WorldWideScience

Sample records for bulk metallic glass

  1. Gold based bulk metallic glass

    OpenAIRE

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-01-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  2. Bulk metallic glass tube casting

    International Nuclear Information System (INIS)

    Research highlights: → Tubular specimens of Zr55Cu30Al10Ni5 cast in custom arc-melting furnace. → Tilt casting supplemented by suction casting. → Bulk metallic glass formed only with optimized processing parameters. → Fully amorphous tubes with 1.8 mm wall thickness and 25 mm diameter. - Abstract: Tubular bulk metallic glass specimens were produced, using a custom-built combined arc-melting tilt-casting furnace. Zr55Cu30Al10Ni5 tubes with outer diameter of 25 mm and 0.8-3 mm wall thicknesses were cast, with both tilt and suction casting to ensure mold filling. Tilt casting was found to fill one side of the tube mold first, with the rest of the tube circumference filled subsequently by suction casting. Optimized casting parameters were required to fully fill the mold and ensure glass formation. Too small melt mass and too low arc power filled the mold only partially. However, too large melt mass and higher arc power which lead to the best mold filling also lead to partial crystallization. Variations in processing parameters were explored, until a glassy ring with 1.8 mm thickness was produced. Different sections of the as-cast ring were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and instrumented indentation to ensure amorphous microstructure. Atomic force microscopy (AFM) was used to compare the surface qualities of the first- and last-filled sections. These measurements confirmed the glassy structure of the cast ring, and that, the tilt cast tube section consistently showed better surface quality than the suction cast section. Optimized casting parameters are required to fully realize the potential of directly manufacturing complex shapes out of high-purity bulk metallic glasses by tilt casting.

  3. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  4. Gold based bulk metallic glass

    International Nuclear Information System (INIS)

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system is ∼350 Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry

  5. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel;

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined with...

  6. New Class of Plastic Bulk Metallic Glass

    International Nuclear Information System (INIS)

    An intrinsic plastic Cu45Zr46Al7Ti2 bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs

  7. Crack evolution in bulk metallic glasses

    International Nuclear Information System (INIS)

    In the present study, the mechanisms underlying plastic deformation of a Ni-based bulk metallic glass (BMG) are explored. Based on the microstructural investigations, a model is proposed how fracture emerges in BMGs. After deformation, the glass is macroscopically more fragile indicating a decrease in the viscosity within the shear bands due to shear softening. These fluctuations of viscosity and therefore Poisson ratio between the deformed and undeformed regions appear to be the initiation sites for nanometer-scale cracks, which are aligned parallel to the applied force. Coalescence of voids is believed to form these small cracks, which eventually interconnect along the interface between the sheared and unsheared regions to form a detrimental defect resulting in fracture.

  8. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  9. Cavitation instability in bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Dai L.H.

    2015-01-01

    Full Text Available Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs at atomic scale.

  10. Cavitation instability in bulk metallic glasses

    Science.gov (United States)

    Dai, L. H.; Huang, X.; Ling, Z.

    2015-09-01

    Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs) usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones) mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD) simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs) at atomic scale.

  11. Pd-Si binary bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    YAO KeFu; CHEN Na

    2008-01-01

    Pd80+xSi20-x (x=0, 1, and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content, the glass transition temperature Tg, the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover, the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability, which can be greatly improved by fluxing treatment.

  12. Pd-Si binary bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pd80+xSi20-x (x=0,1,and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content,the glass transition temperature Tg,the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover,the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability,which can be greatly improved by fluxing treatment.

  13. Bulk metallic glasses deform via slip avalanches.

    Science.gov (United States)

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses. PMID:24785049

  14. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    Joysurya Basu; S Ranganathan

    2003-06-01

    Bulk glass-forming alloys have emerged over the past fifteen years with attractive properties and technological promise. A number of alloy systems based on lanthanum, magnesium, zirconium, palladium, iron, cobalt and nickel have been discovered. Glass-forming ability depends on various factors like enthalpy of mixing, atomic size and multicomponent alloying. A number of processes is available to synthesise bulk metallic glasses. The crystallisation behaviour and mechanical properties of these alloys pose interesting scientific questions. Upon crystallisation many of these glasses transform to bulk nanocrystals and nanoquasicrystals. A detailed study of the structure and the crystallisation behaviour of glasses has enabled the elucidation of the possible atomic configuration in liquid alloys. Their crystallisation behaviour can be exploited to synthesise novel nanocomposite microstructures and their mechanical properties can be enhanced. A broad overview of the present status of the science and technology of bulk metallic glasses and their potential technological uses is presented.

  15. Formation of cerium-based bulk metallic glasses

    International Nuclear Information System (INIS)

    We report the formation and composition range of Ce-based bulk metallic glasses. Ternary Ce-Al-Cu(Co,Ni) glassy rods of 1-3 mm in diameter can be easily formed in a wide composition range by a conventional copper mold cast method. Substituting Ce with low-cost Ce-rich misch metal (MM), MM-Al-Cu bulk glasses with a similar high glass-forming ability (GFA) can be obtained. With minor addition of extra elements such as Fe, Co, Ni, Nb, Zn and Si, the critical diameter of the full glassy rods of the Ce-Al-Cu matrix can be markedly enhanced from 2 mm to at least 3-10 mm. It is found that the often-cited empirical criteria for bulk metallic glass formation cannot interpret the formation and the addition effect on GFA of the metallic glasses. The striking effect and mechanism of microalloying on the GFA of the metallic glasses are studied. These materials with extremely low glass transition temperatures (341-439 K, even below the boiling temperature of water) and excellent deformability at low temperatures could have potential applications

  16. Design of $Cu_{8}Zr_{5}$-based bulk metallic glasses

    OpenAIRE

    Yang, L.; Xia, J H; Wang, Q; Dong, C; Chen, L. Y.; Ou, X; Liu, J. F.; Jiang, J. Z.; Klementiev, K.; Saksl, K.; Franz, H.; Schneider, J. R.; L. Gerward

    2006-01-01

    Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu-Zr binary system, where we have demonstrated the existence of Cu8Zr5 icosahedral clusters in Cu61.8Zr38.2, Cu64Zr36, and Cu64.5Zr35.5 amorphous alloys. Furthermore, ternary bulk metallic glasses can be developed by ...

  17. Compressive fracture characteristics of Zr-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The compressive fracture characteristics of Zr-based bulk metallic glass under uniaxial compression tests are studied.The zigzag rheological behavior is observed in the compression stress-strain curves of amorphous alloys.At room temperature the uniaxial compression fracture takes place along the plane which is at a 45-degree angle to the direction of the compressive stress.The microstructure of a typical fracture pattern is the vein network.A unique,finger-like vein pattern is found to exist at the fracture surface of Zr-based bulk metallic glass.

  18. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato;

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage...

  19. Crystallization Kinetics of Misch Metal Based Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26~5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co5 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.

  20. Fabrication of bulk metallic glasses by centrifugal casting method

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-01-01

    Full Text Available Purpose: The aim of the present work is characterization of the centrifugal casting method, apparatus andproduced amorphous materials, which are also known as bulk metallic glassesDesign/methodology/approach: The studied centrifugal casting system consists of two main parts: castingapparatus and injection system of molten alloy. The described centrifugal casting method was presented bypreparing a casting apparatus “CentriCast – 5”. The apparatus includes a cylindrical copper mold, which isrotated by a motor. The transmission allows to changing the speed of rotating mold.Findings: Bulk metallic glasses are a novel class of engineering materials, which exhibit excelent mechanical,thermal, magnetic and corrosion properties. Centrifugal casting is a useful method to produce bulk amorphousmaterials in form of rings, tubes or cylindrical parts. Presented centrifugal casting method and casting apparatushas been prepared to fabricate the samples of bulk metallic glass in form of rings with an outer diameter of 25mm and controlled thicknesses by changing the weight of the molten alloy.Research limitations/implications: Studied centrifugal casting method and casting apparatus has beenprepared to fabricate the samples of bulk metallic glass. For future research a characterization of microstructureand properties of prepared material will be performed.Practical implications: The centrifugal casting is a useful process to produce bulk amorphous materials in formof rings, tubes or graded amorphous matrix composites. It seems to be a very simple method, which allows toobtain BMG materials.Originality/value: The centrifugal casting method allows to produce bulk amorphous rings with thicknessabove 1-mm.

  1. Iron-based bulk metallic glasses - Optimization of casting

    Czech Academy of Sciences Publication Activity Database

    Stloukal, Ivo; Král, Lubomír; Čermák, Jiří

    Ostrava: Tanger s. r. o, 2009, s. 481-487. ISBN 978-80-87294-04-8. [METAL 2009. Mezinárodní konference metalurgie a materiálů /18./. Hradec nad Moravicí (CZ), 19.05.2009-21.05.2009] R&D Projects: GA ČR GA106/08/1241 Institutional research plan: CEZ:AV0Z20410507 Keywords : bulk metallic glasses * iron-based alloy * casting optimization Subject RIV: BJ - Thermodynamics

  2. Design of Cu8Zr5-based bulk metallic glasses

    DEFF Research Database (Denmark)

    Yang, L.; Xia, J.H.; Wang, Q.; Dong, C.; Chen, L.Y.; Ou, X.; Liu, J.F.; Jiang, J.Z.; Klementiev, K.; Saksl, K.; Franz, H.; Schneider, J.R.; Gerward, Leif

    2006-01-01

    Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu-Zr binary syste.......382)(100-x)Nb-x, where x=1.5 and 2.5 at. %, and (Cu0.618Zr0.382)(98)Sn-2. The present results may open a route to prepare amorphous alloys with improved glass forming ability.......Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu-Zr binary system......, where we have demonstrated the existence of Cu8Zr5 icosahedral clusters in Cu61.8Zr38.2, Cu64Zr36, and Cu64.5Zr35.5 amorphous alloys. Furthermore, ternary bulk metallic glasses can be developed by doping the basic Cu-Zr alloy with a minority element. This hypothesis was confirmed in systems (Cu0.618Zr0...

  3. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer; Gastaldi, T.; Wert, John A.; Eldrup, Morten Mostgaard

    2007-01-01

    glasses will at elevated temperatures behave like a highly viscous liquid, which can easily form even complicated geometries in 1 step. The strengths and limitations of forming the 2 materials are analyzed for a micro 3D component in a silver alloy and an Mg-Cu-Y BMG. ©2007 American Institute of Physics......For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  4. Fabrication of ternary Ca-Mg-Zn bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2013-02-01

    Full Text Available Purpose: The paper describes the preparation, structure and thermal properties of ternary Ca-Mg-Zn bulk metallic glass in form of as-cast rods.Design/methodology/approach: The investigations on the ternary Ca-Mg-Zn glassy rods were conducted by using X-ray diffraction (XRD, scanning electron microscopy (SEM which energy dispersive X-ray analysis (EDS.Findings: The X-ray diffraction investigations have revealed that the studied as-cast rod was amorphous. The fractures of studied alloy could be classified as mixed fracture with indicated “river” and “smooth” fractures. Both type of the fracture surfaces consist of weakly formed “river” and “shell” patterns and “smooth” regions. The “river” patterns are characteristic for metallic glassy alloys.Practical implications: The studied Ca-based bulk metallic glasses is a relatively new group of material. Ca-based bulk metallic glasses are applied for many applications in different elements. Ca-based bulk metallic glasses have many unique properties such as low density (~2.0 g/cm3, low Youn g’s modulus ( ~20 to 30 GPa. The elastic modulus of Ca-b ased BMGs is comparable to that of hum an bone s, and Ca, Mg, and Zn are biocompatible. These features make the Ca-Mg-Zn–based alloys attractive for use in biomedical applications.Originality/value: Fabrication of amorphous alloy in the form of rod ternary Ca-Mg-Zn alloy by pressure die casting method.

  5. Nano-scale solute partitioning in devitrified bulk metallic glass

    International Nuclear Information System (INIS)

    Devitrification of bulk metallic glass leads to a novel microstructure, with high-density nanoscale crystalline precipitates evenly distributed in a glassy matrix. Significant chemical segregation is revealed at unprecedented detail by atom-probe tomography. This level of detail is crucial for understanding the interference peaks observed in small-angle X-ray and neutron scattering experiments, an unsolved mystery for over a decade

  6. Fabrication of bulk metallic glasses by centrifugal casting method

    OpenAIRE

    R. Nowosielski; R. Babilas

    2007-01-01

    Purpose: The aim of the present work is characterization of the centrifugal casting method, apparatus andproduced amorphous materials, which are also known as bulk metallic glassesDesign/methodology/approach: The studied centrifugal casting system consists of two main parts: castingapparatus and injection system of molten alloy. The described centrifugal casting method was presented bypreparing a casting apparatus “CentriCast – 5”. The apparatus includes a cylindrical copper mold, which isrot...

  7. Crystallization of Mg-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; M. FERRY

    2006-01-01

    Mg-based bulk metallic glass fabricated by conventional copper mould method was aged at different temperatures. X-ray diffractometry(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM) and focused ion beam(FIB) miller were employed to examine specimens obtained under different conditions. The crystallization of Mg-based bulk metallic glass depends upon both the aging temperature and the aging time. As temperature increases or the holding time increases, the microstructure of the aged specimen varies from glassy one to crystalline one plus glassy phase and then to absolutely multiphase crystalline one. From the FIB images, it is clear that Mg-based bulk metallic glass could not only crystallize completely but also display dendrite-like growth style. From the AFM images, there are not only significant variations of microstructures but also surface morphology of specimens obtained under different conditions. It is proposed that the surface morphology varies as the treating temperature increases. The Vickers hardness of different specimens increases as the fraction of crystalline phase (s) increases.

  8. Design of ductile bulk metallic glasses by adding ''soft'' atoms

    International Nuclear Information System (INIS)

    We propose a strategy for the design of ductile bulk metallic glasses (BMGs) through minor substitution using relatively large atoms, which make the bonding nature become more metallic and with it less shear resistant. Such a locally modified structure results in topological heterogeneity, which appears to be crucial for achieving enhanced plasticity. This strategy is verified for Ti-Zr-Cu-Pd glassy alloys, in which Cu was replaced by In, and seems to be extendable to other BMG systems. The atomic-scale heterogeneity in BMGs is somewhat analog to defects in crystalline alloys and helps to improve the overall plasticity of BMGs.

  9. High-zirconium-based bulk metallic glasses with large plasticity

    International Nuclear Information System (INIS)

    Zr-Al-Ni-Cu bulk metallic glasses (BMGs) with the content of Zr up to 72 at.% were prepared by copper mold casting. The compressive strain and fracture strength for Zr72Ni7.5Cu13Al7.5 BMG reach 9.5% and 1730 MPa, respectively. The large plasticity of the BMGs is considered to originate in the large amount of free volume induced by the increase in Zr, which results in the initiation, branching, and interaction of high frequency of shear hands during the compressive deformation.

  10. BEHAVIORS OF BULK METALLIC GLASS UNDER SHOCK LOADING

    OpenAIRE

    ATROSHENKO S.A.

    2016-01-01

    The high-strain-rate method of materials for dynamic strength investigations under micro and sub-microsecond durations of shock loads on the base of electrical explosion of conductors was developed. The experimental investigations of dynamic properties for bulk metallic glass on the base of Ti and Zr under shock loads of sub-microsecond duration (~0.5-0.7 μs) in the pressure range up to 12 GPa were carried out. The values of Hugoniot elastic limit (HEL) and spall strength for these amorphous ...

  11. Thermal properties of Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2012-12-01

    Full Text Available Purpose: The aim of paper is presentation of results bulk metallic glasses thermal properties such as temperatures typical for glassy transition and thermal conductivity. Design/methodology/approach: Investigations were realized for Fe36Co36B19.2Si4.8Nb4 samples with dimension 3 mm in diameter. Bulk test pieces were fabricated by copper mold casting method. Thermal analysis of master alloy (DTA and samples in as-cast state (DSC was realized. For amorphous structure confirmation the X-ray diffraction phase analysis (XRD was realized. Additionally scanning electron microscopy (SEM micrographs were performed in order to structure analysis. Thermal conductivity was determined by prototype measuring station.Findings: The XRD and SEM analysis confirmed amorphous structure of samples. Broad diffraction “halo” was observed for every testing piece. Fracture morphology is smooth with many “veins” on the surface, which are characteristic for glassy state. DTA analysis confirmed eutectic chemical composition of master alloy. Thermal conductivity measurements proved that both samples have comparable thermal conductivity.Practical implications: The FeCo-based bulk metallic glasses have attracted great interest for a variety application fields for example precision machinery materials, electric applications, structural materials, sporting goods, medical devices. Thermal conductivity is useful and important property for example computer simulation of temperature distribution and glass forming ability calculation.Originality/value: The obtained results confirm the utility of applied investigation methods in the thermal and structure analysis of examined amorphous alloys. Thermal conductivity was determined using the prototype measuring station, which is original issue of the paper. In future, the measuring station will be expanded for samples with different dimensions.

  12. Oxidation behaviour of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    The Zr-based bulk metallic glasses, developed since the late 1980's, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T ≥ Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T ≤ Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses

  13. A predictive structural model for bulk metallic glasses

    OpenAIRE

    Laws, K. J.; Miracle, D. B.; Ferry, M.

    2015-01-01

    Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural de...

  14. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)

    X F Wu; Y Kang; F F Wu; K Q Qiu; L K Meng

    2011-12-01

    The glass-forming ability (GFA) of ternary Mg–Cu–Dy alloys was systematically investigated by using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) techniques. The results showed that a series of ternary Mg–Cu–Dy bulk metallic glasses (BGMs) with a diameter of 4–8 mm were successfully fabricated in the system with conventional Cu-mold casting method. Mg55Cu32Dy13, Mg60Cu27Dy13, Mg65Cu25Dy10 and Mg70Cu17Dy13 BMGs exhibit a clear glass transition, a broad supercooled liquid region and different crystallization and melting behaviours. They have supercooled liquid region ($\\Delta T_{x}$) from 41 K to 65 K, reduced glass transition temperature ($T_{rg}$) from 0.5363 to 0.5974 and parameter from 0.4038 to 0.4136. The shows a relatively good agreement with the GFA of the BGMs. On the other hand, a high fracture compressive strength of 624 MPa was obtained for Mg60Cu27Dy13 BMG.

  15. Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses

    Science.gov (United States)

    Sarac, Baran; Zhang, Long; Kosiba, Konrad; Pauly, Simon; Stoica, Mihai; Eckert, Jürgen

    2016-06-01

    Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim for unraveling the connection between the physical, (thermo)mechanical and structural changes as a function of selected pre-annealing temperatures and time scales with an in-house developed Cu46Zr44Al8Hf2 based BMG alloy. The controlled formation of nanocrystals below 50 nm with homogenous distribution inside the matrix phase via thermal treatment increase the material’s resistance to strain softening by almost an order of magnitude. The present work determines the design aspects of metallic glasses with enhanced mechanical properties via nanostructural modifications, while postulating a counter-argument to the intrinsic property degradation accounted for long-term annealing.

  16. Self-organized intermittent plastic flow in bulk metallic glasses

    International Nuclear Information System (INIS)

    Under stress, bulk metallic glasses irreversibly deform through shear banding processes that manifest as serrated flow behavior. These serration events exhibit a shock-and-aftershock, earthquake-like behavior. Statistical analysis shows that the shear avalanches can self-organize to a critical state (SOC). In analogy to the smooth macroscopic-scale crystalline plasticity that arises from the spatio-temporal averages of disruptive earthquake-like events at the nanometer scale, shear avalanches in glassy metals are another model system that can be used to study SOC behavior. With our understanding of SOC behavior, we further demonstrate how to enhance the plasticity of glassy (brittle) materials. It is expected that the findings can be extended to other glassy or brittle materials.

  17. Thermodynamical properties of Zr-based bulk metallic glasses

    Science.gov (United States)

    Gaur, Jitendra; Mishra, R. K.

    2015-11-01

    The temperature dependence of Gibb's free energy difference (ΔG), entropy difference (ΔS) and enthalpy difference (ΔH) between the undercooled melt and the corresponding equilibrium solid phases of bulk metallic glass (BMG) forming melts has been proved to be very useful in the study of their thermodynamical behavior. The present study is made by calculating ΔG, ΔS and ΔH in the entire temperature range Tm (melting temperature) to Tg (glass transition temperature) for three Zr-based samples of BMGs: Zr57Cu15.4Ni12.6Al10Nb5, Zr41.2Ti13.8Ni10Cu12.5Be22.5 and Zr58.5Cu15.6Ni12.8Al10.3Nb2.8. The study is made on the basis of Taylor's series expansion and a comparative study is also performed between the present result and the result obtained in the framework of expansions proposed by earlier workers, and also with the experimental results. An attempt has also been made to study the glass forming ability for BMGs.

  18. Zr-(Cu,Ag)-Al bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.K.; Wang, X.D.; Nie, X.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, G.Q. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Ma, H. [Department of Materials, Faculty of Engineering, University of Ulm, Albert-Einstein Allee 47, D-89081 Ulm (Germany); Fecht, H.-J. [Department of Materials, Faculty of Engineering, University of Ulm, Albert-Einstein Allee 47, D-89081 Ulm (Germany); Forschungszentrum Karlsruhe, Institut fuer Nanotechnologie, Karlsruhe (Germany); Bendnarcik, J.; Franz, H. [HASYLAB am DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Liu, Y.G. [Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z. [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: jiangjz@zju.edu.cn

    2008-05-15

    In this paper, we report the formation of a series Zr-(Cu,Ag)-Al bulk metallic glasses (BMGs) with diameters at least 20 mm and demonstrate the formation of about 25 g amorphous metallic ingots in a wide Zr-(Cu,Ag)-Al composition range using a conventional arc-melting machine. The origin of high glass-forming ability (GFA) of the Zr-(Cu,Ag)-Al alloy system has been investigated from the structural, thermodynamic and kinetic points of view. The high GFA of the Zr-(Cu,Ag)-Al system is attributed to denser local atomic packing and the smaller difference in Gibbs free energy between amorphous and crystalline phases. The thermal, mechanical and corrosion properties, as well as elastic constants for the newly developed Zr-(Cu,Ag)-Al BMGs, are also presented. These newly developed Ni-free Zr-(Cu,Ag)-Al BMGs exhibit excellent combined properties: strong GFA, high strength, high compressive plasticity, cheap and non-toxic raw materials and biocompatible property, as compared with other BMGs, leading to their potential industrial applications.

  19. Origin of anomalous inverse notch effect in bulk metallic glasses

    Science.gov (United States)

    Pan, J.; Zhou, H. F.; Wang, Z. T.; Li, Y.; Gao, H. J.

    2015-11-01

    Understanding notch-related failure is crucial for the design of reliable engineering structures. However, substantial controversies exist in the literature on the notch effect in bulk metallic glasses (BMGs), and the underlying physical mechanism responsible for the apparent confusion is still poorly understood. Here we investigate the physical origin of an inverse notch effect in a Zr-based metallic glass, where the tensile strength of the material is dramatically enhanced, rather than decreased (as expected from the stress concentration point of view), by introduction of a notch. Our experiments and molecular dynamics simulations show that the seemingly anomalous inverse notch effect is in fact caused by a transition in failure mechanism from shear banding at the notch tip to cavitation and void coalescence. Based on our theoretical analysis, the transition occurs as the stress triaxiality in the notched sample exceeds a material-dependent threshold value. Our results fill the gap in the current understanding of BMG strength and failure mechanism by resolving the conflicts on notch effects and may inspire re-interpretation of previous reports on BMG fracture toughness where pre-existing notches were routinely adopted.

  20. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  1. Three-point bending fracture characteristics of bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents the SEM micrographs for the three-point bending fracture surfaces of Zr-based, Ce-based and Mg-based bulk metallic glasses (BMGs), which show the dimple structures in the three kinds of BMGs. The shapes of the giant plastic deformation domain on the fracture surface are similar but the sizes are different. The fracture toughness KC and the dimple structure size of the Zr-based BMG are both the largest, and those of the Mg-based BMG are the smallest. The fracture toughness KC and the dimple structure size of the Ce-based BMG are between those of the Zr-based and the Mg-based BMG. Through analyzing the data of different fracture toughnesses of the BMGs, we find that the plastic zone width follows w = (KC/σY)2/(6π).

  2. Corrosion behavior of bulk metallic glasses in different aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  3. Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Na Chen

    2010-12-01

    Full Text Available Alloying addition, as a means of improving mechanical properties and saving on costs of materials, has been applied to a broad range of uses and products in the metallurgical fields. In the field of bulk metallic glasses (BMGs, alloying additions have also proven to play effective and important roles in promoting glass formation, enhancing thermal stability and improving plasticity of the materials. Here, we review the work on the role of alloying additions in glass formation and performance improvement of BMGs, with focus on our recent results of alloying additions in Pd-based BMGs.

  4. Developing and Characterizing Bulk Metallic Glasses for Extreme Applications

    Science.gov (United States)

    Roberts, Scott Nolan

    Metallic glasses have typically been treated as a "one size fits all" type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs. Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing

  5. Cyclic damage initiation and growth in bulk metallic glass

    Science.gov (United States)

    Menzel, Brian C.

    A high-cycle stress-life fatigue study was conducted on a Zr-based bulk metallic glass to investigate damage initiation and growth mechanisms. Stress-life tests were conducted using tension-tension, compression-tension and compression-compression loadings. Distributed damage was observed to initiate rapidly from pre-existing defects as either shear bands or mixed mode surface cracks that propagated at ˜49° to the maximum tensile stress axis. On reaching a characteristic size, surface damage abruptly changed orientation and continued to grow as mode I cracks. The growth rates of these "small" surface cracks were carefully characterized and shown to be consistent with "long" crack-growth rate behavior. Fatigue life was estimated from the observed initial defect sizes and "small" crack-growth rate behavior. The resulting life predictions were found to be consistent with measured stress life data for tension-tension loading suggesting that the apparent lack of a damage initiation stage may account for the low endurance limit measured. Several surface modification techniques were explored as possible methods to reduce the number of damage initiation sites and to increase the fatigue life and the endurance limit of metallic glasses. A focused ion beam (FIB) was used to introduce well-defined distributions of initial defects to systematically elucidate damage initiation and growth processes in a separate set of specimens. High-resolution techniques were used to characterize the effect of defect size, shape and orientation on damage initiation and the early stages of damage growth. Damage initiation was found to be a strong function of defect spacing and to correspond well with region of high equivalent stress. Damage growth was also observed to correspond to directions of high equivalent stress which is highly dependent of the spacing and orientation of defects. Rapid damage initiation and mode I damage growth was observed for closely spaced defects while longer

  6. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer;

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  7. Low- and high-frequency fatigue of bulk metallic glasses

    International Nuclear Information System (INIS)

    Research highlights: → Recovery stages are stipulated by migration of configurations of point defects. → Fatigue-endurance limit and the fracture mode depend on the frequency. → Ultrasonic vibrations induce irreversible changes of the BMG structure. - Abstract: The 2.5 MeV electron-irradiation and resistance-recovery experiments were performed. It was found that the majority of atoms of a (Zr0.55Al0.10Ni0.05Cu0.30)99Y1 bulk metallic glass (BMG) possess a locally preferred order, and vacancies are stable point defects. Low- and high-frequency compression-compression fatigue experiments show that the fatigue-endurance limit and mode of the fatigue fracture of this BMG essentially depend on the cycling frequency. At the low-frequency cycling (10 Hz), the catastrophic crack is initiated mainly due to the shear-of-steps formation, and the fatigue-endurance limit is ∼0.44 σFS (σFS is the fracture stress). At the high-frequency cycling (20 kHz), the catastrophic crack forms due to the propagation and mergence of nano-cracks initiated from slip layers at intercluster boundaries. The fatigue-endurance limit in this case is a random quantity with a mean value of ∼0.04 σFS.

  8. Glass Stability and Kinetic Analysis of Iron-Metalloid Bulk Metallic Glass

    Science.gov (United States)

    Santhaweesuk, Charuayporn

    Multicomponent Fe-based bulk metallic glasses (BMGs) with a combination of excellent properties such as good soft magnetic properties, high strength, high hardness, and high corrosion resistance have attracted increasing attention both from a basic science research standpoint and due to their industrial application potential. However, many of the elemental additions which lead to the easiest glass formation are expensive. The identification of alloys composed of abundant and inexpensive elements that still retain excellent properties would promote applications for engineering and industry. In short, the development of the Fe-based BMG without any glass-forming metal elements and with high glass forming ability is desired. This study shows that the thermal stability of the Fe-based alloys can be improved beyond a simple rule of mixtures prediction by utilizing a well-balance multi-metalloid approach. The kinetics aspect of glass-forming ability is studied experimentally for Fe-B-Si-P alloys. The systematic variation in alloy composition gives access to differences in phase selection and the final dimensions of glass formation. Two alloys, representing the best glass-forming composition and the poorest glass-forming composition, were studied in terms of their stability to crystallization, solidification microstructure evolution and thermal history. The utility of the wedge-casting technique is developed to examine bulk glass-forming alloys by combining multiple temperature profiles of the quenching melt with a measurement-based kinetic analysis of the phase selection competition and critical cooling rate conditions. Based upon direct thermal measurement, microstructural analysis and kinetic modeling, it was found that both representative alloys show a board spectrum of solidification microstructures which include a critical cooling rate range. The kinetic competition in the formation of certain phases can enhance or detract from the final dimension of bulk glass

  9. Melt infiltration casting of bulk metallic-glass matrix composites

    OpenAIRE

    Dandliker, R. B.; Conner, R. D.; Johnson, W.L.

    1998-01-01

    The authors describe a technique for melt infiltration casting of composites with a metallic-glass matrix. We made rods 5 cm in length and 7 mm in diameter. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed composites were those reinforced with tungsten and carbon steel continuous wire reinforcement. The Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 matrix was quenched to a glass after infiltrating the reinforcement. We...

  10. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  11. Ductility enhancement in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) have gained increasing attention in the past decade; because of their importance in both fundamental science and engineering applications. BMGs have unique characteristics including high strength, high elastic limit, good corrosion resistance, etc. Nevertheless, BMGs usually display only minute plasticity at room temperature that limits the range of their commercial applications. Plastic deformation of BMGs at room temperature is highly localized into shear bands, which propagate easily resulting in a very limited plastic strain before catastrophic failure. In this project work, two different strategies were used to enhance the plasticity of different BMGs i.e., (i) shot-blasting and (ii) geometrical confinement. This leads to formation of stress gradients in the as cast samples which in turn improved their plasticity. Sand blasting has been successfully used for inducing plasticity in Zr-based BMG that exhibit brittleness in the as cast condition. The as cast sample was sand blasted for different duration of time. A significant amount of plasticity (up to about 6%) was achieved in the sample blasted for 4 minutes that was found to be optimum duration under the experimental conditions employed in this work. It was observed that there exists a threshold pre-straining required for enhancing ductility based on the evolution and intersection of multiple shear bands. Moreover, a novel method of geometrical confinement was employed for Zr-based BMG and plasticity of 10.5% was achieved along with work hardening like behavior. Both of these techniques are novel and very simple and can lead to advanced applications for BMGs.

  12. A new parameter to evaluate the glass-forming ability of bulk metallic glasses

    International Nuclear Information System (INIS)

    Research highlights: → Develop a new criterion, i.e., Q=((Tg+Tx)/Tl).(ΔE/ΔH). → The reliability and benefits of the new criterion have been demonstrated in a wide range of BMG alloys. → It corresponds well with the critical diameter of BMGs investigated up to now. - Abstract: Based on the consideration of the liquid phase stability, the resistance to crystallization and the glass transition enthalpy, a new criterion Q, defined as ((Tg + Tx)/Tl).(ΔE/ΔH), where the Tg, Tx, Tl, ΔE and ΔH are the glass transition temperature, the onset crystallization temperature, the liquidus temperature, the crystalline enthalpy and the fusion enthalpy, respectively, has been proposed for evaluating the glass-forming ability of bulk metallic glasses. The new criterion Q exhibits better correlation with the maximum cross section thickness (Dm) for glass formation compared with γ (=Tx/(Tl + Tg)), Trg (=Tg/Tl) and ΔTx (=Tx - Tg) respectively. The available data from literatures and experiments have confirmed the effectiveness of the newly developed criterion.

  13. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    Energy Technology Data Exchange (ETDEWEB)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-06-20

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation.

  14. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Francis; Raber, Thomas R.; Zabala, Robert J.; Buresh, Steve J.; Tanico, Brian [GE Global Research, Ceramic and Metallurgy Technologies, One Research Circle, Niskayuna, New York 12309 (United States)

    2013-05-07

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 {mu}{Omega} cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  15. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    International Nuclear Information System (INIS)

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 μΩ cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  16. Dynamic glass transition in Zr-Al-Ni-Cu bulk metallic glass

    International Nuclear Information System (INIS)

    The elastic and viscoelastic behavior of a bulk metallic glass Zr55Al10Ni5Cu30 (in mol%) has been studied by isothermal forced-vibration measurements of the dynamic shear modulus. At temperatures of the calorimetric glass transition, on decreasing the frequency from 10+1 to 10-3 Hz at a constant temperature, the storage modulus exhibits a striking drop, of an order of magnitude, which is similar to the change observed under continuous heating. The lowering of the storage modulus and the accompanying maximum in the loss modulus indicate a dynamic glass transition; the material behaves as a solid at high frequencies but as a liquid at low frequencies. The range of frequencies where the storage and loss moduli exhibit the characteristic behavior is much wider than expected from a simple Maxwell model of viscoelasticity. A parallel combination of Maxwell units is found to reproduce the observed trend, and is used to evaluate the characteristic rate constant. Its activation energy and the pre-exponential factor turn out to be anomalously high, indicating that the dynamic glass transition is controlled by collective movements of atoms

  17. Bulk metallic glass-like scattering signal in small metallic nanoparticles.

    Science.gov (United States)

    Doan-Nguyen, Vicky V T; Kimber, Simon A J; Pontoni, Diego; Reifsnyder Hickey, Danielle; Diroll, Benjamin T; Yang, Xiaohao; Miglierini, Marcel; Murray, Christopher B; Billinge, Simon J L

    2014-06-24

    The atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMGs). In fact, by simply scaling the distance axis by the mean metallic radius, the curves may be collapsed onto each other and onto the PDF from a metallic glass sample. In common with a wide range of BMG materials, the intermediate range order may be fit with a damped single-frequency sine wave. When viewed in high-resolution TEM, these nanoparticles exhibit atomic fringes typical of those seen in small metallic clusters with icosahedral or decahedral order. These two seemingly contradictory results are reconciled by calculating the PDFs of models of icosahedra that would be consistent with the fringes seen in TEM. These model PDFs resemble the measured ones when significant atom-position disorder is introduced, drawing together the two diverse fields of metallic nanoparticles and BMGs and supporting the view that BMGs may contain significant icosahedral or decahedral order. PMID:24871305

  18. Enhancement of glass-forming ability and mechanical behavior of zirconium–lanthanide two-phase bulk metallic glasses

    International Nuclear Information System (INIS)

    Highlights: • This work provides a new concept for design of two-phase BMGs. • The formation of two-glass structure in two-liquid systems is analyzed. • A strategy for improving GFA of two-phase metallic glasses is proposed. • A family of two-phase metallic glasses in bulk form is developed. • The mechanical behavior of two-phase BMGs is studied for the first time. - Abstract: Development of the two-phase bulk metallic glasses (BMGs) is essentially retarded due to difficulties in finding of phase-separated (immiscible) alloys with high glass-forming ability (GFA) of coexistent phases. Referring to the concept of solute partitioning and minimization of free energy, in this work we present an idea that a metallic liquid system containing two liquids with individual self-assembled eutectic composition may yield two-phase BMGs upon casting. The formation of the two-glass structure is discussed and a strategy of partial substitution of chemically similar elements for overcoming the drawback of low GFA is proposed. A family of two-phase zirconium–lanthanide based metallic glasses in bulk form is developed. The mechanical behavior of the two-phase BMGs with different ratio of zirconium-rich to lanthanide-rich glassy phase is studied for the first time. This work provides a new concept for fabrication of two-phase BMGs and reveals the role of constituent phases in determining the mechanical properties of the whole glass

  19. Glass formation, magnetic properties and magnetocaloric effect of ternary Ho–Al–Co bulk metallic glass

    International Nuclear Information System (INIS)

    A ternary Ho–Al–Co system with high glass-forming ability (GFA) was developed and fully glassy rods with diameters up to 1 cm can be produced for the best glass former of Ho55Al27.5Co17.5 alloy. The thermal stability and low-temperature magnetic properties of the Ho55Al27.5Co17.5 bulk metallic glass (BMG) were studied. The magnetic transition temperature of this alloy is ∼14 K as determined by the thermomagnetic measurement. Two indicators, i.e. isothermal magnetic entropy change (ΔSM) and the relative cooling power (RCP), were adopted to evaluate the magnetocaloric effect (MCE) of the alloy under a low magnetic field up to 2 T, which can be generated by permanent magnets. The values of |ΔSM| and RCP are 7.98 J kg−1 K−1 and 191.5 J kg−1, respectively. The Ho55Al27.5Co17.5 BMG with good MCE and high GFA provides an attractive candidate for magnetic refrigeration applications, like hydrogen liquefaction and storage. - Highlights: ► A ternary Ho–Al–Co BMG system with high glass-forming ability was developed. ► Fully glassy rods of Ho55Al27.5Co17.5 alloy were produced up to 1 cm in diameter. ► The thermal stability and magnetic properties of the BMG were evaluated. ► The BMG exhibits good magnetocaloric effect under a low magnetic field up to 2 T.

  20. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    CERN Document Server

    Perim, Eric; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W Neal; Levy, Ohad; Vlassak, Joost J; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new systems is still performed by trial and error. It has been speculated that some sort of "confusion" during crystallization of the crystalline phases competing with glass formation could play a key role. Here, we propose a heuristic descriptor quantifying confusion and demonstrate its validity by detailed experiments on two well-known glass forming alloy systems. With the insight provided by these results, we develop a robust model for predicting glass formation ability based on the spectral decomposition of geometrical and energetic features of crystalline phases calculated ab-initio in the AFLOW high throughput framework. Our findings indicate that the formation of metallic glass phases could be a much more common phenomenon than currently estimated, with more than ...

  1. Numerical study of pile-up in bulk metallic glass during spherical indentation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness,Young’s modulus,stress-strain response,etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model,the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up,and the results agree well with the data generated by numerical simulation.

  2. Numerical study of pile-up in bulk metallic glass during spherical indentation

    Institute of Scientific and Technical Information of China (English)

    Al Ke; DAI LanHong

    2008-01-01

    Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness, Young's modulus, stress-strain response, etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model, the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up, and the results agree well with the data generated by numerical simulation.

  3. Linking structure to fragility in bulk metallic glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shuai, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Stolpe, Moritz, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Evenson, Zach [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Bednarcik, Jozef [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kruzic, Jamie J. [Material Science, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  4. Linking structure to fragility in bulk metallic glass-forming liquids

    International Nuclear Information System (INIS)

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near Tg. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure

  5. Joining of bulk metallic glass to brass by thick-walled cylinder explosion

    International Nuclear Information System (INIS)

    This paper reports the development of a thick-walled cylinder explosion technique to weld a typical Zr-based bulk metallic glass (Vitreloy 1 (Vit 1)) to a commercial Cu-based crystalline alloy (brass). It is shown that a strong metallurgical bonding between the Vit 1 and the brass is achieved, which is due to significant atomic diffusion across the welding interface and shock wave propagation in the weldment. The dissimilar joining of the noncrystalline to crystalline alloy extends the application of bulk metallic glasses as structural and functional materials

  6. Preparation, glass forming ability, crystallization and deformation of (zirconium, hafnium)-copper-nickel-aluminum-titanium-based bulk metallic glasses

    Science.gov (United States)

    Gu, Xiaofeng

    Multicomponent Zr-based bulk metallic glasses are the most promising metallic glass forming systems. They exhibit great glass forming ability and fascinating mechanical properties, and thus are considered as potential structural materials. One potential application is that they could be replacements of the depleted uranium for making kinetic energy armor-piercing projectiles, but the density of existing Zr-based alloys is too low for this application. Based on the chemical and crystallographic similarities between Zr and Hf, we have developed two series of bulk metallic glasses with compositions of (HfxZr1-x) 52.5Cu17.9Ni14.6Al10Ti5 and (HfxZr1-x) 57Cu20Ni8Al10Ti5 ( x = 0--1) by gradually replacing Zr by Hf. Remarkably increased density and improved mechanical properties have been achieved in these alloys. In these glasses, Hf and Zr play an interchangeable role in determining the short range order. Although the glass forming ability decreases continuously with Hf addition, most of these alloys remain bulk glass-forming. Recently, nanocomposites produced from bulk metallic glasses have attracted wide attention due to improved mechanical properties. However, their crystalline microstructure (the grain size and the crystalline volume fraction) has to be optimized. We have investigated crystallization of (Zr, Hf)-based bulk metallic glasses, including the composition dependence of crystallization paths and crystallization mechanisms. Our results indicate that the formation of high number density nanocomposites from bulk metallic glasses can be attributed to easy nucleation and slowing-down growth processes, while the multistage crystallization behavior makes it more convenient to control the microstructure evolution. Metallic glasses are known to exhibit unique plastic deformation behavior. At low temperature and high stress, plastic flow is localized in narrow shear bands. Macroscopic investigations of shear bands (e.g., chemical etching) suggest that the internal

  7. An interatomic potential for studying CuZr bulk metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Kenoufi, Abdel; Bailey, Nicholas;

    2007-01-01

    The mechanical properties of BMGs are remarkably different from the ones of ordinary metallic alloys due to the atomic level disorder in the glassy state. Unlike crystalline materials plastic deformation in metallic glasses cannot be caused by lattice defects but takes place through atomic......-scale deformation events and may furthermore involve localization through formation of shear bands. In this paper, an Effective Medium Theory (EMT) potential optimized for modeling the mechanical and thermodynamic properties of CuZr bulk metallic glass is studied. The late transition metals crystallizing in close......-packed structures, and their alloys, while still allowing simulations with millions of atoms is discussed....

  8. Laser Welding of Zr41Ti14Cu12Ni10Be23 Bulk Metallic Glass and Zirconium Metal

    Institute of Scientific and Technical Information of China (English)

    CHEN Biao; SHI Tielin; LIAO Guanglan

    2014-01-01

    The laser bonding technology between the Zr41Ti14Cu12Ni10Be23 bulk metallic glass and zirconium metal was investigated under welding parameters of 1.3 kW and 7 m/min. The welded bead, microstructure, and micro-hardness of the welded joint were examined by Keyence, transmission electron microscopy, scanning electron microscopy, and Vickers hardness, respectively. The experimental results showed that the Zr41Ti14Cu12Ni10Be2 bulk metallic glass and zirconium metal were successfully bonded together. The Zr41Ti14Cu12Ni10Be2 in the base material zone maintained amorphous structure, and the welding fusion zone kept the hardness as high as as-received BMG. Therefore, the laser welding technology can be used to achieve successful bonding of bulk metallic glasses and crystallization metal.

  9. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    Science.gov (United States)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  10. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    International Nuclear Information System (INIS)

    In this work, quaternary Fe72-xMxY6B22 (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe68Mo4Y6B22 cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions

  11. Bulk metallic glass for low noise fluxgate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The team of Prime Photonics, Virginia Tech, and Utron Kinetics propose to demonstrate a method for fabrication of a bulk, amorphous, cobalt-rich material that...

  12. Thermal and elastic properties of Cu–Zr–Be bulk metallic glass forming alloys

    OpenAIRE

    Duan, Gang; Lind, Mary Laura; De Blauwe, Katrien; Wiest, Aaron; Johnson, William L.

    2007-01-01

    The compositional dependence of thermal and elastic properties of Cu–Zr–Be ternary bulk metallic glass forming alloys was systematically studied. There exists a linear relationship between the glass transition temperature Tg and the total Zr concentration. G decreases linearly with increasing Zr concentration as well. The results also show that Tg, shear modulus G, and Poisson's ratio nu are very sensitive to changes in compositions. Low Tg, low G, and relatively high nu can be achieved with ...

  13. Crystallization of Pd40CU30Ni10P20 bulk metallic glass with and without pressure

    DEFF Research Database (Denmark)

    Yang, B.; Jiang, Jianzhong; Zhuang, Yanxin; Saksl, K.; Chen, G.L.

    2007-01-01

    The glass-transition behavior of Pd40Cu30Ni10P20 bulk metallic glass was investigated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). The effect of pressure on the crystallization behavior of Pd40Cu30Ni10P20 bulk glass was studied by in situ high-pressure and high...

  14. Deformation-strengthening during rolling Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Hu, Yuyan;

    2007-01-01

    Mechanical strength evolutions during rolling the Cu60Zr20Ti20 bulk metallic glass (BMG) at room temperature (RT) and cryogenic temperature (CT) have been investigated by measuring the microhardness. The hardness slightly increases during the initial rolling stage as a result of the gradually...

  15. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Lin; SHAN De-Bin; MA Ming-Zhen; GUO Bin

    2008-01-01

    The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high ternperatures.

  16. Compressive behavior of bulk metallic glass under different conditions --- Coupled effect of temperature and strain rate

    Science.gov (United States)

    Yin, Weihua

    Metallic glass was first reported in 1960 by rapid quenching of Au-Si alloys. But, due to the size limitation, this material did not attract remarkable interest until the development of bulk metallic glasses (BMGs) with specimen sizes in excess of 1 mm. BMGs are considered to be promising engineering materials because of their ultrahigh strength, high elastic limit and wear resistance. However, they usually suer from a strong tendency for localized plastic deformation with catastrophic failure. Many basic questions, such as the origin of shear softening and the strain rate eect remain unclear. In this thesis, the mechanical behavior of the Zr55Al 10Ni5Cu30 bulk metallic glass and a metallic glass composite is investigated. The stress-strain relationship for Zr55Al10Ni 5Cu30 over a wide range of strain rate (5x10 --5 to 2x103 s--1) was investigated in uniaxial compression loading using both MTS servo-hydraulic system (quasi-static) and compression Kolsky bar system (dynamic). The effect of the strain rate on the fracture stress at room temperature was discussed. Based on the experimental results, the strain rate sensitivity of the bulk metallic glass changes from a positive value to a negative value at high strain rate, which is a consequence of the significant adiabatic temperature rise during the dynamic testing. In order to characterize the temperature eect on the mechanical behavior of the metallic glass, a synchronically assembled heating unit was designed to be attached onto the Kolsky bar system to perform high temperature and high strain rate mechanical testing. A transition from inhomogeneous deformation to homogeneous deformation has been observed during the quasi-static compressive experiments at testing temperatures close to the glass transition temperature. However, no transition has been observed at high strain rates at all the testing temperatures. A free volume based model is applied to analyze the stress-strain behavior of the homogeneous

  17. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Sun, Bingli [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); Zhao, Na [National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Li, Qian, E-mail: qianli@zzu.edu.cn [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Hou, Jianhua; Feng, Weina [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China)

    2014-12-01

    Highlights: • Wetting behavior of four polymer melts on Pd-based bulk metallic glass was investigated. • From results, in general, the contact angle of polymer on Pd-based BMG decreases with temperature increasing. • We find a critical temperature for each polymer, above this temperature, contact angle on Pd-based BMG does not decrease with temperature increasing. • Surface free energy of Pd-based BMG was estimated by Owens–Wendt method. - Abstract: The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens–Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding.

  18. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: • Wetting behavior of four polymer melts on Pd-based bulk metallic glass was investigated. • From results, in general, the contact angle of polymer on Pd-based BMG decreases with temperature increasing. • We find a critical temperature for each polymer, above this temperature, contact angle on Pd-based BMG does not decrease with temperature increasing. • Surface free energy of Pd-based BMG was estimated by Owens–Wendt method. - Abstract: The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd40Cu30Ni10P20 bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens–Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding

  19. New nickel-based bulk metallic glasses with extremely high nickel content

    International Nuclear Information System (INIS)

    The effect of boron addition on glass formation in the Ni70Pd10P20 alloy was investigated. The composition containing 4 at% boron showed an improved glass-forming ability. A glassy Ni70Pd10P16B4 alloy rod with a diameter of 2.5 mm was prepared by a copper mold casting technique. This is the first time that a Ni-based bulk metallic glass with such an extremely high Ni content of 70 at% has been produced. The obtained glassy Ni70Pd10P16B4 alloy exhibited rather good mechanical properties and corrosion resistance.

  20. Preparation, thermal stability, and magnetic properties of Fe-Zr-Mo-W-B bulk metallic glass

    International Nuclear Information System (INIS)

    A bulk metallic glass (BMG) cylinder of Fe60Co8Zr10Mo5W2B15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (Tg), crystallization temperature (Tx), supercooled liquid region (ΔTx) between Tg and Tx, and reduced glass transition temperature Trg (Tg/Tm) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases α-Fe, ZrFe2, Fe3B, MoB2, Mo2FeB2, and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Moessbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. α-Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses

  1. Improvement of Plasticity of Ti-Based Bulk Metallic Glasses by Addition of Nb

    International Nuclear Information System (INIS)

    Ti-based bulk metallic glasses (Ti4oZr25Cu9Ni8Be18)100-xNbx with x = 0 to 5at.% are prepared by copper-mold casting. The glass formation ability is almost unchanged by addition of Nb. The compression plasticity is, however, apparently changed, from 3% at x = 0 to 13% at x = 3, about 330% increases at the strain rate of 1 × 10−4s−1. The increment of the plasticity can be attributed to the segregation of Nb in the area of shear bands during the compression processing. An effective way to increase the plasticity of Ti-based bulk metallic glasses is thus proposed. (cross-disciplinary physics and related areas of science and technology)

  2. Estimation of Gibbs free energy difference in Pd-based bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    Cai Anhui; Xiong Xiang; Liu Yong; Tan JingYing; Zhou Yong; An Weike

    2008-01-01

    A new thermodynamic expression for Gibbs free energy difference 4G between the under-cooled Iiquid and the corresponding crystals of bulk metallic glasses was derived.The newly proposed expression always gives results in fairly good agreement with experimental values over entire temperature range between the fusion temperature Tm and the glass transition temperature Tg of Pd40Ni40P20,Pd40Cu30Ni10P20 and Pd43Cu27Ni10P20,which possess different heat capacities.However,the TS and KN expressions cannot always provide results in good agreement with the experimental values.In addition.the deviations between the experimental values and the △G calculated by the proposed expression at Tg are smaller than those given by other expressions for all the bulk metallic glasses studied.

  3. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.;

    2002-01-01

    pressure effect on crystallization is studied by in situ high-pressure and high-temperature XRD using synchrotron radiation. Two crystallization temperatures, observed by in-situ XRD, behave differently with varying pressure. The onset crystallization temperature increases with pressure with a slope of 9......The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...

