Sample records for bulk liquid membrane

  1. Facilitated transport of penicillin G by bulk liquid membrane with TBP as carrier. (United States)

    Ren, Zhongqi; Lv, Yuanyuan; Zhang, Weidong


    The facilitated transport of penicillin G from aqueous solutions to the stripping phase through bulk liquid membrane (BLM) containing TBP in 3% iso-octanol and n-butyl acetate was studied. Na(2)CO(3) solution was used as the stripping phase. Experiments were performed as a function of stirring rate, TBP concentration and type of diluent in the liquid membrane phase, pH, and initial penicillin G concentration in the feed phase, Na(2)CO(3) concentration in the stripping phase, etc. The results showed that the BLM process could carry out the simultaneous separation and concentration of penicillin G from dilute aqueous solutions, and arise "up-hill" effect due to the characteristic of non-equilibrium mass transfer. The diffusion of penicillin G complex in the liquid membrane phase played an important role in BLM process. The mass transfer mechanism of BLM for this system was also discussed.

  2. Treatment of cyanide wastewater by bulk liquid membrane using tricaprylamine as a carrier. (United States)

    Li, Guoping; Xue, Juanqin; Liu, Nina; Yu, Lihua


    The transport of cyanide from wastewater through a bulk liquid membrane (BLM) containing tricaprylamine (TOA) as a carrier was studied. The effect of cyanide concentration in the feed solution, TOA concentration in the organic phase, the stirring speed, NaOH concentration in the stripping solution and temperature on cyanide transport was determined through BLM. Mass transfer of cyanide through BLM was analyzed by following the kinetic laws of two consecutive irreversible first-order reactions, and the kinetic parameters (k(1), k(2), R(m)(max), t(max), J(a)(max), J(d)(max)) were also calculated. Apparently, increase in membrane entrance (k(1)) and exit rate (k(2)) constants was accompanied by a rise in temperature. The values of activation energies were obtained as 35.6 kJ/mol and 18.2 kJ/mol for removal and recovery, respectively. These values showed that both removal and recovery steps in cyanide transport is controlled by the rate of the chemical complexation reaction. The optimal reaction conditions were determined by BLM using trioctylamine as the carrier: feed phase: pH 4, carrier TOA possession ratio in organic phase: 2% (V/V), stripping phase concentration of NaOH: 1% (W/V), reaction time: 60 min, stirring speed: 250 r/min. Under the above conditions, the removal rate was up to 92.96%. The experiments demonstrated that TOA was a good carrier for cyanide transport through BLM in this study.

  3. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition. (United States)

    Wirgau, Joseph I; Crumbliss, Alvin L


    Carrier-facilitated bulk liquid membrane (BLM) transport from an aqueous source phase through a chloroform membrane phase to an aqueous receiving phase was studied for various hydrophilic synthetic and naturally occurring Fe(III)-siderophore complexes using first coordination sphere recognition. Iron transport systems were designed such that two cis coordination sites on a hydrophilic Fe(III) complex are occupied by labile aquo ligands, while the other four coordination sites are blocked by strong tetradentate ligands (siderophores). The labile aquo coordination sites can be "recognized" by a liquid membrane-bound hydrophobic bidentate ligand, which carries the hydrophilic Fe(III)-siderophore complex across the hydrophobic membrane to an aqueous receiving phase. The system is further designed for uphill transport of Fe(III) against a concentration gradient, driven by anti-port H(+) transport. Three tetradentate siderophore and siderophore mimic ligands were investigated: rhodotorulic acid (H(2)L(RA)), alcaligin (H(2)L(AG)), and N,N'-dihydroxy-N,N'-dimethyldecanediamide (H(2)L(8)). Flux values for the transport of Fe(L(x))(OH(2))(2)(+) (x = RA, AG, 8) facilitated by the hydrophobic lauroyl hydroxamic acid (HLHA) membrane carrier were the highest when x = 8, which is attributed to substrate lipophilicity. Ferrioxamine B (FeHDFB(+)) was also selectively transported through a BLM by HLHA. The process involves partial dechelation of ferrioxamine B to produce the tetradentate form of the complex (Fe(H(2)DFB)(OH(2))(2)(2+)), followed by ternary complex formation with HLHA (Fe(H(2)DFB)(LHA)(+)) and transport across the membrane into the receiving phase. Uphill transport of ferrioxamine B was confirmed by increased flux as [H(+)](source phase) complex formation and ligand exchange are viable processes at the membrane/receptor surface of microbial cells.

  4. Hybrid biofilm-membrane bioreactor (Bf-MBR) for minimization of bulk liquid-phase organic substances and its positive effect on membrane permeability. (United States)

    Sun, F Y; Li, P; Li, J; Li, H J; Ou, Q M; Sun, T T; Dong, Z J


    Four biofilm membrane bioreactors (Bf-MBRs) with various fixed carrier volumes (C:M) were operated in parallel to investigate the effect of attached-growth mode biomass involvement to the change of liquid-phase organics characteristics and membrane permeability, by comparing with conventional MBR. The experiments displayed that C:M and co-existence of biofilm with suspended solids in Bf-MBRs resulted in slight difference in pollutants removal effectiveness, and in rather distinct biomass properties and bacterial activities. The membrane permeability and specific resistance of bulk suspension of Bf-MBRs related closely with the liquid-phase organic substance, including soluble microbial products (SMP) and biopolymer cluster (BPC). Compared with conventional MBR, Bf-MBR with proper C:M had a low total biomass content and food-chain, where biofilm formation and its dominance affected liquid-phase organics, especially through reducing their content and minimizing strongly and weakly hydrophobic components with small molecular weight, and thus to mitigate membrane fouling significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Separation study of some heavy metal cations through a bulk liquid membrane containing 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Rounaghi


    Full Text Available Competitive permeation of seven metal cations from an aqueous source phase containing equimolar concentrations of Co2+, Fe3+, Cd2+, Cu2+, Zn2+, Ag+ and Pb2+ metal ions at pH 5 into an aqueous receiving phase at pH 3 through an organic phase facilitated by 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane (Kryptofix5 as a carrier was studied as bulk liquid membrane transport. The obtained results show that the carrier is highly selective for Ag+ cation and under the employed experimental conditions, it transports only this metal cation among the seven studied metal cations. The effects of various organic solvents on cation transport rates have been demonstrated. Among the organic solvents involving nitrobenzene (NB, chloroform (CHCl3, dichloromethane (DCM and 1,2-dichloroethane (1,2-DCE which were used as liquid membrane, the most transport rate was obtained for silver (I cation in DCM. The sequence of transport rate for this cation in organic solvents was: DCM > CHCl3 > 1,2-DCE > NB. The competitive transport of these seven metal cations was also studied in CHCl3–NB and CHCl3–DCM binary solvents as membrane phase. The results show that the transport rate of Ag+ cation is sensitive to the solvent composition and a non-linear relationship was observed between the transport rate of Ag+ and the composition of these binary mixed non-aqueous solvents. The influence of the stearic acid, palmitic acid and oleic acid as surfactant in the membrane phase on the transport of the metal cations was also investigated.

  6. Kinetic Study of Copper(II Simultaneous Extraction/Stripping from Aqueous Solutions by Bulk Liquid Membranes Using Coupled Transport Mechanisms

    Directory of Open Access Journals (Sweden)

    Loreto León


    Full Text Available Heavy metals removal/recovery from industrial wastewater has become a prime concern for both economic and environmental reasons. This paper describes a comparative kinetic study of the removal/recovery of copper(II from aqueous solutions by bulk liquid membrane using two types of coupled facilitated transport mechanisms and three carriers of different chemical nature: benzoylacetone, 8-hydroxyquinoline, and tri-n-octylamine. The results are analyzed by means of a kinetic model involving two consecutive irreversible first-order reactions (extraction and stripping. Rate constants and efficiencies of the extraction (k1, EE and the stripping (k2, SE reactions, and maximum fluxes through the membrane, were determined for the three carriers to compare their efficiency in the Cu(II removal/recovery process. Counter-facilitated transport mechanism using benzoylacetone as carrier and protons as counterions led to higher maximum flux and higher extraction and stripping efficiencies due to the higher values of both the extraction and the stripping rate constants. Acceptable linear relationships between EE and k1, and between SE and k2, were found.

  7. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo


    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  8. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine


    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  9. Stabilization of supported liquid membranes

    NARCIS (Netherlands)

    Kemperman, Antonius Josephus Bernardus


    Membrane processes provide a relatively new and economically attractive separation technique. One type of membrane processes, i.e. the use of facilitated transport in liquid membranes, is particularly attractive. Compared to other membrane processes, liquid membranes show high selectivities, high

  10. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    157–161. c Indian Academy of Sciences. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy. J K YU. ∗. , Y H WANG, G Z XING, Q QIAO, B LIU, Z J CHU, C L LI and F YOU. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,.

  11. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 1. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy. J K Yu Y H Wang G Z Xing Q Qiao B Liu Z J Chu C L Li F You. Volume 38 Issue 1 February 2015 pp 157-161 ...

  12. Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization

    CERN Document Server

    Ng, Y S; Hashim, M A


    Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapor pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. Three ionic liquids with high hydrophobicity were used and their phenol removal efficiency, membrane stability and membrane loss were studied. Besides that, the effects of several parameters, namely feed phase pH, feed concentration, NaOH concentration and stirring speeds on the performance of best ionic liquid membrane were also evaluated. Lastly, an optimization study on bulk ionic liquid membrane was conducted and the maximum phenol removal efficiency was compared with the organic liquid membranes. The preliminary study shows that high phenol extraction and stripping efficiencies of 96.21% and 98.10%, respectively can be achieved by ionic liquid memb...

  13. Application of the penetration theory for gas - Liquid mass transfer without liquid bulk : Differences with system with a bulk

    NARCIS (Netherlands)

    van Elk, E. P.; Knaap, M. C.; Versteeg, G. F.


    Frequently applied micro models for gas-liquid mass transfer all assume the presence of a liquid bulk. However, some systems are characterized by the absence of a liquid bulk, a very thin layer of liquid flows over a solid surface. An example of such a process is absorption in a column equipped with

  14. The dynamic bulk modulus of three glass-forming liquids

    DEFF Research Database (Denmark)

    Niss, Kristine; Christensen, Tage Emil; Dyre, J. C.


    We present dynamic adiabatic bulk modulus data for three organic glass-forming liquids: two van der Waal's liquids, trimethyl-pentaphenyl-trisiloxane (DC705) and dibuthyl phtalate (DBP), and one hydrogen-bonded liquid, 1,2-propanediol (PD). All three liquids are found to obey time-temperature sup......We present dynamic adiabatic bulk modulus data for three organic glass-forming liquids: two van der Waal's liquids, trimethyl-pentaphenyl-trisiloxane (DC705) and dibuthyl phtalate (DBP), and one hydrogen-bonded liquid, 1,2-propanediol (PD). All three liquids are found to obey time...

  15. Separation of Cu2+, Cd2+ and Cr3+ in a Mixture Solution Using a Novel Carrier Poly(Methyl Thiazoleethyl Eugenoxy Acetate) with BLM (Bulk Liquid Membrane) (United States)

    Djunaidi, M. C.; Khabibi; Ulumudin, I.


    The separation process using a novel carrier polyeugenol has active groups N and S has been done with the technique BLM. Polyeugenol has groups active N and S was synthesized from eugenol which is then polymerized into polyeugenol. This polymeric compounds was then acidified become acidic poly (eugenoksi acetate). After the acid formed, then the synthesis was continued by add 4-methyl-5-tiazoleetanol to form esters poly (methyl thiazole eugenoxy ethyl acetate) (PMTEEA). The result of the synthesis was analyzed by FTIR and 1H NMR. This polyester product synthesis was applied as a carrier for separating metal ions Cu2+, Cd2+ and Cr3+ with variations in feed phase pH = 5 and pH = 7 in the membrane of chloroform using techniques BLM. Receiving phase after 24 hours was analyzed by AAS. In variations of feed pH = 5 ions was obtained 66.21% Cd2+, 28.83% Cu2+ and 10.92% of Cr3+, at pH = 7 was obtained 70.77% Cd2+, 30.14% Cu2+, and 3.72% of Cr3+.

  16. Kinetics, Thermodynamics, and Structure of Bulk Metallic Glass Forming Liquids (United States)

    Busch, Ralf; Gallino, Isabella


    Bulk metallic glass forming melts are viscous liquids compared with pure metals and conventional alloys. They show intermediate kinetic fragility and low thermodynamic driving force for crystallization, leading to sluggish crystallization kinetics, leaving time for good glass forming ability and bulk casting thickness. We relate the kinetics to the thermodynamics of the supercooled liquid using the Adam-Gibbs equation. The kinetic fragility is also connected to the structural changes in the liquid and can be quantitatively linked to the robustness of medium-range order in the supercooled liquid with increasing temperature. Liquid-liquid transitions from fragile behavior at high temperature to strong behavior at low temperature in the supercooled liquid and in the vicinity of the glass transition emerge as a common phenomenon.

  17. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino


    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  18. Supported Liquid Membrane Extraction of Anabolic Androgenic ...

    African Journals Online (AJOL)


    Anabolic androgenic compounds, supported liquid membrane, liquid chromatography, electrospray ionization, mass spectrometry. 1. Introduction ... monitoring of some of the anabolic hormones in muscles via pentafluoropropionyl derivatization and ... androgenic steroid hormones involve the use of solid phase extraction ...


    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR


    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  20. Membrane separation of ionic liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart


    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  1. Standard practice for bulk sampling of liquid uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice covers methods for withdrawing representative samples of liquid uranium hexafluoride (UF6) from bulk quantities of the material. Such samples are used for determining compliance with the applicable commercial specification, for example Specification C787 and Specification C996. 1.2 It is assumed that the bulk liquid UF6 being sampled comprises a single quality and quantity of material. This practice does not address any special additional arrangements that might be required for taking proportional or composite samples, or when the sampled bulk material is being added to UF6 residues already in a container (“heels recycle”). 1.3 The number of samples to be taken, their nominal sample weight, and their disposition shall be agreed upon between the parties. 1.4 The scope of this practice does not include provisions for preventing criticality incidents. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of th...

  2. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan


    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  3. Membrane technologies for liquid radioactive waste treatment (United States)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.


    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  4. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara


    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  5. Hollow fibre supported liquid membrane extraction of ...

    African Journals Online (AJOL)

    A simple sample pre-treatment method utilizing hollow fibre supported liquid membrane (HFSLM) was carried out on pharmaceuticals samples comprising of cough syrups (CS1 and CS2) and an anti-inflammatory product (AI). The active ingredients targeted in the extraction process were diphenylhydramine (DPH), ...

  6. Supported liquid membranes technologies in metals removal from liquid effluents

    Directory of Open Access Journals (Sweden)

    de Agreda, D.


    Full Text Available The generation of liquid effluents containing organic and inorganic residues from industries present a potential hazardousness for environment and human health, being mandatory the elimination of these pollutants from the respective solutions containing them. In order to achieve this goal, several techniques are being used and among them, supported liquid membranes technologies are showing their potential for their application in the removal of metals contained in liquid effluents. Supported liquid membranes are a combination between conventional polymeric membranes and solvent extraction. Several configurations are used: flat-sheet supported liquid membranes, spiral wounds and hollow fiber modules. In order to improve their effectiveness, smart operations have been developed: non-dispersive solvent extraction, non-dispersive solvent extraction with strip phase dispersion and hollow fiber renewal liquid membrane. This paper overviewed some of these supported liquid membranes technologies and their applications to the treatment of metal-bearing liquid effluents.

    La generación, por parte de las industrias, de efluentes líquidos conteniendo sustancias orgánicas e inorgánicas, es un peligro potencial tanto para los humanos como para el medio ambiente, siendo necesaria la eliminación de estos elementos tóxicos de las disoluciones que los contienen. Para conseguir este fin, se están aplicando diversas técnicas y entre ellas las tecnologías de membranas líquidas soportadas, están demostrando sus aptitudes para la eliminación de metales contenidos en efluentes líquidos. Las membranas líquidas soportadas, resultan de la unión de las membranas poliméricas y de la tecnología de extracción líquido-líquido. Este tipo de membranas se pueden utilizar en diversas configuraciones: plana, módulo en fibra hueca y módulo en espiral y para aumentar su efectividad se están desarrollando las llamadas operaciones avanzadas: extracción no

  7. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers

    Directory of Open Access Journals (Sweden)

    J.M. Ilnytskyi


    Full Text Available A coarse-grained simulation model for a third generation liquid crystalline dendrimer (LCDr is presented. It allows, for the first time, for a successful molecular simulation study of a relation between the shape of a polyphilic macromolecular mesogen and the symmetry of a macroscopic phase. The model dendrimer consists of a soft central sphere and 32 grafted chains each terminated by a mesogen group. The mesogenic pair interactions are modelled by the recently proposed soft core spherocylinder model of Lintuvuori and Wilson [J. Chem. Phys, 128, 044906, (2008]. Coarse-grained (CG molecular dynamics (MD simulations are performed on a melt of 100 molecules in the anisotropic-isobaric ensemble. The model LCDr shows conformational bistability, with both rod-like and disc-like conformations stable at lower temperatures. Each conformation can be induced by an external aligning field of appropriate symmetry that acts on the mesogens (uniaxial for rod-like and planar for disc-like, leading to formation of a monodomain smectic A (SmA or a columnar (Col phase, respectively. Both phases are stable for approximately the same temperature range and both exhibit a sharp transition to an isotropic cubic-like phase upon heating. We observe a very strong coupling between the conformation of the LCDr and the symmetry of a bulk phase, as suggested previously by theory. The study reveals rich potential in terms of the application of this form of CG modelling to the study of molecular self-assembly of liquid crystalline macromolecules.

  8. Liquid immiscibility in model bilayer lipid membranes (United States)

    Veatch, Sarah L.

    There is growing evidence that cell plasma membranes are laterally organized into "raft" regions in which particular lipids and proteins are concentrated. These domains have sub-micron dimensions and have been implicated in vital cell functions. Similar liquid domains are observed in model bilayer membrane mixtures that mimick cellular lipid compositions. In model membranes, domains can be large (microns) and can readily form in the absence of proteins. This thesis presents studies of liquid immiscibility in model membrane systems using two experimental methods. By fluorescence microscopy, this thesis documents that miscibility transitions occur in a wide variety of ternary lipid mixtures containing high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol. I have constructed detailed miscibility phase diagrams for three separate ternary lipid mixtures (DOPC/DPPC/Chol, DOPC/PSM/Chol, and POPC/PSM/Chol). Phase separation is also observed in membranes of lipids extracted from human erythrocytes. NMR experiments probe lipid order and verify the coexistence of a saturated lipid and cholesterol rich liquid ordered (Lo) phase with a more disordered, unsaturated lipid rich liquid crystalline (Lalpha) phase at low temperatures. These experiments also find multiple thermodynamic transitions and lipid organization on different length-scales. This complexity is revealed because fluorescence microscopy and NMR probe lipid order at different length-scales (>1mum vs. ˜100nm). NMR detects small domains (˜80nm) at temperatures just below the miscibility transition, even though micron-scale domains are observed by fluorescent microscopy. NMR does detect large-scale ("100nm) demixing, but at a lower temperature. In addition, it has long been known that >10nm length-scale structure is present in many lipid mixtures containing cholesterol and at least one additional lipid species, though it is shown here that only a subset of

  9. Some aspects of ionic liquid blends and additives influencing bulk conductivity of commercial base paper


    Javaid, Salman


    In this study, bulk conductivity of commercial base paper impregnated with different ionic liquids blends and additives, through bench coating was investigated. Bulk conductivity of base paper, ion conductive paper and surface sized ion conductive papers with and without the influence of calendering were evaluated at different concentrations of ionic liquids using at resistivity cell and four point probe technique. It was shown that bulk conductivity of base paper was increased by increasing ...

  10. Liquid Membrane System for Extraction and Electrodeposition of Lead(II During Electrodialysis

    Directory of Open Access Journals (Sweden)

    Sadyrbaeva Tatiana


    Full Text Available A novel method for lead(II removal from aqueous acidic solutions is presented. The method involves electrodialysis through bulk liquid membranes accompanied by electrodeposition of metal from the cathodic solution. Solutions of di(2-ethylhexylphosphoric acid with admixtures of tri-n-octylamine in 1,2-dichloroethane were used as the liquid membranes. The effects of the main electrodialysis parameters as well as of the composition of the liquid membranes and aqueous solutions on the lead(II transport rate are studied. The optimal conditions are determined. A possibility of effective single-stage transfer of lead(II through the liquid membrane into dilute solutions of perchloric, nitric and acetic acids is demonstrated. Dense and adherent lead electrodeposits are obtained from perchloric acid solutions. Maximum extraction degree of 93 % and electrodeposition degree of ~60 % are obtained during 5 h of electrodialysis.

  11. Composite hollow fiber membranes for organic solvent-based liquid-liquid extraction

    NARCIS (Netherlands)

    He, T.; Bolhuis-Versteeg, Lydia A.M.; Mulder, M.H.V.; Wessling, Matthias


    Instability issues of liquid membranes extraction significantly limit its wide application in industry. We report research on the application of a new composite hollow fiber membrane to stabilizing liquid membrane extraction. These type of composite membranes have either a polysulfone (PSf)

  12. A microgrooved membrane based gas–liquid contactor

    NARCIS (Netherlands)

    Jani, J.M.; Wessling, Matthias; Lammertink, Rob G.H.


    This research presents an approach for applying microgrooved membranes for improved gas–liquid contacting. The study involves analysis of the performance of the microdevice by quantifying the flux enhancement for different membrane configurations. Two kinds of configurations, continuous and

  13. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.


    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquids * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.797, year: 2016

  14. High-throughput liquid-liquid extraction in 96-well format: Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Andresen, Alf Terje; Dahlgren, Anders


    Parallel artificial liquid membrane extraction (PALME) is a miniaturized version of liquid–liquid extraction (LLE) and is based on two 96-well plates in a sandwich-like configuration. With a very simple workflow, 96 samples can be processed simultaneously in PALME, providing analyte enrichment......, highly efficient sample cleanup, and direct compatibility with liquid chromatography–mass spectrometry (LC–MS). The consumption of hazardous organic solvents is also almost eliminated using PALME as the sample preparation technique. This article summarizes current experiences with PALME, based on work...

  15. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin


    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  16. Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors

    NARCIS (Netherlands)

    Dindore, V.Y.; Brilman, Derk Willem Frederik; Geuzebroek, F.H.; Versteeg, Geert


    Membrane gas–liquid contactors can provide very high interfacial area per unit volume, independent regulation of gas and liquid flows and are insensitive to module orientation, which make them very attractive in comparison with conventional equipments for offshore application. However, the membrane

  17. Olefin-selective membranes in gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, Rijanne; Wessling, Matthias


    The application of olefin-selective membrane materials in gas-liquid membrane contactors for the separation of paraffins and olefins using a silver nitrate solution as the absorption liquid turned out to be very successful, especially with respect to the olefin/paraffin selectivity obtainable.

  18. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere (United States)

    Krenn, Angela G.


    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  19. SWOT analysis for safer carriage of bulk liquid chemicals in tankers. (United States)

    Arslan, Ozcan; Er, Ismail Deha


    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  20. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli


    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  1. Descemet's membrane detachment managed with perfluro-n-octane liquid. (United States)

    Kumar, M Ashok; Vaithianathan, Vanaja


    We report the case of a 68-year-old male who developed Descemet's membrane detachment after temporal clear corneal phacoemulsification which did not settle with air or viscoelastic injection. The Descemet's membrane was successfully reattached with restoration of 20/50 vision with the help of perfluro-n-octane liquid. To our knowledge, this is the first such case to be reported.

  2. Bulk and interfacial molecular structure near liquid-liquid critical points

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares-Papayanopoulos, Emilio


    Critical behaviour occurs when two coexisting phases merge identity without abrupt change in physical properties. The detail of this behaviour is nowadays considered universal, being dominated by the divergence of the correlation length {xi}. Following this universality, the detailed behaviour can be studied experimentally using any convenient system. For that reason, the study of fluids, and in particular fluid mixtures, offers a useful platform since critical behaviour in such systems can often be studied at convenient temperatures and pressures. Although criticality is a consequence of the divergence of {xi}, and so in a sense is a large-scale phenomenon, nevertheless it has an influence on events at molecular level. This aspect of criticality has received relatively little study compared to the enormous effort expended over the past thirty years in elucidating the macroscopic or phenomenological aspects of criticality. The signature of criticality at molecular level is the central theme running through this research.The aim of the work described in this thesis was to investigate the surface and transport properties of near-critical binary liquid mixtures. The surface properties mainly concerned the adsorption and wetting behaviour at the vapour-liquid and liquid-solid interfaces. The transport property studied was the shear viscosity at bulk or macroscopic level and the corresponding property at molecular or microscopic level, the micro viscosity. The work presented in this thesis comprises the experimental measurements and the theoretical interpretations drawn from the results. The experimental work was varied, using both classical and modern techniques. The theoretical interpretation was used as directed towards validating and comparing the results of the experimental programme with the predictions of the current classical critical-state theories. The systems investigated have been mostly alkane + perfluoroalkane mixtures or mixtures with very similar

  3. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller


    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...... curvature was essential for enrichment in raft-like liquid-ordered phases; enrichment was driven by relief of lateral pressure upon anchor insertion and most likely affects the localization of lipidated proteins in general....

  4. Membrane protein stoichiometry studied in intact mammalian cells using liquid-phase electron microscopy. (United States)

    DE Jonge, N


    Receptor membrane proteins in the plasma membranes of cells respond to extracellular chemical signals by conformational changes, spatial redistribution, and (re-)assembly into protein complexes, for example, into homodimers (pairs of the same protein type). The functional state of the proteins can be determined from information about how subunits are assembled into protein complexes. Stoichiometric information about the protein complex subunits, however, is generally not obtained from intact cells but from pooled material extracted from many cells, resulting in a lack of fundamental knowledge about the functioning of membrane proteins. First, functional states may dramatically differ from cell to cell on account of cell heterogeneity. Second, extracting the membrane proteins from the plasma membrane may lead to many artefacts. Liquid-phase scanning transmission electron microscopy (STEM), in short liquid STEM, is a new technique capable of determining the locations of individual membrane proteins within the intact plasma membranes of cells in liquid. Many tens of whole cells can readily be imaged. It is possible to analyse the stoichiometry of membrane proteins in single cells while accounting for heterogenic cell populations. Liquid STEM was used to image epidermal growth factor receptors in whole COS7 cells. A study of the dimerisation of the HER2 protein in breast cancer cells revealed the presence of rare cancer cells in which HER2 was in a different functional state than in the bulk cells. Stoichiometric information about receptors is essential not only for basic science but also for biomedical application because they present many important pharmaceutical targets. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. Fabrication of Greener Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, DooLi


    Membrane technology plays a crucial role in different separation processes such as biotechnology, pharmaceutical, and food industries, drinking water supply, and wastewater treatment. However, there is a growing concern that solvents commonly used for membrane fabrication, such as dimethylformamide (DMF), dimethylacetamide (DMAc), and 1-methyl-2-pyrrolidone (NMP), are toxic to the environment and human health. To explore the possibility of substituting these toxic solvents by less toxic or safer solvents, polymers commonly used for membrane fabrication, such as polyacrylonitrile (PAN), cellulose acetate (CA), polyethersulfone (PES), and poly(ether imide sulfone) (EXTEMTM), were dissolved in ionic liquids. Flat sheet and hollow fiber membranes were then fabricated. The thermodynamics of the polymer solutions, the kinetics of phase inversion and other factors, which resulted in significant differences in the membrane structure, compared to those of membranes fabricated from more toxic solvents, were investigated. Higher water permeance with smaller pores, unique and uniform morphologies, and narrower pore size distribution, were observed in the ionic liquid-based membranes. Furthermore, comparable performance on separation of peptides and proteins with various molecular weights was achieved with the membranes fabricated from ionic liquid solutions. In summary, we propose less hazardous polymer solutions to the environment, which can be used for the membrane fabrication with better performance and more regular morphology.

  6. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias


    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  7. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)


    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  8. Performance evaluation of organic emulsion liquid membrane on phenol removal

    CERN Document Server

    Ng, Y S; Hashim, M A


    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.

  9. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H2 Mixture (United States)

    Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu


    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H2/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H2 (>17,000) in a binary mixture system based on a solution–diffusion mechanism with improved durability over the supported ionic liquid membrane. PMID:28771202

  10. Supported liquid inorganic membranes for nuclear waste separation (United States)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K


    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  11. Descemet's membrane detachment managed with perfluro-n-octane liquid


    M Ashok Kumar; Vanaja Vaithianathan


    We report the case of a 68-year-old male who developed Descemet′s membrane detachment after temporal clear corneal phacoemulsification which did not settle with air or viscoelastic injection. The Descemet′s membrane was successfully reattached with restoration of 20/50 vision with the help of perfluro-n-octane liquid. To our knowledge, this is the first such case to be reported.

  12. CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. (United States)

    Patel, Sandeep; Brooks, Charles L


    A first-generation fluctuating charge (FQ) force field to be ultimately applied for protein simulations is presented. The electrostatic model parameters, the atomic hardnesses, and electronegativities, are parameterized by fitting to DFT-based charge responses of small molecules perturbed by a dipolar probe mimicking a water dipole. The nonbonded parameters for atoms based on the CHARMM atom-typing scheme are determined via simultaneously optimizing vacuum water-solute geometries and energies (for a set of small organic molecules) and condensed phase properties (densities and vaporization enthalpies) for pure bulk liquids. Vacuum solute-water geometries, specifically hydrogen bond distances, are fit to 0.19 A r.m.s. error, while dimerization energies are fit to 0.98 kcal/mol r.m.s. error. Properties of the liquids studied include bulk liquid structure and polarization. The FQ model does indeed show a condensed phase effect in the shifting of molecular dipole moments to higher values relative to the gas phase. The FQ liquids also appear to be more strongly associated, in the case of hydrogen bonding liquids, due to the enhanced dipolar interactions as evidenced by shifts toward lower energies in pair energy distributions. We present results from a short simulation of NMA in bulk TIP4P-FQ water as a step towards simulating solvated peptide/protein systems. As expected, there is a nontrivial dipole moment enhancement of the NMA (although the quantitative accuracy is difficult to assess). Furthermore, the distribution of dipole moments of water molecules in the vicinity of the solutes is shifted towards larger values by 0.1-0.2 Debye in keeping with previously reported work. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 25: 1-15, 2004

  13. Membrane contactor assisted extraction/reaction process employing ionic liquids (United States)

    Lin, Yupo J [Naperville, IL; Snyder, Seth W [Lincolnwood, IL


    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  14. Secondary and lyotropic liquid crystal membranes for improved aqueous separations (United States)

    Nemade, Parag Ramesh

    An effective membrane separation process should have high flux (i.e., volume filtered per unit membrane surface area per unit time) and selectivity (i.e., passage of the desired species and rejection of undesired species). This dissertation examined two approaches, secondary membranes and lyotropic liquid crystal membranes, for improving flux and selectivity in aqueous liquid separations. The first part of my work emphasizes the use of pre-deposited secondary membranes and backflushing for controlling membrane fouling in microfiltration and ultrafiltration of biological mixtures. Use of secondary membranes increased the permeate flux in microfiltration by several fold. Protein transmission is also enhanced due to the presence of the secondary membrane, and the amount of protein recovered is more than twice that obtained during filtration of protein-only solutions under otherwise identical conditions. In ultrafiltration, the flux enhancement due to secondary membranes is 50%, or less. For the second part of my research, I developed and evaluated polymerized lyotropic liquid crystal (LLC) thin-film composite membranes. LLC assemblies provide an opportunity to make nanoporous polymer membranes with precise control over chemical and structural features on the nanometer scale, which is currently lacking in commercial reverse osmosis (RO) and nanofiltration (NF) membranes available today. These LLC composite membranes are prepared by photopolymerization of solution-cast films of LLC monomer on an ultrafiltration support membrane. These LLC membranes appeared to exhibit almost linearly increasing ionic rejection based on ionic diameter. LLC monomer was modified to achieve a 15% reduction in channel diameter, through the use of a larger multivalent Eu3+ cation as the carboxylate counterion. However, the monomers synthesized required use of solvents such as tetrahydrofuran, which resulted in the dissolution and damage of the support membranes used. Therefore, this direction

  15. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  16. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region (United States)

    Cheng, Ming; Zhang, Shi-hong; Wang, Rui-xue


    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  17. Survey of transportation of liquid bulk chemicals in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Posti, A.; Hakkinen, J.


    This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals

  18. On-line automated sample preparation for liquid chromatography using parallel supported liquid membrane extraction and microporous membrane liquid-liquid extraction. (United States)

    Sandahl, Margareta; Mathiasson, Lennart; Jönsson, Jan Ake


    An automated system was developed for analysis of non-polar and polar ionisable compounds at trace levels in natural water. Sample work-up was performed in a flow system using two parallel membrane extraction units. This system was connected on-line to a reversed-phase HPLC system for final determination. One of the membrane units was used for supported liquid membrane (SLM) extraction, which is suitable for ionisable or permanently charged compounds. The other unit was used for microporous membrane liquid-liquid extraction (MMLLE) suitable for uncharged compounds. The fungicide thiophanate methyl and its polar metabolites carbendazim and 2-aminobenzimidazole were used as model compounds. The whole system was controlled by means of four syringe pumps. While extracting one part of the sample using the SLM technique. the extract from the MMLLE extraction was analysed and vice versa. This gave a total analysis time of 63 min for each sample resulting in a sample throughput of 22 samples per 24 h.

  19. Description of the Gas Transport through Dynamic Liquid Membrane.

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Setničková, Kateřina; Tseng, H.-H.; Šíma, Vladimír; Petričkovič, Roman


    Roč. 184, AUG 31 (2017), s. 152-157 ISSN 1383-5866 Grant - others:AV ČR(CZ) MOST-16-04 Program:Bilaterální spolupráce Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * solurion-diffusion model Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  20. Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)


    The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)

  1. High Bulk Modulus of Ionic Liquid and Effects on Performance of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Milan Kambic


    Full Text Available Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication, and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus, compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems’ dynamic responses.

  2. Hollow fiber membrane contactor as a gas-liquid model contactor


    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.


    Microporous hollow fiber gas-liquid membrane contactors have a fixed and well-defined gas-liquid interfacial area. The liquid flow through the hollow fiber is laminar, thus the liquid side hydrodynamics are well known. This allows the accurate calculation of the fiber side physical mass transfer coefficient from first principles. Moreover, in the case of gas-liquid membrane contactor, the gas-liquid exposure time can be varied easily and independently without disturbing the gas-liquid interfa...

  3. Kinetics of Chromium(III Transport Through a Liquid Membrane Containing DNNSA as a Carrier

    Directory of Open Access Journals (Sweden)


    Full Text Available Kinetics of Cr(III ions transport through a bulk liquid membrane containing dinonylnaphthalenesulfonic acid (DNNSA as a carrier, flowing over aqueous phases, has been examined. Special attention has been paid to the effect of the membrane’s velocity flow on the chromium concentration decrease in a feed phase. For the description of relationships of chromium(III concentration in particular phases with the time, a model based on the assumption of consecutive first-order reactions was proposed. Satisfactory compatibility of experiments and model results have been obtained both for the membrane flow velocities below 0.0034 m·s-1 when the interfaces begin to fluctuate slightly and for low initial Cr(III concentration in the feed phase.

  4. Kinetics of Chromium(III) Transport Through a Liquid Membrane Containing DNNSA as a Carrier (United States)

    Religa, Paweł; Gawroński, Roman; Gierycz, Paweł


    Kinetics of Cr(III) ions transport through a bulk liquid membrane containing dinonylnaphthalenesulfonic acid (DNNSA) as a carrier, flowing over aqueous phases, has been examined. Special attention has been paid to the effect of the membrane’s velocity flow on the chromium concentration decrease in a feed phase. For the description of relationships of chromium(III) concentration in particular phases with the time, a model based on the assumption of consecutive first-order reactions was proposed. Satisfactory compatibility of experiments and model results have been obtained both for the membrane flow velocities below 0.0034 m·s−1 when the interfaces begin to fluctuate slightly and for low initial Cr(III) concentration in the feed phase. PMID:19399232

  5. Separation of {sup 195(m,g),197m}Hg from bulk gold target by liquid-liquid extraction using hydrophobic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaustab; Lahiri, Susanta [Saha Institute of Nuclear Physics, Kolkata (India). Chemical Sciences Div.; Maiti, Moumita [Indian Institute of Technology Roorkee, Roorkee (India). Dept. of Physics


    The {sup 195(m,g),197m}Hg radionuclides were produced in accelerator when natural Au foil was irradiated with 23 MeV protons. The no-carrier-added (NCA) Hg radioisotopes were separated from the bulk Au target by liquid-liquid extraction (LLX) employing hydrophobic RTILs 1-butyl-3-methylimidazolium hexafluorophosphate([C{sub 4}mim][PF{sub 6}]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([bmim][Tf{sub 2}N]) as extractant with HNO{sub 3} and HCl. In each case, bulk Au was extracted into the RTIL phase leaving NCA Hg-radionuclides in the aqueous phase. The RTILs were recovered by washing with 1 M K{sub 2}S{sub 2}O{sub 5} and freshly prepared 1 M FeSO{sub 4}. The reported separation methods follow green chemistry approach as it does not involve any volatile reagents.

