strategic alliance with the absence of intermediaries. To some extent,these measures will shrink the living space of traditional circulation enterprises and lead to the phenomenon of disintermediation. And the enterprises will transform from being comprehensive to being specialized,from independently owning the resources to sharing that,and from being rival to each other to cooperating with each other. To better cope with the trend of disintermediation,ZJMI Group integrates the role of wholesaler,logistic service provider,transaction interface,market explorer,and modular integration service provider and embeds the link of supply chain to successfully expand its business scope,form the customer-demand-oriented supply chain integrated service pattern,and establish its own competitiveness. The experience of ZJMI cannot only be learn by other bulk production material enterprises,but also provide other traditional circulation enterprises with important implications. To cope with impact brought by new technology,at the stage of transferring from old balance to new balance,circulation enterprises should reconsider their functional positioning,take the value of upstream and downstream customers as the target,fully give play to the role of information,logistic,and management technological fruits,make innovation in business pattern,rebuild the competitiveness,effectively reduce agent cost,promote the return of intermediaries,and promote the rapid development of service outsourcing industry.%近年来,随着网络通信技术的兴起,受上游成本高企与下游需求不足双重压力

  18. Pulsed-field magnetization of a bulk superconductor with small holes

    International Nuclear Information System (INIS)

    Highlights: ► We propose the bulk material with small holes which makes the role of a flux path. ► The flux is supplied to the bulk reducing heat generation by the artificial path. ► The validity is investigated by the fundamental test of a single pulse application. ► It was confirmed that the magnetic flux penetrated even with a low applied field. ► Flux flow was small in a high applied field compared with a usual hole-less bulk. -- Abstract: Recent enlargement of the size and the performance enhancement of bulk superconductor lead to the difficulty of magnetic flux trapping by a pulsed-field magnetization. This paper proposes the bulk material with small holes which makes the role of an artificial magnetic flux path to supply the flux in the bulk. The fundamental experiment of applying a single pulsed-field with varying amplitudes was carried out using a ∅60 mm × 20 mm GdBa2Cu3O7−x bulk material with four ∅2 mm holes filled up with solder. Compared with a usual hole-less bulk, the total magnetic flux and the maximum trapped flux density were greatly increased in a low applied field. Moreover, those large reduction caused by flux flow was suppressed in a high applied field

  19. Relative entropy equals bulk relative entropy

    CERN Document Server

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine

    2015-01-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  20. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  1. Coupling brane fields to bulk supergravity

    International Nuclear Information System (INIS)

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  2. Diagnosis of Dry Bulk Shipping Market

    Institute of Scientific and Technical Information of China (English)

    Wendy Wu

    2009-01-01

    @@ A sudden severe winter for dry bulk shipping market Since the second half of last year,dry bulk shipping market experienced a sudden and dramatical change which caught everyone off guard in just a few months'time.As the wind vane of dry bulk shipping market,BDI index(Baltic index)has been climbing higher and higher from the middle of 2005.It began to nearly shoot up into the 2007.

  3. Bulk-edge correspondence for topological photonic continua

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    Here, building on our previous work [Phys. Rev. B, 92, 125153, (2015)], it is shown that the propagation of unidirectional gapless edge states at an interface of two topologically distinct electromagnetic continua with a well-behaved asymptotic electromagnetic response is rigorously predicted by the bulk-edge correspondence principle. We work out detailed examples demonstrating that when the spatial-cut off of the nonreciprocal part of the material response is considered self-consistently in the solution of the relevant electromagnetic problem, the number of unidirectional gapless edge modes is identical to the difference of the Chern numbers of the bulk materials. Furthermore, it is shown how the role of the spatial cut-off can be imitated in realistic systems using a tiny air gap with a specific thickness. This theory provides a practical roadmap for the application of topological concepts to photonic platforms formed by nonreciprocal electromagnetic continua.

  4. TAKRAF belt conveyors - effective means of transport for bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Peterman, L.

    1988-11-01

    Presents belt conveyor types produced by TAKRAF, especially those intended for use at surface mines. The FAM works (Transport Equipment) produces belt conveyors 800-1,400 mm wide, with 2.09-5.24 m/s belt velocity, 460-3,750 m/sup 3//h capacity, max. feed distance 2,500 m and (1-5)x55 kW drive power. The drive stations are based on pontoons or caterpillar vehicles while the end-stations are based on pontoons. Charging hoppers have autonomic drives and are mobile on rail. The described conveyors can also be used in power plants. The FAM works produces 650-800 mm wide conveyors for thermal electric power stations. The conveyors are equipped with metal detectors and metal separators.

  5. Bulk scalar field in DGP braneworld cosmology

    CERN Document Server

    Ansari, Rizwan ul Haq

    2007-01-01

    We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .

  6. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  7. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers

  8. Evolution of bulk strain solitons in cylindrical inhomogeneous shells

    Energy Technology Data Exchange (ETDEWEB)

    Shvartz, A., E-mail: andrew.shvartz@mail.ioffe.ru; Samsonov, A.; Dreiden, G.; Semenova, I. [Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021 (Russian Federation)

    2015-10-28

    Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.

  9. Analysis of a bonded joint using bulk adhesive properties

    OpenAIRE

    Osiroff, Talia

    1988-01-01

    Adhesives and adheslvely bonded structures are being considered as a viable alternative to conventional fastening methods. In order to gain wider acceptance, it is essential to address the issue of the mechanlcal characterizatlon of adhesive materials and its implementation in the design of bonded joints. While measuring the in-situ properties of the adhesive ln a joint is a difficult task, characterizing its bulk properties is a relatively simpler undertaking. The object...

  10. Electric field dependence of the electron mobility in bulk wurtzite ZnO

    Indian Academy of Sciences (India)

    K Alfaramawi

    2014-12-01

    The electric field dependence of the electron mobility in bulk wurtzite zinc oxide (ZnO) material is studied. The low-field electron mobility is calculated as a function of doping concentration and lattice temperature. The results show that above nearly 50 K the electrical conduction is governed by activation through the bulk material and the conduction is then influenced by both lattice and impurity scattering mechanisms. The high-field characteristics are also considered. The transition between the low-field and high-field regions is specified. The negative differential mobility for bulk ZnO at room temperature is observed at electric fields above 280 kV/cm.

  11. Standard practice for bulk sampling of liquid uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers methods for withdrawing representative samples of liquid uranium hexafluoride (UF6) from bulk quantities of the material. Such samples are used for determining compliance with the applicable commercial specification, for example Specification C787 and Specification C996. 1.2 It is assumed that the bulk liquid UF6 being sampled comprises a single quality and quantity of material. This practice does not address any special additional arrangements that might be required for taking proportional or composite samples, or when the sampled bulk material is being added to UF6 residues already in a container (“heels recycle”). 1.3 The number of samples to be taken, their nominal sample weight, and their disposition shall be agreed upon between the parties. 1.4 The scope of this practice does not include provisions for preventing criticality incidents. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of th...

  12. Novel Bioceramic Urethral Bulking Agents Elicit Improved Host Tissue Responses in a Rat Model.

    Science.gov (United States)

    Mann-Gow, Travis K; King, Benjamin J; El-Ghannam, Ahmed; Knabe-Ducheyne, Christine; Kida, Masatoshi; Dall, Ole M; Krhut, Jan; Zvara, Peter

    2016-01-01

    Objectives. To test the physical properties and host response to the bioceramic particles, silica-calcium phosphate (SCPC10) and Cristobalite, in a rat animal model and compare their biocompatibility to the current clinically utilized urethral bulking materials. Material and Methods. The novel bulking materials, SCPC10 and Cristobalite, were suspended in hyaluronic acid sodium salt and injected into the mid urethra of a rat. Additional animals were injected with bulking materials currently in clinical use. Physiological response was assessed using voiding trials, and host tissue response was evaluated using hard tissue histology and immunohistochemical analysis. Distant organs were evaluated for the presence of particles or their components. Results. Histological analysis of the urethral tissue five months after injection showed that both SCPC10 and Cristobalite induced a more robust fibroblastic and histiocytic reaction, promoting integration and encapsulation of the particle aggregates, leading to a larger bulking effect. Concentrations of Ca, Na, Si, and P ions in the experimental groups were comparable to control animals. Conclusions. This side-by-side examination of urethral bulking agents using a rat animal model and hard tissue histology techniques compared two newly developed bioactive ceramic particles to three of the currently used bulking agents. The local host tissue response and bulking effects of bioceramic particles were superior while also possessing a comparable safety profile. PMID:27688751

  13. 77 FR 14327 - Bulk Packaging To Allow for Transfer of Hazardous Liquid Cargoes

    Science.gov (United States)

    2012-03-09

    ... FR Federal Register HMR Hazardous Materials Regulations; 49 CFR Parts 171-180 IBC Intermediate Bulk... Materials by Vessel'' (55 FR 37406), the Coast Guard allowed the use of Intermodal (IM) 101 and IM 102... describe the types of IBCs the Coast Guard would allow for the carriage of certain hazardous materials...

  14. Determination of Bulk Dimensional Variation in Castings

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  15. Failure Prediction in Bulk Metal Forming Process

    Directory of Open Access Journals (Sweden)

    Ameen Topa

    2014-01-01

    Full Text Available An important concern in metal forming is whether the desired deformation can be accomplished without defects in the final product. Various ductile fracture criteria have been developed and experimentally verified for a limited number of cases of metal forming processes. These criteria are highly dependent on the geometry of the workpiece and cannot be utilized for complicated shapes without experimental verification. However, experimental work is a resource hungry process. This paper proposes the ability of finite element analysis (FEA software such as LS-DYNA to pinpoint the crack-like flaws in bulk metal forming products. Two different approaches named as arbitrary Lagrangian-Eulerian (ALE and smooth particle hydrodynamics (SPH formulations were adopted. The results of the simulations agree well with the experimental work and a comparison between the two formulations has been carried out. Both approximation methods successfully predicted the flow of workpiece material (plastic deformation. However ALE method was able to pinpoint the location of the flaws.

  16. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  17. Bulk equations of motion from CFT correlators

    CERN Document Server

    Kabat, Daniel

    2015-01-01

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  18. Lunar Materials Handling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Materials Handling System (LMHS) is a method for transfer of bulk materials and products into and out of process equipment in support of lunar and Mars in...

  19. Superconducting Bulk Magnets: Very High Trapped Fields and Cracking

    OpenAIRE

    Gruss, S; Fuchs, G.; Krabbes, G.; Verges, P.; Stover, G.; Muller, K. -H.; Fink, J; L. Schultz

    2001-01-01

    Improved trapped fields are reported for bulk melt-textured YBa2Cu3O7-x (YBCO) material in the temperature range between 20 K and 50 K. Trapped fields up to 12.2 T were obtained at 22 K on the surface of single YBCO disks (with Ag and Zn additions). In YBCO mini-magnets, maximum trapped fields of 16 T (at 24 K) and of 11.2 T (at 47 K) were achieved using (Zn + Ag) and Zn additions, respectively. In all cases, the YBCO disks were encapsulated in steel tubes in order to reinforce the material a...