  4. Preparation, structure and properties of Fe-based bulk metallic glasses

    OpenAIRE

    R. Nowosielski; R. Babilas

    2010-01-01

    Purpose: The work presents preparation methods, structure characterization and chosen properties analysis of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe43Co14Ni14B20Si5Nb4 metallic glass in form of rings, plates and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) methods. The thermal properties of the glassy sa...

  5. Fe-based bulk metallic glasses prepared by centrifugal casting method

    OpenAIRE

    R. Babilas; R. Nowosielski

    2011-01-01

    Purpose: The work presents a casting method, structure characterization and analysis of chosen properties of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4, Fe36Co36B19Si5Nb4, Fe43Co14Ni14B20Si5Nb4 metallic glasses in form of rings. The amorphous structure of tested samples was examined by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) methods. The crystallization...

  6. Magnetic properties of Fe-Co-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Amorphous [(Fe1-xCox)75B20Si5]93Nb4Y3(x=0, 0.2 and 0.4) have been produced by water-cooled Cu-mold injection casting technique in cylindrical shape. Amorphous ribbon having the same composition have been produced by rapid quenching technique. The presence of an amorphous structure have been checked by means of X-ray diffraction measurements and differential scanning calorimetry. Magnetic hysteresis loops have been measured by means of vibrating sample magnetometer at a maximum field of 10 kOe. In addition, to study the frequency dependence of magnetic losses, hysteresis loops have been measured by a digital wattmeter. A critical analysis of the results obtained on both ribbons and bulk cylinder will be presented. The obtained data will be compared with the ones of Fe-based materials conventionally exploited in applications.

  7. Distribution of oxides in a Zr-Cu-Ni-Al-Nb-Si bulk metallic glass

    International Nuclear Information System (INIS)

    The course of oxide presence with distance from the sample surface and bonding partner was studied for the bulk metallic glass with the nominal composition Zr57.9Cu15.4Ni12.7Al10.2Nb2.8Si1 (at%) by X-ray photoelectron spectroscopy (XPS). Investigated specimens are taken from vacuum quench-cast rods subjected to oxidation at room temperature and atmosphere. Binding energies were determined in various depths using ion beam ablation of up to 100 nanometers. XPS spectra confirm oxidation primarily of the pure zirconium and aluminum constituents, all other peaks correspond to metallic bonds. While the surface area shows a passivating zirconia layer a few nanometers thick, oxygen is bonded predominantly with aluminum inside the bulk. Since the concentration of oxygen is a crucial factor in the crystallization behavior of bulk metallic glass forming liquids on basis of oxygen affine metals, so far only high purity materials were thought to be suitable. The findings in this study, however, are promising for alloys with industrial grade elements with sufficient glass forming ability. Comparisons of the alloy with differing oxygen content support the conclusion that aluminum acts as an appropriate scavenger for both adsorbed and large amounts of intrinsic oxygen in zirconium based amorphous metals.

  8. Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    In the present work we study the formation mechanism and crystallization behavior of Fe-based bulk metallic glasses influenced by the addition of rare-earth elements. Samples are characterized by conventional X-ray diffractometry, optical microscopy, and high-resolution field-emission-gun scanning and transmission electron microscopy. In the rare-earth-containing alloys, bulk metallic glasses are formed with populations of quenched-in nuclei. Consequently, crystallization on isothermal annealing occurs without any incubation period. This behavior, not typical of bulk metallic glasses in general, implies that in the rare-earth-containing alloys glass formation is possible only because of restricted crystal growth: both on cooling from the molten and on heating from the glassy state, growth of the primary χ-Fe36Cr12Mo10 crystals is too slow to be significant on a reasonable timescale. The low growth rate is connected with large inhomogeneous strain in the growing nanoparticles, while nucleation of eutectic colonies is hampered by slow diffusion of a rare-earth alloying element

  9. Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: ► Laser welding is introduced to weld Ti-based bulk metallic glass. ► No crystallization and defects are observed in the joint. ► The sound joint exhibits a high tensile strength of 1650 MPa, 93% of the base alloy. ► The mechanism of successful welding is discussed by means of numerical simulations. - Abstract: Ti-based bulk metallic glass (BMG) plates have been successfully welded together by laser welding process. The tensile strength of the welded sample reaches up to 93% of the base material. Based on calculations and numerical simulations, the mechanism of successful welding of the BMG has been discussed in terms of the thermal history of weld fusion zone (WFZ) and heat affected zone (HAZ).

  10. Rate Dependence of Serrated Flow and Its Effect on Shear Stability of Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    Bao-an SUN; Chain-tsuan LIU; Yong YANG

    2016-01-01

    The rate dependence of serrated flow and its effects on the stability of shear banding were systematically investigated in a prototypic bulk metallic glass.It was found that with the increase of external strain rate,the serra-ted flow is gradually suppressed and could completely disappear at a critical strain rate.The serration size,character-ized by the mean stress drop amplitude,decreases inversely with the strain rate,while the waiting time for serration decreases with the strain rate in a power-law manner.The rate dependence of the serrated flow has important effects on the dynamics and stability of shear banding process,and leads to an optimal plasticity achieved around the critical strain rate for the disappearance of serrated flow.These results are discussed and interpreted in terms of the mi-croscopic deformation theory and the stick-slip dynamics of shear banding for bulk metallic glasses.

  11. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    International Nuclear Information System (INIS)

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr55Cu30Ni5Al10 alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is important for future progress

  12. Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces.

    Science.gov (United States)

    Doubek, Gustavo; Sekol, Ryan C; Li, Jinyang; Ryu, Won-Hee; Gittleson, Forrest S; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; Bordeenithikasem, Punnathat; Kinser, Emily; Liu, Yanhui; Tong, Xiao; Osuji, Chinedum O; Schroers, Jan; Mukherjee, Sundeep; Taylor, André D

    2016-03-01

    Electrochemical devices such as fuel cells, electrolyzers, lithium-air batteries, and pseudocapacitors are expected to play a major role in energy conversion/storage in the near future. Here, it is demonstrated how desirable bulk metallic glass compositions can be obtained using a combinatorial approach and it is shown that these alloys can serve as a platform technology for a wide variety of electrochemical applications through several surface modification techniques. PMID:26689722

  13. Interactions between high temperature deformation and crystallization in zirconium based bulk metallic glasses

    OpenAIRE

    Gravier, Sébastien; Blandin, Jean-Jacques; Donnadieu, Patricia

    2008-01-01

    Abstract High temperature deformation of a ZrTiCuNiBe bulk metallic glass (BMG) is investigated by compression tests in the supercooled liquid region. When temperature is decreased or strain rate is increased, the amorphous alloy exhibits the usual Newtonian ? non Newtonian behavior transition. Owing to appropriate heat treatments, partially crystallized alloys are produced, the associated microstructures are characterized and the volume fractions of crystal are measured. The inter...

  14. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition region. Compression tests at different temperatures and strain rates have been conducted. The mechanical behavior is analyzed in the framework of the free volume model, taking into account the dependence of the flow defect concentration on deformation. The activation volume is evaluated and allows one to gather the viscosity data (for the different strain rates and temperatures) on a unique master curve. It is also shown that, due to the relation between flow defect concentration and free volume, it is not possible to deduce the equilibrium flow defect concentration directly from mechanical measurements. However, if this parameter is arbitrarily chosen, mechanical measurements give access to the other parameters of the model, these parameters for the alloy under investigation being of the same order of magnitude as those for other metallic glasses

  15. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    International Nuclear Information System (INIS)

    New magnesium-based bulk metallic glasses Mg60Cu30Y10 have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample

  16. Thermal stability and magnetocaloric properties of GdDyAlCo bulk metallic glasses

    International Nuclear Information System (INIS)

    Gd56-xDyxAl24Co20 (x = 16, 20 and 22) bulk metallic glasses (BMGs) alloys with a diameter of 2, 3 and 3 mm, respectively, were prepared by using copper mold casting. These alloys exhibit higher values of the glass transition temperature, crystallization temperature, and activation energy of the glass transition and crystallization, compared with those of other known rare-earth-based BMGs. A maximum magnetic entropy changes of 15.78 J/(kg K) is obtained in Gd40Dy16Al24Co20, which is the maximal among all the bulk metallic glasses, and is much larger than those of the known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 and pure Gd metal. All the three BMG alloys have a broader temperature range of the entropy change peak, resulting in larger refrigerate capacities (RC) than those of conventional crystalline materials. The excellent magnetocaloric properties combining with high thermal stability make them an attractive candidate for magnetic refrigerants in the temperature range of 20-100 K

  17. Temperature dependent shear band dynamics in a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    There is strong interest in determining the time scales involved in the shear banding process during plastic deformation of bulk metallic glasses. Knowing these time scales helps to understand shear banding in more detail, and may also answer the question of whether significant localised heating can occur in and near shear bands. In this study we investigated flow serrations, corresponding to discrete shear events, of a Zr52.2Ti5Cu17.9Ni14.6Al10 (Vit105) bulk metallic glass with respect to their stress drop and strain burst magnitude as well as their duration, as a function of temperature in the range of 60 C to -40 C. The results show that while the stress drop magnitude and the strain burst magnitude remain approximately constant with varying temperature, there is a strong temperature dependence of the shear event duration, ranging from approximately 1 ms at 60 C to 80 ms at -40 C. A calculation of the associated shear band velocities shows pronounced Arrhenius-type behaviour with an activation energy of 0.3 eV, in good agreement with recent potential energy landscape simulations. The strong temperature dependence of shear banding observed in this metallic glass is found to be analogous to the behaviour of other (non-metallic) amorphous materials.

  18. Fe-based bulk metallic glasses prepared by centrifugal casting method

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2011-10-01

    Full Text Available Purpose: The work presents a casting method, structure characterization and analysis of chosen properties of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4, Fe36Co36B19Si5Nb4, Fe43Co14Ni14B20Si5Nb4 metallic glasses in form of rings. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The crystallization behaviour of the studied alloys was examined by differential thermal analysis (DTA. The soft magnetic property examinations of tested materials contained initial magnetic permeability and measurements of magnetic permeability relaxation.Findings: The XRD and TEM investigations revealed that the studied as-cast bulk glassy samples in forms of ring were amorphous for all tested alloys. The SEM images showed that fractures of studied rings indicated two structurally different zones, which contained “river” patterns and “smooth” areas. The samples of studied alloys presented two stage crystallization process, which was observed for all tested rings with different thickness. The changes of crystallization temperatures versus the thickness of the glassy samples were stated. The magnetic permeability relaxation, which is directly proportional to the microvoids concentration in amorphous structure decreased with increase of sample thickness. These results could be assumed as the change of amorphous structure in function of thickness.Practical implications: The centrifugal casting method is very simple, useful and effective method to produce bulk amorphous materials in the form of rings or tubes.Originality/value: The preparation of bulk metallic glasses in the form of rings for three different Fe-based alloy systems is very important for the future progress in research and practical applications of iron-based bulk amorphous materials.

  19. Preparation and magnetic properties of FeCoHfMoBY bulk metallic glasses

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) Fe70-xCoxHf5Mo7B15Y3 (x = 0-20 at.%) with a diameter of 3 mm were synthesized by copper mold casting technique. The effect of Co substitution for Fe on the structure, thermal stability and the magnetic properties has been studied by X-ray diffraction (XRD), differential thermal analyzer (DTA) and vibrating sample magnetometer (VSM), respectively. It was found that the substitution of an appropriate amount of Co for Fe can improve the glass forming ability as indicated by the increase in the critical size for glass formation. The wide supercooled liquid region ΔTx (exceeding 50 K) and a high Tg (exceeding 870 K) demonstrated a high thermal stability of the present Fe-based BMGs. In addition, these bulk metallic glasses also exhibit good soft magnetic properties with relatively high saturation magnetization of 45.7-60.7 emu/g, and low coercivity of 1.0-3.6 Oe for the as-cast alloys at room temperature

  20. A new TiCuHfSi bulk metallic glass with potential for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: • A TiCuHfSi bulk metallic glass was designed based on binary deep eutectics. • The designed alloy exhibits excellent glass forming ability. • The alloy possesses excellent mechanical properties and corrosion resistance. • The BMG is promising in medical applications. - Abstract: A new Ti41.3Cu43.7Hf13.9Si1.1 bulk metallic glass (BMG), free of Ni, Al and Be elements, was designed using the proper mixing of binary deep eutectics. The alloy exhibited excellent glass forming ability (GFA) and could be cast into single glassy rod up to 3 mm in diameter by copper mould casting method. The appropriate atomic-size mismatch, the large negative heat of mixing among constituent elements, and the possible formation of glassy HfSiO4 facilitated its superior GFA. The BMG also showed good mechanical properties with fracture strength of 1685 MPa and Young’s modulus of 95 GPa as well as better corrosion resistance in both NaCl and Hank’s solutions, compared with pure Ti and Ti–6Al–4V alloy. The above results demonstrated that the developed BMG is promising in biomedical applications

  1. Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses

    International Nuclear Information System (INIS)

    The effects of adding small amount of aluminum to the binary Cu50Zr50 bulk metallic glass (BMG) on the thermal and mechanical properties were investigated. The Al addition was limited to 3 ≤ x ≤ 10 at.% in order to form fully amorphous bulk samples. Glassy rods of 3 mm diameter of these alloys were prepared by copper mold suction casting. The (Cu50Zr50)100-xAl x BMGs (x = 0 and 3 ≤ x ≤ 10 at.%) were characterized with differential scanning calorimetry (DSC), X-ray diffraction (XRD), Vickers microhardness test and nanoindentation, respectively. The glass transition temperatures, crystallization temperatures and super-cooled liquid regions of the specimens increased with increasing Al content. The microhardness of the specimens also increases with increasing Al content. Room temperature nanoindentation was carried out on the cross-section of the rods. The results showed that the nanohardness and creep displacement were dependent on the Al content

  2. Enhancement of plasticity of Fe-based bulk metallic glass by Ni substitution for Fe

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) (Fe1-xNix)71Mo5P12C10B2 (x = 0, 0.1 and 0.2) with a diameter of 3 mm were synthesized by copper mold casting. The effect of Ni substitution for Fe on the structure, thermal and mechanical properties has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and compressive testing. It was found that the substitution of Ni for Fe enhances the glass forming ability, and improves the plasticity of Fe71Mo5P12C10B2 BMG as indicated by the increase in the plastic strain from 3.1% (x = 0) to 5.2% (x = 0.2). The improvement of the plasticity is discussed in term of the reduction of glass transition temperature and the supercooled liquid region due to the substitution of Ni for Fe.

  3. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  4. Preparation, structure and properties of Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-06-01

    Full Text Available Purpose: The work presents preparation methods, structure characterization and chosen properties analysis of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe43Co14Ni14B20Si5Nb4 metallic glass in form of rings, plates and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples was measured using differential scanning calorimetry (DSC. The soft magnetic properties examination of tested material contained coercive force, initial magnetic permeability and magnetic permeability relaxation measurements. Findings: The XRD and TEM investigations revealed that the studied as-cast samples were amorphous. Broad diffraction halo is typical for metallic amorphous structures that have a large degree of short-range order. The characteristics of the fractured surfaces showed different zones, which might correspond with different amorphous structures of studied materials. The temperature interval of the supercooled liquid region (ΔTx defined by the difference between Tg and Tx, is as large as 56 K for the rod with diameter of 3 mm. Differences in coercivity and magnetic permeability between samples with different thickness might be resulted by some difference of amorphous structure.Practical implications: The centrifugal casting method and the pressure die casting method are useful to produce bulk amorphous materials in form of rings, plats and rods.Originality/value: The preparation of studied Fe-based bulk metallic glass in form of rings, plates and rods is important for the future progress in research and practical application of that glassy materials.

  5. Fatigue and corrosion of a Pd-based bulk metallic glass in various environments

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) possess attractive properties for biomedical applications, including high strength, hardness and corrosion resistance, and low elastic modulus. In this study, we conduct rotating beam fatigue tests on Pd43Ni10Cu27P20 bulk metallic glass in air and Eagle's medium (EM) and measure the corrosive resistance of the alloy by submersion in acidic and basic electrolytes. Fatigue results are compared to those of commonly used biometals in EM. Rotating beam fatigue tests conducted in air and in Eagle's medium show no deterioration in fatigue properties in this potentially corrosive environment out to 107 cycles. A specimen size effect is revealed when comparing fatigue results to those of a similar alloy of larger minimum dimensions. Corrosion tests show that the alloy is not affected by highly basic (NaOH) or saline (NaCl) solutions, nor in EM, and is affected by chlorinated acidic solutions (HCl) to a lesser extent than other commonly used biometals. Corrosion in HCl initiates with selective leaching of late transition metals, followed by dissolution of Pd. - Highlights: • Fatigue limit of 600 MPa with no deterioration when exposed to Eagle's medium. • Fatigue shows sample size effect. • Pd-based BMG is unaffected by saline or strong basic solutions. • Pd-based BMG is substantially more resistant to chlorinated acids than CoCrMo, 316 L Stainless, or Ti6Al4V alloys. • Corrosion shows selective leaching of late transition metals, followed by Pd and P

  6. Elastic properties of superconducting bulk metallic glasses; Elastische Eigenschaften von supraleitenden massiven metallischen Glaesern

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Marius

    2015-07-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  7. Characterizing thermodynamic properties of Ti–Cu–Ni–Zr bulk metallic glasses by hyperbolic expression

    International Nuclear Information System (INIS)

    Highlights: ► A hyperbolic expression of ΔCp is deduced based on the hole theory of liquid. ► Novel expressions of the ΔG, ΔH, and ΔS are deduced. ► The hyperbolic expression of ΔCp provides a mathematical model for the elucidation of GFA. - Abstract: The hyperbolic expression of specific heat difference, ΔCp, in the supercooled liquid and corresponding crystalline phase of bulk metallic glasses can be deduced based on the expression of ΔCp in the hole theory of the liquid state. According to the hyperbolic expression of ΔCp, novel expressions of the Gibbs free energy difference, ΔG, enthalpy difference, ΔH, and entropy difference, ΔS, between the supercooled liquid and corresponding crystalline phase may be estimated. The experimentally measured thermodynamic parameters of Ti35.37Cu45.11Ni8.88Zr10.64 and Ti37.65Cu43.25Ni9.6Zr9.5 bulk metallic glasses exhibit a perfect fit with these novel expressions for ΔG, ΔH and ΔS. This finding clearly suggests that the hyperbolic expression of ΔCp provides an optimum mathematical model for the elucidation of glass forming ability, with increased accuracy and ease of modeling compared to previously reported expressions.

  8. A novel Ho 36Dy 20Al 24Co 20 bulk metallic glass with large magnetocaloric effect

    Science.gov (United States)

    Liang, L.; Hui, X.; Zhang, C. M.; Lu, Z. P.; Chen, G. L.

    2008-04-01

    A new heavy rare-earth-based Ho 36Dy 20Al 24Co 20 bulk metallic glass (BMG) has been prepared by a copper mold casting. A maximum magnetic entropy change of 11.77 J/kg K has been measured in Ho 36Dy 20Al 24Co 20 bulk metallic glass under a magnetic field of 5 Tesla, which is larger than that of the early reported Ho-based bulk metallic glass Ho 30Y 26Al 24Co 20. The half-maximum temperature range of the entropy change peak is as large as 40 K, leading to a superior refrigerant capacity to those of the Gd 5Si 2Ge 2 and Gd 5Si 2Ge 1.9Fe 0.1 crystalline compounds. The excellent magnetocaloric effect together with the unique properties of metallic glass makes this alloy a promising candidate for a magnetic refrigerant in the temperature range below 50 K.

  9. Crystallization mechanism of CeAlFeCo bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    王志新; 卢金斌; 席艳君

    2010-01-01

    Crystallization behaviors of Ce60Al15Fe5+xCo20-x(x=0,5,10) bulk metallic glasses(BMGs) were studied by means of differential scanning calorimeter(DSC) and X-ray diffraction(XRD).The crystallization processes of different samples were simulated by JMA equation.Experimental results demonstrated that incubation and crystallization time increased with decreasing isothermal temperature for the same sample.The crystallization mechanism of CeAlFeCo BMGs was discussed.

  10. Discrete drops in the electrical contact resistance during nanoindentation of a bulk metallic glass

    Science.gov (United States)

    Singh, Gaurav; Narayan, R. L.; Asiri, A. M.; Ramamurty, U.

    2016-05-01

    Simultaneous measurement of the electrical contact resistance (ECR) during nanoindentation of a Pd-based bulk metallic glass (BMG) shows discontinuities in the current during the loading segment. Through an analysis of the effective change in the contact area that occurs due to the plastic flow via shear banding, we show that the current surges, which are synchronous with the displacement bursts, are associated with shear band nucleation and/or propagation. The potential of nano-ECR measurements for monitoring plastic events in BMGs is discussed.

  11. Bulk and microscale compressive behavior of a Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Y.H.; Lee, C.J.; Cheng, Y.T.; Chou, H.S.; Chen, H.M. [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Du, X.H. [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Materials Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034, PR China (China); Chang, C.I. [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Huang, J.C. [Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)], E-mail: jacobc@mail.nsysu.edu.tw; Jian, S.R.; Jang, J.S.C. [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Nieh, T.G. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200 (United States)

    2008-05-15

    Micropillars with diameters of 3.8, 1 and 0.7 {mu}m were fabricated from a two-phase Zr-based metallic glass using focus ion beam (FIB), and then tested in compression at strain rates from 1 x 10{sup -4} to 1 x 10{sup -2} s{sup -1}. The apparent yield strength of the micropillars ranges from 1992 to 2972 MPa, or 25-86% increase over that of the bulk specimens. This strength increase can be rationalized by the Weibull statistics for brittle materials.

  12. Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature

    OpenAIRE

    Tan, J.; Wang, G.; Z. Y. LIU; Bednarčík, J.; Gao, Yan; Zhai, Q. J.; Mattern, N.; Eckert, J.

    2014-01-01

    A model Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) is selected to explore the structural evolution on the atomic scale with decreasing temperature down to cryogenic level using high energy X-ray synchrotron radiation. We discover a close correlation between the atomic structure evolution and the strength of the BMG and find out that the activation energy increment of the concordantly atomic shifting at lower temperature is the main factor influencing the strength. Our res...

  13. Enhancement of room-temperature plasticity in a bulk metallic glass by finely dispersed porosity

    International Nuclear Information System (INIS)

    Melts of Pd42.5Cu30Ni7.5P20 (at. %) held under pressurized hydrogen are cast into bulk metallic glass (BMG) rods with fine (20-30 μm diameter) pores uniformly dispersed. The low overall porosities (-3, compared to 16 MJ m-3 for the pore-free BMG. The pores force the proliferation of shear bands below the overall failure stress, a process of interest for toughening BMGs, materials for which shear localization in deformation restricts structural applications

  14. Local atomic arrangements and electronic structure of Zr-Ni-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Internal energy of a bulk metallic glass (BMG) was investigated by making full use of its relevant crystals. The local atomic arrangements commonly existing both in the BMG and the relevant crystals were identified using experimentally determined radial distribution functions. The electronic structure of the relevant crystals was investigated by discrete variational X alpha (DVXα) cluster calculations and high-resolution photoemission spectroscopy. The present analysis on the electronic structure revealed that the simultaneous formations of characteristic cluster levels and a pseudogap at the Fermi level effectively reduce the internal energy to stabilize BMGs

  15. Composition mediated serration dynamics in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    The composition mediated serration dynamics in Zr-based bulk metallic glasses (BMGs) is investigated by statistics analyses of the elastic-energy density, and free volumes during shear-banding are beneficial to understand serrated-flow behavior. The amplitude and elastic-energy density display a gradually increasing and then decreasing trend with increasing the content of Zr. It is based on the free-volume theory describing the atomic-level structure of ternary Zr-Cu-Al BMGs. The good agreement between the molecular dynamics simulation and experimental results provides evidence for the variation of free volumes as the elementary mechanism of composition mediated serration dynamics

  16. Composition mediated serration dynamics in Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Qiao, J. W., E-mail: qiaojunwei@gmail.com, E-mail: mwchen@wpi-aimr.tohoku.ac.jp; Wang, B. C.; Xu, B. S. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tian, H. [College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Sun, B. A. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong); Chen, M. W., E-mail: qiaojunwei@gmail.com, E-mail: mwchen@wpi-aimr.tohoku.ac.jp [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-11-16

    The composition mediated serration dynamics in Zr-based bulk metallic glasses (BMGs) is investigated by statistics analyses of the elastic-energy density, and free volumes during shear-banding are beneficial to understand serrated-flow behavior. The amplitude and elastic-energy density display a gradually increasing and then decreasing trend with increasing the content of Zr. It is based on the free-volume theory describing the atomic-level structure of ternary Zr-Cu-Al BMGs. The good agreement between the molecular dynamics simulation and experimental results provides evidence for the variation of free volumes as the elementary mechanism of composition mediated serration dynamics.

  17. Bulk and microscale compressive behavior of a Zr-based metallic glass

    International Nuclear Information System (INIS)

    Micropillars with diameters of 3.8, 1 and 0.7 μm were fabricated from a two-phase Zr-based metallic glass using focus ion beam (FIB), and then tested in compression at strain rates from 1 x 10-4 to 1 x 10-2 s-1. The apparent yield strength of the micropillars ranges from 1992 to 2972 MPa, or 25-86% increase over that of the bulk specimens. This strength increase can be rationalized by the Weibull statistics for brittle materials

  18. Exponential decay of shearing stress during jerky flows in a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    J. W. Qiao

    2013-03-01

    Full Text Available Presently, an exponential decay of shearing stresses with the time during jerky flows in a Zr-based bulk metallic glass is revealed. The flow stresses with the time satisfy the following equation: σ = A · e−B · x, where A = −158.24*exp ( − N/47.60 + 1939.63 (N = 1, 2, 3…, and the mean value of obtained B is −0.13 with a Normal distribution. During jerky flows, the viscous shearing layer is formed, and the exponential decay of shear banding is present. The evolvement of shear bands is explained by the consumption of free volumes during flows.

  19. Electronic structure of Zr-TM-Al (TM=Ni, Cu) bulk metallic glasses

    International Nuclear Information System (INIS)

    The valence-band electronic structures of Zr-TM-Al (TM=Ni, Cu) bulk metallic glasses have been investigated by means of synchrotron-radiation photoelectron spectroscopy. Their valence-band spectra show Zr 4d-, Ni 3d- and Cu 3d-derived bands at the binding energies of 0.5, 2.0 and 3.6 eV, respectively. The Zr 4d-derived band becomes prominent around the excitation photon energy hv of 40 eV. It is found that the wider the supercooled liquid region ΔTx=Tx-Tg (Tx: the crystallization temperature, Tg: the glass transition temperature), the larger the peak binding energy of the Zr 4d-derived band becomes. For the photoexcitation at hv - 18 eV, where the Zr 4d states less contribute to the spectrum, the spectral intensity reduces towards the Fermi level. This may imply the formation of a pseudogap in the sp bands. It is also found that the width of the pseudogap for the occupied states becomes wider as ΔTx is increased. These spectral findings suggest that both the strength of the chemical bonding around Zr and the reduction in the electronic energy because of the pseudogap formation and the chemical bonding contribute to the large glass formation ability of the Zr-Cu-Al metallic glasses. (author)

  20. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment

    International Nuclear Information System (INIS)

    The formation of a Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 bulk metallic glass (BMG) was attempted in low vacuum environment and in air using commercial raw materials. The glass forming ability of the Fe-based alloys was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It was found that cylindric rods with diameters ranging from 10 mm to 5 mm could be successfully fabricated by copper-mold casting in the pressures from 1.5 Pa to 105 Pa (105 Pa = 1 atm). All BMGs exhibit a distinct glass transition and wide supercooled liquid region. The preparation condition seems not significantly affected by the thermodynamic parameters of BMG, such as supercooled liquid region, glass transition temperature and melting process. The oxygen content of the alloys prepared in different vacuum conditions was measured by a LECO oxygen analyzer, which revealed that the oxygen content was less than 100 ppm for all BMGs prepared, even in air. The good glass forming ability and excellent oxidation resistance for the present Fe-based alloy are discussed

  1. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    Science.gov (United States)

    Xing, P. F.; Zhuang, Y. X.; Wang, W. H.; Gerward, L.; Jiang, J. Z.

    2002-04-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using the Kissinger method. Results indicate that this glass crystallizes by a three-stage reaction: (1) phase separation and primary crystallization of glass, (2) formation of intermetallic compounds, and (3) decomposition of intermetallic compounds and crystallization of residual amorphous phase. The pressure effect on crystallization is studied by in situ high-pressure and high-temperature XRD using synchrotron radiation. Two crystallization temperatures, observed by in-situ XRD, behave differently with varying pressure. The onset crystallization temperature increases with pressure with a slope of 9.5 K/GPa in the range of 0 to 4.4 GPa, while the another crystallization temperature keeps almost unchanged in the applied pressure range. The results are attributed to the competing processes between the thermodynamic potential barrier and the diffusion activation energy under pressure.

  2. Gd-Dy-Al-Co bulk metallic glasses with large magnetic entropy change and refrigeration capacity

    International Nuclear Information System (INIS)

    Novel Gd56-xDyxAl24Co20 (x = 0, 14, 17) bulk metallic glasses (BMGs) were prepared by copper mold casting. They exhibit magnetic entropy changes (ΔSM) comparable to that of Gd53Al24Co20Zr3 BMG and crystalline Gd. Moreover, these glassy alloys have broad entropy change peaks, resulting in the refrigeration capacities of 751.4 J kg-1, 702.8 J kg-1, and 682.3 J kg-1 for Gd56Al24Co20, Gd42Dy14Al24Co20, and Gd39Dy17Al24Co20 at 5 Tesla. The large magnetocaloric effect makes these BMGs attractive candidates as magnetic refrigerant in temperature range of 50-140 K. It is also found that the Curie temperature of this kind of metallic glass linearly declines with the increase of Dy. The ΔSM of metallic glasses reaches maximum at certain content of Dy. These findings are expected to provide a meaningful guidance for the composition design of rare earth based glassy alloys for refrigeration application.

  3. Influence of nickel on structure and hardness of Fe-Co bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-01-01

    Full Text Available Purpose: In the present paper, influence of Ni addition on structure and hardness Fe-based bulk metallic glass were investigated.Design/methodology/approach: The studies were performed on Fe36+xCo36-x-yNiyB19.2Si4.8Nb4 ( x= 0;1, y=0;10;15 glassy alloy in a form of rods with diameter up to 5 mm. The tests, carried out to obtain amorphous metallic glasses, were realized with the use pressure die casting method. The system includes a copper mould, high frequency power supply, quartz nozzle and a source of inert gas as argon. The following experimental techniques were used for the test of structure: X-ray diffraction (XRD phase analysis and scanning electron microscopy (SEM. Microhardness was examined by Vickers diamond testing machine.Findings: The X-ray diffraction revealed that all samples with thickness 2 mm were amorphous. The structural studies revealed that amorphous structure depended on thickness and nickel contents in a preliminary alloy.Research limitations/implications: The relationship between structure and microhardness can be useful for practical application of these alloys.Practical implications: The Fe-based bulk metallic glasses attracted great interest for a variety of application fields, for example structural materials, electric applications, precision machinery materials. These amorphous alloys exhibit high strength, a high elastic strain limit, high fracture toughness, and other useful mechanical properties which are attractive to many engineering applications.Originality/value: The originality of this paper are studies of changes of structure and hardness of Fe36+xCo36-x-yNiyB19.2Si4.8Nb4 ( x= 0;1, y=0;10;15 mainly depending on Ni addition in this alloy

  4. Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating

    International Nuclear Information System (INIS)

    We demonstrate, for the first time, that a thin, strong, ductile, and adhesive coating renders bulk metallic glasses (BMGs) bendable. The bending ductility of 3 mm thick BMGs, Zr50Cu30Al10Ni10 in this case, can be dramatically enhanced from ∼0% to ∼13.7% by the deposition of a thin bilayer film on the tensile side of the BMG sample. The bilayer, consisting of a 25 nm thick Ti adhesive layer with a 200 nm thick metallic glass (MG) overlayer, exhibits the required synergistic combination of good adhesion, high strength, and ductility compared with other single-layer films examined (Ti, TiN, and MG). Cross-sectional scanning and transmission electron microscopy, together with finite element modeling, reveal that the bilayer coating absorbs deformation while allowing more homogeneous formation of a high density of smaller shear bands at the bilayer/BMG interface. The bilayer coating, in turn, covers surface weak points and minimizes the formation of localized shear bands which lead to catastrophic failure under bending. As a result, the average shear-band spacing in bilayer-coated BMGs is small, 54 μm, and approximately equal to that found in bendable, 450 μm thick, MG ribbons. Thus, coated BMGs can accommodate large strains and overcome the MG size effect, without sacrificing their extraordinary mechanical properties. Our results for both coated and uncoated BMGs, as well as previously reported results for uncoated metallic glasses, with thicknesses ranging from ribbons to thin plates to bulk, are well described by a simple power law relationship between plastic strain to failure and shear band spacing. This scaling law may be useful in guiding future experiments toward producing more flexible BMGs.

  5. Analysis of crystallization process of selected Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    P. Sakiewicz

    2012-12-01

    Full Text Available Purpose: The paper mainly aims to present the influence of annealing temperature on structural changes and magnetic properties of selected Fe-based bulk metallic glasses with chemical composition of Fe43Co14Ni14B20Si5Nb4 (at.%.Design/methodology/approach: The investigated samples were cast in form of the rods with diameter of 1.5 mm by the pressure die casting method. The structure changes in function of annealing temperature were examined by X-ray diffraction (XRD and transmission electron microscopy (TEM methods. The crystallization behaviour of the studied alloy was also examined by differential scanning calorimetry (DSC. Magnetic measurements of annealed samples included the initial magnetic permeability and the magnetic permeability relaxation measurements.Findings: The annealing process at temperature range from 373 to 773 K caused a structural relaxation of tested material, which caused the atomic rearrangements and changes of physical properties in relation to as-cast state. The annealing at higher temperatures (823-923 K obviously caused a formation of α-Fe and iron borides crystalline phases. The increasing of annealing temperature significantly improved soft magnetic properties of examined alloy by increase the initial magnetic permeability and decrease the magnetic permeability relaxation.Practical implications: The investigation of the crystallization process of Fe-based metallic glasses is important for understanding the mechanisms of forming controlled microstructures of these materials with specific physical properties.Originality/value: A proper understanding of crystallization process of Fe-based bulk metallic glasses is still novel scientific problem.

  6. Hot Embossing of Zr-Based Bulk Metallic Glass Micropart Using Stacked Silicon Dies

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2015-01-01

    Full Text Available We demonstrated hot embossing of Zr65Cu17.5Ni10Al7.5 bulk metallic glass micropart using stacked silicon dies. Finite element simulation was carried out, suggesting that it could reduce the stress below 400 MPa in the silicon dies and enhance the durability of the brittle silicon dies when using varying load mode (100 N for 60 s and then 400 N for 60 s compared with using constant load mode (200 N for 120 s. A micropart with good appearance was fabricated under the varying load, and no silicon die failure was observed, in agreement with the simulation. The amorphous state of the micropart was confirmed by differential scanning calorimeter and X-ray diffraction, and the nanohardness and Young’s modulus were validated close to those of the as-cast BMG rods by nanoindentation tests. The results proved that it was feasible to adopt the varying load mode to fabricate three-dimensional Zr-based bulk metallic glass microparts by hot embossing process.

  7. Hypervelocity impact on Zr51Ti5Ni10Cu25Al9 bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: → Hypervelocity impact experiments were performed on a bulk metallic glass. → Morphology of the bullet hole presents three different regions. → The post-impact samples keep glassy structure. → Mechanical properties of the post-impact samples were studied by nanoindentation. → Mechanical properties of the post-impact samples were discussed by free-volume model. - Abstract: In this study, the hypervelocity impact experiments were performed on Zr51Ti5Ni10Cu25Al9 bulk metallic glass using a two-stage light gas gun. The morphologies of the bullet holes exhibit three different regions: melting area, vein-pattern area, and radiating core feature area, suggesting that various regions experience different stress states during the hypervelocity impact. For the post-impact samples, the nano-hardness increases and plastic deformability decreases both with the increase in the distance from the bullet hole and with the decrease in the impact velocity, which is discussed by means of spherical stress wave theory and free-volume model.

  8. Isothermal internal friction behaviour of a Zr based bulk metallic glass with large supercooled liquid region

    International Nuclear Information System (INIS)

    In this paper, the internal friction behaviour of Zr-Ti-Cu-Ni-Be bulk metallic glass (BMG) containing 2 at% Fe at elevated temperatures has been studied in isothermal dynamic mechanical analysis experiments. The experiments lead to the determination of metastable equilibrium internal friction Qe-1, as a function of temperature, which can be well described by the Maxwell model with viscosity, η(T), following a Vogel-Fulcher-Tammann (VFT) relation or Arrehnius law. Comparison with the Zr-Ti-Cu-Ni-Be glass-forming liquid shows that a small addition of Fe results in a stronger liquid behaviour of the alloy, exhibiting a higher strength parameter as well as lower VFT temperature and therefore correlates better glass forming ability and thermal stability. From the isothermal internal friction data, the activation energies for viscous flow and primary crystallization of the Zr based supercooled metallic liquid are also derived. It is found that the former is comparable to the activation energy controlling the diffusion process of atoms, e.g. the Ni element of medium size and higher mobility among the components of this alloy, while the latter to that of atoms, e.g. the Ti element of larger size and lower mobility. Thus, it is proposed that both isothermal viscous flow and primary crystallization of the alloy in the supercooleld liquid region are atom diffusion-controlled processes. However, the dominating atomic species are different from each other in the multicomponent Zr based BMG

  9. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    A Ti33Cu47Zr9Ni6Sn2Si1Nb2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti33Cu47Zr11Ni6Sn2Si1 alloy. The glass forming ability Ti33Cu47Zr9Ni6Sn2Si1Nb2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti33Cu47Zr9Ni6Sn2Si1Nb2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti33Cu47Zr9Ni6Sn2Si1Nb2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti33Cu47Zr9Ni6Sn2Si1Nb2 BMG compared to 0.15% for Ti33Cu47Zr11Ni6Sn2Si1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti33Cu47Zr9Ni6Sn2Si1Nb2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  10. Bulk Metallic Glasses and Their Composites: A Brief History of Diverging Fields

    Directory of Open Access Journals (Sweden)

    Douglas C. Hofmann

    2013-01-01

    Full Text Available Bulk metallic glasses (BMGs and their derivative metal matrix composites (BMGMCs are emerging high-performance engineering materials that are on the precipice of widespread commercialization. This review article discusses the origin of these materials and how their applications and research focus have divided into two distinct fields, one primarily focused on the plastic-like processability of BMGs and the other on the enhanced fracture mechanics of BMGMCs. Although the materials are of similar composition and origin, it is argued that their implementation will be widely varying due to their different processing requirements and intended uses. BMGs will likely find use as plastic-replacement components in cosmetic applications (e.g., watches, cell phones, biomedical implants while BMGMCs will be used in structural applications (e.g., golf clubs, hardware for defense, energy absorbing structures.

  11. Fatigue and corrosion of a Pd-based bulk metallic glass in various environments

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, L.Y. [East Los Angeles College, Monterey Park, CA 91754 (United States); Roberts, S.N. [Keck Laboratory of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Baca, N. [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330 (United States); Wiest, A. [Naval Surface Warfare Center, Norco, CA (United States); Garrett, S.J. [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330 (United States); Conner, R.D., E-mail: rdconner@csun.edu [Department of Manufacturing Systems Engineering and Management, California State University Northridge, 18111 Nordhoff St., Mail Code 8295, Northridge, CA 91330 (United States)

    2013-10-15

    Bulk metallic glasses (BMGs) possess attractive properties for biomedical applications, including high strength, hardness and corrosion resistance, and low elastic modulus. In this study, we conduct rotating beam fatigue tests on Pd{sub 43}Ni{sub 10}Cu{sub 27}P{sub 20} bulk metallic glass in air and Eagle's medium (EM) and measure the corrosive resistance of the alloy by submersion in acidic and basic electrolytes. Fatigue results are compared to those of commonly used biometals in EM. Rotating beam fatigue tests conducted in air and in Eagle's medium show no deterioration in fatigue properties in this potentially corrosive environment out to 10{sup 7} cycles. A specimen size effect is revealed when comparing fatigue results to those of a similar alloy of larger minimum dimensions. Corrosion tests show that the alloy is not affected by highly basic (NaOH) or saline (NaCl) solutions, nor in EM, and is affected by chlorinated acidic solutions (HCl) to a lesser extent than other commonly used biometals. Corrosion in HCl initiates with selective leaching of late transition metals, followed by dissolution of Pd. - Highlights: • Fatigue limit of 600 MPa with no deterioration when exposed to Eagle's medium. • Fatigue shows sample size effect. • Pd-based BMG is unaffected by saline or strong basic solutions. • Pd-based BMG is substantially more resistant to chlorinated acids than CoCrMo, 316 L Stainless, or Ti6Al4V alloys. • Corrosion shows selective leaching of late transition metals, followed by Pd and P.

  12. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.; Jiang, Jianzhong

    2005-01-01

    Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation is...... observed in the glassy matrix when the thickness reduction exceeds 89%. Once the phase separation occurs, the microhardness of the specimen increases drastically, indicating the existence of work hardening by severe plastic deformation of the metallic glass....

  13. Plastic deformability and precipitation of nanocrystallites during compression for a Cu-Zr-Ti-Sn bulk metallic glass

    International Nuclear Information System (INIS)

    (Cu0.5Zr0.425Ti0.075)99Sn1 bulk metallic glass with a glass transition temperature of 683 K and a supercooled liquid region of 47 K was synthesized by copper mold casting. The bulk glassy alloy exhibits high strength of 1810 MPa and superior plasticity in uniaxial compression at ambient temperature. High resolution transmission electron microscopy for the bulk glassy sample subject to a plastic strain of 3% shows the formation of nanocrystallites in the glassy matrix. The plastic deformability of the (Cu0.5Zr0.425Ti0.075)99Sn1 bulk metallic glass is attributed to the in situ precipitation of nanocrystallites during the compression

  14. Deformation behaviour of rapidly solidified and bulk Zr based metallic glasses by ball impression testing

    International Nuclear Information System (INIS)

    In this study the deformation characteristics of rapidly solidified Zr-Ni alloys and Zr56.26Al9.7Cu17.46Ni13.58Nb3 bulk metallic glass are compared in terms of shear band formation behaviour. The rapidly solidified alloys have been melt spun under conditions which have yielded partly crystalline and fully amorphous ribbons. The deformation of rapidly solidified alloys was carried out in tension and bending where as that of the bulk glass has been examined by ball indentation. The structure of the defects responsible for deformation viz, the shear bands has been investigated by conventional and high resolution transmission electron microscopy in order to understand the structure of the shear bands. A comparison of the structure of the shear bands of the two types of alloys has been carried out. The role of the crystalline particles on the deformation behaviour and their interaction with the shear bands has been examined in case of both types of materials using transmission electron microscopy. The effect of the shear bands on the crystallization process in either types of material has also been examined. (author)

  15. Superplasticity and structure of bulk metallic glass vit-1 by tensile plastic deformation in the supercooled liquid region

    International Nuclear Information System (INIS)

    It was investigated by tensile plastic deformation behavior of metallic glasses bulk (Zr41.25Ti13.75Ni10Cu12.5Be22.5) in the supercooled liquid region at different strain rates and temperatures. When the temperature rises to a value of 675 K test, which is near the crystallization temperature of the glass and decreasing the speed on the curves of test strain appears more pronounced hardening sites that suggest that under the action of deformation in a homogeneous vitreous material falls reinforcing particles of crystalline phases. Choosing the temperature-strain rate conditions of the metallic glass to a supercooled liquid region can be deformed samples up to several hundred percent to obtain a sample of the original material structure of the metallic glass, or a composite of glass and metal nanocrystalline secretions

  16. Influences of ion implantation on non-isothermal crystallization behaviors of bulk metallic glass

    International Nuclear Information System (INIS)

    A plate-like Zr-based bulk metallic glass (BMG) was prepared by using a copper mold suction casting and an X-ray diffractometer (XRD) was utilized to determine its structure. Co ion implantation was carried out in a MEVVA source system. The influences of Co ion implantation on thermal stabilities and non-isothermal crystallization behaviors of the BMG were studied via a differential scanning calorimeter (DSC). The results show that Co ion implantation lowered the BMG's glass transition and crystallization onset temperatures, meanwhile, enhanced its super-cooled liquid regions. After Co ion implantation, crystallization behavior of the BMG changed from a single-stage precipitation process to a two-stage crystallization precipitation process. The apparent activation energies for glass transition and crystallization were enhanced. The crystallization process of the as-implanted specimen was relatively laggard compared to that of the as-cast one. The crystallization of the latter was typical nucleation and growth mechanism, while that of the former was interaction of annihilation of the free volumes, reduction of voids, short-range rearrangement caused by high energy implanted Co ions, various unknown complicated energy deliveries as well as nucleation and growth of crystalline grains.

  17. Effect of Ni addition on glass forming ability and thermal stability of Nd-Fe-Al-Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    (Nd60Fe30Al10)100-xNi x (where x = 0, 3, 5, 8 and 10 at%) alloy cylinders with a diameter of 3 mm and a length of 55 mm were prepared by copper mold casting. The effect of Ni addition on glass forming ability (GFA) and thermal stability of Nd-based alloy was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It was found that a bulk metallic glass (BMG) composite with a small amount of primary crystallites in the amorphous matrix is formed without Ni addition, and the proportion of crystallites decreases with an increase in the amount of Ni. The (Nd60Fe30Al10)92Ni8 alloy exhibits the best GFA even though there is no apparent glass transition and supercooled liquid region. It is interesting to note that the main melting temperature of the (Nd60Fe30Al10)92Ni8 alloy is lower than its crystallization temperature, resulting in the value of the nominal reduced crystallization temperature T r (=T x/T m) being larger than 1.0. The separation of amorphous phases with different thermal stabilities is believed to be one of the reasons for the anomalous phenomenon. The high GFA of the alloy may be explained in terms of valence concentration and structural stability of the amorphous phase

  18. Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses

    International Nuclear Information System (INIS)

    The glass-formation range of bulk metallic glasses (BMGs) based on lanthanum and cerium was pinpointed in the La-Al-Co, Ce-Al-Co and pseudo-ternary (La-Ce)-Al-Co systems, respectively, by copper mold casting. Through the stepwise substitution of La for solvent Ce in (La xCe1-x)65Al10Co25 alloys (0 0.7Ce0.3)65Al10Co25 alloy can be successfully produced up to 25 mm in diameter by tilt-pour casting. Compared with the glass-forming ability (GFA) of single-lanthanide-based alloys, La65Al10Co25 and Ce65Al10Co25, the coexistence of La and Ce with similar atomic size and various valence electronic structure obviously improves the GFA of (La xCe1-x)65Al10Co25 BMGs, and this cannot be explained by the conventional GFA criteria for BMGs, e.g. atomic size mismatch and negative heats of mixing. A thermodynamic model was proposed to evaluate this substitution effect, which gives a reasonable explanation for the obvious improvement of GFA induced by the coexistence of similar atoms

  19. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    A family of Mn-rich bulk metallic glasses (BMGs) was developed through the similar solvent elements (SSE) substitution of Mn for Fe in (MnxFe80−x)P10B7C3 alloys. The effect of the SSE substitution on glass formation, thermal stability, elastic constants, mechanical properties, fracture morphologies, Weibull modulus and indentation fracture toughness was discussed. A thermodynamics analysis provided by Battezzati et al. (L. Battezzati, E. Garrone, Z. Metallkd. 75 (1984) 305–310) was adopted to explain the compositional dependence of the glass-forming ability (GFA). The elastic moduli follow roughly linear correlations with the substitution concentration of Mn in (MnxFe80−x)P10B7C3 BMGs. The introduction of Mn to replace Fe significantly decreases the plasticity of the resulting BMGs and the Weibull modulus of the fracture strength. A super-brittle Mn-based BMGs of (Mn55Fe25)P10B7C3 BMGs were found with the indentation fracture toughness (Kc) of 1.91±0.04 MPa m1/2, the lowest value among all kinds of BMGs so far. The atomic and electronic structure of the selected BMGs were simulated by the first principles molecular dynamics calculations based on density functional theory, which provided a possible understanding of the brittleness caused by the similar chemical element replacement of Mn for Fe

  20. Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass.

    Science.gov (United States)

    Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua

    2016-01-01

    The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the "work softening" behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264

  1. Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass

    Science.gov (United States)

    Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua

    2016-02-01

    The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses.

  2. Fatigue initiation and propagation behavior in bulk-metallic glasses under a bending load

    Science.gov (United States)

    Wang, Gongyao; Liaw, Peter K.; Jin, Xiaoqing; Yokoyama, Yoshihiko; Huang, E.-Wen; Jiang, Feng; Keer, Leon M.; Inoue, Akihisa

    2010-12-01

    Understanding how to predict the fatigue lifetimes of bulk-metallic glass (BMG) materials is crucially important for their selection as structural alloys. In our paper, the nature of likely fatigue mechanisms for BMGs is revealed. Fatigue cracks, arising from machining/polishing damage, were experimentally observed to initiate from shear bands near defects. At the crack tip, a plastic-zone creation is observed through the formation of many shear bands, and the fatigue crack is found to propagate along these shear bands. The size of the plastic zone can be characterized by fracture-mechanics quantities, and each fatigue cycle is seen to produce a fine striation instead of a single coarse one. We propose a shear-band mechanism to explain the characteristics of the observed fatigue cracking. Numerical computations, based on linear-elastic-fracture mechanics, yield reasonably good agreement with experiments. Our findings are significant to predict the fatigue lifetimes of these materials.

  3. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongjiang, E-mail: yjhuang@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Zhou, Binjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chiu, YuLung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Fan, Hongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Dongjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Sun, Jianfei; Shen, Jun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-09-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory.

  4. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    Science.gov (United States)

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-02-01

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.

  5. Deformation behavior of Fe-based bulk metallic glass during nanoindentation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore,it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work,the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow,the typical plastic deformation feature of BMGs,could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition,the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

  6. Mechanical Testing of Iron based Bulk Metallic Glasses and Their Suitability for Force Sensors

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available Thermal, mechanical and magnetic properties of (Fe-Co-(Zr/Si-Nb-B alloys in the form of rapidly quenched rods of 1.2 mm in diameter were studied. The as-cast alloys with Zr were crystalline, and the alloys with Si were amorphous. Microhardness measured at 50 g load is from 500 to 2000 HV (the less cobalt, the higher, and the compressive strength reaches nearly 4000 MPa for Si doped alloys and 2000 MPa for Zr doped ones. This substantial difference may be attributed to partial crystallinity of the latter alloys. The magnetic hysteresis loops of fully amorphous rods measured under compression, exhibited a clear dependence of permeability vs. stress, proving that iron-based bulk metallic glasses may be promising materials for magnetoelastic force sensors.