  6. Theoretical and Experimental Approaches of Liquid Entry Pressure Determination in Membrane Distillation Processes

    National Research Council Canada - National Science Library

    Gábor Rácz; Steffen Kerker; Zoltán Kovács; Gyula Vatai; Mehrdad Ebrahimi; Peter Czermak


      Membrane distillation (MD) is a thermally driven separation process that employs a hydrophobic membrane as a barrier forthe liquid phase, allowing only vapor phase to pass through the membrane pores...

  7. Selection of top layer materials for gas-liquid membrane contactors

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Folkers, Albertje; Breebaart, I.; Mulder, M.H.V.; Wessling, Matthias


    Gas-liquid membrane contactors frequently suffer from wetting of the microporous membrane. Stabilization layers at the liquid side of the membrane potentially prevent this wetting. We applied such stabilized membranes to the separation of olefins and paraffins using AgNO3 solutions as absorption

  8. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology. (United States)

    Qi, Jianping; Lu, Y I; Wu, Wei


    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  9. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza


    Full Text Available This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.

  10. X-ray emission spectroscopy of bulk liquid water in "no-man's land". (United States)

    Sellberg, Jonas A; McQueen, Trevor A; Laksmono, Hartawan; Schreck, Simon; Beye, Martin; DePonte, Daniel P; Kennedy, Brian; Nordlund, Dennis; Sierra, Raymond G; Schlesinger, Daniel; Tokushima, Takashi; Zhovtobriukh, Iurii; Eckert, Sebastian; Segtnan, Vegard H; Ogasawara, Hirohito; Kubicek, Katharina; Techert, Simone; Bergmann, Uwe; Dakovski, Georgi L; Schlotter, William F; Harada, Yoshihisa; Bogan, Michael J; Wernet, Philippe; Föhlisch, Alexander; Pettersson, Lars G M; Nilsson, Anders


    The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

  11. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior (United States)

    Haskins, Justin B.; Lawson, John W.


    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  12. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor (United States)

    Wiencek, John M.; Hu, Shih-Yao


    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  13. Liquid crystalline polymer electrolyte membranes with ion gating properties (United States)

    Cao, Jinwei; Piedrahita, Camilo; Koterasawa, Kagami; Freedman, Abegel; Martins, Juliana; Kyu, Thein; Pugh, Coleen; Adachi, Kaoru; Tsukahara, Yasuhisa

    Polymer electrolyte membranes (PEMs) with ion conducting channels have been fabricated via photo-polymerization of liquid crystalline monomers, synthesized in our laboratory. The monomers consist of polyethylene glycol segments as the ion conduction medium and photoactive azobenzene mesogen. Guided by the phase diagram of azobenzene LC and nematic LC, ion conducting channels are formed in the liquid crystalline phases. Ionic conductivities of the azobenzene LCs were measured in trans-state and cis-state using AC impedance spectroscopy. By applying UV or visible light, the opening/closing of ion channels may be controlled through rapid trans-cis isomerization of azobenzene mesogen by light irradiation. Therefore, the ion conduction ability of the PEMs can be optically controlled, affording ion gating capability of the PEMs. These PEMs can act as the ion conducting channels on cell membranes and, therefore, may be used to construct artificial neurons. Supported by NSF-DMR 1502543.

  14. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.


    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  15. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli


    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl-3-methylimidalzolium thiocyanate ([EMIM]SCN), 1-butyl-3-methylimidalzolium thiocyanate ([BMIM]SCN), and 1-ethyl-3-methylimidalzolium acetate ([EMIM]OAc). The following polymer solution parameters were evaluated to optimize the manufacture: Gibbs free energy of mixing (G), intrinsic viscosity ([]) and hydrodynamic diameter. Membranes with sponge-like structure and narrow pore size distribution were obtained from solutions in [EMIM]SCN. They were tested for separation of proteins and deoxyribonucleic acids (DNA). Due to the polymer stability, we foresee that applications in more demanding chemical separations would be possible. [EMIM]SCN was 96 % purified and recovered after the membrane fabrication, contributing to the sustainability of the whole manufacturing process.

  16. Solar assisted liquid desiccant cooling using clay based membranes

    Directory of Open Access Journals (Sweden)

    Priya S. Shanmuga


    Full Text Available The environmental concerns have led to the urge of the usage of non-conventional energy resources like solar, wind, thermal, geothermal etc. which provide enormous source of energy without causing any further diminution of the environment. Instead of the conventional HVAC systems that cause colossal environmental perils, usage of liquid desiccants in coming in vogue whereby reducing ecological threats. Moreover, solar assisted systems provide further impulse to such systems. This paper discusses about the various comparisons between liquid desiccants: Lithium chloride, Potassium formate and Calcium chloride and concludes that potassium formate is the best desiccant to be used among the three. Potassium formate (HCOOK is used which is cheaper and less corrosive as compared to the other aqueous salts, and has a negative crystallization temperature. Potassium formate is a new liquid desiccant and thus, not much research is available currently. The weather conditions of Manipal provide an appropriate condition for the experimentations of solar aided liquid desiccant evaporative cooling systems due to its humid climate and intense solar radiation obtained. The small scale experimentation also encounters the problem of liquid desiccant carryover by the air flow, with the help of clay based membranes which are again cheap, environmentally benign and obtained in a facile way. The projected system takes complete advantage of pure solar energy aimed at the regeneration of liquid desiccant.

  17. Three unrelated perturbations similarly uncouple fluid, bulk-membrane, and receptor endosomal flow in rat fetal fibroblasts

    NARCIS (Netherlands)

    Cupers, P; Veithen, A; Hoekstra, D; Baudhuin, P; Courtoy, PJ


    We have compared the effects of three perturbations (treatment with 2 mu M monensin, potassium depletion, and incubation in 0.35 M NaCl) on recycling of internalized fluid-phase, bulk-membrane, and receptor-mediated tracers in rat fetal fibroblasts. Monensin accelerated 2-fold the regurgitation of

  18. Topological polymer dispersed liquid crystals with bulk nematic defect lines pinned to handlebody surfaces. (United States)

    Campbell, Michael G; Tasinkevych, Mykola; Smalyukh, Ivan I


    Polymer dispersed liquid crystals are a useful model system for studying the relationship between surface topology and defect structures. They are comprised of a polymer matrix with suspended spherical nematic drops and are topologically constrained to host defects of an elementary hedgehog charge per droplet, such as bulk or surface point defects or closed disclination loops. We control the genus of the closed surfaces confining such micrometer-sized nematic drops with tangential boundary conditions for molecular alignment imposed by the polymer matrix, allowing us to avoid defects or, on the contrary, to generate them in a controlled way. We show, both experimentally and through numerical modeling, that topological constraints in nematic microdrops can be satisfied by hosting topologically stable half-integer bulk defect lines anchored to opposite sides of handlebody surfaces. This enriches the interplay of topologies of closed surfaces and fields with nonpolar symmetry, yielding new unexpected configurations that cannot be realized in vector fields, having potential implications for topologically similar defects in cosmology and other fields.

  19. Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region

    DEFF Research Database (Denmark)

    Nishiyama, N.; Inoue, A.; Jiang, Jianzhong


    In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus......, and Lame parameter), together with Debye temperature, gradually decrease with increasing temperature through the glass transition temperature as the Poisson's ratio increases. The behavior of the velocity of transverse wave vs. temperature in the supercooled liquid region could be explained by viscosity...

  20. Potential of combining of liquid membranes and molecularly imprinted polymers in extraction of 17beta-estradiol from aqueous samples. (United States)

    Nemulenzi, Olga; Mhaka, Byron; Cukrowska, Ewa; Ramström, Olof; Tutu, Hlanganani; Chimuka, Luke


    The potential of combination of liquid membranes (microporous membrane liquid-liquid extraction) and molecularly imprinted polymers (MIPs) was performed using 17beta-estradiol (E2) as model compound. The model compound was extracted from aqueous sample through a hydrophobic porous membrane that was impregnated with hexane/ethyl acetate (3:2), which also formed part of the acceptor phase. In the acceptor phase, the compound was bound onto MIP particles that were also part of the organic phase. The potential of such combination was optimised for the type and amount of MIP particles in the organic acceptor phase, the extraction time, and the type of organic acceptor solvent. Ultrasound assisted binding of E2 onto MIP particles was also investigated. MIPs prepared by precipitation polymerization were found to be superior to those prepared by bulk polymerization. Increase in the extraction time and the amount of MIP particles in the acceptor phase led to more E2 binding onto the MIP particles. Hexane/ethyl acetate (3:2) as an organic acceptor was found to give higher E2 binding onto MIP particles compared to toluene, diethyl ether, and hexane. Ultrasound was furthermore found to increase the binding of E2 onto MIP particles. The selectivity of the technique was demonstrated by extracting wastewater and where clean chromatograms were obtained compared to liquid membrane extractions (SLMs) alone.

  1. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste. (United States)

    Bader, M S H


    A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.

  2. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. (United States)

    Mansourizadeh, A; Ismail, A F


    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  3. Study on removal of cadmium by hybrid liquid membrane process. (United States)

    Mortaheb, Hamid R; Zolfaghari, Alireza; Mokhtarani, Babak; Amini, Mohammad H; Mandanipour, Valiollah


    Removal of cadmium as a hazardous heavy metal is studied by applying a new design of hybrid cell for liquid membrane process. Tri-iso-octyl amine (TIOA) is used as the carrier in the organic phase. The concentration of cadmium in the samples is measured by atomic absorption spectroscopy. The effect of various parameters including type of supporting membrane, pH of feed and stripping phases, initial concentration of cadmium, carrier concentration, solvent nature, and also organic film resistance on mass transfer rate and removal efficiency are studied. The effect of temperature on mass transfer flux is studied by proposing a prediction model. The optimum carrier concentration is found to be about 0.05 M. The appropriate values of pH for feed and stripping phases are about 3 and 13, respectively. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. Emulsion liquid membrane for textile dye removal: Stability study (United States)

    Kusumastuti, Adhi; Syamwil, Rodia; Anis, Samsudin


    Although textile dyes is basically available in very low concentration; it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. The drop size was measured by the aid of microscope and image J software. Initially, methylene blue in simulated wastewater was extracted using a stirrer. Methylene blue concentration was determined using spectrophotometer. The research obtained optimal emulsion at surfactant concentration of 4 wt. %, kerosene as diluent, emulsification time of 30 min, emulsification speed of 2000 rpm. The lowest membrane breakage and the longest stability time were about 0.11% and 150 min, respectively.

  5. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)


    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  6. Liquid membranes and the treatment of metal-bearing wastewaters

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.


    Full Text Available Liquid membrane technologies are gaining a prominent role as a separation technique for the treatment of metal-contained liquid effluents. The present work describes the most important of technologies, the general mechanisms for the metal extraction and some of their applications in the separation of metals.

    Las tecnologías de membranas líquidas están ganando importancia en el tratamiento de efluentes líquidos que contienen metales. En el presente trabajo se describen las más importantes de estas tecnologías, los mecanismos para la extracción de los metales y algunas de sus aplicaciones en la separación de metales.

  7. Liquid-liquid extraction of uranium(VI) in the system with a membrane contactor. (United States)

    Biełuszka, Paweł; Zakrzewska, Grażyna; Chajduk, Ewelina; Dudek, Jakub

    Raising role of the nuclear power industry, including governmental plans for the construction of first nuclear power plant in Poland, creates increasing demand for the uranium-based nuclear fuels. The project implemented by Institute of Nuclear Chemistry and Technology concerns the development of effective methods for uranium extraction from low-grade ores and phosphorites for production of yellow cake-U 3 O 8 . The Liqui-Cel ® Extra-Flow 2.5 × 8 Membrane Contactor produced by CELGARD LLC (Charlotte, NC) company is the main component of the installation for liquid-liquid extraction applied for processing of post leaching liquors. In the process of membrane extraction the uranyl ions from aqueous phase are transported through the membrane into organic phase. The flow of two phases in the system was arranged in co-current mode. The very important element of the work was a selection of extracting agents appropriate for the membrane process. After preliminary experiments comprising tests of membrane resistivity and determination of extraction efficiency, di(2-ethylhexyl)phosphoric acid was found to be most favourable. An important aspect of the work was the adjustment of hydrodynamic conditions in the capillary module. To avoid the membrane wettability by organic solvent and mixing two phases equal pressure drops along the membrane module to minimize the transmembrane pressure, were assumed. Determination of pressure drop along the module was conducted using Bernoulli equation. The integrated process of extraction/re-extraction conducted in continuous mode with application of two contactors was designed.

  8. FTIR and ESEM Analysis of soil moisture Microscopic conservation feature with liquid membrane

    Directory of Open Access Journals (Sweden)

    Gu Jian


    Full Text Available Liquid membrane applied in soil has a good soil moisture conservation and evaporation suppression performance. Application of spectrum analysis technology to understand its structure and micro morphological characteristics will be help to reveal the soil moisture conservation mechanism of liquid membrane. In this paper, we used the three types of liquid membrane as the research object based on the laboratory preparation, with infrared spectrometer (FTIR and environmental scanning electron microscope (ESEM as the means, analysis the soil moisture mechanism of liquid membrane. The results showed that the -OH between the CMC and PVA generated intermolecular hydrogen bonds, the formation of hydrogen bonds between molecules of the two components strengthened the two-phase’s compatibility, increasing the liquid membrane’s effective groups and forming a dense mesh structure.ESEM observation showed that liquid membrane can effectively cementing soil particles, generating the soil-membrane structure, reducing soil moisture to evaporate, improve soil moisture conservation performance.

  9. One-step extraction of polar drugs from plasma by Parallel Artificial Liquid Membrane Extraction

    DEFF Research Database (Denmark)

    Pilařová, Veronika; Sultani, Mumtaz; Ask, Kristine Skoglund


    for extraction of polar basic drugs was developed in the present work. The basic drugs hydralazine, ephedrine, metaraminol, salbutamol, and cimetidine were used as model analytes, and were extracted from alkalized human plasma into an aqueous solution via the supported liquid membrane. The extraction......The new microextraction technique named parallel artificial liquid membrane extraction (PALME) was introduced as an alternative approach to liquid-liquid extraction of charged analytes from aqueous samples. The concept is based on extraction of analytes across a supported liquid membrane sustained...... in the pores of a thin polymeric membrane, a well-known extraction principle also used in hollow fiber liquid-phase microextraction (HF-LPME). However, the new PALME technique offers a more user-friendly setup in which the supported liquid membrane is incorporated in a 96 well plate system. Thus, high...

  10. Comparative viscoelasticity studies: Corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces (United States)

    A comparative study of both the bulk and air/liquid interfacial rheological responses was carried out by using four kinds of high molecular weight and highly branched polysaccharide emulsifiers, (a) corn fiber gum (CFG), (b) octenyl succinate anhydride-modified starch (OSA-s), (c) gum arabic (GA) an...

  11. Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof (United States)

    Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)


    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.

  12. Hollow fibre membrane contactor as a gas-liquid model contactor

    NARCIS (Netherlands)

    Dindore, V.Y.; Brilman, Derk Willem Frederik; Versteeg, Geert


    Microporous hollow fiber gas–liquid membrane contactors have a fixed and well-defined gas–liquid interfacial area. The liquid flow through the hollow fiber is laminar, thus the liquid side hydrodynamics are well known. This allows the accurate calculation of the fiber side physical mass transfer

  13. Hollow fiber membrane contactor as a gas-liquid model contactor

    NARCIS (Netherlands)

    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.


    Microporous hollow fiber gas-liquid membrane contactors have a fixed and well-defined gas-liquid interfacial area. The liquid flow through the hollow fiber is laminar, thus the liquid side hydrodynamics are well known. This allows the accurate calculation of the fiber side physical mass transfer

  14. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells (United States)

    Belieres, Jean-Philippe


    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  15. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S


    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  16. Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors

    NARCIS (Netherlands)

    Dindore, V.Y.; Brilman, D.W.F.; Geuzebroek, F.H.; Versteeg, G.F.


    Membrane gas–liquid contactors can provide very high interfacial area per unit volume, independent regulation of gas and liquid flows and are insensitive to module orientation, which make them very attractive in comparison with conventional equipments for offshore application. However, the membrane

  17. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD


    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  18. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)


    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture

    KAUST Repository

    Karunakaran, Madhavan


    Advanced membrane systems with high flux and sufficient selectivity are required for industrial gas separation processes. In order to achieve high flux and high selectivity, the membrane material should be as thin as possible and it should have selective sieving channels and long term stability. This could be achieved by designing a three component material consisting of a blend of an ionic liquid and graphene oxide covered by a highly permeable low selective polymeric coating. By using a simple dip coating technique, we prepared high flux and CO selective ultrathin graphene oxide (GO)/ionic liquid membranes on a porous ultrafiltration support. The ultrathin composite membranes derived from GO/ionic liquid complex displays remarkable combinations of permeability (CO flux: 37 GPU) and selectivity (CO/N selectivity: 130) that surpass the upper bound of ionic liquid membranes for CO/N separation. Moreover, the membranes were stable when tested for 120 hours.

  20. Calculation of bulk etch rate’s semi-empirical equation for polymer track membranes in stationary and dynamic modes

    Directory of Open Access Journals (Sweden)

    A. Mashentseva


    Full Text Available One of the most urgent and extremely social problems in environmental safeties area in Kazakhstan is providing the population of all regions of the country with quality drinking water. Development of filter elements based on nuclear track-etch membranes may be considered as one of best solutions this problem. The values of bulk etch rate and activation energy were calculated in view the effect of temperature, alkaline solution concentration as well as stirring effect. The semi-empirical equation of the bulk etch rate for PET track membranes was calculated. As a result of theoretical and experimental studies a semi-empirical equation of the bulk etch rate VB=3.4∙1012∙C2.07∙exp(-0.825/kT for 12 microns PET film, irradiated by ions 84Kr15+ (energy of 1.75 MeV/nucleon at the heavy ion accelerator DC-60 in Astana branch of the INP NNC RK, was obtained. 

  1. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications (United States)

    Wickham, David T. (Inventor); Gleason, Kevin J. (Inventor); Cowley, Scott W. (Inventor)


    There is disclosed a portable life support system with a component for removal of at least one selected gas. In an embodiment, the system includes a supported liquid membrane having a first side and a second side in opposition to one another, the first side configured for disposition toward an astronaut and the second side configured for disposition toward a vacuum atmosphere. The system further includes an ionic liquid disposed between the first side and the second side of the supported liquid membrane, the ionic liquid configured for removal of at least one selected gas from a region housing the astronaut adjacent the first side of the supported liquid membrane to the vacuum atmosphere adjacent the second side of the supported liquid membrane. Other embodiments are also disclosed.

  2. Innovative methods to stabilize liquid membranes for removal of radionuclides from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Lokhandwala, K. [Membrane Technology and Research, Inc., Menlo Park, CA (United States)


    In this Phase I Small Business Innovation Research program, Membrane Technology Research, Inc., is developing a stable liquid membrane for extracting uranium and other radionuclides from groundwater. The improved membrane can also be applied to separation of other metal ions from aqueous streams in industrial operations.

  3. Design criteria for extraction with chemical reaction and liquid membrane permeation (United States)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.


    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  4. Simulations of ice pellets and freezing rain using an explicit parameterization of the bulk liquid fraction of ice particles (United States)

    Cholette, Melissa; Thériault, Julie M.; Milbrandt, Jason A.; Morrison, Hugh


    During the cold season, storms can often be associated with the favorable vertical temperature structure for the formation of several winter precipitation types, such as snow, wet snow, freezing rain, ice pellets and rain. The types of precipitation reaching the surface depend on the degree of melting and re-freezing of particles as they fall through the atmosphere. For example, when a warm layer is overlaying a refreezing layer, ice particles can melt partially or completely in the warm layer to produce either ice pellets, freezing rain or a combination of the two at the surface. In this study, an explicit prognostic liquid fraction is implemented in a bulk microphysical scheme to predict freezing rain and ice pellets, and to evaluate their interactions with the environmental conditions. The approach is to modify the Predicted Particle Properties (P3) microphysics scheme by adding a prognostic variable for the liquid water mass-mixing ratio of the solid precipitation category in order to predict its bulk liquid fraction. This predicted liquid fraction is the key variable to differentiate the surface precipitation type occurring when temperatures are near 0°C. First, using a one-dimensional cloud model, it will be shown that the explicit simulation of mixed-phase particles improves the representation of the surface precipitation types with respect to the original scheme. Second, the impact of the partial melting of ice will be studied by simulating the 1998 Ice Storm over eastern North America using a full 3D mesoscale model. Overall, the prediction of the bulk liquid fraction allows a more accurate differentiation of surface winter precipitation types, which contributes to improve their forecasts.

  5. Colloidal membranes: The rich confluence of geometry and liquid crystals (United States)

    Kaplan, Cihan Nadir

    A simple and experimentally realizable model system of chiral symmetry breaking is liquid-crystalline monolayers of aligned, identical hard rods. In these materials, tuning the chirality at the molecular level affects the geometry at systems level, thereby inducing a myriad of morphological transitions. This thesis presents theoretical studies motivated by the rich phenomenology of these colloidal monolayers. High molecular chirality leads to assemblages of rods exhibiting macroscopic handedness. In the first part we consider one such geometry, twisted ribbons, which are minimal surfaces to a double helix. By employing a theoretical approach that combines liquid-crystalline order with the preferred shape, we focus on the phase transition from simple flat monolayers to these twisted structures. In these monolayers, regions of broken chiral symmetry nucleate at the interfaces, as in a chiral smectic A sample. The second part particularly focuses on the detailed structure and thermodynamic stability of two types of observed interfaces, the monolayer edge and domain walls in simple flat monolayers. Both the edge and "twist-walls" are quasi-one-dimensional bands of molecular twist deformations dictated by local chiral interactions and surface energy considerations. We develop a unified theory of these interfaces by utilizing the de Gennes framework accompanied by appropriate surface energy terms. The last part turns to colloidal "cookies", which form in mixtures of rods with opposite handedness. These elegant structures are essentially flat monolayers surrounded by an array of local, three dimensional cusp defects. We reveal the thermodynamic and structural characteristics of cookies. Furthermore, cookies provide us with a simple relation to determine the intrinsic curvature modulus of our model system, an important constant associated with topological properties of membranes. Our results may have impacts on a broader class of soft thin films.

  6. Use of complementary neutron techniques in studying the effect of a solid/liquid interface on bulk solution structures

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.D.; Hamilton, W.A.; Magid, L.J. [and others


    By appropriate combination of neutron scattering techniques, it is possible to obtain structural information at various distances from a solid/liquid interface and thus probe in some detail how the surface structures evolve into bulk structures. We have used neutron reflectometry (NR) with a newly developed shear cell, near surface small angle neutron scattering (NSSANS) again in combination with the new shear cell, and regular small angle neutron scattering (SANS) with a standard Couette shear cell to probe the structures formed in our aqueous surfactant systems and how they react to a flow field, particularly in the near surface region of a solid/liquid interface. We present data for a 20mM aqueous solutions of 70% cetyltrimethylammonium 3,5-dichlorobenzoate (abbreviated CTA3,5ClBz) and 30% CTAB. This system forms a very viscoelastic solution containing long threadlike micelles. NR only probes to a depth of about 0.5 {mu}m from the surface in these systems and clearly indicates that adsorbed onto the surface is, surfactant layer which is insensitive to shear. The depth probed by the NSSANS is on the order of 20-30 {mu}m and is determined by the transmission of the sample, the angle of incidence, and the wavelength. In this region, the rods align under shear into a remarkably well ordered hexagonal crystal. The SANS from the Couette cell averages over the entire sample, so that the signal is dominated by scattering from the bulk. While the near surface hexagonal structure is clearly visible, these data are not consistent with the crystal structure persisting throughout the bulk, leading to the postulate that the bulk structure is a two dimensional (2D) liquid where the rods align with the flow, but do not order in the other two dimensions.


    Directory of Open Access Journals (Sweden)

    Aisyah Endah Palupi


    Full Text Available Abstract: Hydrodynamics characteristic for the mixing of gas-solid-liquid in membrane bioreactor submerged (MBRs and its influence on mass transfer was studied computationally at various solid concentration, incoming gas rate, and the baffle distance. Computational method was conducted by using software GAMBIT 2.1.6. for the making of the grid which represents the calculation domain and conduct the simulation using CFD software FLUENT commercial code 6.2.16. Multiphase flow in reactor was simulated with mixture model, while to model the turbulence characteristic of the flow standard k-ε model was used. The geometrical system investigate is bioreactor in the form of box with flat bottom, 2 baffles, submerged membrane and air passage through the reactor bottom. The membrane type used is hollow fiber, the liquid used is water, and the solid is activated sludge, and air acts as gas phase. The result indicates that closer the baffle to the membrane, the liquid dispersion process goes faster, so that fluid in tank can be mixed perfectly and it can increase the gas-liquid mass transfer rate and the flux at MBRs. The increase of the solid concentration does not significantly affect the change of gas-liquid mass transfer rate and flux through the membrane, but the increase of air flow rate can accelerate the gas-liquid mass transfer and the flux. The position of baffle 9 cm from tank wall is the best position among the others because the amount of air flow is balanced with the circulating fluid flow. Consider from the solid distribution, double inlet MBRs is better compared to that of single inlet. Flux obtained does not show significant difference. From the both approach of the membrane model, membrane model as porous media give the simulation results closer to the experimental data.

  8. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species. (United States)

    Coons, Marc P; You, Zhi-Qiang; Herbert, John M


    Experiments have suggested that the aqueous electron, e(-)(aq), may play a significant role in the radiation chemistry of DNA. A recent measurement of the energy (below vacuum level) of the putative "interfacial" hydrated electron at the water/vacuum interface, performed using liquid microjet photoelectron spectroscopy, has been interpreted to suggest that aqueous electrons at the water/biomolecule interface may possess the appropriate energetics to induce DNA strand breaks, whereas e(-)(aq) in bulk water lies too far below the vacuum level to induce such reactions. Other such experiments, however, find no evidence of a long-lived feature at low binding energy. We employ a variety of computational strategies to demonstrate that the energetics of the hydrated electron at the surface of neat liquid water are not significantly different from those of e(-)(aq) in bulk water and as such are incompatible with dissociative electron attachment reactions in DNA. We furthermore suggest that no stable interfacial species may exist at all, consistent with the interpretation of certain surface-sensitive spectroscopy measurements, and that even if a short-lived, metastable species does exist at the vacuum/water interface, it would be extremely difficult to distinguish, experimentally, from e(-)(aq) in bulk water, using either optical absorption or photoelectron spectroscopy.

  9. Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R.; Bastos, Edna T.R., E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeira, RJ (Brazil); Afonso, Julio C., E-mail: [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica


    The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as 'carbonated water'. The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively. (author)

  10. Potentiometric detection of organic acids in liquid chromatography using polymeric liquid membrane electrodes incorporating macrocyclic hexaamines. (United States)

    Zielinska, D; Poels, I; Pietraszkiewicz, M; Radecki, J; Geise, H J; Nagels, L J


    Potentiometric detection employing coated-wire electrodes was applied to the determination of organic acids in liquid chromatography (LC). Poly(vinyl chloride)-based liquid membranes, incorporating lipophilic macrocyclic hexaamines as neutral ionophores were used as electrode coatings. The selectivity and sensitivity of the macrocycle-based electrodes were found to be superior to an electrode based on a lipophilic anion exchanger (a quaternary ammonium salt). Sensitive detection was obtained for the di- and tricarboxylic acids tartaric, malonic, malic, citric, fumaric, succinic, pyruvic, 2-oxoglutaric and maleic acids after separation in reversed-phase LC. Detection limits (signal/4sigmanoise=3) of 6 pmol for malonic acid and 2 pmol for maleic acid were attained. The detection was explained using a molecular recognition model. The hexaamine-based potentiometric electrodes had a 1-s response time at 1 ml min(-1) flow-rates. They were stable for at least 4 months, with an intra-electrode variation of 3.2% (n=5).

  11. Enhanced Membrane System for Recovery of Water from Gas-Liquid Mixtures Project (United States)

    National Aeronautics and Space Administration — Gas-Liquid separation is an acute microgravity problem. Existing devices use centrifugal motion on microporous membranes to separate the two phases. Centrifugal...

  12. Removal of chromium from aqueous waste solution using liquid emulsion membrane. (United States)

    Hasan, M A; Selim, Y T; Mohamed, K M


    This paper presents a comprehensive study in recovery of Cr (VI) from dilute HCl solution using liquid emulsion membrane (LEM). The liquid membrane is made up of Tri-octylphosphine oxide (TOPO) as a carrier, cyclohexane as an organic diluent, sodium hydroxide as a stripping solution and Span-80 (sorbitain monooleate) as an emulsifying agent. The selection of the extractant (TOPO) and the stripper (NaOH) was chosen on the basis of conventional liquid-liquid extraction studies. The important parameters affecting the permeation of Cr (VI) through the prepared membrane are hydrogen ion concentration in the external aqueous phase, stirring speed of mixing the two phases, type of diluents, carrier concentration, stripper concentration, membrane to feed ratio and volume fraction were systematically investigated. The effect of surfactant types and concentration on the stability of LEM were studied because of its important role in the permeation process.

  13. Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines (United States)

    Paven, Maxime; Papadopoulos, Periklis; Schöttler, Susanne; Deng, Xu; Mailänder, Volker; Vollmer, Doris; Butt, Hans-Jürgen


    In a gas membrane, gas is transferred between a liquid and a gas through a microporous membrane. The main challenge is to achieve a high gas transfer while preventing wetting and clogging. With respect to the oxygenation of blood, haemocompatibility is also required. Here we coat macroporous meshes with a superamphiphobic—or liquid repellent—layer to meet this challenge. The superamphiphobic layer consists of a fractal-like network of fluorinated silicon oxide nanospheres; gas trapped between the nanospheres keeps the liquid from contacting the wall of the membrane. We demonstrate the capabilities of the membrane by capturing carbon dioxide gas into a basic aqueous solution and in addition use it to oxygenate blood. Usually, blood tends to clog membranes because of the abundance of blood cells, platelets, proteins and lipids. We show that human blood stored in a superamphiphobic well for 24 h can be poured off without leaving cells or adsorbed protein behind. PMID:24065073

  14. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines. (United States)

    Paven, Maxime; Papadopoulos, Periklis; Schöttler, Susanne; Deng, Xu; Mailänder, Volker; Vollmer, Doris; Butt, Hans-Jürgen


    In a gas membrane, gas is transferred between a liquid and a gas through a microporous membrane. The main challenge is to achieve a high gas transfer while preventing wetting and clogging. With respect to the oxygenation of blood, haemocompatibility is also required. Here we coat macroporous meshes with a superamphiphobic-or liquid repellent-layer to meet this challenge. The superamphiphobic layer consists of a fractal-like network of fluorinated silicon oxide nanospheres; gas trapped between the nanospheres keeps the liquid from contacting the wall of the membrane. We demonstrate the capabilities of the membrane by capturing carbon dioxide gas into a basic aqueous solution and in addition use it to oxygenate blood. Usually, blood tends to clog membranes because of the abundance of blood cells, platelets, proteins and lipids. We show that human blood stored in a superamphiphobic well for 24 h can be poured off without leaving cells or adsorbed protein behind.

  15. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. (United States)

    Majumder, Mainak; Chopra, Nitin; Hinds, Bruce J


    Transport phenomena through the hollow conduits of carbon nanotubes (CNTs) are subjects of intense theoretical and experimental research. We have studied molecular transport over the large spectrum of ionic diffusion to pressure-driven gaseous and liquid flow. Plasma oxidation during the fabrication of the membrane introduces carboxylic acid groups at the CNT entrance, which provides electrostatic "gatekeeper" effects on ionic transport. Diffusive transport of ions of different charge and size through the core of the CNT is close to bulk diffusion expectations and allows estimation of the number of open pores or porosity of the membrane. Flux of gases such as N(2), CO(2), Ar, H(2), and CH(4) scaled inversely with their molecular weight by an exponent of 0.4, close to expected kinetic theory velocity expectations. However, the magnitude of the fluxes was ∼15- to 30-fold higher than predicted from Knudsen diffusion kinetics and consistent with specular momentum reflection inside smooth pores. Polar liquids such as water, ethanol, and isopropyl alcohol and nonpolar liquids such as hexane and decane were dramatically enhanced, with water flow over 4 orders of magnitude larger than "no-slip" hydrodynamic flow predictions. As direct experimental proof for the mechanism of near perfect slip conditions within CNT cores, a stepwise hydrophilic functionalization of CNT membranes from as-produced, tip-functionalized, and core-functionalized was performed. Pressure-driven water flow through the membrane was reduced from 5 × 10(4) to 2 × 10(2) to less than a factor of 5 enhancement over conventional Newtonian flow, while retaining nearly the same pore area.

  16. Flexible and Actuating Nanoporous Poly(ionic liquids)- paper based Hybrid Membranes


    Lin, Huijuan; Gong, Jiang; Miao, Han; Guterman, Ryan; Song, Haojie; Zhao, Qiang; Dunlop, John W. C.; Yuan, Jiayin


    Porous and flexible actuating materials are important in the development of smart systems. We report here a facile method to prepare scalable, flexible actuating porous membranes based on a poly(ionic liquid)-modified tissue paper. The targeted membrane property profile was based on a synergy of a gradient porous structure of poly(ionic liquid) network and the flexibility of tissue paper. The gradient porous structure was built up through ammonia-triggered electrostatic complexation of a poly...

  17. 78 FR 54775 - Bulk Packaging To Allow for Transfer of Hazardous Liquid Cargoes (United States)


    ... International Bulk Chemical Code IM Intermodal IMDG Code International Maritime Dangerous Goods Code IMO... International Maritime Dangerous Goods Code (IMDG Code), section, which became effective in 2003. IMO... to provide greater flexibility in the selection and use of packaging in the transportation of...

  18. Comparison of liquid membrane permeation with sulfolane extraction on aromatics separation

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Satoru; Kawasaki, Junjiro


    This paper describes the comparison of the liquid membrane permeation method with the sulfolane extraction method for separating aromatics. There is no difference in the yield of aromatics from the lighter hydrocarbons such as reformate and naphtha between those two methods. The yield of aromatics from the heavier hydrocarbons such as kerosene by the liquid membrane permeation method is much higher than the equilibrium yield in the extraction method. The rate of permeation through the liquid membrane of aromatics without the accelerating method by adding a lipophilic surfactant is lower than the rate of extraction. The selectivity of aromatics in the extraction method is sharply decreased while that in the liquid membrane permeation method is increased, as the temperature is raised. The selectivity (based on n-hexane) of benzene in the extraction method from the feed of a model hydrocarbon assumed to be reformate is approximately 7 at 50/sup 0/C while that in the liquid membrane permeation method from the same feed exceeds 30. It is expected to apply the liquid membrane permeation method to the separation and purification of polymethyl benzenes waiting for the development of separation technology and uses on synthetic chemistry. (8 figs, 2 tabs, 17 refs.)

  19. Supported liquid membrane stability in chiral resolution by chemically and physically modified membranes

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, R.; Argurio, P. [Arcavata di Rende Univ. of Calabria, Arcavata di Rende, CS (Italy). Dept. of Chemical and Materials Engineering


    In the present work some stability studies on Supported Liquid Membranes (SLMs) to be used for chiral separations were realized. In particular, primary aim was to determine how a modification of the support surface influences the SLM stability. First, the procedure for support modification was optimised, making a screening of various compounds (sulphuric acid, nitric acid, chromic acid, sodium dodecyl sulphate (SDS), glycerol, oleic alcohol, propylene glycol (PPG), bovine serum albumin (BSA)) and testing their performance by means of contact angle measurements. Next, a second screening was realized by permeation tests in a stirred cell. Finally, to compare the stability of modified with unmodified support in a process of interest for chemical and/or biochemical industries, some permeation tests for resolution of DNB-DL-Leucine were realized in a re-circulation system. Results showed a better surface hydrophilization of chemically modified support and better stability of the sulphonated support. However, in operating conditions a little high stability of the unmodified support was obtained. [Italian] Nel presente lavoro sono stati realizzati degli studi di stabilita' di Membrane Liquide Supportate (SLMs) da impiegare in separazioni chirali. In particolare, obiettivo principale e' stato quello di determinare l'influenza che una modifica della superficie del supporto ha sulla stabilita' della SLM. Cosi', in un primo momento, e' stata ottimizzata le procedura di modifica del supporto, facendo una selezione tra vari composti (acido solforico, acido nitrico, acido cromico, sodio dodecil solfato (SDS), glicerolo, alcool oleico, glicole propilenico (PPG), siero di albumina bovina (BSA)) basata su misure dell'angolo di contatto. Successivamente, e' stata realizzata una seconda selezione mediante prove di permeazione in una cella agitata. Infine, con lo scopo di confrontare la stabilita' della SLM con supporto modificato rispetto

  20. Chloride reduction from brackish water by hollow fiber supported liquid membranes (HFSLM) using ionic liquids as a carrier


    Hofmeister, Markus; Slusarek, Tobias; Madaj, Rafal; Strömbäck, William


    The project “Chloride reduction from brackish water by hollow fiber supported liquid membranes (HFSLM) using ionic liquids as a carrier “ is about developing an alternative and cost effective solution for the Abrera drinking water treatment plant to desalinate water from Llobregat river while accomplishing drinking water standards. With a constant increase of the world's population, the demand for drinking water also increases. However, the supply of drinking water is limited, so desalination...