  20. The Effect of Bulk Depth and Irradiation Time on the Surface Hardness and Degree of Cure of Bulk-Fill Composites

    Directory of Open Access Journals (Sweden)

    Farahat F

    2016-09-01

    Full Text Available Statement of Problem: For many years, application of the composite restoration with a thickness less than 2 mm for achieving the minimum polymerization contraction and stress has been accepted as a principle. But through the recent development in dental material a group of resin based composites (RBCs called Bulk Fill is introduced whose producers claim the possibility of achieving a good restoration in bulks with depths of 4 or even 5 mm. Objectives: To evaluate the effect of irradiation times and bulk depths on the degree of cure (DC of a bulk fill composite and compare it with the universal type. Materials and Methods: This study was conducted on two groups of dental RBCs including Tetric N Ceram Bulk Fill and Tetric N Ceram Universal. The composite samples were prepared in Teflon moulds with a diameter of 5 mm and height of 2, 4 and 6 mm. Then, half of the samples in each depth were cured from the upper side of the mould for 20s by LED light curing unit. The irradiation time for other specimens was 40s. After 24 hours of storage in distilled water, the microhardness of the top and bottom of the samples was measured using a Future Tech (Japan- Model FM 700 Vickers hardness testing machine. Data were analyzed statistically using the one and multi way ANOVAand Tukey’s test (p = 0.050. Results: The DC of Tetric N Ceram Bulk Fill in defined irradiation time and bulk depth was significantly more than the universal type (p < 0.001. Also, the DC of both composites studied was significantly (p < 0.001 reduced by increasing the bulk depths. Increasing the curing time from 20 to 40 seconds had a marginally significant effect (p ≤ 0.040 on the DC of both bulk fill and universal studied RBC samples. Conclusions: The DC of the investigated bulk fill composite was better than the universal type in all the irradiation times and bulk depths. The studied universal and bulk fill RBCs had an appropriate DC at the 2 and 4 mm bulk depths respectively and

  1. Guidelines for monitoring bulk tank milk somatic cell and bacterial counts.

    Science.gov (United States)

    Jayarao, B M; Pillai, S R; Sawant, A A; Wolfgang, D R; Hegde, N V

    2004-10-01

    This study was conducted to establish guidelines for monitoring bulk tank milk somatic cell count and bacterial counts, and to understand the relationship between different bacterial groups that occur in bulk tank milk. One hundred twenty-six dairy farms in 14 counties of Pennsylvania participated, each providing one bulk tank milk sample every 15 d for 2 mo. The 4 bulk tank milk samples from each farm were examined for bulk tank somatic cell count and bacterial counts including standard plate count, preliminary incubation count, laboratory pasteurization count, coagulase-negative staphylococcal count, environmental streptococcal count, coliform count, and gram-negative noncoliform count. The milk samples were also examined for presence of Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma. The bacterial counts of 4 bulk tank milk samples examined over an 8-wk period were averaged and expressed as mean bacterial count per milliliter. The study revealed that an increase in the frequency of isolation of Staphylococcus aureus and Streptococcus agalactiae was significantly associated with an increased bulk tank somatic cell count. Paired correlation analysis showed that there was low correlation between different bacterial counts. Bulk tank milk with low (standard plate count also had a significantly low level of mean bulk tank somatic cell count (count (count (counts (count (count was less likely to be associated with somatic cell or other bacterial counts. Herd size and farm management practices had considerable influence on somatic cell and bacterial counts in bulk tank milk. Dairy herds that used automatic milking detachers, sand as bedding material, dip cups for teat dipping instead of spraying, and practiced pre-and postdipping had significantly lower bulk tank somatic cell and/or bacterial counts. In conclusion, categorized bulk tank somatic cell and bacterial counts could serve as indicators and facilitate monitoring of herd udder health and milk

  2. Holographic representation of local bulk operators

    CERN Document Server

    Hamilton, A; Lifschytz, G; Lowe, D A; Hamilton, Alex; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2006-01-01

    The Lorentzian AdS/CFT correspondence implies a map between local operators in supergravity and non-local operators in the CFT. By explicit computation we construct CFT operators which are dual to local bulk fields in the semiclassical limit. The computation is done for general dimension in global, Poincare and Rindler coordinates. We find that the CFT operators can be taken to have compact support in a region of the complexified boundary whose size is set by the bulk radial position. We show that at finite N the number of independent commuting operators localized within a bulk volume saturates the holographic bound.

  3. Bulk viscosity in holographic Lifshitz hydrodynamics

    OpenAIRE

    Carlos Hoyos; Bom Soo Kim; Yaron Oz

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical ...

  4. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  5. Bulk viscosity of hot and dense hadrons

    International Nuclear Information System (INIS)

    The bulk viscosity of hot and dense hadrons has been estimated within the framework of hadronic resonance gas model. We observe that the bulk viscosity to entropy ratio increases faster with temperature for higher μB. The magnitude of ζ is more at high μB. This results will have crucial importance for fire-ball produced at low energy nuclear collisions (FAIR, NICA). We note that the bulk to shear viscosity ratio remains above the bound set by AdS/CFT

  6. Permanent magnet with MgB2 bulk superconductor

    Science.gov (United States)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-01

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.

  7. Ductile damage prediction in sheet and bulk metal forming

    Science.gov (United States)

    Badreddine, Houssem; Labergère, Carl; Saanouni, Khemais

    2016-04-01

    This paper is dedicated to the presentation of an advanced 3D numerical methodology for virtual sheet and/or bulk metal forming simulation to predict the anisotropic ductile defects occurrence. First, the detailed formulation of thermodynamically-consistent fully coupled and fully anisotropic constitutive equations is given. The proposed constitutive equations account for the main material nonlinearities as the anisotropic plastic flow, the mixed isotropic and kinematic hardening and the anisotropic ductile damage under large inelastic strains. Second, the related numerical aspects required to solve the initial and boundary value problem (IBVP) are very briefly presented in the framework of the 3D finite element method. The global resolution schemes as well as the local integration schemes of the fully coupled constitutive equations are briefly discussed. Finally, some typical examples of sheet and bulk metal forming processes are numerically simulated using the proposed numerical methodology.

  8. Structural Characterization of Carbon Nanomaterial Film In Situ Synthesized on Various Bulk Metals

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanofiber films were prepared via a simple chemical vapor deposition (CVD method on various bulk metal substrates including bulk 316 L stainless steel, pure cobalt, and pure nickel treated by surface mechanical attrition treatment (SMAT. The microstructures of the carbon nanomaterial film were studied by SEM, TEM, XRD, and Raman spectroscopy. In this paper, bulk metallic materials treated by SMAT served as substrates as well as catalysts for carbon nanomaterial film formation. The results indicate that the carbon nanofiber films are formed concerning the catalytic effects of the refined metallic particles during CVD on the surface of SMAT-treated bulk metal substrates. However, distinguished morphologies of carbon nanomaterial film are displayed in the case of the diverse bulk metal substrates.

  9. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong;

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  10. Bulk limited conduction in electroluminescent polymer devices

    Science.gov (United States)

    Campbell, A. J.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C.

    1998-12-01

    The current-voltage (J-V) characteristics of ITO/polymer film/Al or Au structures of poly(phenylene vinylene) (PPV) and a dialkoxy PPV copolymer have been recorded for a range of different film thickness d and temperatures T. At high applied bias all the characteristics can be fitted over a given range to a power law J=KVm, where m increases with decreasing T, log(K) is proportional to m, and K is proportional to d-α m, where α˜2 (ITO/polymer film/Al devices) and ˜1 (ITO/polymer film/Au devices). Different single carrier space charge limited conduction theories have been used to try and explain this behavior. The analytical theory in which the carrier density is decreased by an exponential trap distribution lying below effectively isoelectronic transport states is in good agreement, but cannot explain the thickness dependence of the ITO/polymer film/Au devices and can be criticized as being physically unreasonable. A numerical analysis in which the mobility has the field and temperature dependence found for hopping transport in disordered systems is also in good agreement, but can only fit a small range of J and cannot explain the magnitude of K, the temperature dependence of m or the abrupt change in slope in the J-V characteristics with increasing bias. Mixed models are equally good but cannot explain the deviations from experiment. We consider that further experimental studies of carrier mobilities and the nature of the traps present in such materials is required to distinguish between these models and resolve the nature of bulk limited conduction in conjugated polymers.

  11. Determination of energy levels in organic bulk-heterojunction systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetzstein, Holger; Krause, Stefan; Schoell, Achim; Reinert, Friedrich [Experimental Physics VII, Julius-Maximilians-University of Wuerzburg, D-97074 Wuerzburg (Germany); Liedtke, Moritz; Kern, Julia; Deibel, Carsten [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg, D-97074 Wuerzburg (Germany)

    2010-07-01

    In order to improve the efficiency of electronic devices based on organic semiconducting materials the detailed knowledge about the exact position of the energy levels responsible for charge transport is crucial. The experimental determination is particularly complicated for bulk heterojunctions of p- and n-conducting materials in terms of sample preparation, film morphology and distinction of the different spectroscopic signatures. We investigated four promising materials for organic photovoltaic devices: the electron donor poly(3-hexylthiophene-2,5-diyl) (P3HT) and the three electron acceptors [6,6]-phenyl-C{sub 61} butyric acid methyl ester (PC{sub 60}BM), its bisadduct analogue (bis- PC{sub 60}BM) and [6,6]-phenyl-C{sub 71} butyric acid methyl ester (PC{sub 70}BM). Thin films of pristine materials as well as bulk heterojunction samples of P3HT:PC{sub 60}BM, P3HT:bis-PC{sub 60}BM and P3HT:PC{sub 70}BM were examined with respect to their valence levels using ultraviolet photoelectron spectroscopy (UPS).

  12. An intrinsic mobility ceiling of Si bulk

    OpenAIRE

    Garcia-Castello, Nuria; Prades, Joan Daniel; Cirera, Albert

    2011-01-01

    We compute by Density Functional Theory-Non Equilibrium Green Functions Formalism (DFT-NEGFF) the conductance of bulk Si along different crystallographic directions. We find a ceiling value for the intrinsic mobility of bulk silicon of $8.4\\cdot10^6 cm^2/V\\cdot s$. We suggest that this result is related to the lowest effective mass of the $$ direction.

  13. Convergence of electronic bands for high performance bulk thermoelectrics.

    Science.gov (United States)

    Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron; Wang, Heng; Chen, Lidong; Snyder, G Jeffrey

    2011-05-01

    Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe(1-x)Se(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.

  14. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z.; Gondal, M.A.; Rehman, Khateeb-ur [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Raashid, M.; Dastageer, M.A. [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-11-21

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  15. Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Swinteck, N., E-mail: swinteck@email.arizona.edu; Matsuo, S.; Runge, K.; Lucas, P.; Deymier, P. A. [Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Vasseur, J. O. [Institut d' Electronique, de Micro-électronique et de Nanotechnologie, UMR CNRS 8520, Cité Scientifique, 59652 Villeneuve d' Ascq Cedex (France)

    2015-08-14

    Recent progress in electronic and electromagnetic topological insulators has led to the demonstration of one way propagation of electron and photon edge states and the possibility of immunity to backscattering by edge defects. Unfortunately, such topologically protected propagation of waves in the bulk of a material has not been observed. We show, in the case of sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice are supported by a manifold in momentum space with the topology of a single twist Möbius strip. Our results demonstrate the possibility of attaining one way transport and immunity to scattering of bulk elastic waves.

  16. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    International Nuclear Information System (INIS)

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples

  17. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Science.gov (United States)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  18. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li Shanghua; Qin Jian; Fornara, Andrea; Toprak, Muhammet; Muhammed, Mamoun [Division of Functional Materials, Royal Institute of Technology (KTH), SE-16440 Kista, Stockholm (Sweden); Kim, Do Kyung [Institute for Science and Technology in Medicine, Keele University Medical School, Stoke-on-Trent ST4 7QB (United Kingdom)], E-mail: shanghua@kth.se

    2009-05-06

    PMMA/Fe-oxide nanocomposites are fabricated by a chemical method. Monodispersed Fe-oxide nanoparticles are well dispersed in the PMMA matrix by in situ polymerization, resulting in a bulk transparent polymeric nanocomposite. The magnetic behavior of the PMMA/Fe-oxide nanocomposites is investigated. The transparent PMMA/Fe-oxide nanocomposite has potentially interesting magneto-optic applications without compromising the advantages of a lightweight, noncorrosive polymeric material with very high transparency even for bulk samples.

  19. Dispersion regions overlapping for bulk and surface polaritons in a magnetic-semiconductor superlattice

    CERN Document Server

    Fesenko, Volodymyr I; Tuz, Vladimir R

    2016-01-01

    Extraordinary dispersion features of both bulk and surface polaritons in a finely-stratified magnetic-semiconductor structure which is under an action of an external static magnetic field in the Voigt geometry are discussed in this letter. It is shown that the conditions for total overlapping dispersion regions of simultaneous existence of bulk and surface polaritons can be reached providing a conscious choice of the constitutive parameters and material fractions for both magnetic and semiconductor subsystems.

  20. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  1. Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J. Staun; Gerward, Leif;

    1998-01-01

    GPa for the bulk material to 305 GPa for 9 nm size crystals. At the same time the transition pressure decreases from 35 to 27 GPa. The reduced transition pressure is explained in terms of nucleation and growth, the larger volume change upon transition in the nanocrystalline material being the main...

  2. Bipolar electrical coil based on YBCO bulks: initial tests

    Science.gov (United States)

    Alvarez, A.; Suárez, P.; Ceballos, J. M.; Pérez, B.; Werfel, F.; Floegel-Delor, U.

    2008-02-01

    In the field of the application of HTS in electrical motors, most prototypes are made using superconducting coils based on tape and located in the position where copper coils work in a similar conventional motor. Other prototypes use superconducting bulks (usually disk-shaped) in those positions where normal magnets should work in similar conventional motors. But it is very unusual to find designs using electrical coils based on bulks. This is a challenge whose main problem is the difficulty in machining the superconductor bulks to get the proper shape because of the impossibility of bending the material to wind coils. The design of a bipolar single-turn coil made from a superconducting YBCO disk was proposed by the group of Electrical Application of Superconductors, at the University of Extremadura, several years ago to be an element for the design of a modular two-phase inductor for an air core axial-flux motor. The shape of each coil looks like an 'S'. When a current flows through the circuit, two opposite magnetic fields appear in the upper and lower halves of the piece. Until now, attempts to get a good superconducting circuit by cutting a YBCO disk into the required shape have failed because of cracks appearing in the crystal during the process. Last year, our group at the University of Extremadura began to work with ATZ GmbH who have improved the machining process and made the coils. In this paper we present the coil and the first tests carried out.