  7. Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass

    International Nuclear Information System (INIS)

    The mechanical property of Zr56Co28Al16 bulk metallic glasses (BMGs) under compression test at room temperature was investigated. The alloy exhibited high fracture strength of approximately 2136 MPa and a pronounced plastic strain of 10.2%. No strainhardening behavior was observed. The evolution of the morphology of the shear bands on the lateral surface of the as-cast samples was studied using scanning electron microscopy (SEM). The plasticity can be attributed to the formation and interaction of multiple shear bands during deformation. The crystallization behavior was studied by differential scanning calorimetry (DSC) at different heating rates.The crystallization behavior research of this alloy indicates that the precipitation of the B2-ZrCo phase may be further utilized to promote the ductility of the ZrCoAl BMG composites.

  8. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    International Nuclear Information System (INIS)

    Zr48.5Cu46.5Al5 bulk metallic glass matrix composites with diameters of 3 and 4 mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr2Cu and plate-like Cu10Zr7 compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials

  9. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    Science.gov (United States)

    Sun, Y. F.; Wei, B. C.; Wang, Y. R.; Li, W. H.; Cheung, T. L.; Shek, C. H.

    2005-08-01

    Zr48.5Cu46.5Al5 bulk metallic glass matrix composites with diameters of 3 and 4mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr2Cu and plate-like Cu10Zr7 compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  10. Effect of surface morphology on the oxidation behavior of bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: • The effect of surface morphology on the oxidation behavior of BMG is investigated. • It is the scratch sharpness, rather than the surface roughness, should account for the acceleration effect on BMG oxidation. • The acceleration mechanism of surface morphology on BMG oxidation is different from that on the oxidation of crystalline materials due to the difference of intrinsic microstructures. - Abstract: The effect of surface morphology on the oxidation behavior of a Zr55Cu30Al10Ni5 bulk metallic glass was investigated. The results revealed that specimens with rougher surfaces oxidized faster than specimens with smoother surfaces, resulting in larger and denser segregated particles, as well as thicker scales. The effect of surface morphology on the oxidation behavior was explained from the aspects of thermodynamics and diffusion kinetics. It was found that it is the scratch sharpness, rather than the roughness, should account for the acceleration effect on BMG, which is different from that of crystalline materials

  11. Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature.

    Science.gov (United States)

    Tan, J; Wang, G; Liu, Z Y; Bednarčík, J; Gao, Y L; Zhai, Q J; Mattern, N; Eckert, J

    2014-01-01

    A model Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) is selected to explore the structural evolution on the atomic scale with decreasing temperature down to cryogenic level using high energy X-ray synchrotron radiation. We discover a close correlation between the atomic structure evolution and the strength of the BMG and find out that the activation energy increment of the concordantly atomic shifting at lower temperature is the main factor influencing the strength. Our results might provide a fundamental understanding of the atomic-scale structure evolution and may bridge the gap between the atomic-scale physics and the macro-scale fracture strength for BMGs. PMID:24469299

  12. Crystallization of a Ti-based Bulk Metallic Glass Induced by Electropulsing Treatment

    Institute of Scientific and Technical Information of China (English)

    Yong-jiang HUANG; Xiang CHENG; Hong-bo FAN; Shi-song GUAN; Zhi-liang NING; Jian-fei SUN

    2016-01-01

    The effect of electropulsing treatment (EPT)on the microstructure of a Ti-based bulk metallic glass (BMG)has been studied.The maximum current density applied during EPT can exert a crucial role on tuning the microstructure of the BMG.When the maximum current density is no more than 2 720 A/mm2 ,the samples retains amorphous nature,whereas,beyond that,crystalline phases precipitate from the glassy matrix.During EPT,the maximum temperature within the samples EPTed at the maximum current densities larger than 2 720 A/mm2 is higher than the crystallization temperature of the BMG,leading to the crystallization event.

  13. Microstructure of Cu60Zr20Ti20 bulk metallic glass rolled at different strain rates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The structural evolution of Cu60Zr20Ti20 bulk metallic glass during rolling at different strain rates and cryogenic temperature was investigated by X-ray diffraction (XRD),differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the deformation-induced transformation is strongly dependent on the strain rate. At the lowest experimental strain rate of 1.0×10-4 s-1,no phase transformation occurs until the highest deformation degree reaches 95%. In a strain rate range of 5.0×10-4-5.0×10-2 s-1,phase separation oc-curs in a high deformation degree. As the strain rate reaches 5.0×10-1 s-1,phase separation and nanocrystallization concur. The critical deformation degree for oc-currence of phase transformation decreases with the strain rate increasing.

  14. Quasi-static and dynamic deformation behaviour of Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Nano- and micro-indentation studies were carried out to characterise a plasticity mechanism through the evolution of localised shear bands that drive material's deformation at sub-micron length scale. Initial deformation of Zr-based bulk metallic glass (BMG) was investigated with nanoindentation tests using a spherical indenter. The indentation cycle reflects an elastic deformation with the yielding load of approx. 3 mN. For designed cycling indentation, hardening and softening phenomena were observed in nano- and micro-indentations, respectively. High-precision dynamic mechanical relaxation measurements were performed using a Dynamic Mechanical Analyzer (DMA), on decreasing frequency from 160 Hz to 0.1 Hz. A mechanical response of the BMG surface to a concentrated impact load was also studied. The obtained results indicated that the studied Zr-based BMG behaved as an elastic-perfectly plastic material at macroscale with discrete plasticity events at smaller length scales

  15. Indentation and scratching mechanisms of a ZrCuAlNi bulk metallic glass

    International Nuclear Information System (INIS)

    Indentation and scratching tests are carried out on a ZrCuAlNi bulk metallic glass. The bonded interface technique is used to characterize the plasticity mechanisms underneath the indentation. Finite-element analyses are conducted with a Drucker-Prager behaviour law to challenge the indentation experimental data. The relevance of the bonded interface technique, in terms of quantitative evaluation, is discussed. It is also reported that the angle value, for which radial bands intersect at the surface or underneath it, is not a constant value and depends on the indenter geometry. Finally, it is shown that a simple Drucker-Prager model can describe most of the indentation mechanical response but fails in predicting completely the indentation morphology

  16. Tribological characterisation of Zr-based bulk metallic glass in simulated physiological media

    Science.gov (United States)

    Chen, Q.; Chan, K. C.; Liu, L.

    2011-10-01

    Due to their excellent wear resistant properties and high strength, as well as a low Young's modulus, Zr-based bulk metallic glasses (BMGs) are potentially suitable biomaterials for low-friction arthroplasty. The wear characteristics of the Zr60.14Cu22.31Fe4.85Al9.7Ag3 bulk amorphous alloy against ultra-high-molecular-weight polyethylene (UHMWPE) compared to a CoCrMo/UHMWPE combination were investigated in two different wear screening test devices, reciprocating and unidirectional. Hank's solution and sterile calf bovine serum were selected as the lubricant fluid media. It was found that different fluid media had insignificant effect on polyethylene wear against BMG counterfaces. The wear behaviour obtained on both test devices demonstrated that Zr-based BMG achieved UHMWPE counterface wear rates superior to conventional cast CoCrMo alloy, where the wear rate of UHMWPE is decreased by over 20 times. The tribological performance of these joints is superior to that of conventional metal-on-polymer designs. Contact angle measurements suggested that the advantage of BMG over a CoCrMo alloy counterface is attributed to its highly hydrophilic surfaces.

  17. Steady-state tensile viscous flow forming of bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: ► A simple setup is demonstrated for tensile viscous flow forming of bulk metallic glass to large aspect ratio. ► The flow stress of the part of the material to be deformed is lowered thermally, by local induction heating. ► Applying the mechanical load to the less-softened ends, via attached wires, is straight forward. ► An asymmetric configuration allows to form rods into wire by a steady-state process. ► For this asymmetric configuration, preparing the preform and attaching the wires requires no machining. - Abstract: Tensile viscous flow is explored as a forming method for metallic glasses in their supercooled liquid temperature region. Bulk amorphous preforms with nominal alloy composition Zr55Cu30Al10Ni5 were produced by arc melting and tilt- and suction casting into a copper mould. A simple loading rig, in which the preform is suspended from a wire, combined with selective heating of the section to be deformed, avoids the need for complicated loading grips. Different strategies are evaluated to attach the sample to the rig and to selectively heat the central part of the specimen. Finite element models were compared with experiments to verify the design of the induction heating coil and optimize process parameters. Differential scanning calorimetry and X-ray diffraction measurements show that the material is glassy before and after deformation. The rapid decrease of flow stress with increasing temperature means that the process can be controlled thermally at constant load instead of mechanically at constant temperature. An asymmetric configuration, where the selective heating zone is moved relative to the specimen during the deformation, allows to form rods into wire by a steady-state process. The effect of deformation on induction heating under constant tension was found to be inherently self-stabilizing, reducing the need for precise process control.

  18. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    Science.gov (United States)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation

  19. Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders

    OpenAIRE

    Kim, Jin Young

    2015-01-01

    Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and larger fracture resistance than ceramics. The technological breakthrough of metallic glasses, however, has been greatly hindered by the limited plastic strain to failure. Thus, several strategies ha...

  20. Formation and Compression Behavior of Two-Phase Bulk Metallic Glasses with a Minor Addition of Aluminum

    Institute of Scientific and Technical Information of China (English)

    ZONG Hai-Tao; MA Ming-Zhen; ZHANG Xin-Yu; QI Li; LI Gong; JING Qin; LIU Ri-Ping

    2011-01-01

    A remarkable enhancement in room-temperature compressive deformability is realized by the minor-addition of 1.5 at. % Al in ZrTi-based bulk metallic glass.Two amorphous phases are observed by transmission electron microscopy in the Al-containing alloys and this explains the improvement of compression deformability. The studies suggest that phase separation might occur in glass forming alloys with a negative enthalpy of mixing.

  1. Experiment and simulation of hot embossing of a bulk metallic glass with low pressure and temperature

    International Nuclear Information System (INIS)

    The thermoplastic forming process of a bulk metallic glass (BMG) is simulated using commercial software DEFORM 3D and verified by hot-embossing experiment in this study. The fabrication process of micro-electro-mechanical systems (MEMS) includes a photoresist reflow technique, and Nickle–Cobalt (Ni–Co) electroplating to fabricate a first mold. Then, this mold is applied to hot emboss on an Mg–Cu–Y amorphous alloy to form a secondary mold. The thermal properties of the BMG material such as the glass transition temperature (Tg) and the onset temperature (Tonset) for the viscous flow are investigated using a differential scanning calorimetry (DSC) and a thermomechanical analyzer (TMA). The Tg of BMG is around 413 K (140 °C). The hot-embossing temperature is set at 423 K (150 °C). The supercooled liquid region ΔT between the Tg and the crystallization temperature (Tx) is the working temperature for the microforming study. This embossing process shows that the thermoplastic forming ability of the BMG material is better than polymethylmethacrylate (PMMA) which requires high hot-embossing pressure and temperature. BMG is not only a good material for the hot-embossing process to fabricate micro-structure directly, but also a fast-forming material for mold (or die) fabrication

  2. Preparation and Mechanical Behavior of Mg-Based Bulk Metallic Glasses and their Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    SI Yi; Zhao Jianguo; WU Fufa; WU Xiaofeng

    2012-01-01

    Mg87-xCuxDy13(x=22,27,32) bulk metallic glasses (BGMs) with a diameter of 6-8 mm and insitu Mg phase reinforced Mg7oCu17Dy13 BMG matrix composite with a diameter of 3 mm have been prepared by copper mould casting.The glass forming ability (GFA) of Mg-Cu-Dy alloys have been investigated by differential scanning calorimetry (DSC) and X-Ray diffraction (XRD) and trie mechanical properties have been measured.Results show that Mgs7-xCuxDy13(x=22,27,32) alloys in the Mg-Cu-Dy alloy system exhibit excellent GFA,and Mg60Cu27Dy13 alloy has the largest GFA among these alloys.And In-situ Mg phase reinforced Mg70Cu17Dy13 BMG matrix composite exhibits some work hardening and a high fracture compressive strength of 702.38 MPa and some plastic strain of 0.81%.The improvement of the mechanical properties is attributed to the fact that the Mg phase distributed in the amorphous matrix of the alloy has some effective load bearing and plastic deformation ability to restrict the expanding of shear bands and cracks and produce its own plastic deformation.

  3. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    Science.gov (United States)

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-08-01

    Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic `confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses.

  4. Formation and physical properties of Fe-based bulk metallic glasses with Ni addition

    Directory of Open Access Journals (Sweden)

    S. Lesz

    2008-11-01

    Full Text Available Purpose: The main aim of the paper was investigations of formation and changes of physical properties (magnetic properties and microhardness of Fe based bulk metallic glasses (BMGs with Ni addition.Design/methodology/approach: The following experimental techniques were used: transmission electron microscopy (TEM, scanning electron microscopy (SEM and X-ray diffraction (XRD phase analysis method to test the structure, electrical resistivity in situ measurements (four-point probe, measurements of magnetic properties, microhardness of investigated ribbons was determined by Vickers method.Findings: The structural studies revealed an amorphous structure for the ribbons with thicknesses up to 0.27 mm, regardless of their thickness.Research limitations/implications: More investigations for example Mössbauer spectrometry have to be conducted on different thickness of ribbons in order to confirm conclusions contained in the work.Practical implications: According to the results presented in the present paper the examined Fe-based bulk glassy alloys with Ni addition as a soft ferromagnetic material may be utilized in construction of magnetic cores such as choke coils, common mode and noise filter and is of great technological interest.Originality/value: The originality of the paper are examinations of changes of structure and physical properties on cross section and on surface of ribbons.

  5. Crystallization kinetics and magnetic properties of Fe66Nb4B30 bulk metallic glass

    International Nuclear Information System (INIS)

    Fe-based bulk metallic glasses (BMGs) have a high application potential because of their unique soft magnetic properties, mechanical behaviour and high corrosion resistance. Also, they can be obtained directly in the final shape suitable for use as magnetic sensors, magnetic valves, magnetic clutches etc. in different devices. Fe-based alloys able to form magnetic BMGs are of the type transition metal-metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 at.%. Recently, a new Fe-based BMG containing only 3 elements and a very high boron content was synthesized. The preparation of this BMG was done by employing the copper mold casting method and using the fluxing technique. This new BMG is ferromagnetic, with a Curie temperature around 550 K and a saturation magnetization of 105 Am2/kg. Differential scanning calorimetry (DSC) investigations revealed a reduced glass transition temperature of 0.55 and an extension of the supercooled liquid region of about 31 K, values which indicate a relatively good thermal stability. Despite of numerous studies about Fe-based BMGs, there is still a lack of data about the crystallization kinetics. Also, the intermediate metastable phases, which form upon crystallization from the amorphous state, as well as the mechanism of their formation, are not fully understood. The present work discusses the kinetics of the phase formation using the Kissinger analysis and Johnson-Mehl-Avrami plots, correlated with the results obtained upon X-ray diffraction (XRD) of samples with different metastable structures. Additionally, the magnetic behaviour of different phase(s) is presented.

  6. Structure and magnetic properties of Fe36Co36B19Si5Nb4 bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2008-10-01

    Full Text Available Purpose: The work presents a microstructure characterization, thermal stability and soft magnetic properties analysis of Fe-based bulk metallic glasses.Design/methodology/approach: The studies were performed on bulk amorphous ribbons and rods. The amorphous structure of tested materials was examined by X-ray diffraction (XRD and transmission electron microscopy (TEM methods. The thermal properties associated with crystallization temperature of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations have revealed that the studied as-cast bulk metallic glasses were amorphous. Based from the XRD analysis and TEM investigations of the Fe36Co36B19Si5Nb4 rod samples, it was believed that the tested alloy can be fabricated into a bulk glassy rod with the diameter of up to 4 mm. A two stage crystallization process was observed for studied bulk amorphous alloy. The changes of Curie temperatures, crystallization temperatures and magnetic properties as a function of glassy ribbons thickness (time of solidification were stated. The investigated magnetic properties allow to classify the studied metallic glasses as soft magnetic materials.Practical implications: The studied bulk metallic glasses are suitable materials for many electrical application in different elements of magnetic circuits and for manufacturing of sensors and precise current transformers.Originality/value: The obtained examination results confirm the utility of applied investigation methods in the microstructure, thermal and soft magnetic properties analysis of examined bulk amorphous alloys.

  7. Static mechanical properties for Ca48Mg27Cu25 bulk metallic glass by ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    The static mechanical properties of a Ca48Mg27Cu25 bulk metallic glass were investigated using a technique of ultrasonic measurement and compressive test. The Young's modulus (E), Poisson's ratio (v), shear modulus (G) and bulk modulus (B) for the Ca48Mg27Cu25 alloy at room temperature are significantly smaller than those for Zr- and Pd- based bulk metallic glasses. The values of E, v, G and B for the Ca48Mg27Cu25 alloy are 29.8GPa, 0.230, 12.1GPa and 18.4GPa, respectively. The results of compression test for the Ca48Mg27Cu25 alloy have been also described.

  8. Development of Fe-B Based Bulk Metallic Glasses: Morphology of Residual Phases in Fe50Ni16Mo6B18Zr10 Glass

    OpenAIRE

    Tiburce A. Aboki

    2013-01-01

    Iron-boron based bulk metallic glasses (BMG) development has been initiated using Fe40Ni38Mo4B18 as precursor. Addition of zirconium up to 10 atomic % along with the reduction of Ni proportion improves the glass forming ability (GFA), which is optimum when Ni is suppressed in the alloy. However melting instability occurred during the materials fabrication resulting in the formation of residual crystalline phases closely related to the amorphous phase. Microstructure study shows an evolution f...

  9. Effect of ceramic rolling on the mechanical properties of Zr54Cu38Al8 bulk metallic glass

    International Nuclear Information System (INIS)

    Plastic deformation of Zr54Cu38Al8 bulk metallic glass (BMG) was subjected to a novel ceramic rolling process. Mechanical properties, shear bands morphology and thermodynamic parameter of the as-cast and as-rolled samples were investigated by compression test, micro-hardness test, scanning electron microscopy (SEM) and differential scanning calorimeter (DSC), respectively. The results show that the metallic glass exhibits a large plastic deformation without fracture through ceramic rolling at room temperature and high strain rates. Especially, when the alloy is rolled to a diameter reduction of 10%, the ductility and strength of the alloy is significantly improved

  10. Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability

    International Nuclear Information System (INIS)

    In the present work we study and compare the crystallization behavior of Fe- and Co-based good bulk glass formers with an exceptionally high glass-forming ability leading to the critical thickness of cast samples reaching 1 cm. For Fe-based alloys we also investigate the effect of opposite C/B content ratio on the glass-forming ability and the crystallization behavior. The structure and phase composition of the glassy samples were examined by conventional X-ray diffractometry and transmission electron microscopy while thermal stability and phase transformations were studied by differential scanning calorimetry. The reasons for high glass-forming ability are discussed. The glass-forming ability of the studied alloys depends on both factors: the type of crystallization reaction and characteristic temperatures. - Highlights: • Crystallization of Fe-based and Co-based bulk glass-forming alloys. • The reasons for enhanced glass-forming ability of these alloys are discussed. • Low growth rate of χ-Fe36Cr12Mo10 phase. • Reduced liquidus temperature of Fe48Cr15Mo14C6B15RE2 alloys

  11. Development of Fe-based bulk metallic glasses as potential biomaterials.

    Science.gov (United States)

    Li, Shidan; Wei, Qin; Li, Qiang; Jiang, Bingliang; Chen, You; Sun, Yanfei

    2015-01-01

    A new series of Fe80-x-yCrxMoyP13C7 (x = 10, y = 10; x = 20, y = 5; x = 2 0, y = 10, all in at.%) bulk metallic glasses (BMGs) with the maximum diameter of 6mm have been developed for biomedical implant application by the combination method of fluxing treatment and J-quenching technique. The corrosion performance of the present Fe-based BMGs is investigated in both Hank's solution (pH = 7.4) and artificial saliva solution (pH = 6.3) at 37 °C by electrochemical measurements. The result indicates that the corrosion resistance of the present Fe-based BMGs in the above two simulated body solutions is much better than that of biomedical 316 L stainless steel (316 L SS), and approaching that of Ti6Al4V biomedical alloy (TC4). The concentrations of Fe, Ni and Cr ions released into the Hank's solution and artificial saliva solution from the present Fe-based BMGs after potentiodynamic polarization are significant lower than that released from 316 L SS. The biocompatibility of the present Fe-based BMGs is evaluated through the in vitro test of NIH3T3 cells culture in the present Fe-based BMG extraction media for 1, 3 and 5 days. The result indicates that the present Fe-based BMGs exhibit no cytotoxicity to NIH3T3 cells. And the test result of the cell adhesion and growth on the surface of the samples indicates that the present Fe-based BMGs exhibit the better cell viability compared with 316 L SS and TC4 biomedical alloys. The present Fe-based BMGs, especially Fe55Cr20Mo5P13C7 BMG, exhibit good glass formation ability, the high corrosion resistance and excellent biocompatibility, suggesting their promising potential as biomaterials. PMID:25953563

  12. Homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Y.; Yuan, Z.Z., E-mail: yuanzz@lut.cn; Feng, X.L.; Cui, L.Z.; Li, D.X.

    2015-01-03

    In this paper, Cu{sub 40}Zr{sub 44}Ag{sub 8}Al{sub 8} bulk metallic glass composites (BMGCs) consisting of various volume fraction of nanocrystals embedded in the amorphous matrix was synthesized by controlled annealing treatment of an as-cast BMGCs. The high temperature compression behaviors of the BMGCs were characterized in the supercooled liquid region. Results show that the flow stresses keep increasing after an initial decrease with extension of the annealing time. With annealing the values of activation volume V{sub act} is determined to be increasing from 283.6216 Ǻ{sup 3} to 305.553 Ǻ{sup 3}, suggesting that the jump of atoms is a cooperative process during the high-temperature deformation. Flow behavior of the BMGCs annealed for less than 8 min transform from Newtonian to non-Newtonian dependant on the stain rate and can be successively fitted by the visco-plasticity model. Fitting results indicate that deformation behaviors of these samples are governed by homogeneous flow of the amorphous matrix and indeed determined by the viscosities in the Newtonian flow stage. However, the BMGCs annealed for 8 min exhibit a non-Newtonian flow over the entire compression process and fail to be fitted by the visco-plasticity model. Micrographs of the sample reflect an impinged structure, indicating that high temperature deformation behavior of the BMGCs with high volume fractions of particles is indeed controlled by that of a backbone of particles.

  13. Magnetic properties and microstructural homogeneity in NdFeAl bulk metallic glasses

    International Nuclear Information System (INIS)

    Bulk metallic glasses of nominal composition Nd60Fe30Al10 were prepared by copper mold casting in the form of rods of 3 mm in diameter and 50 mm in length. Preparation conditions were varied to assess the effects of the injection distance and the injection pressure of the melt. In order to determine their microstructure, disk-shaped samples were obtained from different cut zones along the axis rod. A non-homogeneous phase distribution was observed, which resulted from the heat transfer regime during the cooling of the melt in the copper mold. As expected, the nature, distribution and volumetric fraction of the various phases produced play an important role on the resulting magnetic properties. Among the main observed phases are Fe-rich rod-like crystals, Nd-rich dendritic crystals and a ''like-amorphous'' matrix. The hard magnetic properties of these materials can be associated with this matrix. In these cooling regimes, the coercive field increases as the cooling rate of the amorphous matrix increases. Hysteresis loops showed a high degree of coupling between phases with different magnetic order. Both the coercive field and the magnetization showed a significant variation along the rod axis; a maximum appeared as a function of the axis length. In order to gather more information about the coupling between the observed phases, δM (or Henkel) plots were obtained, showing an exchange character for interactions (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass

    Science.gov (United States)

    Wright, Wendelin J.; Liu, Yun; Gu, Xiaojun; Van Ness, Katherine D.; Robare, Steven L.; Liu, Xin; Antonaglia, James; LeBlanc, Michael; Uhl, Jonathan T.; Hufnagel, Todd C.; Dahmen, Karin A.

    2016-02-01

    Two distinct types of slip events occur during serrated plastic flow of bulk metallic glasses. These events are distinguished not only by their size but also by distinct stress drop rate profiles. Small stress drop serrations have fluctuating stress drop rates (with maximum stress drop rates ranging from 0.3-1 GPa/s), indicating progressive or intermittent propagation of a shear band. The large stress drop serrations are characterized by sharply peaked stress drop rate profiles (with maximum stress drop rates of 1-100 GPa/s). The propagation of a large slip is preceded by a slowly rising stress drop rate that is presumably due to the percolation of slipping weak spots prior to the initiation of shear over the entire shear plane. The onset of the rapid shear event is accompanied by a burst of acoustic emission. These large slips correspond to simultaneous shear with uniform sliding as confirmed by direct high-speed imaging and image correlation. Both small and large slip events occur throughout plastic deformation. The significant differences between these two types require that they be carefully distinguished in both modeling and experimental efforts.

  15. Simulation study of mechanical properties of bulk metallic glass systems: martensitic inclusions and twinned precipitates

    Science.gov (United States)

    Zaheri, A.; Abdeljawad, F.; Haataja, M.

    2014-12-01

    Monolithic bulk metallic glasses (BMGs) exhibit a unique combination of mechanical properties, such as high strength and large elasticity limits, but the lack of ductility is considered the main Achilles' heel of BMG systems. To increase the competitiveness of BMGs vis-à-vis conventional structural materials, the problem of catastrophic failure via intense plastic strain localization (‘shear banding’) has to be addressed. Recent experimental observations suggest that the addition of structural heterogeneities, in the form of crystalline particles, to BMG systems hinders the catastrophic propagation of shear bands and leads to enhanced ductility. These structural heterogeneities can be introduced by either forming BMG composites, where second-phase crystalline particles accommodate applied loads via martensitic transformation mechanisms, or developing glassy alloys that precipitate crystalline particles under deformation, a process by which further deformation can be sustained by twinning mechanisms in the crystalline phase. In this work, we present a non-linear continuum model capable of capturing the structural heterogeneity in the glassy phase and accounting for intrinsic work hardening via martensitic transformations in second-phase reinforcements in BMG composites and deformation twinning in precipitated crystalline particles. Simulation results reveal that in addition to intrinsic work hardening in the crystalline phase, particle size greatly affects the overall mechanical behavior of these BMG systems. The precipitation of crystalline particles in monolithic BMGs yields two-phase microstructures that promote more homogeneous deformation, delay the propagation of incipient shear bands, and ultimately result in improved ductility characteristics.

  16. A size-dependent constitutive model of bulk metallic glasses in the supercooled liquid region

    Science.gov (United States)

    Yao, Di; Deng, Lei; Zhang, Mao; Wang, Xinyun; Tang, Na; Li, Jianjun

    2015-01-01

    Size effect is of great importance in micro forming processes. In this paper, micro cylinder compression was conducted to investigate the deformation behavior of bulk metallic glasses (BMGs) in supercooled liquid region with different deformation variables including sample size, temperature and strain rate. It was found that the elastic and plastic behaviors of BMGs have a strong dependence on the sample size. The free volume and defect concentration were introduced to explain the size effect. In order to demonstrate the influence of deformation variables on steady stress, elastic modulus and overshoot phenomenon, four size-dependent factors were proposed to construct a size-dependent constitutive model based on the Maxwell-pulse type model previously presented by the authors according to viscosity theory and free volume model. The proposed constitutive model was then adopted in finite element method simulations, and validated by comparing the micro cylinder compression and micro double cup extrusion experimental data with the numerical results. Furthermore, the model provides a new approach to understanding the size-dependent plastic deformation behavior of BMGs.

  17. Simulation study of mechanical properties of bulk metallic glass systems: martensitic inclusions and twinned precipitates

    International Nuclear Information System (INIS)

    Monolithic bulk metallic glasses (BMGs) exhibit a unique combination of mechanical properties, such as high strength and large elasticity limits, but the lack of ductility is considered the main Achilles' heel of BMG systems. To increase the competitiveness of BMGs vis-à-vis conventional structural materials, the problem of catastrophic failure via intense plastic strain localization (‘shear banding’) has to be addressed. Recent experimental observations suggest that the addition of structural heterogeneities, in the form of crystalline particles, to BMG systems hinders the catastrophic propagation of shear bands and leads to enhanced ductility. These structural heterogeneities can be introduced by either forming BMG composites, where second-phase crystalline particles accommodate applied loads via martensitic transformation mechanisms, or developing glassy alloys that precipitate crystalline particles under deformation, a process by which further deformation can be sustained by twinning mechanisms in the crystalline phase. In this work, we present a non-linear continuum model capable of capturing the structural heterogeneity in the glassy phase and accounting for intrinsic work hardening via martensitic transformations in second-phase reinforcements in BMG composites and deformation twinning in precipitated crystalline particles. Simulation results reveal that in addition to intrinsic work hardening in the crystalline phase, particle size greatly affects the overall mechanical behavior of these BMG systems. The precipitation of crystalline particles in monolithic BMGs yields two-phase microstructures that promote more homogeneous deformation, delay the propagation of incipient shear bands, and ultimately result in improved ductility characteristics. (paper)

  18. Wear behaviour of Zr-based in situ bulk metallic glass matrix composites

    Indian Academy of Sciences (India)

    X F WU; G A ZHANG; F F WU

    2016-06-01

    Zr-based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and the dry sliding wear behaviour of the BMG and composites was investigated. Compared to the pure BMG, the composites exhibited a markedly improved wear resistance from 10 to 48% due to the existence of various volume fractions of the ductile $\\beta$-Zr dendritic phase embedded in the glassy matrix. The composites showed lower friction coefficient and wear rate than the pure BMG. Meanwhile, the surface wearing of the composite with a proper amount of $\\beta$-Zr dendrites was less severe compared to that of the pure BMG. The worn surface of the composite was covered with mild grooves and some fine wear debris, which exhibited the characteristic of a mild abrasive wear. The improvement of the wear resistance of the composite with the proper amount of $\\beta$-Zr crystalline phase is attributed to the fact that the $\\beta$-Zr crystalline phase distributed in the amorphous matrix has some effective load bearing, plastic deformation and work hardening ability to decrease strain accumulation and the release of strain energy in the glassy matrix, restrict the expanding of shear bands and cracks, and occur plastic deformation homogeneously.

  19. Micromechanical Modeling the Plastic Deformation of Particle-Reinforced Bulk Metallic Glass Composites

    Science.gov (United States)

    Jiang, Yunpeng; Shi, Xueping; Qiu, Kun

    2015-08-01

    A micromechanics model was employed to investigate the mechanical performance of particle-reinforced bulk metallic glass (BMG) composites. The roles of shear banding in the tensile deformation are accounted for in characterizing the strength and ductility of ductile particle-filled BMGs. For the sake of simplicity and convenience, shear band was considered to be a micro-crack in the present model. The strain-based Weibull probability distribution function and percolation theory were applied to describe the equivalent micro-crack evolution, which results in the progressive failure of BMG composites. Based on the developed model, the influences of shear bands on the plastic deformation were discussed for various microstructures. The predictions were in fairly good agreement with the experimental data from the literatures, which confirms that the developed analytical model is able to successfully describe the mechanical properties, such as yield strength, strain hardening, and stress softening elongation of composites. The present results will shed some light on optimizing the microstructures in effectively improving the tensile ductility of BMG composites.

  20. AC Calorimetry and Thermophysical Properties of Bulk Glass-Forming Metallic Liquids

    Science.gov (United States)

    Johnson, William L.

    2000-01-01

    Thermo-physical properties of two bulk metallic glass forming alloys, Ti34Zr11Cu47Ni8 (VIT 101) and Zr57Nb5Ni12.6Al10CU15.4 (VIT 106), were investigated in the stable and undercooled melt. Our investigation focused on measurements of the specific heat in the stable and undercooled liquid using the method of AC modulation calorimetry. The VIT 106 exhibited a maximum undercooling of 140 K in free radiative cooling. Specific heat measurements could be performed in stable melt down to an undercooling of 80 K. Analysis of the specific heat data indicate an anomaly near the equilibrium liquidus temperature. This anomaly is also observed in y the temperature dependencies of the external relaxation time, the specific volume, and the surface tension; it is tentatively attributed to a phase separation in the liquid state. The VIT 101 specimen exhibited a small undercooling of about 50 K. Specific heat measurements were performed in the stable and undercooled melt. These various results will be combined with ground based work such as the measurement of T-T-T curves in the electrostatic levitator and low temperature viscosity and specific heat measurements for modeling the nucleation kinetics of these alloys.

  1. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    Science.gov (United States)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For

  2. Microstructure evolution and mechanical properties of Nb-alloyed Cu-based bulk metallic glasses and composites

    International Nuclear Information System (INIS)

    Highlights: • The microstructures of as-cast BMGs undergo a composite-amorphous evolution. • The 15.1% of plasticity and the 2205 MPa of fracture strength are achieved. • The dispersed crystals in glassy matrix enhance the plasticity of BMG. - Abstract: This paper reports the microstructure evolution of Cu50.2 Zr40.8Ti9−xNbx (x = 0.5, 1.0, and 2.0 at.%) bulk metallic glass and bulk metallic glass composites accompanied with the addition of Nb and the corresponding mechanical properties. The X-ray diffraction and characterization of microstructures demonstrate that the microstructures of as-cast alloys undergo a composite-amorphous evolution. DSC analysis indicates that the glass-forming ability of as-cast alloys increases with addition of Nb. The microstructure evolution can be contributed to the combination of the stabilization of Nb on precipitated crystalline phases and cooling time. 1.0 at.% Nb-alloyed sample has the best plasticity (15.1%) and the highest fracture strength (2205 MPa) among three as-cast alloys. This work suggests that the uniformly dispersed tiny crystalline phases in glassy matrix can enhance the plasticity of bulk metallic glasses

  3. A Kinetic Study of the Non-isothermal Crystallization of a Zr-Based Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    柳林; 吴志方; 陈莉

    2002-01-01

    The kinetics of the non-isothermal crystallization ofZr55 Cu30Al10Ni5 bulk metallic glass was studied by differentialscanning calorimetry in the mode of continuous heating. It is found that both glass transition and crystallizationof the amorphous alloy behave in a marked kinetic nature. The activation energy E and frequency factor c0 forcrystallization were determined by the Kissinger method, which yields E = 230 kJ/mol, and k0 = 4.2 × l0Ca/s.The value of k0 is much smaller than that for conventional amorphous alloys, demonstrating that the atomicmobility in bulk metallic glasses is quite sluggish. The crystallization mechanism in the non-isothermal processwas analysed in terms of the kinetic transformation equation for the solid-state phase transformation. Thisreveals that the crystallization kinetic function f (x) for Zr55 Cu30Al10Ni5 can be described by the Johnson-Mehl-Avrami equation, i.e. f(x) = (1 - x)[- ln(1 - x)](n-1)/n, with n = 1.75. This indicates that the non-isothermalcrystallization of Zr55 Cu30Al10Ni5 bulk metallic glass is governed by diffusion-controlled one-dimensional growth.Finally, the different crystallization mechanisms in the isothermal and non-isothermal processes are discussed.

  4. Effects of density difference of constituent elements on glass formation in TiCu-based bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    Zhongyan Zhang; Zengbao Jiao; Jie Zhou; Yuan Wu; Hui Wang; Xiongjun Liu; Zhaoping Lun

    2013-01-01

    Glass formation is generally favored by a large atomic size mismatch among constituent elements, which usually leads to large density differences among them as well. During melting, elemental segregation occurs due to Stokes’ law and then inevitably affects glass formation. In this paper, such effects on glass-forming ability in a TiCu-based alloy system have been demonstrated. In the bulk glass-forming composition Ti43Cu42Hf14Si1, macroscopic segregation of Si was observed in the as-melted ingots and silicon was completely depleted in the as-cast rods. In another Ti33Cu47Ni8Zr11Si1 alloy, nevertheless, the effects of density differences among the constituent elements were less severe. It was also confirmed that using proper pre-alloys could be an effective way in alleviating the side effects of the elemental segregation.

  5. Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    Science.gov (United States)

    Hofmann, Douglas C.; Roberts, Scott; Kozachkov, Henry; Demetriou, Marios D.; Schramm, Joseph P.; Johnson, William L.

    2012-01-01

    Bulk metallic glasses (BMGs), a class of amorphous metals defined as having a thickness greater than 1 mm, are being broadly investigated by NASA for use in spacecraft hardware. Their unique properties, attained from their non-crystalline structure, motivate several game-changing aerospace applications. BMGs have low melting temperatures so they can be cheaply and repeatedly cast into complex net shapes, such as mirrors or electronic casings. They are extremely strong and wear-resistant, which motivates their use in gears and bearings. Amorphous metal coatings are hard, corrosion-resistant, and have high reflectivity. BMG composites, reinforced with soft second phases, can be fabricated into energy-absorbing cellular panels for orbital debris shielding. One limitation of BMG materials is their inability to be welded, bonded, brazed, or fastened in a convenient method to form larger structures. Cellular structures (which can be classified as trusses, foams, honeycombs, egg boxes, etc.) are useful for many NASA, commercial, and military aerospace applications, including low-density paneling and shields. Although conventional cellular structures exhibit high specific strength, their porous structures make them challenging to fabricate. In particular, metal cellular structures are extremely difficult to fabricate due to their high processing temperatures. Aluminum honeycomb sandwich panels, for example, are used widely as spacecraft shields due to their low density and ease of fabrication, but suffer from low strength. A desirable metal cellular structure is one with high strength, combined with low density and simple fabrication. The thermoplastic joining process described here allows for the fabrication of monolithic BMG truss-like structures that are 90% porous and have no heat-affected zone, weld, bond, or braze. This is accomplished by welding the nodes of stacked BMG composite panels using a localized capacitor discharge, forming a single monolithic structure

  6. Corrosion study of Fe-based bulk metallic glasses in chloride medium

    International Nuclear Information System (INIS)

    Bulk metallic glasses (amorphous metals) are an emerging class of alloys due to their unique set of properties. They exhibit excellent mechanical strength, high hardness and corrosion resistance. Unlike other new materials, which are developed to fulfill a particular need, BMGs came to existence without any application, so the uses of BMGs are yet to be exploited. Before putting BMGs into applications, their properties must be fully understood, particularly the corrosion resistance against a working environment. Fe-based amorphous alloys are particularly important for their future use as structural materials due to their high strength and cheap raw materials. Some Fe-based amorphous alloys exhibit excellent soft magnetic properties, which make them feasible to be used as transformer materials. Some compositions are also competitive to replace the existing bio-materials like 316L SS due to their better biocompatibility. Fe-based amorphous alloys can also be used as thermal-spray coatings due to their unchanged corrosion resistance as compared to bulk alloy. Many electrochemical studies have been done to investigate the corrosion resistance of Fe- based BMG that showed its excellent corrosion resistance. Still not enough data is available and further work is needed to be done in this field. In the present study, corrosion of Fe/sub 50/Cr/sub 14/Mo/sub 14/C/sub 14/B/sub 6/X/sub 2/ (X = Y, Gd, and Dy), designated as S1, S2 and S3 respectively, was investigated in 4M NaCI solution. The corrosion study was done using potentiodynamic polarization test and accelerated corrosion test at a current density of 6mA.cm/sup -2/. Following this; corrosion morphology was investigated by scanning electron microscope, while compositional analysis was done by energy dispersive x-ray spectroscope (EDX) attached with SEM. S1 and S3 showed similar corrosion behavior with S3 having the highest corrosion resistance while S2 have different corrosion behavior as well as least corrosion

  7. Crystallization of Pd40Cu30Ni10P20 bulk metallic glass with and without pressure

    Institute of Scientific and Technical Information of China (English)

    Bin Yang; Jianzhong Jiang; Yanxin Zhuang; Karel Saksl; Guoliang Chen

    2007-01-01

    The glass-transition behavior of Pd40Cu30Ni10P20 bulk metallic glass was investigated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). The effect of pressure on the crystallization behavior of Pd40Cu30Ni10P20 bulk glass was studied by in situ high-pressure and high-temperature X-ray powder diffraction using synchrotron radiation. Phase analyses show at least six crystalline phases in the crystallized sample, namely, monoclinic, tetragonal Cu3Pd-like, rhombohedral, fcc-Ni2Pd2P, fcc-(Ni,Pd) solid solution, and body-centered tetragonal (bct) Ni3P-like phases. The onset crystallization temperature increases with pressure having a slope of 11 K/GPa in the range of 0 to 4 GPa. The results are attributed to the competing process between the thermodynamic potential barrier and the diffusion activation energy under pressure.

  8. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-02-01

    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  9. Internal structural evolution and enhanced tensile plasticity of Ti-based bulk metallic glass and composite via cold rolling

    International Nuclear Information System (INIS)

    Highlights: • Enhancement of tensile plasticity was achieved by cold rolling. • The malleable behavior of cold rolled samples is attributed to the atomic structural evolution and elastic property change. • Shear softened region act as a potential nucleation site of shear bands. - Abstract: The influence of cold rolling on the tensile mechanical properties and deformation behavior of Ti-based bulk metallic glass (BMG: Ti40Zr25Ni8Cu9Be18) and β-Ti dendrite reinforced bulk metallic glass matrix composite (BMGMC: Ti40.2Zr18Ni2.85Cu7.65Be12.3Nb19) has been investigated. The cold-rolled BMG and BMGMC samples with 20% thickness reduction ratio exhibit a pronounced tensile plasticity of 0.8% and 4%, respectively. The malleable behavior of the cold-rolled samples originates from the internal structural evolution and modulation of elastic properties

  10. Second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhang, P.N.;

    2007-01-01

    The second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation...... the order of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled....

  11. Oxidation Behavior of a Pd43Cu27Ni10P20 Bulk Metallic Glass and Foam in Dry Air

    Science.gov (United States)

    Kai, W.; Ren, I. F.; Barnard, B.; Liaw, P. K.; Demetriou, M. D.; Johnson, W. L.

    2010-07-01

    The oxidation behavior of both Pd43Cu27Ni10P20 bulk metallic glass (Pd4-BMG) and its amorphous foam containing 45 pct porosity (Pd4-AF) was investigated over the temperature range of 343 K (70 °C) to 623 K (350 °C) in dry air. The results showed that virtually no oxidation occurred in the Pd4-BMG at T Cu3P, and Pd3P.

  12. A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys

    Science.gov (United States)

    Welk, Brian A.; Gibson, Mark A.; Fraser, Hamish L.

    2016-03-01

    In this work, compositionally graded specimens were deposited using the laser engineered net-shaping (LENS™) additive manufacturing technique to study the glass-forming ability of two bulk metallic glass (BMG) and high entropy alloy (HEA) composite systems. The first graded specimen varied from Zr57Ti5Al10Cu20Ni8 (BMG) to CoCrFeNiCu0.5 (HEA) and the second graded specimen varied from TiZrCuNb (BMG) to (TiZrCuNb)65Ni35 (HEA). After deposition, laser surface melting experiments were performed parallel to the gradient to remelt and rapidly solidify the specimen. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to determine the morphology and composition variations in the as-deposited and laser surface melted phases. Selected area diffraction of the melt pool regions confirmed an almost fully amorphous region in the first gradient and an amorphous matrix/crystalline dendrite composite structure in the second gradient.

  13. Mie Potential and Equation of State of Zr48Nb8Cu14Ni12Be18 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    张勇; 潘明祥; 汪卫华

    2001-01-01

    The linear expansion of Zr48Nb8Cu14Ni12Be18 bulk metallic glass (BMG) with excellent glass forming abilityand high thermal stability is investigated by a dilatometry method. The average expansion coefficient is αTG=1.04×10 -5 K-1 (300-656 K) for the BMG and αTC= 1.11×10 -5 K-1 (356~890 K) for the crystallized alloy.The Mie potential as well as the equation of state of the BMG and its corresponding crystallized state are determined from the thermal expansion and ultrasonic data, and the differences among them are phenomenologicallyexplained.

  14. Structural Relaxation of Pd39Ni10Cu30P21 Bulk Metallic Glass Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Min; ZHAN Zai-Ji; SUN Li-Ling; LI Gong; WANG Wen-Kui

    2001-01-01

    The Pd39Ni10Cu30P21 bulk metallic glass is isothermally relaxed under various pressures. The degree of thestructural relaxation is evaluated in terms of the enthalpy recovery behaviours involved in the irreversible glasstransition processes by using a temperature-modulated differential scanning calorimetry technique. A roughlylinear increase of the recovery enthalpy is observed within the experimental pressure range from 2.67 to 4.45 Gpa,whih reflects the release of the frozen-in enthalpy in the as-quenched glass withincreasing relaxation pressure.The pressure dependence of the timescale of the enthalpy recovery processes is also exhibited.

  15. Friction Stir Welding of Zr_(55)Al_(10)Ni_5Cu_(30) Bulk Metallic Glass to Crystalline Aluminum

    Institute of Scientific and Technical Information of China (English)

    Zuoxiang Qin; Cuihong Li; Haifeng Zhang; Zhongguang Wang; Zhuangqi Hu; Zhiqiang Liu

    2009-01-01

    The Zr_(55)Al_(10)Ni_5Cu_(30) bulk metallic glass plate were successfully welded to crystalline aluminum plates by using a friction stir welding (FSW) method. The welded zone was examined. No defects, cracks or pores were observed and no other crystalline phases except for aluminum were found in the welded joint. The strength of the joint is higher than that of aluminum. The glassy phase in the stir zone keeps the amorphous state, showing a successful welding. The storage modulus softens over the glass transition. And the weldability was discussed according to this phenomena.

  16. Magnetic properties and power losses in Fe-Co-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Magnetic properties of Fe-Co-based bulk metallic glasses have been experimentally investigated. Samples were prepared by water-cooled Cu-mold injection casting technique. The samples have cylindrical shapes with 0.8 mm diameter and 30 mm length. Amorphous structures were confirmed by the presence of a main halo in X-ray diffraction patterns and by the detection of crystallization signal around 650 deg. C using differential scanning calorimetry. Owing to their amorphous structure, these materials present good soft magnetic properties with coercivity below 100 A/m and magnetic induction around 1.0 T in quasi-static conditions. Hysteresis loops were measured using a digital wattmeter with controlled induction waveform. Power losses were analyzed for the following compositions: [(Fe1-xCox)75B20Si5]93Nb4Y3 (x=0, 0.2, 0.4, 0.5 and 0.6) over a range of frequencies from 1 to 400 Hz at selected fixed peak inductions. Co addition has shown to improve the soft magnetic properties when x=0.2, 0.4 and 0.5, decreasing coercive fields and power losses, while the magnetic induction is slightly increased (except for x=0.5). Further Co addition (x=0.6) is detrimental for the soft magnetic properties due to the presence of crystalline α-Fe-(Co) and boride phases. The frequency dependence of power losses was described using a separation theory. It has been observed that an f1/2 rule is in good agreement with the experimental data

  17. Magnetic properties and microstructural homogeneity in NdFeAl bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Zempoalteca, R.; Valenzuela, R.; Betancourt, I. [Depto de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, UNAM, Avenida Universidad (Mexico)

    2011-11-15

    Bulk metallic glasses of nominal composition Nd{sub 60}Fe{sub 30}Al{sub 10} were prepared by copper mold casting in the form of rods of 3 mm in diameter and 50 mm in length. Preparation conditions were varied to assess the effects of the injection distance and the injection pressure of the melt. In order to determine their microstructure, disk-shaped samples were obtained from different cut zones along the axis rod. A non-homogeneous phase distribution was observed, which resulted from the heat transfer regime during the cooling of the melt in the copper mold. As expected, the nature, distribution and volumetric fraction of the various phases produced play an important role on the resulting magnetic properties. Among the main observed phases are Fe-rich rod-like crystals, Nd-rich dendritic crystals and a ''like-amorphous'' matrix. The hard magnetic properties of these materials can be associated with this matrix. In these cooling regimes, the coercive field increases as the cooling rate of the amorphous matrix increases. Hysteresis loops showed a high degree of coupling between phases with different magnetic order. Both the coercive field and the magnetization showed a significant variation along the rod axis; a maximum appeared as a function of the axis length. In order to gather more information about the coupling between the observed phases, {delta}M (or Henkel) plots were obtained, showing an exchange character for interactions (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Wang; Zhenxi Guo; Rui Ma; Guojian Hao; Yong Zhang; Junpin Lin; Manling Sui

    2014-01-01

    The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass-matrix composite (MGMC) were investigated by using an in-situ tensile test under transmission electron microscopy (TEM). It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  19. Viscosity properties and strong liquid behavior of Pr60Ni25Al15 bulk metallic glass-forming liquids

    Institute of Scientific and Technical Information of China (English)

    WANG Dan; ZHANG Di; WANG ShuYing; NING QianYan; ZHENG CaiPing; YAN Yuan; LIU Jia; SUN MinHua

    2008-01-01

    Pr60Ni25Al15 bulk metallic glass in a cuboid form with dimensions of 2 mm×2 mm×55 mm by copper mold casting method was cast.The dynamic viscosity near the glass transition region for Pr60Ni25Al15 was measured by three-point beam bending methods.The fragility parameter m and activation energy for viscous flow of the liquid sample were calculated to be: m = 31.66, E= 10689.17 K, respectively.It was shown that the supercooled liquid of Pr60Ni25Al15 alloy behaved much closer to strong glasses.The variation of active energy with temperature in supercooled liquid was analyzed.It was found that Kivelson's super-Arrhenius equation is not suitable for description of the activation energy in a supercooled region of Bulk metallic glass, and there is a direct proportion between activation energy crystal-lization and activation energy of viscous flow.

  20. Structural study of Zr-Cu-Ag bulk metallic glasses using the anomalous X-ray scattering method

    International Nuclear Information System (INIS)

    The structures of Zr45Cu45Ag10 and Zr40Cu40Ag20 bulk metallic glasses (BMGs) were investigated using the anomalous x-ray scattering and reverse Monte Carlo simulation (AXS-RMC) method. The fundamental structural features of Zr45Cu45Ag10 and Zr40Cu40Ag20 can be properly demonstrated through the common dense random packing of the hard spheres, and the addition of Ag appeared to result in no prominent formation of the particular chemical ordering units. A Voronoi analysis indicated that the fraction of the icosahedron-like coordination was the largest around the Cu in Zr45Cu45Ag10 BMG, where the best glass-forming ability was realized. The improvement in the glass-forming ability in a Zr-Cu-Ag system appears to be associated with the icosahedron-like local coordination.