  1. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.


    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  2. Covalent Cross-Linking of Porous Poly(ionic liquid) Membrane via a Triazine Network


    Täuber, K.; Dani, A.; Yuan, J.


    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.

  3. Determination of thiophanate-methyl and its metabolites at trace level in spiked natural water using the supported liquid membrane extraction and the microporous membrane liquid-liquid extraction techniques combined on-line with high-performance liquid chromatography. (United States)

    Sandahl, M; Mathiasson, L; Jönsson, J A


    On-line supported liquid membrane (SLM) extraction and microporous membrane liquid-liquid extraction (MMLLE) techniques for sample preparation of natural water samples have been developed for the determination of thiophanate-methyl (TM), carbendazim (MBC) and 2-aminobenzimidazole (2-AB) using reversed-phase HPLC. The combination of SLM extraction and MMLLE offers extraction conditions that makes it possible to determine a wide variety of compounds, i.e., permanently charged, ionisable and non-polar at sub ppb level. The detection limits obtained after extraction are about 0.1 microg/l for MBC and 2-AB using SLM, and 0.5 x Lg/l for TM using MMLLE and the precision is better than 5% for both systems. Typical enrichment rates are 0.6 and 2.7 times/min using SLM and MMLLE, respectively.

  4. Gas-liquid membrane contactors for CO2 removal

    NARCIS (Netherlands)

    Simons-Fischbein, K.; Nijmeijer, Dorothea C.; Wessling, Matthias


    In the present work we use a membrane contactor for the separation of CO2 from CH4 and we systematically investigate the influence of both the type of membrane and the different process parameters on the overall process performance (permeability and selectivity). This work is important because it

  5. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa


    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  6. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima


    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  7. Parallel artificial liquid membrane extraction of acidic drugs from human plasma

    DEFF Research Database (Denmark)

    Roldan-Pijuan, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid


    The new sample preparation concept “Parallel artificial liquid membrane extraction (PALME)” was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual...... wells in a 96-well donor plate and diluted with HCl to protonate the acidic drugs. The acidic drugs were extracted as protonated species from the individual plasma samples, through corresponding artificial liquid membranes each comprising 2 μL of dihexyl ether, and into corresponding acceptor solutions......-performance liquid chromatography-ultraviolet detection of the individual acceptor solutions. Important PALME parameters including the chemical composition of the liquid membrane, extraction time, and sample pH were optimized, and the extraction performance was evaluated. Except for flurbiprofen, exhaustive...

  8. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes (United States)

    Koh, Dong-Yeun; McCool, Benjamin A.; Deckman, Harry W.; Lively, Ryan P.


    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

  9. Halogen-free ionic liquid as an additive in zinc(II)-selective electrode: surface analyses as correlated to the membrane activity. (United States)

    Al-Asousi, Maryam F; Shoukry, Adel F; Bu-Olayan, Abdul Hadi


    Two conventional Zn(II) polyvinyl chloride (PVC) membrane electrodes have been prepared and characterized. They were based on dibenzo-24-crown-8 (DBC) as a neutral carrier, dioctyl phthalate (DOP) as a plasticizer, and potassium tetrakis (p-chlorophenyl) borate, KTpClPB or the halogen-free ionic liquid, tetraoctylammonium dodecylbenzene sulfonate [TOA][DBS] as an additive. The use of ionic liquid has been found to enhance the selectivity of the sensor. For each electrode, the surfaces of two membranes were investigated using X-ray photoelectron, ion-scattering spectroscopy and atomic force microscopy. One of the two membranes was conditioned by soaking it for 24 h in a 1.0×10(-3) M Zn(NO(3))(2) solution and the second was soaked in bi-distilled water for the same interval (24 h). Comparing the two surfaces indicated the following: (a) the high selectivity in case of using [TOA][DBS] as an additive is due to the extra mediation caused by the ionic liquid and (b) the working mechanism of the electrode is based on phase equilibrium at the surface of the membrane associated with ion transport through the bulk of the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers. (United States)

    Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias


    We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.

  11. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan


    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  12. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Ricardo Couto


    Full Text Available In this work, a supported ionic liquid membrane (SILM was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA] ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2 and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73 for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.

  13. Stability of a nanofiltration membrane after contact with a low-level liquid radioactive waste

    Directory of Open Access Journals (Sweden)

    Elizabeth Eugenio de Mello Oliveira


    Full Text Available This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.

  14. Molecular dynamics simulation of membrane in room temperature ionic liquids (United States)

    Theng, Soong Guan; Jumbri, Khairulazhar bin; Wirzal, Mohd Dzul Hakim


    The polyvinylidene difluoride (PVDF) membrane has been a popular material in membrane separation process. In this work, molecular dynamic simulation was done on the PVDF membrane with 100 wt% IL and 50 wt% IL in GROningen MAchine for Chemical Simulations (GROMACS). The results was evaluated based on potential energy, root mean square deviation (RMSD) and radial distribution function (RDF). The stability and interaction of PVDF were evaluated. Results reveal that PVDF has a stronger interaction to [C2bim]+ cation compared to water and bromine anion. Both potential energy and RMSD were lower when the weight percentage of IL is higher. This indicates that the IL is able to stabilize the PVDF structure. RMSD reveals that [C2bim]+ cation is dominant at short distance (less than 1 nm), indicating that strong interaction of cation to PVDF. This understanding of the behavior of PVDF-IL could be used as a reference for future development of stronger membrane.

  15. Liquid permeation and chemical stability of anodic alumina membranes

    Directory of Open Access Journals (Sweden)

    Dmitrii I. Petukhov


    Full Text Available A study on the chemical stability of anodic alumina membranes and their performance in long-term water and organic solvent permeation experiments is reported. Anodic alumina possesses high stability for both protonic and aprotonic organic solvents. However, serious degradation of the membrane occurs in pure water, leading to a drastic decrease of permeance (over 20% of the initial value after the passing of 0.250 m3/m2 of pure water. The drying of the membrane induces further permeance drop-off. The rate of membrane degradation strongly depends on the pH of the penetrant solution and increases in basic media. According to 27Al NMR and thermogravimetry results, the degradation of the membranes is associated with the dissolution of water-soluble [Al13O4(OH24(H2O12]7+ polyhydroxocomplexes and their further redeposition in the form of [Al(OH4]−, resulting in channels blocking. This process intensifies in basic pH due to the high positive charge of the anodic alumina surface. An approach for improving anodic aluminum oxide stability towards dissolution in water by carbon CVD coating of the membrane walls is suggested.

  16. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin


    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC......Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at −18 °C and fast...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...

  17. Permeability of Rubbery and Glassy Membranes of Ionic Liquid Filled Polymersome Nanoreactors in Water. (United States)

    So, Soonyong; Yao, Letitia J; Lodge, Timothy P


    Nanoemulsion-like polymer vesicles (polymersomes) having ionic liquid interiors dispersed in water are attractive for nanoreactor applications. In a previous study, we demonstrated that small molecules could pass through rubbery polybutadiene membranes on a time scale of seconds, which is practical for chemical transformations. It is of interest to determine how sensitive the rate of transport is to temperature, particularly for membranes in the vicinity of the glass transition (Tg). In this work, the molecular exchange rate of 1-butylimidazole through glassy polystyrene (PS) bilayer membranes is investigated via pulsed field gradient nuclear magnetic resonance (PFG-NMR) over the temperature range from 25 to 70 °C. The vesicles were prepared by the cosolvent method in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI]), and four different polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock polymers with varying PS molecular weights were examined. The vesicles were transferred from the ionic liquid to water at room temperature to form nanoemulsion solutions of polymer vesicles in water. The exchange rate of 1-butylimidazole added to the aqueous solutions was observed under equilibrium conditions at each temperature. The exchange rate decreased as the membrane thickness increased, and the exchange rate through the glassy membranes was three to four times slower than through the rubbery polybutadiene membranes under the same experimental conditions. These results demonstrate that the permeability through nanosized membranes depends on both the dimension and chemistry of membrane-forming blocks. Furthermore, the exchange rate was investigated as a function of temperature in the vicinity of the Tg of PS-PEO membranes. The exchange rate, however, is not a strong function of the temperature in the vicinity of the membrane Tg, due to a combination of the nanoscopic dimension of the membrane, and some degree of solvent

  18. Roles of metal ion complexation and membrane permeability in the metal flux through lipophilic membranes. Labile complexes at permeation liquid membranes

    NARCIS (Netherlands)

    Zhang, Z.; Buffle, J.; Leeuwen, van H.P.; Wojciechowski, K.


    The various physicochemical factors that influence the flux of carrier-transported metal ions through permeation liquid membranes (PLM) are studied systematically. Understanding PLM behavior is important (i) to optimize the application of PLM as metal speciation sensors in environmental media and

  19. Large magnetic entropy change of Gd-based ternary bulk metallic glass in liquid-nitrogen temperature range (United States)

    Fu, H.; Zhang, X. Y.; Yu, H. J.; Teng, B. H.; Zu, X. T.


    Gd 60Co 26Al 14 bulk metallic glass (BMG) with a diameter of 3 mm was prepared by arc-melting and copper-mold suck-casting. X-ray diffraction (XRD) results show that the as-cast Gd 60Co 26Al 14 rod consists of a wholly amorphous phase. Differential scanning calorimetry (DSC) measurements indicated that one glass transition temperature (Tg) and two crystallization temperatures (TX) occur at 570, 602, and 642 K, respectively. Moreover, two Curie temperatures of 82 and 128 K, which correspond to the two amorphous phases in the DSC trace, were determined from the thermo-magnetization curve. The maximal magnetic entropy change (ΔSM) under 0-5 T is about 10.1 J/kg K at 75 K and the refrigerant capacity (RC) is about 556 J/kg, which makes Gd 60Co 26Al 14 BMG a promising candidate for magnetic refrigerant near liquid-nitrogen temperatures.

  20. Chitosan/Carboxymethylcellulose/Ionic Liquid/Ag(0 Nanoparticles Form a Membrane with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Camila Quadros


    Full Text Available Silver metal nanoparticles were immobilized in chitosan/carboxymethylcellulose/BMI.BF4(1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid (CS/CMC/IL to form polymeric membrane with 20 μm thickness. The CS/CMC/IL polymeric membrane was prepared using a simple solution blending method. Irregularly shaped Ag(0 nanoparticles with monomodal size distributions of 8.0±0.4 nm Ag(0 were immobilized in the membrane. The presence of small Ag(0 nanoparticles induced an augmentation in the CS/CMC/IL film surface areas. The CS/CMC/IL membrane containing Ag(0 showed increase antimicrobial activity the Ag(0 concentration increased up to saturation at 10 mg. CS/CMC/IL membrane that contains Ag(0 nanoparticles has enhanced durability of the membrane and exhibited stronger antimicrobial activity against Escherichia coli and Staphylococcus aureus.

  1. The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures. (United States)

    Talyzin, Alexandr V; Hausmaninger, Tomas; You, Shujie; Szabó, Tamás


    The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of "negative thermal expansion" and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.

  2. Catalytic polymer membranes for high temperature hydrogenation of viscous liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, D.; Bengtson, G. [GKSS Research Centre Geesthacht GmbH, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht (Germany)


    Polymeric membranes with high oil fluxes were developed and catalytically activated by a new route of direct calcination of polymeric membranes charged by Pd or Pt catalyst precursors. High concentrations of citric acid mixed with the precursors afforded a decrease of the calcination temperature to 175 C. Membrane reactor tests in the flow through contactor mode displayed high reactivities for sunflower oil hydrogenation. Pt showed a similar activity to Pd catalysts as measured by iodine value and generated about 13% less trans-isomers but 5% more stearic acid at an iodine value of 90. By means of alumina supported catalysts tests of methyl oleate (cis-C18:1) and methyl elaidate (trans-C18:1) hydrogenation exhibited a different pathway of reaction by either isomerization followed by reduction (Pd) or primarily direct reduction to methyl stearate (Pt). (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors. (United States)

    Constantinou, Achilleas; Ghiotto, Francesco; Lam, Koon Fung; Gavriilidis, Asterios


    Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 μm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 μm and the microchannel depth 100 μm. The micropillars were wetted by the water/acetone solution and formed a 15 μm liquid film between them and the nearest channel wall, leaving a 195 μm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 μm and 200 μm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.

  4. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering


    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  5. Kinetics of carrier-mediated alkali cation transport through supported liquid membranes: Effect of membrane solvent, co-transported anion, and support

    NARCIS (Netherlands)

    Visser, H.C.; Visser, Herman C.; de Jong, Feike; Reinhoudt, David


    The rate-limiting step in the transport of alkali cations through supported liquid membranes mediated by calix [4] arene carriers can be the diffusion of the carrier cation complex through the membrane and/or the kinetics of cation release from the complex. The effects of membrane solvent,

  6. Microporous hollow fibre membrane modules as gas-liquid contactors. Part 1. Physical mass transfer processes : A specific application

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van


    Gas-liquid mass transfer has been studied in a membrane module with non-wetted microporous fibres in the laminar flow regime. This new type of gas/liquid contactor can be operated stabily over a large range of gas and liquid flows because gas and liquid phase do not influence each other directly.

  7. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers. (United States)

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar


    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.

  8. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)


    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  9. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric Joseph


    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  10. Descemet′s membrane detachment managed with perfluro-n-octane liquid

    Directory of Open Access Journals (Sweden)

    M Ashok Kumar


    Full Text Available We report the case of a 68-year-old male who developed Descemet′s membrane detachment after temporal clear corneal phacoemulsification which did not settle with air or viscoelastic injection. The Descemet′s membrane was successfully reattached with restoration of 20/50 vision with the help of perfluro-n-octane liquid. To our knowledge, this is the first such case to be reported.

  11. High Pressure and Temperature Effects on the Viscosity, Density, and Bulk Modulus of Four Liquid Lubricants. (United States)


    T Y Ct ., A ’ .’. I r ICA T I t > N Or T~ e I ’ P A r t (Ilk. ... ..~~.. l’nter. ,l) REPORT DOCU,~%ENTAT ION PAGE F .) ~~~~PORT N ~~~~‘,,.,__,. 2...I O N NAME AND A D D R E S S 10. P R O G R A M E L E M E,~l T , PROJ E CT TA S, ( M i d w e s t Research I n s t i t u t e A R E A S W O R K / P...the same time, The coil for tap water is used pr imar ily to hasten cooling of the bath. The bath liquid temperature is measured by ASTM extended—range

  12. Geometric methods in the elastic theory of membranes in liquid crystal phases

    CERN Document Server

    Ji Xing Liu; Yu Zhang Xie


    This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic - A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations

  13. A new approach to the spectral analysis of liquid membrane oscillators by Gábor transformation

    DEFF Research Database (Denmark)

    Płocharska-Jankowska, E.; Szpakowska, M.; Mátéfi-Tempfli, Stefan


    Liquid membrane oscillators very frequently have an irregular oscillatory behavior. Fourier transformation cannot be used for these nonstationary oscillations to establish their power spectra. This important point seems to be overlooked in the field of chemical oscillators. A new approach...... is presented here based on Gábor transformation allowing one to obtain power spectra of any kind of oscillations that can be met experimentally. The proposed Gábor analysis is applied to a liquid membrane oscillator containing a cationic surfactant. It was found that the power spectra are strongly influenced...

  14. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria


    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  15. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte (United States)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene


    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  16. Effective Purification of Biogas by Condensing-Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Poloncarzová, Magda; Vejražka, Jiří; Veselý, Václav; Izák, Pavel


    Roč. 50, č. 3 (2010), s. 669-671 ISSN 1433-7851 R&D Projects: GA MPO FR-TI1/245 Institutional research plan: CEZ:AV0Z40720504 Keywords : biogas purification * condensing liquid * gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 12.730, year: 2010

  17. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording) (United States)

    Lee, Sin-Doo


    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  18. Chitosan/Carboxymethylcellulose/Ionic Liquid/Ag(0) Nanoparticles Form a Membrane with Antimicrobial Activity


    Camila Quadros; Faria, Vinícius W.; Klein, Manuela P.; Hertz, Plinho F.; Carla W. Scheeren


    Silver metal nanoparticles were immobilized in chitosan/carboxymethylcellulose/BMI.BF4(1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid) (CS/CMC/IL) to form polymeric membrane with 20 μm thickness. The CS/CMC/IL polymeric membrane was prepared using a simple solution blending method. Irregularly shaped Ag(0) nanoparticles with monomodal size distributions of 8.0 + ou - 0.4 nm Ag(0) were immobilized in the membrane. The presence of small Ag(0) nanoparticles induced an augmentation ...


    Directory of Open Access Journals (Sweden)

    Mirela DULAMA


    Full Text Available The semipermeable membranes separation techniques (like: microfiltration, ultrafiltration and reverse osmosis concern a wide range of radwastes that includes solutions, which are usually putting serious problems during treatment operations. A relevant example is given by the wastes issued from the decontamination operations which contain large quantities of detergents and complexant agents. The paper presents several experimental tests by membrane techniques carried out on a pilot scale device at Institute for Nuclear Research Piteşti. The purpose of the experimental study was to elaborate and evaluate an adequate technology for treatment of low salt content liquid radioactive waste, by using indigenous semipermeable membrane.

  20. 3He impurity states on liquid4He: From thin films to the bulk surface (United States)

    Pavloff, N.; Treiner, J.


    The structure of the states accessible to3He impurities in films of liquid4He on Nuclepore is investigated using a density functional approach with a finite-range effective interaction. In thick films, one finds that the two lowest states are localized in the surface region. For thinner films, the variation with film thickness of the first three states results from a delicate balance between the attractive tail of the substrate potential and the quantum finite-size effect. The existence of states localized in the second layer of the films is discussed. The energy difference between the ground state and the first excited state agrees with the recent determination of Higley, Sprague, and Hallock from magnetization measurements. The effective mass of the ground state has a structure similar to that obtained by Krotscheck and coworkers and exhibits a maximum for a4He coverage of 0.15 Å-2, in agreement with the data of Gasparini and coworkers. A similar behavior is predicted for the effective mass of the first, second, and third excited states. The structure of the energy spectrum may also explain former results on third-sound measurements in thin mixture films by Laheurte et al. and by Hallock.


    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.


    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  2. Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas-liquid contact. (United States)

    O'Brien, Matthew; Baxendale, Ian R; Ley, Steven V


    A flow-through chemistry apparatus has been developed which allows gases and liquids to contact via a semipermeable Teflon AF-2400 membrane. In this preliminary investigation, the concept was proven by application to the ozonolysis of a series of alkenes.

  3. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma

    DEFF Research Database (Denmark)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine


    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic...

  4. The use of permeation liquid membranes for free zinc measurements in aqueous solution

    NARCIS (Netherlands)

    Gramlich, A.; Tandy, S.; Slaveykova, V.; Duffner, A.; Schulin, R.


    The bioavailability of Zn in environmental water phases strongly depends on its speciation. One important species in studies on Zn deficiency or toxicity to organisms is the free ion. The Permeation Liquid Membrane (PLM) technique is a tool to measure free metal concentrations with a short analysis

  5. How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?

    NARCIS (Netherlands)

    Simons-Fischbein, K.; Nijmeijer, Dorothea C.; Bara, J.B.; Noble, R.D.; Wessling, Matthias


    Room-temperature ionic liquids (RTILs) are a class of organic solvents that have been explored as novel media for CO2 separations. Polymerized RTILs (poly(RTILs)) can be synthesized from RTIL monomers to form dense, solid gas selective membranes. It is of interest to understand the permeation

  6. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli


    We fabricated flat-sheet and hollow fiber membranes from polyethersulfone (PES) solutions in two ionic liquids: 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP) and 1,3-dimethylimidazolium dimethyl phosphate ([MMIM]DMP). The solvents are non-volatile and less toxic than organic solvents, such as dimethylformamide (DMF). The membranes morphologies were compared with those of membranes prepared from solutions in DMF, using electron microscopy. Water permeance, solute rejection and mechanical strengths were evaluated. Membranes were applied to DNA separation. While membranes based on PES were successfully prepared, polysulfone (PSf) does not dissolve in the same ionic liquids. The discrepancy between PES and PSf could not be explained using classical Flory-Huggins theory, which does not consider the coulombic contributions in ionic liquids. The differences in solubility could be understood, by applying density functional theory to estimate the interaction energy between the different polymers and solvents. The theoretical results were supported by experimental measurements of intrinsic viscosity and dynamic light scattering (DLS).

  7. Selectivity of NF membrane for treatment of liquid waste containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R., E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Afonso, Julio C., E-mail: [Universidade Federal do Rio de Janeiro(UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica


    The performance of two nanofiltration membranes were investigated for treatment of liquid waste containing uranium through two conditions permeation: permeation test and concentration test of the waste. In the permeation test solution permeated returned to the feed tank after collected samples each 3 hours. In the test of concentration the permeated was collected continuously until 90% reduction of the feed volume. The liquid waste ('carbonated water') was obtained during conversion of UF{sub 6} to UO{sub 2} in the cycle of nuclear fuel. This waste contains uranium concentration on average 7.0 mg L{sup -1}, and not be eliminated to the environmental. The waste was permeated using a cross-flow membrane cell in the pressure of the 1.5 MPa. The selectivity of the membranes for separation of uranium was between 83% and 90% for both tests. In the concentration tests the waste was concentrated around for 5 times. The surface layer of the membranes was evaluated before and after the tests by infrared spectroscopy (ATR-FTIR), field emission microscopy (FESEM) and atomic force spectroscopy (AFM). The membrane separation process is a technique feasible to and very satisfactory for treatment the liquid waste. (author)

  8. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Amri Amin


    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  9. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco


    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  10. highly selective amino acid salt solutions as absorption liquid for CO(2) capture in gas-liquid membrane contactors. (United States)

    Simons, Katja; Nijmeijer, Kitty; Mengers, Harro; Brilman, Wim; Wessling, Matthias


    The strong anthropogenic increase in the emission of CO(2) and the related environmental impact force the developments towards sustainability and carbon capture and storage (CCS). In the present work, we combine the high product yields and selectivities of CO(2) absorption processes with the advantages of membrane technology in a membrane contactor for the separation of CO(2) from CH(4) using amino acid salt solutions as competitive absorption liquid to alkanol amine solutions. Amino acids, such as sarcosine, have the same functionality as alkanol amines (e.g., monoethanolamine=MEA), but in contrast, they exhibit a better oxidative stability and resistance to degradation. In addition, they can be made nonvolatile by adding a salt functionality, which significantly reduces the liquid loss due to evaporation at elevated temperatures in the desorber. Membrane contactor experiments using CO(2)/CH(4) feed mixtures to evaluate the overall process performance, including a full absorption/desorption cycle show that even without a temperature difference between absorber and desorber, a CO(2)/CH(4) selectivity of over 70 can be easily achieved with the sarcosine salt solution as absorption liquid. This selectivity reaches values of 120 at a temperature difference between absorber and desorber of 35 degrees C, compared to a value of only 60 for MEA under the same conditions. Although CO(2) permeance values are somewhat lower than the values obtained for MEA, the results clearly show the potential of amino acid salt solutions as competitive absorption liquids for the energy efficient removal of CO(2). In addition, due to the low absorption of CH(4) in sarcosine compared to MEA, the loss of CH(4) is reduced and significantly higher CH(4) product yields can be obtained.

  11. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor. (United States)

    Ding, Yi; Tian, Yu; Li, Zhipeng; Zuo, Wei; Zhang, Jun


    This study focused on the fouling behaviors of extracellular polymeric substances (EPS) in a mesophilic anaerobic membrane bioreactor (AnMBR) to obtain the relations of EPS specific constituents with membrane fouling. It was found that for the EPS extracted from bulk sludge, the LB-EPS induced the largest flux decline; however, for EPS extracted from cake sludge, the S-EPS caused the highest flux decline. The preferential rejection fraction by membrane further confirmed that the greater flux decline was exhibited with the higher percent rejection of EPS fractions. The adhesion and cohesion interactions of EPS fractions and membranes could explain the different rejection rates of the EPS components. The structural characteristics analysis indicated that the fouling layers of different EPS fractions with the greater loss of filterability had the smaller porosity. Further investigations demonstrated that these changes could be attributed to the different content of HPO-N in EPS fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply. (United States)

    Tsushima, Shohji; Teranishi, Kazuhiro; Nishida, Kousuke; Hirai, Shuichiro


    To better understand the operation of a new fuel cell design, we used magnetic resonance imaging (MRI) to measure the water content distribution in a polymer electrolyte membrane under fuel cell operation with and without a supply of liquid water. The supply of liquid water to the membrane improved the cell performance by increasing the water content in the membrane and thus reducing the electrical resistance of the membrane. The study also showed that MRI is a promising method to investigate the distribution of water in the membrane of a fuel cell under operating conditions.

  13. Membrane bioreactor with a porous hydrophobic membrane as a gas-liquid contactor for waste gas treatment. (United States)

    Reij, M W; de Bont, J A; Hartmans, S; de Gooijer, K D


    A novel type of bioreactor for waste gas treatment has been designed. The reactor contains a microporous hydrophobic membrane to create a large interface between the waste gas and the aqueous phase. To test the new reactor, propene was chosen because of its high air/water partition coefficient, which causes a low water concentration and hampers its removal from air. Propene transfer from air to a suspension of propene-utilizing Xanthobacter Py2 cells in the membrane bioreactor proved to be controlled by mass transfer in the liquid phase. The resistance of the membrane was negligible. Simulated propene transfer rates agreed well with the experimental data. A stable biofilm of Xanthobacter Py2 developed on the membrane during prolonged operation. The propene flux into the biofilm was 1 x 10(-6) mol m(-2) s(-1) at a propene concentration of 9.3 x 10(-2) mol m(-3) in the gas phase. (c) 1995 John Wiley & Sons, Inc.

  14. Bubble technique for Descemet membrane endothelial keratoplasty tissue preparation in an eye bank: air or liquid? (United States)

    Ruzza, Alessandro; Parekh, Mohit; Salvalaio, Gianni; Ferrari, Stefano; Camposampiero, Davide; Amoureux, Marie-Claude; Busin, Massimo; Ponzin, Diego


    To compare the big-bubble method using air and liquid as medium of separation for Descemet membrane endothelial keratoplasty (DMEK) lenticule preparation in an eye bank. Donor corneas (n=20) were immersed in liquid [tissue culture medium (TCM)]. Air and liquid was injected using a 25-gauge needle in the posterior stroma or as near to the stroma-Descemet membrane (DM) phase as possible to create a complete bubble of larger diameter. The endothelial cell density and mortality were checked pre- and postbubble after deflating the tissue. Four pairs of tissues were used to analyse the intracellular tight junctions and three pairs for histological examination and DNA integrity studies, respectively. The yield obtained using air was 80%, whereas that with liquid was 100%. Single injection was required in six cases; twice in two cases; three and four times in one case each with air bubble, whereas seven cases required single injection; twice in two cases; and thrice in just one case with liquid bubble. The average diameter of the final lenticule was 9.12 (±1.71) mm for air bubble and 9.78 (±1.75) mm for liquid bubble with p=0.4362 (no statistical significance). Endothelial cell mortality postbubble preparation was 8.9 (±12.38)% for air and 6.25 (±9.57)% for liquid (p=0.6268). DM and endothelium could be separated exclusively using air or liquid bubble. However, liquid bubble seems to have certain advantages over air such as the generation of yield, larger diameter and higher maintenance of endothelial cell density and integrity. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Effect of stress states on the deformation behavior of Cu-based bulk metallic glass in the supercooled liquid region

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.S., E-mail: [Division of Materials Science and Engineering, Ames Laboratory, U.S. DOE, Ames, IA 50011 (United States); Kim, H.J.; Bae, J.C. [Liquid Processing and Casting Technology R and D Department, Korea Institute of Industrial Technology, Inchon 406-130 (Korea, Republic of); Huh, M.Y. [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)


    Highlights: • The effect of stress states on the deformation behavior in the SLR was studied in the Cu{sub 54}Ni{sub 6}Zr{sub 22}Ti{sub 18} BMG alloy. • The present BMG alloy displayed different plastic stress–strain curves under tensile and compressive plastic strain states. • The calculation of the diffusivity of Cu atoms indicated that the diffusion of Cu atoms is retarded by compressive stress and accelerated by tensile stress. • The fast diffusion of Cu atoms under tensile stress caused faster crystallization leading to a fast strain-hardening during the tensile plastic deformation. -- Abstract: The effect of stress states on the deformation behavior of the Cu{sub 54}Zr{sub 22}Ti{sub 18}Ni{sub 6} bulk metallic glass (BMG) alloy was studied in the supercooled liquid region. At 723 K, Newtonian plastic flow governed the deformation during the compression test, whereas strain-hardening occurred during the tensile test. At 733 K, a fast failure was observed during tensile test. The diffusion rate of Cu atoms in the BMG alloy plays an important role in the deformation behavior. The fast diffusion of Cu atoms under the tensile stress state caused faster crystallization leading to a fast strain-hardening during the tensile plastic deformation.

  16. Bulk characterization of topological crystalline insulators: Stability under interactions and relations to symmetry enriched U (1) quantum spin liquids (United States)

    Zou, Liujun


    Topological crystalline insulators (TCIs) are nontrivial quantum phases of matter protected by crystalline (and other) symmetries. They are originally predicted by band theories, so an important question is their stability under interactions. In this paper, by directly studying the physical bulk properties of several band-theory-based nontrivial TCIs that are conceptually interesting and/or experimentally feasible, we show they are stable under interactions. These TCIs include (1) a weak topological insulator, (2) a TCI with a mirror symmetry and its time-reversal symmetric generalizations, (3) a doubled topological insulator with a mirror symmetry, and (4) two TCIs with symmetry-enforced-gapless surfaces. We describe two complementary methods that allow us to determine the properties of the magnetic monopoles obtained by coupling these TCIs to a U (1 ) gauge field. These methods involve studying different types of surface states of these TCIs. Applying these methods to our examples, we find all of them have nontrivial monopoles, which proves their stability under interactions. Furthermore, we discuss two levels of relations between these TCIs and symmetry enriched U (1 ) quantum spin liquids (QSLs). First, these TCIs are directly related to U (1 ) QSLs with crystalline symmetries. Second, there is an interesting correspondence between U (1 ) QSLs with crystalline symmetries and U (1 ) QSLs with internal symmetries. In particular, the TCIs with symmetry-enforced-gapless surfaces are related to the "fractional topological paramagnets" introduced in Zou et al. [arXiv:1710.00743].

  17. Micellar high performance liquid chromatographic determination of flunixin meglumine in bulk, pharmaceutical dosage forms, bovine liver and kidney

    Directory of Open Access Journals (Sweden)

    Fathalla F. Belal


    Full Text Available A simple, sensitive and rapid liquid chromatographic method was developed and validated for the analysis of flunixin meglumine (flunixin-M in bulk, pharmaceutical dosage forms, bovine liver and kidney. Analytical separation was performed in less than 4 min using a C18 column with UV detection at 284 nm. A micellar solution composed of 0.15 M sodium dodecyl sulphate, 8% n-butanol and 0.3% triethylamine in 0.02 M phosphoric acid buffered at pH 7.0 was used as the mobile phase. The method was fully validated in accordance with the International Conference on Harmonization (ICH guidelines. The limit of detection and the limit of quantitation were 0.02 and 0.06 μg mL−1, respectively. The recoveries obtained were in range of 95.58–106.94% for bovine liver and kidney. High extraction efficiency was obtained without matrix interference in the extraction process and in the subsequent chromatographic determination. The method showed good repeatability, linearity and sensitivity according to the evaluation of the validation parameters.

  18. Quantitative evaluation on activated property-tunable bulk liquid water with reduced hydrogen bonds using deconvoluted Raman spectroscopy. (United States)

    Chen, Hsiao-Chien; Mai, Fu-Der; Yang, Kuang-Hsuan; Chen, Liang-Yih; Yang, Chih-Ping; Liu, Yu-Chuan


    Interesting properties of water with distinguishable hydrogen-bonding structure on interfacial phase or in confined environment have drawn wide attentions. However, these unique properties of water are only found within the interfacial phase and confined environment, thus, their applications are limited. In addition, quantitative evaluation on these unique properties associating with the enhancement of water's physical and chemical activities represents a notable challenge. Here we report a practicable production of free-standing liquid water at room temperature with weak hydrogen-bonded structure naming Au nanoparticles (NPs)-treated (AuNT) water via treating by plasmon-induced hot electron transfer occurred on resonantly illuminated gold NPs (AuNPs). Compared to well-known untreated bulk water (deionized water), the prepared AuNT water exhibits many distinct activities in generally physical and chemical reactions, such as high solubilities to NaCl and O2. Also, reducing interaction energy within water molecules provides lower overpotential and higher efficiency in electrolytic hydrogen production. In addition, these enhanced catalytic activities of AuNT water are tunable by mixing with deionized water. Also, most of these tunable activities are linearly proportional to its degree of nonhydrogen-bonded structure (DNHBS), which is derived from the O-H stretching in deconvoluted Raman spectrum.

  19. Guided Tissue Regeneration in Four Teeth Using a Liquid Polymer Membrane. (United States)

    Alterman, Jennifer B; Huff, John F


    Periodontal disease is one of the most common diseases diagnosed in dogs and cats. Guided tissue regeneration (GTR) is a treatment alternative to extraction of strategically important teeth. The barrier membrane used in the GTR procedure is of key importance. The purpose of this case series was to evaluate a liquid polymer gel as a membrane for GTR. The polymer gel ( N-methyl-2-pyrrolidone and poly [DL-lactide]) combined with 8.5% doxycycline hyclate was used in place of a traditional membrane in 4 teeth. The teeth were re-examined 6 months postoperatively for radiographic evaluation. A decrease in probing depth and new alveolar bone formation was seen 6 months postoperatively. Improvement in periodontal disease stage was seen in 2 of the 4 teeth. Larger controlled trials with histopathologic evaluation are indicated to further assess the use of this polymer as a membrane in GTR. However, the clinical outcomes of all 4 treated teeth were considered successful.

  20. Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system

    Directory of Open Access Journals (Sweden)

    Makaka S.


    Full Text Available The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.

  1. Effects of alpha-lipoic acids on sperm membrane integrity during liquid storage of boar semen

    Directory of Open Access Journals (Sweden)

    Laura Parlapan


    Full Text Available Preliminary studies have shown that sperm membrane from swine shows high sensitivity to cryopreservation process, causing a dramatic reduction in sperm quality. This has been attributed to the production of reactive oxygen species, that cause lipid peroxidation in sperm membranes. The aim of the present study was to minimize the oxidative attack by adding different concentration of alpha-lipoic acid into the sperm liquid storage at 17ºC for 7 days. Freshly ejaculated boar semen was diluted with Beltsville Thawing Solution (BTS and supplemented with 5 levels of alpha-lipoic  acid (0.015, 0.02, 0.05, 0.1, 0.15 mmol/ml. The membrane integrity was evaluated at days 0, 1, 3, 5 and 7 of liquid preservation, using flow cytometer FACSCanto II (BD Biociencias systems. The experiment indicate that supplementation of alpha-lipoic  acid to the semen liquid storage extender improve sperm membrane

  2. RTV Silicone Membranes as Agents to Confine the Liquid Components in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Antonino Bartolotta


    Full Text Available Selected silicone membranes are investigated in order to find attractive multifunctional materials as liquid confining flexible agents with good heat resistance as well as low affinity towards the chemical specimens commonly used in dye sensitized solar cells (DSSC. In fact, the leakage and/or volatilization of liquid components inside DSSC remains one of the most critical obstacles in the progress of this technology from laboratory scale to large area applications. Dynamic mechanical spectroscopic, differential scanning calorimetric, and thermogravimetric analyses on dry membranes were performed in order to investigate their mechanical properties and their thermal stability. By a further comparative study between the equilibrium uptake and the adsorption-desorption process of a nitrile based solution, useful indications about the ability of these networks to encapsulate the liquid mixture were inferred. Moreover, a rough evaluation of porosity was also carried out, giving results which are in agreement with surface morphology observed by scanning electron microscopy and atomic force microscopy. In the light of the results obtained by the different experimental techniques the confinement capability of these membranes towards the liquid components inside a DSSC is discussed.