  3. Preparation and Characterization of Copper-Nickel Bulk Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WU Xiaoqiang; TANG Yongjian; WANG Lan; AN Xuguang; YI Zao; SUN Weiguo

    2014-01-01

    Copper-nickel nanoparticle was directly prepared by flow-levitation method (FL) and sintered by vacuum sintering of powder (VSP) method. Several characterizations, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal analysis (DTA), and energy-dispersive X-ray spectroscopy (EDX) were used to investigate the prepared nanostructures. The results of the study show that FL method could prepare high purity Cu-Ni nanocrystals of uniform spheres with size distribution between 20 and 90 nm. After sintering the bulk nanocrystalline copper-nickel has obvious thermal stability and the surface Webster hardness increases with the rising sintering temperature. At the temperature of 900℃, the specimen shows higher surface Webster hardness, which is about two times of traditional materials. When the sintering temperature arrives at 1 000℃the relative density of bulk nanocrystals can reach 97.86 percent. In this paper, the variation tendency of porosity, phase and particles size of bulk along with the changing of sintering temperature have been studied.

  4. EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.

    2012-02-27

    The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose of this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.

  5. Oxygen Behavior in Bulk Amorphous Zr-base Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Bulk Zr55Al10Ni5Cu30 metallic glass plates with a dimension of 85 mm×35mm×4 mm and a complicated plate werefabricated by injecting casting method using spongy zirconium and industrial purity aluminum, nickel and copper asraw materials. It was shown that the holding time of liquid metals at elevated temperatures had a great influence onthe oxygen content of the plates due to the contamination resulting from the atmosphere. Increasing holding timeresulted in the increase of oxygen content in the injected alloy. The glass transition temperatures of the bulk metallicglass plates are higher than that reported in the literature and crystallization temperature is lower for the one withhigher oxygen content at the same heating rate. The extension of the undercooled liquid region △Tx reaching about87 K is 3 K higher than that previously reported and 26 K higher than that with oxygen content of 0.076 wt pct forthe one with oxygen content as high as 0.065 wt pct. Therefore the oxygen content of the alloy has a significantinfluence on the glass forming ability and thermal stability of bulk metal glass. It is suggested that direct correlationbetween high glass forming ability and large △Tx is only valid for a well-defined Iow oxygen concentration or has tobe reconsidered by incorporating oxygen as an additional alloying element.

  6. BEHAVIORS OF BULK METALLIC GLASS UNDER SHOCK LOADING

    OpenAIRE

    ATROSHENKO S.A.

    2016-01-01

    The high-strain-rate method of materials for dynamic strength investigations under micro and sub-microsecond durations of shock loads on the base of electrical explosion of conductors was developed. The experimental investigations of dynamic properties for bulk metallic glass on the base of Ti and Zr under shock loads of sub-microsecond duration (~0.5-0.7 μs) in the pressure range up to 12 GPa were carried out. The values of Hugoniot elastic limit (HEL) and spall strength for these amorphous ...

  7. Into the Bulk: A Covariant Approach

    CERN Document Server

    Engelhardt, Netta

    2016-01-01

    I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "lightcone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic RG flow, this new definition of bulk depth makes contact with coarse-graining over both large distances ...

  8. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials

    CERN Document Server

    Markos, Peter

    2010-01-01

    This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects,

  9. Fabrication of ternary Ca-Mg-Zn bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2013-02-01

    Full Text Available Purpose: The paper describes the preparation, structure and thermal properties of ternary Ca-Mg-Zn bulk metallic glass in form of as-cast rods.Design/methodology/approach: The investigations on the ternary Ca-Mg-Zn glassy rods were conducted by using X-ray diffraction (XRD, scanning electron microscopy (SEM which energy dispersive X-ray analysis (EDS.Findings: The X-ray diffraction investigations have revealed that the studied as-cast rod was amorphous. The fractures of studied alloy could be classified as mixed fracture with indicated “river” and “smooth” fractures. Both type of the fracture surfaces consist of weakly formed “river” and “shell” patterns and “smooth” regions. The “river” patterns are characteristic for metallic glassy alloys.Practical implications: The studied Ca-based bulk metallic glasses is a relatively new group of material. Ca-based bulk metallic glasses are applied for many applications in different elements. Ca-based bulk metallic glasses have many unique properties such as low density (~2.0 g/cm3, low Youn g’s modulus ( ~20 to 30 GPa. The elastic modulus of Ca-b ased BMGs is comparable to that of hum an bone s, and Ca, Mg, and Zn are biocompatible. These features make the Ca-Mg-Zn–based alloys attractive for use in biomedical applications.Originality/value: Fabrication of amorphous alloy in the form of rod ternary Ca-Mg-Zn alloy by pressure die casting method.

  10. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  11. A diphoton resonance from bulk RS

    Science.gov (United States)

    Csáki, Csaba; Randall, Lisa

    2016-07-01

    Recent LHC data hinted at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to any other Standard Model particles would be too low to be detected so far. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from but close to the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  12. Bulk fields from the boundary OPE

    CERN Document Server

    Guica, Monica

    2016-01-01

    Previous work has established an equality between the geodesic integral of a free bulk field in AdS and the contribution of the conformal descendants of its dual CFT primary operator to the OPE of two other operators inserted at the endpoints of the geodesic. Working in the context of AdS$_3$/CFT$_2$, we extend this relation to include all $1/N$ corrections to the bulk field obtained by dressing it with i) a $U(1)$ current and ii) the CFT stress tensor, and argue it equals the contribution of the Ka\\v{c}-Moody/the Virasoro block to the respective boundary OPE. This equality holds for a particular framing of the bulk field to the boundary that involves a split Wilson line.

  13. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...

  14. A Diphoton Resonance from Bulk RS

    CERN Document Server

    Csaki, Csaba

    2016-01-01

    Recent LHC data hints at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to Higges and to any other Standard Model particles are so far too low to be detected. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. We argue that if the state is a scalar, some form of sequestering is likely to be necessary to naturally explain the suppressed scalar-Higgs interactions. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  15. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  16. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza

    2009-12-01

    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  17. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  18. Bulk Entropy in Loop Quantum Gravity

    OpenAIRE

    Livine, Etera R; Terno, Daniel R.

    2007-01-01

    In the framework of loop quantum gravity (LQG), having quantum black holes in mind, we generalize the previous boundary state counting (gr-qc/0508085) to a full bulk state counting. After a suitable gauge fixing we are able to compute the bulk entropy of a bounded region (the "black hole") with fixed boundary. This allows us to study the relationship between the entropy and the boundary area in details and we identify a holographic regime of LQG where the leading order of the entropy scales w...

  19. Bulk Entropy in Loop Quantum Gravity

    CERN Document Server

    Livine, Etera R

    2007-01-01

    In the framework of loop quantum gravity (LQG), having quantum black holes in mind, we generalize the previous boundary state counting (gr-qc/0508085) to a full bulk state counting. After a suitable gauge fixing we are able to compute the bulk entropy of a bounded region (the "black hole") with fixed boundary. This allows us to study the relationship between the entropy and the boundary area in details and we identify a holographic regime of LQG where the leading order of the entropy scales with the area. We show that in this regime we can fine tune the factor between entropy and area without changing the Immirzi parameter.

  20. Thermal relics in cosmology with bulk viscosity

    International Nuclear Information System (INIS)

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, which cannot be explained by conventional cosmology and particle physics. (orig.)

  1. Mechanical behavior of a bulk nanostructured iron alloy

    Science.gov (United States)

    Carsley, J. E.; Fisher, A.; Milligan, W. W.; Aifantis, E. C.

    1998-09-01

    Bulk, fully dense materials were prepared from Fe-10Cu with grain diameters between 45 nm and 1.7 µm. The materials were prepared by ball milling of powders in a glove box, followed by hot isostatic pressing (hipping) or powder forging. Larger grain sizes were obtained by thermal treatment of the consolidated powders. The bulk materials were relatively clean, with oxygen levels below 1500 wpm and other contaminants less than 0.1 at. pct. The mechanical behavior of these materials was unique. At temperatures from 77 to 470 K, the first and only mechanism of plastic deformation was intense shear banding, which was accompanied by a perfectly plastic stress-strain response (absence of strain hardening). There was a large tension-compression asymmetry in the strength, and the shear bands did not occur on the plane of maximum shear stress or the plane of zero extension. This behavior, while unusual for metals, has been observed in amorphous polymers and metallic glasses. On the other hand, the fine-grained Fe-10Cu materials behaved like coarse-grained iron in some respects, particularly by obeying the Hall-Petch equation with constants reasonably close to those of pure iron and by exhibiting low-temperature mechanical behavior which was very similar to that of steels. Transmission electron microscopy (TEM) studies found highly elongated grains within shear bands, indicating that shear banding occurred by a dislocation-based mechanism, at least at grain sizes above 100 nm. Similarities and differences between the fine-grained Fe-10Cu and metals, polymers, metallic glasses, radiation-damaged metals, and quench-damaged metals are discussed.

  2. [Recycle of contaminated scrap metal]: Task 1.3.2, Bulk solids feed system. Topical report, October 1993-- January 1996

    International Nuclear Information System (INIS)

    A critical requirement in DOE's efforts to recycle, reuse, and dispose of materials from its decontamination and decommissioning activities is the design of a robust system to process a wide variety of bulk solid feeds. The capability to process bulk solids will increase the range of materials and broaden the application of Catalytic Extraction Processing (CEP). The term bulk solids refers to materials that are more economically fed into the top of a molten metal bath than by submerged injection through a tuyere. Molten Metal Technology, Inc. (MMT) has characterized CEP's ability to process bulk solid feed materials and has achieved significant growth in the size of bulk solid particles compatible with Catalytic Extraction Processing. Parametric experimental studies using various feed materials representative of the components of various DOE waste streams have validated design models which establish the reactor operating range as a function of feed material, mass flow rate, and particle size. MMT is investigating the use of a slurry system for bulk solid addition as it is the most efficient means for injecting soils, sludges, and similar physical forms into a catalytic processing unit. MMT is continuing to evaluate condensed phase product removal systems and alternative energy addition sources to enhance the operating efficiency of bulk solids CEP units. A condensed phase product removal system capable of on-demand product removal has been successfully demonstrated. MMT is also investigating the use of a plasma arc torch to provide supplemental heating during bulk solids processing. This comprehensive approach to bulk solids processing is expected to further improve overall process efficiency prior to the deployment of CEP for the recycle, reuse, and disposal of materials from DOE decontamination and decommissioning Activities

  3. Depth of cure of contemporary bulk-fill resin-based composites.

    Science.gov (United States)

    Yap, Adrian U Jin; Pandya, Mirali; Toh, Wei Seong

    2016-01-01

    This study evaluated the depth of cure (DOC) of packable and flowable bulk-fill resin-based composites (RBCs) including PRG (prereacted glass ionomer) and short-fiber materials. The materials were placed in a black split-mold with a 7 mm deep recess and cured at 700 mW/cm(2) for 20 s using a LED curing light. DOC was assessed using the ISO scraping and Knoops hardness tests. Data (n=5) were computed and analyzed using one-way ANOVA/Scheffe's post hoc test (ptesting ranged from 3 to 1.5 mm. For all materials, a decrease in hardness was observed with increasing depths. The DOC of bulk-fill RBCs was product dependent and greater than standard composites. At 4 mm depth, none of the bulk-fill RBCs had a depth: top hardness ratio of 0.8 and above. PMID:27252008

  4. Thermal properties of Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2012-12-01

    Full Text Available Purpose: The aim of paper is presentation of results bulk metallic glasses thermal properties such as temperatures typical for glassy transition and thermal conductivity. Design/methodology/approach: Investigations were realized for Fe36Co36B19.2Si4.8Nb4 samples with dimension 3 mm in diameter. Bulk test pieces were fabricated by copper mold casting method. Thermal analysis of master alloy (DTA and samples in as-cast state (DSC was realized. For amorphous structure confirmation the X-ray diffraction phase analysis (XRD was realized. Additionally scanning electron microscopy (SEM micrographs were performed in order to structure analysis. Thermal conductivity was determined by prototype measuring station.Findings: The XRD and SEM analysis confirmed amorphous structure of samples. Broad diffraction “halo” was observed for every testing piece. Fracture morphology is smooth with many “veins” on the surface, which are characteristic for glassy state. DTA analysis confirmed eutectic chemical composition of master alloy. Thermal conductivity measurements proved that both samples have comparable thermal conductivity.Practical implications: The FeCo-based bulk metallic glasses have attracted great interest for a variety application fields for example precision machinery materials, electric applications, structural materials, sporting goods, medical devices. Thermal conductivity is useful and important property for example computer simulation of temperature distribution and glass forming ability calculation.Originality/value: The obtained results confirm the utility of applied investigation methods in the thermal and structure analysis of examined amorphous alloys. Thermal conductivity was determined using the prototype measuring station, which is original issue of the paper. In future, the measuring station will be expanded for samples with different dimensions.