  1. Atomic-Scale Structural Evolution and Stability of Supercooled Liquid of a Zr-Based Bulk Metallic Glass

    International Nuclear Information System (INIS)

    In this Letter, direct experimental evidence is provided for understanding the thermal stability with respect to crystallization in the Zr41.2Ti13.8Cu12.5Ni10Be22.5 glass-forming liquid. Through high-resolution transmission electron microscopy, the atomic-structure evolution in the glass-forming liquid during the isothermal annealing process is clearly revealed. In contrast with the existing theoretical models, our results reveal that, prior to nanocrystallization, there exists a metastable state prone to forming icosahedralike atomic clusters, which impede the subsequent crystallization and hence stabilize the supercooled liquid. The outcome of the current research underpins the topological origin for the excellent thermal stability displayed by the Zr-based bulk metallic glass.

  2. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses

    International Nuclear Information System (INIS)

    Cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) exhibited volume dilatation across the entire range of thickness reduction fractions from 5.7% to 63%. The dilatation was dominantly attributed to the free volume generated during cold-rolling, together with any open volumes, like the voids or microcracks, or both, which survived even after sufficiently annealing the rolled sample at the temperature in the supercooled liquid region. The relaxation of free volume formed during cold-rolling resulted in more heat evolution per unit volume than that of as-cast glass. The structural change during cold-rolling could be ascribed to the increased fluctuation of atomic-level hydrostatic stress, 〈p2〉, in the glass

  3. Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    The effects of Cu substitution for Fe on the glass-forming ability (GFA) and soft magnetic properties for Fe72−xCuxB20Si4Nb4 (x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) bulk metallic glasses (BMGs) are investigated. It is found that the investigated BMGs exhibit large GFA as well as excellent soft magnetic properties, and proper substitution of Fe by Cu improves the saturation magnetization, coercive force, and effective permeability without obvious deterioration of the GFA. - Highlights: • Fully glassy rods of Fe72−xCuxB20Si4Nb4 BMGs were produced above 1 mm in diameter. • Investigated BMGs exhibit large glass-forming ability and excellent soft magnetic properties. • Proper Cu substitution improves magnetic properties without obvious deterioration of glass-forming ability

  4. X Ray Diffraction studies using synchrotron radiation of Mg-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Full text: Metallic glasses have attracted many scientist and regained high interest because of recent production that reach to the dimension of 1 cm or even more. They have remarkable properties compared with conventional metallic alloy. In this paper, Mg-based metallic glass delivers special interest because provides new light material for structural applications. Significant amount of researches have been conducted mostly in Mg-Cu-RE systems of alloys. The target is to optimize glass forming ability. Mg58Cu31Gd11 alloys are produced by melt spinning and copper mold casting. The produced alloys composition has shown a fully amorphous state with a clear crystallization temperature is also observed. In-situ experiment during heating was also performed in ID11 beamline ESRF Grenoble. To support the work, a combination of SEM-EDS, DSC and conventional XRD experiment was also done. It is observed the presence of ternary compound inside the Mg58Cu31Gd11 alloy. (author)

  5. A Ni-free Zr-based bulk metallic glass with remarkable plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jason S.C., E-mail: jscjang@ncu.edu.tw [Department of Mechanical Engineering, Institute of Materials Science and Engineering, National Central University, Chung-Li, 32001, Taiwan (China); Wu, K.C.; Jian, S.R.; Hsieh, P.J. [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 840, Taiwan (China); Huang, J.C. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Liu, C.T. [Department of Mechanical Engineering, Hong Kong Polytechnic University (Hong Kong)

    2011-06-15

    Research highlights: > Based on the results of thermal analyses, we found that Zr{sub 53}Cu{sub 30}Nb{sub 5}Pd{sub 4}Al{sub 8} and Zr{sub 53}Cu{sub 30}Nb{sub 4.5}Pd{sub 4.5}Al{sub 8} alloys present the optimum GFA as well as thermal stability in the Zr{sub 53}Cu{sub 30}Nb{sub x}Pd{sub 9-x}Al{sub 8} (x = 3.5{approx}6.0) alloy system. > A tiny nanocrystalline phase (with size about 5-20 nm) embedded uniformly in the amorphous matrix of the Zr{sub 53}Cu{sub 30}Nb{sub 4.5}Pd{sub 4.5}Al{sub 8} alloy was observed and identified to be the tetragonal structured NbPd{sub 3} phase. > A remarkable compression plastic strain (11.2%) with 1900 MPa yield strength occurs at Zr{sub 53}Cu{sub 30}Nb{sub 4.5}Pd{sub 4.5}Al{sub 8} BMG rod. > This significant increase in plasticity is presumably due to the restriction on shear banding by the nano-sized second phase. - Abstract: The effect of Nb and Pd combination on the glass forming ability (GFA) and mechanical properties of Zr{sub 53}Cu{sub 30}Nb{sub x}Pd{sub 9-x}Al{sub 8} (x = 3.5-6.0) bulk metallic glasses (BMGs) were systematically investigated by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and compression test. TEM observation revealed that a nanocrystalline phase embeds in the amorphous matrix of the as-cast Zr{sub 53}Cu{sub 30}Nb{sub 4.5}Pd{sub 4.5}Al{sub 8} alloy. A tiny nano-crystalline phase (with size about 5-20 nm) embedded uniformly in the amorphous matrix of the Zr{sub 53}Cu{sub 30}Nb{sub 4.5}Pd{sub 4.5}Al{sub 8} alloy was observed and identified to be the tetragonal structured NbPd{sub 3} phase based on the analyses of nano beam electron diffraction. According to the results of thermal analyses, the composition of Zr{sub 53}Cu{sub 30}Nb{sub 5}Pd{sub 4}Al{sub 8} and Zr{sub 53}Cu{sub 30}Nb{sub 4.5}Pd{sub 4.5}Al{sub 8} present the optimum GFA as well as thermal stability in the Zr{sub 53}Cu{sub 30}Nb{sub x}Pd{sub 9-x}Al{sub 8} (x = 3.5-6.0) alloy system. In

  6. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: • Novel Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 105 N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications

  7. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    International Nuclear Information System (INIS)

    Consequences of increase in structural fluctuations on heating Pd40Ni10Cu30P20 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the Tg (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (−dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-Tg feature and a rapid rise at T near Tg. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass

  8. Structure and soft magnetic properties of Fe72B20Si4Nb4 bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2009-01-01

    Full Text Available Purpose: The paper presents a microstructure characterization, thermal stability and soft magnetic properties analysis of Fe-based bulk amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 glassy alloy in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations have revealed that the studied as-cast bulk metallic glasses were amorphous. Broad diffraction halo can be seen for all tested samples, indicating the formation of a glassy phase with the diameters up to 2 mm. The fracture surface of rod samples appears to consist of small fracture zones, which leads to breaking of the samples into parts. A two stage crystallization process was observed for studied amorphous alloy. The changes of crystallization temperatures and magnetic properties as a function of glassy samples thickness were stated.Practical implications: The studied Fe-based alloy system has good glass-forming ability and thermal stability for casting bulk metallic glasses, which exhibit good soft magnetic properties, useful for many electric and magnetic applications.Originality/value: The obtained examination results confirm the utility of applied investigation methods in the microstructure, thermal and soft magnetic properties analysis of examined bulk amorphous alloys.

  9. On the mechanically induced crystallization of FCC phases by mechanical milling in ZrAlNiCu bulk metallic glasses

    International Nuclear Information System (INIS)

    In the present study, amorphous-nanocrystalline phase transformation induced by mechanical milling of full monolithic bulk metallic glasses (based on Zr65Al7.5Ni10Cu17.5 and Zr58Al16Ni11Cu15 alloys) has been investigated using X-ray diffraction as well as transmission electron microscopy. Nanocrystals having an FCC structure and a grain size of several 10 nm precipitate in the early stages of the milling process and remain stable for long milling duration. The structure changes induced by milling give a new insight on the preparation of amorphous-related alloys when using the method of mechanical milling.

  10. Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment

    OpenAIRE

    Zengqian Liu; Ran Li; Gang Liu; Kaikai Song; Simon Pauly; Tao Zhang; Jürgen Eckert

    2012-01-01

    Microstructures and mechanical properties of as-cast Cu47.5Zr47.5Al5 bulk metallic glass composites are optimized by appropriate remelting treatment of master alloys. With increasing remelting time, the alloys exhibit homogenized size and distribution of in situ formed B2 CuZr crystals. Pronounced tensile ductility of ∼13.6% and work-hardening ability are obtained for the composite with optimized microstructure. The effect of remelting treatment is attributed to the suppressed heterogeneous n...

  11. THE EFFECTS OF GAMMA-RAY ON THE MECHANICAL PROPERTIES OF Zr-BASED BULK METALLIC GLASS

    OpenAIRE

    L.H. Shah; T. Bun; Nagata, S; Shikama, T.

    2012-01-01

    The effect of gamma-ray irradiation on the mechanical properties of Zr55Ni5Al10Cu30 bulk metallic glass (BMG) was investigated. The samples were irradiated with a gamma-ray dose up to 2090.24 kGy prior to mechanical property investigations. Vickers hardness test, nano-indentation test as well as speed of sound measurements in order to calculate the material’s elastic moduli were conducted. An x-ray diffractogram device was also utilized to observe the BMG’s devitrification behavior. Results c...

  12. Characterization of shear bands/cracks induced by fatigue experiment in a Zr–Cu–Al bulk metallic glass

    International Nuclear Information System (INIS)

    A Zr50Cu40Al10 bulk metallic glass was deformed by three-point bending fatigue experiments. Shear bands/cracks appeared on the tensile and compressive regions of the sample surfaces. Characterizations of these shear bands/cracks cross sections by transmission electron microscopy reveal that a composition change occurred within the shear bands/cracks. Additionally, nanocrystallites with a higher copper content formed within the cracks. The composition change of the shear bands/cracks and formation of nanocrystallites are attributed to the diffusion of oxygen and copper atoms, respectively.

  13. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

    Science.gov (United States)

    Kolodziejska, Joanna A.; Kozachkov, Henry; Kranjc, Kelly; Hunter, Allen; Marquis, Emmanuelle; Johnson, William L.; Flores, Katharine M.; Hofmann, Douglas C.

    2016-03-01

    The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error.

  14. Effect of Yttrium Addition on Glass-Forming Ability and Magnetic Properties of Fe–Co–B–Si–Nb Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Teruo Bitoh

    2015-06-01

    Full Text Available The glass-forming ability (GFA and the magnetic properties of the [(Fe0.5Co0.50.75B0.20Si0.05]96Nb4−xYx bulk metallic glasses (BMGs have been studied. The partial replacement of Nb by Y improves the thermal stability of the glass against crystallization. The saturation mass magnetization (σs exhibits a maximum around 2 at. % Y, and the value of σs of the alloy with 2 at. % Y is 6.5% larger than that of the Y-free alloy. The coercivity shows a tendency to decrease with increasing Y content. These results indicate that the partial replacement of Nb by Y in the Fe–Co–B–Si–Nb BMGs is useful to simultaneous achievement of high GFA, high σs, and good soft magnetic properties.

  15. On valence electron density, energy dissipation and plasticity of bulk metallic glasses

    International Nuclear Information System (INIS)

    Highlights: ► Relationship between valence electron density and plasticity of metallic glasses. ► Poisson's ratio increases as electron density decreases. ► Energy dissipation proposed to understand plasticity. ► Low electron density indicates small activation energy. -- Abstract: In conventional crystalline alloys, valence electron density (VED) is one of the most significant factors in determining their phase stability and mechanical properties. Extending the concept to metallic glasses (MGs), it is found, not totally surprisingly, that their mechanical properties are VED-dependent as in crystalline alloys. Interestingly, the whole VED region can be separated into two zones: Zone 1 consists of Mg-, Ca-, and RE-based (RE for rare earth) alloys; Zone 2 consists of the rest of MGs. In either zone, for each type of MGs, Poisson's ratio generally decreases as VED increases. From the energy dissipation viewpoint proposed recently, the amorphous plasticity is closely related to the activation energy for the operation of shear-transformation-zones (STZs). Smaller STZ activation energy suggests higher ductility because STZs with lower activation energy are able to convert deformation work more efficiently into configurational energy rather than heat, which yields mechanical softening and advances the growth of shear bands (SBs). Following this model, it is revealed that the activation energies for STZ operation and crystallization are certainly proportional to VED. Thus, it is understood that, in Zone 2, MGs have a smaller VED and hence lower activation energies which are favorable for ductility and Poisson's ratio. In Zone 1, MGs have the lowest VED but apparent brittleness because either of low glass transition temperature and poor resistance to oxidation or of a large fraction of covalent bonds

  16. Effect of Si addition on glass-forming ability and mechanical properties of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Research highlights: The Cu50Zr43Al7 alloy has a surprising GFA, and the glassy rods with diameter of 10 mm have been produced in this research. It has not been reported that the Cu-based glassy rods (Cu ≥ 50 at.%) to be produced with the critical diameter greater than 10 mm. The novelty of this research is that the glass formation has been improved and the critical diameter increased to 12 mm for the alloy having x = 1 with the addition of Si. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. - Abstract: The effect of Si addition on the glass-forming ability (GFA) and mechanical properties of (Cu50Zr43Al7)100-xSix (x = 0, 0.5, 1, 1.5 and 2 at.%) alloys were investigated. The GFA of Cu50Zr43Al7 alloy is improved by addition of a small amount of Si, and the critical diameter for glass formation increases from 10 mm for the alloy with x = 0-12 mm for the alloy with x = 1 when prepared using copper mold casting. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. In the uniaxial compression, the bulk glassy alloys exhibit a limited plastic strain of less than 1%, but the compressive fracture strength and Young's modulus were obtained in high values of 1969-2129 MPa and 101-144 GPa, respectively. Fracture surface and shear bands of samples were studied by using scanning electron microscopy (SEM).

  17. Enhanced Mechanical Properties of MgZnCa Bulk Metallic Glass Composites with Ti-Particle Dispersion

    Directory of Open Access Journals (Sweden)

    Pei Chun Wong

    2016-05-01

    Full Text Available Rod samples of Mg60Zn35Ca5 bulk metallic glass composites (BMGCs dispersed with Ti particles have been successfully fabricated via injection casting. The glass forming ability (GFA and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf of Ti particles. The results showed that the compressive ductility increased with Vf. The mechanical performance of these BMGCs, with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature, can be obtained for the Mg-based BMGCs with 50 vol % Ti particles, suggesting that these dispersed Ti particles can absorb the energy of the crack propagations and can induce branches of the primary shear band into multiple secondary shear bands. It follows that further propagation of the shear band is blocked, enhancing the overall plasticity.

  18. Internal structural evolution and enhanced tensile plasticity of Ti-based bulk metallic glass and composite via cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M., E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do 443-742 (Korea, Republic of); Lim, K.R. [Light Metal Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Park, E.S.; Hong, S.; Park, K.H. [Global Technology Center, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do 443-742 (Korea, Republic of); Eckert, J. [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institute of Materials Science, D-01062 Dresden (Germany); Kim, D.H., E-mail: dohkim@yonsei.ac.kr [Center for Non-crystalline Materials, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-12-05

    Highlights: • Enhancement of tensile plasticity was achieved by cold rolling. • The malleable behavior of cold rolled samples is attributed to the atomic structural evolution and elastic property change. • Shear softened region act as a potential nucleation site of shear bands. - Abstract: The influence of cold rolling on the tensile mechanical properties and deformation behavior of Ti-based bulk metallic glass (BMG: Ti{sub 40}Zr{sub 25}Ni{sub 8}Cu{sub 9}Be{sub 18}) and β-Ti dendrite reinforced bulk metallic glass matrix composite (BMGMC: Ti{sub 40.2}Zr{sub 18}Ni{sub 2.85}Cu{sub 7.65}Be{sub 12.3}Nb{sub 19}) has been investigated. The cold-rolled BMG and BMGMC samples with 20% thickness reduction ratio exhibit a pronounced tensile plasticity of 0.8% and 4%, respectively. The malleable behavior of the cold-rolled samples originates from the internal structural evolution and modulation of elastic properties.

  19. Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: • Highest hardness is observed in the fully crystalline regions. • Large atomic misfit between intermetallic phases provides additional hardening. • A unique case of ISE is observed in both glassy as well as crystalline regions. - Abstract: Partially vitrified Zr60Cu10Al15Ni15 bulk metallic glass has been synthesized using water cooled copper mold drop casting technique. Kinetically favorable microstructures having different morphologies are observed throughout the volume of the bulk metallic glass sample. X-ray diffraction studies indicate formation of hard intermetallic compounds such as Zr3Al2 and Zr2Ni in certain regions along with amorphous structures. Microindentation studies carried out in different regions of the sample reveal microstructure dependent deformation behavior. Highest hardness is observed in the fully crystallized regions compared to pure glassy regions in the same sample. Further nanoindentation in the same sample is used to understand dynamic mechanical properties of microstructures in different regions. The pile-up morphologies around the indent and differences in load–displacement curves provide vital information on deformation behavior of sample in different microstructure sensitive regions

  20. On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining

    Science.gov (United States)

    Huang, Hu; Yan, Jiwang

    2015-11-01

    Microelectrical discharge machining (micro-EDM) performance of a Zr-based bulk metallic glass was investigated experimentally. Various discharge voltages and capacitances were used to study their effects on the material removal rate, cross-sectional profile, surface morphology and roughness, carbonization, and crystallization. Experimental results indicated that many randomly overlapped craters were formed on the EDMed surfaces, and their size and distribution were strongly dependent of the applied voltage and capacitance as well as their positions (center region or outer region), which further affected the surface roughness. Raman spectra and energy dispersive X-ray spectroscopy demonstrated that amorphous carbons originating from the decomposition of the EDM oil were deposited on the EDMed surface. Although some small sharp peaks appeared in the X-ray diffraction patterns of the micro-EDMed surfaces, a broad hump was maintained in all patterns, suggesting a dominant amorphous characteristic. Furthermore, crystallization was also affected by experimental conditions and machining positions. Results in this study indicate that micro-EDM under low discharge energy is useful for fabricating bulk metallic glass microstructures or components because of the ability to retain an amorphous structure.

  1. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Shujie; Liu, Ying; Li, Haifei; Sun, Lulu [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Zhang, Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-03-15

    Highlights: • Novel Ti{sub 47}Cu{sub 38}Zr{sub 7.5}Fe{sub 2.5}Sn{sub 2}Si{sub 1}Ag{sub 2} (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti{sub 47}Cu{sub 38}Zr{sub 7.5}Fe{sub 2.5}Sn{sub 2}Si{sub 1}Ag{sub 2} (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 10{sup 5} N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications.

  2. Electrocatalysts: Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces (Adv. Mater. 10/2016).

    Science.gov (United States)

    Doubek, Gustavo; Sekol, Ryan C; Li, Jinyang; Ryu, Won-Hee; Gittleson, Forrest S; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; Bordeenithikasem, Punnathat; Kinser, Emily; Liu, Yanhui; Tong, Xiao; Osuji, Chinedum O; Schroers, Jan; Mukherjee, Sundeep; Taylor, André D

    2016-03-01

    On page 1940, A. D. Taylor and co-workers demonstrate nanoporous bicontinuous structures using controlled structural evolution of metallic glass. By using techniques such as dealloying, galvanic replacement, and under-potential deposition, bulk-metallic-glass alloys can be pushed beyond their compositional limitations and tuned for a wide variety of interfacial and electrochemical reactions. Examples are illustrated for hydrogen and methanol oxidation, as well as oxygen reduction reactions. PMID:26947938

  3. Effect of high frequency pre load on mechanical and thermo physical properties of bulk metallic glass (Zr55Cu30Al10Ni5)99Y1

    International Nuclear Information System (INIS)

    The effect of pre-high-frequency (ultrasonic) mechanical loading on the thermo physical and mechanical properties of samples of a new, long-term structural material - the bulk metallic glass (Zr55Cu30Al10Ni5)99Y1. The dependence of the thermophysical and mechanical properties of metallic glass on the parameters of the high-frequency loading of the material

  4. Development of Fe-B Based Bulk Metallic Glasses: Morphology of Residual Phases in Fe50Ni16Mo6B18Zr10 Glass

    Directory of Open Access Journals (Sweden)

    Tiburce A. Aboki

    2013-04-01

    Full Text Available Iron-boron based bulk metallic glasses (BMG development has been initiated using Fe40Ni38Mo4B18 as precursor. Addition of zirconium up to 10 atomic % along with the reduction of Ni proportion improves the glass forming ability (GFA, which is optimum when Ni is suppressed in the alloy. However melting instability occurred during the materials fabrication resulting in the formation of residual crystalline phases closely related to the amorphous phase. Microstructure study shows an evolution from amorphous structure to peculiar acicular structure, particularly for Fe50Ni16Mo6B18Zr10, suggesting the amorphous structure as interconnected atomic sheets like “atomic mille feuilles” whose growth affects the alloys’ GFA.

  5. Fluxing of Pd–Si–Cu bulk metallic glass and the role of cooling rate and purification

    International Nuclear Information System (INIS)

    Boron oxide fluxing represents an interesting processing technique for attaining a simultaneous improvement in many properties of bulk metallic glasses (BMGs). This concerns glass-forming ability (i.e. a more than three times larger critical casting thickness), in combination with a significant improvement of thermal and mechanical characteristics. In particular, a better understanding of the flux treatment can result in further enhancement of toughness and ductility, which is crucially needed for structural applications. This study investigates the effects of fluxing of Pd–Si–Cu BMGs. By studying four differently processed materials (i.e. cast, water-quenched, fluxed-cast and fluxed alloys), the influences of applied cooling rate and purification associated with flux treatment can be decoupled. The better glass-forming ability is linked to the reduction of heterogeneities, whereas the thermal characteristics depend on both parameters. The interplay of slower quenching rates and the suppression of heterogeneous nucleation is reflected in an extended supercooled liquid range, improving the formability of the BMG. Better ductility is also obtained and can be explained in terms of purification, which is correlated with a decrease in oxygen concentration. In summary, the properties of fluxed specimens are improved not only by the reduction of heterogeneous nucleation, but also via modified cooling rates during fluxing. This study illustrates the importance of adequate processing of BMG-forming liquids to achieve improved properties and casting thicknesses

  6. Evaluation of Ni-free Zr–Cu–Fe–Al bulk metallic glass for biomedical implant applications

    International Nuclear Information System (INIS)

    Highlights: ► A Zr62.5Cu22.5Fe5Al10 bulk metallic glass (BMG) with 50 GPa elastic modulus was used. ► This Ni-free Zr-based BMG had lower metal ion release rate than the commercial Ti. ► This Ni-free Zr-based BMG had better proteins adsorption than the commercial Ti. ► This Ni-free Zr-based BMG has a high potential for biomedical implant applications. -- Abstract: This study was conducted to investigate the surface characteristics, including the chemical composition, metal ion release, protein adsorption, and cell adhesion, of a Ni-free Zr-based (Zr62.5Cu22.5Fe5Al10) bulk metallic glass (BMG) with low elastic modulus for biomedical implant applications. X-ray photoelectron spectroscopy was used to identify the surface chemical composition and the protein (albumin and fibronectin) adsorption of the specimen. The metal ions released from the specimen in simulated blood plasma and artificial saliva solutions were measured using an inductively coupled plasma-mass spectrometer. The cell adhesion, in terms of the morphology, focal adhesion complex, and skeletal arrangement, of human bone marrow mesenchymal stem cells was evaluated using scanning electron microscope observations and immunofluorescent staining. For comparison purposes, the above-mentioned tests were also carried out on the widely used biomedical metal, Ti. The results showed that the main component on the outermost surface of the amorphous Zr62.5Cu22.5Fe5Al10 BMG was ZrO2 with small amounts of Cu, Al, and Fe oxides. The released metal ions from Zr62.5Cu22.5Fe5Al10 BMG were well below the critical concentrations that cause negative biological effects. The Zr62.5Cu22.5Fe5Al10 BMG had a greater adsorption capacity for albumin and fibronectin than that of commercial biomedical Ti. The Zr62.5Cu22.5Fe5Al10 BMG surface showed an attached cell number similar to the Ti surface but had better cell adhesion morphology and cytoskeletal arrangement. Based on the present results, the Ni-free Zr62.5Cu22.5Fe5Al10

  7. Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag

    International Nuclear Information System (INIS)

    A novel Ni and Cu-free Zr-based bulk metallic glass (BMG) system with enhancement of glass-forming ability (GFA) and bio-corrosion resistance was prepared by copper mold casting by the addition of Ag. It was found that the addition of Ag can considerably enhance the glass-forming ability, as indicated by the increase of the critical glass dimension from 3 mm diameter of the ternary system to over 10 mm in the alloy of Zr53Co18.5Al23.5Ag5. The bio-corrosion behaviors of the Zr-based BMGs in phosphate buffered solution (PBS) were investigated by electrochemical polarization at 310 K. It was found that the addition of appropriate amount of Ag can enhance the corrosion resistance of the BMGs. The X-ray photoelectron spectroscopy (XPS) indicated that the formation of an Al2O3-enriched passive film is mainly responsible for the high corrosion resistance of Ag-bearing alloy in phosphate buffered solution.

  8. Phase evolution and its effect on magnetic properties of Nd60Al10Fe20Co10 bulk metallic glass

    International Nuclear Information System (INIS)

    The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic properties were studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hard magnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed

  9. Free-volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.; Horsewell, Andy; Jiang, J.Z.

    2005-01-01

    The free-volume evolution during rolling Cu60Zr20Ti20 bulk metallic glass at room and cryogenic temperatures has been investigated by differential scanning calorimetry. When the specimen is rolled at cryogenic temperature, the free-volume content increases as the rolling proceeds first, and then...... saturates accompanied by the occurrence of phase separation as the thickness reduction exceeds 89%. If the rolling is performed at room temperature, although the free-volume content also rises in the earlier stage, it tends to decrease rather than saturate when the thickness reduction exceeds 87......%, accompanied by partial crystallization. Phase separation does not change the annihilation rate of free volume, while the appearance of crystal/amorphous boundaries can enhance the annihilation....

  10. Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment

    Directory of Open Access Journals (Sweden)

    Zengqian Liu

    2012-09-01

    Full Text Available Microstructures and mechanical properties of as-cast Cu47.5Zr47.5Al5 bulk metallic glass composites are optimized by appropriate remelting treatment of master alloys. With increasing remelting time, the alloys exhibit homogenized size and distribution of in situ formed B2 CuZr crystals. Pronounced tensile ductility of ∼13.6% and work-hardening ability are obtained for the composite with optimized microstructure. The effect of remelting treatment is attributed to the suppressed heterogeneous nucleation and growth of the crystalline phase from undercooled liquid, which may originate from the dissolution of oxides and nitrides as well as from the micro-scale homogenization of the melt.

  11. Numerical Study of the Effect of the Sample Aspect Ratio on the Ductility of Bulk Metallic Glasses (BMGs) Under Compression

    Science.gov (United States)

    Jiang, Yunpeng

    2016-05-01

    In this article, a systematic numerical study was conducted to study the detailed shear banding evolution in bulk metallic glasses (BMGs) with various sample aspect ratios under uniaxial compression, and whereby the effect of the sample aspect ratio on the compressive ductility was elucidated. A finite strain viscoelastic model was employed to describe the shear banding nucleation, growth, and coalescence in BMG samples with the help of Anand and Su's theory, which was incorporated into the ABAQUS finite element method code as a user material subroutine VUMAT. The present numerical method was first verified by comparing with the corresponding experimental results, and then parameter analysis was performed to discuss the impact of microstructure parameters on the predicted results. The present modeling will shed some light on enhancing the toughness of BMG structures in the engineering applications.

  12. Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Two metallic bulk glasses, Cu60Zr30Ti10 and Cu47Ti33Zr11Ni8Si1, with a diameter of 3 mm were prepared by copper mold casting method. Dilatometric measurement was carried out on the two glassy alloys to obtain information about the average nearest-neighbour distance r0 and the effective depth of pair potential V0. By assuming a Lennard-Jones potential, r0 and V0 were calculated to be 0.28 nm and 0.16 eV for Cu60Zr30Ti10 and 0.27 nm and 0.13 eV for Cu47Ti33Zr11Ni8Si1, respectively. It was found that the glassy alloy Cu60Zr30Ti10 was more stable than Cu47Ti33Zr11Ni8Si1 against heating from both experiment and calculation

  13. Replication of nano/micro-scale features using bulk metallic glass mold prepared by femtosecond laser and imprint processes

    International Nuclear Information System (INIS)

    This study describes the replication of nano/micro-scale features using a Pd40Ni40P20 bulk metallic glass (BMG) mold prepared using a femtosecond laser and nanoimprinting process. The use of the beam shaper feature of the femtosecond laser enabled the rapid fabrication of periodic nanostripes over an area of ∼5 × 4 mm2 on the BMG mold following a single pulse of irradiation. The ablation pitch of the nanostructure irradiated with 100 mW of femtosecond laser power was determined to be 175.8 nm. The imprinting results demonstrate the applicability of Pd-based BMG in the replication of mold features ranging from 100 µm to 90 nm. Additionally, Pd-based BMG can itself be used as a mold to transfer features onto Au-based BMG and polydimethylsiloxane, where the results could be used to ascertain the workability of BMG for molding in a nano/micro-imprint process. (paper)

  14. Effect of annealing on the magnetic properties of Nd70Fe20Al10 bulk metallic glasses

    International Nuclear Information System (INIS)

    In this work, the influence of thermal treatments on the hysteresis behaviour of Nd70Fe20Al10 bulk metallic glasses is studied. Two samples obtained applying different quenching rates have been characterized: (a) master alloy ingots, prepared through arc melting, and (b) cone-shaped ingots obtained by copper mould casting. DSC measurements have been performed on both alloys. Selected samples have been submitted to subsequent annealing. Hard magnetic properties have been observed at room temperature either in the as-cast master alloy or in the cone-shaped ingots. High values of coercivity are still observed after treatment at temperatures close to the crystallisation temperature (up to 500 deg. C). The different magnetic behaviour of the samples is discussed in terms of differences in the residual amorphous phase composition

  15. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

    Science.gov (United States)

    Kolodziejska, Joanna A; Kozachkov, Henry; Kranjc, Kelly; Hunter, Allen; Marquis, Emmanuelle; Johnson, William L; Flores, Katharine M; Hofmann, Douglas C

    2016-01-01

    The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error. PMID:26932509

  16. Effect of excess electrons on hexagonal close-packed Mg and the model clusters for bulk metallic glasses

    International Nuclear Information System (INIS)

    We report the effect of excess electrons on hexagonal close-packed Mg and the model clusters explained by an inflation process using density functional theory-based calculations, in order to understand the role of conduction electron concentration in Mg-based bulk metallic glasses. We find the volume expansion and distortion to a higher c/a ratio in the negative charge state. The increase in the values corresponding to the c/a ratio is also observed in the model clusters. In the density of states at the equilibrium cell parameters expanded by charging, the pseudogap near the Fermi level by s-p mixing becomes small and a spiky structure appears

  17. Multistage devitrification behavior of Mg{sub 65}Cu{sub 25}Tb{sub 10} bulk metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Wang, X. L.; Stoica, A. D.; Ma, D.; Almer, J. D.; Shi, D.; Wang, W. H.; X-Ray Science Division; Univ. of Cincinnati; ORNL; Chinese Academy of Science

    2008-08-01

    The devitrification of Mg{sub 65}Cu{sub 25}Tb{sub 10} bulk metallic glass (BMG) has been studied by time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) simultaneously. By analyzing the interference peaks on SAXS patterns and the Bragg peaks on WAXS patterns, it is found that devitrification initiates by activation of quenched-in short-range orders. Crystallization proceeds in three stages. During stage I, icosahedral clusters are formed that transforms to a quasi-crystalline 1/1 approximant during stage II, accompanied by the formation of cubic TbMg{sub 3}. In stage III, the 1/1 approximant transforms to a 2/1 approximant. The orthorhombic CuMg{sub 2} phase is formed at a higher temperature when the quasi-crystalline phase starts to decompose. Pair distribution functions were evaluated to demonstrate these structural evolutions in real space.

  18. Fabrication and mechanical properties of a tungsten wire reinforced Cu-Zr-Al bulk metallic glass composite

    Energy Technology Data Exchange (ETDEWEB)

    Khademian, N. [Iranian Research Organization for Science and Technology (IROST), Ferdousi Sq., Sh. Moosavi St., Tehran (Iran, Islamic Republic of); Gholamipour, R., E-mail: rgholamipour@gmail.com [Iranian Research Organization for Science and Technology (IROST), Ferdousi Sq., Sh. Moosavi St., Tehran (Iran, Islamic Republic of)

    2010-05-25

    A Cu{sub 50}Zr{sub 43}Al{sub 7} bulk metallic glass matrix/tungsten wire composite was fabricated by infiltration process at different temperatures (900, 950 and 1000 deg. C) and time (10, 20 and 30 min). Structural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, X-ray diffraction method and quasistatic compressive test, respectively. It has been found that the best mechanical properties (ultimate compressive stress and elongation at the stress are equal to 2.22 GPa and 7.45%, respectively) of the composite achieved at 900 deg. C for 10 min. In this condition, based on structural analysis, it has been shown that some crystalline phases evenly formed in the matrix and affected the fracture mode.

  19. Mechanical and dynamical behaviors of ZrSi and ZrSi2 bulk metallic glasses: A molecular dynamics study

    International Nuclear Information System (INIS)

    The mechanical and dynamical properties of ZrSi and ZrSi2 bulk metallic glasses (BMGs) have been investigated by molecular dynamics simulation. The Honeycutt-Anderson (HA) index analysis indicates that the major indexes in ZrSi and ZrSi2 bulk metallic glasses are 1551, 1541, and 1431, which refers to the liquid structure. For uniaxial tension, the results show that the ZrSi and ZrSi2 BMGs are more ductile than their crystal counterparts. The evolution of the distribution of atomic local shear strain clearly shows the initialization of shear transformation zones (STZs), the extension of STZs, and the formation of shear bands along a direction 45° from the tensile direction when the tensile strain gradually increases. The self-diffusion coefficients of ZrSi and ZrSi2 BMGs at temperatures near their melting points were calculated by the Einstein equation according to the slopes of the MSD profiles at the long-time limit. Because the HA fraction summation of icosahedral-like structures of ZrSi BMG is higher than that of ZrSi2 BMG, and these local structures are more dense, the self-diffusion coefficients of the total, Zr, and Si atoms of ZrSi2 BMG are larger than those of ZrSi BMG. This can be attributed to the cage effect, where a denser local structure has a higher possibility of atoms jumping back to form a backflow and then suppress atomic diffusivity. For ZrSi2 BMG, the self-diffusion coefficient of Si increases with temperature more significantly than does that of Zr, because more open packing rhombohedra structures are formed by the Si-Si pair

  20. Influence of the micro-addition of Mo on glass forming ability and corrosion resistance of Cu-based bulk metallic glasses

    International Nuclear Information System (INIS)

    (Cu47Zr11Ti34Ni8)100-xMo x bulk metallic glasses (BMGs) with x = 0, 1 and 2 at.% and a bulk metallic glass matrix composite with x = 5 at.% were successfully prepared by water-cooled copper mold casting. The effect of the addition of a small amount of Mo on the glass forming ability (GFA), thermal properties of the base alloy (i.e. x = 0) were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It is found that the addition of appropriate amount of Mo can enhance the GFA of the Cu-based BMG, as indicated by the increase in the reduced glass transition temperature T rg (=T g/T l) and the parameter γ (=T x/(T g + T l)) with the increase of Mo. On the other hand, the corrosion resistance of the Cu-based BMGs with different Mo contents was examined by electrochemical polarization and weight loss measurement in 1 mol/L H2SO4 and 1 mol/L NaOH solutions, respectively. It is found that the corrosion resistance of Cu-based BMGs increased with increasing Mo content with the lowest corrosion rate of (0.9 ± 0.2) x 10-3 mm/year in 1 mol/L H2SO4 solution and (0.3 ± 0.1) x 10-3 mm/year in 1 mol/L NaOH solution, respectively, for the BMG containing 2 at.% Mo. X-ray photoelectron spectroscopy (XPS) results revealed that the improvement of corrosion resistance of Cu-based BMG containing appropriate amount of Mo originated from the enrichment of ZrO2 and TiO2, but depletion in Cu- or Ni-oxides in the passive films formed during electrochemical polarization. Finally, the galvanostatic-step measurement was performed to investigate the kinetics of the formation of passive films on the BMG surfaces. It is demonstrated that the addition of an appropriate amount of Mo can effectively improve the stability and uniformity of the passive film. The role of Mo addition on the glass forming ability and corrosion behavior is discussed

  1. Noncontact measurement of high-temperature surface tension and viscosity of bulk metallic glass-forming alloys using the drop oscillation technique

    OpenAIRE

    Mukherjee, S.; Johnson, W. L.; Rhim, W. K.

    2005-01-01

    High-temperature surface tension and viscosities for five bulk metallic glass-forming alloys with widely different glass-forming abilities are measured. The measurements are carried out in a high-vacuum electrostatic levitator using the drop oscillation technique. The surface tension follows proportional mathematical addition of pure components' surface tension except when some of the constituent elements have much lower surface tension. In such cases, there is surface segregation of the low ...

  2. Corrosion resistance of Cu-Zr-Al-Y and Zr-Cu-Ni-Al-Nb bulk metallic glasses

    International Nuclear Information System (INIS)

    Electrochemical tests of amorphous Cu46Zr42Al7Y5 in comparison to amorphous Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 (Vit106a) were conducted by potentiodynamic polarization at room temperature in 0.001-0.1 M NaClaq (pH 8). The influence of corrosion on the surface topography was studied by X-ray diffraction and SEM. Electrochemical measurements indicate a good corrosion resistance of both bulk metallic glasses in NaCl solutions with low molarity at pH 8 due to the formation of protective oxide films. However, at high NaCl molarity the Cu-Zr-Al-Y glass shows no passive layer and is very susceptible to pitting corrosion. The mechanisms of the formation of the oxide films as well as the nucleation and growth of pitting were clarified by associating microstructural investigations with the results of electrochemical measurements

  3. Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) of (Cu37.6Zr46Ag8.4Al8)100-xTix with x = 0, 1, 2 and 4 at.% were prepared by copper mold casting. The corrosion resistance of the CuZr-based BMGs with different Ti contents was carefully examined by potentiodynamic polarization tests in 1N NaOH, 1N H2SO4, 1N H2SO4 + 0.01N NaCl and 1N H2SO4 + 0.1N NaCl solutions, respectively. The BMGs exhibit excellent corrosion resistance in 1N NaOH and 1N H2SO4 solutions. Ti addition greatly improves the newly developed BMGs' corrosion resistance in both H+ and Cl- ions containing solutions. The influence of Ti addition on glass forming ability (GFA) and thermal stability was investigated by X-ray diffraction and differential scanning calorimetry. It is found that the alloys still have large GFA although thermal stability is slightly deteriorated with Ti addition.

  4. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    Science.gov (United States)

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  5. The impact of elastic and plastic strain on relaxation and crystallization of Pd–Ni–P-based bulk metallic glasses

    International Nuclear Information System (INIS)

    The effects of deformation and subsequent heat treatment on the low-temperature heat capacity, enthalpy relaxation rate and mechanical losses of two Pd–Ni–P-based bulk metallic glasses of slightly different compositions and different thermal stabilities have been investigated. It was found that the crystallization temperatures decreased significantly with imposed strain and the effect was more pronounced for the alloy with a higher thermal stability. The boson heat capacity peak increases with increasing strain in both alloys. However, after annealing treatments above room temperature, it relaxes to a lower enthalpy state as compared to that of the as-quenched state for the alloy with a lower thermal stability. The existence of two counteracting processes that might be related to different shear band structures within one homogeneously deformed sample is suggested. These results agree with the internal friction data, which indicate different regimes of mechanical damping as a function of the strain amplitude, while the critical amplitude of a transition between the regimes depends on the imposed strain. The results are interpreted within the energy landscape approach and advocate that the composition-dependent local atomic configurations affect significantly the response of the glass to an applied strain

  6. Micro-lateral extrusion of Zr55Cu30Al10Ni5 bulk metallic glass under low-frequency vibration loading

    Directory of Open Access Journals (Sweden)

    Li Jinyang

    2015-01-01

    Full Text Available The effect of vibration on the micro-forming ability of Zr55Cu30Al10Ni5 bulk metallic glass in its supercooled liquid region was studied. The experiment of micro-extrusion was carried out under different amplitude (38 ∼ 760 N and different frequency (0.1 ∼ 2.0 Hz at a fixed temperature of 723 K. The extrusion length was taken as a measure to characterize the micro-forming ability. Results reveal that the extrusion length of bulk metallic glass is effectively improved under vibration loading, and increases with increasing loading frequency and amplitude, whereas the frequency dependence is stronger. The viscosity of bulk metallic glass declines under vibration loading because of a larger free volume concentration and surface effect caused by vibration. This research indicates that the vibration forming is an effective method to enhance the micro-forming ability of bulk metallic glasses.

  7. Crystallization in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhou, T.J.; Rasmussen, Helge Kildahl;

    2000-01-01

    The effect of pressure on the crystallization behavior of the bulk metallic glass-forming Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy with a wide supercooled liquid region has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction measurements using synchrotron radiation....

  8. The effect of Hf substitution for Zr on glass forming ability and magnetic property of FeCoZrMoBAlY bulk metallic glasses

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) Fe61Co6Zr8-xHfxMo7B15Al1Y2 (x = 0-8) have been produced by copper mold casting technique using industrial raw materials. The effect of substitution of Hf for Zr on the glass forming ability (GFA) and the magnetic property has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). It was found that the substitution of an appropriate amount of Hf for Zr can improve the GFA of the base alloy Fe61Co6Zr8Mo7B15Al1Y2, as demonstrated by the increase in reduced glass transition temperature Trg (=Tg/Tl) and GFA parameters of γ (=Tx/Tg + Tl) and δ (=Tx/Tl - Tg). The Fe61Co6Zr5Hf3Mo7B15Al1Y2 alloy exhibits the highest GFA with the largest Trg (0.612) and δ (1.633), and can cast a fully amorphous rod in 3 mm diameter. The substitution of Hf for Zr also enhances the magnetic properties, as verified by the increase in saturation magnetization (Ms) in the alloy of Fe61Co6Zr3Hf5Mo7B15Al1Y2, whose Ms is approximately 1.5 times higher than that of the base alloy (x = 0) at room temperature. Finally, the effect of the substitution of Hf for Zr on glass forming ability and magnetic properties is discussed

  9. Evaluation of Ni-free Zr–Cu–Fe–Al bulk metallic glass for biomedical implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Zhang, Wei [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Kai, Wu [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN (United States); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2014-02-15

    Highlights: ► A Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} bulk metallic glass (BMG) with 50 GPa elastic modulus was used. ► This Ni-free Zr-based BMG had lower metal ion release rate than the commercial Ti. ► This Ni-free Zr-based BMG had better proteins adsorption than the commercial Ti. ► This Ni-free Zr-based BMG has a high potential for biomedical implant applications. -- Abstract: This study was conducted to investigate the surface characteristics, including the chemical composition, metal ion release, protein adsorption, and cell adhesion, of a Ni-free Zr-based (Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10}) bulk metallic glass (BMG) with low elastic modulus for biomedical implant applications. X-ray photoelectron spectroscopy was used to identify the surface chemical composition and the protein (albumin and fibronectin) adsorption of the specimen. The metal ions released from the specimen in simulated blood plasma and artificial saliva solutions were measured using an inductively coupled plasma-mass spectrometer. The cell adhesion, in terms of the morphology, focal adhesion complex, and skeletal arrangement, of human bone marrow mesenchymal stem cells was evaluated using scanning electron microscope observations and immunofluorescent staining. For comparison purposes, the above-mentioned tests were also carried out on the widely used biomedical metal, Ti. The results showed that the main component on the outermost surface of the amorphous Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG was ZrO{sub 2} with small amounts of Cu, Al, and Fe oxides. The released metal ions from Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG were well below the critical concentrations that cause negative biological effects. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG had a greater adsorption capacity for albumin and fibronectin than that of commercial biomedical Ti. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG surface showed an attached cell number similar

  10. Localization of plastic deformation along shear bands in Vitreloy bulk metallic glass during high pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Zsolt [Department of Materials Physics, Eötvös University, Budapest, H-1518, P.O. Box 32, Budapest (Hungary); Schafler, Erhard [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, A-1090 Vienna, Boltzmanngasse 5 (Austria); Szommer, Péter [Department of Materials Physics, Eötvös University, Budapest, H-1518, P.O. Box 32, Budapest (Hungary); Révész, Ádám, E-mail: reveszadam@ludens.elte.hu [Department of Materials Physics, Eötvös University, Budapest, H-1518, P.O. Box 32, Budapest (Hungary)

    2014-04-01

    Highlights: • Shear bands were investigated in Vitreloy BMG disks subjected to HPT deformation. • FIB marker lines in an internal surface were analyzed. • Plastic deformation took place by short and wavy shear bands. • Healing of the two part HPT disk were observed along material pile-ups. - Abstract: Microscopic plastic behavior of high purity commercial Vitreloy 1b glassy disks subjected to high pressure torsion was investigated by analyzing the distortion of a marker grid produced by focused ion beam milling. Scanning electron microscopy and atomic force microscopy are applied to measure offsets of shear bands at the surface. Unlike in other macroscopic deformation tests, short and wavy shear bands with submicron offsets and substantial normal offset components are observed indicating concurrent formation of numerous bands. Material pile-ups along major shear bands result in healing of the glass counterparts.

  11. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    International Nuclear Information System (INIS)

    Amorphous alloys with composition (at%) Fe48Cr15Mo14C15B6Gd2 (alloy A) and Fe48Cr15Mo14C15B6Y2 (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness (∼13 GPa) and the Young modulus (∼180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  12. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Science.gov (United States)

    Lavorato, G. C.; Fiore, G.; Castellero, A.; Baricco, M.; Moya, J. A.

    2012-08-01

    Amorphous alloys with composition (at%) Fe48Cr15Mo14C15B6Gd2 (alloy A) and Fe48Cr15Mo14C15B6Y2 (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness (∼13 GPa) and the Young modulus (∼180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  13. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G.; Castellero, A.; Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [IESIING, Facultad de Ingenieria e Informatica, UCASAL, Salta (Argentina); CONICET (Argentina)

    2012-08-15

    Amorphous alloys with composition (at%) Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Gd{sub 2} (alloy A) and Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Y{sub 2} (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness ({approx}13 GPa) and the Young modulus ({approx}180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  14. Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg–Zn–Ca bulk metallic glass composites

    International Nuclear Information System (INIS)

    The effects of Mn substitution for Mg on the microstructure, mechanical properties, and corrosion behavior of Mg69−xZn27Ca4Mnx (x = 0, 0.5 and 1 at.%) alloys were investigated using X-ray diffraction, compressive tests, electrochemical treatments, and immersion tests, respectively. Microstructural observations showed that the Mg69Zn27Ca4 alloy was mainly amorphous. The addition of Mn decreases the glass-forming ability, which results in a decreased strength from 545 MPa to 364 MPa. However, this strength is still suitable for implant application. Polarization and immersion tests in the simulated body fluid at 37 °C revealed that the Mn-doped Mg–Zn–Ca alloys have significantly higher corrosion resistance than traditional ZK60 and pure Mg alloys. Cytotoxicity test showed that cell viabilities of osteoblasts cultured with Mn-doped Mg–Zn–Ca alloys extracts were higher than that of pure Mg. Mg68.5Zn27Ca4Mn0.5 exhibits the highest bio-corrosion resistance, biocompatibility and has desirable mechanical properties, which could suggest to be used as biomedical materials in the future. - Highlights: • Novel Mn-doped Mg–Zn–Ca bulk metallic glass composites were made by copper mold cast. • The strength of the Mn-doped Mg–Zn–Ca is suitable for implant application. • The Mn-doped Mg–Zn–Ca alloys have significantly high bio-corrosion resistance. • The Mn-doped Mg–Zn–Ca alloys show better cell viabilities than that of pure Mg

  15. Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert

    International Nuclear Information System (INIS)

    The development of MEMS and microsystems needs a reliable mass production process to fabricate micro components with micro/nano-scale features. In our study, we used the micro injection molding process to replicate micro/nano-scale channels and ridges from a bulk metallic glass (BMG) cavity insert. High-density polyethylene was used as the molding material and the design of experiment approach was adopted to systematically and statistically investigate the relationship between machine parameters, real process conditions and replication quality. The peak cavity pressure and temperature were selected as process characteristic values to describe the real process conditions that the material experienced during the filling process. The experiments revealed that the replication of ridges, including feature edge, profile and filling height, was sensitive to the flow direction; cavity pressure and temperature both increased with holding pressure and mold temperature; replication quality can be improved by increasing cavity pressure and temperature within a certain range. The replication quality of micro/nano features is tightly related to the thermomechanical history of material experienced during the molding process. In addition, the longevity and roughness of the BMG insert were also evaluated based on the number of injection molding cycles. (paper)

  16. Tribological behavior of a Ni-free Zr-based bulk metallic glass with potential for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Wang, Weiguo; Lu, Haotian; Ye, Xiaoyun; Li, Guanghui; Lin, Chen; Huang, Xufang

    2016-09-01

    In this study, the tribological behavior of a Ni-free Zr53Al16Co23·25Ag7.75 bulk metallic glass (BMG) was investigated in dry-sliding and simulated physiological media using ball-on-disk reciprocating friction. The effects of sliding load, speed, media and counterpart materials on the wear resistance of the Zr-Al-Co-Ag BMG were illustrated. Under dry-sliding in air, wear resistance of the Zr-based BMG decreases with increasing sliding load, and wear deterioration is controlled by oxidation and abrasive wear. With increasing sliding velocity, larger plastic deformation occurs on the surface of BMG due to the frictional heat. The BMG exhibits decreased wear resistance in 0.9% NaCl and phosphate buffer saline (PBS) solutions in comparison with that in air and deionized water, which is probably associated with tribocorrosion controlled by synergistic effects of abrasive and corrosive wear. The wear resistance of the Zr-based BMG against Si3N4 counterpart material is inferior to that against ZrO2, whereas the case is contrary to that against Al2O3. The effect of ceramic counterpart materials on the wear resistance of BMG is discussed based on their Young's modulus and fracture toughness. PMID:27207063

  17. Microstructural evolution and homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Y., E-mail: zhangxiangyun86@163.com; Yuan, Z.Z.; Li, D.X.