  3. Synthesis and characterization of ionic liquid (EMImBF4)/Li+ - chitosan membranes for ion battery (United States)

    Pasaribu, Marvin H.; Arcana, I. Made; Wahyuningrum, Deana


    Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li+ ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anion metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10-2 S cm- 1 for chitosan to 1.30 × 10-2 S cm-1 for chitosan with EMImBF4/Li+, and this result was supported by analysis the surface morphology (SEM).

  4. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Sik [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)


    The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  5. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Directory of Open Access Journals (Sweden)

    Byung-Sik Lee


    Full Text Available The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  6. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.


    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  7. Determination of trace levels of dinitrophenolic compounds by microporous membrane liquid-liquid extraction in environmental water samples. (United States)

    Bartolomé, Luis; Lezamiz, Jon; Etxebarria, Néstor; Zuloaga, Olatz; Jönsson, Jan Ake


    A fast and simple hollow fibre-based microporous membrane liquid-liquid extraction (MMLLE) method is proposed for the determination of trace levels of dinitrophenolic compounds in water samples. The optimization step was performed using a three-variables Doehlert matrix design, involving the fibre length, the quantity of trioctylphosphine oxide (TOPO) in the acceptor phase and the extraction time. Using the established experimental conditions, some other parameters such as stirring speed, salt content, humic acids and different organic solvents as the acceptor phase were studied. Validation of the method included calibration experiments, linearity studies and determination of method LOD (MLD). The RSD was around 11% in all the experiments on different days at different concentrations. Separation and detection of four dinitrophenols were performed in 10 min with an RP-LC and a C(8 )column ACN-citric buffer gradient elution and diode array detection.

  8. Backside calibration potentiometry: ion activity measurements with selective supported liquid membranes by calibrating from the inner side of the membrane. (United States)

    Malon, Adam; Bakker, Eric; Pretsch, Ernö


    In direct potentiometry, the magnitude of the measured potentials is used to determine the composition of the sample. While this places rather formidable demands on the required reproducibility of the associated potential measurements, typically on the order of microvolts, in vitro clinical analyses of blood samples are today successfully performed with direct potentiometry using ion-selective electrodes (ISEs). Unfortunately, most other analytical situations do not permit the sensor to be recalibrated every few minutes, as in environmental monitoring or in vivo measurements, and direct potentiometry is often bound to fail as an accurate method in these circumstances. This paper introduces a novel direction for potentiometric sensing, termed backside calibration potentiometry. Chemical asymmetries across thin supported liquid ISE membranes are assessed by determining the direction of potential drift upon changing the stirring rate on either side of the membrane. Disappearance of this drift indicates the disappearance of concentration gradients across the membrane and is used to determine the sample composition if the solution composition at the backside of the membrane and the interfering ion concentration in the sample are known. For practical determinations, the concentration of either the primary or the interfering ion is varied in the reference solution until the stirring effect disappears. The procedure is demonstrated with a Ca2+-selective membrane using Ba2+ as the dominant interfering ion. Another example includes the determination of Pb2+ in environmental samples where the pH is adjusted to a known level. At pH 4.0, H+ turns out to be the dominant interfering ion. The practical applicability of the method is shown with different environmental water samples, for which the results obtained with the novel method are compared with those obtained by traditional calibration using standard additions. The limitations of the novel method in terms of accuracy and

  9. Study on removal of cadmium from wastewater by emulsion liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mortaheb, Hamid R., E-mail: [Chemistry and Chemical Engineering Research Center of Iran, Tehran, P.O. Box 14335-186 (Iran, Islamic Republic of); Kosuge, Hitoshi [Chemical Engineering Department, Tokyo Institute of Technology, Tokyo, 152-8552 (Japan); Mokhtarani, Babak; Amini, Mohammad H.; Banihashemi, Hamid R. [Chemistry and Chemical Engineering Research Center of Iran, Tehran, P.O. Box 14335-186 (Iran, Islamic Republic of)


    Removal of cadmium from wastewater using emulsion liquid membrane (ELM) is studied in the present study. A polyamine-type surfactant was used for stabilizing the emulsion phase. Tri-iso-octyl amine (TIOA) has been used as a carrier for transferring of cadmium through the membrane. The results show good performance in the separation process. To determine the optimum operation conditions, the effect of several parameters such as surfactant concentration, carrier concentration, pH of external and internal phases, oil to internal phase volume ratio, emulsion to external phase volume ratio, solvent type, solute concentration, presence of iodide and chloride in external phase, and mixing conditions have been investigated.

  10. Ionic liquids and their hosting by polymers for HT-PEMFC membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hana, M.; Martinez, M.; Cointeaux, L.; Lepretre, J.C. [LEPMI-ELSA, PHELMA, UMR 5631, CNRS, Grenoble INP, UJF, Saint-Martin-d' Heres (France); Molmeret, Y.; El Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, Grenoble (France); Teles, J.; Judeinstein, P. [Institut de Chimie Moleculaire et des Materiaux d' Orsay, CNRS 8182, Orsay (France); Iojoiu, C.; Sanchez, J.Y.


    The paper deals with proton-conducting ionic liquids (PCILs) for use, in combination with functional polymers, in membranes operating in high temperature PEMFC. Monoammoniums derived from monoamines and half-neutralised diamines were investigated in the form of triflates. Promising results were obtained with the half-neutralised diamine-based PCIL, its conduction being governed by both Grotthuss-like and vehicular mechanisms, the respective contributions of which depend on temperature. In addition, their blending with Nafion results in a distinct reinforcement of the membrane. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Valorization of ammonia concentrates from treated urban wastewater using liquid–liquid membrane contactors


    Licon Bernal, Edxon Eduardo; Maya, Carlos; Valderrama Angel, César Alberto; Cortina Pallás, José Luís


    The removal of ammonium from tertiary effluents by zeolites generates basic ammonia concentrates (up to 1–3 gNH3/L in 1–2 g NaOH/L). This study evaluates the use of hollow fibre liquid–liquid membrane contactors (HFMCs) as a concentration and purification step for ammonia effluents to produce NH4NO3 and (NH4)2(HPO4) solutions for potential use as liquid fertilizers. The influence of various operational parameters (i.e., flow rate, initial ammonia concentration and stripping acid concentration...

  12. An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations. (United States)

    Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias


    An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda


    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The carbon dioxide removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the Portable Life Support System (PLSS). This paper describes work carried out to evaluate its potential for use in the cabin.


    Directory of Open Access Journals (Sweden)

    Aziza Hattou


    Full Text Available embrane processes for separation of chemical species from a mixture are gaining in importance and are emerging as a viable alternative to conventional separation processes. The emulsion liquid membrane (ELM technique was regarded as an emerging separation technology and was extensively examined for potential applications in such fields as hydrometallurgy, environmental engineering, biochemical engineering, pharmaceutical engineering, and food technology. In the present work, the removal of Cerium ions from acidic solution by using an emulsion liquid membrane (ELM technique was investigated and we obtained > 98% efficiency with the treatment. For the transport of Ce(III ions using Cyanex 301 as extractant, the effects of extractant and surfactant concentrations, mixing speed, concentration and type of stripping solution, phase ratio, treatment ratio, and nature of diluent on the extraction rate were studies. Under the optimum conditions, solvent extraction and stripping of Ce(III ions were investigated.

  15. Extraction matrine from Radix Sopheorae Tonkinensis by non-supported liquid membrane extraction technology

    Directory of Open Access Journals (Sweden)

    Zhifeng Guo


    Full Text Available Non-Supported Liquid Membrane Extraction (NSLME is a new development extraction technology based on Supported Liquid Membrane Extraction (SLME. Sample extraction assembly is composed of three phases: an acceptor phase: phosphate–sodium dihydrogen phosphate buffer solution at the bottom; an organic phase: chloroform applied as the non-supported liquid membrane in the middle layer; and a donor phase: aqueous solution samples containing alkaloids in the upper layer. The whole system is maintained stable by density difference among the three layers that avoided the mutual interferences. The alkaloid in the donor phase can spread to the underlying acidic acceptor phase, where it is able to form water soluble salt in the acid environment, and thus cannot return to the middle organic phase. Therefore, the transmission of alkaloid is a one-way path, and the extraction of alkaloids can be achieved and enriched. In this study, the extraction of alkaloid was carried out by using matrine aqueous solution as the donor phase, and the extraction quantity and efficiency were investigated by GC/MS. This study evaluated the relationship between extracted quantity and extraction time. The effects of extraction temperature, membrane thickness, pH value of acceptor phase on extraction quantity and efficiency were also studied, and the optimal extraction condition was found. The extracted quantity achieved the largest amount at 45 °C when pure phosphoric acid was applied as the acceptor phase; the organic solvent volume was 0.2 mL. The extraction of alkaloid from Radix Sophorae Tonkinensis was performed under the optimized condition. The extraction rate of matrine was up to 54% after a four-hour extraction. A huge advantage of NSLME technology is that the extracted alkaloid enjoyed high purity compared with that extracted by the traditional Liquid–Liquid Extraction (LLE.

  16. Potentiometric determination of K+ ions using a K+-selective electrode with macrocyclic liquid membrane

    Directory of Open Access Journals (Sweden)

    Cezar Spinu


    Full Text Available This paper describes analytical applications of K+-selective liquid membrane electrode. Themembrane is the solution of the active complex formed by the K+ ions with dibenzo-18-crown-6 ionophore (DB-[18]-C-6 extracted in propylenecarbonate (PC. Successful application of the developed electrode for K+ ions determination in aqueous solution and samples of commercial mineral water by direct potentiometry is presented.

  17. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu


    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  18. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters

    Directory of Open Access Journals (Sweden)

    Zhongde Dai


    Full Text Available A membrane contactor using ionic liquids (ILs as solvent for pre-combustion capture CO2 at elevated temperature (303–393 K and pressure (20 bar has been studied using mathematic model in the present work. A comprehensive two-dimensional (2D mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO2 removal efficiency were systematically studied. The simulation results show that CO2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. Keywords: CO2 capture, Pre-combustion, Membrane contactor, Ionic liquids, Modelling

  19. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. (United States)

    Koók, László; Nemestóthy, Nándor; Bakonyi, Péter; Zhen, Guangyin; Kumar, Gopalakrishnan; Lu, Xueqin; Su, Lianghu; Saratale, Ganesh Dattatraya; Kim, Sang-Hyoun; Gubicza, László


    In this work, the performance of dual-chamber microbial fuel cells (MFCs) constructed either with commonly used Nafion® proton exchange membrane or supported ionic liquid membranes (SILMs) was assessed. The behavior of MFCs was followed and analyzed by taking the polarization curves and besides, their efficiency was characterized by measuring the electricity generation using various substrates such as acetate and glucose. By using the SILMs containing either [C6mim][PF6] or [Bmim][NTf2] ionic liquids, the energy production of these MFCs from glucose was comparable to that obtained with the MFC employing polymeric Nafion® and the same substrate. Furthermore, the MFC operated with [Bmim][NTf2]-based SILM demonstrated higher energy yield in case of low acetate loading (80.1 J g-1 CODin m-2 h-1) than the one with the polymeric Nafion® N115 (59 J g-1 CODin m-2 h-1). Significant difference was observed between the two SILM-MFCs, however, the characteristics of the system was similar based on the cell polarization measurements. The results suggest that membrane-engineering applying ionic liquids can be an interesting subject field for bioelectrochemical system research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Preparation and characterisation of non-aqueous proton-conducting membranes with the low content of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Baek, J.S. [Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of); Fuel Cell Research Center, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Park, J.S. [Department of Environmental Engineering, College of Engineering, Sangmyung University, Chungnam Province (Korea, Republic of); Sekhon, S.S. [Department of Applied Physics, Guru Nanak Dev University, Amritsar (India); Yang, T.H. [Fuel Cell Research Center, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Shul, Y.G. [Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of); Choi, J.H. [Department of Chemical Engineering, College of Engineering, Kongju National University, Chungnam Province (Korea, Republic of)


    In this study, we prepared ionic liquid based composite membranes applicable for anhydrous and high temperature polymer electrolyte membrane fuel cells (PEMFCs). It is intended to minimise an increase in ionic conductivity of composite membranes by reducing the content of ionic liquids up to 30 wt% along with the addition of acids having the same anions as the ionic liquids. For this purpose, we prepared the composite membrane by solution recasting with 5 wt% Nafion solution, ionic liquids such as 1-ethyl-3-methylimidazolium trifluoro-methanesulphonate (EMITf) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF{sub 4}), and acids such as trifluoromethanesulphonic acid (HTf) and tetra-fluoroboric acid (HBF{sub 4}). The composite membranes were characterised by using small-angle X-ray scattering (SAXS), thermogravimetric analyser (TGA) and impedance spectroscopy. It was observed that the addition of the acids results in an increase in the proton conductivity of the composite membranes by reducing the viscosity of ionic liquids inside the composite membranes and also by providing additional proton ions due to the dissociation of the acids. In addition, the composite membranes exhibited better thermal stability over 300 C. (Abstract Copyright [2010], Wiley Periodicals, Inc.)


    Directory of Open Access Journals (Sweden)

    Baghdad Medjahed


    Full Text Available The sorption of copper (II present in an aqueous media using a supported liquid membrane (SLM by chloride tri-N-octylmethylammonium (Aliquat 336 and Tri-n-butylphosphate (TBP from molar ratio 1:1, with polytetrafluoroethylene (PTFE as a membrane support was studied. The effects of various parameters as initial pH, KSCN concentration and ammonium acetate concentration on the extraction yield were carried out. By a calculation program using CHEAQS V. L20.1, the determination of the percentages of the present species before and after extraction were given, in aqueous medium and on the membrane to be able to determine the relation between the nature of the extracted species and the extraction yield. The 23 factorial design achieve the best conditions of recovery procedure. The recovery of copper (II is almost quantitative (94 %, in one step.

  2. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system. (United States)

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao


    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  3. Statistical thermodynamics of association colloids. III. The gel to liquid phase transition of lipid bilayer membranes (United States)

    Leermakers, F. A. M.; Scheutjens, J. M. H. M.


    A new theory is introduced to model the lipid membrane structure and stability both above and below the gel to liquid phase transition temperature. Recently, we elaborated a self-consistent-field (SCF) theory, in which the full set of conformations was generated in a rotational isomeric state scheme and Boltzmann statistics was used to determine the statistical weight per conformation. In the present paper we also take into account that the anisotropic distribution of the molecules on the lattice induce a self-consistent anisotropic molecular field. This field, which is a function of the bond orientations, leads to an extra factor in the statistical weight of each conformation and is based on a generalization of Flory's and Di Marzio's analysis of systems with rigid rods. This elegant refinement follows from elementary statistics, is free of new adjustable parameters, and significantly improves details of the structure of the model membranes. To examine the properties of the SCAF (self-consistent anisotropic field) theory we use a model membrane built up by lecithin-like molecules composed of apolar and polar segments. The model has three nearest-neighbor interaction parameters of the Flory-Huggins type, namely for the interaction between apolar segments and water, that between polar segments and water, and that between polar and apolar segments. A fourth parameter is the dihedral trans/gauche energy difference. The theory predicts a first order gel to liquid phase transition for the model membranes. Depending on the membrane concentration, both an intercalated (in the dilute regime) and a nonintercalated (in the concentrated regime) gel phase are observed. Detailed information on the various membrane phases is obtained. Order parameter and segment density profiles are given.

  4. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations. (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D


    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

  5. 21 CFR 173.21 - Perfluorinated ion exchange membranes. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under the...

  6. Advanced Supported Liquid Membranes for CO2 Control in Extravehicular Activity Applications (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda


    Developing a new, robust, portable life support system (PLSS) is currently a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has worked well, it has a finite CO2 adsorption capacity. Consequently, the unit would have to be larger and heavier to extend EVA times. Therefore, new CO2 control technologies must be developed to meet mission objectives without increasing the size of the PLSS. Although recent work has centered on sorbents that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that selectively vents CO2 to space. A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have adequate selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a micro porous material filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a current Phase II SBIR project, Reaction Systems has developed a new reactive liquid, which has effectively zero vapor pressure making it an ideal candidate for use in an SLM. The SLM function has been demonstrated with representative pressures of CO2, O2, and water (H2O). In addition to being effective for CO2 control, the SLM also vents moisture to space. Therefore, this project has demonstrated the feasibility of using an SLM to control CO2 in an EVA application.

  7. Process of Facilitated Extraction of Vanadium Ions through Supported Liquid Membranes: Parameters and Mechanism

    Directory of Open Access Journals (Sweden)

    O. Kamal


    Full Text Available To conduct experiments related to the facilitated extraction phenomenon of vanadium ions (VO2+, three supported liquid membranes (SLMs were prepared, each containing 0.01 M of methyl cholate (MC, resorcinarene (RESO, or trioctylamine (TOA as extractive agents. Kinetic and thermodynamic models were developed, based on the interaction of the substrate (VO2+ with the extractive agent T and the diffusion of the formed entity (TS through the membrane. The experimental results verify the models, and to determine, macroscopic parameters, permeabilities (P and initial fluxes (J0, and microscopic parameters, association constants (Kass and apparent diffusion coefficients (D⁎ related to formed entities (TS and their diffusion through the membrane organic phase. The experimental results indicate that the mechanism on the migration of the VO2+ ions through the membrane organic phase is based on the successive jumps of substrate, from one site to another of the extractive agent. To explain these results and understand the mechanism, we studied influence of temperature factor, and we determined activation parameters (Ea, ΔH≠, and ΔS≠. The results show that this extraction phenomenon is governed by a structural term. Therefore, the membrane performance changes according to nature and structure of the association site presented by each of extractive agents.

  8. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky


    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  9. Pervaporation performance of PPO membranes in dehydration of highly hazardous mmh and udmh liquid propellants. (United States)

    Moulik, Siddhartha; Kumar, K Praveen; Bohra, Subha; Sridhar, Sundergopal


    Polyphenylene oxide (PPO) membranes synthesized from 2,6-dimethyl phenol monomer were subjected to pervaporation-based dehydration of the highly hazardous and hypergolic monomethyl hydrazine (MMH) and unsymmetrical dimethyl hydrazine (UDMH) liquid propellants. Membranes were characterized by TGA, DSC and SEM to study the effect of temperature besides morphologies of surface and cross-section of the films, respectively. Molecular dynamics (MD) simulation was used to study the diffusion behavior of solutions within the membrane. CFD method was employed to solve the governing mass transfer equations by considering the flux coupling. The modeling results were highlighted by the experimental data and were in good agreement. High separation factors (35-70) and reasonable water fluxes (0.1-0.2 kg/m(2)h) were observed for separation of the aqueous azeotropes of MMH (35 wt%) and UDMH (20 wt%) and their further enrichment to >90% purity. Effect of feed composition, membrane thickness and permeate pressure on separation performance of PPO membranes were investigated to determine optimum operating conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin


    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  11. Targeting cholesterol in a liquid-disordered environment by theonellamides modulates cell membrane order and cell shape. (United States)

    Arita, Yuko; Nishimura, Shinichi; Ishitsuka, Reiko; Kishimoto, Takuma; Ikenouchi, Junichi; Ishii, Kumiko; Umeda, Masato; Matsunaga, Shigeki; Kobayashi, Toshihide; Yoshida, Minoru


    Roles of lipids in the cell membrane are poorly understood. This is partially due to the lack of methodologies, for example, tool chemicals that bind to specific membrane lipids and modulate membrane function. Theonellamides (TNMs), marine sponge-derived peptides, recognize 3β-hydroxysterols in lipid membranes and induce major morphological changes in cultured mammalian cells through as yet unknown mechanisms. Here, we show that TNMs recognize cholesterol-containing liquid-disordered domains and induce phase separation in model lipid membranes. Modulation of membrane order was also observed in living cells following treatment with TNM-A, in which cells shrank considerably in a cholesterol-, cytoskeleton-, and energy-dependent manner. These findings present a previously unrecognized mode of action of membrane-targeting natural products. Meanwhile, we demonstrated the importance of membrane order, which is maintained by cholesterol, for proper cell morphogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development of Flow-Through Polymeric Membrane Reactor for Liquid Phase Reactions: Experimental Investigation and Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Endalkachew Chanie Mengistie


    Full Text Available Incorporating metal nanoparticles into polymer membranes can endow the membranes with additional functions. This work explores the development of catalytic polymer membrane through synthesis of palladium nanoparticles based on the approaches of intermatrix synthesis (IMS inside surface functionalized polyethersulfone (PES membrane and its application to liquid phase reactions. Flat sheet PES membranes have been successfully modified via UV-induced graft polymerization of acrylic acid monomer. Palladium nanoparticles have been synthesized by chemical reduction of palladium precursor loaded on surface modified membranes, an approach to the design of membranes modified with nanomaterials. The catalytic performances of the nanoparticle incorporated membranes have been evaluated by the liquid phase reduction of p-nitrophenol using NaBH4 as a reductant in flow-through membrane reactor configuration. The nanocomposite membranes containing palladium nanoparticles were catalytically efficient in achieving a nearly 100% conversion and the conversion was found to be dependent on the flux, amount of catalyst, and initial concentration of nitrophenol. The proposed mathematical model equation represents satisfactorily the reaction and transport phenomena in flow-through catalytic membrane reactor.

  13. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation. (United States)

    Yuan, Xudong; Capomacchia, A C


    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used.

  14. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma. (United States)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine; Halvorsen, Trine Grønhaug; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid


    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation of phosphatidylcholines (PC), sphingomyelins (SM), and lysophosphatidylcholines (Lyso-PC). In both generic methods, no phospholipids were detected in the acceptor solutions. Thus, PALME appeared to be highly efficient for phospholipid removal. To further support this, qualitative (post-column infusion) and quantitative matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents experimental and theoretical data regarding the preparation and characterization of three liquid-membrane electrodes, which have not been mentioned in the specialized literature so far. The active substances, the solutions of which in nitrobenzene formed the membranes on a graphite rod, are simple complex combinations of Cu(II and Ni(II ions with an organic ligand belonging to the Schiff base class: N-[2-thienylmethilidene]-2-aminoethanol (TNAHE. The Cu2+ -selective and Ni2+ -selective electrodes were used to determine the copper and nickel ions in aqueous solutions, both by direct potentiometry and by potentiometric titration with EDTA. They were also used for the determination of Cu2+ and Ni2+ ions in industrial waters by direct potentiometry.

  16. Tri-n-octylamine-xylene-based supported liquid membranes and transport of Ce(IV) ions

    Energy Technology Data Exchange (ETDEWEB)

    Chaudry, M.A. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan); Amin, S.; Malik, M.T. [Baha-UD-Din Zakaria Univ., Multan (Pakistan)


    An extraction and stripping study of Ce(IV) ions by using supported liquid membranes has been performed. Tri-n-octylamine has been used as a carrier diluted in xylene. Sodium carbonate, ascorbic acid (AA), and mandelic acid (MA) have been used in the stripping phase. AA and MA reduce the Ce(IV) ions and sulfuric acid. Transport of cerium ions has been observed with sodium carbonate as the strippant. The flux of these ions increases with an increase in the system operating temperature. Optimal conditions for the transport of cerium ions have been found to be 0.4 M H{sub 2}SO{sub 4} in the feed and 0.2 M TOA in the membrane.

  17. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    Directory of Open Access Journals (Sweden)

    Mark D. Parker


    Full Text Available Determining the effective concentration (i.e., activity of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.

  18. Augmenting Microbial Fuel Cell power by coupling with Supported Liquid Membrane permeation for zinc recovery. (United States)

    Fradler, Katrin R; Michie, Iain; Dinsdale, Richard M; Guwy, Alan J; Premier, Giuliano C


    Simultaneous removal of organic and zinc contamination in parallel effluent streams using a Microbial Fuel Cell (MFC) would deliver a means of reducing environmental pollution whilst also recovering energy. A Microbial Fuel Cell system has been integrated with Supported Liquid Membrane (SLM) technology to simultaneously treat organic- and heavy metal containing wastewaters. The MFC anode was fed with synthetic wastewater containing 10 mM acetate, the MFC cathode chambers were fed with 400 mg L(-1) Zn(2+) and this then acted as a feed phase for SLM extraction. The MFC/SLM combination produces a synergistic effect which enhances the power performance of the MFC significantly; 0.233 mW compared to 0.094 mW in the control. It is shown that the 165 ± 7 mV difference between the MFC/SLM system and the MFC control is attributable to the lower cathode pH in the integrated system experiment, the consequent lower activation overpotential and higher oxygen reduction potential. The change in the substrate removal efficiency and Coulombic Efficiency (CE) compared to controls is small. Apart from the electrolyte conductivity, the conductivities of the bipolar and liquid membrane were also found to increase during operation. The diffusion coefficient of Zn(2+) through the liquid membrane in the MFC/SLM (4.26*10(-10) m(2) s(-1)) is comparable to the SLM control (5.41*10(-10) m(2) s(-1)). The system demonstrates that within 72 h, 93  ±  4% of the zinc ions are removed from the feed phase, hence the Zn(2+) removal rate is not significantly affected and is comparable to the SLM control (96  ±  1%), while MFC power output is significantly increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Service life estimation of liquid silicone rubber seals in polymer electrolyte membrane fuel cell environment

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Tong; Van Zee, J.W. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Lin, C.-W. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Chien, C.H. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University (China); Chao, Y.J. [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)


    Polymer electrolyte membrane fuel cell (PEMFC) is a promising power source for many applications such as automobiles. Sealing around the perimeter of the cell is required to prevent the gases/liquids inside the cell from leaking and polymers are usually used for the seal or gasket materials. They in general possess the viscoelastic property which induces stress relaxation of the material under constant strain. The stress relaxation behavior of liquid silicone rubber, a type of polymer used as seals in PEMFCs, is studied in this work. A Prony series is used to predict the compression stress relaxation curve at different strain levels. Applying the time-temperature superposition, master curves are generated and used for predicting the service life of this material as seals in PEMFCs. The estimated lives in water and in air are compared. (author)

  20. Service life estimation of liquid silicone rubber seals in polymer electrolyte membrane fuel cell environment (United States)

    Cui, Tong; Lin, C.-W.; Chien, C. H.; Chao, Y. J.; Van Zee, J. W.

    Polymer electrolyte membrane fuel cell (PEMFC) is a promising power source for many applications such as automobiles. Sealing around the perimeter of the cell is required to prevent the gases/liquids inside the cell from leaking and polymers are usually used for the seal or gasket materials. They in general possess the viscoelastic property which induces stress relaxation of the material under constant strain. The stress relaxation behavior of liquid silicone rubber, a type of polymer used as seals in PEMFCs, is studied in this work. A Prony series is used to predict the compression stress relaxation curve at different strain levels. Applying the time-temperature superposition, master curves are generated and used for predicting the service life of this material as seals in PEMFCs. The estimated lives in water and in air are compared.

  1. Electromembrane extraction with alkylated phosphites and phosphates as supported liquid membranes

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig


    A range of alkylated phosphates and phosphites were for the first time investigated as potential supported liquid membranes (SLMs) for electromembrane extraction (EME) of basic drugs from human plasma samples. Six polar basic drugs were used as model analytes for initial testing of the different...... were unsuccessful. Alkylated phosphates/phosphites with less carbon atoms resulted in high current flowing in the system, whereas similar structures with >18 carbon atoms provided very low recoveries and extremely low system-current. Based on this knowledge, an SLM of TBP mixed with 40% NPOE (2...

  2. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community. (United States)

    Han, Xiaomeng; Zhou, Zhen; Mei, Xiaojie; Ma, Yan; Xie, Zhenfang


    In order to investigate effects of waste activated sludge (WAS) fermentation liquid on anoxic/oxic- membrane bioreactor (A/O-MBR), two A/O-MBRs with and without WAS fermentation liquid addition were operated in parallel. Results show that addition of WAS fermentation liquid clearly improved denitrification efficiency without deterioration of nitrification, while severe membrane fouling occurred. WAS fermentation liquid resulted in an elevated production of proteins and humic acids in bound extracellular polymeric substance (EPS) and release of organic matter with high MW fractions in soluble microbial product (SMP) and loosely bound EPS (LB-EPS). Measurement of deposition rate and fluid structure confirmed increased fouling potential of SMP and LB-EPS. γ-Proteobacteria and Ferruginibacter, which can secrete and export EPS, were also found to be abundant in the MBR with WAS fermentation liquid. It is implied that when WAS fermentation liquid was applied, some operational steps to control membrane fouling should be employed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Liquid alkali metals - Equation of state and reduced-pressure, bulk-modulus, sound-velocity, and specific-heat functions (United States)

    Schlosser, Herbert; Ferrante, John


    The previous work of Schlosser and Ferrante (1988) on universality in solids is extended to the study of liquid metals. As in the case of solids, to a good approximation, in the absence of phase transitions, plots of the logarithm of the reduced-pressure function H, of the reduced-isothermal-bulk-modulus function b, and of the reduced-sound-velocity function v are all linear in 1-X. Finally, it is demonstrated that ln(Cp/C/v) is also linear in 1-X, where X = (V/V/0/)exp 1/3), and V(0) is the volume at zero pressure.

  4. High-Performance Liquid Chromatographic and High-Performance Thin-Layer Chromatographic Method for Quantitative Estimation of Dolutegravir Sodium in Bulk Drug and Pharmaceutical Dosage Form


    Bhavar, Girija B.; Sanjay S. Pekamwar; Aher, Kiran B.; Thorat, Ravindra S.; Chaudhari, Sanjay R.


    Simple, sensitive, precise, and specific high-performance liquid chromategraphic (HPLC) and high-performance thin-layer chromatographic (HPTLC) methods for the determination of dolutegravir sodium in bulk drug and pharmaceutical dosage form were developed and validated. In the HPLC method, analysis of the drug was carried out on the ODS C18 column (150 ? 4.6 mm, 5 ?m particle size) using a mixture of acetonitrile: water (pH 7.5) in the ratio of 80:20 v/v as the mobile phase at the flow rate 1...

  5. Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. (United States)

    Mihailescu, Mihaela; Vaswani, Rishi G; Jardón-Valadez, Eduardo; Castro-Román, Francisco; Freites, J Alfredo; Worcester, David L; Chamberlin, A Richard; Tobias, Douglas J; White, Stephen H


    A central feature of the lipid raft concept is the formation of cholesterol-rich lipid domains. The introduction of relatively rigid cholesterol molecules into fluid liquid-disordered (L(d)) phospholipid bilayers can produce liquid-ordered (L(o)) mixtures in which the rigidity of cholesterol causes partial ordering of the flexible hydrocarbon acyl chains of the phospholipids. Several lines of evidence support this concept, but direct structural information about L(o) membranes is lacking. Here we present the structure of L(o) membranes formed from cholesterol and dioleoylphosphatidylcholine (DOPC). Specific deuteration of the DOPC acyl-chain methyl groups and neutron diffraction measurements reveal an extraordinary disorder of the acyl chains of neat L(d) DOPC bilayers. The disorder is so great that >20% of the methyl groups are in intimate contact with water in the bilayer interface. The ordering of the DOPC acyl chains by cholesterol leads to retraction of the methyl groups away from the interface. Molecular dynamics simulations based on experimental systems reveal asymmetric transbilayer distributions of the methyl groups associated with each bilayer leaflet. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. In-situ Non-Invasive Imaging of Liquid-Immersed Thin Film Composite Membranes

    KAUST Repository

    Ogieglo, Wojciech


    We present a non-invasive method to directly image liquid-immersed thin film composite membranes. The approach allows accessing information not only on the lateral distribution of the coating thickness, including variations in its swelling and density, but also on the distribution of substrate porosity, roughness, accessibility of pores to liquid, and even the degree of pore intrusion related to the thin layer deposition process. The method can be particularly helpful in the fields of functional coatings or membranes to allow laterally-resolved studies under realistic application conditions thereby opening completely new research avenues. The approach is demonstrated in a study of two polymers of intrinsic microporosity, PIM-1 and PIM-6FDA-OH, coated on polyacrylonitrile support and immersed in water. Variations of the skin morphology using different coating methods (floating, spin-coating and dip-coating) are evaluated with the help of the presented method. Surfaces of at least tens of cm2 can be potentially analyzed.

  7. Continued Advancement of Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda


    The Development of a new, robust, portable life support system (PLSS) is currently a high NASA priority in order to support longer and safer extravehicular activity (EVA) missions that will be necessary as space travel extends to near-Earth asteroids and eventually Mars. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. The Metal Oxide (MetOx) canister has a finite CO2 adsorption capacity and therefore in order to extend mission times, the unit would have to be larger and heavier, which is undesirable; therefore new CO2 control technologies must be developed. While recent work has centered on the use of alternating sorbent beds that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that vents CO2 to space but retains oxygen(O2). A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Conventional gas separation membranes do not have adequate selectivity for use in the PLSS, but the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous film filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a recently completed Phase II Small Business Innovative Research project, Reaction Systems developed a new reactive liquid that has effectively zero vapor pressure, making it an ideal candidate for use in an SLM. Results obtained with the SLM in a flat sheet configuration with representative pressures of CO2, O2, and water (H2O) have shown that the CO2 permeation rate and CO2/O2 selectivity requirements have been met. In addition, the SLM vents moisture to space very effectively. The SLM has also been prepared and tested in a hollow fiber form, which will be

  8. Novel macrocyclic carriers for proton-coupled liquid membrane transport. Progress report, 1 December 1988--31 May 1991

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J.D.


    The objective of our research program is to elucidate the chemical principles which are responsible for the cation selectivity and permeability of liquid membranes containing macrocyclic carriers. Several new macrocyclic carriers were synthesized during the last three year period, including selenium-containing macrocycles, new crown-4 structures, and several new crown structures containing nitrogen based heterocycles as substituents in the principal macrocyclic ring. The cation binding properties of these macrocycles were investigated by potentiometric titration, calorimetric titration, solvent extraction, and NMR techniques. In addition, hydrophobic macrocycles were incorporated into dual hollow fiber membrane systems to investigate their membrane performance, especially in the proton-coupled transport mode. It was found that the dual hollow fiber system maintains the cation selectivity and permeability of supported liquid membranes, while enhancing membrane stability. The diffusion limited transport model was expanded to account for membrane solvent effects. Furthermore, Eu{sup 2+} transport was found to be similar to that of strontium and much higher than that of the lanthanides, in supported liquid membrane systems.

  9. Pressurised membrane-assisted liquid extraction of UV filters from sludge. (United States)

    Rodil, Rosario; Schrader, Steffi; Moeder, Monika


    A method for the determination of 11 UV-filter compounds in sludge has been developed and evaluated. The procedure includes the use of non-porous polymeric membranes in combination with pressurised liquid extraction (PLE). Firstly, the solid sample, wetted with the extraction solvent, was enclosed into tailor-made bags prepared with low density polyethylene. Secondly, these packages were submitted to a conventional PLE (70 degrees C, 4 cycles of 5 min static time). Finally, the analytes were determined by liquid chromatography-atmospheric pressure photoionisation-tandem mass spectrometry. The main advantage of this procedure is the reduction of time, solvent and labour effort ought to the combination of extraction and clean-up in a single step. Although the extraction is not quantitative (thus, standard addition is recommended for quantification) selectivity is clearly gained using the membrane as a consequence of the differences of permeation and transport through the membrane between the analytes and other sample matrix components. The optimised protocol provides limits of detection ranging from 0.3 ng g(-1) (ethylhexyl dimethyl p-aminobenzoate (OD-PABA)) to 25 ng g(-1) (ethylhexyl triazone (EHT)) with only 0.5 g of sludge sample. All the studied UV filters were found in the samples at concentration levels between 1.4 and 2479 ng g(-1), emphasising the high adsorption potential of this kind of environmental pollutants onto solid samples such as sludge. Also, this method has permitted the determination of seven of the studied UV filters in sludge samples for the first time.

  10. Ionic Liquid-Derived Blood-Compatible Composite Membranes for Kidney Dialysis (United States)

    Murugesan, Saravanababu; Mousa, Shaker; Vijayaraghavan, Aravind; Ajayan, Pulickel M.; Linhardt, Robert J.