  5. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  6. Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu

    2014-06-01

    A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.

  7. Bulk-bronzied graphites for plasma-facing components in ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600 degree C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000 degree C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800 degree C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350 degree C. 38 refs., 5 figs

  8. Dense Shaped Refractory Products--Determination of Bulk Density, Apparent Porosity and True Porosity GB/T 2997-2000

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ 1 Scope This standard specifies the definition, principle, apparatus and materials, procedure, expression of results and test report of determination of bulk density, apparent porosity and true porosity of dense shaped refractory products.

  9. Mesoscopic discrete element modelling of cohesive powders for bulk handling applications

    OpenAIRE

    Thakur, Subhash Chandra

    2014-01-01

    Many powders and particulate solids are stored and handled in large quantities across various industries. These solids often encounter handling and storage difficulties that are caused by the material cohesion. The cohesive strength of a bulk material is a function of its past consolidation stress. For example, high material cohesive strength as a result from high storage stresses in a silo can cause ratholing problems during discharge. Therefore, it is essential to consider th...

  10. Relationship between single and bulk mechanical properties for zeolite ZSM5 spray-dried particles

    OpenAIRE

    Marigo, M.; Cairns, D. L.; Bowen, J; Ingram, A.; Stitt, E. H.

    2014-01-01

    In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical metho...

  11. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  12. A Stereoscopic Look into the Bulk

    CERN Document Server

    Czech, Bartlomiej; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-01-01

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space--the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow ...

  13. Realistic anomaly mediation with bulk gauge fields

    International Nuclear Information System (INIS)

    We present a simple general framework for realistic models of supersymmetry breaking driven by anomaly mediation. We consider a 5-dimensional 'brane universe' where the visible and hidden sectors are localized on different branes, and the standard model gauge bosons propagate in the bulk. In this framework there can be charged scalar messengers that have contact interactions with the hidden sector, either localized in the hidden sector or in the bulk. These scalars obtain soft masses that feed into visible sector scalar masses at two loop order via bulk gauge interactions. This contribution is automatically flavor-blind, and can be naturally positive. If the messengers are in the bulk this contribution is automatically the same order of magnitude as the anomaly mediated contribution, independent of the brane spacing. If the messengers are localized to a brane the two effects are of the same order for relatively small brane spacings. The gaugino masses and A terms are determined completely by anomaly mediation. In order for anomaly mediation to dominate over radion mediation the radion must be is stabilized in a manner that preserves supersymmetry, with supergravity effects included. We show that this occurs in simple models. We also show that the mu problem can be solved by the vacuum expectation value of a singlet in this framework. (author)

  14. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization...

  15. Different Device Architectures for Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Getachew Adam

    2016-08-01

    Full Text Available We report different solar cell designs which allow a simple electrical connection of subsequent devices deposited on the same substrate. By arranging so-called standard and inverted solar-cell architectures next to each other, a serial connection of the two devices can easily be realized by a single compound electrode. In this work, we tested different interfacial layer materials like polyethylenimine (PEI and PEDOT:PSS, and silver as a non-transparent electrode material. We also built organic light emitting diodes applying the same device designs demonstrating the versatility of applied layer stacks. The proposed design should allow the preparation of organic bulk-heterojunction modules with minimized photovoltaically inactive regions at the interconnection of individual devices.

  16. Cast bulk glassy alloys:fabrication,alloy development and properties

    Institute of Scientific and Technical Information of China (English)

    Qingsheng Zhang; Chunling Qin; Akihisa Inoue

    2010-01-01

    Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts. Currently, with well designed compositions it is possible to cast liquid alloys into the glassy state at low critical cooling rates from 100 K·s-1 to 1 K·s-1 and in large critical sample sizes up to several centimeters, which significantly enhances the promise for possible applications as advanced engineering materials. This paper reviews the development of(ZrCu)-based bulk metallic glasses with large sizes by copper mold casting and their unique properties. Additionally, the ex-situ and in-situ second phases reinforced BMG composites with large plasticity are also presented.

  17. Bio-based alkyds by direct enzymatic bulk polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh

    . Bio-based alkyds prepared from a combination of glycerol, and tall oil fatty acids, and azelaic acid by enzymatic polymerization show improved hydrophobicity and lower glass transition temperatures compared to an alkyd prepared from the same raw materials by a classical boiling method. The enzymatic...... a totally bio-based formulation. In this context, the biggest challenge is development of bio-based analogues to classical alkyd resins (or alkyd), which is up to 50% fossil based. In addition, all the remaining components of an alkyd coating formulation are also needed to be prepared from renewable raw...... materials before a 100% bio-based alkyd paint can be realized. In this project an enzyme catalyzed bulk polymerization method for direct production of alkyds has been developed. The objective has been to make it possible to produce binders at much lower temperatures as well as to achieve a higher degree...

  18. Neutron activation analysis of bulk samples from Chinese ancient porcelain to provenance research

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is an important technique to determine the provenance of ancient ceramics. The most common technique used for preparing ancient samples for NAA is to grind them into a powder and then encapsulate them before neutron irradiation. Unfortunately, ceramic materials are typically very hard making it a challenge to grind them into a powder. In this study we utilize bulk porcelain samples cut from ancient shards. The bulk samples are irradiated by neutrons alongside samples that have been conventionally ground into a powder. The NAA for both the bulk samples and powders are compared and shown to provide equivalent information regarding their chemical composition. Also, the multivariate statistical have been employed to the analysis data for check the consistency. The findings suggest that NAA results are less dependent on the state of the porcelain sample, and thus bulk samples cut from shards may be used to effectively determine their provenance. (author)

  19. Dynamic Plastic Deformation (DPD): A Novel Technique for Synthesizing Bulk Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While some superior properties of nanostructured materials (with structural scales below 100 nm) have attracted numerous interests of material scientists, technique development for synthesizing nanostructured metals and alloys in 3-dimensional (3D) bulk forms is still challenging despite of extensive investigations over decades.Here we report a novel synthesis technique for bulk nanostructured metals based on plastic deformation at high Zener-Hollomon parameters (high strain rates or low temperatures), i.e., dynamic plastic deformation (DPD).The basic concept behind this approach will be addressed together with a few examples to demonstrate the capability and characteristics of this method. Perspectives and future developments of this technique will be highlighted.

  20. Bulk sulfur (S) deposition in China

    Science.gov (United States)

    Liu, Lei; Zhang, Xiuying; Wang, Shanqian; Zhang, Wuting; Lu, Xuehe

    2016-06-01

    A systematic dataset of an observation network on a national scale has been organized to investigate the spatial distribution of bulk sulfur (S) deposition (Sdep) throughout China during 2000-2013, representing by far the most detailed data set to track the bulk sulfur deposition throughout China since 2000. Such a dataset is needed for ecosystem studies and for developing emission control policies. Bulk Sdep values showed great variations, ranging from 2.17 to 70.55 kg ha-1 y-1, with an average of 22.99 kg ha-1 y-1. The average rate of bulk Sdep located in East Coastal region (35.97 kg ha-1 y-1), Middle Yangtze region (57.90 kg ha-1 y-1), Middle Yellow River region (23.42 kg ha-1 y-1), North Coastal region (42.19 kg ha-1 y-1), Northeast region (34.28 kg ha-1 y-1), South Coastal region (36.97 kg S ha-1 y-1), Southwest region (33.85 kg ha-1 y-1) was 4.50, 7.24, 2.93, 5.28, 4.29, 4.63 and 4.24 times than that in Northwest region (7.99 kg ha-1 y-1). Bulk Sdep over China was mainly from fossil fuel combustion (76.96%), biomass burning (7.64%), crust (6.22%), aged sea salt (5.48%) and agriculture (3.68%). A systematic observation network on a national scale should be established to conduct a long-term monitoring atmospheric Sdep (including wet and dry deposition), based on exiting ecological stations administrated by different departments in China.

  1. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  2. Bulk solitary waves in elastic solids

    Science.gov (United States)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  3. Melt-growth bulk superconductors and application to an axial-gap-type rotating machine

    Science.gov (United States)

    Zhang, Yufeng; Zhou, Difan; Ida, Tetsuya; Miki, Motohiro; Izumi, Mitsuru

    2016-04-01

    The present manuscript addresses key issues in the course of our study of materials processing of bulk high-temperature superconductors, trapped flux and its application to a prototype axial-gap-type rotating machine. The TUMSAT group has conducted a series of studies since 2003 on the growth of GdBa2Cu3O7-δ bulk material and its application in a compact low-speed high-torque rotating machine. In the stage of material growth, gaining the advantage of a large motive torque density requires large integrated flux in the motor/generators. A large grain surface might be required with sophisticated techniques for the melt-growth texture in the bulk with optimal flux pinning. In the second stage, the in situ magnetization procedure for bulk superconductors in the applied machine is a crucial part of the technology. Pulsed current excitation by using an armature copper winding has magnetized field pole bulks on the rotor. The axial-gap flux synchronous machine studied in the past decade is a condensed technology and indicates that further scientific development is required for a future compact machine to be superior to conventional ones in accordance with the cryogenic periphery and flux stabilization.

  4. Evaluation of Radiopacity of Bulk-fill Flowable Composites Using Digital Radiography.

    Science.gov (United States)

    Tarcin, B; Gumru, B; Peker, S; Ovecoglu, H S

    2016-01-01

    New flowable composites that may be bulk-filled in layers up to 4 mm are indicated as a base beneath posterior composite restorations. Sufficient radiopacity is one of the several important requirements such materials should meet. The aim of this study was to evaluate the radiopacity of bulk-fill flowable composites and to provide a comparison with conventional flowable composites using digital imaging. Ten standard specimens (5 mm in diameter, 1 mm in thickness) were prepared from each of four different bulk-fill flowable composites and nine different conventional flowable composites. Radiographs of the specimens were taken together with 1-mm-thick tooth slices and an aluminum step wedge using a digital imaging system. For the radiographic exposures, a storage phosphor plate and a dental x-ray unit at 70 kVp and 8 mA were used. The object-to-focus distance was 30 cm, and the exposure time was 0.2 seconds. The gray values of the materials were measured using the histogram function of the software available with the system, and radiopacity was calculated as the equivalent thickness of aluminum. The data were analyzed statistically (p SDR (Dentsply DeTrey) ≥ Filtek Bulk Fill (3M ESPE). To conclude, the bulk-fill flowable restorative materials, which were tested in this study using digital radiography, met the minimum standard of radiopacity specified by the International Standards Organization. PMID:27045286

  5. "Negative" Hartman Effect in One-dimentional Photonic Crystals with Negative Refractive Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Ligang; XU Jingping; ZHU ShiYao

    2004-01-01

    @@ The Hartman effect inside the one-dimensional photonic crystals (1DPCS) composed of negative index materials (NIMS) is always and is reversed to the Hartman effect inside the 1DPCS composed of positive index materials (PIMs).By calculating the phases of Fourier components of a pulse accumulated inside the 1DPCs of NIMs and the evolution of the pulse inside the 1DPCs of NIMs, the origin of the negative phase time is explained.The evolution of the electromagnetic fields inside the 1DPCs of NIMs is time reversal with conjugate to that inside the 1DPCs of PIMs for real spectral pulses.

  6. NPP bulk equipment dismantling problems and experience

    International Nuclear Information System (INIS)

    NPP bulk equipment dismantling problems and experience are summarized. 'ECOMET-S' JSC is shown as one of the companies which are able to make NPPs industrial sites free from stored bulk equipment with its further utilization. 'ECOMET-S' JSC is the Russian Federation sole specialized metallic LLW (MLLW) treatment and utilization facility. Company's main objectives are waste predisposal volume reduction and treatment for the unrestricted release as a scrap. Leningrad NPP decommissioned main pumps and moisture separators/steam super heaters dismantling results are presented. Prospective fragmentation technologies (diamond and electro-erosive cutting) testing results are described. The electro-erosive cutting machine designed by 'ECOMET-S' JSC is presented. The fragmentation technologies implementation plans for nuclear industry are presented too. (author)

  7. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  9. Bulk Locality and Boundary Creating Operators

    CERN Document Server

    Nakayama, Yu

    2015-01-01

    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary dilatation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  10. Bulk band gaps in divalent hexaborides

    Energy Technology Data Exchange (ETDEWEB)

    Denlinger, Jonathan; Clack, Jules A.; Allen, James W.; Gweon, Gey-Hong; Poirier, Derek M.; Olson, Cliff G.; Sarrao, John L.; Bianchi, Andrea D.; Fisk, Zachary

    2002-08-01

    Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for proper inclusion of many-body effects in quasi-particle band calculations.