    2014-12-25

    Highlights: • Stress–strain behaviors of the BMGCs are strain rate and temperature dependent. • Micro-crystals are compressed to concave polygon in shape and align in line. • Nano-crystals nuclear and aggregate during high temperature deformation. • Deformation behavior is governed by homogeneous flow of the amorphous matrix. - Abstract: The high temperature compression behavior of Cu{sub 40}Zr{sub 44}Ag{sub 8}Al{sub 8} rods with 6 mm in diameter was investigated and compared with the literature data. Microstructure of the as-cast rods were characterized by X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscope in the composites state with microscale Al{sub 3}Zr particles embedded in the amorphous matrix. Deformation results show that the stress–strain behaviors of the bulk metallic glass composites (BMGCs) are strain rate and temperature dependent. In addition, SEM observations reveal that the initially spherical and randomly distributed microscale particles in the amorphous matrix deform to concave polygon in shape and align perpendicular to the load direction during the compression. Meanwhile nano-crystals precipitate continuously from the matrix and aggregate during deformation. Rheological analysis show that the BMGCs exhibit a transition from Newtonian to non-Newtonian in flow behavior dependent on the stain rate. Particles in the amorphous matrix have reinforcement effect on the BMGCs, but the deformation behavior is still dominated by the homogeneous flow of the amorphous matrix phase.

  18. Structural aspects of elasto-plastic deformation of a Zr-based bulk metallic glass under uniaxial compression

    International Nuclear Information System (INIS)

    The structural rearrangements occurring during compressive deformation of a plastically deformable Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass have been investigated in situ using high energy synchrotron X-rays. It was found that in the elastic regime, the atomic distances at both short and medium range order vary linearly with macroscopic stress where the atomic bonds in short range order appear significantly stiffer than medium range order. Upon elastic loading, a small fraction of bonds in the first shell is broken in the loading direction whereas some new bonds are formed in the transverse direction. Atomic strain–stress correlation at medium range order deviates from linearity at the onset of plastic deformation which was correlated to the activation of irreversible STZs. This was confirmed by quantifying the amount of atomic shear strain value during loading. The length scale of 12.5 Å indicated the largest shear strain and is thought to be the most effective length scale in the formation of STZs. The typical fracture angle of this BMG was explained by the orientation of maximum atomic shear strain at the onset of major shear band formation

  19. Effect of Annealing Treatment on Erosion-Corrosion of Zr-Based Bulk Metallic Glass in Saline-Sand Slurry

    Science.gov (United States)

    Ji, Xiulin; Shan, Yiping; Chen, Yueyue; Wang, Hui

    2016-06-01

    Bulk metallic glass (BMG) may be a good candidate to solve the erosion-corrosion (E-C) problems of marine pumps in sand-containing seawater. Since annealing treatment is an effective way to improve plasticity of BMGs, the effect of annealing treatment on E-C wear of Zr-based BMG in saline-sand slurry was investigated. All of the annealed BMG samples were crystallized and the quantity of (Zr, Cu) phase increased but that of Al4Cu9 phase decreased with the increase of annealing temperature from 360 to 480 °C. Accordingly, annealing treatment enhances plasticity of the as-cast BMG at the cost of hardness and corrosion resistance. Moreover, 480 °C annealed BMG sample possesses the highest hardness and the lowest corrosion current density in all of the annealed BMG samples. Using a slurry pot erosion tester, the E-C wear of the as-cast and annealed BMG samples was studied under different impingement angles, impact velocities, and concentrations in saline-sand slurry. With the improvement of plasticity, 480 °C annealed BMG sample exhibits the best E-C wear resistance under high impingement angle, high impact velocity, and high sand concentration.

  20. THE EFFECTS OF GAMMA-RAY ON THE MECHANICAL PROPERTIES OF Zr-BASED BULK METALLIC GLASS

    Directory of Open Access Journals (Sweden)

    L. H. Shah

    2012-12-01

    Full Text Available The effect of gamma-ray irradiation on the mechanical properties of Zr55Ni5Al10Cu30 bulk metallic glass (BMG was investigated. The samples were irradiated with a gamma-ray dose up to 2090.24 kGy prior to mechanical property investigations. Vickers hardness test, nano-indentation test as well as speed of sound measurements in order to calculate the material’s elastic moduli were conducted. An x-ray diffractogram device was also utilized to observe the BMG’s devitrification behavior. Results confirm that no significant changes were observed for any of the samples. XRD spectra of irradiated BMGs also show uniform broad peaks, indicating an amorphous structure inside the sample. This result indicates that a gamma-ray irradiation dose of up to 2090.24 kGy does not change the mechanical properties and the microstructure of the material, thus making it a good future structural candidate for gamma-ray rich environments.

  1. Confined fracture behavior of bulk metallic glass-coated tungsten composite wires produced by continuously coating process

    International Nuclear Information System (INIS)

    Highlights: ► BMG-coated composite wires with different coating thickness were synthesized. ► The axial and radical stresses at the interface were calculated by elasticity theory. ► The compressive axial thermal stresses slightly improved the tensile strength. ► The compressive radial thermal stresses lead the fracture mode to change. -- Abstract: The effects of thermal residual stresses on the tensile fracture behavior of the bulk metallic glass (BMG)-coated composite wires have been investigated by fabricating a series of BMG composite wires at varies drawing velocity. It is found that the coating thickness increases with the increase of drawing velocity and the axial and radial thermal stresses of the composite wires increase with the increase of the coating thickness. The values of axial thermal stresses are comparable with the tensile strength difference between the composite wires and the tungsten wire. Due to the effects of radial thermal stresses, the fracture mode change from the unconfined cleavage fracture of pure tungsten wire to confined step-like fracture mode of composite wires

  2. Effect of Annealing Treatment on Erosion-Corrosion of Zr-Based Bulk Metallic Glass in Saline-Sand Slurry

    Science.gov (United States)

    Ji, Xiulin; Shan, Yiping; Chen, Yueyue; Wang, Hui

    2016-05-01

    Bulk metallic glass (BMG) may be a good candidate to solve the erosion-corrosion (E-C) problems of marine pumps in sand-containing seawater. Since annealing treatment is an effective way to improve plasticity of BMGs, the effect of annealing treatment on E-C wear of Zr-based BMG in saline-sand slurry was investigated. All of the annealed BMG samples were crystallized and the quantity of (Zr, Cu) phase increased but that of Al4Cu9 phase decreased with the increase of annealing temperature from 360 to 480 °C. Accordingly, annealing treatment enhances plasticity of the as-cast BMG at the cost of hardness and corrosion resistance. Moreover, 480 °C annealed BMG sample possesses the highest hardness and the lowest corrosion current density in all of the annealed BMG samples. Using a slurry pot erosion tester, the E-C wear of the as-cast and annealed BMG samples was studied under different impingement angles, impact velocities, and concentrations in saline-sand slurry. With the improvement of plasticity, 480 °C annealed BMG sample exhibits the best E-C wear resistance under high impingement angle, high impact velocity, and high sand concentration.

  3. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  4. Effects of Zn addition on the glass forming ability and mechanical properties of Mg–Cu–Gd bulk metallic glasses

    International Nuclear Information System (INIS)

    Highlights: • Mg-Zn-Cu-Gd BMGs with 2 mm diameter are fabricated by copper mold casting method. • The σf and Hv of the Mg60Zn5Cu25Gd10 reach up to 754 MPa and 286 Hv, respectively. • The Mg60Zn5Cu25Gd10 alloy exhibits plastic deformation characteristic at micro-level. -- Abstract: The effects of Zn addition on the glass forming ability (GFA) and mechanical properties are investigated in Mg65−xZnxCu25Gd10 (x = 0, 3, 5, 8 at.%) alloys by X-ray diffractometer (XRD), differential scanning calorimeter (DSC) and mechanical property tests. Thermal analysis shows that with the increasing of Zn content from 0 to 8 at.%, the supercooled liquid regions of Mg65−xZnxCu25Gd10 alloys decrease from 68 K to 31 K, indicating the obvious deterioration in their GFA. On the other hand, however, the mechanical property tests demonstrate that the appropriate addition of Zn (5 at.%) in Mg65−xZnxCu25Gd10 alloys greatly improves the mechanical strength, increases their compressive fracture strength and Vickers hardness from 648 MPa and 257 Hv to 754 MPa and 286 Hv, respectively. In addition, the fracture surface morphologies have been characterized by scanning electron microscopy (SEM) and the dominant fracture behaviors of the as-cast alloys have been explained as well

  5. Bulk Metallic Glass Multiscale Tooling for Molding of Polymers with Micro to Nano Features: A Review

    Science.gov (United States)

    Browne, David J.; Stratton, Dermot; Gilchrist, Michael D.; Byrne, Cormac J.

    2013-05-01

    There is a growing demand for single-use disposable polymer devices with features at submicron scales. This requires resilient tooling which can be patterned to scales of the order of hundreds of nanometers. The requisite topology can be imparted to silicon, but it is too brittle to be of use in a die to mold thousands of plastic parts. The polycrystalline nature of tool steel means that it cannot be patterned with submicron detail. Some bulk amorphous alloys have the requisite mechanical properties to be viable as materials for such dies, and can be patterned— e.g., via embossing as a supercooled liquid into MEMS silicon or using focused ion beam (FIB)—with submicron features which may persevere over many thousands of molding cycles. The composition of the amorphous alloy must be carefully selected to suit the particular molding application (polymer/process). The state-of-the-art methodology is presented, along with results of our recent experimental investigations.

  6. Influence of thermal treatments and plastic deformation on the atomic mobility in Zr50.7Cu28Ni9Al12.3 bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: • Atomic mobility in Zr-based metallic glass were evaluated by DMA and nanoindentation. • Atomic mobility is reduced by physical aging while increased by plastic deformation. • The atomic mobility in metallic glasses are related to concentration of “defects”. • Value of the Kohlrausch exponent βKWW in the Zr-based metallic glass is around 0.5. - Abstract: The atomic mobility in Zr50.7Cu28Ni9Al12.3 bulk metallic glass has been evaluated as a function of temperature and the influence of different treatments (thermal annealing, plastic deformation) has been investigated using mechanical spectroscopy and nanoindentation technique. In particular the loss factor has been measured. This parameter is connected to the energy loss during the application of a periodic stress and therefore is sensitive to atomic movements. Master curves can be obtained, confirming the validity of the time–temperature superposition principle. The atomic mobility is reduced during physical aging (also called structural relaxation) but increased after a plastic deformation (a rejuvenation of the material is then induced). In the framework of the nanoindentation tests and mechanical spectroscopy, the concentration of “defects” in metallic glasses increases by deformation (i.e. cold-rolling) while decreases after structural relaxation and crystallization. These results are discussed using the concept of quasi-point defects, which assist the atomic movements

  7. Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Roseker, W.; Sikorski, M.;

    2004-01-01

    was detected from the change of the slope of peak position as a function of temperature. It is found that the glass transition temperature increases with pressure by 4.4 K/GPa for the Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass, and the supercooled liquid range decreases with pressure by 2.9 K/GPa in a pressure...... range of 0-2.2 GPa. This method opens a possibility to study the pressure effect of glass transition process in glassy systems under high pressures (>1 GPa). (C) 2004 American Institute of Physics....

  8. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gamcová, J.; Bednarčík, J.; Franz, H. [DESY, Notkestraße 85, Hamburg 22547 (Germany); Mohanty, G.; Wehrs, J.; Michler, J. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstraße 39, Thun 3602 (Switzerland); Michalik, Š. [Institute of Physics ASCR, Na Slovance 2, Praha 18221 (Czech Republic); Krywka, C. [HZG, Institut für Werkstoffforschung, Notkestraße 85, Hamburg 22547 (Germany); Breguet, J. M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstraße 39, Thun 3602 (Switzerland); Alemnis GmbH, Feuerwerkerstraße 39, Thun 3602 (Switzerland)

    2016-01-18

    A pioneer in-situ synchrotron X-ray nanodiffraction approach for characterization and visualization of strain fields induced by nanoindentation in amorphous materials is introduced. In-situ nanoindentation experiments were performed in transmission mode using a monochromatic and highly focused sub-micron X-ray beam on 40 μm thick Zr-based bulk metallic glass under two loading conditions. Spatially resolved X-ray diffraction scans in the deformed volume of Zr-based bulk metallic glass covering an area of 40 × 40 μm{sup 2} beneath the pyramidal indenter revealed two-dimensional map of elastic strains. The largest value of compressive elastic strain calculated from diffraction data at 1 N load was −0.65%. The region of high elastic compressive strains (<−0.3%) is located beneath the indenter tip and has radius of 7 μm.

  9. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction

    International Nuclear Information System (INIS)

    A pioneer in-situ synchrotron X-ray nanodiffraction approach for characterization and visualization of strain fields induced by nanoindentation in amorphous materials is introduced. In-situ nanoindentation experiments were performed in transmission mode using a monochromatic and highly focused sub-micron X-ray beam on 40 μm thick Zr-based bulk metallic glass under two loading conditions. Spatially resolved X-ray diffraction scans in the deformed volume of Zr-based bulk metallic glass covering an area of 40 × 40 μm2 beneath the pyramidal indenter revealed two-dimensional map of elastic strains. The largest value of compressive elastic strain calculated from diffraction data at 1 N load was −0.65%. The region of high elastic compressive strains (<−0.3%) is located beneath the indenter tip and has radius of 7 μm

  10. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    OpenAIRE

    Hu Huang; Hongwei Zhao; Chengli Shi; Boda Wu; Zunqiang Fan; Shunguang Wan; Chunyang Geng

    2012-01-01

    Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM) to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG) was studied by in situ scratch testing ...

  11. Effects of annealing temperature on microstructure and hardness of (Cu_(60)Zr_(30)Ti_(10))_(98)Y_2 bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    查桂兰; 章爱生

    2010-01-01

    (Cu60Zr30Ti10)98Y2 bulk metallic glass(Φ4 mm×70 mm) was obtained successfully by copper mould cooling and spraying-casting,and some samples were isothermally annealed at temperatures of 473 and 623 K,which was lower than the glass transition temperature(Tg) for 1 h.Microstructure and properties of as-cast and annealed samples were studied.Crystallization phases(Cu10Zr7 and CuZr) were observed in annealed samples,and the species and fraction of these phases increased with increasing annealing temperature.Mic...

  12. Degradation of Zr-based bulk metallic glasses used in load-bearing implants: A tribocorrosion appraisal.

    Science.gov (United States)

    Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria

    2016-07-01

    Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. PMID:26773648

  13. Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass

    International Nuclear Information System (INIS)

    Mode I fracture experiments were conducted on brittle bulk metallic glass (BMG) samples and the fracture surface features were analyzed in detail to understand the underlying physical processes. Wallner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity is ∼800 m s−1, which corresponds to ∼0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny-shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs is stress-controlled and occurs through hydrostatic stress-assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of ∼79 nm. Juxtaposition of the crack velocity with this spacing suggests that the crack takes ∼10−10 s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, is utilized to critically discuss possible causes for the nanocorrugation formation. Taylor’s fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed

  14. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation

    International Nuclear Information System (INIS)

    In the present study, low energy ion implantation was employed to engineer the surface of a Zr-based bulk metallic glass (BMG), aiming at improving the biocompatibility and imparting bioactivity to the surface. Ca- or Ar-ions were implanted at 10 or 50 keV at a fluence of 8 × 1015 ions/cm2 to (Zr0.55Al0.10Ni0.05Cu0.30)99Y1 (at.%) BMG. The effects of ion implantation on material properties and subsequent cellular responses were investigated. Both Ar- and Ca-ion implantations were suggested to induce atom displacements on the surfaces according to the Monte-Carlo simulation. The change of atomic environment of Zr in the surface regions as implied by the alteration in X-ray absorption measurements at Zr K-edge. X-ray photoelectron spectroscopy revealed that the ion implantation process has modified the surface chemical compositions and indicated the presence of Ca after Ca-ion implantation. The surface nanohardness has been enhanced by implantation of either ion species, with Ca-ion implantation showing more prominent effect. The BMG surfaces were altered to be more hydrophobic after ion implantation, which can be attributed to the reduced amount of hydroxyl groups on the implanted surfaces. Higher numbers of adherent cells were found on Ar- and Ca-ion implanted samples, while more pronounced cell adhesion was observed on Ca-ion implanted substrates. The low energy ion implantation resulted in concurrent modifications in atomic structure, nanohardness, surface chemistry, hydrophobicity, and cell behavior on the surface of the Zr-based BMG, which were proposed to be mutually correlated with each other. - Highlights: • Low energy ion implantation of a Zr-based BMG for bone implant applications • Concurrent modifications in surface structure and properties after irradiation • Promoted adhesion of bone-forming cells after Ar- or Ca-ion implantation

  15. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd55Co20Fe5Al20 alloy

    International Nuclear Information System (INIS)

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd55Co20Fe5Al20 alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd55Co20Fe5Al20 alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd55Co20Fe5Al20 alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd55Co20Fe5Al20 BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-ΔSM) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K

  16. Experimental observations of shear band nucleation and propagation in a bulk metallic glass using wedge-like cylindrical indentation

    Science.gov (United States)

    Antoniou, Antonia Maki

    2006-12-01

    Bulk metallic glasses (BMGs), or amorphous metal alloys, have a unique combination of properties such as high strength, large elastic strain limit (up to 2%), corrosion resistance and formability. These unique properties make them candidates for precision mechanical elements, hinge supports, contact surfaces as well as miniaturized systems (MEMS). However, their limited ductility hinders further realizations of their industrial potential. Under uniaxial tension tests, metallic glass fails in a brittle manner with unstable propagation of a single shear band. There is a need to understand the conditions for shear band nucleation and propagation in order to achieve a superior material system with adequate toughness to ensure in-service reliability. This dissertation focuses on understanding the nucleation and propagation mechanisms of shear bands in BMGs under constrained deformation. The nature of the work is primarily experimental with integrated finite element simulations to elucidate the observed trends. Wedge indentation with a circular profile of different radii is used to provide a stable loading path for in situ monitoring of shear band nucleation, propagation in Vitreloy-1. Detailed analyses of the in-plane finite deformation fields are carried out using digital image correlation. The incremental surface analysis showed that multiple shear bands are developed beneath the indenter. The observed pattern closely follow the traces of slip line field for a pressure sensitive material. The first shear bands initiate in the bulk beneath the indenter when a critical level of mean pressure is achieved. Two distinct shear band patterns are developed, that conform to either the alpha or beta lines for each sector. The deformation zones developed under indenters with different radii were found to be self-similar. The evolution of shear bands beneath the indenter is also characterized into two different categories. A set of primary bands is identified to evolve with the

  17. Influence of annealing on the elastic properties and microstructure of Cu58.1Zr35.9Al6 bulk metallic glass

    International Nuclear Information System (INIS)

    The present paper aims to study the crystallization behavior and the elastic properties of Cu58.1Zr35.9Al6 bulk metallic glass using ultrasonic pulse focusing method. It is found that the changes of the elastic properties and microstructure can be classified into three stages corresponding to different temperature regions. Below the glass transition temperature Tg, no structural change was observed by X-ray diffraction, and annealing only induced structural relaxation. After annealing at the super-cooled liquid region, the new phase Cu10Zr7 formed, meanwhile, some anomalous acoustic and elastic behaviors occurred near Tg (490). Above the onset crystallization temperature Tx, the elastic properties increased further with the elevated temperature and Cu8Zr3 phase was also observed besides Cu10Zr7 phase. The annealing has a significant effect on the elastic property and microstructure of Cu58.1Zr35.9Al6 bulk metallic glass, which is closely related to the annihilation of quenched-in free volume and the improvement of the atom order degree.

  18. Influence of the irradiation temperature on the surface structure and physical/chemical properties of Ar ion-irradiated bulk metallic glasses

    International Nuclear Information System (INIS)

    Highlights: • Ion irradiation is performed on bulk metallic glasses at 300 K and close to Tg. • Nanocrystallization is observed after high-temperature irradiation. • The mechanical properties are enhanced after the irradiation procedures. • Corrosion resistance is improved after irradiation close to Tg. - Abstract: Surface treatments using multiple Ar ion irradiation processes with a maximum energy and fluence of 200 keV and 1 × 1016 ions/cm2, respectively, have been performed on two different metallic glasses: Zr55Cu28Al10Ni7 and Ti40Zr10Cu38Pd12. Analogous irradiation procedures have been carried out at room temperature (RT) and at T = 620 K (≈0.9 Tg, where Tg denotes the glass transition). The structure, mechanical behavior, wettability and corrosion resistance of the irradiated alloys have been compared with the properties of the as-cast and annealed (T = 620 K) non-irradiated specimens. While ion irradiation at RT does not significantly alter the amorphous structure of the alloys, ion irradiation close to Tg promotes decomposition/nanocrystallization. Consequently, the hardness (H) and reduced Young’s modulus (Er) decrease after irradiation at RT but they both increase after irradiation at 620 K. While annealing close to Tg increases the hydrophobicity of the samples, irradiation induces virtually no changes in the contact angle when comparing with the as-cast state. Concerning the corrosion resistance, although not much effect is found after irradiation at RT, an improvement is observed after irradiation at 620 K, particularly for the Ti-based alloy. These results are of practical interest in order to engineer appropriate surface treatments based on ion irradiation, aimed at specific functional applications of bulk metallic glasses

  19. Structure, thermal and magnetic properties of Fe43Co14Ni14B20Si5Nb4 bulk metallic glass

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-02-01

    Full Text Available Purpose: The paper presents structure characteristics, thermal stability and soft magnetic properties analysis of Fe-based bulk metallic glass in as-cast state and after crystallization process.Design/methodology/approach: The studies were performed on Fe43Co14Ni14B20Si5Nb4 metallic glass in a form of plates and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal stability of the glassy samples was measured using differential scanning calorimetry (DSC. The soft magnetic properties examination of tested material contained initial magnetic permeability and magnetic permeability relaxation measurements.Findings: The XRD and TEM investigations revealed that the studied as-cast plates and rods were amorphous. Broad diffraction halo could be observed for all tested samples, indicating the formation of a glassy phase with the diameters up to 3 mm for rods. The fracture surface of rod samples appears to consist of two different zones which might correspond with different amorphous structures of studied materials. The thermal stability parameters of rod with diameter of 3 mm, such as glass transition temperature, onset crystallization temperature and supercooled liquid area were measured by DSC to be 797 K, 854 K, 57 K, respectively. The heat treatment process of rod samples involved in crystallization of α-Fe phase and formation of iron borides at temperature above 873 K.Practical implications: The appropriate increase of annealing temperature significantly improved soft magnetic properties of examined alloy by increasing the initial magnetic permeability and decreasing the magnetic permeability relaxation.Originality/value: The success of fabrication of studied Fe-based bulk metallic glass in a form of plates and rods is important for the future progress in research and practical application of those glassy materials.

  20. Compression behavior of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass up to 24 GPa

    Institute of Scientific and Technical Information of China (English)

    LI; Gong; ZHAN; Zaiji; LIU; Jing; YUN; Jinku; SUN; Liling; L

    2005-01-01

    The compression of a Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) is investigated at room temperature up to 24 GPa using in-situ high pressure energy dispersive X-ray diffraction with a synchrotron radiation source. The pressure-induced structural relaxation is exhibited. It is found that below about 8 GPa, the existence of excess free volume contributes to the rapid structural relaxation, which gives rise to the rapid volumetric change, and the structural relaxation results in the structural stiffness under higher pressure.

  1. Influence of Rare-Earth Substitution for Iron in FeCrMoCB Bulk Metallic Glasses

    International Nuclear Information System (INIS)

    The effects of rare earth addition on the glass forming ability of Fe50–xCr15Mo14C15B6Mx (x = 0, 2 and M = Y, Gd) bulks and ribbons are studied. The thermal and structural properties of the samples are measured by a combination of differential scanning calorimetry (DSC), x-ray diffraction and scanning electron microscopy. Chemical compositions are checked by energy dispersive spectroscopy analysis. The copper mold casting technique leads to a fully amorphous structure up to 2mm only for compositions containing Y or Gd. In the case of ribbons, a fully amorphous phase is observed for all the compositions. The roles of Y and Gd are discussed on the basis of melting behavior analyzed by high-temperature DSC. Such elements act as oxygen scavengers, avoiding heterogeneous nucleation. (condensed matter: structure, mechanical and thermal properties)

  2. Corrosion and oxidation properties of the refractory (Ni8Nb5)99.8Sb0.2 bulk metallic glass

    International Nuclear Information System (INIS)

    Bulk metallic glass (BMG) with high corrosion resistance and high oxidation resistance was synthesized in the Ni-Nb-Sb system with the diameter of 3mm. The glass transition temperature (Tg), the reduced glass transition temperature (Trg=Tg/Tl) and supercooled liquid span (ΔTx) are 873K, 0.59 and 54K, respectively. These thermal data indicate that this kind of Ni-based glass can maintain its stable amorphous state and resist crystallization in a rather wide temperature region. Electrochemical measurements indicate that it shows high corrosion resistance in aggressive hydrochloric acid solution with 1N and 6N concentration, respectively, at room temperature. Surface forms stable passive film and presents low current density. The oxidation kinetics follows a parabolic rate law at 853K. The x-ray diffraction pattern showed that the oxide layer is composed of Nb2O5, Ni3Nb and metallic Ni. The oxide surface morphologies showed that a layer of compact oxide film formed, which shows no obvious grain boundary.

  3. Room-temperature dynamic quasi-elastic mechanical behavior of a Zr-Cu-Fe-Al bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zadorozhnyy, V.Yu.; Zadorozhnyy, M.Yu.; Shuryumov, A.Yu.; Golovin, I.S. [National University of Science and Technology ' ' MISiS' ' , 119049, Moscow (Russian Federation); Ketov, S.V.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577 (Japan)

    2016-02-15

    The paper represents storage modulus and internal friction modulation upon cyclic loading of Zr{sub 61}Cu{sub 27}Fe{sub 2}Al{sub 10} bulk metallic glassy samples within quasi-reversible deformation regime. The structure of the samples was studied by X-ray diffraction and transmission electron microscopy including high-resolution imaging and selected-area electron diffraction. It is found that kinetically frozen anelastic deformation accumulates on mechanical cycling at room temperature and causes an increase in the storage modulus and even nanocrystallization of a metallic glassy phase after a certain number of cycles. The study has shown that even a minor cyclic deformation in an elastic region can lead to the changes the atomic structure and in turn affect the elastic modulus. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Time and amplitude dependences of damping and shear modulus during irreversible structural relaxation of bulk metallic glass of Zr-Cu-In-Al-Ti

    International Nuclear Information System (INIS)

    The time dependences of the irreversible relaxation of the damping decrement and the shear modulus of a Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass are investigated using an inverse torsion pendulum in the range from room temperature to ∼650 K. The spectrum of activation energies of irreversible structural relaxation is evaluated from the results obtained. Analysis of the amplitude dependences of the damping decrement and the shear modulus allows the conclusion that the relaxation centers responsible for the amplitude dependence differ from those associated with the irreversible structural relaxation at temperatures below and in the vicinity of the glass transition point

  5. Evaluation of the effects of the crystallinity of kinetically sprayed Ni-Ti-Zr-Si-Sn bulk metallic glass on the scratch response

    International Nuclear Information System (INIS)

    A bulk amorphous Ni-Ti-Zr-Si-Sn powder produced using an inert gas atomization was sprayed by a kinetic spraying process that is basically a solid-state deposition process onto a mild steel substrate and they were successfully overlaid onto the mild steel substrate. In order to evaluate the tribological behavior of the sprayed Ni-Ti-Zr-Si-Sn bulk metallic glass coatings, a partially crystallized coating and a fully crystallized coating were prepared by isothermal heat treatments. Tribological properties were investigated-friction coefficient, hardness and amorphous phase fraction of coating layer. Surface morphologies and depth in the wear tracks were observed and measured by scanning electron microscopy and α-step. From the examination of the scratch wear track microstructure, transition from ductile-like deformation micro-cutting to brittle-deformation micro-fracturing in the scratch groove was observed with the increase of the crystallinity

  6. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  7. Observation and computer simulation of multicomponent chemical short-range order (MCSRO) for the bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    Guoliang Chen; Xidong Hui; Kefu Yao; Huaiyu Hou; Xiongjun Liu; Meiling Wang; Guang Chen

    2005-01-01

    The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with a beam size of 0.5 nm. It is illustrated that the pattern of atomic configuration of CSRO might have various compound counterparts because of the chemical interaction of bonding atoms. Some atomic configuration of MCSRO is similar to the icosahedral structure with 10-fold symmetry of very weak spots. In deed, the nano-beam technology could clearly detect the evolution of atomic configuration in nanometer scale during the transformation from the metallic melt to the primary crystallization. The local atomic configuration of CSRO is also investigated by molecular dynamics simulation (MD) for the Zr2Ni compound in a wider temperature range. The CSRO in the melt could be pictorially demonstrated as distorted coordination polyhedron of the compound structure and/or the structure similar to cubo-octahedron analogs. The MD simulation illustrates that the atomic packing of long-range order disappears just above the melting point, but the chemical interaction of bonding atoms still exists that leads to form the various CSRO with the atomic configuration similar to stable or metastable unit cell of Zr2Ni compound. The icosahedral polyhedron became more abundance as the overheating temperature was raised.

  8. Effects of growing integrated layer [GIL] formation on bonding behavior between hydroxyapatite ceramics and Ti-based bulk metallic glasses via hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    The authors successfully formed a bond between bioactive hydroxyapatite (HA) ceramics and titanium (Ti)-based bulk metallic glasses (Ti40Zr10Cu36Pd14: BMG) through a growing integrated layer (GIL) to develop a new type of biomaterial. The GILs were formed on the BMG surfaces by hydrothermal-electrochemical (HE) techniques. The BMG substrates were treated in a 5 mol/L NaOH solution at 90 deg. C for 10-120 min while a constant electric current of 0.5 mA/cm2 was maintained between the electrodes. Then the BMG disks with the GIL and a powder mixture of CaHPO4.2H2O and Ca(OH)2 were simultaneously treated with an autoclave for hydrothermal hot-pressing (HHP) (150 oC, 40 MPa, 2 h). Direct bonding between the HA ceramics and the BMG disks could be achieved through the above processing method. Consequently, to the best of our knowledge, this is the first demonstration of the usefulness of a series of hydrothermal techniques (HE and HHP) for direct bonding of bulk ceramics and bulk metallic materials.

  9. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses.

    Science.gov (United States)

    Zhang, Kai; Fan, Meng; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2015-11-14

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate Rc, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. Rc (or the corresponding critical casting thickness dc) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small Rc metals and most alloys are typically poor glass-formers with large Rc > 10(10) K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with Rc approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for designing BMGs with cm or greater casting thickness. PMID:26567672

  10. The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    This study investigated the effects of the initial welding temperature (IWT) and welding parameters on the crystallization behaviors of laser spot welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG). After the welding process, the microstructure evolution, glass-forming ability (GFA) and mechanical properties of the welded samples were determined by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and the Vicker's micro-hardness test. The results showed that the heat-affected zone (HAZ) crystallization seemed avoidable under the room temperature welding process. However, with a combination of a lower energy input (welding Condition C) and a lower IWT (at 0 deg. C), a crystallization-free HAZ was finally obtained. Using the above welding condition into the refined heat flow equation, a critical retention time of 79 ms for the crystallization temperature interval was estimated. Moreover, as the laser welded samples came to crystallization in the HAZ, it was observed that a higher content of spherical-type crystalline precipitates tended to result in a higher value of glass transition temperature, Tg. Therefore, the GFA indices, ΔTx, γ and γm, were reduced. Furthermore, it was found that the micro-hardness value in the HAZ crystallization area was decreased due to the massive cracks formed in most parts of the crystalline precipitates. For a crystallization-free HAZ, the hardness seemed unaffected.

  11. The effect of quenching on the mechanical properties of Ti40Zr10Cu34Pd14Sn2 bulk metallic glass

    International Nuclear Information System (INIS)

    Ti40Zr10Cu34Pd14Sn2 bulk metallic glass (BMG) exhibits large glass forming ability and good mechanical properties. Upon compression tests, it was found that the plastic strain is 3.5% and the corresponding fracture stress is around 2050 MPa. Annealing at elevated temperatures followed by rapid quenching is an effective way to tailor the microstructure of BMG and then change the mechanical properties. In this work, Ti40Zr10Cu34Pd14Sn2 BMG with the diameter of 2 mm was obtained by suction casting. Differential Scanning Calorimetry (DSC) investigations preformed at 20 K/min heating rate reveal the glass transition temperature (Tg) of 673 K and the first onset temperature of crystallization (Tx1) of 726 K. After annealing at temperatures slightly before Tg and in the supercooled liquid region (Tg-Tx1), the BMG samples were quenched in water. The aim is to study the effect of quenching on the mechanical properties of Ti40Zr10Cu34Pd14Sn2 BMG. Additionally, the fracture morphology of these samples is also investigated.

  12. Synthesis and properties of ferromagnetic Fe-based (Fe, Ni, Co)–Mo–P–C–B bulk metallic glasses with large supercooled liquid region

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xingjie; Li, Yanhui [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Hao [WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Xie, Guoqiang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamaura, Shinichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, Wei, E-mail: wzhang@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-08-15

    New ferromagnetic Fe-based (Fe, Co, Ni){sub 67.5}Mo{sub 7.5}P{sub 10}C{sub 10}B{sub 5} bulk metallic glasses have been developed based on an Fe{sub 75}P{sub 10}C{sub 10}B{sub 5} alloy. These alloys exhibit large supercooled liquid region of 97–102 K, low glass transition temperature of 727–738 K, high glass-forming ability (GFA) with critical sample diameters of 3–4 mm, and low viscosity values on the order of 10{sup 7} Pa s in the supercooled liquid state. The magnetic and mechanical measurements reveal that the alloys also possess good soft magnetic and mechanical properties, i.e., low coercive force of 3.04−4.37 A/m, rather high saturation magnetization of 0.77−0.83 T, high yield strength of 3344−3463 MPa, and large plastic strain of 0.6−1.1%. In addition, the effects of Mo, Co and Ni addition on the stabilization of supercooled liquid and GFA in the Fe–P–C–B alloy system have been discussed.

  13. Synthesis and properties of ferromagnetic Fe-based (Fe, Ni, Co)–Mo–P–C–B bulk metallic glasses with large supercooled liquid region

    International Nuclear Information System (INIS)

    New ferromagnetic Fe-based (Fe, Co, Ni)67.5Mo7.5P10C10B5 bulk metallic glasses have been developed based on an Fe75P10C10B5 alloy. These alloys exhibit large supercooled liquid region of 97–102 K, low glass transition temperature of 727–738 K, high glass-forming ability (GFA) with critical sample diameters of 3–4 mm, and low viscosity values on the order of 107 Pa s in the supercooled liquid state. The magnetic and mechanical measurements reveal that the alloys also possess good soft magnetic and mechanical properties, i.e., low coercive force of 3.04−4.37 A/m, rather high saturation magnetization of 0.77−0.83 T, high yield strength of 3344−3463 MPa, and large plastic strain of 0.6−1.1%. In addition, the effects of Mo, Co and Ni addition on the stabilization of supercooled liquid and GFA in the Fe–P–C–B alloy system have been discussed

  14. Preparing Zr65Al7.5Ni10Cu17.5 bulk metallic glasses based on point-line-face-body theory.

    Science.gov (United States)

    Chang, Zexin; Wang, Wenxian; Ge, Yaqiong

    2016-05-10

    Zr65Al7.5Ni10Cu17.5 bulk metallic glasses (BMGs) were prepared based on point-line-face-body (PLFB) theory with the pre-laid powder method from laser processing. The thickness of the prepared bulk amorphous alloy was about 1.6 mm. The microstructure evolution, phase composition, chemical component distribution, and corrosion behavior of the bulk amorphous alloy were investigated. The results showed that the amorphization ratio increased with the increase of the thickness of Zr65Al7.5Ni10Cu17.5 BMGs; furthermore, the volume fraction of the amorphous phase in the bottom layer (first layer), the middle layer (fourth layer), and the surface layer (seventh layer) was approximately 52%, 66%, and 74%, respectively. Due to different thermal cycles during the PLFB-forming process, the amorphous and crystallization coexisted in the deposited layers. For the corrosion property, the experiments of potentiodynamic polarization plots, Nyquist plots, and the equivalent circuits were performed in 3.5 wt. % sodium chloride solution. The seventh layer exhibits better corrosion-resistance performance than the other layers, which can be attributed to a higher amorphization ratio in the surface layer. PMID:27168294

  15. Influence of friction on the residual morphology, the penetration load and the residual stress distribution of a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2013-04-01

    Full Text Available In this paper, friction between the Cube-Corner indenter and the sample surface of a Zr-based bulk metallic glass (BMG was analyzed and discussed by the experimental method, the theoretical method and the finite element simulation. Linear residua are observed on the surface of the indenter for the first time, which gives the direct evidence that strong interaction processes exist between the indenter surface and the sample surface because of strong friction and local high contact press. A simplified model was developed to correct the penetration load with the consideration of friction. Effects of friction on the penetration load-depth curves, plastic flow, surface deformation and residual stress distribution of the sample with different friction coefficients were investigated by the finite element simulation.

  16. CONSECUTIVE NUCLEATION EVENTS DURING DIVETRIFICATION OF Zr52.5Cu17.9Ni14.6Al10Ti5 BULK METALLIC GLASS

    International Nuclear Information System (INIS)

    Differential scanning calorimetry, x-ray, and in-situ synchrotron diffraction were used to study the divitrification of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass. Two consecutive exothermal peaks were identified by differential scanning calorimetry during both isochronal and isothermal scans. Examination of the X-ray and in-situ synchrotron diffraction patterns at various stages of annealing confirms that the exothermal peaks correspond to two nucleation events, with different local atomic structures. Modeling of the calorimetry data indicates that the devitrification in this alloy is adequately described by Johnson CMehl CAvrami theory with a two-step consecutive reaction model.

  17. Microstructure and mechanical properties of (Zr0.5Cu0.4Al0.1)100-xTax bulk metallic glass composites

    International Nuclear Information System (INIS)

    We investigated the microstructure and mechanical properties of (Zr0.5Cu0.4Al0.1)100-xTax(x=0-12) bulk metallic glass composites containing dispersed Ta-rich dendrites prepared by copper mold casting. With increasing Ta content, the volume fraction of the dendrite particle increases, while other crystalline phases are precipitated in the Ta content range of over 9 at%. The compressive fracture strength and plastic strain of the composites significantly increase from 1890 MPa and 0.7%, respectively, for the x=0 alloy to 2180 MPa and 15.9%, respectively, for x=9 alloy, and then significantly decrease with further increasing Ta content. The improvement of plasticity is attributed to an increase in the density of shear bands before final fracture resulting from the increase of the fracture strength. (author)

  18. Magneto-thermo-gravimetric technique to investigate the structural and magnetic properties of Fe-B-Nb-Y Bulk Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin; Makino, Akihiro; Inoue, Akihisa [Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Masood, Ansar; Tamaki, Takahiko; Valter, Strom; Rao, K V, E-mail: smlee@imr.tohoku.ac.j [Royal Institute of Technology (KTH), SE-100 44 Stockhom (Sweden)

    2009-01-01

    Magneto-thermo-gravimetric (MTG) technique is highly informative about the changes in the magnetic state, as well as structural changes in a system, which cannot be often noticed in calorimetric measurements. We demonstrate the versatility of this technique in determining the magnetic transition temperature, and the subsequent crystallization process in a (Fe{sub 0.72}B{sub 0.24}Nb{sub 0.04}){sub 95.5}Y{sub 4.5} Bulk Metallic Glass (BMG). MTG and DSC analyses were carried out at the heating rate of 0.67 K/s from RT {approx}1170 K. As a result of the repeated MTG measurements, a magnetic 2nd amorphous phase was observed in the BMG sample, which could be the first measurement for the Magnetic Short Range Ordering (MSRO). Consequently, the MTG measurement is proved as the most convenient method for determining the various structural and magnetic transitions in a glassy material.

  19. Magneto-thermo-gravimetric technique to investigate the structural and magnetic properties of Fe-B-Nb-Y Bulk Metallic Glass

    Science.gov (United States)

    Lee, Sangmin; Masood, Ansar; Tamaki, Takahiko; Valter, Strom; Rao, K. V.; Makino, Akihiro; Inoue, Akihisa

    2009-01-01

    Magneto-thermo-gravimetric (MTG) technique is highly informative about the changes in the magnetic state, as well as structural changes in a system, which cannot be often noticed in calorimetric measurements. We demonstrate the versatility of this technique in determining the magnetic transition temperature, and the subsequent crystallization process in a (Fe0.72B0.24Nb0.04)95.5Y4.5 Bulk Metallic Glass (BMG). MTG and DSC analyses were carried out at the heating rate of 0.67 K/s from RT ~ 1170 K. As a result of the repeated MTG measurements, a magnetic 2nd amorphous phase was observed in the BMG sample, which could be the first measurement for the Magnetic Short Range Ordering (MSRO). Consequently, the MTG measurement is proved as the most convenient method for determining the various structural and magnetic transitions in a glassy material.

  20. Magneto-thermo-gravimetric technique to investigate the structural and magnetic properties of Fe-B-Nb-Y Bulk Metallic Glass

    International Nuclear Information System (INIS)

    Magneto-thermo-gravimetric (MTG) technique is highly informative about the changes in the magnetic state, as well as structural changes in a system, which cannot be often noticed in calorimetric measurements. We demonstrate the versatility of this technique in determining the magnetic transition temperature, and the subsequent crystallization process in a (Fe0.72B0.24Nb0.04)95.5Y4.5 Bulk Metallic Glass (BMG). MTG and DSC analyses were carried out at the heating rate of 0.67 K/s from RT ∼ 1170 K. As a result of the repeated MTG measurements, a magnetic 2nd amorphous phase was observed in the BMG sample, which could be the first measurement for the Magnetic Short Range Ordering (MSRO). Consequently, the MTG measurement is proved as the most convenient method for determining the various structural and magnetic transitions in a glassy material.

  1. Microstructure evolution in Nd:YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy

    International Nuclear Information System (INIS)

    To generate a rapid welding thermal cycle for a (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) weld, the Nd:YAG pulse laser welding process with pre-selected welding variables is used in this study. The microstructure development and crystallization behavior in the weld fusion zone (WFZ) and the heat-affected zone (HAZ) are investigated by scanning electron microscopy (SEM), micro-area X-ray diffractometry (XRD) and transmission electron microscopy (TEM). From the results, it is observed that the HAZ is liable to crystallize, although no crystallization occurs within the WFZ. The spherical type crystalline phases (with a particle size of 20-200 nm) observed in the HAZ, which are rich in Zr, Cu and Ni, result in a change of chemical composition in this region. Furthermore, if the particle size in the crystallized area is greater than 50 nm, cracks may form.

  2. Fatigue crack propagation behavior and fracture toughness in a Ni-free ZrCuFeAlAg bulk metallic glass

    International Nuclear Information System (INIS)

    The fatigue crack propagation and fracture toughness of a Ni-free Zr60.14Cu22.31Fe4.85Al9.7Ag3 bulk metallic glass (BMG) have been studied by using single edge notched beam (SE(B)) samples prepared from the as-cast BMG plates. It is shown that the metallic glass follows similar fatigue crack propagation behavior to traditional ductile polycrystalline metals, i.e., exhibiting “S” shape of da/dN ∼ ΔK curve with a fatigue threshold (ΔKth) of 3.71 MPa√m and a Paris law exponent of 3.52 in Paris regime. The fatigue-fractured surfaces show universal fatigue striations at different stress intensity levels. The striation spacing (d) fits well with the fatigue crack propagation rate (da/dN) in high stress intensity regime, but deviates significantly from crack propagation rate in low stress intensity regime, i.e., d is larger than da/dN, reflecting that the crack propagation in low stress intensity range was driven by the accumulation of damage from a number of cyclic loadings. A shear slip pair model based on STZ theory and linear-elastic-fracture mechanics (LEFM) analysis are established to interpret the mechanism of fatigue striation formation and crack propagation of the BMG. In addition, the fracture toughness of the BMG was also studied by three-point bending test of pre-cracked samples, which yields a high KJ value of 116.7 MPa√m. The high fracture toughness is believed to be related to the high Poisson’s ratio (ν = 0.368) of the BMG, which helps to the formation of abundant shear bands in front of crack tip and to the retardation of crack propagation by crack path deflection

  3. Dynamic mechanical properties in a Zr46.8Ti13.8Cu12.5Ni10Be27.5 bulk metallic glass

    International Nuclear Information System (INIS)

    The dynamic mechanical response was investigated in a bulk metallic glass Zr46.8Ti13.8Cu12.5Ni10Be27.5 (called Vit4). Mechanical spectroscopy was performed either using continuous heating or isothermal measurements. A main visco-elastic relaxation is observed before the onset of crystallization. A drastic decrease of the storage modulus and a maximum of the loss modulus indicate this relaxation in the amorphous state. The very large activation energy (EA=4.5eV) and the very high value of the pre-exponential factor (τ0-1=2.5x10-35s) indicate that this relaxation involves the collective movement of a large number of atoms, as in many amorphous materials (polymers, oxide or molecular glasses). Master curves are plotted, indicating that the time-temperature superposition principle is obeyed. These master curves can be described using a physical model based on the concept of quasi-point defects. Finally, the elastic, visco-elastic and visco-plastic contributions to the deformation are separated and discussed

  4. Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.; Horsewell, Andy; Jiang, J.Z.

    2006-01-01

    only phase separation at CT, indicating that lowering the temperature can effectively retard the deformation-driven crystallization, and that phase separation is the precursor of crystallization. The appearances of phase separation and especially nanocrystallization reduce the thermal stability of the...... glass since they create advantages in chemical composition and topological structure for the primary crystalline phase to nucleate and grow....

  5. Synthesis, thermal stability and properties of [(Fe1-xCox)72Mo4B24]94Dy6 bulk metallic glasses

    International Nuclear Information System (INIS)

    Research highlights: → Synthesis of large size BMGs with [(Fe1-xCox)72Mo4B24]94Dy6 (x = 0.1, 0.2, 0.3, 0.4 and 0.5 at.%) alloy system. → High GFA with large values of ΔTx (80-92 K), Trg (0.609-0.622) and γ (0.415-0.424). → Maximum compressive fracture strength up to 3540 MPa and Hv of 1185. - Abstract: A series of [(Fe1-xCox)72Mo4B24]94Dy6 (x = 0.1, 0.2, 0.3, 0.4 and 0.5 at.%) bulk metallic glasses (BMGs) in rod geometries with critical diameter up to 3 mm were fabricated by copper mold casting method. This alloy system exhibited good thermal stability with high glass transition temperature (Tg) 860 K and crystallization temperature (Tx) 945 K. The addition of Co was found to be effective in adjusting the alloy composition deeper to eutectic, leading to lower liquidus temperature (Tl). The [(Fe0.8Co0.2)72Mo4B24]94Dy6 alloy showed the largest supercooled liquid region (ΔTx = Tx - Tg = 92 K), reduced glass transition temperature (Trg = Tg/Tl = 0.622) and gamma parameter (γ = Tx/(Tg + Tl) = 0.424) among the present system. Maximum compressive fracture strength of 3540 MPa and micro-Vickers hardness of 1185 kg/mm2 was achieved, resulting from the strong bonding structure among the alloy constituents. The alloy system possessed soft magnetic properties with high saturation magnetization of 56.61-61.78 A m2/kg and coercivity in the range of 222-264.2 A/m, which might be suitable for application in power electronics devices.

  6. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    International Nuclear Information System (INIS)

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate Rc, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. Rc (or the corresponding critical casting thickness dc) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small Rc < 10−2 K/s, pure metals and most alloys are typically poor glass-formers with large Rc > 1010 K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with Rc approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for designing BMGs with cm or greater casting thickness

  7. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Fan, Meng; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-11-14

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for

  8. Magnetic properties of (Fe1−xNix)72B20Si4Nb4 (x=0.0–0.5) bulk metallic glasses

    International Nuclear Information System (INIS)

    The effects of partial substitution of Fe by Ni in (Fe1−xNix)72B20Si4Nb4 (x=0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) bulk metallic glasses (BMGs) on their magnetic properties were studied. It is found that the saturation polarization decreases from 1.15 T to 0.69 T with increasing Ni content from x=0.0 to x=0.5; the Curie temperature reaches its maximum of 598 K for composition x=0.1, and is then followed by a quick decrease with higher Ni content. Moreover, the random anisotropy and mean field theory were developed to investigate the magnetic properties of these BMGs, and the variations of saturation polarization and Curie temperature were well explained by calculating the magnetic exchange stiffness constant A and the nearest neighbor transition-metal-pair exchange interactions J by using the model. - Highlights: ► Fully glassy rods of (Fe1−xNix)72B20Si4Nb4 BMGs were produced up to 1.5 mm in diameter. ► Variations in saturation polarization and Curie temperature of (Fe1−xNix)72B20Si4Nb4 BMGs were investigated. ► Random anisotropy and mean field theory were developed to explain the variation of magnetic properties

  9. Fabrication of Fe-based bulk metallic glasses with plastic deformation and nanocrystalline alloys with Bs of 1.9 tesla by using structural heterogeneity

    International Nuclear Information System (INIS)

    An Fe-Metalloids-based Fe76Si9B10P5 (at%) bulk metallic glass (BMG) exhibits unusual combination of high saturation magnetic flux density (Bs) of 1.51 T due to high Fe content as well as high glass-forming ability leading to a glassy rod with a diameter of 2.5 mm despite not-containing any glass-forming metal elements. A small amount of Cu-added (Fe76Si9.4B8.4P6)99.9Cu0.1 BMG exhibits a yielding strength of 3.25 GPa and a large plastic deformation of about 4% in compression. The unusual deformation behavior with distinguishable highly dense multiple shear bands on the fracture surface could be due to the existence of a large number of α-Fe like clusters, less than 10 nm in diameter, embedded in a glassy matrix. The melt-spun Fe83.3-84.3Si4B8P3-4Cu0.7 alloys also have heterogeneous amorphous structures including a large amount of α-Fe clusters, 2-3 nm in diameter, due to the unusual effect of the simultaneous addition of the proper amounts of P and Cu. The hetero-amorphous alloys exhibit higher Bs of about 1.67 T than the representative amorphous and the nanocrystalline alloys, and the low coercivity (Hc) of 5-10 A/m. A homogeneous nanocrystalline structure composed of small α-Fe grains with a size of about 10 nm can be realized by crystallizing the hetero-amorphous alloys. The nanocrystalline alloys show extremely high Bs of 1.88-1.94 T almost comparable to the commercial Fe-3.5mass%Si crystalline soft magnetic alloys, and low Hc of 7-10 A/m due to the simultaneous realization of the homogeneous nanocrystalline structure and small magnetostriction of 2-3 x 10-6. In addition, these alloys have a great advantage of lower material cost for engineering and industry, and thus should make a contribution to energy saving, and conservation of earth resources and environment. (author)

  10. Production of Bulk and Fiber Glass in Space

    Science.gov (United States)

    Tucker, Dennis S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The production of bulk glass and fiber glass in space and on the moon and Mars should lead to superior products. Specifically glass plates for windows and optical elements could be produced with theoretical strengths by production in vacuum. Water vapor is known to decrease glass strength by up to two orders of magnitude from theoretical. A low gravity glass plate apparatus prototype has been designed and built which uses centrifugal force to shape the glass and solar energy to melt the glass. Glass fiber could be produced on the moon or Mars from in-situ materials using standard technologies. This material could then be used as reinforcement in composite materials in construction of bases. Also, it has been shown that processing in reduced gravity suppresses crystallization in certain heavy metal fluoride glasses. It is proposed to reprocess optical fiber preforms on the space station and then pull these into optical fiber. It is estimated that the attenuation coefficient should be reduced by two orders of magnitude.