    A novel heparin- and cellulose-based biocomposite is fabricated by exploiting the enhanced dissolution of polysaccharides in room temperature ionic liquids (RTILs). This represents the first reported example of using a new class of solvents, RTILs, to fabricate blood-compatible biomaterials. Using this approach, it is possible to fabricate the biomaterials in any form, such as films or membranes, fibers (nanometer- or micron-sized), spheres (nanometer- or micron-sized), or any shape using templates. In this work, we have evaluated a membrane film of this composite. Surface morphological studies on this biocomposite film showed the uniformly distributed presence of heparin throughout the cellulose matrix. Activated partial thromboplastin time and thromboelastography demonstrate that this composite is superior to other existing heparinized biomaterials in preventing clot formation in human blood plasma and in human whole blood. Membranes made of these composites allow the passage of urea while retaining albumin, representing a promising blood-compatible biomaterial for renal dialysis, with a possibility of eliminating the systemic administration of heparin to the patients undergoing renal dialysis. PMID:16637031

  11. Nano-assisted extraction of alkali metals using emulsion liquid membranes. (United States)

    Mokhtari, Bahram; Pourabdollah, Kobra


    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of diacid calix[4]-1,2-crowns were synthesized, and their inclusion-extraction parameters were optimized including the calixcrown scaffold (13, 4 wt%) as the carrier/demulsifier, the commercial kerosene as diluent in membrane, sulphonic acid (0.2 M) and ammonium carbonate (0.4 M) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 rpm), and initial solute concentration (100 mg/L). The selectivity of membrane over more than ten interfering cations was examined and the results reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98-99%.

  12. Nanofriction of Graphene/Ionic Liquid-Infused Block Copolymer Homoporous Membranes. (United States)

    An, Rong; Fan, Pengpeng; Yan, Nina; Ji, Qingmin; Sunkulp, Goel; Wang, Yong


    We have infused graphene/ionic liquid into block copolymer homoporous membranes (HOMEs), which have highly ordered uniform cylindrical nanopores, to form compact, dense, and continuous graphene/ionic liquid (Gr/IL) lubricating layers at interfaces, enabling a reduction in the friction coefficient. Raman and XPS analyses, confirmed the parallel alignment of the cation of ILs on graphene by the π-π stacking interaction of the imidazolium ring with the graphene layer. This alignment loosens the lattice spacing of Gr in Gr/ILs, leading to a larger lattice spacing of 0.36 nm in Gr of Gr/ILs hybrids than the pristine Gr (0.33 nm). The loose graphene layers, which are caused by the coexistence of graphene and ILs, would make the sliding easier, and favor the lubrication. An increase in the friction coefficient was observed on ILs-infused block copolymer HOMEs, as compared to Gr/ILs-infused ones, due to the absence of Gr and the unstably formed ILs film. Gr/ILs-infused block copolymer HOMEs also exhibit much smaller residual indentation depth and peak indentation depth in comparison with ILs-infused ones. This indicates that the existence of stably supported Gr/ILs hybrid liquid films aids the reduction of the friction coefficient by preventing the thinning of the lubricant layer and exposure of the underlying block copolymer HOMEs.

  13. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review (United States)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi


    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  14. Environmentally Friendly Recycling of Fuel-Cell Membrane Electrode Assemblies by Using Ionic Liquids. (United States)

    Balva, Maxime; Legeai, Sophie; Leclerc, Nathalie; Billy, Emmanuel; Meux, Eric


    The platinum nanoparticles used as the catalyst in proton exchange membrane fuel cells (PEMFCs) represent approximately 46 % of the total price of the cells for a large-scale production, and this is one of the barriers to their commercialization. Therefore, the recycling of the platinum catalyst could be the best alternative to limit the production costs of PEMFCs. The usual recovery routes for spent catalysts containing platinum are pyro-hydrometallurgical processes in which a calcination step is followed by aqua regia treatment, and these processes generate fumes and NOx emissions, respectively. The electrochemical recovery route proposed here is more environmentally friendly, performed under "soft" temperature conditions, and does not result in any gas emissions. It consists of the coupling of the electrochemical leaching of platinum in chloride-based ionic liquids (ILs), followed by its electrodeposition. The leaching of platinum was studied in pure ILs and in ionic-liquid melts at different temperatures and with different chloride contents. Through the modulation of the composition of the ionic-liquid melts, it is possible to leach and electrodeposit the platinum from fuel-cell electrodes in a single-cell process under an inert or ambient atmosphere. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supported liquid membrane-liquid chromatography-mass spectrometry analysis of cyanobacterial toxins in fresh water systems (United States)

    Mbukwa, Elbert A.; Msagati, Titus A. M.; Mamba, Bhekie B.

    Harmful algal blooms (HABs) are increasingly becoming of great concern to water resources worldwide due to indiscriminate waste disposal habits resulting in water pollution and eutrophication. When cyanobacterial cells lyse (burst) they release toxins called microcystins (MCs) that are well known for their hepatotoxicity (causing liver damage) and have been found in eutrophic lakes, rivers, wastewater ponds and other water reservoirs. Prolonged exposure to low concentrated MCs are equally of health importance as they are known to be bioaccumulative and even at such low concentration do exhibit toxic effects to aquatic animals, wildlife and human liver cells. The application of common treatment processes for drinking water sourced from HABs infested reservoirs have the potential to cause algal cell lyses releasing low to higher amounts of MCs in finished water. Trace microcystins in water/tissue can be analyzed and quantified using Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) following solid-phase extraction (SPE) sample clean-up procedures. However, extracting MCs from algal samples which are rich in chlorophyll pigments and other organic matrices the SPE method suffers a number of drawbacks, including cartridge clogging, long procedural steps and use of larger volumes of extraction solvents. We applied a supported liquid membrane (SLM) based technique as an alternative sample clean-up method for LC-ESI-MS analysis of MCs from both water and algal cells. Four (4) MC variants (MC-RR, -YR, -LR and -WR) from lyophilized cells of Microcystis aeruginosa and water collected from a wastewater pond were identified) and quantified using LC-ESI-MS following a SLM extraction and liquid partitioning step, however, MC-WR was not detected from water extracts. Within 45 min of SLM extraction all studied MCs were extracted and pre-concentrated in approximately 15 μL of an acceptor phase at an optimal pH 2.02 of the donor phase (sample). The highest

  16. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells. (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang


    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  17. Comparison between experiment and theory in the temperature variation of film tension above the bulk isotropic transition in free-standing liquid-crystal films. (United States)

    Veum, M; Duelge, L; Droske, J; Nguyen, H T; Huang, C C; Mirantsev, L V


    Using differential scanning calorimetry, the transition enthalpies and temperatures for the bulk smectic-isotropic phase transition have been measured for a series of liquid-crystal compounds. For five compounds, those values were used as parameters in a microscopic mean-field model to predict the temperature dependence of the difference in free-energy density between a sample of material in a free-standing smectic film and that in the bulk. The model predicts a weak temperature dependence below the bulk clearing point and a pronounced monotonic increase with temperature above the transition temperature. The compounds used in this study were chosen specifically because they were also the subject of a previous independent experimental study [M. Veum, Phys. Rev. E 74, 011703 (2006)] that demonstrated a sudden monotonic increase in the free-standing film tension with temperature, which is qualitatively consistent with the predictions of the above-mentioned mean-field model. This study presents a direct and quantitative comparison between the predictions of the mean-field model and the results from previous tension experiments.

  18. High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Liang [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Yatao, E-mail: [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); UNESCO Center for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Yuanming; Zhang, Haoqin [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Liu, Jindun, E-mail: [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China)


    Highlights: • SiO{sub 2} spheres were modified by poly (ionic liquid) brushes via RATRP. • Positively charged NF membranes were fabricated by incorporation of SiO{sub 2}-PIL. • The membranes exhibited higher rejection for dyes and superior penetration for salts. - Abstract: Silica spheres modified by poly (ionic liquid) brushes, a novel positively charged nanomaterial is prepared by atom transfer radical polymerization (ATRP). A high flux positively charged loose nanofiltration membrane is fabricated via “blending-phase inversion” method. The morphology structures, hydrophilicity, thermal and mechanical properties, permeation performance of these membranes are investigated in detail. The results reveal that the hybrid membranes have enhanced surface hydrophilicity, water permeability, thermal stability, and mechanical properties. Characterization of membrane separation properties shows that the hybrid membranes possess higher salt permeability and relatively higher rejection for reactive dyes, which may open opportunities for the recycling of reactive dyes wastewater. Moreover, such hybrid membranes have an outstanding operational stability and salts concentration showed little effect on the separation properties.

  19. Induction of cassava somatic embryogenesis in liquid medium associated to floating membrane rafts

    Directory of Open Access Journals (Sweden)

    Elizabete Keiko Takahashi


    Full Text Available The objective of this study was to examine the effect of two culture systems, liquid medium associated to floating membranes and solid medium, both supplemented with different concentrations of 2,4-D, in the induction of somatic embryogenesis of cassava (Manihot esculenta Crantz. Only 28% of the young leaf lobes (with 9 µM 2,4-D were induced to form organized embryogenic structures (OES with membrane rafts, compared to 50% of the explants presenting this type of tissue in solid medium with 36 µM of 2,4-D. Despite the lower response observed in liquid medium with membrane, the amount of OES/explant in all 2,4-D concentrations was higher than solid medium. Based on the results and considering the high cost of the membrane rafts, this system was not distinctly superior than solid medium for inducing somatic embryogenesis in cassava.O objetivo deste estudo foi comparar a indução de embriogênese somática em mandioca (Manihot esculenta Crantz utilizando o sistema de cultivo em meio líquido associado com membranas flutuantes com meio sólido, ambos suplementados com diferentes doses de 2,4-D. Utilizando membranas flutuantes, o melhor resultado foi obtido na concentração de 9 µM 2,4-D, onde apenas 28% dos explantes foliares apresentaram estruturas embriogênicas organizadas (OES. Por outro lado, em explantes cultivados em meio sólido suplementado com 36 µM de 2,4-D a frequência de OES foi de 50%. Embora a frequência de indução embriogênica tenha sido inferior em meio líquido associado com membranas flutuantes, a quantidade de OES por explante foi igual ou superior ao do meio sólido em todas as concentrações de 2,4-D testadas. Baseado nestes resultados, e considerando o elevado custo das membranas, este sistema de cultura não apresentou vantagens significativas para indução de embriogênese somática em mandioca em relação ao meio sólido.

  20. Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state?

    Directory of Open Access Journals (Sweden)

    Joly Etienne


    Full Text Available Abstract Background Over the past decade, it has become apparent that specialised membrane microdomains, commonly called rafts, where lipids like sphingolipids and cholesterol are arranged compactly in a liquid ordered phase are involved in cell signalling. Hypothesis The core of the hypothesis presented here is that resting cells may actively maintain their plasma membrane in liquid phase, corresponding to a metastable thermodynamic state. Following a physiological stimulus such as ligands binding to their membrane receptors, the tendency of membrane components to undergo a localised transition towards a gel state would increase, resulting in initial minute solid structures. These few membrane components having undergone a liquid to solid state transition, would then act as seeds for the specific recruitment of additional membrane components whose properties are compatible with the crystalline growth of these initial docks. Cells could therefore be using the propensity of lipids to assemble selectively to generate stable platforms of particular cellular components either for intra-cellular transport or for signal transduction. Testing the hypothesis could presumably be done via biophysical approaches such as EPR spin labelling, X-ray diffraction or FRET coupled to direct microscopic observation of cells to which very localized stimuli would be delivered. Implications Such a model of selective growth of membrane docks would provide an explanation for the existence of different types of microdomains, and for the fact that, depending on the state of the cells and on the procedures used to isolate them, membrane microdomains can vary greatly in their properties and composition. Ultimately, a thorough understanding of how and why lipid domains are assembled in biological membranes will be essential for many aspects of cell biology and medicine.

  1. Investigation of propofol renal elimination by HPLC using supported liquid membrane procedure for sample preparation. (United States)

    Dawidowicz, Andrzej L; Kalityński, Rafał; Trocewicz, Jerzy; Nestorowicz, Andrzej; Fijałkowska, Anna; Trela-Stachurska, Katarzyna


    One of the least explored subjects in the research on the metabolism of a widely used anaesthetic, propofol, is its excretion in an unchanged form. According to literature, the estimated percentage of applied propofol eliminated intact via kidneys is lower than 0.3%. The present study shows the amount of propofol excreted in an unchanged form with urine collected during the first 48 h after anaesthesia in five patients undergoing elective intracranial procedures. The drug was concentrated and selectively isolated from urine samples by supported liquid membrane technique and determined by HPLC with fluorescence detection. The amount of unchanged propofol eliminated with urine was approximately (0.004 +/- 0.002)% of the total applied dose. The obtained results may suggest that propofol in an unchanged form is not excreted by kidneys at all provided that all propofol determined in presented study originated from conjugates hydrolysis. Copyright 2002 John Wiley & Sons, Ltd.

  2. Phase separation and ion conductivity in the bulk and at the surface of anion exchange membranes with different ion exchange capacities at different humidities (United States)

    Kimura, Taro; Akiyama, Ryo; Miyatake, Kenji; Inukai, Junji


    For higher performances of anion exchange membrane (AEM) fuel cells, understanding the phase-separated structures inside AEMs is essential, as well as those at the catalyst layer/membrane interfaces. The AEMs based on quaternized aromatic semi-block copolymers with different ion exchange capacities (IECs) were systematically investigated. With IECs of 1.23 and 1.95 mequiv g-1, the water uptakes at room temperature were 37% and 98%, and the anion conductivities 23.6 and 71.4 mS cm-1, respectively. The increases were not proportional to the IEC. Images obtained by transmission electron microscopy in vacuum were similar with both IEC values, but the development of a clear phase separation in humidified nitrogen was observed in the profiles only with 1.95 mequiv g-1obtained by small-angle X-ray scattering. At the temperature of 40 °C and the relative humidity (RH) of 30%, the average currents observed at the tip apex by current-sensing atomic force microscopy were <0.5 and 10 pA with 1.23 and 1.95 mequiv g-1, respectively, and those at 70% RH were 10 and 15 pA, respectively. The humidity gave a larger influence on the bulk structure with 1.95 mequiv g-1, whereas a larger influence on the surface conductivity with 1.23 mequiv g-1.

  3. Thermoresponsive Membrane Based on Thermotropic Liquid Crystalline Cholesteryl - (L-lacticacidn System: Study of Its Drug Permeability

    Directory of Open Access Journals (Sweden)

    Massoumeh Bagheri


    Full Text Available The rapidly increasing interest in functional materials with reversibly switchable physico- chemical properties has led to significant work on the development of stimuli responsive membranes. Thermotropic liquid crystals with their exceptional properties have potentials for drug-delivery applications. Thermoresponsive liquid-crystal-embedded membranes were investigated for the purpose of developing the drug delivery systems with thermal stimuli response. Drug release occurs at temperatures above the phase transition temperature of thermotropic liquid crystals. Therefore, they can control drug release in response to small temperature changes. In this work, the biocompatible and thermotropic liquid crystalline polymer cholesteryl-(L-lactic acidn ,CLAn (n=30, was synthesized with accurate control of molecular weight via ring opening polymerization method. Polymerization of L-lactide was carried out in the presence of cholesterol as an initiator and catalytic amount of tin (II octoate (Sn(Oct2 at 150°C in 5 h. The number-average degree of polymerization of CLA 30 was obtained from 1H NMR spectroscopy. The phase transition behavior of liquid crystalline CLA30 was established by differential scanning calorimetry and polarizing optical microscopy. The resulting liquid crystalline CLA30 was subsequently utilized to prepare CLA30 -embedded cellulose nitrate membrane by adsorption method. The CLA30-embedded cellulose nitrate membrane was used by an in-vitro drug penetration studies. Acetaminophen was used as a model drug. The permeation study was carried out at different temperatures around glass transition temperature of polymer CLA30 (37, 45 and 40°C, respectively. The results show that the CLA30 -embedded cellulose nitrate membranes exhibit thermo-responsive sensitivity with controlled drug permeation.

  4. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen


    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  5. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane (United States)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)


    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  6. A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Sanna Björkegren


    Full Text Available The extraction efficiency of hexavalent chromium, Cr(VI, from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC, to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water does not significantly influence the extraction rate.

  7. Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects. (United States)

    Gupta, Krishna M; Chen, Yifei; Hu, Zhongqiao; Jiang, Jianwen


    IRMOF-1 supported ionic liquid (IL) membranes are investigated for CO(2) capture by atomistic simulation. The ILs consist of identical cation 1-n-butyl-3-methylimidazolium [BMIM](+), but four different anions, namely hexafluorophosphate [PF(6)](-), tetrafluoroborate [BF(4)](-), bis(trifluoromethylsulfonyl)imide [Tf(2)N](-), and thiocyanate [SCN](-). As compared with the cation, the anion has a stronger interaction with IRMOF-1 and a more ordered structure in IRMOF-1. The small anions [PF(6)](-), [BF(4)](-), and [SCN](-) prefer to locate near to the metal-cluster, particularly the quasi-spherical [PF(6)](-) and [BF(4)](-). In contrast, the bulky and chain-like [BMIM](+) and [Tf(2)N](-) reside near the phenyl ring. Among the four anions, [Tf(2)N](-) has the weakest interaction with IRMOF-1 and thus the strongest interaction with [BMIM](+). With increasing the weight ratio of IL to IRMOF-1 (W(IL/IRMOF-1)), the selectivity of CO(2)/N(2) at infinite dilution is enhanced. At a given W(IL/IRMOF-1), the selectivity increases as [Tf(2)N](-) calculation. In the [BMIM][SCN]/IRMOF-1 membrane with W(IL/IRMOF-1) = 1, [SCN](-) is identified to be the most favorable site for CO(2) adsorption. [BMIM][SCN]/IRMOF-1 outperforms polymer membranes and polymer-supported ILs in CO(2) permeability, and its performance surpasses Robeson's upper bound. This simulation study reveals that the anion has strong effects on the microscopic properties of ILs and suggests that MOF-supported ILs are potentially intriguing for CO(2) capture. This journal is © the Owner Societies 2012

  8. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation. (United States)

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua


    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  9. Reactions of Superoxide with Iron Porphyrins in the Bulk and the Near-Surface Region of Ionic Liquids. (United States)

    Dees, Anne; Jux, Norbert; Tröppner, Oliver; Dürr, Katharina; Lippert, Rainer; Schmid, Martin; Küstner, Bernd; Schlücker, Sebastian; Steinrück, Hans-Peter; Gottfried, J Michael; Ivanović-Burmazović, Ivana


    The redox reaction of superoxide (KO2) with highly charged iron porphyrins (Fe(P4+), Fe(P8+), and Fe(P8-)) has been investigated in the ionic liquids (IL) [EMIM][Tf2N] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and [EMIM][B(CN)4] (1-ethyl-3-methylimidazolium tetracyanoborate) by using time-resolved UV/vis stopped-flow, electrochemistry, cryospray mass spectrometry, EPR, and XPS measurements. Stable KO2 solutions in [EMIM][Tf2N] can be prepared up to a 15 mM concentration and are characterized by a signal in EPR spectrum at g = 2.0039 and by the 1215 cm(-1) stretching vibration in the resonance Raman spectrum. While the negatively charged iron porphyrin Fe(P8-) does not react with superoxide in IL, Fe(P4+) and Fe(P8+) do react in a two-step process (first a reduction of the Fe(III) to the Fe(II) form, followed by the binding of superoxide to Fe(II)). In the reaction with KO2, Fe(P4+) and Fe(P8+) show similar rate constants (e.g., in the case of Fe(P4+): k1 = 18.6 ± 0.5 M(-1) s(-1) for the first reaction step, and k2 = 2.8 ± 0.1 M(-1) s(-1) for the second reaction step). Notably, these rate constants are four to five orders of magnitude lower in [EMIM][Tf2N] than in conventional solvents such as DMSO. The influence of the ionic liquid is also apparent during electrochemical experiments, where the redox potentials for the corresponding Fe(III)/Fe(II) couples are much more negative in [EMIM][Tf2N] than in DMSO. This modified redox and kinetic behavior of the positively charged iron porphyrins results from their interactions with the anions of the ionic liquid, while the nucleophilicity of the superoxide is reduced by its interactions with the cations of the ionic liquid. A negligible vapor pressure of [EMIM][B(CN)4] and a sufficient enrichment of Fe(P8+) in a close proximity to the surface enabled XPS measurements as a case study for monitoring direct changes in the electronic structure of the metal centers during redox processes in solution and

  10. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid. (United States)

    Zhang, Xiangming; Guan, Xiying; Nakmali, Don; Palan, Vikrant; Pineda, Mario; Gan, Rong Z


    Vibration of the tympanic membrane (TM) has been measured at the umbo using laser Doppler vibrometry and analyzed with finite element (FE) models of the human ear. Recently, full-field TM surface motion has been reported using scanning laser Doppler vibrometry, holographic interferometry, and optical coherence tomography. Technologies for imaging human TM motion have the potential to lead to using a dedicated clinical diagnosis tool for identification of middle ear diseases. However, the effect of middle ear fluid (liquid) on TM surface motion is still not clear. In this study, a scanning laser Doppler vibrometer was used to measure the full-field surface motion of the TM from four human temporal bones. TM displacements were measured under normal and disease-mimicking conditions with different middle ear liquid levels over frequencies ranging from 0.2 to 8 kHz. An FE model of the human ear, including the ear canal, middle ear, and spiral cochlea was used to simulate the motion of the TM in normal and disease-mimicking conditions. The results from both experiments and FE model show that a simple deflection shape with one or two major displacement peak regions of the TM in normal ear was observed at low frequencies (1 kHz and below) while complicated ring-like pattern of the deflection shapes appeared at higher frequencies (4 kHz and above). The liquid in middle ear mainly affected TM deflection shapes at the frequencies higher than 1 kHz.

  11. From bulk self-assembly to electrical diffuse layer in a continuum approach for ionic liquids: The impact of anion and cation size asymmetry (United States)

    Bier, Sariel; Gavish, Nir; Uecker, Hannes; Yochelis, Arik


    Ionic liquids are solvent-free electrolytes, some of which possess an intriguing self-assembly at finite length scale due to Coulombic interactions. Using a continuum framework (based on Onsager's relations), it is shown that bulk nanostructures arise via linear (supercritical) and nonlinear (subcritical) bifurcations (morphological phase transitions), which also directly affect the electrical double layer structure. A Ginzburg-Landau amplitude equation is derived and the bifurcation type is related to model parameters, such as temperature, potential, and interactions. Specifically, the nonlinear bifurcation occurs for geometrically dissimilar ions and, surprisingly, is induced by perturbations on the order of thermal fluctuations. Finally, qualitative insights and comparisons to the experimentally decaying charge layers within the electrical double layer are discussed.

  12. Extraction of Lead through Supported Liquid Membrane Using Triethanolamine/Cyclohexanone Carrier and Na2SO4 strippant

    Directory of Open Access Journals (Sweden)

    Gill R.


    Full Text Available Supported liquid membranes (SLM have proved to be effective not only for removing but also for recovery of heavy metals from waste water. This work includes the study of separation and transport of Pb+2 ions through liquid membrane based on triethanolamine (TEA in cyclohexanone supported in microporous polypropylene films. Therefore, this study aims to optimize the conditions for moving the Pb+2 ions against the concentration gradient, characterize the membrane by flux measurements, for their use in various industrial plants design to recover these ions. The effect of lead ion concentration, HNO3 in feed and TEA concentration in membrane has been studied. Optimized condition of transport of this metal ion is 1.0 M acid concentration in the feed phase and 0.1M Na2SO4 as the strippant when TEA concentration is 5.25 mol/dm3 in the membrane, as the rationale of this study is to optimize the condition for the movement of lead ions from feed phase to strip phase and to recover metal ions from any industrial effluent and finally to characterize the membrane by determining the mobility and permeability of the complexed heavy metal ion to extract their respective metal ions.

  13. Systematic cyanobacterial membrane proteome analysis by combining acid hydrolysis and digestive enzymes with nano-liquid chromatography-Fourier transform mass spectrometry. (United States)

    Kwon, Joseph; Oh, Jeehyun; Park, Chiyoul; Cho, Kun; Kim, Seung Il; Kim, Soohyun; Lee, Sunghoon; Bhak, Jong; Norling, Birgitta; Choi, Jong-Soon


    The identification of membrane proteins is currently under-represented since the trans-membrane domains of membrane proteins have a hydrophobic property. Membrane proteins have mainly been analyzed by cleaving and identifying exposed hydrophilic domains. We developed the membrane proteomics method for targeting integral membrane proteins by the following sequential process: in-solution acid hydrolysis, reverse phase chromatographic separation, trypsin or chymotrypsin digestion and nano-liquid chromatography-Fourier transform mass spectrometry. When we employed total membrane proteins of Synechocystis sp. PCC 6803, 155 integral membrane proteins out of a predictable 706 were identified in a single application, corresponding to 22% of a genome. The combined methods of acid hydrolysis-trypsin (AT) and acid hydrolysis-chymotrypsin (AC) identified both hydrophilic and hydrophobic domains of integral membrane proteins, respectively. The systematic approach revealed a more concrete data in mapping the repertoire of cyanobacterial membrane and membrane-linked proteome. 2009 Elsevier B.V. All rights reserved.

  14. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn


    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  15. Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer. (United States)

    Liu, Chao; Tan, Yun; Li, Chunquan; Wu, Feiyan; Chen, Lie; Chen, Yiwang


    Two novel liquid-crystal-conjugated polyelectrolytes (LCCPEs) poly[9,9-bis[6-(4-cyanobiphenyloxy)-hexyl]-fluorene-alt-9,9-bis(6-(N,N-diethylamino)-hexyl)-fluorene] (PF6Ncbp) and poly[9,9-bis[6-(4-cyanobiphenyloxy)-hexyl]-fluorene-alt-9,9-bis(6-(N-methylimidazole)-hexyl]-fluorene] (PF6lmicbp) are obtained by covalent linkage of the cyanobiphenyl mesogen polar groups onto conjugated polyelectrolytes. After deposition a layer of LCCPEs on ZnO interlayer, the spontaneous orientation of liquid-crystal groups can induce a rearrangement of dipole moments at the interface, subsequently leading to the better energy-level alignment. Moreover, LCCPEs favors intimate interfacial contact between ZnO and the photon harvesting layer and induce active layer to form the nanofibers morphology for the enhancement of charge extraction, transportation and collection. The water/alcohol solubility of the LCCPEs also enables them to be environment-accepted solvent processability. On the basis of these advantages, the poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C60-butyric acid methyl ester (PC60BM)-based inverted polymer solar cells (PSCs) combined with ZnO/PF6Ncbp and ZnO/PF6lmicbp bilayers boost the power conversion efficiency (PCE) to 3.9% and 4.2%, respectively. Incorporation of the ZnO/PF6lmicbp into the devices based on a blend of a narrow band gap polymer thieno[3,4-b]thiophene/benzodithiophene (PTB7) with [6,6]-phenyl C70-butyric acid methyl ester (PC71BM) affords a notable efficiency of 7.6%.

  16. An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. (United States)

    Tarazona, Pablo; Feussner, Kirstin; Feussner, Ivo


    Within the lipidome of plants a few bulk molecular species hamper the detection of the rest, which are present at relatively low levels. In addition, low-abundance species are often masked by numerous isobaric interferences, such as those caused by isoelemental species and isotopologues. This scenario not only means that minor species are underrepresented, but also leads to potential misidentifications and limits the structural information gathered by lipidomics approaches. In order to overcome these limitations we have developed a multiplexed liquid chromatography-mass spectrometry lipidomics platform able to achieve an enhanced coverage of plant lipidomes. The platform is based on a single extraction step followed by a series of ultra-performance liquid chromatography separations. Post-column flow is then directed to both a triple quadrupole analyzer for targeted profiling and a time-of-flight analyzer for accurate mass analysis. As a proof of concept, plants were subjected to cold or drought, which are known to trigger widespread remodeling events in plant cell membranes. Analysis of the leaf lipidome yielded 393 molecular species within 23 different lipid classes. This enhanced coverage allowed us to identify lipid molecular species and even classes that are altered upon stress, allowing hypotheses on role of glycosylinositolphosphoceramides (GIPC), steryl glycosides (SG) and acylated steryl glycosides (ASG) in drought stress to be addressed and confirming the findings from numerous previous studies with a single, wide-ranging lipidomics approach. This extended our knowledge on membrane remodeling during the drought response, integrating sphingolipids and sterol lipids into the current glycerolipid-based model. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Oxide or carbide nanoparticles synthesized by laser ablation of a bulk Hf target in liquids and their structural, optical, and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Semaltianos, N. G., E-mail: [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Friedt, J.-M.; Blondeau-Patissier, V.; Combe, G. [Dépt. Temps-Fréquence, Femto-st, UMR CNRS 6174, Université de Franche-Comté, Besançon 25030 (France); Chassagnon, R. [Laboratoire Interdisciplinaire Carnot De Bourgogne, ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté, Dijon 21078 (France); Moutarlier, V. [UTINAM, UMR CNRS 6213, Université de Franche-Comté, Besançon 25030 (France); Assoul, M.; Monteil, G. [Dépt. Mécanique Appliquée, Femto-st, UMR CNRS 6174, Université de Franche-Comté, Besançon 25030 (France)


    Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO{sub 2}) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter in the range of 4.3–5.3 nm. Nanoparticles synthesized in DI water have band gaps of 5.6 and 5.4 eV, in ethanol 5.72 and 5.65 eV (using low and high pulse energy), and in toluene 3 eV. The values for the relative permittivity in the range of 7.74–8.90 were measured for hafnia nanoparticles' thin films deposited on substrates by drop-casting (self-assembled layers) in parallel plate capacitor structures.

  18. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering


    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  19. Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes. (United States)

    Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath


    Polyimides are at the forefront of advanced membrane materials for CO2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO2 and CH4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C4mim][Tf2N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.

  20. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air (United States)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra


    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  1. Synthesis and characterization of ionic liquid (EMImBF{sub 4})/Li{sup +} - chitosan membranes for ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Pasaribu, Marvin H., E-mail:; Arcana, I Made, E-mail:; Wahyuningrum, Deana, E-mail: [Department of Chemistry, Faculty of Mathematics and Natural Sciences, InstitutTeknologi Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)


    Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li{sup +} ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anion metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10{sup −2} S cm{sup −1} for chitosan to 1.30 × 10{sup −2} S cm{sup −1} for chitosan with EMImBF4/Li{sup +}, and this result was supported by analysis the surface morphology (SEM)

  2. Isolation and preconcentration of Cd(II) from environmental samples using polypropylene porous membrane in a hollow fiber renewal liquid membrane extraction procedure and determination by FAAS. (United States)

    Luciano, Raquel Medeiros; Bedendo, Gizelle Cristina; Carletto, Jeferson Schneider; Carasek, Eduardo


    The use of polypropylene porous membrane in a hollow fiber renewal liquid membrane (HFRLM) procedure for determination of Cd(II) in water samples was assessed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex. The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the polypropylene membrane porous. The organic solvent is immobilized inside the polypropylene membrane porous, leading to an homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and Cd(II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. The optimized variables were: sample pH, DDTP concentration, stripping pH, EDTA concentration, extraction temperature and time, extractor solvent and addition of salt to saturate the sample. The sample volume used was 15 mL and the stripping volume was 165 microL. The analyte enrichment factor was 107, limit of detection 1.5 microg L(-1), relative standard deviation 4.0% (15 microg L(-1), n=7) and the working linear range 5-30 microg L(-1). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)


    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  4. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study (United States)


    The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh–Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles

  5. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study. (United States)

    Shih, Cheng-Yu; Shugaev, Maxim V; Wu, Chengping; Zhigilei, Leonid V


    The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh-Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles emerging

  6. Performance of Hollow Fiber Membrane Gas-Liquid Contactors to Absorb CO2 Using Diethanolamine (Dea as a Solvent

    Directory of Open Access Journals (Sweden)

    Sutrasno Kartohardjono


    Full Text Available This study uses DEA solution to absorb CO2 from the gas flow through the hollow fiber membrane contactors. This study aims to evaluate the performance of hollow fiber membrane contactors to absorb CO2 gas using DEA solution as solvent through mass transfer and hydrodynamics studies. The use of DEA solution is to reduce the mass transfer resistance in the liquid phase, and on the other side, the large contact area of the membrane surface can cover the disadvantage of membrane contactors; additional mass transfer resistance in the membrane phase. During experiments, CO2 feed flows through the fiber lumens, while the 0.01 M DEA solution flows in the shell side of membrane contactors. Experimental results show that the mass transfer coefficients and fluxes of CO2 increase with an increase in both water and DEA solution flow rates. Increasing the amount of fibers in the contactors will decrease the mass transfer and fluxes at the same DEA solution flow rate. Mass transfer coefficients and CO2 fluxes using DEA solution can achieve 28,000 and 7.6 million times greater than using water as solvent, respectively. Hydrodynamics studies show that the liquid pressure drops in the contactors increase with increasing liquid flow rate and number of fibers in the contactors. The friction between water and the fibers in the contactor was more pronounced at lower velocities, and therefore, the value of the friction factor is also higher at lower velocities.

  7. Bulk properties of rotating nuclei and the validity of the liquid drop model at finite angular momenta (United States)

    Piperova, J.; Samsoen, D.; Quentin, P.; Bencheikh, K.; Bartel, J.; Meyer, J.


    Out of self-consistent semi-classical calculations performed within the so-called Extended Thomas-Fermi approach for 212 nuclei at all even angular momentum values I ranging between 0 and 80 ħ and using the Skyrme SkM ∗ effective force, the I-dependence of associated liquid drop model parameters has been studied. The latter have been obtained trough separate fits of the calculated values of the strong interaction as well as direct and exchange Coulomb energies. The theoretical data basis so obtained, has allowed to make a rough quantative assessment of the variation with I of the usual volume and surface energy parameters up to spin of ˜ 30-40ħ. As a result of the combined variation of the surface and Coulomb energies, it has been shown that this I-dependence results in a significant enhancement of the fission stability of very heavy nuclei, balancing thus partially the well-known instability due to centrifugal forces.

  8. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology. (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  9. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process. (United States)

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin


    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. © 2015 American Institute of Chemical Engineers.

  10. Optimization of Emulsion Liquid Membrane for Lead Separation from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    E. Fouad


    Full Text Available This study focuses on evaluating the process parameters and their effects on extraction of lead as well as emulsion breaking. The Signal / Noise ratios have been used to study the performance characteristics. Six parameters affecting extraction by emulsion liquid membrane, namely, TOPO, Span80, and internal phase concentration, feed/emulsion ratio, agitation time and feed pH have been optimized with considerations to lead extraction and emulsion breaking. The standardized effects of the independent variables and their interactions were tested by the analysis of variance (ANOVA with 95% confidence limits (α= 0.05 and Pareto chart. The use of the optimal values of these parameters has been proved useful in maximizing the extraction efficiency and minimizing the emulsion breakage. TOPO concentration of 0.1498 M, Span 80 concentration of 3.007 v%, Internal phase concentration of 0.183 M, Feed/emulsion volume ratio of 1.407, agitation time of 30 minutes, and feed pH of 5 are determined as the optimum parameters.

  11. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries. (United States)

    Navarra, M A; Manzi, J; Lombardo, L; Panero, S; Scrosati, Bruno


    Gel-type polymer electrolytes are formed by immobilizing a solution of lithium N,N-bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethanesulfonyl)imide (Py₂₄TFSI) ionic liquid (IL) with added mixtures of organic solvents, such as ethylene, propylene and dimethyl carbonates (EC, PC, and DMC, respectively), into a poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) matrix, and their properties investigated. The addition of the organic solvent mixtures results in an improvement of the ionic conductivity and in the stabilization of the interface with the lithium electrode. Conductivity values in the range of 10⁻³-10⁻²  S cm⁻¹ are obtained in a wide temperature range. These unique properties allow the effective use of these membranes as electrolytes for the development of advanced polymer batteries based on a lithium metal anode and an olivine-type lithium iron phosphate cathode. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid


    Electromembrane extraction (EME) of polar basic drugs from human plasma was investigated for the first time using pure bis(2-ethylhexyl) phosphite (DEHPi) as the supported liquid membrane (SLM). The polar basic drugs metaraminol, benzamidine, sotalol, phenylpropanolamine, ephedrine...... were analyzed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In contrast to other SLMs reported for polar basic drugs in the literature, the SLM of DEHPi was highly stable in contact with plasma, and the system-current across the SLM was easily kept below 50 μA. Thus...


    Energy Technology Data Exchange (ETDEWEB)



    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  14. Permeabilitas Membran Transpor Campuran Unsur Tanah Jarang (La, Nd, Gd, Lu Menggunakan Carrier (TBP : D2EHPA Melalui Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Djabal Nur Basir


    Full Text Available Methods that have been developed currently for the separation and purification of rare earth elements, REE’s are solvent extraction by through immobilization of an extracting agent in a porous polymeric membrane. This methods beside could increase the transport selectivity, also the amount of carrier was very few. This technique is known as supported liquid membrane, SLM. Research toward transport and separation of REE’s through SLM have been still relatively limited merely to single feed-binary mixture, and one type of carrier. The transport   membrane permeability was obtained in a mixture of REE’s (La,Nd,Gd,Lu using the carrier TBP : D2EHPA by SLM. In this SLM technique, supporting membrane PTFE (polytetrafluoroethylene was soaked in a mixture of TBP carrier (tributilfosfat as a neutral ligand and D2EHPA (acid-2- etilheksilfosfat as anionic ligand with a particular concentration ratio in the solvent kerosene as membrane phase. HCl as receiver phase and solution mixture of REE’s as feed phase. Determination of the REE’s total concentration was carried out by UV-Vis spectrophotometry with NAS (sodium alizarin sulfonate as the colouring agent at pH 4,75 and the solution absorbance was determinated at 534 nm as maximum wavelength. Transport patterns of REE’s on the variation of the concentration of total mixed carrier composition, pH, and concentration  of the receiver phase were done for 300 minutes. The optimum conditions of transport mixture of REE’s (La, Nd, Gd, Lu were feed phase pH 3,0; carrier TBP: D2EHPA (0,3:0,7 M; and receiver phase HCl 3,0 M. In this condition, the transport membrane permeability in mixture of REE’s was 0,1077 cm.menit-1 with the percent of transport was 95,24%.