  11. Brane plus Bulk Supersymmetry in Ten Dimensions

    CERN Document Server

    Bergshoeff, E A; Ortín, Tomas; Roest, D; Van Proeyen, A

    2001-01-01

    We discuss a generalized form of IIA/IIB supergravity depending on all R-R potentials C^(p) (p=0,1,...,9) as the effective field theory of Type IIA/IIB superstring theory. For the IIA case we explicitly break this R-R democracy to either p=5 which allows us to write a new bulk action that can be coupled to N=1 supersymmetric brane actions. The case of 8-branes is studied in detail using the new bulk & brane action. The supersymmetric negative tension branes without matter excitations can be viewed as orientifolds in the effective action. These D8-branes and O8-planes are fundamental in Type I' string theory. A BPS 8-brane solution is given which satisfies the jump conditions on the wall. As an application of our results we derive a quantization of the mass parameter and the cosmological constant in string units.

  12. Surface-Bulk Vibrational Correlation Spectroscopy.

    Science.gov (United States)

    Roy, Sandra; Covert, Paul A; Jarisz, Tasha A; Chan, Chantelle; Hore, Dennis K

    2016-05-01

    Homo- and heterospectral correlation analysis are powerful methods for investigating the effects of external influences on the spectra acquired using distinct and complementary techniques. Nonlinear vibrational spectroscopy is a selective and sensitive probe of surface structure changes, as bulk molecules are excluded on the basis of symmetry. However, as a result of this exquisite specificity, it is blind to changes that may be occurring in the solution. We demonstrate that correlation analysis between surface-specific techniques and bulk probes such as infrared absorption or Raman scattering may be used to reveal additional details of the adsorption process. Using the adsorption of water and ethanol binary mixtures as an example, we illustrate that this provides support for a competitive binding model and adds new insight into a dimer-to-bilayer transition proposed from previous experiments and simulations. PMID:27058265

  13. Bulk entropy in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Livine, Etera R. [Laboratoire de Physique ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69364 Lyon Cedex 07 (France)], E-mail: etera.livine@ens-lyon.fr; Terno, Daniel R. [Centre for Quantum Computer Technology, Department of Physics, Macquarie University, Sydney NSW 2109 (Australia)], E-mail: dterno@physics.mq.edu.au

    2008-05-01

    In the framework of loop quantum gravity (LQG), we generalize previous boundary state counting for black hole entropy [E.R. Livine, D.R. Terno, Quantum black holes: Entropy and entanglement on the horizon, Nucl. Phys. B 741 (2006) 131, (gr-qc/0508085)] to a full bulk state counting. After suitable gauge fixing, we show how to compute the bulk entropy of a bounded region of space (the 'black hole') with fixed boundary conditions. This allows to study in detail the relationship between the entropy and the boundary area and to identify a holographic regime for LQG where the leading order of the entropy scales with the area. In this regime we can fine tune the factor between entropy and area without changing the Immirzi parameter.

  14. Raman characterization of bulk ferromagnetic nanostructured graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)

    2012-08-15

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  15. Superconducting RF cavities film of bulk

    CERN Document Server

    Darriulat, Pierre

    1999-01-01

    The successful operation of LEP2 has demonstrated the feasibility of using on a large scale copper accelerating cavities coated with a thin superconducting niobium film. Yet other existing or planned installations such as CEBAF and TESLA, rely instead on the bulk niobium technology. The reason is a wide spread belief that the film technology would suffer from fundamental limitations preventing high gradients to be reached...

  16. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  18. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    Science.gov (United States)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  19. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-01-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain. PMID:27640724

  20. Cosmological Implications of QGP Bulk Viscosity

    CERN Document Server

    Anand, Sampurn; Bhatt, Jitesh R

    2016-01-01

    Recent studies of the hot QCD matter indicate that the bulk viscosity ($\\zeta$) of quark-gluon plasma (QGP) rises sharply near the critical point of the QCD phase transition. In this work, we show that such a sharp rise of the bulk viscosity will lead to an effective negative pressure near the critical temperature, $T_{c}$ which in turn drives the Universe to inflate. This inflation has a natural graceful exist when the viscous effect evanesce. We estimate that, depending upon the peak value of $\\zeta$, universe expands by a factor of $10$ to $80$ times in a very short span ($\\Delta t\\sim 10^{-8}$ seconds). Another important outcome of the bulk viscosity dominated dynamics is the cavitation of QGP around $T \\sim 1.5T_{c}$. This would lead to the phenomenon of formation of cavitation bubbles within the QGP phase. The above scenario is independent of the order of QCD phase transition. We delineate some of the important cosmological consequences of the inflation and the cavitation.

  1. Superconducting State Parameters of Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2012-12-01

    Full Text Available Well recognized empty core (EMC pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature TC, isotope effect exponent α and effective interaction strength NOV of some (Ni33Zr671 – xVx (x = 0, 0.05, 0.1, 0.15 bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H, Taylor (T, Ichimaru-Utsumi (IU, Farid et al. (F and Sarkar et al. (S to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The TC obtained from Sarkar et al. (S local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the s bulk amorphous alloys.

  2. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    C P Singh

    2008-07-01

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model. The `gamma' function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.

  3. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  4. Evidence for Bulk Ripplocations in Layered Solids.

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C; Griggs, Justin; Taheri, Mitra L; Tucker, Garritt J; Barsoum, Michel W

    2016-01-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain. PMID:27640724

  5. Bulk Comptonization by turbulence in accretion discs

    Science.gov (United States)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  6. An approach to predict free surface fracture in bulk forming

    Science.gov (United States)

    Ragab, A. R.

    2006-04-01

    This work presents a unified approach to predict surface strains at failure in bulk forming processes. The approach does not deal with a specific process but rather with prescribed strain and stress paths. The material to be processed is assumed to possess an initial void volume fraction that grows and colaesces with straining, ending by fracture. The predictions are based on a formulation for voided solids according to the Gurson-Tvergaard yield function adapted to include orthotropic anisotropy. The incident of fracture is characterized by shear band formation within the ligaments of the matrix material among spheroidal voids as described by McClintock. The results are represented by a straight line plot of tensile limit strain versus the compressive strain for different loading paths. These limit curves are shown to be dependent on the initial void fraction, hardening, and anisotropy of the matrix matrial. Alloys with lower initial void fractions as well as those of higher hardening show better workability. The model is applied to predict bulk formability curves for steels AISI 1040 and 1045, Aluminum AI 7075-T6, and copper, based on the proper selection of micromechanical parameters for these alloys. The validity of the model is ensured through fairly favorable comparison with experimentally determined limit curves. The current failure conditions are suitable to predict the experimental dual slope fracture line that may exist for some alloys such as cold-drawn steel AISI 1045 and aluminum 2024-T6 by considering two mechanisms of failure: internal necking in the ligament material between voids, followed by transition to shear band formation.

  7. Development of fabrication technique of bulk high superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs.

  8. Development of fabrication technique of bulk high superconductor

    International Nuclear Information System (INIS)

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs

  9. Influence of bulk pre-straining on the size effect in nickel compression pillars

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.S., E-mail: Andreas.schneider@inm-gmbh.de [INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbruecken (Germany); Kiener, D. [University of Leoben, Department of Materials Physics, Jahnstr. 12, 8700 Leoben (Austria); Yakacki, C.M. [Department of Mechanical Engineering, University of Colorado Denver, Denver 80217 (United States); Maier, H.J. [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33098 Paderborn (Germany); Gruber, P.A. [Karlsruhe Institute of Technology, Institute for Applied Materials, Kaiserstr. 12, 76131 Karlsruhe (Germany); Tamura, N.; Kunz, M. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Minor, A.M. [Department of Materials Science and Engineering, University of California, Berkeley, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Frick, C.P. [University of Wyoming, Mechanical Engineering Department, 1000 East University Avenue, Laramie, WY 82071 (United States)

    2013-01-01

    Micro-compression tests were performed on pre-strained nickel (Ni) single crystals in order to investigate the influence of the initial dislocation arrangement on the size dependence of small-scale metal structures. A bulk Ni sample was grown using the Czochralski method and sectioned into four compression samples, which were then pre-strained to nominal strains of 5, 10, 15 and 20%. Bulk samples were then characterized using transmission electron microscopy (TEM), micro-Laue diffraction, and electron backscatter diffraction. TEM results show that a dislocation cell structure was present for all deformed samples, and Laue diffraction demonstrated that the internal strain increased with increased amount of pre-straining. Small-scale pillars with diameters from 200 nm to 5 {mu}m were focused ion beam (FIB) machined from each of the four deformed bulk samples and further compressed via a nanoindenter equipped with a flat diamond punch. Results demonstrate that bulk pre-straining inhibits the sample size effect. For heavily pre-strained bulk samples, the deformation history does not affect the stress-strain behavior, as the pillars demonstrated elevated strength and rather low strain hardening over the whole investigated size range. In situ TEM and micro-Laue diffraction measurements of pillars confirmed little change in dislocation density during pillar compression. Thus, the dislocation cell walls created by heavy bulk pre-straining become the relevant internal material structure controlling the mechanical properties, dominating the sample size effect observed in the low dislocation density regime.

  10. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  11. X-Ray Nanoscopy of a Bulk Heterojunction.

    Directory of Open Access Journals (Sweden)

    Nilesh Patil

    Full Text Available Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene (P3HT and phenyl-C61-butyric acid methyl ester (PCBM and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.

  12. X-Ray Nanoscopy of a Bulk Heterojunction

    Science.gov (United States)

    Patil, Nilesh; Torbjørn, Eirik; Skjønsfjell, Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner

    2016-07-01

    Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.

  13. Melt processing of bulk high Tc superconductors and their application

    Science.gov (United States)

    Murakami, M.; Oyama, T.; Fujimoto, H.; Gotoh, S.; Yamaguchi, K.

    1991-03-01

    The authors report a melt-powder-melt-growth (MPMG) process which results in high Jc for bulk Y-Ba-Cu-O superconductors. The Y-Ba-Cu-O pellets or powders are melt quenched. The quenched plates are crushed into powder and mixed well. The powder is then compacted into desired shapes, remelted, and slowly cooled in a thermal gradient. When the starting composition is changed from the 1:2:3 stoichiometry toward the Y2BaCuO5(211) rich region, the 211 inclusions can be dispersed in the YBa2Cu3O(x) matrix, which contributes to increases in both flux pinning force and fracture toughness. A Jc value exceeding 3 x 108 A/sq m has been achieved at 77 K and 1 T. Another attractive feature of the MPMG process is that other components such as fine Ag powders can be added during solid-state mixing. Fine dispersion of Ag particles can effectively reduce the amount of cracking. MPMG-processed Y-Ba-Cu-O with Ag doping can levitate a mass of 3-kg at 1-mm height using a repulsive force against a 0.4-T magnet. A noncontacting rotation device such as a magnetic bearing can be made utilizing bulk high-Jc materials. A superconducting permanent magnet is also a promising candidate for future application. MPMG-processed Y-Ba-Cu-O can generate 0.25 T at 77 K.

  14. X-Ray Nanoscopy of a Bulk Heterojunction

    Science.gov (United States)

    Skjønsfjell, Eirik Torbjørn Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner

    2016-01-01

    Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation. PMID:27367796

  15. Yielding and its adaptability of several promising bulk cocoa clones

    Directory of Open Access Journals (Sweden)

    Dedy Suhendi

    2005-05-01

    Full Text Available Yielding and its adaptability are considered to be an important criteria for clones recommendation. An experiment to evaluate yield and its adaptability of several promising bulk cocoa clones has been executed during 1996—2003 in three locations having different altitude and type of climate, consisted of Jatirono(450 m asl., B type of climate, Kalisepanjang (275 m asl., C type of climate and Kalitelepak (145 m asl., B type of climate. Randomized completely block design (RCBD was used in each location with 14 promising clones and four replications. Recommended clones of ICS 60 and GC 7 were used as standard. The promising clones were originated from mother trees selection with the main criteria of yield. Observations were conducted on yield and its components as well as bean characteristics. Determination of adaptability of each clone by using yield performance and its stability. Statistical analysis was done by using combined analysis. The results showed that KW 30 and KW 48 perform higher yield (2.3 ton/ha than that of standard clone (1.7 ton/ha as well as consistant yield stability between location and over years. There for, the two clones performed good adaptability. KW 30 and KW 48 also perform good yield components, and high percentage of fat content i.e 55%. So, those clones are potential to be recommended for commercial planting materials. Key words : bulk cocoa, yield, clone, stability, adaptability.