  11. Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Nozomu; Todaka, Yoshikazu, E-mail: todaka@me.tut.ac.jp; Umemoto, Minoru [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Yokoyama, Yoshihiko [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-09-29

    The mechanism of plastic deformation in bulk metallic glasses (BMGs) is widely believed to be based on a shear transformation zone (STZ). This model assumes that a shear-induced atomic rearrangement occurs at local clusters that are a few to hundreds of atoms in size. It was recently postulated that the potential energy barrier for STZ activation, W{sub STZ}, calculated using the cooperative shear model, is equivalent to the activation energy for β-relaxation, E{sub β}. This result suggested that the fundamental process for STZ activation is the mechanically activated β-relaxation. Since the E{sub β} value and the glass transition temperature T{sub g} of BMGs have a linear relation, that is, because E{sub β} ≈ 26RT{sub g}, the composition of the BMG determines the ease with which the STZ can be activated. Enthalpy relaxation experiments revealed that the BMG Zr{sub 50}Cu{sub 40}Al{sub 10} when deformed by high-pressure torsion (HPT) has a lower E{sub β} of 101 kJ/mol. The HPT-processed samples accordingly exhibited tensile plastic elongation (0.34%) and marked decreases in their yield strength (330 MPa). These results suggest that mechanically induced structural defects (i.e., the free volume and the anti-free volume) effectively act to reduce W{sub STZ} and increase the number of STZs activated during tensile testing to accommodate the plastic strain without requiring a change in the composition of the BMG. Thus, this study shows quantitatively that mechanically induced structural defects can overcome the compositional limitations of E{sub β} (or W{sub STZ}) and result in improvements in the mechanical properties of the BMG.

  12. Corrosion behavior of bulk metallic glass Pr60Fe30-xTM xAl10 in NaCl aqueous solution

    International Nuclear Information System (INIS)

    In this paper, Mn, Ni, Cu and Ti were selected as the partial substitution elements for Fe to produce Pr60Fe30-xTM xAl10 (TM = Mn, Ni, Cu, Ti; x = 0, 5 at.%) quaternary bulk metallic glasses (BMGs) by copper mold casting. The microstructure of samples was characterized by X-ray diffraction (XRD) and the effects of substitution elements on glass forming ability (GFA), electrochemical corrosion behavior in 3.5 wt.% NaCl solution were investigated by differential scanning calorimetry (DSC), potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The thermal parameters (e.g. T x/T l, γ, G s, etc.) deduced from DSC indicated that all the samples possessed an amorphous phase and had a high GFA, the GFA of the samples ranks from high to low in the order: Pr60Fe25Mn5Al10 > Pr60Fe30Al10 > Pr60Fe25Ni5Al10 > Pr60Fe25Ti5Al10 > Pr60Fe25Cu5Al10 and the potentiodynamic polarization data analysis shows that the corrosion resistance ability ranks: Pr60Fe25Mn5Al10 60Fe30Al10 60Fe25Ni5Al10 60Fe25Cu5Al10 60Fe25Ti5Al10, which agrees well with that of the EIS data. In the case of the Pr-based BMGs, the GFA has not a correlation with the corrosion resistance, however the chemical composition is the dominating factor controlling the relative corrosion resistance

  13. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-12-01

    Full Text Available Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  14. Localized deformation of a Cu46.25Zr45.25Al7.5Er1 bulk metallic glass

    International Nuclear Information System (INIS)

    Using the cavity model and the concept of the plastic-hardening modulus, a simple relationship was established between the size of an indent and the size of a semi-spherical-shell softening zone. Indentation experiments of a Cu46.25Zr45.25Al7.5Er1 bulk-metallic glass (BMG) were performed over a range of indentation loads from 500 to 4000 mN, using a Vickers indenter. The indentation hardness decreased slightly with the increase in the indentation load from 5.21 GPa at an indentation load of 500 mN to 4.66 GPa at an indentation load of 4000 mN. The evolution of shear bands underneath the indentation was studied using an interface-bonded BMG sample. Shear bands of a semi-spherical-shell shape and a line-shape were observed underneath the indentation. The dependence of the size of the shear-banding zone on the size of the indent was examined, which qualitatively supported the analytical model. The inter-banding spacing decreased with the increase in the indentation load, associated with the release of the stored strain energy.

  15. In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses.

    Science.gov (United States)

    Li, Haifei; He, Wei; Pang, Shujie; Liaw, Peter K; Zhang, Tao

    2016-11-01

    In light of the superior property profile of favorable biocompatibility, proper corrosion/degradation behavior and good mechanical properties, Mg-based bulk metallic glasses (BMGs) are considered as potential biodegradable biomaterials. In the present study, in vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to Mg-Zn-Ca-Sr BMGs were studied in order to assess their feasibility to serve as orthopedic implants. The Mg-Zn-Ca-Sr BMGs were much more capable of supporting cell adhesion and spreading in comparison with crystalline AZ31B Mg alloy. The Mg-Zn-Ca-Sr BMG extracts showed no cytotoxicity to and slightly stimulated the proliferation of pre-osteoblasts. The cells cultured in 100% BMG extracts exhibited lower alkaline phosphatase activity as compared with that in negative control, which could be mainly ascribed to the inhibition of high concentrations of Zn ions on cell differentiation. With decreasing the extract concentration, the inhibitory effect was diminished and the 5% BMG extract exhibited slight stimulation in cell differentiation and mineralization. The high corrosion resistance of BMGs contributed to smaller environmental variations, compared with AZ31B alloy, thus lowering the unfavorable influences on cellular responses. A comparison among the biodegradable Mg-, Ca- and Sr-based BMGs for their biomedical applications is presented. PMID:27524063

  16. Interfacial analysis of the ex-situ reinforced phase of a laser spot welded Zr-based bulk metallic glass composite

    International Nuclear Information System (INIS)

    To study the interfacial reaction of the ex-situ reinforced phase (Ta) of a Zr-based ((Zr48Cu36Al8Ag8)Si0.75 + Ta5) bulk metallic glass composite after laser spot welding, the interfacial regions of the reinforced phases located at specific zones in the welds including the parent material, weld fusion zone and heat affected zone were investigated. Specimen preparation from the specific zones for transmission electron microscopy analysis was performed using the focused ion beam technique. The test results showed that the reinforced phases in the parent material, weld fusion zone and heat affected zone were all covered by an interfacial layer. From microstructure analysis, and referring to the phase diagram, it was clear that the thin layers are an intermetallic compound ZrCu phase. However, due to their different formation processes, those layers show the different morphologies or thicknesses. - Highlights: • An ex-situ Zr-based BMG composite was laser spot welded. • The interfacial regions of the RPs located at PM, WFZ and HAZ were investigated. • The RPs in the PM, WFZ and HAZ were all covered by a ZrCu interfacial layer. • Due to different formation processes, those layers show the different morphology

  17. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    International Nuclear Information System (INIS)

    Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM) to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG) was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  18. Effects of the Cooling Rate on the Plasticity of Pd40.5Ni40.5P19 Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    LI Yang; QIU Sheng-Bao; SHAO Yang; YAO Ke-Fu

    2011-01-01

    We prepare Pd40.5Ni40.5P19 glassy samples with purified ingots by copper mold casting at a high cooling rate and by water quenching at a low cooling rate.Both of them exhibit different supercooled liquid regions and multiple glass transition characteristics in their differential scanning calorimetric curves.The plasticity of the glassy sample prepared by copper mold casting is about 5% while that prepared by water quenching is almost zero (0.2%),indicating that cooling rate has influenced the plasticity of glassy alloys.By using high resolution TEM image analysis,it is revealed that there exist characteristic regions with different contrasts in the full glassy samples.The characteristic size is about 20-40nm for the glassy sample prepared by water quenching and 2-4nm for the one prepared by copper mold casting.The large difference in the plasticity of the glassy samples prepared by different cooling rates is believed to be related to the difference in the size of the characteristic nanoscale structures.The results indicate that adjusting cooling rate in preparation of glassy samples could modify the thermal and mechanical properties of the glassy alloys.Bulk metallic glass (BMG) is a kind of new structural and functional material developed in recent years.Because of many excellent demonstrated properties such as high strength,corrosion resistance,elastic deformability and magnetic properties,BMGs have become a hot research topic in the materials field.A large number of BMG alloy systems have been developed and some breakthroughs have been achieved in their mechanical and functional properties.[1-5] The first reported bulk metallic glass with a critical size over one centimeter is the Pd40Ni40P20 glassy alloy,which nowadays can be obtained to be as large as 25mm in diameter.[6] Although Pd40Ni40P20 glassy alloy shows a large glass forming ability,it is very brittle with barely global plasticity.Recently,it was found that the bulk glassy alloy system containing

  19. Thermal conductivity measuring station for metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2011-02-01

    Full Text Available Purpose: In the present paper an equipment applied in thermal conductivity measurements of metallic glasses was described.Design/methodology/approach: The paper describes the design solution of a measuring station, components, and idea of measurements of thermal conductivity. In order to correct measurement the calibration of presented equipment was realized. It was realized by determination of power losses and resistance of contacts. Methods of thermal conductivity measurements were also described in theoretical description.Findings: The suggested method of thermal conductivity measurement allows to avoid a procedure of solving complicated equations. The developed measuring station enables measurements of thermal conductivity of bulk metallic glasses in form of rod with diameter 3 mm.Research limitations/implications: The relationship between the thermal conductivity and the diameter of metallic glass samples is an interesting issue. In the future the authors are going to test rods with another diameters (not only 3 mm.Practical implications: The thermal conductivity of metallic glasses is necessary to calculate cooling rates during the fabrication of bulk metallic glasses. That are very important properties. These properties are indispensable for example in a computer simulation of a solidification process.Originality/value: Up to now there is very poor knowledge about thermal conductivity measurements of metallic glasses. There is not many references about this matter. There is no information about the thermal conductivity dependence on samples dimensions of metallic glasses.

  20. Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry

    Science.gov (United States)

    Gong, Pan; Zhao, Shaofan; Wang, Xin; Yao, Kefu

    2015-07-01

    The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as "strong glass former." The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran-Colmenero's method.

  1. Fe60CoxZr10Mo5W2B23-x(x=1,3,5,7,9)块状金属玻璃的非晶形成能力%Glass forming ability of Fe60 Cox Zr10Mo5 W2B23-x (x = 1,3,5,7,9) bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    刘冬艳; 张海峰; 邓胜涛; 胡壮麒

    2005-01-01

    The bulk Fe60CoxZr10Mo5W2B23-x (x= 1, 3, 5, 7, 9) amorphous rods with diameters of1.5 mm were successfully prepared by copper mold casting method with the low purity raw materials.The amorphous and crystalline states, and thermal parameters, such as the glass transition temperature (Tg), the initial crystallization temperature (Tx), the supercooled liquid region (ΔTx = TxTg), the reduced glass transition temperature Trg (Tg/Tm, Tm: the onset temperature of melting of the alloy, and Tg/T1, T1 : the finished temperature of melting of the alloy) were investigated by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis. Glass forming ability of Fe60CoxZr10Mo5W2B23-x (x=1, 3, 5, 7, 9)bulk metallic glasses has been studied. According to the results, the alloy (x=7) with the highest Trg (Tg/T1 =0. 607, Tg/T1 =0.590) value, has the strongest glass forming ability among these alloys because its composition is near eutectic composition.The wide supercooled liquid region over 72 K indicates the high thermal stability for this alloy system.This bulk metallic glass exhibits quite high strength (Hv 1020). The success of production of the Febased bulk metallic glass with industrial materials is of great significance for the future progress of basic research and practical application.

  2. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    By adding 0.5 at. % Cu to the strong but brittle [(Fe0.5Co0.5)0.75Si0.05B0.20]96Nb4 bulk metallic glass, fully amorphous rods with diameters up to 2 mm were obtained. The monolithic samples with 1 mm diameter revealed a fracture strain of 3.80% and a maximum stress of 4143 MPa upon compression, together with a slight work-hardening behavior. SEM micrographs of fractured samples did neither reveal any shear bands on the lateral surface nor the typical vein patterns which characterize ductile fracture. However, some layers appear to have flowed and this phenomenon took place before the brittle final fracture. An estimate of the temperature rise ΔT in the shear plane gives 1039 K, which is large enough to melt a layer of 120 nm. The overall performance and the macroscopic plastic strain depend on the interaction between cleavage-like and viscous flow-like features. Mechanical tests performed in-situ under synchrotron radiation allowed the calculation of the strain tensor components, using the reciprocal-space data and analyzing the shift of the first (the main) and the second broad peak positions in the X-ray diffraction patterns. The results revealed that each atomic shell may have a different stiffness, which may explain the macroscopic compressive plastic deformation. Also, there were no signs of (nano) crystallization induced by the applied stress, but the samples preserve a monolithic amorphous structure until catastrophic failure occurs

  3. β relaxation and low-temperature aging in a Au-based bulk metallic glass: From elastic properties to atomic-scale structure

    Science.gov (United States)

    Evenson, Z.; Naleway, S. E.; Wei, S.; Gross, O.; Kruzic, J. J.; Gallino, I.; Possart, W.; Stommel, M.; Busch, R.

    2014-05-01

    The slow β relaxation is understood to be a universal feature of glassy dynamics. Its presence in bulk metallic glasses (BMGs) is evidence of a broad relaxation time spectrum that extends to deep within the glassy state. Despite the breadth of research devoted to this phenomenon, its microscopic origin is still not fully understood. The low-temperature aging behavior and atomic structural rearrangements of a Au49Cu26.9Si16.3Ag5.5Pd2.3 BMG are investigated in the regime of the slow β relaxation by employing an ensemble of experimental techniques such as high-intensity synchrotron x-ray scattering, modulated differential scanning calorimetry (MDSC), dynamic mechanical analysis (DMA), impulse excitation, and dilatometry. Evidence of a distinct slow β-relaxation regime is seen in the form of (1) an excess wing of the DMA loss modulus beginning at ˜50 ∘C, (2) a crossover effect of elastic modulus with isothermal aging at 50∘C, and (3) a broad, nonreversing and largely irreversible sub-Tg endotherm in the MDSC results. Atomic rearrangements occurring at the onset of the measured slow β-relaxation temperature regime were found to be confined mainly to the short-range order length scale while no significant atomic rearrangements occur on the length scale of the medium-range order. Furthermore, evidence is presented that suggests the crossover effect in Young's modulus is due to the evolution of chemical short-range order. These results support the emergent picture of a dynamically heterogeneous glassy structure, in which low-temperature relaxation occurs through atomic rearrangements confined mostly to the short-range order length scale.

  4. Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles

    International Nuclear Information System (INIS)

    Graphical abstract: Confinement zone of Ta particles provide a plastic shielding to obstruct shear banding and so as to significantly increase the plasticity of Zr-based BMGC. Evidence of remarkable plasticity improvement of Zr-based BMGC dispersed by the combination of in situ and ex situ Ta particles can be seen from the stress–strain curve (a) as well as the fractured samples of monolithic BMG ((b): brittle fracture) and BMGC ((c): severe plastic deformation). Highlights: ► Shear bands are arrested by the interface of glassy matrix/Ta in the Zr-based BMGCs. ► Ta particles of BMGC distributed as a semi-uniform confinement zone. ► Confinement zone exhibits smaller size than plastic zone of crack-tip in the BMGC. ► Confinement zone of Ta provide a plastic shielding to obstruct shear banding. ► Plasticity can be improved from 0% (monolithic BMG) to 44% plastic strain (BMGC). - Abstract: Using two-step arc melting process and suction casting, the Zr47.3Cu32Al8Ag8Ta4Si0.7-based bulk metallic glass composites (BMGCs) rods with ex situ added micro-sized Ta particles have been successfully fabricated. The structure and thermal properties of these BMGCs samples were examined by differential scanning calorimeter (DSC) and X-ray diffraction (XRD). It was found that these BMGCs with ex situ added Ta exhibit similar thermal properties in comparison with their base alloy counterpart, with relatively high glass forming ability (GFA). For the mechanical study, the results of compression test show that more than 25% compressive plastic strain and 1800 MPa fracture strength at room temperature can be obtained for the 2 mm diameter rod of the ZrCu-based BMGC ex situ added 6 and 9 vol.% Ta particles, respectively. Images from SEM on the fractured surfaces show that the homogeneously distributed Ta particles (20 ± 8 μm) would form semi-uniform confinement zones to restrict the shear band propagation. In other words, the inter-particle free space and the size of

  5. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications

    International Nuclear Information System (INIS)

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (at.%, x = 0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr–Ti–Al–Fe–Cu–Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. - Highlights: • Ni-free Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (at.%, x = 0, 2.5, 5) BMGs were fabricated. • Plasticity and notch toughness of BMGs are enhanced by high-Zr-content. • The high-Zr-based BMGs exhibit excellent bio-corrosion resistance in PBS solution. • The biosafety of BMGs is revealed by regular cell adhesion and proliferation. • High-Zr-bearing BMGs are favorable for potential applications as biomaterials

  6. A partial structure factor investigation of the bulk metallic glass Zr63Ni25Al12 as studied by using a combination of anomalous X-ray scattering and reverse Monte Carlo modeling

    International Nuclear Information System (INIS)

    Anomalous X-ray scattering experiments were performed on Zr63Ni25Al12 bulk metallic glass. The results were analyzed using reverse Monte Carlo modeling to obtain local- and intermediate-range atomic configurations of this good metallic glass former. Although the Al-related partial information is not reliable due to the small values of their weighting factors in X-ray scattering, good partial information could be obtained from a reverse Monte Carlo analysis. The obtained structural information is given by parameters such as bond angle distributions, bond orientation order parameters, the Warren-Cowley order parameters, and Voronoi polyhedra. Results are compared to the previous results from Fukunaga et al. using X-ray and neutron total scattering. (orig.)

  7. Magnetic power losses in [(Fe1-xCox)75B20Si5]93Nb4Y3 (x = 0, 0.2, 0.4) bulk metallic glasses

    International Nuclear Information System (INIS)

    Magnetic power losses of [(Fe1-xCox)75B20Si5]93Nb4Y3 (x = 0, 0.2, 0.4) metallic glasses have been investigated. Bulk samples were prepared by water-cooled Cu-mold injection casting technique with shapes of cylinders (0.8 mm diameter and 30 mm length) and toroids (10 mm external diameter and 0.5 mm thickness). Ribbons prepared by the melt- spinning technique were also analyzed. Glassy structures were confirmed by the presence of a main halo in XRD and by crystallization signal in DSC. Power losses were studied with a digital wattmeter over a range of frequencies from 1 to 400 Hz at selected peak inductions. Ribbons show smaller losses than bulk samples, presenting 24.5 J/m3 at 50 Hz and 0.65 T peak induction. It was observed that the Co addition reduces significantly the power losses. A separation theory was applied in order to explain the square root behavior of the measured power losses as a function of frequency and the results are in good agreement with the experimental data. The magnetic data were used to identify the presence of crystalline inclusions in the magnetic bulk metallic glasses. The effect of sample shape and composition on magnetic properties will be discussed.

  8. DEVIATIONS OF STRUCTURE BETWEEN BULK AND FIBER GLASSES

    OpenAIRE

    Stockhorst, H.; Brückner, R.

    1982-01-01

    Fibers from a silicate and a metaphosphate glass, produced by the nozzle drawing process are investigated with respect to their structural properties compared with bulk glass. The drawing parameters - nozzle temperature, mass flow and drawing speed - are varied in a wide range. The following properties are investigated : fiber density, thermal expansion-contraction-behaviour and optical birefringence. All these properties show characteristic deviations from the bulk glass values depending str...

  9. Effect of sand blasting on structural, thermal, and mechanical properties of Zr{sub 58.3}Cu{sub 18.8}Al{sub 14.6}Ni{sub 8.3} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Naeem ul Haq; Awais, Hasan Bin; Naeem, Muhammad; Shahid, Rub Nawaz [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Metallurgy and Materials Engineering; Akhter, Javaid Iqbal [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Physics Div.

    2012-07-15

    In the present work sand-blasting-induced structural, thermal, and mechanical effects were studied in Zr{sub 58.3}Cu{sub 18.8}Al{sub 14.6}Ni{sub 8.3} bulk metallic glass. It was observed that sand blasting favors disordering of the atomic configuration, formation of free volume and evolution of multiple intersecting shear bands. As a result, considerable compressive plasticity was achieved in sand-blasted samples. It was also observed that in order to superimpose the effect of prestraining and extra free volume for improving compressive plasticity, there exists a limit to both parameters. (orig.)

  10. Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites

    OpenAIRE

    Kim, C. P.; Busch, R.; Masuhr, A.; Choi-Yim, H.; Johnson, W. L.

    2001-01-01

    Carbon-fiber-reinforced bulk metallic glass composites are produced by infiltrating liquid Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 into carbon fiber bundles with diameter of the individual fiber of 5 mum. Reactive wetting occurs by the formation of a ZrC layer around the fibers. This results in a composite with a homogeneous fiber distribution. The volume fraction of the fibers is about 50% and the density of the composite amounts to 4.0 g/cm(^3).

  11. Fundamental mechanical and microstructural observations in metallic glass coating production

    NARCIS (Netherlands)

    Matthews, D.T.A.; Ocelik, V.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The production of a wide range of metallic Glass Forming Alloys (GFA) has been investigated by several processing routes including simple arc-casting and melt-spinning to form Bulk Metallic Glasses (BMG). The concepts surrounding such alloys have been directed towards the production of thick (> 300

  12. A universal power law for metallic glasses

    International Nuclear Information System (INIS)

    We report a universal power law between bulk modulus and molar volume that holds for metallic glasses (MGs) and most polycrystalline metals, which demonstrates that the volumetric derivative of energy minima can be determined by the average atomic volume. Our findings reveal a characteristic size rang of the short-range order of 0.23–0.32 nm in MGs that is closest to that in face-centered cubic metals. More interestingly, the short-range order in noncrystalline and crystalline metals seem to be self-similar from a viewpoint of the compressibility

  13. Super-plastic forming process of Zr-based bulk metallic glass%Zr基非晶合金超塑性成形工艺研究

    Institute of Scientific and Technical Information of China (English)

    廖广兰; 王俊; 喻强; 朱志靖

    2011-01-01

    采用感应耦合等离子体刻蚀工艺制备了微型硅模具,基于硅模具研究了非晶合金Zr41.25Ti13.75Ni10Cu12.5Be22.5的超塑性微零件成形工艺.采用差示扫描量热仪测定了Zr41.25Ti13.75Ni10Cu12.5Be22.5的过冷液相区间为360~440℃,在过冷液相区间热压成形非晶合金微零件、机械研磨去除零件飞边和采用40%的KOH溶液腐蚀去除硅模具,得到非晶合金微型零件.自主研制了成形设备,仿真分析与实验相结合,解决了成形过程中设备的温度控制问题,比较分析了不同温度下的成形结果,实验与仿真结果符合较好.在410℃条件下成功制备出模数0.03、齿数66和厚度500μm的微型内齿轮,齿形轮廓清晰,X射线衍射仪扫描结果显示该微齿轮为非晶结构,从而验证了采用该工艺制备微型零件的可行性.%Super-plastic micro-forming process of bulk metallic glasses Zr41.25Ti13.75Ni10Cu12.5Be22.5 utilizing micro silicon molds was investigated,where the micro silicon molds were fabricated by inductively coupled plasma etching.The super-cooled liquid region,360~440 ℃,was measured by differential scanning calorimeter.Micro components were thermoformed in the super-cooled liquid region.The flash of micro components was removed by mechanical grinding,and the silicon molds were resolved with 40% KOH.Forming equipment was developed on the basis of the super-plastic process,and the temperature-control was solved by simulation analysis and experiments.Subsequently,the forming results in different temperatures were analyzed,which confirmed the simulation results.Finally,an internal gear with 0.03 module,66 teeth and 500 μm thickness was obtained with good dimensional accuracy at 410 ℃.The gear had a relatively good profile with an amorphous structure proved by X-ray diffraction scanning,which substantiated the feasibility of the process.

  14. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr–Cu–Al bulk metallic glass composites

    International Nuclear Information System (INIS)

    The microstructure and mechanical properties of Zr48Cu48 − xAl4M x (M ≡ Fe or Co, x = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr48Cu48Al4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x = 0.5 (5.5% in Zr48Cu47.5Al4Co0.5 and 6.2% in Zr48Cu47.5Al4Fe0.5) is considerably larger than for Zr48Cu48Al4 or the alloys with x = 1. Slight variations in the Young’s modulus (around 5–10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite–martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr–Cu–Al–(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications. (paper)

  15. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  16. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    International Nuclear Information System (INIS)

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  17. Equilibrium viscosity of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid and viscous flow during relaxation, phase separation, and primary crystallization

    International Nuclear Information System (INIS)

    The flow behavior of the supercooled Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid is studied in isothermal three-point beam-bending experiments. The experiments lead to the determination of the equilibrium viscosity as a function of temperature. Comparison with other glass-forming liquids shows that the Zr41.2Ti13.8Cu12.5Ni10Be22.5, alloy is a strong liquid, similar to sodium silicate liquids. Flow measurements during phase separation and subsequent formation of crystals embedded in a non-crystalline matrix reveal a dramatic slowdown of the kinetics of the matrix that is expressed in an increase of the viscosity by several orders of magnitude

  18. Constant permeability of (Fe0.75B0.20Si0.05)96Nb4 bulk metallic glass prepared by B2O3 flux melting and Cu-mold casting

    International Nuclear Information System (INIS)

    The effect of B2O3 flux melting on the soft magnetic properties of (Fe0.75B0.20Si0.05)96Nb4 bulk metallic glass prepared by casting has been investigated. Ring-shaped bulk specimens that were prepared by B2O3 flux melting and Cu-mold casting (fluxed specimens) show a flat hysteresis curve, indicating a good linear relationship between the magnetic induction and the applied magnetic field. Although the permeability of the fluxed specimens is lower than that of the specimens prepared by conventional Cu-mold casting by one order of magnitude, their coercivities are almost same. These results show that it is possible to develop a new soft magnetic material that exhibits constant permeability with low core loss

  19. The deformation units in metallic glasses revealed by stress-induced localized glass transition

    Science.gov (United States)

    Huo, L. S.; Ma, J.; Ke, H. B.; Bai, H. Y.; Zhao, D. Q.; Wang, W. H.

    2012-06-01

    We report that even in quasi-static cyclic compressions in the apparent elastic regimes of the bulk metallic glasses, the precisely measured stress-strain curve presents a mechanical hysteresis loop, which is commonly perceived to occur only in high-frequency dynamic tests. A phenomenological viscoelastic model is established to explain the hysteresis loop and demonstrate the evolutions of the viscous zones in metallic glasses during the cyclic compression. The declining of the viscosity of the viscous zones to at least 1 × 1012 Pa s when stress applied indicates that stress-induced localized glass to supercooled liquid transition occurs. We show that the deformation units of metallic glasses are evolved from the intrinsic heterogeneous defects in metallic glasses under stress and the evolution is a manifestation of the stress-induced localized glass transition. Our study might provide a new insight into the atomic-scale mechanisms of plastic deformation of metallic glasses.

  20. Physical aging in Zr46.75Ti8.25Cu7.5Ni10Be27.5 typical bulk metallic glass manifested as enthalpy relaxation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Enthalpy recovery is not only an important characteristic of physical aging of glass,but also a good tool to investigate the physical aging. Using differential scanning calorimeter (DSC),the enthalpy recovery of Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass (BMG) was studied. The typical characteristics of enthalpy recovery of glass including the sub-Tg peak and ‘overshot’ were found in BMG. The evolution of the sub-Tg peak and ‘overshot’ were described by the free volume theory and Hodge’s model,respectively. It was found that the former failed to describe the enthalpy recovery in the BMG,while the latter could give a qualitative explanation. In com-bination with the dynamics in the BMG,the origin of the enthalpy recovery in the BMG was discussed. The results show that BMGs are an ideal material to investi-gate the physical aging. The further understanding of physical aging of BMGs is useful to clarify the nature of glass and improve the application and device of new types of BMGs.

  1. Physical aging in Zr46.75Ti8.25Cu7.5Ni10Be27.5 typical bulk metallic glass manifested as enthalpy relaxation

    Institute of Scientific and Technical Information of China (English)

    WEN Ping; ZHAO ZuoFeng; WANG WeiHua

    2008-01-01

    Enthalpy recovery is not only an important characteristic of physical aging of glass, but also a good tool to investigate the physical aging. Using differential scanning calorimeter (DSC), the enthalpy recovery of Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass (BMG) was studied. The typical characteristics of enthalpy recovery of glass including the sub-Tg peak and 'overshot' were found in BMG. The evolution of the sub-Tg peak and 'overshot' were described by the free volume theory and Hodge's model, respectively. It was found that the former failed to describe the enthalpy recovery in the BeG, while the latter could give a qualitative explanation. In com-bination with the dynamics in the BMG, the origin of the enthalpy recovery in the BMG was discussed. The results show that BMGs are an ideal material to investi-gate the physical aging. The further understanding of physical aging of BMGs is useful to clarify the nature of glass and improve the application and device of new types of BMGs.

  2. Low temperature vibrating reed measurements of Zr based metallic glasses

    International Nuclear Information System (INIS)

    The low temperature thermal and acoustic behavior of glasses, dielectric or metallic, is dominated by two-level systems caused by the tunneling of small groups of atoms between two almost equivalent sites. Specific distributions of the relevant parameters are suggested by the well established tunneling model. Acoustic measurements of various superconducting metallic glasses demonstrate that conduction electrons not only drastically change the dynamics of tunneling systems as compared to insulating glasses but also seem to influence the apparent density of states of the tunneling systems. The advent of bulk metallic glasses (BMG) considerably facilitates acoustic experiments. Our vibrating reed measurements of the BMG Zr59Ti3Cu20Ni8Al10 and the splat cooled metallic glass Zr65Al7.5Cu27.5 reveal interesting differences in the internal friction which presumably reflect the quite different cooling rates in the preparation procedures of the two metallic glasses.

  3. Analysis of dynamic segregation and crystallisation in Mg{sub 65}Cu{sub 25}Y{sub 10} bulk metallic glass using atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Laws, K.J., E-mail: k.laws@unsw.edu.au [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Saxey, D.W. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. (Australia); McKenzie, W.R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052 (Australia); Marceau, R.K.W. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Max-Planck Institut fuer Eisenforschung, Max-Planck-Str.1, Duesseldorf, D-40237 (Germany); Gun, B. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Ringer, S.P. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Ferry, M. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2012-10-30

    In order to develop an in-depth understanding of the flow behaviour and dynamic devitrification processes of metallic glasses in the supercooled liquid region, tensile testing of amorphous Mg{sub 65}Cu{sub 25}Y{sub 10} samples was carried out at temperatures from 150 to 170 Degree-Sign C and at strain rates from 1 Multiplication-Sign 10{sup -3} s{sup -1} to 1 Multiplication-Sign 10{sup -2} s{sup -1}. Tensile data showed a consistent and reproducible inflexion in flow stress at a particular strain that was largely independent of strain rate. This was followed by a dramatic increase in flow stress occuring prior to the determined onset times of static crystallisation. Samples were analysed using atom probe tomography and the results indicate that tensile straining of the initially homogeneous amorphous alloy results in segregation into two distinct glassy phases via a shear-related process, coincident with the maximum shear plane angle, followed by the evolution of regions corresponding to the composition of a number of equilibrium binary and ternary intermetallic phases.

  4. Processing metallic glasses by selective laser melting

    Directory of Open Access Journals (Sweden)

    Simon Pauly

    2013-01-01

    Full Text Available Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs, can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processing routes, such as casting, melt spinning or gas atomization, have intrinsic limitations regarding the complexity and dimensions of the geometries. Here, it is shown that selective laser melting (SLM, which is usually used to process conventional metallic alloys and polymers, can be applied to implement complex geometries and components from an Fe-base metallic glass. This approach is in principle viable for a large variety of metallic alloys and paves the way for the novel synthesis of materials and the development of parts with advanced functional and structural properties without limitations in size and intricacy.

  5. Indentation creep behaviors of Mg61Cu28Gd11 and (Mg61Cu28Gd11)99.5Sb0.5 bulk metallic glasses at room temperature

    Institute of Scientific and Technical Information of China (English)

    SUN Yingdi; LI Ziquan; LIU Jinsong; CONG Mengqi; QIN Jingya

    2011-01-01

    The room temperature creep behaviors of Mg61Cu28Gd11 and (Mg61Cu28Gd11i)99.5Sb0.5 bulk metallic glasses (BMGs) were revealed by means of nanoindentation technique. The creep mechanism was explored by characterization of creep rate sensitivity, creep compliance and retardation spectra. The results showed that the experimental creep curves could be well described by a generalized Kelvin model. The low creep rate sensitivity of both Mg-based BMGs indicated that their room temperature creep was dominated by localized shear flow. In addition, the (Mg61Cu28Gd11)99.5Sb0.5 glassy alloy exhibited lower creep rate sensitivity, creep compliance and milder retardation peak, indicating its higher creep-resistance and less relaxed state. Furthermore, the creep retardation spectrum consisted of two relatively separated peaks with the well defined characteristic relaxation times.

  6. Effects of annealing on the microstructure, corrosion resistance, and mechanical properties of RE65Co25Al10 (RE=Ce, La, Pr, Sm, and Gd) bulk metallic glasses

    International Nuclear Information System (INIS)

    The effects of annealing on the microstructure, corrosion resistance and mechanical properties of the RE65Co25Al10 (RE=Ce, La, Pr, Sm, and Gd) bulk metallic glasses (BMGs) were studied. Microstructural changes are induced after annealing below the onset crystallization temperature of 484 K, resulting in the variation of thermal stability and crystallization behavior. A proper annealing enhances the corrosion resistance in 3.5 wt% NaCl solution, which can be attributed to reduction of the electrochemical activity and galvanic coupling effects in the chloride solution. Moreover, the RE-based BMG annealed at 484 K possesses the higher corrosion potential and lower corrosion current density, combined with the corrosion morphologies, which suggests the best corrosion resistance. Annealing can also obviously change the mechanical properties and fracture morphologies. It presents that free volume annihilation can cause more difficulty in the elastic atom rearrangement for the as-annealed RE-based BMGs

  7. Creep kinetics for metallic glasses

    International Nuclear Information System (INIS)

    Experimental results on metallic glass creep are presented aimed to test earlier developed model of structural relaxation in the field of external mechanical stresses. The experiments were carried out on amorphous ribbons of alloy Ni77.5Si7.5B15 under creep at 523, 573, 623 and 663 K for 500 and 3600 s. It is shown that the model allows a correct qualitative description of creep kinetics in metallic glasses except for the initial period of loading (20-200 s). This stage of transient creep is assumed to be conditioned by a spectrum of activation volumes of structural relaxation elementary acts

  8. Inherent Shear-Dilatation Coexistence in Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    JIANG Min-Qiang; JIANG Si-Yue; DAI Lan-Hong

    2009-01-01

    Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [Nature Mater. 2 (2003) 449, Intermetallics 14 (2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.

  9. Metallic glasses: properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dugdale, J.S.; Pavuna, D.; Rhodes, P.

    1985-01-01

    Metallic glasses are a class of disordered materials that contrast with crystalline metals and provide a new challenge to theories of electronic structure and magnetic interactions in solids. Their study will undoubtedly broaden and deepen our understanding of the solid state. In addition, they are now finding a wide variety of technological applications. Some of these applications as well as their magnetic properties are presented here. 7 references, 3 figures, 1 table.

  10. Effect of Cu addition on nanocrystallization behaviors and magnetic properties of the Fe76.5−xC6.0Si3.3B5.5P8.7Cux (x = 0–3 at.%) bulk metallic glass

    International Nuclear Information System (INIS)

    Highlights: ► Effect of Cu on the modification of primary phase of soft magnetic nanocrystalline alloys. ► Soft magnetic nanocrystalline alloys with amorphous precursor having high glass forming ability. ► Enhancement of glass forming ability with small amount of Cu addition. -- Abstract: The effect of Cu addition on the glass forming ability, nanocrystallization process and soft magnetic properties of the Fe76.5C6.0Si3.3B5.5P8.7 bulk metallic glass has been studied. In spite of relatively high C contents of the alloy, with only 0.5% Cu addition, the primary phase was successfully changed from metastable carbide Fe23C6 phase to stable alpha-Fe phase and the nucleation rate at the early stage of crystallization was significantly increased. Nanocrystallization of the Fe76.0C6.0Si3.3B5.5P8.7Cu0.5 (at.%) bulk metallic glass was studied through isothermal annealing treatments at temperature below the crystallization temperature of the alloy. With annealing at Tx − 50 °C for 30 min, a large number of very fine regions (76.0C6.0Si3.3B5.5P8.7Cu0.5 (at.%) bulk metallic glass. By controlling the annealing parameters as well as minor Cu contents, magnetic properties of the Fe76.5C6.0Si3.3B5.5P8.7 (at.%) bulk metallic glass were effectively optimized for practical applications

  11. Atomic structure of Zr48 Cu45 Al7 bulk metallic glass%Zr48Cu45Al7大块金属玻璃的原子结构研究

    Institute of Scientific and Technical Information of China (English)

    郭古青; 杨亮; 张国庆

    2011-01-01

    应用同步辐射X射线衍射(XRD)和广延x射线吸收精细结构边方法(EXAFS),结合反蒙特卡罗(RMC)拟合、Voronoi分形技术等对Zr50Cu50二元和Zr48Cu45Al7三元金属玻璃材料的微观结构进行了系统的研究.结果表明:ZrCuAl三元金属玻璃中Al原子与Zr原子、Cu原子之间存在强相互作用,表现为键长的明显缩短,导致其微观结构中的Voronoi团簇体积普遍小于Zr50Cu50,即前者的团簇内部原子更加密堆.这种原子密堆团簇可望从微观结构上解释CuZr体系掺Al后非晶形成能力大大提高的原因.%Atomic structures of Zr48Cu45Al7 ternary and Zr50Cu50 binary metallic glasses were investigated by performing reverse Monte Carlo (RMC) simulation upon synchrotron radiation based X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) data. Bond shortening in Zr-Al and Cu-Al atomic pairs was detected in Zr48 Cu45 Al7, which is attributed to strong interactions between Al atoms and its neighbors. Subsequently, their atomic structure was further analyzed by Voronoi tessellation method, it was found that all kinds of Voronoi clusters have smaller volume in Zr48 Cu45 Al7 than their counterparts in Zr50Cu50. Accordingly it is suggested that atoms may be more densely packed in atomic structure of Zr48 Cu45 Al7 ternary than in corresponding Zr50Cu50 binary MG at cluster scale, which may be the structural origin of high glass-forming ability of CuZr-based bulk metallic glass prepared by Al addition.

  12. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  13. Role of minor additions on metallic glasses and composites

    OpenAIRE

    Gonzalez Sanchez, Sergio

    2016-01-01

    Microalloying refers to the addition of a small concentration of an alloying element to tune the properties of the parent alloy. Microalloying technology enables to control the glass formation and the mechanical properties of bulk metallic glasses (BMGs). This manuscript presents a comprehensive review on recent developments and breakthroughs in the field of microalloying for tuning the properties of BMGs and composites with focus on the results. The ability of multiple element co-addition to...

  14. Effects of the Cooling Rate on the Plasticity of Pd40.5Ni40.5P19 Bulk Metallic Glasses

    International Nuclear Information System (INIS)

    We prepare Pd40.5Ni40.5P19 glassy samples with purified ingots by copper mold casting at a high cooling rate and by water quenching at a low cooling rate. Both of them exhibit different supercooled liquid regions and multiple glass transition characteristics in their differential scanning calorimetric curves. The plasticity of the glassy sample prepared by copper mold casting is about 5% while that prepared by water quenching is almost zero (0.2%), indicating that cooling rate has influenced the plasticity of glassy alloys. By using high resolution TEM image analysis, it is revealed that there exist characteristic regions with different contrasts in the full glassy samples. The characteristic size is about 20–40 nm for the glassy sample prepared by water quenching and 2–4 nm for the one prepared by copper mold casting. The large difference in the plasticity of the glassy samples prepared by different cooling rates is believed to be related to the difference in the size of the characteristic nanoscale structures. The results indicate that adjusting cooling rate in preparation of glassy samples could modify the thermal and mechanical properties of the glassy alloys. (condensed matter: structure, mechanical and thermal properties)

  15. Homogeneous Plastic Flow of Fully Amorphous and Partially Crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    Q.WANG; J.J. Blandin; M. Suery; B. Van de Moortéle; J.M. Pelletier

    2003-01-01

    The homogeneous plastic flow of fully amorphous and partially crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass (Vit1) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory.Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystallized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.

  16. The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting

    International Nuclear Information System (INIS)

    Highlights: • We proposed a re-scan strategy to prevent crack propagation in SLM. • The re-scan should be carried out at a low laser energy density. • The underlying mechanism is through reduction and relief of residual stresses. • Lowered temperature gradient and superplasticity account for reduction of stress. • For the first time, a crack-free BMGCs gear with a large size was produced. - Abstract: In this paper, we have investigated the use of a re-scanning strategy to prevent propagation of macro-cracks during the selective laser melting of an Al85Ni5Y6Co2Fe2 bulk metallic glass composites (BMGCs). These cracks form as a result of the high residual stress caused by the rapid heating and cooling of the material by the laser beam. Unlike crystalline materials, the BMGCs possess a supercooled liquid region in which the residual stress can be relieved by plastic flow. We show that by using a high power initial scan (designed to melt the material) followed by a lower power re-scan (for stress relief) cracking can be prevented. Using this approach, crack-free Al85Ni5Y6Co2Fe2 BMGCs components have been fabricated, including a gear with a diameter ∼25 mm and height ∼10 mm

  17. Localized deformation of a Cu{sub 46.25}Zr{sub 45.25}Al{sub 7.5}Er{sub 1} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang Fuqian; Li Ding [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Yang, Mimi X [MSTC Program, Paul Laurence Dunbar High School, Lexington, KY 40513 (United States); Li Ran; Zhang Tao [Department of Materials Science and Engineering, Beijing University of Aeronaut and Astronaut, Beijing 100083 (China); Jiang Wenhui; Wang Gongyao; Liaw, Peter K, E-mail: fyang0@engr.uky.ed [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37994 (United States)

    2009-03-21

    Using the cavity model and the concept of the plastic-hardening modulus, a simple relationship was established between the size of an indent and the size of a semi-spherical-shell softening zone. Indentation experiments of a Cu{sub 46.25}Zr{sub 45.25}Al{sub 7.5}Er{sub 1} bulk-metallic glass (BMG) were performed over a range of indentation loads from 500 to 4000 mN, using a Vickers indenter. The indentation hardness decreased slightly with the increase in the indentation load from 5.21 GPa at an indentation load of 500 mN to 4.66 GPa at an indentation load of 4000 mN. The evolution of shear bands underneath the indentation was studied using an interface-bonded BMG sample. Shear bands of a semi-spherical-shell shape and a line-shape were observed underneath the indentation. The dependence of the size of the shear-banding zone on the size of the indent was examined, which qualitatively supported the analytical model. The inter-banding spacing decreased with the increase in the indentation load, associated with the release of the stored strain energy.

  18. Effect of Surface Modifications of Ti40Zr10Cu38Pd12 Bulk Metallic Glass and Ti-6Al-4V Alloy on Human Osteoblasts In Vitro Biocompatibility

    Science.gov (United States)

    Blanquer, Andreu; Hynowska, Anna; Nogués, Carme; Ibáñez, Elena; Sort, Jordi; Baró, Maria Dolors; Özkale, Berna; Pané, Salvador; Pellicer, Eva

    2016-01-01

    The use of biocompatible materials, including bulk metallic glasses (BMGs), for tissue regeneration and transplantation is increasing. The good mechanical and corrosion properties of Ti40Zr10Cu38Pd12 BMG and its previously described biocompatibility makes it a potential candidate for medical applications. However, it is known that surface properties like topography might play an important role in regulating cell adhesion, proliferation and differentiation. Thus, in the present study, Ti40Zr10Cu38Pd12 BMG and Ti6-Al-4V alloy were surface-modified electrochemically (nanomesh) or physically (microscratched) to investigate the effect of material topography on human osteoblasts cells (Saos-2) adhesion, proliferation and differentiation. For comparative purposes, the effect of mirror-like polished surfaces was also studied. Electrochemical treatments led to a highly interconnected hierarchical porous structure rich in oxides, which have been described to improve corrosion resistance, whereas microscratched surfaces showed a groove pattern with parallel trenches. Cell viability was higher than 96% for the three topographies tested and for both alloy compositions. In all cases, cells were able to adhere, proliferate and differentiate on the alloys, hence indicating that surface topography plays a minor role on these processes, although a clear cell orientation was observed on microscratched surfaces. Overall, our results provide further evidence that Ti40Zr10Cu38Pd12 BMG is an excellent candidate, in the present two topographies, for bone repair purposes. PMID:27243628

  19. Synthesis and characterization of copper fiber reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass

    International Nuclear Information System (INIS)

    Highly conductive Cu fibers were introduced into Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy1) Bulk Metallic Glass (BMG) of poor conductivity to produce a composite with a thermal anisotropy. The composites with circular and square cross-sections with the volume fraction ranging from 7 to 60% were processed successfully by pressure-gravity infiltration. Differential Scanning Calorimetry (DSC) showed that the BMG matrix remained predominantly amorphous after adding up to 60 vol.% of Cu fibers. The limited crystallization at the Cu/Vitreloy1 interface was observed under optical microscope. This crystallization is attributed to heterogeneous nucleation starting from the Cu/Vitreloy1 interface followed by the growth in the region with higher Cu concentration around the copper fibers. A combination of two-dimensional triangular and square ordering of the fibers was observed in the composite samples. X-ray diffraction patterns of the composites showed the peaks from the reinforced fibers and crystals around the Cu/Vitreloy1 interface superimposed on the broad diffuse maxima from the amorphous phase. Best processing parameters in terms of processing time and temperature were determined for the composite reinforced with 60 vol.% fibers

  20. Mechanical properties of metallic glasses - shaping and applications

    OpenAIRE

    Aljerf, Moustafa,

    2011-01-01

    This thesis features the two modes of deformation of metallic glasses produced under different forms (bulk, ribbons and particles). Inhomogeneous deformation in bulk samples is studied by scanning electron microscopy. Heat generated by elastic energy release during deformation is responsible for the melting observed in shear bands, and calculations using an analytical model of the temperature profile around a band are consistent with morphological observations and reports of appearance of nan...

  1. Cu-based bulk amorphous alloy with larger glass-forming ability and supercooled liquid region

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.M. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Engineering, University of Queensland, St. Lucia, Qld 4072 (Australia)], E-mail: waterdrophmfu@hotmail.com; Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, H. [Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Qld 4350 (Australia); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2008-06-30

    The glassy rod with a maximum sample thickness of 11 mm and larger supercooled liquid region of 108 K was successfully fabricated when substituting Cu with minor amount of Ag in the Cu-Zr-Al-Gd alloy system. The value of {gamma} reaches a maximum of 0.418 for the Cu{sub 45.5}Zr{sub 45}Al{sub 7}Gd{sub 2}Ag{sub 0.5} bulk metallic glass (BMG) alloy. The high glass-forming ability (GFA) and larger supercooled liquid region are discussed from atomic size, negative mixing heat among constituent elements and thermodynamics.

  2. Titanium and zirconium based wrought alloys and bulk metallic glasses for fluoride ion containing 11.5 M HNO3 medium

    International Nuclear Information System (INIS)

    Aqueous reprocessing of plutonium-rich mixed oxide fuels require fluoride as a catalyst in boiling nitric acid for an effective dissolution of the spent fuel. The corrosion behavior of the candidate dissolver materials zircaloy-4 (Zr-4) and commercial pure titanium (CP-Ti grade 2) in boiling 11.5 M HNO3 + 0.05 M NaF has been established. High corrosion rates were obtained for Zr- 4 and CP-Ti in nitric acid containing fluoride ions. Complexing the fluoride ions either with Al(NO3)3 or ZrO(NO3)2 aided in decreasing the corrosion rates of Zr-4 and CP-Ti. High corrosion resistance is claimed as one of the principal property of the amorphous alloy when compared to the crystalline alloy. Thus Ni60Nb40 and Ni60Nb30Ta10 amorphous ribbons were prepared and exposed in boiling 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. In nitric acid these alloys did not show any sign of corrosion attack. XPS analysis confirmed that the passivity was due to the formation passive films of thickness ≈3 nm enriched with Nb2O5 and of ≈1.5 nm enriched with both Nb2O5 and Ta2O5 on the respective surfaces of the ribbons. In boiling 11.5 M HNO3 + 0.05 M NaF, severe corrosion attack was observed on Ni60Nb40 ribbon, due to the instability of the oxide/metal interface. The Ni60Nb30Ta10 amorphous ribbon exhibited corrosion resistance of at least an order of magnitude higher than that for Ni60Nb40 ribbon

  3. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    International Nuclear Information System (INIS)

    Dynamic mechanical behavior of a Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model

  4. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinshan, E-mail: ljsh@nwpu.edu.cn; Cui, Jing; Bai, Jie; Kou, Hongchao; Wang, Jun [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072, Shaanxi Province (China); Qiao, Jichao [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi' an 710072, Shaanxi Province (China)

    2015-04-21

    Dynamic mechanical behavior of a Ti{sub 50}Zr{sub 20}Nb{sub 12}Cu{sub 5}Be{sub 13} bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  5. On the origin of bulk glass forming ability in Cu-Hf, Zr alloys

    Science.gov (United States)

    Ristić, Ramir; Zadro, Krešo; Pajić, Damir; Figueroa, Ignacio A.; Babić, Emil

    2016-04-01

    Understanding the formation of bulk metallic glasses (BMG) in metallic systems and finding a reliable criterion for selection of BMG compositions are among the most important issues in condensed-matter physics and material science. Using the results of magnetic susceptibility measurements performed on both amorphous and crystallized Cu-Hf alloys (30–70 at% Cu) we find a correlation between the difference in magnetic susceptibilities of corresponding glassy and crystalline alloys and the variation in the glass forming ability (GFA) in these alloys. Since the same correlation can be inferred from data for the properties associated with the electronic structure of Cu-Zr alloys, it seems quite general and may apply to other glassy alloys based on early and late transition metals. This correlation is plausible from the free-energy considerations and provides a simple way to select the compositions with high GFA.