  15. Bulk derivatization and cation exchange restricted access media-based trap-and-elute liquid chromatography–mass spectrometry method for determination of trace estrogens in serum

    Energy Technology Data Exchange (ETDEWEB)

    Beinhauer, Jana [Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Centre of the Region Haná for Biotechnological and Agricultural Research - Department of Protein Biochemistry and Proteomics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Bian, Liangqiao [Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, Arlington, TX (United States); Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); Fan, Hui [Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Šebela, Marek [Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Centre of the Region Haná for Biotechnological and Agricultural Research - Department of Protein Biochemistry and Proteomics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Kukula, Maciej [Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, Arlington, TX (United States); Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); Barrera, Jose A. [Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); and others


    Highlights: • Analysis of estrogens in small volume samples at low parts-per-trillion concentration. • Charged bulk derivatization facilitates on-line ion exchange sample preparation. • On-line WCX restricted access media traps analytes, but not proteins and lipids. • Complete preparation and LC–MS/MS analysis completed in 30 min/sample. - Abstract: Estrone (E1), estradiols (α/β-E2), and estriol (E3) are four major metabolically active estrogens exerting strong biological activities at very low circulating concentrations. This paper reports a sensitive and efficient method with automated, on-line clean-up and detection to determine trace estrogens in a small volume of serum samples using liquid chromatography–electrospray ionization–tandem mass spectrometry directly, without off-line liquid–liquid or solid-phase extraction pretreatments. Serum aliquots (charcoal stripped fetal bovine serum, 100 μL) were spiked with four estrogen standards and their corresponding isotope-labeled internal standards, then bulk derivatized with 2-fluoro-1-methyl-pyridium p-toluenesulfonate (2-FMP) to establish the calibration curves and perform method validation. Calibration was established in the concentration ranges of 5–1000 pg mL{sup −1}, and demonstrated good linearity of R{sup 2} from 0.9944 to 0.9997 for the four derivatized estrogens. The lower detection limits obtained were 3–7 pg mL{sup −1}. Good accuracy and precision in the range of 86–112% and 2.3–11.9%, respectively, were observed for the quality control (QC) samples at low, medium, and high concentration levels. The stability tests showed that the derivatized serum samples were stable 8 h after derivatization at room temperature and at least to 48 h if stored at −20 °C. The method was applied to measure trace estrogens in real human and bovine serum samples, and three of four estrogen compounds studied were observed and quantified.

  16. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.


    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  17. Novel analytical procedure using a combination of hollow fiber supported liquid membrane and dispersive liquid-liquid microextraction for the determination of aflatoxins in soybean juice by high performance liquid chromatography - Fluorescence detector. (United States)

    Simão, Vanessa; Merib, Josias; Dias, Adriana N; Carasek, Eduardo


    This study describes a combination between hollow fiber membrane and dispersive liquid-liquid microextraction for determination of aflatoxins in soybean juice by HPLC. The main advantage of this approach is the use of non-chlorinated solvent and small amounts of organic solvents. The optimum extraction conditions were 1-octanol as immobilized solvent; toluene and acetone at 1:5 ratio as extraction and disperser solvents (100 μL), NaCl at 2% of the sample volume and extraction time of 60 min. The optimal condition for the liquid desorption was 150 μL acetonitrile:water (50:50 v/v) and desorption time of 20 min. The linear range varied from 0.03 to 21 μg L(-1), with R(2) coefficients ranging from 0.9940 to 0.9995. The limits of detection and quantification ranged from 0.01 μg L(-1) to 0.03 μg L(-1) and from 0.03 μg L(-1) to 0.1 μg L(-1), respectively. Recovery tests ranged from 72% to 117% and accuracy between 12% and 18%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen


    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  19. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T


    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  20. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials (United States)

    Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.


    Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T water structure at T T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

  1. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale. (United States)

    Combernoux, Nicolas; Schrive, Luc; Labed, Véronique; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe


    The recent use of the reverse osmosis (RO) process at the damaged Fukushima-Daiichi nuclear power plant generated a growing interest in the application of this process for decontamination purposes. This study focused on the development of a robust RO process for decontamination of two kinds of liquid effluents: a contaminated groundwater after a nuclear disaster and a contaminated seawater during a nuclear accident. The SW30 HR membrane was selected among other in this study due to higher retentions (96% for Cs and 98% for Sr) in a true groundwater. Significant fouling and scaling phenomenon, attributed to calcium and strontium precipitation, were evidenced in this work: this underscored the importance of the lab scale experiment in the process. Validation of the separation performances on trace radionuclides concentration was performed with similar retention around 96% between surrogates Cs (inactive) and 137 Cs (radioactive). The scale up to a 2.6 m 2 spiral wound membrane led to equivalent retentions (around 96% for Cs and 99% for Sr) but lower flux values: this underlined that the hydrodynamic parameters (flowrate/cross-flow velocity) should be optimized. This methodology was also applied on the reconstituted seawater effluent: retentions were slightly lower than for the groundwater and the same hydrodynamic effects were observed on the pilot scale. Then, ageing of the membrane through irradiation experiments were performed. Results showed that the membrane active layer composition influenced the membrane resistance towards γ irradiation: the SW30 HR membrane performances (retention and permeability) were better than the Osmonics SE at 1 MGy. Finally, to supplement the scale up approach, the irradiation of a spiral wound membrane revealed a limited effect on the permeability and retention. This indicated that irradiation conditions need to be controlled for a further development of the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Application of mixed based membrane technology from component materials bintaro, zeolite and bentonite to reduction of songket waste liquid cloth (United States)

    Dahlan, Muhammad Hatta; Saleh, Abdullah; Asip, Faisol; Makmun, Akbar; Defi


    Application of membrane technology based on clay mixture, Activated Carbon from Bintaro, Zeolite and Bentonit to process the waste water of Songket cloth is Palembang traditionally cloth. The applied research is into the superior field of industrial and household waste processing with membrane ceramic technology. The objective of this research is to design the liquid waste separation tool of jumputan cloth using better and simpler ceramic membrane so that it can help the artisans of Palembang songket or songket in processing the waste in accordance with the standard of environmental quality standard (BML) and Pergub Sumsel no. 16 in 2005. The specific target to be achieved can decrease the waste of cloth jumputan in accordance with applicable environmental quality standards the method used in achieving the objectives of this study using 2 processes namely the adsorption process using activated carbon and the separation process using a ceramic membrane based on the composition of the mixture. The activated carbon from bintaro seeds is expected to decrease the concentration of liquid waste of Songket cloth. Bintaro seeds are non-edible fruits where the composition contains organic ingredients that can absorb because contains dyes and filler metals. The process of membranization in the processing is expected to decrease the concentration of waste better and clear water that can be used as recycled water for household use. With the composition of a mixture of clay-based materials: zeolite, bentonit, activated carbon from bintaro seeds are expected Find the solution and get the novelty value in the form of patent in this research

  3. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.


    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  4. Determination of 2-ethylhexyl 4-(dimethylamino) benzoate using membrane-assisted liquid-liquid extraction and gas chromatography-mass spectrometric detection. (United States)

    March, J G; Genestar, C; Simonet, B M


    A flow-cell for micro-porous membrane liquid-liquid extraction with a sheet membrane was used to extract 2-ethylhexyl 4-(dimethylamino) benzoate (EDB) from urine of solar-cream users and spiked wine samples. The cell enabled the target analyte to be extracted from 7.9 mL of donor solution into 200 microL of acceptor solution (decane). After extraction, the acceptor solution was transferred to a micro-vial for GC-MS analysis without derivation. In this work, variables affecting the enrichment factor were also studied, such as organic solvent, extraction time, recirculation flow of the donor solution through the donor chamber, presence of potassium chloride and ethanol in the donor solution and pH. The method has been evaluated in terms of linearity, sensitivity, precision, limits of detection and quantification and extraction efficiency. Limits of quantification were 1 and 3 microg L(-1) EDB for urine and wine, respectively. Quantitative analysis has been carried out by applying the method of standard additions. Within- and between-day relative standard deviations were lower than 12% and 20%, respectively. EDB was found in the urine of users of cream containing EDB in the concentration interval 1.2-7.2 microg L(-1). Therefore, this provides evidence of EDB dermal absorption and subsequent excretion through the urinary tract. EDB was not found in the analysed wine samples.

  5. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S


    Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming no bound......Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming...... liquid flow rate condition was 49% and 75% in the FS-MABR and MABR, exhibiting robust biofilms grown on the fibrous support. The FS-MABR provided more stable nitrification performance than the MABR irrespective of a high liquid flow rate. Both reactors have deteriorated ammonium (NH4+-N) removal without...... a high liquid flow rate condition to eliminate excessive biomass, indicating that regular maintenance is essential to eliminate excessive biofilm from a MABR for nitrification, which potentially acts as a NH4+ diffusion barrier....

  6. High-Performance Liquid Chromatographic and High-Performance Thin-Layer Chromatographic Method for the Quantitative Estimation of Dolutegravir Sodium in Bulk Drug and Pharmaceutical Dosage Form. (United States)

    Bhavar, Girija B; Pekamwar, Sanjay S; Aher, Kiran B; Thorat, Ravindra S; Chaudhari, Sanjay R


    Simple, sensitive, precise, and specific high-performance liquid chromategraphic (HPLC) and high-performance thin-layer chromatographic (HPTLC) methods for the determination of dolutegravir sodium in bulk drug and pharmaceutical dosage form were developed and validated. In the HPLC method, analysis of the drug was carried out on the ODS C18 column (150 × 4.6 mm, 5 μm particle size) using a mixture of acetonitrile: water (pH 7.5) in the ratio of 80:20 v/v as the mobile phase at the flow rate 1 mL/min at 260 nm. This method was found to be linear in the concentration range of 5-35 μg/mL. The peak for dolutegravir sodium was observed at 3.0 ± 0.1 minutes. In the HPTLC method, analysis was performed on aluminum-backed plates pre-coated with silica gel G60 F254 using methanol: chloroform: formic acid in the proportion of 8:2:0.5 v/v/v as the mobile phase. This solvent system was found to give compact spots for dolutegravir sodium with the Rf value 0.77 ± 0.01. Densitometric analysis of dolutegravir sodium was carried out in the absorbance mode at 265 nm. Linear regression analysis showed good linearity with respect to peak area in the concentration range of 200-900 ng/spot. The methods were validated for precision, limit of detection (LOD), limit of quantitation (LOQ), accuracy, and specificity. Statistical analysis showed that both of the methods are repeatable and specific for the estimation of the said drug. The methods can be used for routine quality control analysis of dolutegravir sodium.

  7. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  8. Stuides on a Pb2+-selective electrode with a macrocyclic liquid membrane. Potentiometric determination of Pb2+ ions

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents experimental and theoretical data regarding the design, characterization and analytical applications of a non-expensive, liquid-membrane ion-selective electrode for Pb2+ ions. The membrane is a solution of the active complex formed by Pb2+ ions with dibenzo-18-crown-6-ionophore (DB-[18]-C-6 extracted in propylene carbonate (PC. The sucessful application of the developed electrode for the determination of Pb2+ ions in aqueos solution samples by direct potentiometry and potentiometric titration is presented. For the presented analytical results, there are insignificant systematic errors between the direct potentiometric method with the developed ion-selective electrode and atomic absorption spectrometry.

  9. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments (United States)

    Griffin, Dale W.; Gonzalez, C.; Teigell, N.; Petrosky, T.; Northup, D.E.; Lyles, M.


    The influence of sample-collection-time on the recovery of culturable airborne microorganisms using a low-flow-rate membrane-filtration unit and a high-flow-rate liquid impinger were investigated. Differences in recoveries were investigated in four different atmospheric environments, one mid-oceanic at an altitude of ~10.0 m, one on a mountain top at an altitude of ~3,000.0 m, one at ~1.0 m altitude in Tallahassee, Florida, and one at ~1.0 m above ground in a subterranean-cave. Regarding use of membrane filtration, a common trend was observed: the shorter the collection period, the higher the recovery of culturable bacteria and fungi. These data also demonstrated that lower culturable counts were common in the more remote mid-oceanic and mountain-top atmospheric environments with bacteria, fungi, and total numbers averaging (by sample time or method categories) membrane filtration for aeromicrobiology studies if start-up costs are not an issue and temperature permits use; (2) although membrane filtration is more cost friendly and has a 'typically' wider operational range, its limits include loss of cell viability with increased sample time and issues with effectively extracting nucleic acids for community-based analyses; (3) the ability to recover culturable microorganisms is limited in 'extreme' atmospheric environments and thus the use of a 'limited' methodology in these environments must be taken into account; and (4) the atmosphere culls, i.e., everything is not everywhere. ?? 2010 US Government.

  10. Simulation studies of ammonia removal from water in a membrane contactor under liquid-liquid extraction mode. (United States)

    Mandowara, Amish; Bhattacharya, Prashant K


    Simulation studies were carried out, in an unsteady state, for the removal of ammonia from water via a membrane contactor. The contactor had an aqueous solution of NH(3) in the lumen and sulphuric acid in the shell side. The model equations were developed considering radial and axial diffusion and convection in the lumen. The partial differential equations were converted by the finite difference technique into a series of stiff ordinary differential equations w.r.t. time and solved using MATLAB. Excellent agreement was observed between the simulation results and experimental data (from the literature) for a contactor of 75 fibres. Excellent agreement was also observed between the simulation results and laboratory-generated data from a contactor containing 10,200 fibres. Our model is more suitable than the plug-flow model for designing the operation of the membrane contactor. The plug-flow model over-predicts the fractional removal of ammonia and was observed to be limited when designing longer contactors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Photoregenerative I−/I3− couple as a liquid cathode for proton exchange membrane fuel cell (United States)

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu


    A photoassisted oxygen reduction reaction (ORR) through I−/I3− redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I−/I3−-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I− was regenerated to I3− by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells. PMID:25348812

  12. Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Morthensen, Sofie Thage; Lewandowski, Daniel Jacob


    , obtained in continuous mode by a Grignard reaction in THF, reacted with acidic water to produce partially miscible organic and aqueous phases containing Mg salts. Despite the partial THF–water miscibility, the two phases could be separated at total flow rates up to 40 mL/min at different flow ratios, using......Continuous hydrolysis of an active pharmaceutical ingredient intermediate, and subsequent liquid–liquid (L-L) separation of the resulting organic and aqueous phases, have been achieved using a simple PTFE tube reactor connected to a miniscale hydrophobic membrane separator. An alkoxide product...

  13. Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in two-liquid-phase continuous cultures

    NARCIS (Netherlands)

    Chen, Qi; Nijenhuis, Atze; Preusting, Hans; Dolfing, Jan; Janssen, Dick B.; Witholt, Bernard

    Growth of Pseudomonas oleovorans GPol in continuous culture containing a bulk n-octane phase resulted in changes of the fatty acid composition of the membrane lipids. Compared to citrate-grown cells, the ratio of C-18 to C-16 fatty acids and the ratio of unsaturated to saturated fatty acids

  14. Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures

    Directory of Open Access Journals (Sweden)

    Nadine Schmeling


    Full Text Available Functionalized copolyimides continue to attract much attention as membrane materials because they can fulfill the demands for industrial applications. Thus not only good separation characteristics but also high temperature stability and chemical resistance are required. Furthermore, it is very important that membrane materials are resistant to plasticization since it has been shown that this phenomenon leads to a significant increase in permeability with a dramatic loss in selectivity. Plasticization effects occur with most polymer membranes at high CO2 concentrations and pressures, respectively. Plasticization effects are also observed with higher hydrocarbons such as propylene, propane, aromatics or sulfur containing aromatics. Unfortunately, these components are present in mixtures of high commercial relevance and can be separated economically by single membrane units or hybrid processes where conventional separation units are combined with membrane-based processes. In this paper the advantages of carboxy group containing 6FDA (4,4′-hexafluoroisopropylidene diphthalic anhydride -copolyimides are discussed based on the experimental results for non cross-linked, ionically and covalently cross-linked membrane materials with respect to the separation of olefins/paraffins, e.g. propylene/propane, aromatic/aliphatic separation e.g. benzene/cyclohexane as well as high pressure gas separations, e.g. CO2/CH4 mixtures. In addition, opportunities for implementing the membrane units in conventional separation processes are discussed.

  15. Monitoring of N-methyl carbamate pesticide residues in water using hollow fibre supported liquid membrane and solid phase extraction (United States)

    Msagati, Titus A. M.; Mamba, Bhekie B.

    The aim of this work was to develop a method for the determination of N-methyl carbamates in water involving hollow fibre supported liquid membrane (HFSLM) and solid phase extraction (SPE) as sample preparation methods. Four N-methyl carbamate pesticides, aldicarb, carbaryl, carbofuran and methiocarb sulfoxide, were simultaneously extracted and analysed by a liquid chromatograph with a diode array detector (LC-UV/DAD) and a liquid chromatograph coupled to a ion trap quadrupole mass spectrometer (LC-ESI-MS). The high performance liquid chromatography (HPLC) separation of carabamate extracts was performed on a C18 column with water-acetonitrile as the mobile phase. The mass spectrometry analyses were carried out in the positive mode, operating under both the selected ion monitoring (SIM) and full scan modes. The solid phase recoveries of the extracts ranged between 8% and 98%, with aldicarb having the highest recoveries, followed by carbaryl, carbofuran and methiocarb had the lowest recovery. The HFSLM recovery ranged between 8% and 58% and the order of recovery was similar to the SPE trend. Factors controlling the efficiency of the HFSLM extraction such as sample pH, stripping phase pH, enrichment time, stirring speed as well as organic solvent used for entrapment of analytes, were optimised to achieve the highest enrichment factors.

  16. Numerical simulation and experimental validation of liquid water behaviors in a proton exchange membrane fuel cell cathode with serpentine channels (United States)

    Le, Anh Dinh; Zhou, Biao; Shiu, Huan-Ruei; Lee, Chun-I.; Chang, Wen-Chen

    The volume-of-fluid (VOF) approach is one of the most promising methods of investigating water transport and water management in proton exchange membrane fuel cells (PEMFCs). A general PEMFC model combined with the VOF method has been developed by our group to simulate the mechanisms of fluid flows, mass and heat transport, and electrochemical reactions in a PEMFC, and it is necessary to validate the numerical model through experiments. In this paper, both the numerical model and an experimental visualization that can simulate the motion and transport behavior of liquid water in a cathode flow channel of a PEMFC are presented. Direct optical visualization is used in this work to capture the droplets' motions with high spatial and temporal resolutions. The numerical model and experimental setup have similar geometric dimensions and operating conditions, and the results of the experiment are in good agreement with numerical simulations. Moreover, the physics of droplet and liquid water behavior based on certain material and liquid properties and the operating conditions in the fuel cell channel are also addressed. This analysis also offers some basic understanding of the mechanism of liquid droplet dynamics in numerical and experimental studies of micro-fluidics.

  17. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed


    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one or more layers of a metal organic framework on a substrate. Embodiments further include a defect-free metal organic framework membrane comprising MSiF6(pyz)2, wherein M is a metal, wherein the thickness of the membrane is less than 1,000 µm, and wherein the metal organic has a growth orientation along the [110] plane relative to a substrate.

  18. Influence of bulk concentration on the organisation of molecules at a membrane surface and flux decline during reverse osmosis of an anionic surfactant


    Mai, Zhaohuan; Butin, Vincent; Rakib, Mohammed; Zhu, Haochen; Rabiller-Baudry, Murielle; Couallier, Estelle


    International audience; Surfactants are extensively used in household and industrial products. Several processes exist to treat industrial wastewaters, including membrane filtration such as ultrafiltration, nanofiltration and reverse osmosis (RO). We studied fouling of RO membranes during filtration of aqueous anionic surfactant solutions under different conditions. The aim was to describe the local organisation of the surfactant at the membrane interface. To this end, the typical surfactant ...

  19. [Impacts of filamentous bulking on treatment effect and fouling characteristics of nonwoven bioreactor]. (United States)

    Shi, Kuan; Xue, Gang; Gao, Pin; Wu, Fan


    Sludge flocs morphology and effluent qualities of nonwoven bioreactor during filamentous bulking and normal sludge status were compared. Flux variations, analysis of filtration resistances and extracellular polymer substances (EPS) contents during filamentous bulking and normal sludge status were studied. The results showed that the average particle size of bulking sludge flocs and normal sludge flocs was 448.6 microm and 234.8 microm, respectively. During the bulking sludge status, the average COD and NH4(+) -N removal rate and effluent turbidity were 90.1%, 93.1% and 1.33 NTU, respectively, compared with 91.4% , 97.0% and 0.99 NTU during the normal sludge status. Filamentous bulking had little impact on COD removal, while it inhibited NH4(+) -N removal to a certain extent and had slight impact on effluent turbidity. Average membrane flux decay rates during the bulking sludge status and the normal sludge status were 3.29 L x (m2 x h2)(-1) and 4.87 L x (m2 x h2)(-1), respectively, and the fouling during bulking sludge status was slighter. Reversible fouling was the main fouling when sludge was bulking while irreversible fouling was the main fouling when the sludge was in normal status. The prior occurrence of reversible fouling could reduce irreversible fouling therefore slow down the flux decline. Soluble microbial products (SMP) contents in normal sludge mixed liquid and bulking sludge mixed liquid were 21.369 mg x L(-1) and 10.182 mg x L(-1), respectively, protein/polysaccharide (P/C) was 0.370 and 0.497, respectively, SMP gross was related to fouling resistance and P/C was associated with reversible fouling proportion. The relation between loosely bound EPS in mixed liquid sludge and membrane fouling was similar to SMP. Sludge with more EPS could accumulate on membrane more easily, and the EPS that accumulated on membrane was mainly protein. EPS gross in mixed liquid sludge, EPS in membrane surface sludge and their P/C all had positive correlations to

  20. Interaction of the organic tin chloride with the liquid model membranes

    Energy Technology Data Exchange (ETDEWEB)

    Podolak, M; Engel, G; Man, D [Institute of Physics, Opole University, Oleska 48, 45-052 Opole (Poland)


    The objective of the work was to investigate the effect of organic tin chloride (C{sub 3}H{sub 7}){sub 3}SnCl on the electric parameters of membranes in the form of filters of the company Synpor (Czech Republic) impregnated with various fatty acids, dissolved with carbon tetrachloride (CCl{sub 4}). Three carboxylic acids were used in the study: palmitic, arachidic and oleic, and dissolvent of the acids (CCl{sub 4}) as well as butylene ester of lauric acid. In all cases, introduction of tin chloride of constant concentration amounting to 0.15 mM to the measurement chamber resulted in induction of membrane voltage. In case of pure lauric acid and CCl{sub 4}, the voltage reached the maximum value and then decreased to a certain constant value. In the case of all acids dissolved in CCl{sub 4}, the voltage increased only up to a certain constant value. Voltage drop (below the value) was observed after application of appropriately high concentration of tin chloride, in case of membranes impregnated with the mixture of lauric acid ester with CCl{sub 4} and palmitic acid with CCl{sub 4}. The study also demonstrated that electrical resistance of membranes impregnated with carboxylic acid increased in the presence of tin chloride and decreased in case of membranes impregnated with lauric acid ester. However, electric capacities of membranes did not significant change.

  1. Membranes


    Junbo Hou; Min Yang


    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  2. Synthesis of magnetic nanoparticles as a draw solute in forward osmosis membrane process for the treatment of radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Heeman; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    These wastes contain about 0.3 ∼ 0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40 ∼ 90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. As an emerging technology forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination because FO operates at low or no hydraulic pressures. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles can be separated from water by an external magnet field easily. If Fe{sub 3}O{sub 4} nanoparticles are coated with highly soluble organic substances, thus they can be used as a draw solute by concurrently generating high osmotic pressure and easy separation. The carboxylated polyglycerol coated Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized. The nanoparticles were about 50 nm in diameter and showed the good colloidal stability in aqueous solution. The osmolality and osmotic pressure were enough high to be used as a draw solute in FO. For the future work, we will investigate the performance of our magnetic draw solute in FO to remove boron in the simulated liquid waste.

  3. Simulation of cesium nitrate extraction by a calixarene. Application to supported liquid membranes transport; Modelisation de l`extraction du nitrate de cesium par un calixarene. Application a la modelisation du transport a travers des membranes liquides supportees

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, C.


    This work fits into the general pattern of the CEA studies on the decontamination of liquid effluents containing long-lived radioactive isotopes. Some calixarenes have proved to be very effective to selectively extract the cesium of aqueous solutions whose composition simulates those of the effluents to be reprocessed. On account of the difficulty of the studied extraction mechanisms, a physical and chemical simulation has been necessary. The system takes into account: 1)a concentrated nitric acid aqueous phase and/or sodium nitrate 2)an organic phase constituted by the diluent 1,2-nitro-phenyl-octyl-ether and 1,3-diisopropoxy-calix(4)arene-couronne-6. The use of concentrated aqueous solutions requires to take into account variations to ideality by the mean of activity coefficients reckoning. The different theories on the reckoning of variations to ideality in aqueous or organic phases are described in the first part. The determination of cesium and sodium nitrates activity coefficients in very concentrated matrices has required an important theoretical and experimental study which is given in the second part. The aim of this study was indeed to complete the thermodynamic data of cesium and sodium nitrates aqueous solutions. The computerized tools required for the modeling are reviewed. The stoichiometry of the extracted species in the organic phase has been determined in the third part. The supported membrane technique is an original method of separation by liquid-liquid extraction. A membrane transport model has been developed and is given in the last part of this work. (O.M.). 128 refs.

  4. Structure of synthetic transmembrane lipid membranes at the solid/liquid interface studied by specular X-ray reflectivity. (United States)

    Schubert, Thomas; Seitz, Peter C; Schneck, Emanuel; Nakamura, Makoto; Shibakami, Motonari; Funari, Sergio S; Konovalov, Oleg; Tanaka, Motomu


    We fabricated a new class of supported membranes based on monolayers of artificial bola (transmembrane) lipids. The lipids used in this study are symmetric bola lipids with two phosphocholine head groups, which resemble natural archaea lipids. To prevent bending of the hydrocarbon chains, stiff triple bonds are inserted in the middle of the hydrocarbon cores. The formation of homogeneous "monolayers" of transmembrane lipids over macroscopic areas can be monitored with fluorescence microscopy. Structures of such supported monolayers in bulk water were characterized with specular X-ray reflectivity using high energy X-ray radiation, which guarantees a high transmission through bulk water. Here, the vertical structure of single monolayers could be resolved from reconstructed electron density profiles. To verify the structural model suggested by the specular reflectivity, we also performed small- and wide-angle X-ray scattering of transmembrane lipid suspensions. The wide-angle patterns reflect a distorted chain-chain correlation, while the small-angle scattering allowed us to model an electron density profile which is consistent with the profile calculated from specular reflectivity.

  5. Functionalized Nanoporous Polymer Membranes with Well-Defined Pore Architectures via Lyotropic Liquid-Crystalline Monomers

    National Research Council Canada - National Science Library

    Gin, Douglas


    .... Two lyotropic liquid-crystalline monomer platforms have been synthesized. The interchannel separations in the polymerizable materials can be varied in the 30-40 A range by the choice of counterion on the ionic headgroup of the monomers...

  6. Investigation of H2S and CO2 Removal from Gas Streams Using Hollow Fiber Membrane Gas–liquid Contactors

    Directory of Open Access Journals (Sweden)

    S. M. Mirfendereski


    Full Text Available Chemical absorption of H2S and CO2 from CH4 was carried out in a polypropylene porous asymmetric hollow fiber membrane contactor (HFMC. A 0.5 mol L–1 aqueous solution of methyldiethanolamine (MDEA was used as chemical absorbent solution. Effects of gas flow rate, liquid flow rate, H2S concentration and CO2 concentration on the H2S outlet concentrations and CO2 removal percentage were investigated. The results showed that the removal of H2S with aqueous solution of MDEA was very high and indicated almost total removal of H2S. Experimental results also indicated that the membrane contactor was very efficient in the removal of trace H2S at high gas/ liquid flow ratio. The removal of H2S was almost complete with a recovery of more than 96 %. Using feed gas mixtures containing 5000 ppm H2S with CO2 concentrations in the range of 4–12 vol.%, the outlet H2S concentration of less than 1.0 ppm was attained with less than 4.0 vol.% of CO2 permeated and absorbed.

  7. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen


    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  8. Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers

    DEFF Research Database (Denmark)

    Hecksher, Tina; Olsen, Niels Boye; Nelson, Keith Adam


    We present dynamic shear and bulk modulus measurements of supercooled tetraphenyl-tetramethyl-trisiloxane (DC704) and 5-phenyl-4-ether over a range of temperatures close to their glass transition. The data are analyzed and compared in terms of time-temperature superposition (TTS), the relaxation...... time, and the spectral shape parameters. We conclude that TTS is obeyed to a good approximation for both the bulk and shear moduli. The loss-peak shapes are nearly identical, while the shear modulus relaxes faster than the bulk modulus. The temperature dependence of this decoupling of time scales...

  9. The efficient removal of thallium from sintering flue gas desulfurization wastewater in ferrous metallurgy using emulsion liquid membrane. (United States)

    Yang, Li; Xiao, Jiangping; Shen, Yi; Liu, Xian; Li, Wensong; Wang, Weiyan; Yang, Yunquan


    The removal of thallium ions in flue gas desulfurization wastewater from ferrous metallurgic industry was studied by emulsion liquid membrane (ELM) method using 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (P507) as carrier, aviation kerosene (AK) as organic solvent, polyisobutylene succinimide (T154) as surfactant, polyisobutylene (PIB) as additive, and sulfuric acid as internal reagent. Some important influence parameters such as concentrations of carrier, surfactant and stripping agent, agitation speed, extraction time, volume ratios of feed solution to emulsion phase and internal phase to membrane phase, and their effects on the removal efficiency of Tl in the ELM process were investigated and optimized. Under the optimum operating conditions of 2% of carrier, 5% of surfactant, 0.5 M of stripping agent, 350 rpm of agitation speed, 12.5:1 of volume ratio of feed solution to emulsion phase, and 3:1 volume ratio of membrane to internal phase, the maximum extraction efficiency of thallium reached 99.76% within 15-min reaction time. The ICP-MS analysis indicated that the thallium concentration in treated wastewater was below 5 μg/L and could meet the emission standard demand for industrial wastewater enacted by the local government of Hunan province of China. Meanwhile, the extraction of impurity ions calcium and magnesium in the ELM system was investigated. The result showed that an acidic environment would be in favor of the removal of Tl from calcium and magnesium contained in wastewater. Graphical abstract ᅟ.

  10. Application of room-temperature ionic liquids in preparation of highly porous polymer membranes and microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoi [Dept. of Chemistry, Dankook University, Cheonan (Korea, Republic of); Seo, Jae Won; Shin, Ueon Sang [Dept. of Nanobiomedical Science and BK21 PlUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of)


    Polylactic acid (PLA) and polycaprolactone (PCL) devices with diverse morphologies, such as particulate structure, porous structures, and microspheres, were prepared using imidazolium- or ammonium-based room-temperature ionic liquids [bmim]X or [toma]X (X = NTf{sub 2} , PF{sub 6} , OTf, BF{sub 4} , Cl). Their morphological transformations could be induced by diverse approaches, including the changes of polymer type, the cationic or counter-anionic change of ionic liquid, the concentration change of ionic liquid, as well as the type and the quantity change of organic solvent. The results are likely to provide useful information for the production of diverse devices (or scaffolds) with particulate or porous structure and beads with various sizes and surface morphologies in fields such as biomedical tissue engineering, drug delivery, gas storage and separation, heterogeneous catalysis, and polymer gel electrolytes.

  11. Sample clean-up, enrichment and determination of s-triazine herbicides from southern ethiopian lakes supported using liquid membrane extraction

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson


    Full Text Available The liquid membrane extraction method has been employed for selectively extracting trace quantities of s-triazine herbicides in environmental waters collected from lakes Awassa, Chamo and Abbya, located in close proximity to the agricultural farms in Southern Ethiopia. In liquid membrane extraction, the uncharged triazine compounds from the flowing donor solution diffuse through a porous poly(tetrafluoroethylene (PTFE membrane, containing a water immiscible organic solvent. The s-triazine molecules are then irreversibly trapped in the stagnant acidic acceptor phase since they become protonated. Using both di-n-hexylether and n-undecane membrane solvents, s-traizine herbicides were extracted and low detection limits of about 1 ng/L have been obtained by extraction of three liters of sample solution spiked with 0.1 g/L of each triazine. Residues of atrazine and terbutryn ranging in concentration from 0.02 to 0.05 g/L have been successfully determined.

  12. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part II. In operando synchrotron imaging for microscale liquid water transport characterization (United States)

    Chevalier, S.; Ge, N.; Lee, J.; George, M. G.; Liu, H.; Shrestha, P.; Muirhead, D.; Lavielle, N.; Hatton, B. D.; Bazylak, A.


    This is the second paper in a two-part series in which we investigate the impact of the gas diffusion layer structure on the liquid water distribution in an operating polymer electrolyte membrane (PEM) fuel cell through the procedures of design, fabrication, and testing of novel hydrophobic electrospun gas diffusion layers (eGDLs). In this work, fibre diameters and alignment in eGDLs are precisely controlled, and concurrent synchrotron X-ray radiography and electrochemical impedance spectroscopy (EIS) are used to evaluate the influence of the controlled eGDL parameters on the liquid water distribution and on membrane liquid water content. For eGDLs with small fibre diameters (150-200 nm) and correspondingly smaller pore sizes, reduced liquid water accumulation under the flow field ribs is observed. However, more liquid water is pinned onto the eGDL - at the interface with flow field channels. Orienting fibre alignment perpendicular to the flow field channel direction leads to improved eGDL-catalyst layer contact and prevents rib-channel membrane deformation. On the other hand, eGDLs facilitate significant membrane dry-out, even under highly humidified operating conditions at high current densities.

  13. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail:


    Highlights: • I propose a new method for Li recovery from seawater by electrodialysis using an ionic liquid. • The divalent ions were removed for producing concentrated seawater. • Almost all Li ions remain on the anode side, whereas the other ions in the concentrated seawater permeate to the cathode side through the ionic liquid with an applied electric voltage of 2–3 V. • The Li survival ratio remained high and was 63% after electrodialysis. -- Abstract: Tritium fuel for fusion reactors is produced by reacting lithium-6 ({sup 6}Li) with neutrons in tritium breeders. This study demonstrates a method for Li recovery from seawater, wherein Li does not permeate from the anode side to the cathode side through an ionic liquid N,N,N-trimethyl-N-propylammonium–bis(trifluoromethanesulfonyl) imide. Almost all Li ions remain on the anode side (seawater), whereas the other ions in the seawater permeate to the cathode side through the ionic liquid with an applied electric voltage of 2–3 V.

  14. In-sample acetylation-non-porous membrane-assisted liquid-liquid extraction for the determination of parabens and triclosan in water samples. (United States)

    Villaverde-de-Sáa, Eugenia; González-Mariño, Iria; Quintana, José Benito; Rodil, Rosario; Rodríguez, Isaac; Cela, Rafael


    A procedure for the determination of seven parabens (esters of 4-hydroxybenzoic acid), including the distinction between branched and linear isomers of propyl- and butyl-parabens and triclosan in water samples, was developed and evaluated. The procedure includes in-sample acetylation-non-porous membrane-assisted liquid-liquid extraction and large volume injection-gas chromatography-ion trap-tandem mass spectrometry. Different derivatisation strategies were considered, i.e. post-extraction silylation with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide and in situ acylation with acetic anhydride (Ac(2)O) and isobutylchloroformate. Moreover, acceptor solvent and the basic catalyser of the acylation reaction were investigated. Thus, in situ derivatisation with Ac(2)O and potassium hydrogenphosphate (as basic catalyser) was selected. Potassium hydrogenphosphate overcomes some drawbacks of other basic catalysers, e.g. toxicity and bubble formation, while leads to higher responses. Subsequently, other experimental variables affecting derivatisation-extraction yield such as pre-stirring time, salt addition and volume of Ac(2)O were optimised by an experimental design approach. Under optimised conditions, the proposed method achieved detection limits from 0.1 to 1.4 ng L(-1) for a sample volume of 18 mL and extraction efficiencies, estimated by comparison with liquid-liquid extraction, between 46% (for methyl- and ethyl-parabens) and 110% (for benzylparaben). The reported sample preparation approach is free of matrix effects for parabens but affected for triclosan with a reduction of approximately 40% when wastewater samples are analysed; therefore, both internal and external calibration can be used as quantification techniques for parabens, but internal standard calibration is mandatory for triclosan. The application of the method to real samples revealed the presence of these compounds in raw wastewater at concentrations up to 26 ng mL(-1), the prevalence of the

  15. Active microrheology of smectic membranes (United States)

    Qi, Zhiyuan; Ferguson, Kyle; Sechrest, Yancey; Munsat, Tobin; Park, Cheol Soo; Glaser, Matthew A.; Maclennan, Joseph E.; Clark, Noel A.; Kuriabova, Tatiana; Powers, Thomas R.