  16. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  17. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  18. 29 CFR 1919.81 - Examination of bulk cargo loading or discharging spouts or suckers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Examination of bulk cargo loading or discharging spouts or suckers. 1919.81 Section 1919.81 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices §...

  19. Comparison of recombination models in organic bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Recombination in bulk-heterojunction (BHJ) organic solar cells is the key loss mechanism, and it directly affects characteristic parameters such as power conversion efficiency, short-circuit current, open-circuit voltage, and fill factor. However, which recombination mechanism dominates the loss in organic materials is unclear at present. In this work, we simulate state-of-art BHJ solar cells using five recombination models, including direct recombination, Langevin recombination, charge transfer state recombination, trap-assisted recombination, and recombination via tail. All processes are strongly dependent on charge carrier mobility and exhibit a similar recombination distribution in active layer. For high mobilities, all models present a similar behavior along with the increased mobilities, whereas, there are slight differences in open-circuit voltage between trap/tail model and other ones at lower mobilities, resulting from the interaction between photo-carriers and dark-carriers

  20. Fatigue effect on polarization switching dynamics in polycrystalline bulk ferroelectrics

    Science.gov (United States)

    Zhukov, S.; Glaum, J.; Kungl, H.; Sapper, E.; Dittmer, R.; Genenko, Y. A.; von Seggern, H.

    2016-08-01

    Statistical distribution of switching times is a key information necessary to describe the dynamic response of a polycrystalline bulk ferroelectric to an applied electric field. The Inhomogeneous Field Mechanism (IFM) model offers a useful tool which allows extraction of this information from polarization switching measurements over a large time window. In this paper, the model was further developed to account for the presence of non-switchable regions in fatigued materials. Application of the IFM-analysis to bipolar electric cycling induced fatigue process of various lead-based and lead-free ferroelectric ceramics reveals different scenarios of property degradation. Insight is gained into different underlying fatigue mechanisms inherent to the investigated systems.

  1. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Womac, Alvin [Genera Energy LLC, Vonore, TN (United States); Groothuis, Mitch [Genera Energy LLC, Vonore, TN (United States); Westover, Tyler [Genera Energy LLC, Vonore, TN (United States); Phanphanich, Manunya [Genera Energy LLC, Vonore, TN (United States); Webb, Erin [Genera Energy LLC, Vonore, TN (United States); Sokhansanj, Shahab [Genera Energy LLC, Vonore, TN (United States); Turhollow, Anthony [Genera Energy LLC, Vonore, TN (United States)

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  2. Evolution of bulk damage initiation in DKDP

    Science.gov (United States)

    Carr, Christopher W.; McMillian, T. H.; Staggs, Mike C.; Radousky, Harry B.; Demos, Stavros G.

    2003-05-01

    We investigate the evolution of laser-induced damage initiated in the bulk of DKDP crystals using in-situ microscopy. Experimental results indicate that at peek fluences greater than 10 J/cm2, damage sites are formed with increasing number as a function of the laser fluence. Following plasma formation, cracks are observed which grow in size for tens of seconds after the termination of the laser pulse. Subsequent irradiation leads to modest increase in size only during the initial 2-5 pulses. Experimental results suggest that there is also relaxation of the stresses adjacent to a damage site for several hours after initial damage.

  3. Hubble Parameter in Bulk Viscous Cosmology

    CERN Document Server

    Tawfik, A; Wahba, M

    2009-01-01

    We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.

  4. Active neutron multiplicity counting of bulk uranium

    International Nuclear Information System (INIS)

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of 235U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, 235U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs

  5. The bulk composition of exo-planets

    CERN Document Server

    Gaensicke, Boris; Dufour, Patrick; Farihi, Jay; Jura, Michael; Kilic, Mukremin; Melis, Carl; Veras, Dimitri; Xu, Siyi; Zuckerman, Ben

    2015-01-01

    Priorities in exo-planet research are rapidly moving from finding planets to characterizing their physical properties. Of key importance is their chemical composition, which feeds back into our understanding of planet formation. For the foreseeable future, far-ultraviolet spectroscopy of white dwarfs accreting planetary debris remains the only way to directly and accurately measure the bulk abundances of exo-planetary bodies. The exploitation of this method is limited by the sensitivity of HST, and significant progress will require a large-aperture space telescope with a high-throughput ultraviolet spectrograph.

  6. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  7. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin;

    2015-01-01

    under loading conditions different from those found in conventional tests for bulk formability based on cylindrical,tapered and flanged specimens.The new formability test consists of expanding rings of various wall thicknesses with a stepped conical punch and allows investigating the onset of failure...... by cracking under three-dimensional states of stress subjected to various magnitudes of stress triaxiality.The presentation is supported by finite element analysis and experimentation in aluminium AA2030-T4 and results show that failure by fracture under three-dimensional loading conditions can be easily...

  8. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  9. Joining of dissimilar materials

    Science.gov (United States)

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  10. Evaluation of Radiopacity of Bulk-fill Flowable Composites Using Digital Radiography.

    Science.gov (United States)

    Tarcin, B; Gumru, B; Peker, S; Ovecoglu, H S

    2016-01-01

    New flowable composites that may be bulk-filled in layers up to 4 mm are indicated as a base beneath posterior composite restorations. Sufficient radiopacity is one of the several important requirements such materials should meet. The aim of this study was to evaluate the radiopacity of bulk-fill flowable composites and to provide a comparison with conventional flowable composites using digital imaging. Ten standard specimens (5 mm in diameter, 1 mm in thickness) were prepared from each of four different bulk-fill flowable composites and nine different conventional flowable composites. Radiographs of the specimens were taken together with 1-mm-thick tooth slices and an aluminum step wedge using a digital imaging system. For the radiographic exposures, a storage phosphor plate and a dental x-ray unit at 70 kVp and 8 mA were used. The object-to-focus distance was 30 cm, and the exposure time was 0.2 seconds. The gray values of the materials were measured using the histogram function of the software available with the system, and radiopacity was calculated as the equivalent thickness of aluminum. The data were analyzed statistically (pcomposites showed significantly higher radiopacity values in comparison with those of enamel, dentin, and most of the conventional flowable composites (pcomposites was as follows: Venus Bulk Fill (Heraeus Kulzer) ≥ X-tra Base (Voco) > SDR (Dentsply DeTrey) ≥ Filtek Bulk Fill (3M ESPE). To conclude, the bulk-fill flowable restorative materials, which were tested in this study using digital radiography, met the minimum standard of radiopacity specified by the International Standards Organization.

  11. Production, Properties and Applications of Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Akihisa Inoue

    2000-01-01

    A review is given of recent work concerned with the production method, the characteristic properties(1) Bulk amorphous system; (2) Mechanical and magnetic properties of bulkamorphous alloys; (3)application of bulk amorphous alloys.

  12. Bulk additive system reduces mud costs and waste

    International Nuclear Information System (INIS)

    Today, personnel safety and environmental acceptability are high priorities in oil and gas operations. Many advances have been made, but packaging and handling of drilling mud has not changed in 35 years. In most cases, bulk barite is available, however, drilling muds are typically built from chemicals contained in 50 to 100-lb sacks or 5-gal buckets. Materials must be physically opened by rig personnel and mixed into drilling mud. Chemical exposure liability, and lifting or housekeeping related injuries associated with large quantities of packaging pose serious occupational safety risk. Figures from OSHA (1986) indicate that of 1,492 serious injury cases in Louisiana oil and gas operations, 42% were to back and lower extremities, 3% were eye injuries and 1% were chemical burns. Although exact figures are not available, experience suggests that a significant number of injuries are related to mud product physical handling. Another problem with current mud packaging is generated waste. Mud material lost because of broken sacks, inefficient transfer and as residue is unacceptable. Most mud engineers agree that 5 to 15% of mud products are lost or damaged on typical offshore jobs, depending on weather. When material that is spilled or left in packages, probably 2 to 3%, is added, the total is significant. Reusable containers for drilling mud products and manifold system design effectively eliminate these problems

  13. Production of Bulk and Fiber Glass in Space

    Science.gov (United States)

    Tucker, Dennis S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The production of bulk glass and fiber glass in space and on the moon and Mars should lead to superior products. Specifically glass plates for windows and optical elements could be produced with theoretical strengths by production in vacuum. Water vapor is known to decrease glass strength by up to two orders of magnitude from theoretical. A low gravity glass plate apparatus prototype has been designed and built which uses centrifugal force to shape the glass and solar energy to melt the glass. Glass fiber could be produced on the moon or Mars from in-situ materials using standard technologies. This material could then be used as reinforcement in composite materials in construction of bases. Also, it has been shown that processing in reduced gravity suppresses crystallization in certain heavy metal fluoride glasses. It is proposed to reprocess optical fiber preforms on the space station and then pull these into optical fiber. It is estimated that the attenuation coefficient should be reduced by two orders of magnitude.

  14. Constructing local bulk observables in interacting AdS/CFT

    CERN Document Server

    Kabat, Daniel; Lowe, David A

    2011-01-01

    Local operators in the bulk of AdS can be represented as smeared operators in the dual CFT. We show how to construct these bulk observables by requiring that the bulk operators commute at spacelike separation. This extends our previous work by taking interactions into account. Large-N factorization plays a key role in the construction. We show diagrammatically how this procedure is related to bulk Feynman diagrams.

  15. Progress in bulk MgCu2-type rare-earth iron magnetostrictive compounds

    Institute of Scientific and Technical Information of China (English)

    Ren Wei-Jun; Zhang Zhi-Dong

    2013-01-01

    Studies of bulk MgCu2-type rare-earth iron compounds with Laves phase are reviewed.The relationship between magnetostriction and structural distortion and the consequent crystallographic method for measuring magnetostriction are introduced at first.Then we review recent progress in understanding bulk magnetostrictive Laves phase materials,especially the magnetostriction and the minimization of the anisotropy of the light rare-earth Pr-and Sm-based compounds.Finally,a summary and outlook for this kind of compounds are presented.

  16. Ideal bulk pressure of active Brownian particles

    Science.gov (United States)

    Speck, Thomas; Jack, Robert L.

    2016-06-01

    The extent to which active matter might be described by effective equilibrium concepts like temperature and pressure is currently being discussed intensely. Here, we study the simplest model, an ideal gas of noninteracting active Brownian particles. While the mechanical pressure exerted onto confining walls has been linked to correlations between particles' positions and their orientations, we show that these correlations are entirely controlled by boundary effects. We also consider a definition of local pressure, which describes interparticle forces in terms of momentum exchange between different regions of the system. We present three pieces of analytical evidence which indicate that such a local pressure exists, and we show that its bulk value differs from the mechanical pressure exerted on the walls of the system. We attribute this difference to the fact that the local pressure in the bulk does not depend on boundary effects, contrary to the mechanical pressure. We carefully examine these boundary effects using a channel geometry, and we show a virial formula for the pressure correctly predicts the mechanical pressure even in finite channels. However, this result no longer holds in more complex geometries, as exemplified for a channel that includes circular obstacles.

  17. Characterization of bulk superconductors through EBSD methods

    Science.gov (United States)

    Koblischka, M. R.; Koblischka-Veneva, A.

    2003-10-01

    The application of electron backscatter diffraction (EBSD) technique to bulk high- Tc superconductors is presented and reviewed. Due to the ceramic nature and the complex crystallographic unit cells of the perovskite-type high- Tc superconductors, the EBSD analysis is not yet as common as it deserves. We have successfully performed EBSD analysis on a variety of high- Tc compounds and samples including polycrystalline YBCO (pure and doped by alkali metals), melt-textured YBCO, thin and thick films of YBCO; the “green phase” Y 2BaCuO 5, thin film and melt-textured NdBa 2Cu 3O x and Bi-2212 single crystals and tapes. It is shown that the surface preparation of the samples is crucial due to the small information depth (up to 100 nm) of the EBSD technique. High quality Kikuchi patterns are the requirement in order to enable the automated EBSD mapping, which yields phase distributions, individual grain orientations and the misorientation angle distribution. The results can be presented in form of mappings, as charts, and as pole figures. These informations are required for a better understanding of the growth mechanism(s) of bulk high- Tc superconductors intended for applications.