  6. Reactive cluster model of metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Travis E. [Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401 (United States); School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia); Miorelli, Jonathan; Eberhart, Mark E. [Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401 (United States)

    2014-02-28

    Though discovered more than a half century ago metallic glasses remain a scientific enigma. Unlike crystalline metals, characterized by short, medium, and long-range order, in metallic glasses short and medium-range order persist, though long-range order is absent. This fact has prompted research to develop structural descriptions of metallic glasses. Among these are cluster-based models that attribute amorphous structure to the existence of clusters that are incommensurate with crystalline periodicity. Not addressed, however, are the chemical factors stabilizing these clusters and promoting their interconnections. We have found that glass formers are characterized by a rich cluster chemistry that above the glass transformation temperature promotes exchange as well as static and vibronic sharing of atoms between clusters. The vibronic mechanism induces correlated motions between neighboring clusters and we hypothesize that the distance over which these motions are correlated mediates metallic glass stability and influences critical cooling rates.

  7. Isothermal Extrusion Properties of Zr55Cu30Al10Ni5 Bulk Metallic Glass%Zr55Al10Ni5Cu30大块非晶合金等温挤压特性

    Institute of Scientific and Technical Information of China (English)

    马智慧; 董湘怀; 苏红娟; 王茹燕

    2012-01-01

    Isothermal extrusion process of Zr55Cu3oAl10Ni5 bulk metallic glass (BMG) has been performed at 703 K at various extrusion velocities.A simple stretched exponential function has been developed to describe the rheological properties of Zr55Cu30Al10Ni5 BMG and implemented into the finite element code to simulate the extrusion process.The simulated results are concordant with the experimental curve during the steady-state extrusion process.The extrusion at different velocities does not induce the perceptible crystallization.The supercooled liquid state (SCL) region △T of the extruded samples is reduced with the increase of the extrusion time.%在703K对Zr55Al10Ni5Cu30大块非晶合金进行不同挤压速度的等温挤压实验,Zr55Al10Ni5Cu30大块非晶合金的高温本构模型用一种简单的扩展指数模型来描述,并将该本构模型代入有限元软件模拟挤压过程:在挤压稳定阶段,模拟结果与实验结果非常吻合;在不同挤压速度下,Zr55Al10Ni5Cu30大块非晶合金未发生明显晶化,但挤压试样的过冷液相区间随挤压时间的增加而减小.

  8. Development on Glass Formulation for Aluminum Metal and Glass Fiber

    International Nuclear Information System (INIS)

    Vitrification technology has been widely applied as one of effective processing methods for wastes generated in nuclear power plants. The advantage of vitrifying for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. Recently, a filter using on HVAC(Heating Ventilating and Air Conditioning System) is composed with media (glass fiber) and separator (aluminum film) has been studied the proper treatment technology for meeting the waste disposal requirement. Present paper is a feasibility study for the filter vitrification that developing of the glass compositions for filter melting and melting test for physicochemical characteristic evaluation. The aluminum metal of film type is preparing with 0.5 cm size for proper mixing with glass frit, glass fiber is also preparing with 1 cm size within crucible. The glass compositions should be developed considering molten glass are related with wastes reduction. Glass compositions obtained from developing on glass formulation are mainly composed of SiO2and B2O3for aluminum metal. A variety of factors obtained from the glass formulation and melting test are reviewed, which is feeding rate and glass characteristics of final products such as durability for implementing the wastes disposal requirement.

  9. Non-isothermal crystallization kinetics and glass-forming ability of Ti{sub 41}Zr{sub 25}Be{sub 28}Fe{sub 6} bulk metallic glass investigated by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Pan; Zhao, Shaofan; Yao, Kefu [Tsinghua University, School of Materials Science and Engineering, Beijing (China); Wang, Xin [Hebei University of Technology, School of Materials Science and Engineering, Tianjin (China)

    2015-07-15

    The non-isothermal crystallization kinetics and glass-forming ability of Ti{sub 41}Zr{sub 25}Be{sub 28}Fe{sub 6} glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti{sub 41}Zr{sub 25}Be{sub 28}Fe{sub 6} alloy can be classified as ''strong glass former.'' The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti{sub 41}Zr{sub 25}Be{sub 28}Fe{sub 6} glassy alloy has also been determined using Barandiaran-Colmenero's method. (orig.)

  10. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of minor Sn addition on the glass formation and properties of Fe-metalloid metallic glasses with high magnetization and high glass forming ability

    International Nuclear Information System (INIS)

    Effects of minor Sn addition on the glass-forming ability (GFA) as well as thermal, magnetic, and mechanical properties of Fe–P–C–B–Si bulk metallic glasses (BMGs) with compositions of Fe80−xSnxP9C8B2Si1 (x=0, 1, 2 and 3 at%) were investigated. The minor Sn substitution for Fe effectively enhances the GFA. The fully glassy rods can be produced up to 3 and 3.5 mm in diameter for the alloys with 1 and 2 at% Sn addition, respectively. Moreover, these Sn-containing BMGs exhibit good soft magnetic properties including high saturation magnetization (Ms) of 1.46−1.51 T, low coercivity (Hc) of 3.8−5.0 A/m and good mechanical properties, i.e., high fracture strength (σf) above 3.2 GPa and limited plastic strain (εp) above 0.4%. The combination of large GFA, good soft magnetic and mechanical properties as well as low cost makes the Fe–Sn–P–C–B–Si BMGs promising as soft magnetic materials for industrial applications. - Highlights: • Fe-metalloid bulk metallic glasses with high glass-forming ability and high saturation magnetization are synthesized. • Minor addition of Sn can effectively improve the glass-forming ability of Fe-based bulk metallic glasses. • The effects of Sn addition in Fe-based bulk metallic glasses are systematically evaluated

  12. 熔体过热水平对Cu36Zr48Ag8Al8块体非晶合金热稳定性和力学性能的影响%Effect of Overheated Level on Thermal Stability and Mechanical Properties of Cu36Zr48Ag8Al8 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    赵燕春; 寇生中; 王仁军; 索红莉; 丁雨田; 李娜; 薛书微; 刘广桥

    2011-01-01

    Overheating has a pronounced effect on the thermal stability and mechanical properties of Cu36Zr48Ag8Al8 bulk metallic glass.Higher overheated temperature can enhance the thermal stability of bulk amorphous alloys, corresponding to higher specific-heat capacity and smaller initial defect concentration.Bulk amorphous alloys exhibit good compressive plasticity at small overheated levels, whereas the compressive fracture strength and microhardness show a significant increase followed by a slight decrease.The mechanical properties of bulk metallic glasses fabricated by different casting process are influenced by the interaction of the free volume and residual stresses.%熔体过热度对Cu36Zr48Ag8Al8块体非晶合金的热稳定性和力学行为有显著影响.高的过热水平制备非晶合金的比热容大,初始缺陷密度小,热稳定性高.过热度越小,压缩塑性越小;抗压强度和维氏硬度随着过热度的减小先增加后下降.自由体积和残余应力共同影响不同吸铸电压制得非晶合金的力学性能.

  13. 原位晶态相增强Mg-Cu-Dy非晶基块状复合材料%In-situ Mg Phase Reinforced Mg-Cu-Dy Bulk Metallic Glass Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    武晓峰; 孟力凯; 康阳

    2011-01-01

    In-situ Mg phase reinforced MgToCunDyu bulk metallic glass (BMG) matrix composite with diameter of 3 mm was prepared by a conventional Cu-mold casting method. Mechanical properties and deformation behavior of Mg-Cu-Dy alloys were studied. The results show that the Mg70Cu17Dy13 BMG matrix composite exhibits some work hardening except for initial elastic deformation, and achieves a high fracture compressive strength of 702.38 Mpa and a plastic strain of 0.81%. The improvement of the mechanical properties is attributed to the fact that the Mg phase distributed in the amorphous matrix of the alloy has effective load bearing and plastic deformation ability to restrict the expanding of shear bands and cracks and produce its own plastic deformation, which is proved by the shear deforming and fracturing mode and the fracture surfaces characterized by the vein patterns, severe remelting and the very rough and bumpy region of the alloy.%采用铜模喷铸法制备出直径为3 mm的原位Mg晶态相增强块状Mg70Cu17Dy13非晶基复合材料,对Mg-Cu-Dy 类合金的力学性能和变形行为进行研究.结果表明,Mg70Cu17Dy13非晶基复合材料受压时产生加工硬化并获得最大抗压强度为702.38 MPa和塑性变形率为0.81%.这缘于其中Mg相有效的承载能力、塑性变形能力及Mg相对剪切带及裂纹扩展的有效抑制作用,可从其剪切变形、断裂方式和断裂面上密集的熔滴及凸凹不平得到证实.

  14. Coextrusion forming characteristics of novel Cu alloy/bulk metallic glass composite%新型铜合金/非晶复合材料的挤压成形特性

    Institute of Scientific and Technical Information of China (English)

    刘勇; 张丽; 郭洪民; 杨湘杰

    2011-01-01

    A novel Cu alloy/bulk metallic glass (BMG) composite was fabricated through the coextrusion process, based on the excellent thermoplastic forming characteristics of BMG in the supercooled liquid region (SLR). The Cu-based amorphous Cu40Zr44Ag8Al8 and pure Cu alloy were selected as components. The Cu alloy/BMG composite bar was easily fabricated at extrusion temperature of 703 K and extrusion speed of 0.4 mm/min. The morphology and structure of the core BMG before and after the coextrusion with Cu were characterized by optical microscopy (OM), X-ray diffractometry (XRD), differential scanning calorimetry(DSC) and microhardness(HV). The results indicate that the core BMG can reach the approximately uniform distribution of the dimension after suffering the shortly inhomogeneous distribution of the dimension in the initial stages of coextrusion. Combining the analysis of XRD, DSC and micro hardness (HV), it can be concluded that the crystallization of core BMG does not occur after the coextrusion with Cu at 703 K.%基于大块非晶在过冷液相区间具有较好的热塑性成形特点,选择铜基非晶Cu40Zr44Ag8Al8和铜合金,通过挤压成形工艺,制备出一种新型的铜合金/非晶复合材料;在703 K和挤压速度为0.4 mm/min下对该复合材料进行挤压,获得铜合金、非晶复合材料棒材.通过光学金相(OM)、X射线衍射(XRD)、示差扫描量热分析(DSC)和维氏硬度测试(HV)对挤压变形前、后芯部非晶进行形貌观察和结构分析.结果表明:芯部非晶在挤压前期呈不均匀分布,而后分布非常均匀;结合XRD、DSC和硬度的结果分析,在703 K下挤压后,芯部非晶没有发生晶化.

  15. Study of glass-glass and ceramic metal welds

    International Nuclear Information System (INIS)

    In this work, the junction between glass and glass, ceramic and metal are studied. The materials are transparent for light and dielectric, It is found that combination of TiO2 - Al2O3 - SiO2 - MnO2 is the most suitable for this process. The temperature used for melting materials was 800-850deg C and suitable time, 30-40 seconds

  16. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  17. Anisotropy of SANS in metallic glasses

    International Nuclear Information System (INIS)

    SANS in metallic glasses is anisotropic and depends on the ribbon's orientation. Pd-based melt spun and Ni-based electrochemically deposited glasses exhibit different anisotropies. Both glasses contain scattering centers of the order of 40nm wide in the ribbon plane. In the melt-spun alloy, the scatterers are very thin along the thickness perpendicular to the substrate. In the deposited alloy however, the defects are long along the thickness perpendicular to the electrode

  18. Glass Forming Ability of Metallic Glasses Evaluated by a New Criterion

    Institute of Scientific and Technical Information of China (English)

    CAO Qing-Ping; LI Jin-Fu; ZHOU Yao-He

    2008-01-01

    The glass-forming ability (GFA) of Cu-Zr binary alloys is evaluated using the existing criteria based on calorimetric parameters, and poor relations are found. Therefore, another parameter Trk defined as Tk/Tl, in which Tk is the Kauzmann temperature and Tl the equilibrium liquidus temperature, is proposed. It exhibits good agreements with the experimental data of the Cu-Zr system and other representative bulk metallic glass formers so long as classifying them into strong or fragile category. It is suggested that kinetic effects are irrelevantly incorporated in the GFA analysis in the previous work.

  19. Advanced and new developments in bulk metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Ravn, Bjarne Gottlieb; Arentoft, Mogens

    Increasing demands to manufacturing industry of faster, better and cheaper production has intensified the research and development of bulk metal forming. The present paper gives examples on European industrial research on secondary bulk metal forming processes. The R&D follows three lines of appr...

  20. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  1. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  2. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  3. 块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为%COMPRESSIVE-SHEAR BEHAVIOR AND SELF-SHARPENING OF BULK METALLIC GLASSES AND THEIR COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    李继承; 陈小伟

    2011-01-01

    块体金属玻璃及其复合材料以其优异的力学、物理和化学性能, 正成为国内外科技和工程领域的研究热点. 特别是金属玻璃复合材料具有高剪切敏感性和剪切 “自锐” 特性, 使其有可能成为新型穿甲弹芯材料,因而具有重要的军事意义. 本文综述了针对块体金属玻璃及其复合材料的压缩剪切变形和断裂特性及高速冲击、侵彻/穿甲过程中剪切 “自锐” 行为等方面的研究进展, 包括相关实验研究、理论分析及有限元模拟等, 最后给出未来相关工作的一些建议.%For their excellent mechanical, physical and chemic performance, bulk metallic glasses and their composite materials is now becoming an active research focus. Especially, metallic glass matrix composite may be employed as the material of kinetic enrgy penetrator for its intensive shear banding sensitivity. The present paper presents advances in the research on compressive shear deformation and fracture characteristics and self-sharpening behavior during the high-speed impact of bulk metallic glasses and their composite materials. Related experimental research, theoretical analysis and FEM simulations are reviewed, and some proposals are made for future studies.

  4. Rapid screening of potential metallic glasses for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.H. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Huang, C.H. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Chuang, J.F. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Huang, J.C., E-mail: jacobc@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Jang, J.S.C. [Institute of Materials Science and Engineering, Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan, ROC (China); Chen, C.H. [Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC (China); Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC (China); Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC (China)

    2013-12-01

    This paper presents a rapid screening process to select potential titanium and zirconium based metallic glasses (MGs) for bio-material applications. Electrochemical activity of 7 MGs including 6 bulk metallic glasses and 1 thin-film deposited MG in simulation body and human serum is first inspected. A low-voltage potential state test is also developed to simulate the cell membrane potential that the implant MGs will suffer. Results show that the MGs composed of Ti{sub 65}Si{sub 15}Ta{sub 10}Zr{sub 10} and Ta{sub 57}Zr{sub 23}Cu{sub 12}Ti{sub 8} exhibit excellent electrochemical stability in both simulation body fluid and human serum. In addition, the copper content in the MGs plays an important role on the electrochemical activity. MGs with the copper content higher than 17.5% show significant electrochemical responses. The cytotoxicity of the solid MG samples and the corrosion released ions are also evaluated by an in-vitro MTT test utilizing the murine bone marrow stem cells. Results indicate that all the solid MG samples show no acute cytotoxicity yet the corrosion released ions show significant toxicity for murine bone marrow stem cells. The rapid screening process developed in the present study suggests that the Ti{sub 65}Si{sub 15}Ta{sub 10}Zr{sub 10} metallic glass has high potential for biomedical applications due to its good electrochemical stability and very low cytotoxicity. - Highlights: • A rapid electrochemical cycle screening process is proposed. • This process can select potential metallic glasses for bio-material applications. • The Ti{sub 65}Si{sub 15}Ta{sub 10}Zr{sub 10} metallic glass exhibits the best response and high potential.

  5. Rapid screening of potential metallic glasses for biomedical applications

    International Nuclear Information System (INIS)

    This paper presents a rapid screening process to select potential titanium and zirconium based metallic glasses (MGs) for bio-material applications. Electrochemical activity of 7 MGs including 6 bulk metallic glasses and 1 thin-film deposited MG in simulation body and human serum is first inspected. A low-voltage potential state test is also developed to simulate the cell membrane potential that the implant MGs will suffer. Results show that the MGs composed of Ti65Si15Ta10Zr10 and Ta57Zr23Cu12Ti8 exhibit excellent electrochemical stability in both simulation body fluid and human serum. In addition, the copper content in the MGs plays an important role on the electrochemical activity. MGs with the copper content higher than 17.5% show significant electrochemical responses. The cytotoxicity of the solid MG samples and the corrosion released ions are also evaluated by an in-vitro MTT test utilizing the murine bone marrow stem cells. Results indicate that all the solid MG samples show no acute cytotoxicity yet the corrosion released ions show significant toxicity for murine bone marrow stem cells. The rapid screening process developed in the present study suggests that the Ti65Si15Ta10Zr10 metallic glass has high potential for biomedical applications due to its good electrochemical stability and very low cytotoxicity. - Highlights: • A rapid electrochemical cycle screening process is proposed. • This process can select potential metallic glasses for bio-material applications. • The Ti65Si15Ta10Zr10 metallic glass exhibits the best response and high potential

  6. Structural investigations of some metallic glasses

    International Nuclear Information System (INIS)

    Metallic glasses were prepared by the melt spinning technique from iron and nickel alloys (Fe-Ni-P; Fe-B; Ni-Nb; Ni-B). Structure investigations were made by means of neutron diffraction experiments. Distribution functions and range orders were determined. (Auth.)

  7. Nucleation and growth of a multicomponent metallic glass@

    Indian Academy of Sciences (India)

    Arun Pratap; K G Raval; Ajay Gupta; S K Kulkarni

    2000-06-01

    The metallic glass samples of Fe67Co18B14Si1 (2605CO), prepared by the melt spinning technique were procured from the Allied Corporation. The kinetics of crystallization of this multicomponent glassy alloy is studied using differential scanning calorimetry (DSC). The crystallization data have been examined in terms of modified Kissinger and Matusita equations for the non-isothermal crystallization. The results show enhanced bulk nucleation in general. At high heating rates added to it is surface induced abnormal grain growth resulting in fractal dimensionality.

  8. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd40Cu30Ni10P20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  9. Cu45Zr55-xAlx(x=3,7,12)块体非晶合金的第一性原理分子动力学模拟研究%Study of Cu45Zr55-xAlx (x=3, 7, 12) bulk metallic glasses by ab-initio molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    危洪清; 龙志林; 许福; 张平; 唐翌

    2014-01-01

    Local structural changes from liquid to amorphous state in three Cu45Zr55-xAlx (x = 3, 7, 12) ternary metallic glasses have been investigated by the ab initio molecular dynamics simulation. The atomic structure of the glasses has been analyzed by means of bond-type index method in Honeycutt-Andersen and Voronoi tessellation method. Al-centered icosahedral clusters are identified as the basic local structural units and these Al-centered stable clusters play a key role in the structural heterogeneity and glass-forming ability of the Cu-Zr-Al bulk metallic glasses.%利用第一性原理分子动力学模拟对Cu45Zr55-xAlx (x=3,7,12)块体非晶合金熔体在快速冷却为玻璃态过程中原子结构的演变进行了系统的研究。结果显示,以Al为中心的二十面体是合金熔体在液-固转变过程中最稳定的原子团簇结构,可视为该合金系中的基本结构单元;以Al为中心的稳定团簇的数量和在空间中的组成形式决定了该合金微观结构的非均匀性和原子扩散能力的大小,这也是影响合金宏观力学性能和玻璃形成能力的关键因素。

  10. NUCLEAR WASTE GLASSES CONTINUOUS MELTING AND BULK VITRIFICAITON

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2008-03-24

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  11. NUCLEAR WASTE GLASSES: CONTINUOUS MELTING AND BULK VITRIFICAITON

    International Nuclear Information System (INIS)

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed

  12. Zr5oTi5Cu18Ni17Al10块体金属玻璃的热稳定性和力学性能%Thermal Stability and Mechanical Properties of Zr50Ti5Cum8Ni17Al10 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    胡勇; 李金富; 林涛; 周尧和

    2011-01-01

    采用差示扫描量热仪以连续加热的方式研究了Zr50Ti5Cu18Ni17Al10块体金属玻璃的热稳定性.其玻璃转变激活能(Eg)以及晶化激活能(Ep1和Ep2)分别为438±11,284±8和323+11 kJ/mol.采用压缩试验研究了金属玻璃的室温力学性能,初始应变速率为1×10-4 s-1.直径为3 mm的金属玻璃棒呈现良好的力学性能,最大塑性应变达3%,杨氏模量和断裂强度的最大值分别为90 GPa和1968MPa.多条剪切带的交织、分叉和滑移以及宽度为60 μm的较大临界剪切台阶是Zr50Ti5Cu18Ni17Al10块体金属玻璃具有较高压缩塑性的主要原因.%The thermal stability of Zr50Ti5Cu18Ni17Al10 bulk metallic glass was studied by differential scanning calorimeter (DSC) in the mode of continuous heating. The activation energies of glass transition (Eg) and crystallization (Ep1 and Ep2) are 438±11, 284+8 and 323±11 kJ/mol, respectively. The study of mechanical properties was conducted in compression at room temperature under an initial strain rate of l×10-4 s-1. The metallic glass rods with a diameter of 3 mm exhibit a good mechanical property. The plastic strain prior to fracture is up to 3%, and the maximum values of Young's modulus and ultimate fracture strength are 90 Gpa and 1968 Mpa, respectively. The intersecting, branching and sliding of multiple shear bands and the larger critical shear offset with a width of 60 nm are the major reason for the higher compressive plasticity in the Zr50Ti5Cu18Ni17Al10 bulk metallic glass.

  13. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  14. Method for forming glass-to-metal seals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1985-08-26

    Disclosed is a method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  15. On the kinetic and thermodynamic fragility of the Pt{sub 60}Cu{sub 16}Co{sub 2}P{sub 22} and Pt{sub 57.3}Cu{sub 14.6}Ni{sub 5.3}P{sub 22.8} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gallino, Isabella, E-mail: i.gallino@mx.uni-saarland.de [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany); Gross, Oliver [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany); Dalla Fontana, Giulia [Department of Chemistry IFM and NIS, University of Torino, V. Giuria 7, 10125 Torino (Italy); Evenson, Zach; Busch, Ralf [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany)

    2014-12-05

    Highlights: • The studied Pt–Cu–(Ni,Co)–P glasses are more fragile than Zr-based alloys. • They show large increases in the C{sub p} at T{sub g} and small barriers for cooperative rearrangements of atoms. • They have fragility parameters among the lowest reported for BMG systems (D{sup *} = 10–12). • They crystallize into a state that melts with distinctly high entropy of fusion. • The microscopic origin of their fragility seems different than that for Zr- and Pd-based BMGs. - Abstract: The investigations in this study focus on bulk metallic glass (BMG) alloy families based on noble metals like Pt, which are more kinetically fragile than Zr-based BMG systems. Thermophysical properties have been investigated by calorimetry and thermal mechanical analyses for the determination of the specific heat capacity and viscosity, respectively. For the Pt{sub 60}Cu{sub 16}Co{sub 2}P{sub 22} and Pt{sub 57.3}Cu{sub 14.6}Ni{sub 5.3}P{sub 22.8} BMG compositions consistent Vogel–Fulcher–Tammann (VFT) fits of the viscosity measurements are established, and the temperature dependence of the configurational entropy is calculated from thermodynamic data. Fits to the Adam–Gibbs equation are performed using this configurational entropy change. Their fragile nature is compared to that of Zr-based alloys in terms of structural considerations.

  16. Structural relaxation of metallic glass forming melts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The fragility of superheated melts, M, for 13 kinds of metallic alloys has been evaluated from the data of the dynamic viscosity above their liquidus temperatures. The authors find that the glass forming ability of metallic melts depends on the fragility of superheated melts rather than on the value of viscosity. In the present work the value of fragility is less than 1 for good glass-forming melts but more than 1 for the other melts. The variation rate of atomic coordination number with temperature indicates clearly the relaxation rate of molten structures. The fragility of superheated melts is found in good agreement with the variation rate of the atomic coordination number with temperature.

  17. Zr基大块非晶合金在过冷液相区超塑性成形的摩擦行为及机理研究%Study on the Friction Behavior and Mechanism of Zr-based Bulk Metallic Glass Superplastic Forming in the Supercooled Liquid Region

    Institute of Scientific and Technical Information of China (English)

    郑志镇; 成蛟; 王新云; 李建军

    2009-01-01

    The friction behavior of Zr_(55) Al_(10)Ni_5Cu_(30) bulk metallic glass in the supercooled liquid region was investigated. The influence of forming temperature and velocity on friction factor was established by double cup extrusion test. The calibration curves of friction factor were evaluated by FE simulation and Kawamura's constitutive equation was adopted. Constant parameters in the constitutive equation were acquired by fitting the data from compression test. The results indicate that the friction factor of bulk metallic glass forming in the supercooled liquid region is between 0. 2 and 0. 7. With the temperature rising, the friction factor decreases in general under a low forming velocity. However, the friction factor increases slightly and then decreases abruptly under a high forming velocity. In low temperature area of supercooled liquid region, the friction factor increases abruptly with increasing of the forming velocity. While in high temperature area of supercooled liquid region, the friction factor decreases slightly with increasing of the forming velocity. The friction mechanism of bulk metallic glass forming in supercooled liquid region was analyzed by modern tribology theory. Adhesion is the dominant factor contributing to the friction of bulk metallic glass.%采用双杯挤压方法研究了成形温度、应变速率等工艺参数对Zr_(55) Al_(10) Ni_5 Cu_(30)块体非晶合金在过冷液相区塑性成形时模具和零件之间的摩擦行为的影响.采用有限元模拟方法获得大块非晶合金双杯挤压的摩擦因数标定曲线,有限元模拟中非晶合金的变形采用Kawamura的本构模型,将高温压缩实验的数据拟合,获得本构模型中的参数,结果表明非晶合金在过冷液相区内变形的摩擦因数在0.2~0.7之间.当应变速率较低时,随着温度的升高,摩擦因数总体上降低;而当应变速率较高时,随着温度的升高,摩擦因数先略有上升,然后急剧下降.当温度较低

  18. Kinetics of glass transition and crystallization in multicomponent bulk amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Differential scanning calorimeter (DSC) is used to investigate apparent activation energy of glass transition and crystallization of Zr-based bulk amorphous alloys by Kissinger equation under non-isothermal condition. It is shown that the glass transition behavior as well as crystallization reaction depends on the heating rate and has a characteristic of kinetic effects. After being isothermally annealed near glass transition temperature, the apparent activation energy of glass transition increases and the apparent activation energy of crystallization reaction decreases. However, the kinetic effects are independent of the pre-annealing.

  19. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    Science.gov (United States)

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  20. Photoelectric cell on the base of bulk heterostructure of organic semiconductors of copper phthalocyanine and metal free phthalocyanine

    International Nuclear Information System (INIS)

    Present article is devoted to photoelectric cell on the base of bulk heterostructure of organic semiconductors of copper phthalocyanine and metal free phthalocyanine. The properties of the photoelectric cell based on bulk heterojunction of copper phthalocyanine and metal free phthalocyanine of organic semiconductors were studied. By vacuum sublimation the thin films of thickness of (200-300) nm of the copper phthalocyanine and metal free phthalocyanine blend were deposited on conductive glass substrates. Volt-ampere characteristics, dependencies of current on intensity of light and absorption spectrum of the photoelectric cell at the range of wavelength 200-850 nm were studied as well. (author)

  1. Tribological and mechanical properties of high power laser surface-treated metallic glasses

    NARCIS (Netherlands)

    Matthews, D. T. A.; Ocelik, V.; de Hosson, J. Th. M.

    2007-01-01

    The processing power of high power Nd:YAG laser has been utilised to achieve the inherently high cooling rates required to form many of today's bulk metallic glasses (BMGs). The production of thick (>= 250 mu m) amorphous surface layers has been considered. Microstructural and chemical observation t

  2. Mechanical properties of a co-extruded Metallic Glass/Alloy (MeGA) rod-Effect of the metallic glass volume fraction

    International Nuclear Information System (INIS)

    A Metallic Glass/Alloy (MeGA) rod with a core in zirconium-based bulk metallic glass and a sleeve in aluminium alloy has been successfully elaborated by co-extrusion. SEM observations of the cross-section of the rod show that the interface between the glass and the alloy is defect-free. Compression tests are carried out at room temperature on the MeGA rods containing various glass volume fractions. The yield stress is well described by the rule of mixtures which combines the strength of the glass and that of the alloy, suggesting isostrain behaviour as could be expected. During compression, a good mechanical bonding is observed in the MeGA-rod even after the first fracture of the metallic glass. Finally, push-out tests are performed to evaluate the bonding quality between the two materials. Large values of the shear strength are measured which confirms that co-extrusion leads to good bonding between the glass and the aluminium alloy.

  3. High porosity metallic glass foam: A powder metallurgy route

    OpenAIRE

    Demetriou, Marios D.; Schramm, Joseph P.; Veazey, Chris; Johnson, William L.; Hanan, Jay C.; Phelps, Nicholas B.

    2007-01-01

    A powder metallurgy route to the fabrication of metallic glass foam is introduced. The method involves consolidating metallic glass powder blended with blowing agent particulates to produce expandable precursors, capable of yielding foams with porosities as high as 86%. The foams are found to inherit the strength of the parent metallic glass and to be able to deform heavily toward full densification absorbing high amounts of energy.

  4. Fractal atomic-level percolation in metallic glasses.

    Science.gov (United States)

    Chen, David Z; Shi, Crystal Y; An, Qi; Zeng, Qiaoshi; Mao, Wendy L; Goddard, William A; Greer, Julia R

    2015-09-18

    Metallic glasses are metallic alloys that exhibit exotic material properties. They may have fractal structures at the atomic level, but a physical mechanism for their organization without ordering has not been identified. We demonstrated a crossover between fractal short-range (metallic-glass compositions. We postulate that atoms percolate in the liquid phase and that the percolating cluster becomes rigid at the glass transition temperature. PMID:26383945

  5. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr2Ni (Zr66.7Ni33.3) compound to investigate the electronic structure of the Zr66.7Ni33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr2Ni compound. The other is photoemission spectroscopy of the Zr50Cu35Al15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr55Cu30Ni5Al10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x. This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  6. Feed Variability and Bulk Vitrification Glass Performance Assessment

    International Nuclear Information System (INIS)

    The supplemental treatment (ST) bulk vitrification process will obtain its feed, consisting of low-activity waste (LAW), from more than one source. One purpose of this letter report is to describe the compositional variability of the feed to ST. The other is to support the M-62-08 decision by providing a preliminary assessment of the effectiveness of bulk vitrification (BV), the process that has been selected to perform supplemental treatment, in handling the ST feed envelope. Roughly nine-tenths of the ST LAW feed will come from the Waste Treatment Plant (WTP) pretreatment. This processed waste is expected to combine (1) a portion of the same LAW feed sent to the WTP melters and (2) a dilute stream that is the product of the condensate from the submerged-bed scrubber (SBS) and the drainage from the electrostatic precipitator (WESP), both of which are part of the LAW off-gas system. The manner in which the off-gas-product stream is concentrated to reduce its volume, and the way in which the excess LAW and off-gas product streams are combined, are part of the interface between WTP and ST and have not been determined. This letter report considers only one possible arrangement, in which half of the total LAW is added to the off-gas product stream, giving an estimated ST feed stream from WTP. (Total LAW equals that portion of LAW sent to the WTP LAW vitrification plant (WTP LAW) plus the LAW not currently treatable in the LAW vitrification plant due to capacity limitations (excess))

  7. Phonon Dispersion in Ca70Mg30 Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    Aditya M. Vora

    2006-01-01

    @@ The phonon dispersion curves (PDC) of Ca70Mg30 metallic glass has been studied at room temperature in terms of phonon eigen frequencies of longitudinal and transverse modes employing three different approaches proposed by Hubbard and Beeby (J. Phys. C: Solid State Phys. 13 (1969) 556), Takeno and Goda (Prog. Theor. Phys.45 (1971) 331; 47 (1972) 790) and Bhatia and Singh (Phys. Rev. B 31 (1985) 4751). The well recognized model potential of Gajjar et al. is employed successfully to explain electron-ion interaction in the metallic glass. The effective pair potential is used to generate the pair correlation function g(r). The local field correction function (Int. J. Mod. Phys. B 17 (2003) 6001) is used for the first time to introduce the exchange and correlation effects on the aforesaid properties. The present finjings of PDCs are found to be in agreement with the available theoretical as well as experimental data. The thermodynamic and elastic properties, i.e. longitudinal and transverse sound velocities, isothermal bulk modulus, modulus of rigidity, Poisson's ratio, Young's modulus and Debye temperature, are also investigated successfully.

  8. Rate dependent of strength in metallic glasses at different temperatures

    Science.gov (United States)

    Wang, Y. W.; Bian, X. L.; Wu, S. W.; Hussain, I.; Jia, Y. D.; Yi, J.; Wang, G.

    2016-06-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10‑6 s‑1 to 10‑2 s‑1 are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs.

  9. Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beom Taek; Yi, Seong Hoon [Kyungpook National University, Daegu (Korea, Republic of)

    2014-06-15

    For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ Cr{sub 2} Ni{sub 3} precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

  10. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    International Nuclear Information System (INIS)

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator

  11. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  12. Ductile damage prediction in sheet and bulk metal forming

    Science.gov (United States)

    Badreddine, Houssem; Labergère, Carl; Saanouni, Khemais

    2016-04-01

    This paper is dedicated to the presentation of an advanced 3D numerical methodology for virtual sheet and/or bulk metal forming simulation to predict the anisotropic ductile defects occurrence. First, the detailed formulation of thermodynamically-consistent fully coupled and fully anisotropic constitutive equations is given. The proposed constitutive equations account for the main material nonlinearities as the anisotropic plastic flow, the mixed isotropic and kinematic hardening and the anisotropic ductile damage under large inelastic strains. Second, the related numerical aspects required to solve the initial and boundary value problem (IBVP) are very briefly presented in the framework of the 3D finite element method. The global resolution schemes as well as the local integration schemes of the fully coupled constitutive equations are briefly discussed. Finally, some typical examples of sheet and bulk metal forming processes are numerically simulated using the proposed numerical methodology.

  13. Structure and properties of selected Fe-based metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2009-12-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties of Fe-based bulk amorphous materials in as-cast state and after crystallization process.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The soft magnetic properties examination of tested material contained magnetic permeability and magnetic after-effects measurements.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast materials were amorphous. Broad diffraction halo could be seen for all tested samples, indicating the formation of a glassy phase with the diameters up to 2 mm. The fracture surface of rod samples appears to consist of two different zones, which probably inform about different amorphous structures of studied glassy materials. A two stage crystallization process was observed for studied alloy. The first stage of crystallization corresponding to the partial crystallization of α-Fe phase was followed by the formation of iron borides. It has shown that appropriate increasing of annealing temperature, significantly improved soft magnetic properties of examined alloy.Practical implications: The studied Fe-based metallic glass has good glass-forming ability and thermal stability for casting in form of ribbons and rods. The soft magnetic properties of studied alloy could be improved by applying the appropriate conditions of heat treatment (crystallization process.Originality/value: The applied investigation methods are suitable to determine the changes of structure in function of sample thickness and the

  14. Poling-assisted bleaching of metal-doped nanocomposite glass

    OpenAIRE

    Deparis, O.; Kazansky, P. G.; Abdolvand, A.; Podlipensky, A.; Seifert, G.; Graener, H

    2004-01-01

    Thermal poling of soda-lime glass which was doped with spherical or ellipsoidal silver nanoparticles has revealed what we believe to be a phenomenon of general interest in the physics of nanocomposite materials: The field-assisted dissolution of metal nanoparticles embedded in glass. Macroscopically, this phenomenon manifested itself as poling-assisted bleaching of the glass in the sense that the glass became more (or even completely) transparent under the anode. The phenomenon is physically ...

  15. Dynamics of metallic glasses explored by mechanical relaxation

    OpenAIRE

    Liu, Chaoren

    2015-01-01

    Dynamic mechanical analysis (DMA) is often used to explore the relaxation dynamics of metallic glasses (MGs). Secondary relaxations in metallic glasses appear as an excess wing, as a shoulder of the primary relaxation peak or as a differentiated low temperature peak on the loss modulus E''(T). In order to differentiate this relaxation from a-relaxation, which is due to collective movement and directly related to the elastic (solid glass) to viscous (supercooled liquid) transition, it is terme...

  16. A microscopic continuum model for defect dynamics in metallic glasses

    OpenAIRE

    Acharya, Amit; Widom, Michael

    2016-01-01

    Motivated by results of the topological theory of glasses accounting for geometric frustration, we develop the simplest possible continuum mechanical model of defect dynamics in metallic glasses that accounts for topological, energetic, and kinetic ideas. The model is aimed towards the development of a microscopic understanding of the plasticity of such materials. We discuss the expected predictive capabilities of the model vis-a-vis some observed physical behaviors of metallic glasses.

  17. Tunable Tensile Ductility in Metallic Glasses

    Science.gov (United States)

    Magagnosc, D. J.; Ehrbar, R.; Kumar, G.; He, M. R.; Schroers, J.; Gianola, D. S.

    2013-01-01

    Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear localization is to employ sub-micron sample or feature length scales, although conflicting results shroud an atomistic understanding of the responsible mechanisms in uncertainty. Here, we report in situ deformation experiments of directly moulded Pt57.5Cu14.7Ni5.3P22.5 MG nanowires, which show tunable tensile ductility. Initially brittle as-moulded nanowires can be coerced to a distinct glassy state upon irradiation with Ga+ ions, leading to tensile ductility and quasi-homogeneous plastic flow. This behaviour is reversible and the glass returns to a brittle state upon subsequent annealing. Our results suggest a novel mechanism for homogenous plastic flow in nano-scaled MGs and strategies for circumventing the poor damage tolerance that has long plagued MGs.

  18. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Aditya M Vora

    2011-12-01

    The well-known empty core (EMC) model potential of Ashcroft was used to study the theoretical investigation of the superconducting state parameters (SSP) viz. electron–phonon coupling strength , Coulomb pseudopotential $\\mu^{\\ast}$, transition temperature $T_{C}$, isotope effect exponent and effective interaction strength $N_{O}V$ of some ternary metallic glasses. Most recent local field correction function due to Sarkar et al is used to study the screening influence on the aforesaid properties. Quadratic $T_{C}$ equations have been proposed and found successful. Also, the present findings are found to be in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary superconductors. The pseudo-alloy-atom (PAA) model was applied for the first time instead of Vegard’s law.

  19. A fractal interpretation of size effects on the strength of metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yun [Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, Torino, 10129 (Italy); Gong, Baoming, E-mail: gong_bm@tju.edu.cn [Department of Material Science and Engineering, Tianjin University, Tianjin, 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin, 300072 (China); Deng, Caiyan [Department of Material Science and Engineering, Tianjin University, Tianjin, 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin, 300072 (China)

    2013-11-29

    Yielding strength of metallic glasses in the uniaxial tensile and compressive tests is scale-dependent, which is attributed to the self-similar distribution of atomic cluster and free volume in the work. In contrast with the Weibull statistical theory previously employed in scaling phenomena of metallic glasses, fractal scaling laws are for the first time applied to describe the size effect inherent to the material disorder. Especially, the Multifractal Scaling Law (MFSL) originally proposed for quasi-brittle materials is used to interpret some experimental data in the literature. The best-fitted parameters (f{sub y} and l{sub ch}) from the MFSL are in good consistency with the bulk yielding strength and the shear band size of metallic glasses observed in the alternative approaches or experiments. The fractal size effect laws provide insight into not only the scaling phenomena, but also further engineering strength predictions and designs.

  20. A fractal interpretation of size effects on the strength of metallic glasses

    International Nuclear Information System (INIS)

    Yielding strength of metallic glasses in the uniaxial tensile and compressive tests is scale-dependent, which is attributed to the self-similar distribution of atomic cluster and free volume in the work. In contrast with the Weibull statistical theory previously employed in scaling phenomena of metallic glasses, fractal scaling laws are for the first time applied to describe the size effect inherent to the material disorder. Especially, the Multifractal Scaling Law (MFSL) originally proposed for quasi-brittle materials is used to interpret some experimental data in the literature. The best-fitted parameters (fy and lch) from the MFSL are in good consistency with the bulk yielding strength and the shear band size of metallic glasses observed in the alternative approaches or experiments. The fractal size effect laws provide insight into not only the scaling phenomena, but also further engineering strength predictions and designs.

  1. The glass-forming ability of model metal-metalloid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  2. The glass-forming ability of model metal-metalloid alloys

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σS/σL and number fraction xS of the metalloid species. We show that the regime in the space of σS/σL and xS where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys

  3. Friction and wear of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  4. Glass-forming ability and crystallization behavior of Ti-Cu-Ni-Sn-M (M=Zr, Mo, and Ta) metallic glasses

    International Nuclear Information System (INIS)

    The kinetics of the glass transition and the crystallization behavior of Ti-Cu-Ni-Sn-M (M=Zr,Mo,Ta) glassy alloys were investigated by differential scanning calorimetry and x-ray diffraction. The glass-forming ability (GFA) of the glasses was analyzed in terms of the fragility concept and the width of the supercooled liquid region. The Ti-base glasses studied were found to have lower GFA than Zr, Pd, La, Fe, Mg-base bulk metallic glasses (BMGs), but to be comparative GFA to Ni- and Au-base BMGs. Higher Mo content or higher Ti-Ta content in the alloys lowers the GFA. The chemical complexity and multiphase crystallization requiring long-range atomic diffusion may contribute to the thermal stability of the supercooled liquid against crystallization. The products of crystallization of the glasses include bcc β-Ti(M) solid solution and Ti2Ni and Ti2Cu intermetallics

  5. Bulk micromachining of Si by metal-assisted chemical etching.

    Science.gov (United States)

    Kim, Sang-Mi; Khang, Dahl-Young

    2014-09-24

    Bulk micromachining of Si is demonstrated by the well-known metal-assisted chemical etching (MaCE). Si microstructures, having lateral dimension from 5 μm up to millimeters, are successfully sculpted deeply into Si substrate, as deep as >100 μm. The key ingredient of this success is found to be the optimizations of catalyst metal type and its morphology. Combining the respective advantages of Ag and Au in the MaCE as a Ag/Au bilayer configuration leads to quite stable etch reaction upon a prolonged etch duration up to >5 h. Further, the permeable nature of the optimized Ag/Au bilayer metal catalyst enables the etching of pattern features having very large lateral dimension. Problems such as the generation of micro/nanostructures and chemical attacks on the top of pattern surface are successfully overcome by process optimizations such as post-partum sonication treatment and etchant formulation control. The method can also be successful to vertical micromachining of Si substrate having other crystal orientations than Si(100), such as Si(110) and Si(111). The simple, easy, and low-cost nature of present approach may be a great help in bulk micromachining of Si for various applications such as microelectromechanical system (MEMS), micro total analysis system (μTAS), and so forth. PMID:24820931

  6. Influence of the size of collecting metal on removal of platinum group metals from molten glass

    International Nuclear Information System (INIS)

    Removal of Pd, Ru and RuO2 from molten glass was studied using liquid Cu as a collecting metal. To increase the collision frequency between Cu and these platinum group metals (PGMs), copper-ruby glass containing Cu nanoparticles was used for the removal. The glass was prepared by the reduction of a glass containing CuO with Si. Existence of the Cu nanoparticles was conformed by a measurement of the absorption peak of surface plasmon resonance at 595 nm. Another glass containing Cu particles of around 30 μm was prepared as a control specimen. During the heating of the two glasses with PGMs, separable metal buttons were formed in both glasses. Metallic Pd and Ru were collected more than 90% in either metal buttons. There was no significant difference between the two glasses for the removal of metals. On the other hand, RuO2 was reduced to metallic Ru and collected 83% for the ruby glass, while not more than 52% for the control glass. The use of copper-ruby glass was effective for the removal of oxides. From the leaching test of Cu into nitric acid, we also found that dispersing smaller Cu particles in the glass had an effect to make the leaching rate decrease. (author)

  7. Sheet-bulk metal forming – forming of functional components from sheet metals

    Directory of Open Access Journals (Sweden)

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  8. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD method based on tight-binding (TB potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  9. Clustered field evaporation of metallic glasses in atom probe tomography.

    Science.gov (United States)

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. PMID:26724469

  10. Ductility and work hardening in nano-sized metallic glasses

    International Nuclear Information System (INIS)

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses

  11. Simulation of Cu-Mg metallic glass: Thermodynamics and structure

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from...... may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact, has little to do with the glass transition...... and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific-heat jump of around 1.5k(B)/atom indicates apparent...

  12. Ultra-short pulsed laser engineered metal-glass nanocomposites

    CERN Document Server

    Stalmashonak, Andrei; Abdolvand, Amin

    2013-01-01

    Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local opti...

  13. Atomistic simulation of nanoformed metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw

    2015-07-15

    Highlights: • STZ forms at substrate surface underneath punch. • Atoms underneath punch have higher speeds at larger mold displacement. • Stick-slip phenomenon becomes more obvious with increasing imprint speed. • Great pattern transfer is obtained with unloading at low temperatures. - Abstract: The effects of forming speed and temperature on the forming mechanism and mechanics of Cu{sub 50}Zr{sub 25}Ti{sub 25} metallic glass are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories, flow field, slip vectors, internal energy, radial distribution function, and elastic recovery of nanoimprint lithography (NIL) patterns. The simulation results show that a shear transformation zone (STZ) forms at the substrate surface underneath the mold during the forming process. The STZ area increases with mold displacement (D). The movement speed of substrate atoms underneath the mold increases with increasing D value. The movement directions of substrate atoms underneath the mold are more agreeable for a larger D value. The stick-slip phenomenon becomes more obvious with increasing D value and imprint speed. The substrate energy increases with increasing imprint speed and temperature. Great NIL pattern transfer is obtained with unloading at low temperatures (e.g., room temperature)

  14. Fe-Co-Ni-Cr-Mo-C-B-Y系大块金属玻璃的热稳定性、晶化行为、维氏硬度和磁性能%Thermal stability, crystallization behavior, Vickers hardness and magnetic properties of Fe-Co-Ni-Cr-Mo-C-B-Y bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    韩佳甲; 王翠萍; 寇生中; 刘兴军

    2013-01-01

    研究Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5)大块金属玻璃的热稳定性、晶化行为、维氏硬度和磁性能.通过铜模铸造法制备Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5)大块金属玻璃.利用差示扫描量热法和等温热处理法研究这些金属玻璃的热稳定性和晶化行为.在室温下利用维氏硬度计测量试样经过不同温度和时间退火后的硬度,并对它们的磁学性质进行表征.实验结果表明,少量Ni元素的加入没有增大过冷液相区间和玻璃形成能力,但是改变合金的初始晶化行为,增大晶化激活能.少量Ni元素的加入能够细化最终晶化组织中的晶粒大小.初晶相使合金的硬度降低,但随着热处理温度的升高,所有合金的硬度都明显提高,原因是析出了大量的碳化物和硼化物.退火温度对合金的磁性能有很大影响,少量Ni元素的加入阻止了合金在高温退火后从顺磁态向铁磁态的转变.%Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2 (x=0,1,3,5) metallic glasses were fabricated by copper mold casting method.The thermal stability and crystallization behavior of the metallic glass rods were investigated by differential scanning calorimetry and isothermal experiments.Hardness measurements for samples annealed at different temperatures for different time were carried out at room temperature by the Vickers hardness tester,and magnetic measurements were performed at different temperatures by the vibrating sample magnetometer.It is shown that the addition of Ni does not play a positive role for enlarging △Tx and GFA from parameter γ (=Tx/(Tg+T1)),and it can,however,increase the acttvation energy in the initial stage of crystallization by changing the initial crystallization behavior.The minor addition of Ni can refine the crystal grain obtained from the full

  15. Structure and constitution of glass and steel compound in glass-metal composite

    International Nuclear Information System (INIS)

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone

  16. Structure and constitution of glass and steel compound in glass-metal composite

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A. [School of Engineering, Mechanics and Mathematical Modeling Department, Far Eastern Federal University, Vladivostok, 690950 (Russian Federation); Nikiforov, Pavel A., E-mail: nikiforovpa@gmail.com [School of Engineering, Materials Science and Technology Department, Far Eastern Federal University, Vladivostok, 690950 (Russian Federation)

    2014-11-14

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.

  17. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  18. Nucleation of metals by redox processes in glass molten media

    International Nuclear Information System (INIS)

    Nitrogen incorporation into an aluminosilicate glass network changes greatly its physico-chemical properties. M-Si-Al-O-N (M = Li, Mg, Ca, Ln) oxynitride glasses are chemically inert. However, the presence of N3- ions in molten glass gives to the glass medium a reducing character. This work concerns the study of redox reactions in molten glass between nitrogen and oxides of the first transition series of the periodic table, cadmium and lead. In situ precipitation of metallic particles from the corresponding oxides is demonstrated by X-ray diffraction and EDS data. However, the reduction of pure TiO2 and V2O5 gives rise to the corresponding nitrides, i.e. TiN and VN. The redox reaction occurs with nitrogen release. The low solubility of metals in the molten glass media forces metal migration out off the glass and consequently favors metal recovery. This oxidation-reduction process in molten media can be envisaged as industrially useful for recovering metals in industrial wastes. (authors)

  19. Nucleation of metals by redox processes in glass molten media

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Y.; Turmel, J.M.; Verdier, P. [Rennes-1 Univ., Lab. de Chimie des Materiaux, UMR 6512, Verres et Ceramiques, 35 (France)

    1997-07-01

    Nitrogen incorporation into an aluminosilicate glass network changes greatly its physico-chemical properties. M-Si-Al-O-N (M = Li, Mg, Ca, Ln) oxynitride glasses are chemically inert. However, the presence of N{sup 3-} ions in molten glass gives to the glass medium a reducing character. This work concerns the study of redox reactions in molten glass between nitrogen and oxides of the first transition series of the periodic table, cadmium and lead. In situ precipitation of metallic particles from the corresponding oxides is demonstrated by X-ray diffraction and EDS data. However, the reduction of pure TiO{sub 2} and V{sub 2}O{sub 5} gives rise to the corresponding nitrides, i.e. TiN and VN. The redox reaction occurs with nitrogen release. The low solubility of metals in the molten glass media forces metal migration out off the glass and consequently favors metal recovery. This oxidation-reduction process in molten media can be envisaged as industrially useful for recovering metals in industrial wastes. (authors)

  20. The surface structure of gas-atomized metallic glass powders

    International Nuclear Information System (INIS)

    By means of X-ray photoelectron spectrometry depth profile and transmission electron microscopy analysis, this study reveals that amorphous Cu54Ni6Zr22Ti18 powders are enveloped by a thick (∼30 nm) oxide skin and a subsequent oxidation-induced partially nanocrystallized zone. The thick oxide skin changes the metallic glass surface to oxide ceramic. It is proposed that effective disruption of the oxide skin is essential to the sintering of metallic glass.