    Thin fluid membranes embedded in a bulk fluid of different viscosity are of fundamental interest as experimental realizations of quasi-two-dimensional fluids and as models of biological membranes. We have probed the hydrodynamics of thin fluid membranes by active microrheology using small tracer particles to observe the highly anisotropic flow fields generated around a rigid oscillating post inserted into a freely suspended smectic liquid crystal film that is surrounded by air. In general, at distances more than a few Saffman lengths from the meniscus around the post, the measured velocities are larger than the flow computed by modeling a moving disklike inclusion of finite extent by superposing Levine-MacKintosh response functions for pointlike inclusions in a viscous membrane. The observed discrepancy is attributed to additional coupling of the film with the air below the film that is displaced directly by the shaft of the moving post.

  16. Evaluation of ultrafiltration membranes for treating low-level radioactive contaminated liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Koenst, J.W.; Roberts, R.C.


    A series of experiments were performed on Waste Disposal Facility (WD) influent using Romicon hollow fiber ultrafiltration modules with molecular weight cutoffs ranging from 2000 to 80,000. The rejection of conductivity was low in most cases. The rejection of radioactivity ranged from 90 to 98%, depending on the membrane type and on the feed concentration. Typical product activity ranged from 7 to 100 dis/min/ml of alpha radiation. Experiments were also performed on alpha-contaminated laundry wastewater. Results ranged from 98 to >99.8%, depending on the membrane type. This yielded a product concentration of less than 0.1 dis/min/ml of alpha radiation. Tests on PP-Building decontamination water yielded rejections of 85 to 88% alpha radiation depending on the membrane type. These experiments show that the ability to remove radioactivity by membrane is a function of the contents of the waste stream because the radioactivity in the wastewater is in various forms: ionic, polymeric, colloidal, and absorbed onto suspended solids. Although removal of suspended or colloidal material is very high, removal of ionic material is not as effective. Alpha-contaminated laundry wastewater proved to be the easiest to decontaminate, whereas the low-level PP-Building decontamination water proved to be the most difficult to decontaminate. Decontamination of the WD influent, a combined waste stream, varied considerably from day to day because of its constantly changing makeup. The WD influent was also treated with various substances, such as polyelectrolytes, complexing agents, and coagulants, to determine if these additives would aid in the removal of radioactive material from the various wastewaters by complexing the ionic species. At the present time, none of the additives evaluated has had much effect; but experiments are continuing.

  17. Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination


    Tufa, R.; Curcio, E.; Brauns, E.; van Baak, W.; Fontananova, E.; Di Profio, G.


    With a total capacity of 70 million cubic meters per day, seawater desalination industry represents the most affordable source of drinking water for many people living in arid areas of the world. Seawater Reverse Osmosis (SWRO) technology, driven by the impressive development in membrane materials, modules and process design, currently shows an overall energy consumption of 3-4 kWh per m(3) of desalted water, substantially lower than thermal systems; however, the theoretical energy demand to ...

  18. Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bergero, Stefano; Chiari, Anna [DIPARC, Faculty of Architecture, University of Genoa, Stradone S. Agostino 37, 16123 Genova (Italy)


    The present study examines the performances of a hybrid air-conditioning system in which a vapour-compression inverse cycle is integrated with an air dehumidification system working with hygroscopic solution and hydrophobic membrane. This model may be a valid alternative to traditional summertime air-conditioning system, in which the air is cooled to below its dew-point temperature and subsequently reheated. The proposed hybrid system involves simultaneously cooling and dehumidifying the air conveyed to the conditioned ambient in an air-solution membrane contactor. An LiCl solution is cooled by means of a vapour-compression inverse cycle using the refrigerant KLEA 407C. The solution is regenerated in another membrane contactor by exploiting the heat rejected by the condenser. A SIMULINK calculation programme was designed in order to simulate the system under examination in steady-state conditions. The performances of the system were analysed on varying a few significant operating parameters, and were compared with those of a traditional direct-expansion air-conditioning plant in typical summertime conditions. The results of the simulations revealed significant energy savings, which, in particular operating conditions, may exceed 50%. (author)

  19. Evaluation of mass-transfer characteristics in alginate-membrane liquid-core capsules prepared using polyethylene glycol. (United States)

    Koyama, Keitaro; Seki, Minoru


    An alginate-membrane liquid-core capsule prepared using polyethylene glycol as a thickener was produced and the intracapsular mass-transfer characteristics of glucose and proteins were investigated. The apparent effective diffusivity of glucose into the capsule was 7.9x10(-10) m(2)/s, which is larger than that into alginate beads (6.5x10(-10) m(2)/s) and in water (6.7x10(-10) m(2)/s). Moreover, an encapsulation of strawberry cells did not decrease the mass transfer performance of glucose, in contrast to the case of immobilization in alginate beads or capsules prepared using xanthan gum. On the other hand, the apparent effective diffusivities of proteins from the capsule were smaller than those in alginate beads. In addition, the apparent effective diffusivities from the capsule decreased with the increasing concentration and molecular weight of polyethylene glycol used as a thickener during capsule preparation.

  20. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Alsu A. Akhmetshina


    Full Text Available Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([emim][Tf2N] immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S.

  1. Calixarene-mediated liquid membrane transport of choline conjugates 3: The effect of handle variation on neurotransmitter transport. (United States)

    Collins, James L; Fujii, Ayu; Roshandel, Sahar; To, Cuong-Alexander; Schramm, Michael P


    Upper rim phosphonic acid functionalized calix[4]arene affects selective transport of multiple molecular payloads through a liquid membrane. The secret is in the attachment of a receptor-complementary handle to the payload. We find that the trimethylammonium ethylene group present in choline is one of several general handles for the transport of drug and drug-like species. Herein we compare the effect of handle variation against the transport of serotonin and dopamine. We find that several ionizable amine termini handles are sufficient for transport and identify two ideal candidates. Their performance is significantly enhanced in HEPES buffered solutions. This inquiry completes a series of 3 studies aimed at optimization of this strategy. In completion a new approach towards synthetic receptor mediated selective small molecule transport has emerged; future work in vesicular and cellular systems will follow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A moving boundary problem and orthogonal collocation in solving a dynamic liquid surfactant membrane model including osmosis and breakage

    Directory of Open Access Journals (Sweden)

    E.C. Biscaia Junior


    Full Text Available A dynamic kinetic-diffusive model for the extraction of metallic ions from aqueous liquors using liquid surfactant membranes is proposed. The model incorporates undesirable intrinsic phenomena such as swelling and breakage of the emulsion globules that have to be controlled during process operation. These phenomena change the spatial location of the chemical reaction during the course of extraction, resulting in a transient moving boundary problem. The orthogonal collocation method was used to transform the partial differential equations into an ordinary differential equation set that was solved by an implicit numerical routine. The model was found to be numerically stable and reliable in predicting the behaviour of zinc extraction with acidic extractant for long residence times.

  3. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander


    symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  4. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander


    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...

  5. Supported liquid membrane as a novel tool for driving the equilibrium of ω-transaminase catalyzed asymmetric synthesis. (United States)

    Rehn, Gustav; Adlercreutz, Patrick; Grey, Carl


    An attractive option to produce chiral amines of industrial importance is through asymmetric synthesis using ω-transaminase. However, reaching high yields often requires a strategy for shifting the equilibrium position. This paper describes a novel strategy for handling this problem. It involves the use of a supported liquid membrane (SLM) together with a packed bed reactor. The reactor contains Escherichia coli cells with ω-transaminase from Arthrobacter citreus, immobilized by flocculation with chitosan. The SLM consists of a hollow fibre membrane contactor in which the pores contain undecane. The system enables continuous extraction of the amine product and was used to successfully shift the equilibrium in asymmetric synthesis of (S)-α-methylbenzylamine (MBA). A conversion of 98% was reached, compared to 50% without product extraction. Moreover, a selective extraction of the produced MBA was realized. A high product concentration of 55g/l was reached after 80h, and the system showed promising potential for continuous operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Removal of non-steroidal anti-inflammatory drugs ibuprofen and ketoprofen from water by emulsion liquid membrane. (United States)

    Dâas, Attef; Hamdaoui, Oualid


    In this work, the removal of the worldwide non-steroidal anti-inflammatory drugs ibuprofen (IBP) and ketoprofen (KTP) by emulsion liquid membrane (ELM) was carried out. An ELM system is made up of hexane as diluent, Span 80 as the surfactant and sodium carbonate as the inner aqueous solution. Effect of experimental conditions that affect the extraction of IBP such as surfactant concentration, emulsification time, sulfuric acid concentration in external phase, acid type in external phase, internal phase concentration, type of internal phase, stirring speed, volume ratio of internal phase to membrane phase, treatment ratio, IBP initial concentration, diluent type and salt was investigated. The obtained results showed that by appropriate selection of the operational parameters, it was possible to extract nearly all of IBP molecules from the feed solution even in the presence of high concentration of salt. Under optimum operating conditions, the efficiencies of IBP removal from distilled water (99.3 %), natural mineral water (97.3 %) and sea water (94.0 %) were comparable, which shows that the ELM treatment process represents a very interesting advanced separation process for the removal of IBP from complex matrices such as natural and sea waters. Under the optimized experimental conditions, approximately 97.4 % KTP was removed in less than 20 min of contact time.

  7. Membrane partitioning of ionic liquid cations, anions and ion pairs - Estimating the bioconcentration potential of organic ions. (United States)

    Dołżonek, Joanna; Cho, Chul-Woong; Stepnowski, Piotr; Markiewicz, Marta; Thöming, Jorg; Stolte, Stefan


    Recent efforts have been directed towards better understanding the persistency and toxicity of ionic liquids (ILs) in the context of the "benign-by-design" approach, but the assessment of their bioaccumulation potential remains neglected. This paper reports the experimental membrane partitioning of IL cations (imidazolium, pyridinium, pyrrolidinium, phosphonium), anions ([C(CN)3](-), [B(CN)4](-), [FSO2)2N](-), [(C2F5)3PF3](-), [(CF3SO2)2N](-)) and their combinations as a measure for estimating the bioconcentration factor (BCF). Both cations and anions can have a strong affinity for phosphatidylcholine bilayers, which is mainly driven by the hydrophobicity of the ions. This affinity is often reflected in the ecotoxicological impact. Our data revealed that the bioconcentration potential of IL cations and anions is much higher than expected from octanol-water-partitioning based estimations that have recently been presented. For some ILs, the membrane-water partition coefficient reached levels corresponding to BCFs that might become relevant in terms of the "B" (bioaccumulation potential) classification under REACH. However, this preliminary estimation need to be confirmed by in vivo bioconcentration studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Exploring the effect of fluorinated anions on the CO2/N2 separation of supported ionic liquid membranes. (United States)

    Gouveia, Andreia S L; Tomé, Liliana C; Lozinskaya, Elena I; Shaplov, Alexander S; Vygodskii, Yakov S; Marrucho, Isabel M


    The CO2 and N2 permeation properties of ionic liquids (ILs) based on the 1-ethyl-3-methylimidazolium cation ([C2mim](+)) and different fluorinated anions, namely 2,2,2-trifluoromethylsulfonyl-N-cyanoamide ([TFSAM](-)), bis(fluorosulfonyl) imide ([FSI](-)), nonafluorobutanesulfonate ([C4F9SO3](-)), tris(pentafluoroethyl)trifluorophosphate ([FAP](-)), and bis(pentafluoroethylsulfonyl)imide ([BETI](-)) anions, were measured using supported ionic liquid membranes (SILMs). The results show that pure ILs containing [TFSAM](-) and [FSI](-) anions present the highest CO2 permeabilities, 753 and 843 Barrer, as well as the greatest CO2/N2 permselectivities of 43.9 and 46.1, respectively, with CO2/N2 separation performances on top of or above the Robeson 2008 upper bound. The re-design of the [TFSAM](-) anion by structural unfolding was investigated through the use of IL mixtures. The gas transport and CO2/N2 separation properties through a pure [C2mim][TFSAM] SILM are compared to those of two different binary IL mixtures containing fluorinated and cyano-functionalized groups in the anions. Although the use of IL mixtures is a promising strategy to tailor gas permeation through SILMs, the pure [C2mim][TFSAM] SILM displays higher CO2 permeability, diffusivity and solubility than the selected IL mixtures. Nevertheless, both the prepared mixtures present CO2 separation performances that are on top of or above the Robeson plot.


    A tubular silicone rubber membrane is evaluated as a gas-liquid separator for the determination of arsenic in saline waters via HG-ICP-MS. The system was optimized in terms of NaBH and HCI concentrations. The intermediate gas and carrier gas were optimized in terms of sensitiity ...

  10. Diglycolamide-functionalized calix[4]arene for Am(III) recovery from radioactive wastes: liquid membrane studies using a hollow fiber contactor

    NARCIS (Netherlands)

    Ansari, S.A.; Mohapatra, P.K.; Kandwal, P.; Verboom, Willem


    The transport of Am(III) from nitric acid feeds was investigated using hollow fiber supported liquid membrane (HFSLM) containing a diglycolamide-functionalized calix[4]arene (C4DGA) as the carrier extractant. The effect of feed acidity and Nd(III) concentration (used to represent Am(III)) in the

  11. Joining of Ion Transport Membranes Using a Novel Transient Liquid Phase Process

    Energy Technology Data Exchange (ETDEWEB)

    Darryl P. Butt


    The feasibility of a novel transient liquid phase (TLP) joining method has been demonstrated in joining La{sub 0.9}Ca{sub 0.1}FeO{sub 3} materials. Metal oxide powders were processed to form the TLP compositions which were used in the joining process. The method has been successful in producing joint interfaces that effectively disappear, as they are the same material and have the same properties as the joined parts. The feasibility of the method has been demonstrated for a single system, but many systems where the method can potentially be applied have been identified.

  12. An innovative arrangement for in-vial membrane-assisted liquid-liquid microextraction: application to the determination of esters of phthalic acid in alcoholic beverages by gas chromatography-mass spectrometry. (United States)

    March, Juan Gabriel; Cerdà, Victor


    A new arrangement for membrane-assisted liquid-liquid microextraction is presented. The extracting organic solvent was placed into a chromatographic microvial, compatible with the chromatograph autosampler, whose septum was replaced by a disc of porous hydrophobic membrane. This extraction device was completely immersed into the analytical sample contained in a cylindrical container subjected to rotary and basculant movement. Then, the extraction of analytes took place from the sample to the organic solvent contained in the vial through the membrane. Esters of the phthalic acid have been selected as model analytes to determine the performance characteristics of the extraction system. The limits of detection, limits of quantification and relative standard deviations (%) were in the range 0.1-0.4, 0.3-1 and 4-7, respectively. Esters of phthalic acid have been successfully analysed in alcoholic beverages. The main operational advantages of this arrangement consisted of minimal required handling, minimal risk of cross contamination and its simplicity.

  13. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry (United States)

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.


    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1-S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and

  14. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang


    This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states. The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions. The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions

  15. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste? (United States)

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio


    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.

  16. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)


    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  17. Copper (II) ion selective liquid membrane electrode based on new Schiff base carrier. (United States)

    Sadeghi, Susan; Vardini, Mohammad Taghi; Naeimi, Hossein


    Cu2+ selective PVC membrane electrode based on new Schiff base 2, 2'-[1,9 nonanediyl bis (nitriloethylidyne)]-bis-(1-naphthol) as a selective carrier was constructed. The electrode exhibited a linear potential response within the activity range of 1.0 x 10(-6) - 5.0 x 10(-3) moll(-1) with a Nernstian slope of 29 +/- 1 mV decade(-1) of Cu2+ activity and a limit of detection 8.0 x 10(-7) mol l(-1). The response time of the electrode was fast, 10 s, and stable potentials were obtained within the pH range of 3.5- 6.5. The potentiometric selectivity coefficients were evaluated using two solution method and revealed no important interferences except for Ag+ ion. The proposed electrode was applied as an indicator electrode to potentiometric titration of Cu2+ ions and determination of Cu2+ content in real samples such as black tea leaves and multivitamin capsule.

  18. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems. (United States)

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun


    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  19. Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors. (United States)

    Sancho, I; Licon, E; Valderrama, C; de Arespacochaga, N; López-Palau, S; Cortina, J L


    The integration of up-concentration processes to increase the efficiency of primary sedimentation, as a solution to achieve energy neutral wastewater treatment plants, requires further post-treatment due to the missing ammonium removal stage. This study evaluated the use of zeolites as a post-treatment step, an alternative to the biological removal process. A natural granular clinoptilolite zeolite was evaluated as a sorbent media to remove low levels (up to 100mg-N/L) of ammonium from treated wastewater using batch and fixed bed columns. After being activated to the Na-form (Z-Na), the granular zeolite shown an ammonium exchange capacity of 29±0.8mgN-NH 4 + /g in single ammonium solutions and 23±0.8mgN-NH 4 + /g in treated wastewater simulating up-concentration effluent at pH=8. The equilibrium removal data were well described by the Langmuir isotherm. The ammonium adsorption into zeolites is a very fast process when compared with polymeric materials (zeolite particle diffusion coefficient around 3×10 -12 m 2 /s). Column experiments with solutions containing 100mgN-NH 4 + /L provide effective sorption and elution rates with concentration factors between 20 and 30 in consecutive operation cycles. The loaded zeolite was regenerated using 2g NaOH/L solution and the rich ammonium/ammonia concentrates 2-3g/L in NaOH were used in a liquid-liquid membrane contactor system in a closed-loop configuration with nitric and phosphoric acid as stripping solutions. The ammonia recovery ratio exceeded 98%. Ammonia nitrate and di-ammonium phosphate concentrated solutions reached up to 2-5% wt. of N. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor. (United States)

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M


    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  1. Pore Network Modeling and Synchrotron Imaging of Liquid Water in the Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells (United States)

    Hinebaugh, James Thomas

    Polymer electrolyte membrane (PEM) fuel cells operate at levels of high humidity, leading to condensation throughout the cell components. The porous gas diffusion layer (GDL) must not become over-saturated with liquid water, due to its responsibility in providing diffusion pathways to and from the embedded catalyst sites. Due to the opaque and microscale nature of the GDL, a current challenge of the fuel cell industry is to identify the characteristics that make the GDL more or less robust against flooding. Modeling the system as a pore network is an attractive investigative strategy; however, for flooding simulations to provide meaningful material comparisons, accurate GDL topology and condensation distributions must be provided. The focus of this research is to provide the foundational tools with which to capture both of these requirements. The method of pore network modeling on topologically representative pore networks is demonstrated to describe flooding phenomena within GDL materials. A stochastic modeling algorithm is then developed to create pore spaces with the relevant features of GDL materials. Then, synchrotron based X-ray visualization experiments are developed and conducted to provide insight into condensation conditions. It was found that through-plane porosity distributions have significant effects on the GDL saturation levels. Some GDL manufacturing processes result in high porosity regions which are predicted to become heavily saturated with water if they are positioned between the condensation sites and the exhaust channels. Additionally, it was found that fiber diameter and the volume fraction of binding material applied to the GDL have significant impacts on the GDL heterogeneity and pore size distribution. Representative stochastic models must accurately describe these three material characteristics. In situ, dynamic liquid water behavior was visualized at the Canadian Light source, Inc. synchrotron using imaging and image processing

  2. Retention characteristics of an immobilized artificial membrane column in reversed-phase liquid chromatography. (United States)

    Lepont, Claire; Poole, Colin F


    Retention for a varied group of compounds on an immobilized artificial membrane column (IAM PC DD2) with a methanol-water mobile phase is shown to fit a second-order model for the retention factor (log k) as a function of the volume fraction of organic solvent. The numerical value of the intercept obtained by linear extrapolation to zero organic solvent (log k(w)) is shown to depend on the range of mobile phase composition used for the extrapolation. Each series of intercepts so obtained represents a different hypothetical distribution system as identified by the system constants of the solvation parameter model. Although a linear model is a poor fit for isocratic retention data, the linear solvent strength gradient model provides a reasonable estimate of isocratic retention factor values that are (slightly) larger than experimental values, but provide the same chemical information for the system. These preliminary results suggest that gradient elution may prove to be a rapid and useful method for creating system maps for column characterization and method development. In this work a system map is provided for methanol-water compositions from 0 to 60% (v/v) methanol and additional system constants for acetonitrile-water compositions containing 20 and 30% (v/v) acetonitrile. It is shown that the main factors contributing to retention on the IAM PC DD2 column are favorable cavity formation and dispersion interactions, electron lone pair interactions and the hydrogen-bond basicity of the sorbent. The latter feature more than any other distinguishes the IAM column from conventional chemically bonded phases. Interactions of a dipole-type (weakly) and inability to compete with the mobile phase as a hydrogen-bond acid reduce retention. A comparison of system constant ratios is used to demonstrate that the retention properties of the IAM column are not easily duplicated by conventional chemically bonded phases. The retention characteristics of the IAM column, however, are

  3. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas–liquid membrane contactor system (United States)

    Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao


    The wetting of hollow fibre membranes decreases the performance of the liquid–gas membrane contactor for CO2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid–gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO2 concentration of 4.44 mg ml−1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid–gas membrane absorption. PMID:29291117

  4. Detection of nuclear and membrane antigens by liquid-based cytology following long-term storage of d1 cells, karpas cells, and peripheral blood mononuclear cells. (United States)

    Zappacosta, Roberta; Aiello, Francesca B; D'Antuono, Tommaso; Procopio, Antonio D; Durum, Scott K; Conti, Pio; Rosini, Sandra


    Immunofluorescence is the most frequently utilized technique to analyze protein expression. Fixed immunofluorescent cell suspensions, however, can only be stored for a week. We investigated whether liquid-based cytology could be used to detect antigens in cultured cells after a long storage period. Murine and human cells were fixed in PreservCyt solution, stored for various periods, and then used to perform an automated immunocytochemical analysis. Phosphorylation of the nuclear transcription factor Stat-5 induced by IL-7 was detected up to 4 months after IL-7 stimulation. Simultaneous nuclear positivity for the proliferation index MIB-1 and membrane positivity for the CD30 antigen were evident three months after fixation. Liquid-based cytology thus ensures long-lasting nuclear and membrane antigen immunoreactivity and permits the storage of cells from laborious experiments at room temperature for future analyses.

  5. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: Pure and mixed gas transport study

    KAUST Repository

    Shekhah, Osama


    The liquid-phase epitaxy (LPE) method was effectively implemented to deliberately grow/construct ultrathin (0.5-1 μm) continuous and defect-free ZIF-8 membranes. Permeation properties of different gas pair systems (O 2-N2, H2-CO2, CO2-CH 4, C3H6-C3H8, CH 4-n-C4H10) were studied using the time lag technique. This journal is © The Royal Society of Chemistry.

  6. Nonhumidified Fuel Cells Using N-Ethyl-N-methyl-pyrrolidinium Fluorohydrogenate Ionic Liquid-poly(Vinylidene Fluoride-Hexafluoropropylene Composite Membranes

    Directory of Open Access Journals (Sweden)

    Pisit Kiatkittikul


    Full Text Available Composite membranes consisting of N-ethyl-N-methylpyrrolidinium fluoro-hydrogenate (EMPyr(FH1.7F ionic liquid and poly(vinylidene fluoride hexafluoro-propylene (PVdF-HFP copolymer were successfully prepared in weight ratios of 5:5, 6:4, and 7:3 using a casting method. The prepared membranes possessed rough surfaces, which potentially enlarged the three-phase boundary area. The EMPyr(FH1.7F/PVdF-HFP (7:3 weight ratio composite membrane had an ionic conductivity of 41 mS·cm-1 at 120 °C. For a single cell using this membrane, a maximum power density of 103 mW·cm-2 was observed at 50 °C under non-humidified conditions; this is the highest power output that has ever been reported for fluorohydrogenate fuel cells. However, the cell performance decreased at 80 °C, which was explained by penetration of the softened composite membrane into gas diffusion electrodes to partially plug gas channels in the gas diffusion layers; this was verified by in situ a.c. impedance analysis and cross-sectional SEM images of the membrane electrode assembly.

  7. Novel amphiphilic polymeric ionic liquid-solid phase micro-extraction membrane for the preconcentration of aniline as degradation product of azo dye Orange G under sonication by liquid chromatography-tandem mass spectrometry. (United States)

    Cai, Mei-Qiang; Wei, Xiao-Qing; Du, Chun-Hui; Ma, Xu-Ming; Jin, Mi-Cong


    A novel amphiphilic polymeric ionic liquid membrane containing a hydrophilic bromide anion and a hydrophobic carbonyl group was synthesized in dimethylformamide (DMF) systems using the ionic liquid 1-butyl-3-vinylimidazolium bromide (BVImBr) and the methylmethacrylate (MMA) as monomers. The prepared amphiphilic ploy-methylmethacrylate-1-butyl-3-vinylimidazolium bromide (MMA-BVImBr) was characterized by a scanning electron microscope and an infrared spectrum instrument. The results of solid-phase micro-extraction membrane (SPMM) experiments showed that the adsorption capacity of membrane was about 0.76μgμg(-1) for aniline. Based on this, a sensitive method for the determination of trace aniline, as a degradation product of azo dye Orange G under sonication, was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The calibration curve showed a good linearity ranging from 0.5 to 10.0μgL(-1) with a correlation coefficient value of 0.9998. The limit of quantification was 0.5μgL(-1). The recoveries ranged from 90.6% to 96.1%. The intra- and inter-day relative standard deviations were less than 8.3% and 10.9%. The developed SPMM-LC-MS/MS method was used successfully for preconcentration of trace aniline produced during the sonication of Orange G solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier

    Energy Technology Data Exchange (ETDEWEB)

    Othman, N., E-mail: [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Zailani, S.N.; Mili, N. [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)


    Highlights: Black-Right-Pointing-Pointer The emulsion liquid membrane process for synthetic reactive dyes recovery was examined. Black-Right-Pointing-Pointer Mobile carriers of tri-dodycylamine and salicyclic acid was used in formulation to remove the reactive dyes from simulated wastewater. Black-Right-Pointing-Pointer Almost 100% of dye was extracted and recovered in receiving phase. Black-Right-Pointing-Pointer An electrical field was used to breakdown the emulsion to separate the liquid membrane and receiving/recovery phase. - Abstract: The extraction of Red 3BS reactive dye from aqueous solution was studied using emulsion liquid membrane (ELM). ELM is one of the processes that have very high potential in treating industrial wastewater consisting of dyes. In this research, Red 3BS reactive dye was extracted from simulated wastewater using tridodecylamine (TDA) as the carrier agent, salicyclic acid (SA) to protonate TDA, sodium chloride as the stripping agent, kerosene as the diluent and SPAN 80 as emulsifier. Experimental parameters investigated were salicyclic acid concentration, extraction time, SPAN 80 concentration, sodium chloride concentration, TDA concentration, agitation speed, homogenizer speed, emulsifying time and treat ratio. The results show almost 100% of Red 3BS was removed and stripped in the receiving phase at the optimum condition in this ELM system. High voltage coalesce was applied to break the emulsion hence, enables recovery of Red 3BS in the receiving phase.

  9. Transport of Zn (II by TDDA-Polypropylene Supported Liquid Membranes and Recovery from Waste Discharge Liquor of Galvanizing Plant of Zn (II

    Directory of Open Access Journals (Sweden)

    Hanif Ur Rehman


    Full Text Available The facilitated passage of Zn (II across flat sheet supported liquid membrane saturated with TDDA (tri-n-dodecylamine in xylene membrane phase has been investigated. The effect of acid and metal ion concentration in the feed solution, the carrier concentration in membrane phase, stripping agent concentration in stripping phase, and coions on the extraction of Zn (II was investigated. The stoichiometry of the extracted species, that is, complex, was investigated on slope analysis method and it was found that the complex (LH2·Zn(Cl2 is responsible for transport of Zn (II. A mathematical model was developed for transport of Zn (II, and the predicted results strongly agree with experimental ones. The mechanism of transport was determined by coupled coion transport mechanism with H+ and Cl− coupled ions. The optimized SLM was effectively used for elimination of Zn (II from waste discharge liquor of galvanizing plant of Zn (II.

  10. Development of a new three-phase membrane-assisted liquid-phase microextraction method: determination of nitrite in tap water samples as model analytical application. (United States)

    Pedrón, Isabel; Chisvert, Alberto; March, Juan G; Salvador, Amparo; Benedé, Juan L


    A novel and simple device for membrane-assisted liquid-phase microextraction is used for the first time in a three-phase system. The device consists of a glass vial containing the aqueous acceptor phase, whose septum of its screw stopper has been replaced by a sized piece of polytetrafluoroethylene membrane impregnated with n-decane. The vial is assembled to a volumetric flask containing the aqueous donor phase, and the membrane comes in contact alternatively with both donor and acceptor aqueous phases by orbital agitation. The device has been tested for the determination of nitrite in tap water samples, which is extensively carried out in routine analysis, as model analytical application. Experimental variables, such as the organic solvent used to form the supported liquid membrane, the volumes of both donor and acceptor phases, the orbital agitation rate, and the extraction time were studied and optimized in terms of enrichment factor. Under the selected working conditions, the analytical figures of merit for nitrite determination were a linearity range up to 50 ng mL(-1), limits of detection and quantification of 0.15 and 0.50 ng mL(-1), respectively, and a good repeatability (RSD solvent used, its low cost and the no-risk of cross-contamination are significant operational advantages.

  11. Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol. (United States)

    Koyama, Keitaro; Seki, Minoru


    A liquid-core alginate-membrane capsule was prepared by a novel method using polyethylene glycol as a thickener and the cells of Saccharomyces cerevisiae were encapsulated in its core and cultured. After 24 h of cultivation, the cell concentration in the capsule core-liquid reached 222 microg/mm3 on a dry weight basis, which was 1.4 times as large as that in the core of double-layered alginate beads, i.e., alginate-coated alginate-gel beads. The diameter increase of the capsule prepared by the proposed method using immobilized cell growth was suppressed compared to those using the double-layer method and simple alginate-gel bead entrapment, most likely because of the mobility of the entrapped cells in the capsule. We also confirmed that this encapsulation method is applicable for the cultivation of cultured cells of the plant Fragaria ananassa. Additionally, the time-course of the changes in thickener concentration in the liquid-core of the capsule was measured after encapsulation, and revealed the residual thickener, i.e., polyethylene glycol, was able to leak through the alginate shell membrane. This results in low-viscosity of the core liquid enabling good mass-transfer performance, whereas xanthan gum as a thickener could not leak through.

  12. Membrane assisted solvent extraction coupled with liquid chromatography tandem mass spectrometry applied to the analysis of alkylphenols in water samples. (United States)

    Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D


    This work describes the development and validation of a novel, simple, sensitive and environmental friendly analytical method for the determination of alkylphenols in different types of water samples. The methodology was based on a membrane assisted solvent extraction of only 15 mL of water sample with 500 μL of hexane in combination with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). Acquisition was performed in the multiple reaction monitoring (MRM) mode recording two transitions for the identification of the target compounds. Quantitation is based on the use of deuterated labelled standards as surrogate standards. The figures of merit were satisfactory in all cases: absolute recoveries were close to 50% for most investigated compounds and relative recoveries varied between 81 and 108%. Repeatability and intermediate precision were <20% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) were lower than 0.04 μg L(-1) in all cases, which allow the achievement of the limits established by the Directive 2008/105/EC for surface and seawater samples and by the new proposal COM (2011) 876 final. The feasibility of the proposed method was demonstrated analyzing seawater, surface water and drinking water samples from different areas of A Coruña (Northwest of Spain). The analyses evidenced the presence of nonylphenol in seawater (MQL-0.13 μg L(-1)) and surface water samples (0.12-0.19 μg L(-1)). The highest concentration was observed in drinking water (0.25 μg L(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. (United States)

    Dong, Yao-Da; Larson, Ian; Hanley, Tracey; Boyd, Ben J


    Phytantriol (3,7,11,15-tetramethylhexadecane-1,2,3-triol, PHYT) is a cosmetic ingredient that exhibits similar lyotropic phase behavior to monoolein (GMO), forming bicontinuous cubic liquid crystalline structures (Q(II)) at low temperatures and reversed hexagonal phase (H(II)) at higher temperatures in excess water. Despite these similarities, phytantriol has received little attention in the scientific community. In this study, the thermal phase behavior of the binary PHYT-water and ternary PHYT-vitamin E acetate (VitEA)-water systems have been studied and compared with the behavior of the dispersed cubosomes and hexosomes formed with the aid of a stabilizer (Pluronic F127). The phase behavior and nanostructure were studied using crossed polarized light microscopy (CPLM), differential scanning calorimetry (DSC), and small-angle X-ray scattering (SAXS) techniques. The presence of lipophilic VitEA in the PHYT-water system suppressed the temperature of the Q(II)-to-H(II)-to-L2 transitions, indicating that lipophilic compounds, in relatively small amounts, may have a significant impact on the phase behavior. Increasing the F127 concentration in the phytantriol-based cubosome system did not induce the Q(II)(Pn3m) to Q(II)(Im3m) transition known for the GMO-water system. This indicates a different mode of interaction between F127 and the lipid domains of phytantriol-water systems. Taken together, these results indicate that phytantriol may not only provide an alternative lipid for preparation of liquid crystalline systems in excess water but may also provide access to properties not available when using GMO.

  14. Liquid crystalline perylene diimide outperforming nonliquid crystalline counterpart: higher power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) cells and higher electron mobility in space charge limited current (SCLC) devices. (United States)

    Zhang, Youdi; Wang, Helin; Xiao, Yi; Wang, Ligang; Shi, Dequan; Cheng, Chuanhui


    In this work, we propose the application of liquid crystalline acceptors as a potential means to improve the performances of bulk heterojunction (BHJ) organic solar cells. LC-1, a structurally-simple perylene diimide (PDI), has been adopted as a model for thorough investigation. It exhibits a broad temperature range of liquid crystalline (LC) phase from 41 °C to 158 °C, and its LC properties have been characterized by differental scanning calorimetry (DSC), polarization optical microscopy (POM), and X-ray diffraction (XRD). The BHJ devices, using P3HT:LC-1 (1:2) as an organic photovoltaic active layer undergoing thermal annealing at 120 °C, shows an optimized efficiency of 0.94 %. By contrast, the devices based on PDI-1, a nonliquid crystalline PDI counterpart, only obtain a much lower efficiency of 0.22%. Atomic force microscopy (AFM) images confirm that the active layers composed of P3HT:LC-1 have smooth and ordered morphology. In space charge limited current (SCLC) devices fabricated via a spin-coating technique, LC-1 shows the intrinsic electron mobility of 2.85 × 10(-4) cm(2)/(V s) (at 0.3 MV/cm) which is almost 5 times that of PDI-1 (5.83 × 10(-5) cm(2)/(V s)) under the same conditions for thermal annealing at 120 °C.

  15. Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation

    Directory of Open Access Journals (Sweden)

    Clara Casado-Coterillo


    Full Text Available Mixed matrix membranes (MMMs were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL to chitosan (CS polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials.

  16. Gold based bulk metallic glass


    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan


    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  17. Synchrotron SAXS and Impedance Spectroscopy Unveil Nanostructure Variations in Redox-Responsive Porous Membranes from Poly(ferrocenylsilane) Poly(ionic liquid)s

    NARCIS (Netherlands)

    Folkertsma-Hendriks, Laura; Zhang, Kaihuan; Czakkel, Orsolya; de Boer, Hans L.; Hempenius, Mark A.; van den Berg, Albert; Odijk, Mathieu; Vancso, Gyula J.


    Nanostructured cellular polymeric materials with controlled cell sizes, dispersity, architectures, and functional groups provide opportunities in separation technology, smart catalysts, and controlled drug delivery and release. This paper discusses porous membranes formed in a simple electrostatic

  18. Synchrotron SAXS and impedance spectroscopy unveil nanostructure variations in redox-responsive porous membranes from poly(ferrocenylsilane) poly(ionic liquid)s

    NARCIS (Netherlands)

    Folkertsma-Hendriks, Laura; Zhang, Kaihuan; Czakkel, O.; de Boer, Hans L.; Hempenius, M.A.; van den Berg, Albert; Odijk, Mathieu; Vancso, Gyula J.