  18. 7 CFR 58.313 - Print and bulk packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Print and bulk packaging rooms. 58.313 Section 58.313 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....313 Print and bulk packaging rooms. Rooms used for packaging print or bulk butter and related...

  19. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a...

  20. Exceptional surface and bulk electronic structures in a topological insulator, Bi2Se3

    Science.gov (United States)

    Biswas, Deepnarayan; Thakur, Sangeeta; Balakrishnan, Geetha; Maiti, Kalobaran

    2015-12-01

    The outstanding problem in topological insulators is the bulk metallicity underneath topologically ordered surface states and the appearance of Dirac point far away from the Fermi energy. Enormous efforts are being devoted to get the Dirac point at the Fermi level via exposure to foreign materials so that these materials can be used in technology and realize novel fundamental physics. Ironically, the conclusion of bulk metallicity in the electronic structure is essentially based on the angle resolved photoemission spectroscopy, a highly surface sensitive technique. Here, we employed state-of-the-art hard x-ray photoemission spectroscopy with judiciously chosen experiment geometry to delineate the bulk electronic structure of a topological insulator and a potential thermoelectric material, Bi2Se3. The results exhibit signature of insulating bulk electronic structure with tiny intensities at akin to defect/vacancy induced doped states in the semiconductors. The core level spectra exhibit intense plasmon peak associated to core level excitations manifesting the signature of coupling of electrons to the collective excitations, a possible case of plasmon-phonon coupling. In addition, a new loss feature appear in the core level spectra indicating presence of additional collective excitations in the system.

  1. The Effect of Aqueous Alteration in Antarctic Carbonaceous Chondrites from Comparative ICP-MS Bulk Chemistry

    Science.gov (United States)

    Alonso-Azcarate, J.; Trigo-Rodriguez, J. M.; Moyano-Cambero, C. E.; Zolensky, M.

    2014-01-01

    Terrestrial ages of Antarctic carbonaceous chondrites (CC) indicate that these meteorites have been preserved in or on ice for, at least, tens of thousands of years. Due to the porous structure of these chondrites formed by the aggregation of silicate-rich chondrules, refractory inclusions, metal grains, and fine-grained matrix materials, the effect of pervasive terrestrial water is relevant. Our community defends that pristine CC matrices are representing samples of scarcely processed protoplanetary disk materials as they contain stellar grains, but they might also trace parent body processes. It is important to study the effects of terrestrial aqueous alteration in promoting bulk chemistry changes, and creating distinctive alteration minerals. Particularly because it is thought that aqueous alteration has particularly played a key role in some CC groups in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive. With the goal to learn more about terrestrial alteration in Antarctica we are obtaining reflectance spectra of CCs, but also performing ICP-MS bulk chemistry of the different CC groups. A direct comparison with the mean bulk elemental composition of recovered falls might inform us on the effects of terrestrial alteration in finds. With such a goal, in the current work we have analyzed some members representative of CO and CM chondrite groups.

  2. On the correct choice of equivalent circuit for fitting bulk impedance data of ionic/electronic conductors

    Science.gov (United States)

    Hernández, Miguel A.; Masó, Nahum; West, Anthony R.

    2016-04-01

    Bulk conductivity data of ionically and electronically conducting solid electrolytes and electronic ceramics invariably show a frequency dependence that cannot be modelled by a single-valued resistor. To model this, common practice is to add a constant phase element (CPE) in parallel with the bulk resistance. To fit experimental data on a wide variety of materials, however, it is also essential to include the limiting, high frequency permittivity of the material in the equivalent circuit. Failure to do so can lead to incorrect values for the sample resistance and CPE parameters and to an inappropriate circuit for materials that are electrically heterogeneous.

  3. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  4. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  5. Bulk dimensional nanocomposites for thermoelectric applications

    Science.gov (United States)

    Nolas, George S

    2014-06-24

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  6. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer;

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  7. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.

    Science.gov (United States)

    Inoue, Hiroyuki; Gyenis, András; Wang, Zhijun; Li, Jian; Oh, Seong Woo; Jiang, Shan; Ni, Ni; Bernevig, B Andrei; Yazdani, Ali

    2016-03-11

    Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk's Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials. PMID:26965625

  8. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.

    Science.gov (United States)

    Inoue, Hiroyuki; Gyenis, András; Wang, Zhijun; Li, Jian; Oh, Seong Woo; Jiang, Shan; Ni, Ni; Bernevig, B Andrei; Yazdani, Ali

    2016-03-11

    Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk's Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials.

  9. A Photoferroelectric Perovskite-Type Organometallic Halide with Exceptional Anisotropy of Bulk Photovoltaic Effects.

    Science.gov (United States)

    Sun, Zhihua; Liu, Xitao; Khan, Tariq; Ji, Chengmin; Asghar, Muhammad Adnan; Zhao, Sangen; Li, Lina; Hong, Maochun; Luo, Junhua

    2016-05-23

    Perovskite-type ferroelectrics composed of organometallic halides are emerging as a promising alternative to conventional photovoltaic devices because of their unique photovoltaic effects (PVEs). A new layered perovskite-type photoferroelectric, bis(cyclohexylaminium) tetrabromo lead (1), is presented. The material exhibits an exceptional anisotropy of bulk PVEs. Upon photoexcitation, superior photovoltaic behaviors are created along its inorganic layers, which are composed of corner-sharing PbBr6 octahedra. Semiconducting activity with remarkable photoconductivity is achieved in the vertical direction, showing sizeable on/off current ratios (>10(4) ), which compete with the most active photovoltaic material CH3 NH3 PbI3 . In 1 the temperature-dependence of photovoltage coincides fairly well with that of polarization, confirming the dominant role of ferroelectricity in such highly anisotropic PVEs. This finding sheds light on bulk PVEs in ferroelectric materials, and promotes their application in optoelectronic devices.

  10. Bulk semiconducting scintillator device for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  11. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram...... range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  12. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  13. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  14. Universe Models with Negative Bulk Viscosity

    CERN Document Server

    Brevik, Iver

    2013-01-01

    The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. [Science 339,52 (2013)], where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics,...

  15. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel;

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...... with crystallization kinetics to formulate a generally applicable method that can guide selection of optimal forming parameters. Finally, the use of particulate-based lubricants for BMG forming is shown to result in individual lubricant particles becoming mechanically locked into the BMG surface. (C) 2008 Elsevier B...

  16. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    Ernst Helmut Brandt

    2006-01-01

    The properties of the ideal periodic vortex lattice in bulk superconductors and in films of any thickness can be calculated from Ginzburg-Landau theory by an iteration method using Fourier series. The London theory yields general analytic expressions for the magnetic field and energy of arbitrary arrangements of straight or curved vortex lines. The elasticity of the vortex lattice is highly nonlocal. The magnetic response of superconductors of realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  17. Contact characteristics for YBCO bulk superconductors

    Science.gov (United States)

    Yamamoto, Naoki; Sakai, Tomokazu; Sawa, Koichiro; Tomita, Masaru; Murakami, Masato

    2003-10-01

    We have studied the contact characteristics of two resin-impregnated YBCO (a composite of YBa 2Cu 3O y and Y 2BaCuO 5) bulk superconductors in mechanical contact. A switching phenomenon could be observed at a threshold current or a transfer current value in the V- I curves of the YBCO contact. The transfer current exceeded the previous value of 13.5 A at 77 K in the contact when the sample surfaces were carefully polished. The present results suggest that a pair of YBCO blocks might be applicable to the mechanical persistent current switch for superconducting magnetic energy storage and other superconducting systems run in a persistent current mode.

  18. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes;

    2014-01-01

    %-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all......Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular...... loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from...

  19. Combustion of bulk titanium in oxygen

    Science.gov (United States)

    Clark, A. F.; Moulder, J. C.; Runyan, C. C.

    1975-01-01

    The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.

  20. Fundamental properties of semiconductor materials, and material performance in detectors

    Science.gov (United States)

    Casper, K. J.

    1973-01-01

    Procedures for determining fundamental properties of semiconductor materials, their performance as radiation detectors, and their service life as such detectors are given. Relationships were established between the minority carrier lifetime in the bulk of the material and the charge collection efficiency of the detector.

  1. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究∗%Photoluminescence sp ectra of 1 MeV electron b eam irradiated In0.53Ga0.47As/InP quantum well and bulk materials

    Institute of Scientific and Technical Information of China (English)

    玛丽娅; 李豫东; 郭旗; 艾尔肯; 王海娇; 汪波; 曾骏哲

    2015-01-01

    Minimizing the impact of radiation-induced degradation on optoelectronic devices is important in several applica-tions. Satellites and other spacecraft that fly in near-earth orbits (below 3.8 earth radius) are extremely susceptible to radiation damage caused by the high flux of electrons trapped in the earth’s magnetosphere. Optoelectronic devices are particularly vulnerable to displacement damage caused by electrons and protons. Effects of 1 MeV electron beam irradiation on the photoluminescence properties of In0.53Ga0.47As/InP quantum well (QW) and bulk structures, which are grown by metal-organic vapor phase epitaxy, are investigated. Samples are irradiated at room temperature using an ELV-8II accelerator with 1 MeV electron at doses ranging from 5 × 1012 to 9 × 1014 cm−2, and a dose rate of 1.075 × 1010 cm−2·s−1. Photoluminescence measurements are made using a 532 nm laser for excitation and a cooled Ge detector with lock-in techniques for signal detection. Photoluminescence intensity of all the structures is degraded after irradiation, and its reduction increases with increasing total dose of irradiation. Electron beam irradiation causes a larger reduc-tion in the photoluminescence intensity and carrier lifetime of the bulk than that of quantum well. Photoluminescence intensity of five-layer quantum wells degenerates to 9% that before irradiation as the fluence reaches 6 × 1014 cm−2. As the electron beams bombard into the sample, the destruction of the lattice integrity will cause the decrease in the number of excitons and intensity of photoluminescence. Electron beam irradiation introduces defects in the samples, increases the density of the nonradiative recombination centers, and results in the decrease of carrier mobility. In a quantum well structure, due to the two-dimensional confinement, the probability of carrier nonradiative recombination at radiation-induced defect centers will be reduced. The reduction of photoluminescence intensity

  2. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions

    Science.gov (United States)

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-01-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  3. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.

    Science.gov (United States)

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-08-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  4. Complex Behavior of Aqueous α-Cyclodextrin Solutions. Interfacial Morphologies Resulting from Bulk Aggregation.

    Science.gov (United States)

    Hernandez-Pascacio, Jorge; Piñeiro, Ángel; Ruso, Juan M; Hassan, Natalia; Campbell, Richard A; Campos-Terán, José; Costas, Miguel

    2016-07-01

    The spontaneous aggregation of α-cyclodextrin (α-CD) molecules in the bulk aqueous solution and the interactions of the resulting aggregates at the liquid/air interface have been studied at 283 K using a battery of techniques: transmission electron microscopy, dynamic light scattering, dynamic surface tensiometry, Brewster angle microscopy, neutron reflectometry, and ellipsometry. We show that α-CD molecules spontaneously form aggregates in the bulk that grow in size with time. These aggregates adsorb to the liquid/air interface with their size in the bulk determining the adsorption rate. The material that reaches the interface coalesces laterally to form two-dimensional domains on the micrometer scale with a layer thickness on the nanometer scale. These processes are affected by the ages of both the bulk and the interface. The interfacial layer formed is not in fast dynamic equilibrium with the subphase as the resulting morphology is locked in a kinetically trapped state. These results reveal a surprising complexity of the parallel physical processes taking place in the bulk and at the interface of what might have seemed initially like a simple system.

  5. Nematic antiferromagnetic states in bulk FeSe

    Science.gov (United States)

    Liu, Kai; Lu, Zhong-Yi; Xiang, Tao

    2016-05-01

    The existence of nematic order, which breaks the lattice rotational symmetry with nonequivalent a and b axes in iron-based superconductors, is a well-established experimental fact. An antiferromagnetic (AFM) transition is accompanying this order, observed in nearly all parent compounds, except bulk FeSe. The absence of the AFM order in FeSe casts doubt on the magnetic mechanism of iron-based superconductivity, since the nematic order is believed to be driven by the same interaction that is responsible for the superconducting pairing in these materials. Here we show, through systematic first-principles electronic structure calculations, that the ground state of FeSe is in fact strongly AFM correlated but without developing a magnetic long-range order. Actually, there are a series of staggered n -mer AFM states with corresponding energies below that of the single stripe AFM state, which is the ground state for the parent compounds of most iron-based superconductors. Here, the staggered n -mer (n any integer >1 ) means a set of n adjacent parallel spins on a line along the b axis with antiparallel spins between n -mers along both a and b axes. Moreover, different n -mers can antiparallelly mix with each other to coexist. Among all the states, we find that the lowest energy states formed by the staggered dimer, staggered trimer, and their random antiparallel aligned spin states along the b axis are quasidegenerate. The thermal average of these states does not show any magnetic long-range order, but it does possess a hidden one-dimensional AFM order along the a axis, which can be detected by elastic neutron scattering measurements. Our finding gives a natural account for the absence of long-range magnetic order and suggests that the nematicity is driven predominantly by spin fluctuations even in bulk FeSe, providing a unified description on the phase diagram of iron-based superconductors.