  1. Metallic glass composition. [That does not embrittle upon annealing

    Science.gov (United States)

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  2. GSD-1G and MPI-DING Reference Glasses for In Situ and Bulk Isotopic Determination

    Science.gov (United States)

    Jochum, K.P.; Wilson, S.A.; Abouchami, W.; Amini, M.; Chmeleff, J.; Eisenhauer, A.; Hegner, E.; Iaccheri, L.M.; Kieffer, B.; Krause, J.; McDonough, W.F.; Mertz-Kraus, R.; Raczek, I.; Rudnick, R.L.; Scholz, Donna K.; Steinhoefel, G.; Stoll, B.; Stracke, A.; Tonarini, S.; Weis, D.; Weis, U.; Woodhead, J.D.

    2011-01-01

    This paper contains the results of an extensive isotopic study of United States Geological Survey GSD-1G and MPI-DING reference glasses. Thirteen different laboratories were involved using high-precision bulk (TIMS, MC-ICP-MS) and microanalytical (LA-MC-ICP-MS, LA-ICP-MS) techniques. Detailed studies were performed to demonstrate the large-scale and small-scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD-1G and the MPI-DING glasses are suitable reference materials for microanalytical and bulk analytical purposes. Ce document contient les r??sultats d'une importante ??tude isotopique des verres de r??f??rence USGS GSD-1G et MPI-DING. Treize laboratoires diff??rents ont particip?? au travers de techniques analytiques de haute pr??cision travaillant soit sur ??chantillon total (TIMS, MC-ICP-MS) soit par microanalyse ??in situ?? (LA-MC-ICP-MS, LA-ICP-MS). ?? 2010 The Authors. Geostandards and Geoanalytical Research ?? 2010 International Association of Geoanalysts.

  3. Atmospherically deposited trace metals from bulk mineral concentrate port operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m{sup 2}/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m{sup 2}/day). Maximum loading values after a 10-minute play period were 3012 μg/m{sup 2}, more than seven times the goal of 400 μg/m{sup 2} used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m{sup 2}) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m{sup 2}/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ({sup 208}Pb/{sup 207}Pb and {sup 206}Pb/{sup 207}Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear — even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. - Graphical abstract: Post-play hand wipe, Headland Park, Townsville, Australia. - Highlights: • Bulk mineral port

  4. Atmospherically deposited trace metals from bulk mineral concentrate port operations

    International Nuclear Information System (INIS)

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m2/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m2/day). Maximum loading values after a 10-minute play period were 3012 μg/m2, more than seven times the goal of 400 μg/m2 used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m2) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m2/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes (208Pb/207Pb and 206Pb/207Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear — even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. - Graphical abstract: Post-play hand wipe, Headland Park, Townsville, Australia. - Highlights: • Bulk mineral port operations associated with emissions of metal-rich dusts

  5. 源自Ni-Nb共晶团簇式的Ni-Nb-(Zr,Ta,Ag)三元块体非晶合金成分设计%COMPOSITION DESIGN OF Ni-Nb-(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni-Nb EUTECTIC

    Institute of Scientific and Technical Information of China (English)

    袁亮; 羌建兵; 庞厰; 王英敏; 王清; 董闯

    2011-01-01

    利用团簇+连接原子模型设计Ni-Nb基三元块体非晶成分.首先,解析出二元共晶点Ni59.5Nb40.5的团簇式[(Ni0.5Nb0.5)-Ni6Nb6]Ni3,其中,(Ni0.5Nb0.5)-Ni6Nb6为源自Ni6Nb7 (Fe7W6型)共晶相的以(Ni0.5Nb0.5)为心的二十面体团簇.相应的,具有最大非晶形成能力的Ni-Nb二元成分Ni62Nb38可描述成团簇式[Ni-Ni6Nb6] Ni3,此时,二十面体团簇的中心位置完全由Ni占据.以[Ni-Ni6Nb6]Ni3二元非晶团簇式为基础,通过引入第3组元Zr,Ta或Ag,设计出具有更高非晶形成能力的Ni-Nb-(Zr,Ta,Ag)三元合金,利用水冷铜模吸铸方法获得临界直径为3 mm的块体非晶.热分析和力学测试表明这些三元块体非晶具有较高的热稳定性,其中[Ni-Ni6Nb5Ta] Nia具有最高的玻璃转变温度Tg (935 K)和晶化温度Tx(952 K);这些三元块体非晶具有一定的塑性变形能力(延伸率约为0.3%),[Ni-Ni6Nb5Zr]Ni3和[Ni-Ni6Nb5Ta]Ni3块体非晶的压缩断裂强度分别达到3.2和3.4 GPa.%A cluster-plus-glue atom model was employed to design Ni-Nb based ternary bulk metallic glasses. The binary eutectic point Ni59.5Nb40.5 was first interpreted by the model in form of a cluster formula [(Ni0.5Nb0.5)-Ni6Nb6]Ni3, where the cluster is (Ni0.5Nb0.5)-centered icosahe dron derived from a eutectic phase Ni6Nb7 (FeyWe type). It was then pointed out that the best binary glass former Ni62Nb38 could be interpreted based on the eutectic cluster formula by replac ing the cluster center Nb0.5 with Nio.5, namely [Ni-Ni6Nb6]Ni3=Ni62.5Nb37.5. To further improve the glass-forming ability, Zr, Ta and Ag are selected as alloying additions to partially replace Nb in the [Ni-Ni6Nb6]Ni3 cluster formula, and glassy rods with a critical size of 3 mm are achieved at ap propriate ternary compositions by copper-mould suction-casting. DTA measurements indicate these bulk metallic glasses exhibit high thermal stabilities, among which the [Ni-Ni6Nb5Ta]Ni3 alloy has the highest Tg (glass transition

  6. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    Science.gov (United States)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  7. Bulk metallic glass for low noise fluxgate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The team of Prime Photonics, Virginia Tech, and Utron Kinetics propose to develop a fabrication technology that will result in drop-in replacements for a...

  8. Scattering mechanical performances for brittle bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    J. W. Qiao

    2014-11-01

    Full Text Available Scattering mechanical performances of brittle La- and Mg-based BMGs are found in the present study. Upon dynamic loading, there exist largely scattered fracture strengths even if the strain rates are under the same order, and the BMG systems are the same. The negative strain rate dependence for La- and Mg-based BMGs is obtained, i.e., a decreased fracture strength is dominating from quasi-static to dynamic compression. At cryogenic temperatures, distinguishingly low fracture strengths are available for these two brittle BMGs, and decreased tolerance to accommodate strains makes BMGs more and more brittle. It is concluded that the scattering mechanical performances of brittle BMGs should be carefully evaluated before actual applications.

  9. A production attempt of selected metallic glasses with Fe and Ni matrix

    Directory of Open Access Journals (Sweden)

    W. Pilarczyk

    2010-01-01

    Full Text Available Design/methodology/approach: The studies were carried out on bulk metallic materials as rods. The rods of the Fe57.6Co7.2Ni7.2B19.2Si4.8Nb4 and Ni64.8Co7.2B19.2Si4.8Nb4 alloys were obtained by the pressure die casting. In order to investigate the structure scanning electron microscopy were used. Phase composition of obtained rods was determined by means of diffractometer. The thermal properties of the studied alloys were examined by differential thermal analysis and differential scanning calorimetry.Findings: The x-ray analysis, microscopic observation and thermal examination revealed that the studied as-cast bulk metallic materials were of amorphous, crystalline and mixed structure. Broad diffraction halo can be seen for rods with diameter of ø=1.5 and 2mm of Fe57.6Co7.2Ni7.2B19.2Si4.8Nb4 alloy. The replacement of Fe by Ni created crystalline structure.Practical implications: Fe- and Ni-based bulk metallic glass systems have been developed because they offer great potential for commercial application. Fe-based ferromagnetic bulk glassy alloys exhibit great magnetic properties. It is very important for their magnetic applications. That alloys can be used as soft electro-magnetic cores for choke coil or noise filter. Ni-based bulk metallic glasses exhibit excellent mechanical properties and corrosion resistance.Originality/value: The formation and studies of the casted Fe- and Ni-based bulk materials and investigation of the effectiveness of the replacement of Fe by Ni.

  10. Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys

    OpenAIRE

    Mukherjee, S.; Schroers, J.; Johnson, W. L.; Rhim, W. K.

    2005-01-01

    The time-temperature-transformation curves for three zirconium-based bulk amorphous alloys are measured to identify the primary factors influencing their glass-forming ability. The melt viscosity is found to have the most pronounced influence on the glass-forming ability compared to other thermodynamic factors. Surprisingly, it is found that the better glass former has a lower crystal-melt interfacial tension. This contradictory finding is explained by the icosahedral short-range order of the...

  11. The Critical Criterion on Runaway Shear Banding in Metallic Glasses

    Science.gov (United States)

    Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.

    2016-02-01

    The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.

  12. Microscopic insight into the origin of enhanced glass-forming ability of metallic melts on micro-alloying

    International Nuclear Information System (INIS)

    Extensive efforts have been made to develop metallic-glasses with large casting diameter. Such efforts were hindered by the poor understanding of glass formation mechanisms and the origin of the glass-forming ability (GFA) in metallic glass-forming systems. In this work, we have investigated relaxation dynamics of a model bulk glass-forming alloy system that shows the enhanced at first and then diminished GFA on increasing the percentage of micro-alloying. The micro-alloying did not have any significant impact on the thermodynamic properties. The GFA increasing on micro-alloying in this system cannot be explained by the present theoretical knowledge. Our results indicate that atomic caging is the primary factor that influences the GFA. The composition dependence of the atomic caging time or residence time is found to be well correlated with GFA of the system

  13. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  14. Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites

    Science.gov (United States)

    Stalmashonak, Andrei; Seifert, Gerhard; Abdolvand, Amin

    Glasses and other dielectrics containing metallic nanoparticles are very promising materials for applications in optoelectronics due to their unique linear and non-linear optical properties. These properties are dominated by the strong surface plasmon resonance (SPR) of the metal nanoparticles. The SPR occurs when the electron and light waves couple with each other at a metal-dielectric interface. These are regarded as the collective oscillation of the nanoparticle (NP) electrons.

  15. Colored coatings on eye glass lenses by noble metal colloids

    OpenAIRE

    Mennig, Martin; Endres, Klaus; Schmitt, Mike; Schmidt, Helmut K.

    1997-01-01

    Metal colloids in glass coatings are suitable for preparation of colored transparent coatings with thicknesses of about 0.2 to 1 µm due to their high molar coefficient of absorbance (approximate to 10(6) 1/(mol cm)). The absorbance of these metallic particles in a dielectric environment is caused by a surface plasmon resonance effect of the conductive electrons of the colloids. Therefore, it is characteristic for the metal, but can be affected by the dielectric properties of the surroun...

  16. Composition dependence of optical band gap and thermal diffusivity of In-Se-Tl bulk glasses

    International Nuclear Information System (INIS)

    Bulk melt-quenched In15Se85-xTlx (2 ≤ x ≤ 10) chalcogenide glasses are studied for their composition dependence of optical band gap (Eg) and thermal diffusivity (α) using UV visible spectrophotometer and photo-thermal deflection spectroscopy techniques respectively. The thermal diffusivity of these glasses is found to lie in the range of 0.0102 to 0.03 88 cm2/s, which is higher and consistent with the threshold type of electrical switching exhibited by these samples. The α of these glasses is found to decrease up to x≤6, beyond which it increases. The absorption spectra of these materials have been obtained in the range of 380-1020 nm. The Eg has been estimated from plot of absorption coefficient as a function of wavelength by using Tauc relation. Further, a minimum is observed in the composition dependence of α and a maximum in Eg at the average coordination = 2.42 (x=6) is attributed to the rigidity percolation threshold. The effect seen in the compositional dependence of α and Eg can be understood with increase in network connectivity, rigidity and Moss-Burstein effect respectively. (author)

  17. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Graphical abstract: When a Cu50Ti50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu50Ti50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu50Ti50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  18. Bulk metallic glassy surface native oxide: Its atomic structure, growth rate and electrical properties

    International Nuclear Information System (INIS)

    Formation of a native oxide layer on the surface of bulk metallic glasses (BMGs) influences significantly the nanoscale tribological properties and mechanical behavior of the BMGs used in nanodevices. However, our knowledge of the native oxidation process on the BMG surface and structure of the corresponding oxides remains limited because the oxide layer is very thin. Here we conducted a combined state-of-the-art experimental technique study of the atomic structure, oxidations states and electrical conductivity of the native surface oxides on a Cu−Zr−Al BMG formed at ambient conditions by aberration-corrected scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (AFM). This allowed shedding light on the atomic structure, metal oxidation state, growth behavior and nanoscale electrical properties of the surface oxide. The conductive AFM measurements reveal that the electrical conductivity of the native oxide layer transits from the initially metallic to a nonlinear one after some air exposure, and finally changes to insulative state. These findings represent a significant step forward in the knowledge of surface oxides and open up the possibility of fabricating nanoscale electrical devices based on BMGs with controllable conductivity

  19. Buoyancy and Pressure Effects on Bulk Metal-Oxygen Reactions

    Science.gov (United States)

    Abbud-Madrid, A.; McKnight, C.; Branch, M. C.; Daily, J. W.; Friedman, R. (Technical Monitor)

    1998-01-01

    The combustion behavior of metal-oxygen reactions if a weakly buoyant environment is studied to understand the rate-controlling mechanisms in the homogeneous and heterogeneous combustion of bulk metals. Cylindrical titanium and magnesium specimens are ignited in pure-oxygen at pressures ranging from 0.1 to 4.0 atm. Reduced gravity is obtained from an aircraft flying parabolic trajectories. A weakly buoyant environment is generated at low pressures under normal gravity and also at 1 atm under reduced gravity (0.01g). The similarity between these two experimental conditions comes from the p(exp 2)g buoyancy scale extracted from the Grashof number. Lower propagation rates of the molten interface on titanium samples are found at progressively lower pressures at 1 g. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicate the importance values indicate the importance of natural convection enhanced oxygen transport on combustion rates. For magnesium, progressively longer burning times are experienced at lower pressures and 1 g. Under reduced gravity conditions at 1 atm, a burning time twice as long as in 1 g is exhibited. However, in this case, the validity of the p(exp 2)g buoyancy scale remains untested due to the inability to obtain steady gas-phase burning of the magnesium sample at 0.1 atm. Nevertheless, longer burning times and larger flame standoff distance at low pressures and at low gravity points to a diffusion/convection controlled reaction.

  20. Structural evolution and strength change of a metallic glass at different temperatures

    Science.gov (United States)

    Tong, X.; Wang, G.; Stachurski, Z. H.; Bednarčík, J.; Mattern, N.; Zhai, Q. J.; Eckert, J.

    2016-08-01

    The structural evolution of a Zr64.13Cu15.75Ni10.12Al10 metallic glass is investigated in-situ by high-energy synchrotron X-ray radiation upon heating up to crystallization. The structural rearrangements on the atomic scale during the heating process are analysed as a function of temperature, focusing on shift of the peaks of the structure factor in reciprocal space and the pair distribution function and radial distribution function in real space which are correlated with atomic rearrangements and progressing nanocrystallization. Thermal expansion and contraction of the coordination shells is measured and correlated with the bulk coefficient of thermal expansion. The characteristics of the microstructure and the yield strength of the metallic glass at high temperature are discussed aiming to elucidate the correlation between the atomic arrangement and the mechanical properties.

  1. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation

    International Nuclear Information System (INIS)

    We report an explosive boiling in a Zr-based (Vitreloy 1) bulk metallic glass irradiated by a nanosecond pulse laser with a single shot. This critical phenomenon is accompanied by the ejection of high-temperature matter from the target and the formation of a liquid-gas spinodal pattern on the irradiated area. An analytical model reveals that the glassy target experiences the normal heating (melting) and significant superheating, eventually culminating in explosive boiling near the spinodal limit. Furthermore, the time lag of nucleation and the critical radius of vapor bubbles are theoretically predicted, which are in agreement with the experimental observations. This study provides the investigation on the instability of a metallic glass liquid near the thermodynamic critical temperature

  2. Crystallization Behavior of (La0.6Ce0.4)65Al10CU25 Bulk Metallic Glasses%块体非晶合金(La0.6Ce0.4)65Al10Cu25晶化行为的研究

    Institute of Scientific and Technical Information of China (English)

    刘彤; 朱亚蓉; 张同文; 张涛

    2012-01-01

    利用铜模铸造法制备(La0.6Ce0.4)65Al10Cu25块体非晶合金,通过X射线衍射和差示扫描量热法对该非晶合金的热稳定性和晶化行为进行研究.利用J-M-A方程对其等温晶化动力学进行分析,该合金平均Avrami指数在2.39~3.38之间.区域Avrami指数n(x)分析表明,晶化初期n(x)趋于3;晶化中期阶段,n(x)由2.5变化到3.5,在此过程中,当2.5<n<3时,新相长大,形核率增加,当3<n<3.5时,新相继续长大,形核率降低;晶化末期,n(x)趋于4,表明晶化过程是形核速率恒定和长大速率恒定的过程.%(La0.6Ce0.4)65Al10Cu25 bulk metallic glasses (BMGs) were prepared by copper-mold casting. The crystallization behavior and thermal stability of (La0.6Ce0.4)65Al10Cu25 were investigated by X-ray diffraction and differential scanning caloricity (DSC). The isothermal kinetics was evaluated by the Johnson-Mehl-Avrami equation. The calculated Avrami exponents were in the range of 2.39 to 3.38. The average values of local Avrami exponents show that the value of n is about 3 at the initial stage; in the middle crystallization stage, the value of n changes from 2.5 to 3.5. In this stage, for 2.5

  3. Zr_(55)Al_(10)Cu_(30)Ni_5块体非晶合金轧制塑性变形三维有限元分析%Three-dimensional FEM Analysis on Rolling Deformation in Zr55Al10Cu3oNi5 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    姚宏康; 闫志杰; 党淑娥

    2012-01-01

    利用ANSYS/LS-DYNA显式动力学分析有限元法对Zr55Al10Cu30Ni5块体非晶合金的室温轧制塑性变形过程进行模拟计算,分析了非晶合金变形区域内的最大剪切应力分布与压下率的关系。计算得出了稳定轧制阶段不同压下率下非晶合金的应力和应变分布。计算结果表明,轧制变形区的最大剪切应力随压下率的增大而增大,并且在最大剪切应力超过屈服应力的局部区域非晶合金发生了非均匀塑性变形。模拟分析的结果与实验研究结果相符合,从而为进一步研究室温轧制变形诱导非晶合金微观结构变化提供理论依据。%The rolling deformation process of a Zr55Al10Cu30Ni5 bulk metallic glass(BMG) at room temperature is simulated by using dynamic explicit FEM ANSYS/LS-DYNA. The relationship between the maximum shear stress and the rolling reduction in deformation regions is investigated. The distribution of the stress and strain under differ- ent rolling reduction is obtained. The results show that the maximum shear stress during rolling deformation region increases with the increase of the rolling reduction, and that the inhomogeneous plastic deformation occurs in the re- gion with the maximum shear stress larger than the yield stress. The simulated results agree with the previous exper- imental results, which helps to understand microstructure evolution induced by plastic deformation in a BMG at room temperature.

  4. Hybrid glasses from strong and fragile metal-organic framework liquids

    Science.gov (United States)

    Bennett, Thomas D.; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J.; Yeung, Hamish H.-M.; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K.; Greaves, G. Neville

    2015-08-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density `perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of `melt-casting' MOF glasses.

  5. Metallic glass coating on metals plate by adjusted explosive welding technique

    International Nuclear Information System (INIS)

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  6. Phase separation and nanocrystallization behavior above crystallization temperature in Mg–Cu–Y metallic glass thin film

    International Nuclear Information System (INIS)

    Mg–Cu–Y metallic glass thin films were deposited by magnetron sputtering. Mg58Cu29Y13 metallic glass thin film has a large supercooled liquid region (∆TX = 57.0 K) and a smooth surface (Ra = 0.485 nm). The phase separation and nanocrystallization properties of it were investigated. Scanning electron microscope observation and energy disperse spectrum analysis in the single line scan transmission electron microscope test show phase separation in the Mg58Cu29Y13 metallic glass thin film annealed slightly above glass transition temperature for 1 min. Transmission electron microscope studies show 10 nm diameter nanocrystals in the fully crystallized specimen. The crystallization behavior of it is very different from that of bulk metallic glasses. The nanocrystals structure in the film above crystallization temperature is attributed to the high nucleation rate and low nucleus growth rate in the crystallization process. - Highlights: • Mg–Cu–Y metallic glass thin films (MGTF) are fabricated by magnetron sputtering method. • 10 nm nanocrystals can form in the Mg–Cu–Y thin film by annealing. • Phase separation happens before nanocrystallization in Mg–Cu–Y MGTF. • Phase separation induced nanocrystallization behavior of Mg–Cu–Y MGTF is interpreted

  7. Stability of medium range order in Al-based metallic glass compacted by severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Zs.; Henits, P. [Department of Materials Physics, Eötvös University, P.O.B. 32, H-1518 Budapest (Hungary); Varga, L.K. [Research Institute for Solid state Physics and Optics, Hungarian Academy of Sciences, P.O.B. 49, H-1525 Budapest (Hungary); Schafler, E. [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Révész, Á., E-mail: reveszadam@ludens.elte.hu [Department of Materials Physics, Eötvös University, P.O.B. 32, H-1518 Budapest (Hungary)

    2013-06-05

    Highlights: ► High pressure torsion has been applied to produce low-porosity bulk Al-based amorphous specimens. ► The compacted disks possess higher hardness than the original glass. ► Mechanical and thermal impacts have only minor effects on the glassy structure. ► Medium range order is an inherent feature of the amorphous state. -- Abstract: High pressure torsion has successfully been applied to produce low-porosity, bulk specimens from Al-based metallic glass ribbons (Al{sub 85}Y{sub 8}Ni{sub 5}Co{sub 2}, Al{sub 85}Ce{sub 8}Ni{sub 5}Co{sub 2} and Al{sub 85}Gd{sub 8}Ni{sub 5}Co{sub 2}). The compacted disks possess higher hardness than the original glass and have substantial glass fraction with nanocrystalline precipitations. Mechanical and thermal impacts have only minor effects on the glassy structure as demonstrated by the stability of the X-ray diffraction halo positions. Unchanged halos reveal that medium range order is a key characteristic of the amorphous state.

  8. Structural Characterization of Carbon Nanomaterial Film In Situ Synthesized on Various Bulk Metals

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanofiber films were prepared via a simple chemical vapor deposition (CVD method on various bulk metal substrates including bulk 316 L stainless steel, pure cobalt, and pure nickel treated by surface mechanical attrition treatment (SMAT. The microstructures of the carbon nanomaterial film were studied by SEM, TEM, XRD, and Raman spectroscopy. In this paper, bulk metallic materials treated by SMAT served as substrates as well as catalysts for carbon nanomaterial film formation. The results indicate that the carbon nanofiber films are formed concerning the catalytic effects of the refined metallic particles during CVD on the surface of SMAT-treated bulk metal substrates. However, distinguished morphologies of carbon nanomaterial film are displayed in the case of the diverse bulk metal substrates.

  9. Co Oxidation Properties Of Selective Dissoluted Metallic Glass Composites

    OpenAIRE

    Kim S.-Y.; Lee M.-H.; Kim T.-S.; Kim B.-S.

    2015-01-01

    Porous metallic materials have been widely used in many fields including aerospace, atomic energy, electro chemistry and environmental protection. Their unique structures make them very useful as lightweight structural materials, fluid filters, porous electrodes and catalyst supports. In this study, we fabricated Ni-based porous metallic glasses having uniformly dispersed micro meter pores by the sequential processes of ball-milling and chemical dissolution method. We investigated the applica...

  10. Electrical switching in bulk samples of 0. 15As-0. 12Ge-0. 73Te glass

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, D.E.

    1976-06-01

    Switching in bulk samples of 0.15As--0.12Ge--0.73Te glass is found to be caused predominantly by the thermal switching mechanism for near threshold applied voltages. Switching also occurred by the thermal mechanism even for applied voltages an order of magnitude above the threshold voltage of the sample. In order to investigate a switching event in this glass sample, a constant voltage pulse was applied to the sample and the delay time and the electrical energy input to the sample during the delay time measured. A log--log plot of the energy input to the sample during a delay time of 1.00 s as a function of the electrode spacing on the sample's surface was found to have a slope of approximately 1.6. For the theoretical study of the thermal switching mechanism, a one-dimensional calculation of the heat balance equation with radial heat flow was made and the results of the calculation followed the same trends as the experimental data. The large scatter in parts of the data and the increase in the average resistance of the sample for a switching event with near threshold applied voltages could not be explained by the thermal switching mechanism. These effects could be a manifestation of the structural changes which probably occur in the sample as a result of the high temperatures present at the moment of switching. 33 fig.

  11. Designing biocompatible Ti-based metallic glasses for implant applications

    International Nuclear Information System (INIS)

    Ti-based metallic glasses show high potential for implant applications; they overcome in several crucial respects their well-established biocompatible crystalline counterparts, e.g. improved corrosion properties, higher fracture strength and wear resistance, increased elastic strain range and lower Young's modulus. However, some of the elements required for glass formation (e.g. Cu, Ni) are harmful for the human body. We critically reviewed the biological safety and glass forming tendency in Ti of 27 elements. This can be used as a basis for the future designing of novel amorphous Ti-based implant alloys entirely free of harmful additions. In this paper, two first alloys were developed: Ti75Zr10Si15 and Ti60Nb15Zr10Si15. The overheating temperature of the melt before casting can be used as the controlling parameter to produce fully amorphous materials or bcc-Ti-phase reinforced metallic glass nano-composites. The beneficial effect of Nb addition on the glass-formation and amorphous phase stability was assessed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Crystallization and mechanical behavior of ribbons are influenced by the amount and distribution of the nano-scaled bcc phase existing in the as-cast state. Their electrochemical stability in Ringer's solution at 310 K was found to be significantly better than that of commercial Ti-based biomaterials; no indication for pitting corrosion was recorded. Highlights: ► Link between biocompatibility and glass-forming ability of alloying additions in Ti ► Selection of Ti–Zr–Si and Ti–Zr–Nb–Si glass-forming alloys ► Two novel glassy alloys were developed: Ti75Zr10Si15 and Ti60Nb15Zr10Si15. ► Glass-formation, thermal stability, corrosion and mechanical behavior were studied. ► Assessing the suitability for orthopedic applications.

  12. Correlation between dynamic flow and thermodynamic glass transition in metallic glasses

    Science.gov (United States)

    Ke, H. B.; Wen, P.; Zhao, D. Q.; Wang, W. H.

    2010-06-01

    We report the values of steps of heat capacity (ΔCp) during the glass transition in a variety of metallic glasses (MGs). It is found that ΔCp is around 13.69 J mol-1 K-1 and almost invariable for the MGs. Based on the Eyring's theory [N. Hirai and H. Eyring, J. Polym. Sci. 37, 51 (1959)], the phenomenon corresponds to a critical reduced free volume value. This exhibits that the glass transition takes place when the reduced free volume approaches to ˜2.35% in the MG systems. The value, consistent with that of the yielding of MGs, confirms that temperature and stress are equivalent for fluidizing MGs. Our results give an implication to understanding the glass transition in MGs as a Lindemann-type melting behavior [F. A. Lindemann, Z. Phys. 11, 609 (1910)].

  13. BOND-ANGLE DISTRIBUTION FUNCTIONS IN METALLIC GLASSES

    OpenAIRE

    Hafner, J.

    1985-01-01

    Bond-angle distribution functions have been calculated for realistic models of metallic glasses. They suggest a defected icosahedral short-range bond-orientational order and a close analogy of the short-range topological order in the amorphous and in the crystalline states.

  14. Normal and anomalous stress relaxation in metallic glasses

    International Nuclear Information System (INIS)

    Stress relaxation in certain metallic glasses at room temperature has been studied. Anomalous relaxation after off-loading of strained samples is detected. A dislocation model permitting to explain qualitatively the presence of anomalous relaxation is suggested. Activation volume of relaxation and its dependence on stress are calculated

  15. Design Guide for glass fiber reinforced metal pressure vessel

    Science.gov (United States)

    Landes, R. E.

    1973-01-01

    Design Guide has been prepared for pressure vessel engineers concerned with specific glass fiber reinforced metal tank design or general tank tradeoff study. Design philosophy, general equations, and curves are provided for safelife design of tanks operating under anticipated space shuttle service conditions.

  16. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    International Nuclear Information System (INIS)

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  17. Crystalline Precipitate in a Bulk Glass Forming Zr-Based Alloy and Its Effect on Mechanical Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cylindrical and sheet samples of bulk metallic glass with a nominal composition of Zr52.5Ni14.6Al10Cu17.9Ti5 (at. pct) were prepared by melt injection casting. The crystalline precipitates formed during the casting were studied by metallographic observations and selected-area electron diffractions. The effect of crystalline precipitates on the mechanical properties were investigated by tensile and compressive tests at room temperature. Oxygen contents and the sample sizes (or cooling rates) strongly affect the formation of the crystalline precipitates. Overheating the alloy melt up to 200 K above its melting temperature can effectively prevent the formation of the crystalline precipitates to get fully glass samples with diameters up to 2 mm for cylinders and thickness up to 1 mm for sheets even the oxygen content is as higher as 0.08 wt pct.With increasing the sample sizes, the crystalline precipitates increase in volume fraction and size. The formation of the precipitates experienced two stages, i.e., initially nucleation and isotropic growth, and then anisotropic growth, finally forming faceted morphologies. Fully glassy Zr52.5Ni14.6Al10Cu17.9Ti5 alloy exhibits excellent tensile and compressive properties at room temperature. The presence of crystalline precipitates significantly decreases the tensile and compressive properties. With increasing the crystalline precipitates, the area of vein patterns on the fracture surface decreases, but the fracture steps increase, and the fracture mode changes from ductile to brittle resulting from the larger stress concentration caused by the larger sizes and faceted shapes of the crystalline precipitates.

  18. Direct observation of bulk second-harmonic generation inside a glass slide with tightly focused optical fields

    Science.gov (United States)

    Wang, Xianghui; Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Hui, Rongqing

    2016-04-01

    Bulk second-harmonic generation (SHG) inside glass slides is directly detected unambiguously without interference from surface contributions. This is enabled by tightly focused and highly localized ultrashort laser pulses. The theoretical calculations based on vector diffraction theory and the phenomenological model of SHG inside centrosymmetric materials agree well with the measured far-field SHG radiation patterns for different polarization states of the fundamental beam. The results indicate that the observed bulk SHG is predominantly related to the bulk parameter δ' and originates from the three-dimensional field gradient in the focal region.

  19. Influence of pulsing current on the glass transition and crystallizing kinetics of a Zr base bulk amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wenfei; YAO Kefu; ZHAO Zhankui

    2004-01-01

    Based on the thermal analysis, the influence of pulsing current on the glass transition and crystallizing kinetics of Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy has been studied. The obtained results show that after the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy was pretreated by high-density pulsing current at low temperature, its glass transition temperature Tg, the initial crystallizing temperature Tx and the corresponding exothermic peak of crystallization Tpi were reduced. But the temperature range of supercooled liquid ΔT=Tx-Tg is almost the same. The calculated results with Kissinger equation show that the activation energy of glass transition of the alloy pretreated is reduced significantly, while the activation energy of crystallization is basically unchanged. The influence of pulsing current on the glass transition and crystallization of the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy is believed to be related with the structure relaxation of the glass caused by the current.

  20. Optical response of alkali metal atoms confined in nanoporous glass

    International Nuclear Information System (INIS)

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  1. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    International Nuclear Information System (INIS)

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  2. Elastically mismatched interfaces as related to glass-to-metal seals for applied use optimizing functional strength

    Science.gov (United States)

    Horton, W. Nathaniel

    The mechanical performance of Glass-to-Metal seals is largely dependent upon the morphology of the oxide interfaces. The interfaces of the glass-to-metal region are transition zones consisting of a metallically bonded base metal with its reduced oxide and progress to interatomic bonds which are a mixture of ionic and covalent in a glass or ceramic base material. Differences in coefficient of thermal expansion, interatomic bonding and overall physical chemistry cause a number of issues in design, manufacture and lifetime serviceability of a G/M seal. To date the primary dimensions of interface assessment are microscopy and analytical chemistry. The purpose of this study is to advance nanomechanical testing as an additional dimension of quality assessment of G/M seals. Nanoindentation makes it possible to quantify intrinsic material properties of highly heterogeneous bulk materials or interfaces on a sub-microscale resolution and upscale the characterization to a continuum mechanics macroscale. To accomplish this transverse 2-D modulus and hardness maps of metallic transition oxides at feedthrough and header interfaces were produced based on material, atmosphere, and heat-treatment. Materials selection arrays were evaluated for a range of materials: a lithia-alumina-silica glass-ceramic and a 9013 alkali barium glass, Hastelloy C-276 and Alloy 52 feedthroughs, and 303 and 304L stainless steel headers. Likewise, electron spectroscopies were correlated to the site of mechanical analysis. Noticeable changes in nanomechanical morphology were observed and found to be dependent upon production parameters.

  3. Search for the microscopic origin of defects and shear localization in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mo

    2001-11-10

    This proposed research addresses one of the long outstanding fundamental problems in materials science, the mechanisms of deformation in amorphous metals. Due to the lack of long-range translational order, details of structural defects and their behaviors in metallic glasses have not been accessible in experiments. In addition, the small dimensions of the amorphous alloys made early by rapid quenching impose severe limit on many standard mechanical and microscopy testing. As a result, the microscopic mechanism of deformation in the amorphous materials has not been established. The recent success in synthesis of bulk metallic glass overcomes the difficulty in standard testing; but the barrier for understanding the defect process and microscopic mechanisms of deformation still remains. Amorphous metals deform in a unique way by shear banding. As a result, there is no work hardening, little macroscopic plasticity, and catastrophic failure. To retain and improve the inherent high strength, large elastic strain, and high toughness in amorphous metals, a variety of synthesis activities are currently underway including making metallic glass matrix composites. These new explorations call for a quantitative understanding of deformation mechanisms in both the monolithic metallic glasses as well as their composites. The knowledge is expected to give insight and guide to design, processing and applications of this new generation of engineering materials. This DOE funded research takes the approach of computer simulation and modeling to tackle this problem. It is expected that with the increasing power of computers, the numerical modeling could provide the answers that are difficult or impossible to get from experiments. Three parallel research tasks were planned in this work. One is on search of atomic structural defects and other microscopic mechanisms underlying the deformation process. The second is the formulate a general model to describe shear localization, shear band

  4. Analysis and Authenticity Investigations of Glass and Metallic Art Objects

    International Nuclear Information System (INIS)

    A suite of glass pieces of Art, and several metal-based corroded objects were studied in the frame of this project, which intends to accommodate two purposes; a) to investigate the feasibility of physico-chemical characterization of ancient glass by employing a non-widely used analytical technique, that of luminescence spectroscopy, along with conventionally used methods such as XRF and SEM-EDX, and b) to approach issues of counterfeiting of culturally-related iron and other metallic objects, by examining the features of their corrosion products, studied via a combination of the non-destructive RF-plasma treatment and the microscopic techniques. The results of the study show that luminescence measurements own diagnostic power that can aid substantially to the classifying and understanding of the manufacturing of ancient glass, particularly when bridged with longer-established analytical methods. Moreover, evident differences between corrosion layers of authentic metallic objects and of the ones created after artificial pre-corrosion, as ascertained by the plasma treatment and by microscopy (SEM or optical) study, provide a basis for suggesting such a combination of techniques for authenticity detection of corroded metallic objects with cultural heritage importance. (author)

  5. Low-Temperature Cationic Rearrangement in a Bulk Metal Oxide.

    Science.gov (United States)

    Li, Man-Rong; Retuerto, Maria; Stephens, Peter W; Croft, Mark; Sheptyakov, Denis; Pomjakushin, Vladimir; Deng, Zheng; Akamatsu, Hirofumi; Gopalan, Venkatraman; Sánchez-Benítez, Javier; Saouma, Felix O; Jang, Joon I; Walker, David; Greenblatt, Martha

    2016-08-16

    Cationic rearrangement is a compelling strategy for producing desirable physical properties by atomic-scale manipulation. However, activating ionic diffusion typically requires high temperature, and in some cases also high pressure in bulk oxide materials. Herein, we present the cationic rearrangement in bulk Mn2 FeMoO6 at unparalleled low temperatures of 150-300 (o) C. The irreversible ionic motion at ambient pressure, as evidenced by real-time powder synchrotron X-ray and neutron diffraction, and second harmonic generation, leads to a transition from a Ni3 TeO6 -type to an ordered-ilmenite structure, and dramatic changes of the electrical and magnetic properties. This work demonstrates a remarkable cationic rearrangement, with corresponding large changes in the physical properties in a bulk oxide at unprecedented low temperatures. PMID:27203790

  6. Bacterial adhesion to glass and metal-oxide surfaces.

    Science.gov (United States)

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  7. Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass

    OpenAIRE

    Yamasaki, Michiaki; Kagao, Shinya; Kawamura, Yoshihito; Yoshimura, Kenji; カワムラ, ヨシヒト; 河村, 能人

    2004-01-01

    The thermal diffusivity of amorphous solid and supercooled liquid in a Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) and its crystalline counterpart alloy was measured. The studies show that the thermal diffusivity and conductivity of the amorphous solid are weakly temperature dependent, with small positive temperature coefficients. The amorphous solid also showed lower thermal diffusivity and conductivity than the crystalline counterpart alloy. The results also show that the thermal diffusi...

  8. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    The surface boron concentration of Fe40Ni40P14B6, Fe32Ni36Cr14P12B6 and Fe40Ni40B20 metallic glasses was measured by neutron activation analysis on both sides of the ribbon samples. It was found that the boron concentration is always higher at the bright side of the ribbon than that at the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. Range values of alpha-particles for some characteristic compositions of metallic glasses are tabulated. A mathematical technique for the deconvolution of experimental data is described and the listing of the Fortran program is enclosed. (author)

  9. The local structure of oxide and metallic glasses

    International Nuclear Information System (INIS)

    An attempt is made to delineate current structural problems for oxide glasses, amorphous semiconductors and metallic alloy glasses, and to present a review of relevant experimental investigations on each class of materials. Structural information is dominated by the results of scattering studies (neutrons or X-rays), with growing emphasis being placed on extraction of partial structure factors and accurate comparison with atomic models. EXAFS allows a more detailed investigation of the surroundings of specific atoms, even in complex systems such as oxides and chalcogenides, Moessbauer and NMR spectroscopy have provided new information on the symmetry of first-neighbour coordination shells - particularly in metallic systems. The results of experiments and computer simulations have been evaluated. (author)

  10. Elastic properties and atomic bonding character in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rouxel, T., E-mail: tanguy.rouxel@univ-rennes1.fr [Institut de Physique de Rennes, IPR, UMR-CNRS 6251, Université de Rennes, campus de Beaulieu, 35042 Rennes cedex (France); Yokoyama, Y. [Cooperative Research and Development Center for Advanced Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-07-28

    The elastic properties of glasses from different metallic systems were studied in the light of the atomic packing density and bonding character. We found that the electronegativity mismatch (Δe{sup −}) between the host- and the major solute-elements provides a plausible explanation to the large variation observed for Poisson's ratio (ν) among metallic glasses (MGs) (from 0.28 for Fe-based to 0.43 for Pd-based MGs), notwithstanding a similar atomic packing efficiency (C{sub g}). Besides, it is found that ductile MGs correspond to Δe{sup −} smaller than 0.5 and to a relatively steep atomic potential well. Ductility is, thus, favored in MGs exhibiting a weak bond directionality on average and opposing a strong resistance to volume change.

  11. Elastic properties and atomic bonding character in metallic glasses

    International Nuclear Information System (INIS)

    The elastic properties of glasses from different metallic systems were studied in the light of the atomic packing density and bonding character. We found that the electronegativity mismatch (Δe−) between the host- and the major solute-elements provides a plausible explanation to the large variation observed for Poisson's ratio (ν) among metallic glasses (MGs) (from 0.28 for Fe-based to 0.43 for Pd-based MGs), notwithstanding a similar atomic packing efficiency (Cg). Besides, it is found that ductile MGs correspond to Δe− smaller than 0.5 and to a relatively steep atomic potential well. Ductility is, thus, favored in MGs exhibiting a weak bond directionality on average and opposing a strong resistance to volume change

  12. Co-based soft magnetic bulk glassy alloys optimized for glass-forming ability and plasticity

    Indian Academy of Sciences (India)

    LI LI; HUAIJUN SUN; YUNZHANG FANG; JIANLONG ZHENG

    2016-06-01

    Co-based bulk glassy alloys (BGAs) have become more and more important because of their nearly zero magnetostriction and high giant magneto-impedance effect. Here, we report the improvement of glass-formingability (GFA), soft-magnetic properties and plasticity by a small addition of Mo atoms in CoFeBSiNbMo BGAs.(Co$_{0.6}$Fe$_{0.4}$)$_{69}$B$_{20.8}$Si$_{5.2}$Nb$_{5−x}$Mo$_{x}$ ferromagnetic BGA cylindrical glassy rods were fabricated successfully with adiameter of 5 mm by conventional copper mould casting method. It reveals that the substitution of a small amount of Mo for Nb makes the composition to approach a eutectic point and effectively enhances the GFA of alloy. Inaddition to high GFA and superhigh strength, the compressive test shows that the Mo addition can improve the plasticity for the obtained BGAs. The combination of high GFA, excellent soft-magnetic properties and good plasticitydemonstrated in our alloys is promising for the future applications as functional materials.

  13. Energy model for the Zr-based metallic glass alloy melt with clusters

    Institute of Scientific and Technical Information of China (English)

    YANG YuanSheng; LI HuiQiang; TONG WenHui

    2007-01-01

    An energy model for the melt of bulk metallic glass (BMG) with clusters was established, the Gibbs free energy and interfacial energy for the Zr-Al-Ni ternary alloy melt with Zr2Ni clusters were calculated, and the effects of the clusters on the Gibbs free energy, interfacial energy and nucleation rate were analyzed. The results showed that the existence of the clusters in the Zr-Al-Ni ternary alloy melt enables the Gibbs free energy to decrease in the composition range where bulk metallic glass forms easily, makes the interfacial energy increase and changes the distribution of the interfacial energy with the alloy composition. Because of the clusters in the melt, the Gibbs free energy of the Zr66Al8Ni26 alloy melt decreases about 0.3-1 kJ/mol and the interfacial energy between the melt and crystal nucleus increases about 0.016 J/m2. The nucleation rate of the undercooled Zr66Al8Ni26 alloy melt decreases evidently under the influence of the clusters on Gibbs free energy and the interfacial energy, and the maximum of the nucleation rate in the melt with the Zr2Ni clusters is only about 107 mol-1·s-1.

  14. Deformation of metallic glasses with special emphasis in supercooled liquid region

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Upon deforming a metallic glass at low t emperatures, shear tends to localize and this leads to a brittle behavior. Howev er, in the high temperature, and particularly in the supercooled liquid region, homogeneous deformation begins to take place. A bulk amorphous Zr-10Al-5Ti-17 .9Cu-14.6Ni alloy was observed to exhibit the Newtonian behavior at low strain rates but becomes n on-Newtonian at high strain rates in the supercooled liquid region. Structures of the amorphous material, both before and after deformation, were examined usin g X-ray diffraction and high-resolution electron microscopy. Results showed the presence of nanocrystallites in the deformed samples. Thus, the non-Newtonian behavior is attributable to the concurrent crystallization of the amorphous structure during deformation. A mechanistic model is presented to interpret the observed non-Newtonian result. A phenomenological approach is also used to develop the deformation map for bulk metallic glasses in the supercooled liquid region.

  15. Phase field crystal modelling of the order-to-disordered atomistic structure transition of metallic glasses

    Science.gov (United States)

    Zhang, W.; Mi, J.

    2016-03-01

    Bulk metallic glass composites are a new class of metallic alloy systems that have very high tensile strength, ductility and fracture toughness. This unique combination of mechanical properties is largely determined by the presence of crystalline phases uniformly distributed within the glassy matrix. However, there have been very limited reports on how the crystalline phases are nucleated in the super-cooled liquid and their growth dynamics, especially lack of information on the order-to-disordered atomistic structure transition across the crystalline-amorphous interface. In this paper, we use phase field crystal (PFC) method to study the nucleation and growth of the crystalline phases and the glass formation of the super cooled liquid of a binary alloy. The study is focused on understanding the order-to-disordered transition of atomistic configuration across the interface between the crystalline phases and amorphous matrix of different chemical compositions at different thermal conditions. The capability of using PFC to simulate the order-to-disorder atomistic transition in the bulk material or across the interface is discussed in details.

  16. Energy model for the Zr-based metallic glass alloy melt with clusters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An energy model for the melt of bulk metallic glass (BMG) with clusters was estab- lished, the Gibbs free energy and interfacial energy for the Zr-Al-Ni ternary alloy melt with Zr2Ni clusters were calculated, and the effects of the clusters on the Gibbs free energy, interfacial energy and nucleation rate were analyzed. The results showed that the existence of the clusters in the Zr-Al-Ni ternary alloy melt enables the Gibbs free energy to decrease in the composition range where bulk metallic glass forms easily, makes the interfacial energy increase and changes the distribu- tion of the interfacial energy with the alloy composition. Because of the clusters in the melt, the Gibbs free energy of the Zr66Al8Ni26 alloy melt decreases about 0.3-1 kJ/mol and the interfacial energy between the melt and crystal nucleus increases about 0.016 J/m2. The nucleation rate of the undercooled Zr66Al8Ni26 alloy melt de- creases evidently under the influence of the clusters on Gibbs free energy and the interfacial energy, and the maximum of the nucleation rate in the melt with the Zr2Ni clusters is only about 107 mol1s1.

  17. The study of the microwave heating of bulk metals without microwave susceptors

    OpenAIRE

    Ignatenko, Maxim; Tanaka, Motohiko

    2011-01-01

    This paper discusses the physical aspects of the microwave heating of bulk metals in multimode cavity. The concept of power balance and thermodynamics are utilized to explain the preheating step required for successful microwave heating.

  18. Lasing effects in new Nd3+-doped TeO2-Nb2O5-WO3 bulk glasses

    Science.gov (United States)

    Carreaud, J.; Labruyère, A.; Dardar, H.; Moisy, F.; Duclère, J.-R.; Couderc, V.; Bertrand, A.; Dutreilh-Colas, M.; Delaizir, G.; Hayakawa, T.; Crunteanu, A.; Thomas, P.

    2015-09-01

    This paper demonstrates for the first time continuous wave (cw) and pulsed lasing effects in a 75TeO2-20NbO2.5-5WO3 glass doped with 1 mol.% in Nd3+. It is divided into two parts: The first part treats all the aspects related to the elaboration and the characterization of the materials. Thus, glasses elaborated within the TeO2-Nb2O5-WO3 ternary system show a rather high glass transition temperature Tg ∼ 375 °C, with an excellent thermal stability of ∼160 °C. Compared to glasses synthesized in either TeO2-Nb2O5 or TeO2-WO3 binary systems, glasses fabricated within such system show improved mechanical performances, with larger Young's modulus values. The structural characteristics of the samples, studied by Raman spectroscopy, are also presented. Linear optical properties (refractive index and extinction coefficient) are accessed by spectroscopic ellipsometry. As well, the optical transmission of the various bulk glasses is measured, in the case of both uncoated and coated glasses. In particular, specific anti-reflective coatings at 808 nm (laser diode pump wavelength) and 1064 nm (laser emission wavelength) are respectively deposited on the two surfaces of the sample in order to minimize the losses due to Fresnel reflections at the two glass/air interfaces. In addition, another specific surface treatment (Rmax at 1064 nm) was employed to serve as the back mirror of the laser cavity. The optical transmission data testified to the real efficiency of all these coatings. Finally, the photoluminescence properties (emission and excitation spectra, and luminescence decay curve) of the Nd3+-doped glasses, measured at room temperature for bulk samples, and as a function of temperature for powder glasses, are discussed. The second part is focused on evidencing (cw) and pulsed lasing effects in such coated bulk lasers. Cylindric samples of only a few millimeters in height and in diameter were tested and led to a laser emission around 1064 nm, characterized by a very low

  19. Atomic structures of Zr-based metallic glasses

    Institute of Scientific and Technical Information of China (English)

    HUI XiDong; LIU Xiongdun; GAO Rui; HOU HuaiYu; FANG HuaZhi; LIU ZiKui; CHEN GuoLiang

    2008-01-01

    The atomic structures of Zr-Ni and Zr-Ti-Al-Cu-Ni metallic glasses were investigated by using classical molecular dynamic (MD), reverse Monte Carlo (RMC), ab initio MD (AIMD) simulations and high resolution transmission electron microscopy (HRTEM) techniques. We focused on the short-range order (SRO) and medium-range order (MRO) in the glassy structure. It is shown that there are icosahedral, FCC- and BCC-type SROs in the Zr-based metallic glasses. A structural model, characterized by imperfect ordered packing (IOP), was proposed based on the MD simulation and confirmed by the HRTEM observation. Furthermore, the evolution from lOP to nanocrystal during the crystallization of metallic glasses was also ex-plored. It is found that the growth from IOP to nanocrystal proceeds through three distinct stages: the formation of quasi-ordered structure with one-dimensional (1 D) periodicity, then 2D periodicity, and finally the formation of 3D nanocrystals. It is also noted that these three growth steps are crosslinked.

  20. Atomic structures of Zr-based metallic glasses

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The atomic structures of Zr-Ni and Zr-Ti-Al-Cu-Ni metallic glasses were investigated by using classical molecular dynamic (MD),reverse Monte Carlo (RMC),ab initio MD (AIMD) simulations and high resolution transmission electron microscopy (HRTEM) techniques. We focused on the short-range order (SRO) and medium-range order (MRO) in the glassy structure. It is shown that there are icosahedral,FCC-and BCC-type SROs in the Zr-based metallic glasses. A structural model,characterized by imperfect ordered packing (IOP),was proposed based on the MD simulation and confirmed by the HRTEM observation. Furthermore,the evolution from IOP to nanocrystal during the crystallization of metallic glasses was also ex-plored. It is found that the growth from IOP to nanocrystal proceeds through three distinct stages: the formation of quasi-ordered structure with one-dimensional (1D) periodicity,then 2D periodicity,and finally the formation of 3D nanocrystals. It is also noted that these three growth steps are crosslinked.