  6. Bulk characterization of pharmaceutical powders by low-pressure compression.

    Science.gov (United States)

    Sørensen, Arne Hagsten; Sonnergaard, Jørn Møller; Hovgaard, Lars

    2005-01-01

    Low-pressure compression of pharmaceutical powders using small amounts of sample (50 mg) was evaluated as an alternative to traditional bulk powder characterization by tapping volumetry. Material parameters were extrapolated directly from the compression data and by fitting with the Walker, the Kawakita, and the Log-Exp compression models. The compression-derived material parameters were compared to the poured and tapped density and the Compressibility Index determined by tapping. The repeatability of the compression-derived parameters was generally high, supporting their potential for characterization purposes. Significant correlation was demonstrated between several of the compression and tapping-derived parameters. The discriminative power of the low-pressure compression test was discussed using the compressed density at 0.2 MPa, correlated with the tapped density, and the relative Walker coefficient, correlated with the Compressibility Index, as examples. The compressed density at 0.2 MPa and the relative Walker coefficient demonstrated excellent discriminative power, superior to the discriminative power of the correlated tapping derived parameters. The low-pressure compression test was concluded to provide a cost-effective and sensitive alternative to traditional tapping volumetry.

  7. International Round-Robin Testing of Bulk Thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

    2011-11-01

    Two international round-robin studies were conducted on transport properties measurements of bulk thermoelectric materials. The study discovered current measurement problems. In order to get ZT of a material four separate transport measurements must be taken. The round-robin study showed that among the four properties Seebeck coefficient is the one can be measured consistently. Electrical resistivity has +4-9% scatter. Thermal diffusivity has similar +5-10% scatter. The reliability of the above three properties can be improved by standardizing test procedures and enforcing system calibrations. The worst problem was found in specific heat measurements using DSC. The probability of making measurement error is great due to the fact three separate runs must be taken to determine Cp and the baseline shift is always an issue for commercial DSC. It is suggest the Dulong Petit limit be always used as a guide line for Cp. Procedures have been developed to eliminate operator and system errors. The IEA-AMT annex is developing standard procedures for transport properties testing.

  8. A new approach to joining of bulk copper using microwave energy

    International Nuclear Information System (INIS)

    Research highlights: → Joining of bulk copper with a sandwich layer using 2.45 GHz microwaves at 900 W. → Melting of sandwich layer and metallurgical bonding with bulk surfaces. → Mechanism of joining using microwave hybrid heating is explained. → Tensile strength and elongation of microwave induced joints are monitored. → Failure mechanisms of microwave induced joints are studied. -- Abstract: Metallurgical joining of high thermal conductivity materials like copper has been technically challenging. This paper illustrates a novel method for joining of bulk metallic materials through microwave heating. Joining of copper in bulk form has been carried out using microwave energy in a multimode applicator at 2.45 GHz and 900 W. Charcoal was used as susceptor material to facilitate microwave hybrid heating (MHH). Copper in coin and plate forms have been successfully joined through microwave heating within 900 s of exposure time. A sandwich layer of copper powder with approximately 0.5 mm thickness was introduced between the two candidate surfaces. Near complete melting of the powder particles in the sandwich layer does take place during the microwave exposure leading to metallurgical bonding of the bulk surfaces. Characterisation of the joints has been carried out through microstructure study, elemental analysis, phase analysis, microhardness survey, porosity measurement and tensile strength testing. X-ray diffraction (XRD) pattern indicates that some copper powder particles got transformed into copper oxides. XRD analysis also reveals that the dominant orientation (3 1 1) in starting copper powder got transformed into a preferential orientation (1 1 1) in the joint. A dense uniform microstructure with good metallurgical bonds between the sandwich layer and the interface was obtained. The hardness of the joint area was observed to be 78 ± 7 Hv, while the porosity in the joint was observed to be 1.92%. Strength character of the copper joints shows approximately

  9. Fe-based bulk metallic glasses prepared by centrifugal casting method

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2011-10-01

    Full Text Available Purpose: The work presents a casting method, structure characterization and analysis of chosen properties of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4, Fe36Co36B19Si5Nb4, Fe43Co14Ni14B20Si5Nb4 metallic glasses in form of rings. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The crystallization behaviour of the studied alloys was examined by differential thermal analysis (DTA. The soft magnetic property examinations of tested materials contained initial magnetic permeability and measurements of magnetic permeability relaxation.Findings: The XRD and TEM investigations revealed that the studied as-cast bulk glassy samples in forms of ring were amorphous for all tested alloys. The SEM images showed that fractures of studied rings indicated two structurally different zones, which contained “river” patterns and “smooth” areas. The samples of studied alloys presented two stage crystallization process, which was observed for all tested rings with different thickness. The changes of crystallization temperatures versus the thickness of the glassy samples were stated. The magnetic permeability relaxation, which is directly proportional to the microvoids concentration in amorphous structure decreased with increase of sample thickness. These results could be assumed as the change of amorphous structure in function of thickness.Practical implications: The centrifugal casting method is very simple, useful and effective method to produce bulk amorphous materials in the form of rings or tubes.Originality/value: The preparation of bulk metallic glasses in the form of rings for three different Fe-based alloy systems is very important for the future progress in research and practical applications of iron-based bulk amorphous materials.

  10. Silicon surface and bulk defect passivation by low temperature PECVD oxides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Rohatgi, A. [Georgia Institute of Technology, Atlanta, GA (United States). Univ. Center of Excellence for Photovoltaics Research and Education; Ruby, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    The effectiveness of PECVD passivation of surface and bulk defects in Si, as well as phosphorous diffused emitters, Is investigated and quantified. Significant hydrogen incorporation coupled with high positive charge density in the PECVD SiN layer is found to play an important role in bulk and surface passivation. It is shown that photo-assisted anneal in a forming gas ambient after PECVD depositions significantly improves the passivation of emitter and bulk defects. PECVD passivation of phosphorous doped emitters and boron doped bare Si surfaces is found to be a strong function of doping concentration. Surface recombination velocity of less than 200 cm/s for 0.2 Ohm-cm and less than 1 cm/s for high resistivity substrates ({approximately} Ohm-cm) were achieved. PECVD passivation improved bulk lifetime in the range of 30% to 70% in multicrystalline Si materials. However, the degree of the passivation was found to be highly material specific. Depending upon the passivation scheme, emitter saturation current density (J{sub oe}) can be reduced by a factor of 3 to 9. Finally, the stability of PECVD oxide/nitride passivation under prolonged UV exposure is established.

  11. A CFT Perspective on Gravitational Dressing and Bulk Locality

    CERN Document Server

    Lewkowycz, Aitor; Verlinde, Herman

    2016-01-01

    We revisit the construction of local bulk operators in AdS/CFT with special focus on gravitational dressing and its consequences for bulk locality. Specializing to 2+1-dimensions, we investigate these issues via the proposed identification between bulk operators and cross-cap boundary states. We obtain explicit expressions for correlation functions of bulk fields with boundary stress tensor insertions, and find that they are free of non-local branch cuts but do have non-local poles. We recover the HKLL recipe for restoring bulk locality for interacting fields as the outcome of a natural CFT crossing condition. We show that, in a suitable gauge, the cross-cap states solve the bulk wave equation for general background geometries, and satisfy a conformal Ward identity analogous to a soft graviton theorem, Virasoro symmetry, the large N conformal bootstrap and the uniformization theorem all play a key role in our derivations.

  12. Gravitational potential wells and the cosmic bulk flow

    CERN Document Server

    Kumar, Abhinav; Feldman, Hume A; Watkins, Richard

    2015-01-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales $>10\\ h^{-1}$Mpc.

  13. Gravitational potential wells and the cosmic bulk flow

    Science.gov (United States)

    Wang, Yuyu; Kumar, Abhinav; Feldman, Hume; Watkins, Richard

    2016-03-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales > 10h-1 Mpc.

  14. Casimir effect in dielectrics: Bulk energy contribution

    International Nuclear Information System (INIS)

    In a recent series of papers, Schwinger discussed a process that he called the dynamical Casimir effect. The key essence of this effect is the change in zero-point energy associated with any change in a dielectric medium. (In particular, if the change in the dielectric medium is taken to be the growth or collapse of a bubble, this effect may have relevance to sonoluminescence.) The kernel of Schwinger close-quote s result is that the change in Casimir energy is proportional to the change in the volume of the dielectric, plus finite-volume corrections. Other papers have called into question this result, claiming that the volume term should actually be discarded, and that the dominant term remaining is proportional to the surface area of the dielectric. In this paper, which is an expansion of an earlier Letter on the same topic, we present a careful and critical review of the relevant analyses. We find that the Casimir energy, defined as the change in zero-point energy due to a change in the medium, has at leading order a bulk volume dependence. This is in full agreement with Schwinger close-quote s result, once the correct physical question is asked. We have nothing new to say about sonoluminescence itself. copyright 1997 The American Physical Society

  15. Bulk viscous cosmology: statefinder and entropy

    CERN Document Server

    He, X

    2006-01-01

    The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With t...

  16. Thermodynamic properties of bulk and confined water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Mallamace, Domenico [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano; Vasi, Cirino [IPCF-CNR, I-98166 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  17. On methods of estimating cosmological bulk flows

    CERN Document Server

    Nusser, Adi

    2015-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, $\\bf B$, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of $\\bf B$ as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring $\\bf B$ for either of these definitions which coincide only for a constant velocity field. We focus on the Wiener Filtering (WF, Hoffman et al. 2015) and the Constrained Minimum Variance (CMV,Feldman et al. 2010) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute $\\bf B$ in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer $\\bf B$ directly from the observed velocities for the second definition of $\\bf B$. The WF ...

  18. On methods of estimating cosmological bulk flows

    Science.gov (United States)

    Nusser, Adi

    2016-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, B, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of B as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three-dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring B for either of these definitions which coincide only for the case of a velocity field which is constant in space. We focus on the Wiener Filtering (WF) and the Constrained Minimum Variance (CMV) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute B in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer B directly from the observed velocities for the second definition of B. The WF methodology could easily be adapted to the second definition, in which case it will be equivalent to the CMV with the exception of the imposed constraint. For a prior with vanishing correlations or very noisy data, CMV reproduces the standard Maximum Likelihood estimation for B of the entire sample independent of the radial weighting function. Therefore, this estimator is likely more susceptible to observational biases that could be present in measurements of distant galaxies. Finally, two additional estimators are proposed.

  19. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  20. Introducing the Bulking Factor to Quantify Clogging in Petroleum Formation Evaluation

    Science.gov (United States)

    Krauss, E. D.; Mays, D. C.

    2012-12-01

    Understanding the dynamics of both fluid and particle interactions in porous media is important for applications in groundwater hydrology, carbon sequestration, water filtration, and petroleum reservoir characterization. In particular, petroleum reservoir damage costs $10 billion annually, according to the Society of Petroleum Engineers. Petroleum reservoir damage, also called formation damage, results from various operations related to oil and gas production, including drilling, completions, and production phases. In this study, an extension to the widely applied Kozeny-Carman equation will be used to explore the characteristics of a dimensionless clogging parameter called the bulking factor, which was first introduced by Ojha and Graham in the 1990s. This present study will explore the tendency for fines, also called colloids, to cause clogging in initially clean porous media. Analysis proceeds using a mathematical model in which the dimensionless bulking factor is used to extend the widely utilized Kozeny-Carman equation to account for other clogging factors that are not correlated with the volume of deposited fines. The velocity dependence of the bulking factor is illustrated by considering several experimental studies from the literature that use a variety of porosities, fluids, colloid diameters and types, filter materials, and flow velocities. The filtration data sets had porosity from 35% to 46%, filter material diameters from 163 μm to 1400 μm, and colloid diameters from 0.10 μm to 8.00 μm. The filter materials were uniform sand, glass beads, or Clementine silica. Results indicate that with increasing velocity, the bulking factor decreases for all of the experiments analyzed. This correlation indicates that when other variables are held constant, filtration experiments conducted at higher flow velocity result in less clogging, at least for the case of initially clean porous media. Fitted values of the bulking factor were also correlated with the Peclet