    Nanostructured cellular polymeric materials with controlled cell sizes, dispersity, architectures, and functional groups provide opportunities in separation technology, smart catalysts, and controlled drug delivery and release. This paper discusses porous membranes formed in a simple electrostatic

  19. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports. (United States)

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján


    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Role of diluent on the separation of 90Y from 90Sr by solvent extraction and supported liquid membrane using T2EHDGA as the extractant. (United States)

    Dutta, S; Raut, D R; Mohapatra, P K


    The separation behaviour of (90)Y from (90)Sr was investigated by diluent variation using solvent extraction and supported liquid membrane techniques employing N,N,N',N'-tetra-2-ethylhexyldiglycolamide (T2EHDGA) as the extractant. Both D(Y) (distribution ratio of Y(III)) and S.F. (separation factor) were found to be high in the solvent extraction studies when chloroform was used as the diluent. Subsequent supported liquid membrane (SLM) studies using PTFE flat sheet membranes containing 0.2M T2EHDGA in various diluents indicated the trend of Y transport as xylene>hexone>chloroform>carbon tetrachloride>n-dodecane+30% iso-decanol mixture. However, the Sr(II) transport rates were also high with xylene, hexone, and carbon tetrachloride as the diluents which led us to carry out subsequent studies using chloroform and n-dodecane+30% iso-decanol mixture. Acid variation studies in chloroform system indicated an interesting phenomena of increasing Y(III) transport and decreasing Sr(II) transport with increasing acid concentration. Separation of (90)Y from a mixture of (90)Sr and (90)Y was also attempted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Determination of pesticide residues in wine by membrane-assisted solvent extraction and high-performance liquid chromatography-tandem mass spectrometry. (United States)

    Moeder, M; Bauer, C; Popp, P; van Pinxteren, M; Reemtsma, T


    The determination of pesticides in food products is an essential issue to guarantee food safety and minimise health risks of consumers. A protocol based on membrane-assisted solvent extraction and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) that allows the determination of 18 pesticides in red wine at minimum labour effort for sample preparation was developed and validated. Ten millilitres of wine were extracted using 100 μL of toluene filled in a non-porous polyethylene membrane bag which is immersed in the wine sample. After 150 min extraction under stirring, an aliquot of the extraction solution is analysed using HPLC-MS/MS. The limits of quantification ranged from 3 ng/L for Pirimicarb to 1.33 μg/L for Imidacloprid. Quantification by matrix-matched calibration provided relative standard deviations ≤16 % for most of the target pesticides. The linearity of calibration was given over three to four orders of magnitude, which enables the reliable measurement of a broad range of pesticide concentrations, and for each target pesticide, the sensitivity of the protocol meets the maximum residue levels set by legislations at least for wine grapes. Good agreement of results was found when the new method was compared with a standard liquid-liquid extraction protocol. In five wine samples analysed, Carbendazim and Metalaxyl were determined at micrograms per litre concentrations, even in some of the organic wines. Tebuconazol and Cyprodinitril were determined at lower abundance and concentration, followed by Spiroxamin and Diuron.

  2. A new selective liquid membrane extraction method for the determination of basic herbicides in agro-processed fruit juices and Ethiopian honey wine (Tej) samples. (United States)

    Megersa, Negussie; Kassahun, Samuel


    Supported liquid membrane (SLM) extraction was optimised for trace extraction and enrichment of selected triazine herbicides from a variety of agro-processed fruit juices and Ethiopian honey wine (Tej) samples. In the extraction process, a 1:1 mixture of n-undecane and di-n-hexylether was immobilised in a thin porous PTFE membrane that forms a barrier between two aqueous phases (the donor and acceptor phases) in a flow system. The extracts constitute the selectively enriched analytes collected from the acceptor phase and were analysed by transferring to a HPLC-UV system using a diode array detector at 235 nm. High enrichment factors were obtained with very good repeatability of results, and the detection limit was lower than 3.00 µg l⁻¹ for ametryn in apple juice. The optimised method showed very good linearity of over 50-500 µg l⁻¹ with a correlation coefficient of >0.990 or better for triplicate analysis. All chromatograms gave well resolved peaks with no interfering peaks at the retention times of the selected triazines, showing high selectivity of the SLM extraction method in combination with HPLC-UV for the selected matrices. The optimised method can be used as an alternative solventless extraction method for microgram-level extraction of other triazine herbicides and a variety of pesticides from liquid and semi-liquid environmental, biological and food matrices.

  3. Hybrid PVDF/PVDF-graft-PEGMA Membranes for Improved Interface Strength and Lifetime of PEDOT:PSS/PVDF/Ionic Liquid Actuators. (United States)

    Simaite, Aiva; Tondu, Bertrand; Souères, Philippe; Bergaud, Christian


    The exploitation of soft conducting polymer-based actuators suffers from two main shortcomings: their short life cycle and the reproducibility of the fabrication techniques. The short life cycle usually results from the delamination of the components due to stresses at the interface during the actuation. In this work, to achieve strong adhesion to poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) ( PSS) electrodes, the wetting properties of the surface of a polyvinylidene fluoride (PVDF) membrane are improved using argon-plasma-induced surface polymerization of poly(ethylene glycol) monomethyl ether methacrylate (PEGMA). Hybrid membranes are created with hydrophilic PVDF-graft-PEGMA outer surfaces and hydrophobic bulk. The width of each layer is controlled by spray coating, as it allows for the deposition of the reaction precursor to a certain depth. Subsequently, a PSS water solution fills the pores of the functionalized part of the membrane and a mixing layer between PSS and PVDF is created. We also show that PVDF-graft-PEGMA copolymers play an important role in binding the membrane to the electrodes and that direct mechanical interlocking in the pores can further improve the adhesion. Finally, PSS/PVDF-graft-PEGMA/PEDOT:PSS actuators are made by simple solution casting. They are capable of producing high strains of 0.6% and show no signs of delamination after more than 150 h or 10(4) actuation cycles. Furthermore, the preservation of the hydrophobic membrane in between two PSS layers increases the resistance between them from 0.36 Ω to 0.16 MΩ, thus drastically modifying the power dissipation of the actuators.

  4. Determination of glucosinolates in canola seeds using anion exchange membrane extraction combined with the high-pressure liquid chromatography detection. (United States)

    Szmigielska, A M; Schoenau, J J; Levers, V


    A rapid, simple, and reliable method for the determination of individual glucosinolates in canola seeds was developed using a semiquantitative extraction of glucosinolates with anion exchange membranes and HPLC detection. In this one-step extraction procedure, a membrane (7 cm(2)) is placed in the seed suspension prepared by grinding and boiling 0.8 g of seeds in 20 mL of water. After 10 min of shaking on the mechanical shaker, the membrane is removed from the suspension, washed, and transferred to a vial containing 5 mL of 1 N tetramethylammonium chloride. The glucosinolates are eluted from the membrane by shaking the membrane for 10 min with the eluting solvent. The glucosinolate content in membrane eluates is determined by HPLC using sinigrin standards. A coefficient of variation ranging from 1.9 to 7.6% for aliphatic glucosinolates indicated very good reproducibility of the method. Because of the instability of 4-hydroxyglucobrassicin, the coefficient of variation for the determination of this indolyl glucosinolate was 13.9%. To verify the results of the membrane extraction/HPLC detection, this new method was compared with the existing colorimetric and GC procedures. Very good correlation (R(2) = 0.98) was obtained between the total glucosinolates determined by the membrane extraction/HPLC method and the palladate colorimetric procedure for 17 canola varieties. Concentrations of individual glucosinolates in five canola varieties were compared with the GC data. Very good agreement between these two methods was obtained for aliphatic glucosinolates. However, the membrane extraction/HPLC method yielded slightly higher values for 4-hydroxyglucobrassicin than the GC method, possibly indicating that the decomposition of this glucosinolate was reduced during the sample extraction with the membranes. The simplicity and low cost of the membrane extraction/HPLC method make it an attractive alternative to the existing procedures for glucosinolate analysis in canola seeds.

  5. Mechanistic study of trivalent europium transport through supported liquid membranes (SLMs) and a novel immobilized phase solvent extraction (IPSE) system

    NARCIS (Netherlands)

    Boerrigter, H.; Tomasberger, Tanja; Booij, Arend S.; Verboom, Willem; Reinhoudt, David; de Jong, Feike


    As a new method of membrane formation, we have investigated microcellular foaming of thin (100 μm) polysulfone films containing varying trace concentrations of tetrahydrofuran using carbon dioxide as a physical blowing agent. Membrane morphologies were obtained by first saturating the polymer with

  6. An easy method for the preparation of anion exchange membranes: Graft-polymerization of ionic liquids in porous supports

    NARCIS (Netherlands)

    Merle, Geraldine; Chairuna, Annisa; van de Ven, Erik; Nijmeijer, Dorothea C.


    A novel way for anion exchange membrane (AEM) preparation has been investigated, avoiding the use of expensive and toxic chemicals. This new synthetic approach to prepare AEMs was based on the use of a porous polybenzylimidazole membrane as support in which functionalized ILs were introduced and

  7. The stoichiometry of the TMEM16A ion channel determined in intact plasma membranes of COS-7 cells using liquid-phase electron microscopy. (United States)

    Peckys, Diana B; Stoerger, Christof; Latta, Lorenz; Wissenbach, Ulrich; Flockerzi, Veit; de Jonge, Niels


    TMEM16A is a membrane protein forming a calcium-activated chloride channel. A homodimeric stoichiometry of the TMEM16 family of proteins has been reported but an important question is whether the protein resides always in a dimeric configuration in the plasma membrane or whether monomers of the protein are also present in its native state within in the intact plasma membrane. We have determined the stoichiometry of the human (h)TMEM16A within whole COS-7 cells in liquid. For the purpose of detecting TMEM16A subunits, single proteins were tagged by the streptavidin-binding peptide within extracellular loops accessible by streptavidin coated quantum dot (QD) nanoparticles. The labeled proteins were then imaged using correlative light microscopy and environmental scanning electron microscopy (ESEM) using scanning transmission electron microscopy (STEM) detection. The locations of 19,583 individual proteins were determined of which a statistical analysis using the pair correlation function revealed the presence of a dimeric conformation of the protein. The amounts of detected label pairs and single labels were compared between experiments in which the TMEM16A SBP-tag position was varied, and experiments in which tagged and non-tagged TMEM16A proteins were present. It followed that hTMEM16A resides in the plasma membrane as dimer only and is not present as monomer. This strategy may help to elucidate the stoichiometry of other membrane protein species within the context of the intact plasma membrane in future. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evaluation of nanofiltration membranes for treatment of liquid radioactive waste; Avaliacao de membranas de nanofiltracao para o tratamento de rejeito radioativo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth Eugenio de Mello


    The physicochemical behavior of two nanofiltration membranes for treatment of a low-level radioactive liquid waste (carbonated water) was investigated through static, dynamic and concentration tests. This waste was produced during conversion of uranium hexafluoride (UF{sub 6}) to uranium dioxide (UO{sub 2}) in the cycle of nuclear fuel. This waste contains about 7.0 mg L{sup -1} of uranium and cannot be discarded to the environment without an adequate treatment. In static tests membrane samples were immersed in the waste for 24 to 5000 h. Their transport properties (hydraulic permeability, permeate flux, sulfate and chloride ions rejection) were evaluated before and after immersion in the waste using a permeation flux front system under 0.5 MPa. The selective layer (polyamide) was characterized by zeta potential, contact angle, scanning electron microscopy for field emission, atomic force microscopy, infrared spectroscopy, x-ray fluorescence and thermogravimetric analysis before and after static tests. In dynamic tests the waste was permeated under 0.5 MPa, and the membranes showed rejection to uranium above 85% were obtained. The short-term static tests (24-72 h) showed that the selective layer and surface charge of the membranes were not chemical changed, according infrared spectra data. After 5000 h a coating layer was released from the membranes, poly(vinyl alcohol), PVA. After this loss the rejection for uranium decreased. Permeation and concentration of the waste were carried out in permeation flux tangential system under 1.5 MPa. The rejection of uranium was around 90% for permeation tests. In concentration tests the permeated was collected continuously until about 80% reduction of the feed volume. The rejection of uranium was of the 97%. The nanofiltration membranes tested were efficient to concentrate the uranium from the waste. (author)

  9. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle. (United States)

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana


    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  10. Maximising metal ions flux across a microdialysis membrane by incorporating poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline and ethylenediaminetetraacetic acid in the perfusion liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mogopodi, Dikabo [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana); Torto, Nelson [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana)]. E-mail:


    This paper presents a study of quiescent microdialysis sampling of Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+} and Pb{sup 2+} involving the incorporation of poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline (8-HQ) and ethylenediaminetetraacetic acid (EDTA), in the perfusion liquid as an approach to maximise metal analyte flux across the microdialysis membrane. These chelating agents were individually optimised with respect to microdialysis recovery and subsequently combined in the perfusion liquid. A combination of 20% (w/v) poly-L-histidine, 0.032% (w/v) poly-L-aspartic acid and 1 mM 8-HQ achieved microdialysis recovery up to 90%. Since 1 mM EDTA achieved recoveries greater than 80% for all metals understudy, EDTA was not combined with any of the chelating agents. Under the optimal conditions of maximum metal ion flux across the microdialysis membrane, metal ions from natural and wastewater were sampled and analysed with an electrothermal atomic absorption spectrometer equipped with a Zeeman background corrector. Results showed higher concentrations of detected metal ions after microdialysis sampling compared to direct detection without sample clean-up. Incorporation of chelating agents in the microdialysis perfusion liquid enhanced metal ions recovery in real samples and achieved enrichment factors of up to 42. The study demonstrated that combining chelating agents is a good approach towards maximising metal flux across the dialysis membrane. Given that recoveries between 80 and 90% were achieved under quiescent microdialysis sampling conditions, these findings are an important development for in vivo diagnostic sampling of metal ions.

  11. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    Energy Technology Data Exchange (ETDEWEB)

    Lorieau, Justin L.; Maltsev, Alexander S.; Louis, John M.; Bax, Ad, E-mail: [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Laboratory of Chemical Physics (United States)


    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d(GpG). The method can be used to generate sets of residual dipolar couplings that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins.

  12. A high expression EGFR/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening EGFR antagonists from Rhizoma Polygoni Cuspidati

    Directory of Open Access Journals (Sweden)

    Meng Sun


    Full Text Available The epidermal growth factor receptors (EGFRs in some tumor cells are significant targets for drug discovery. In this work, we have developed an EGFR cell membrane chromatography and online high performance liquid chromatography/mass spectrometry system for screening active component from Rhizoma Polygoni Cuspidati. As a result, resveratrol from Rhizoma Polygoni Cuspidati was found to be the active component acting on EGFR like gefitinib. There was a good relationship between their inhibiting effects on EGFR secretion and HEK293 EGFR cell growth in vitro. The EGFR/CMC-online-HPLC/MS system demonstrated fast and effective characteristics for screening leading compounds from traditional Chinese medicine.

  13. Membrane damage and viability loss of Escherichia coli K-12 and Salmonella enteritidis in liquid egg by thermal death time disk treatment. (United States)

    Ukuku, Dike O; Jin, Tony; Zhang, Howard


    Bacterial injury, including leakage of intracellular substance and viability loss, of Escherichia coli K-12 (ATCC 23716) and Salmonella Enteritidis (ATCC 13076) inoculated in liquid egg white and liquid whole egg was determined by thermal death time disk. E. coli K-12 and Salmonella Enteritidis were inoculated in liquid egg white and liquid whole egg to a final count of 7.8 log CFU/ml and were thermally treated with thermal death time disks at room temperature (23"C), 54, 56, 58, and 60 degrees C from 0 to 240 s. Sublethal injury, leakage of intracellular substances, and viability loss of E. coli K-12 and Salmonella Enteritidis was investigated by plating 0.1 ml on selective trypticase soy agar containing 3% NaCl, 5% NaCl, sorbitol MacConky agar, and xylose lysine sodium tetradecylsulfate and nonselective trypticase soy agar. No significant (P > 0.05) differences on percent injury or viability loss for E. coli K-12 and Salmonella populations were determined in all samples treated at 23 degrees C. Sublethal injury occurred in E. coli and Salmonella populations at 54 degrees C or above for 120 s. Viability losses for both bacteria averaged 5 log at 54 degrees C or above for 180 s, and the surviving populations were below detection (membrane damage, leakage, and accumulation of intracellular ATP from 2 to 2.5 log fg/ml and UV-absorbing substances of 0.1 to 0.39 in the treated samples. These results indicate similar thermal injury/damage on both E. coli and Salmonella membranes as determined by the amount of inactivation, viability loss, and leakage of intracellular substances of bacteria.

  14. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen


    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  15. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail:


    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  16. Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain. (United States)

    Inaoka, Yasuyuki; Yamazaki, Masahito


    Vesicle fissions are very important processes of biomembranes in cells, but their mechanisms are not clear and are controversial. Using the single giant unilamellar vesicle (GUV) method, we recently found that low concentrations (less than the critical micelle concentration (CMC)) of lysophosphatidylcholine (lyso-PC) induced the vesicle fission of GUVs of dipalmitoylphosphatidylcholine/cholesterol(6/4) (DPPC/chol(6/4)) membranes and sphingomyelin/cholesterol membranes (6/4) in the liquid-ordered (lo) phase. In this report, to elucidate its mechanism, we have investigated the effect of low concentrations (much less than their CMC) of other amphiphiles with a single long hydrocarbon chain (i.e., single long chain amphiphiles) on DPPC/chol(6/4) GUVs as well as the effect of the membrane composition on the lyso-PC-induced vesicle fission. We found that low concentrations of single long chain amphiphiles (lyosophosphatidic acid, octylglucoside, and sodium dodecyl sulfate) induced the shape change from a prolate to two spheres connected by a very narrow neck, indicating that the single long chain amphiphiles can be partitioned into the external monolayer in the lo phase of the GUV from the aqueous solution. As the single long chain amphiphile concentrations were increased, all of them induced vesicle fission of DPPC/chol(6/4) GUVs above their threshold concentrations. To elucidate the role of cholesterol in the single long chain amphiphile-induced vesicle fission, we investigated the effect of lyso-PC on GUVs of dioleoyl-PC (DOPC)/chol(6/4) membranes in the Lalpha phase; no vesicle fission occurred, indicating that cholesterol in itself did not play an important role in the vesicle fission. Finally, to elucidate the effect of the inclusion of DOPC in the lo-phase membrane of GUVs on the lyso-PC-induced vesicle fission of the DPPC/chol(6/4) GUV, we investigated the effect of low concentrations of lyso-PC on GUVs of DPPC/DOPC/chol membranes. With an increase in DOPC

  17. Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14]Cl. (United States)

    Rodríguez-Cabo, Borja; Rodríguez-Palmeiro, Iago; Corchero, Raquel; Rodil, Rosario; Rodil, Eva; Arce, Alberto; Soto, Ana


    The photocatalytic degradation of wastewater containing three industrial dyes belonging to different families, methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB), was studied under UV-Vis irradiation using synthesised silver chloride nanoparticles. The nanocatalyst was prepared by a dissolution/reprecipitation method starting from the bulk powder and the ionic liquid trihexyl(tetradecyl)phosphonium chloride, [P 6 6 6 14 ]Cl, without addition of other solvents. The obtained catalyst was characterised by UV-Vis absorbance, X-ray powder diffraction, transmission electron microscopy and scanning electron microscopy. The decolourisation of the samples was studied by UV-Vis absorbance at the corresponding wavelength. Starting from 10 ppm dye solutions and 1 g L -1 of the synthesised AgCl nanoparticles, degradation efficiencies of 98.4% for MO, 98.6% for MB and 99.9% for RhB, were achieved in 1 h. The degradation mechanisms for the different dyes were studied. Comparison with other frequently used nanocatalysts, namely P-25 Degussa, TiO 2 anatase, Ag and ZnO, highlights the strong catalytic activity of AgCl nanoparticles. Under the same experimental conditions, these nanoparticles led to higher (more than 10%) and faster degradations.

  18. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne


    is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  19. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  20. Use of anion-exchange membrane extraction for the high-performance liquid chromatographic analysis of mustard seed glucosinolates. (United States)

    Szmigielska, A M; Schoenau, J J


    A new one-step extraction using anion-exchange membranes for the HPLC determination of glucosinolates in mustard seeds is reported. The exchange of glucosinolates on the membranes was studied using sinigrin in solutions and sinigrin added as an internal standard to seeds of yellow mustard. By varying time of extraction, membrane size, and sample size, the optimal conditions for maximum glucosinolate recovery were determined and the following procedure was adopted: 0.2 g of ground mustard seeds are heated in 20 mL of boiling water for 5 min. After cooling, samples are transferred to plastic centrifuge tubes, 9-cm(2) membranes are added, and suspensions are shaken on a mechanical shaker for 2.5 h. Glucosinolates are then eluted from the membranes with 25 mL of 1 N KCl by shaking again for 2.5 h. Using this procedure, the sinigrin extraction from solutions and from mustard seeds was linear with 80% recovery. Seeds of yellow, brown, oriental, and Indian mustard were analyzed by this procedure; excellent reproducibility, with coefficients of variation in the range 1.0-4.3% were obtained. This method offers a simple and inexpensive alternative to complicated and tedious procedures for glucosinolate isolation/purification required for chromatographic determinations.

  1. 19 CFR 149.4 - Bulk and break bulk cargo. (United States)


    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from the...


    Directory of Open Access Journals (Sweden)

    Imam Santoso


    Full Text Available Extraction of silver (I has been studied from black/white printing photographic waste by emulsion liquid membrane technique. Composition emulsion at the membrane phase was cerosene as solvent, sorbitan monooleat (span 80 as surfactant, dimethyldioctadesyl-ammonium bromide as carrier and as internal phase was HNO3. Optimum condition was obtained: ratio of internal phase volume and membrane phase volume was 1:1 : concentration of surfactant was 2% (v/v : time of making emulsion was 20 second : rate of stiring emulsion was 1100 rpm : rest time emulsion was 3 second : rate of emulsion volume and external phase volume was 1:5 : emulsion contact rate 500 rpm : emulsion contact time was 40 second : concentration of silver thiosulfate as external phase was 100 ppm : pH of external phase was 3 and pH of internal phase was 1. Optimum condition was applied in silver(I extraction from black/white printing photographic waste. It was obtained 77.33% average which 56.06% silver (I average of internal phase and 22.66% in the external phase. Effect of matrices ion decreased silver(I percent extraction from 96,37% average to 77.33% average. Keyword: photographics waste, silver extraction

  3. Screening vasoconstriction inhibitors from traditional Chinese medicines using a vascular smooth muscle/cell membrane chromatography-offline-liquid chromatography-mass spectrometry. (United States)

    Yang, Xingxin; Wang, Yanwei; Zhang, Xiaoxia; Chang, Ruimiao; Li, Xiaoni


    We developed an analytical method for screening vasoconstriction inhibitors from traditional Chinese medicines (TCMs) by combining vascular smooth muscle/cell membrane chromatography (VSM/CMC) with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Primary cultured VSM cells from rat thoracic aortas were used for preparation of the stationary phase of the VSM/CMC column. Retention fractions from the VSM/CMC column were collected and then analyzed by LC-MS/MS under the optimized conditions offline. The suitability and reliability of the VSM/CMC-offline-LC-MS/MS method was assessed using nitrendipine and nifedipine as positive controls, and this method was then applied to screen vasodilator components from the extracts of Fructus Schisandrae Chinensis (FSC) and Fructus Schisandrae Sphenantherae (FSS). The major components from both species retained by VSM/CMC were identified as deoxyschizandrin (DSD) and schisantherin A (STA) by LC-MS/MS. Competition experiments indicated that DSD and nifedipine bound competitively to membrane receptors, while DSD and STA had partly overlapping binding sites on VSM-cell membranes. In vitro pharmacological trials confirmed that STA and DSD could dose-dependently relax the rat thoracic aortas pre-contracted by KCl. Our VSM/CMC-offline-LC-MS/MS method can be applied for screening vasoconstriction inhibitors from TCMs collected from FSC and FSS, and may be useful in the development of vasodilators from natural products. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals


    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  5. Impact of micro-porous layer on liquid water distribution at the catalyst layer interface and cell performance in a polymer electrolyte membrane fuel cell (United States)

    Tabe, Yutaka; Aoyama, Yusuke; Kadowaki, Kazumasa; Suzuki, Kengo; Chikahisa, Takemi


    In polymer electrolyte membrane fuel cells, a gas diffusion layer (GDL) with a micro-porous layer (MPL) gives better anti-flooding performance than GDLs without an MPL. To investigate the function and mechanism of the MPL to suppress water flooding, the liquid water distribution at the cathode catalyst layer (CL) surface are observed by a freezing method; in the method liquid water is immobilized in ice form by rapid freezing, followed by disassembling the cell for observations. The ice covered area is quantified by image processing and cells with and without an MPL are compared. The results show that the MPL suppresses water accumulation at the interface due to smaller pore size and finer contact with the CL, and this results in less water flooding. Investigation of ice formed after -10 °C cold start shutdowns and the temporary performance deterioration at ordinary temperatures also indicates a significant influence of the liquid water accumulating at the interface. The importance of the fine contact between CL and MPL, the relative absence of gaps, is demonstrated by a gas diffusion electrode (GDE) which is directly coated with catalyst ink on the surface of the MPL achieving finer contact of the layers.

  6. Removal of cesium from nuclear liquid waste using hybrid organic-inorganic membranes grafted by immobilized calixarenes; Synthese et caracterisation de membranes hybrides organo-minerales contenant des calixarenes. Application au traitement des effluents radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Duhart, A


    The aim of the Actinex program is to reduce massively the noxiousness of the vitrified wastes mainly due to actinides and other long-lived fission products such as {sup 129}I, {sup 99}Tc or {sup 135}Cs. Specific treatment means applicable to the industrial processes of spent fuel reprocessing have to be defined. The selective extraction of these radioelements for their transmutation or packaging in specific matrices is one of the research theme of this program. Different studies allowing the extraction of radioelements such as cesium, americium and plutonium by preferential diffusional transport through a supported liquid membrane of complexes (formed between a selective transport compound and the radioelements) are at the present time carried out in the ETPL (Effluents Treatment Processes Laboratory). Calix-4-arenes mono/bis-crown-6 are used as selective transport compounds. Meanwhile the possible losses of the selective transport compound by dissolution in the aqueous phases have oriented our researches towards a solid material in which the selective transport compound is chemically bound or trapped in the matrix. The transport compound is a calixarene, dissymmetrical and double grafted. It has been specifically synthesized for this study. It allows both to complex the cesium and to chemically bind a hetero-poly-siloxane. These monomers have poly-condensable groups which lead by sol-gel process to the formation of a three-dimensional bonds lattice. The matrix, thus obtained, can be supported either on a mineral material or on a porous organic material. Pre-polymers and the deposited layers have been characterized and correlations between the materials preparation and their properties, applied to cesium extraction, have been established. Experiments of cesium transfer through the solid membrane containing between 2 to 40% of selective transport compound, located between 2 compartments containing upstream, an acidic solution with strong salinity doped with Cs 137

  7. Preparation of an ion-exchangeable polymer bead wrapped with bilayer membrane structures for high performance liquid chromatography. (United States)

    Haratake, Mamoru; Hidaka, Shuko; Ono, Masahiro; Nakayama, Morio


    We synthesized a chromatographic packing material that has a non-covalently attached dihexadecyl phosphate (DHP) bilayer membrane structure on a CA08S, a nonporous-type cationic polymer bead with a diameter ranging from 11 to 14 microm. Confocal fluorescence microscopic and differential scanning calorimetric analyses of the DHP-CA08S complex revealed that the DHP bilayer membrane structures were formed on the surface of the CA08S polymer beads. When the functionality of the DHP-CA08S complex was evaluated in the ion-exchange HPLC of proteins, the retention behavior of the proteins on the DHP-CA08S complex column totally mirrored the anionic property of the DHP bilayer membrane surface, not the cationic property of the CA08S bead. Methylene blue (MB) was eluted from the DHP-CA08S complex column in the isocratic elution mode, but not at all from a CK08S column, a styrene-divinylbenzene based cation-exchange polymer. When the column temperature was elevated from 50 to 60 degrees C, the peak shape of MB on the DHP-CA08S complex column became fairly sharp without a change in its peak area, which mirrored the characteristic phase transition of the DHP bilayer membrane formed on the DHP-CA08S complex.

  8. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry. (United States)

    Carletto, Jeferson Schneider; Luciano, Raquel Medeiros; Bedendo, Gizelle Cristina; Carasek, Eduardo


    A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML(2)). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5x10(-2) mol L(-1), extraction temperature 40 degrees C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 microL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 microL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 microg L(-1), relative standard deviation (RSD) 5.5% and the working linear range 2-30 microg L(-1).

  9. Humidity-dependent surface tension measurements of individual inorganic and organic submicrometre liquid particles† †Electronic supplementary information (ESI) available: SEM image of AFM nanoneedles, force plot data from bulk AFM surface tension, data used for surface tension vs. RH predictions, comparison of AIM and bulk predictions for NaCl. See DOI: 10.1039/c4sc03716b Click here for additional data file. (United States)

    Morris, Holly S.


    Surface tension, an important property of liquids, is easily measured for bulk samples. However, for droplets smaller than one micron in size, there are currently no reported measurements. In this study, atomic force microscopy (AFM) and force spectroscopy have been utilized to measure surface tension of individual submicron sized droplets at ambient pressure and controlled relative humidity (RH). Since the surface tension of atmospheric aerosols is a key factor in understanding aerosol climate effects, three atmospherically relevant systems (NaCl, malonic and glutaric acids) were studied. Single particle AFM measurements were successfully implemented in measuring the surface tension of deliquesced particles on the order of 200 to 500 nm in diameter. Deliquesced particles continuously uptake water at high RH, which changes the concentration and surface tension of the droplets. Therefore, surface tension as a function of RH was measured. AFM based surface tension measurements are close to predicted values based on bulk measurements and activities of these three chemical systems. Non-ideal behaviour in concentrated organic acid droplets is thought to be important and the reason for differences observed between bulk solution predictions and AFM data. Consequently, these measurements are crucial in order to improve atmospheric climate models as direct measurements hitherto have been previously inaccessible due to instrument limitations. PMID:28706693

  10. Porous ceramic membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Biesheuvel, Pieter Maarten


    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  11. Microfabricated Bulk Piezoelectric Transformers (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  12. The impact range for smooth wall–liquid interactions in nanoconfined liquids

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Dyre, J. C.


    Bulk and nanoconfined liquids have very different physics; for instance, nanoconfined liquids show stratification and position-dependent relaxation processes. A number of similarities between bulk and nanoconfined liquids have nevertheless been reported in computer simulations during the last...... decade. Inspired by these observations, we present results from molecular dynamics computer simulations of four nanoconfined liquids (the single-component Lennard-Jones liquid, the Kob–Andersen binary Lennard-Jones mixture, an asymmetric dumbbell model, and the Dzugutov liquid) demonstrating also...... a microscopic similarity between bulk and nanoconfined liquids. The results show that the interaction range for the wall–liquid and liquid–liquid interactions of the nanoconfined liquid is identical to that of the bulk liquid if the liquid is “Roskilde simple” in bulk as well as nanoconfinement, i.e., exhibits...

  13. Application of Liquid-Phase Direct Fluorination: Novel Synthetic Methods for a Polyfluorinated Coating Material and a Monomer of a Perfluorinated Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takashi Okazoe


    Full Text Available A new polyfluorinated anti-staining coating material CF3O(CF2CF2OxCF2-CONHCH2CH2CH2Si(OCH33 has been developed by utilizing the PERFECT method, which employs a liquid-phase direct fluorination reaction with elemental fluorine as a key step. Direct fluorination of a partially-fluorinated ester, which was prepared from a non-fluorinated poly(ethylene glycol and a perfluorinated acyl fluoride, followed by methanolysis, gave the perfluorinated corresponding compound, which was led to the coating material for surface treating agents, and the methyl ester of the starting perfluorinated acyl fluoride. Application to the synthesis of a new perfluorinated bifunctional sulfonate monomer CF2=CFOCF2CF2CF2OCF(CF2SO2F2 for polymer electrolyte membranes (PEMs of fuel cells was also developed.

  14. Thermal bulk polymerization of cholesteryl acrylate

    NARCIS (Netherlands)

    de Visser, A.C.; de Groot, K.; Feijen, Jan; Bantjes, A.


    The thermal bulk polymerization of cholesteryl acrylate was carried out in the solid phase, the mesomorphic phase, and the liquid phase to study the effect of monomer ordering on polymerization rate and polymer properties. The rate increased with decreasing ordering (or enhanced mobility) of the

  15. A large-scale biomass bulk terminal

    NARCIS (Netherlands)

    Wu, M.R.


    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials

  16. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini


    and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface......The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...

  17. Survival and growth of Salmonella enterica serovar enteritidis in membrane-processed liquid egg white with pH, temperature, and storage conditions as controlling factors. (United States)

    Mukhopadhyay, Sudarsan; Ukuku, Dike; Phillips, John G; Juneja, Vijay K


    Processing temperature and pH are known to influence the lethality and cell injury in many microbial interventions. A study was undertaken to determine the effects of variations in solution pH and process temperature on the removal and growth of Salmonella enterica serovar Enteritidis in liquid egg white (LEW) by microfiltration (MF) membrane process. The effects of various storage conditions on the growth of Salmonella in membrane-separated LEW were evaluated. Pretreated and pH-adjusted (pH 6 to pH 9) LEW was inoculated with a five-strain composite of S. enterica serovar Enteritidis at ca. 7 log CFU/ml, microfiltered at 25 or 40°C, and stored at 4 or 10°C. Temperature had a greater influence on Salmonella reduction than did pH. The maximum reduction of Salmonella and background microflora in LEW by MF was observed at 40°C and pH 8 and 9. However, the influence of temperature on permeate flow was less than that of pH. The mean permeate flow increased by 180% at 25°C as the pH decreased from 9 to 6, while flow increased merely by 18% at pH 6 as temperature increased from 25 to 40°C. Salmonella populations in processed LEW at 4°C storage remained quite stable (0.01 to 0.55 log CFU/ml), irrespective of MF experimental conditions. At 10°C the population was greater, but no major outgrowth was observed. Findings from this study would be advantageous to liquid egg processing industries.

  18. Porous ceramic membranes


    Biesheuvel, P. M.; Biesheuvel, Pieter Maarten


    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined with micro-electronic devices. Ceramic membranes have a large potential over their polymer counterparts for applications at high temperature, pressure and in aggressive environments. Ceramic membra...

  19. Copper(II Extraction from Nitric Acid Solution with 1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone as a Cation Carrier by Liquid Membrane Emulsion

    Directory of Open Access Journals (Sweden)

    Baharuddin Hamzah


    Full Text Available Copper(II extraction from nitric acid solution with 1-phenyl-3-methyl-4-benzoil-5-pyrazolone (HPMBP as a cation carrier by liquid membrane emulsion (LME was investigated. The HPMBP initially was synthesized and the synthesis yield is a yellow crystal with melting point of 87-89 °C. The synthesis efficiency is 72.04% and generally the spectra of IR, 1H NMR and 13C NMR agree with HPMBP structure. The optimum condition for copper(II extraction were found as follows: concentration of mixed surfactant (span 80+span 20 was 3%, volume ratio of membrane and internal phase was 1, concentration of HPMBP was 0.020 M, concentration of HCl was 1 M, volume ratio of emulsion and external phase was 0.143. By using these optimum conditions, 30 mL of LME can extract 1000 ppm of copper(II within 210 mL of nitric acid solution with extraction percentage of 97.97%.

  20. Liquid-phase non-thermal plasma-prepared N-doped TiO(2) for azo dye degradation with the catalyst separation system by ceramic membranes. (United States)

    Cheng, Hsu-Hui; Chen, Shiao-Shing; Cheng, Yi-Wen; Tseng, Wei-Lun; Wang, Yi-Hui


    This study strived to improve the photocatalytic activity by using liquid-phase non-thermal plasma (LPNTP) technology for preparing N-doping TiO(2) as well as to separate/recover the N-dope TiO(2) particles by using ceramic ultrafiltration membrane process. The yellow color N-doped TiO(2) photocatalysts, obtained through the LPNTP process, were characterized with UV-Vis spectroscopy, X-ray diffraction (XRD), and electron spectroscopy for chemical analysis (ESCA). The UV-Vis spectrum of N-doped TiO(2) showed that the absorption band was shifted to 439 nm and the band gap was reduced to 2.82 eV. The structure analysis of XRD spectra showed that the peak positions and the crystal structure remained unchanged as anatase after plasma-treating at 13.5 W for 40 min. The photocatalytic activity of N-doped TiO(2) was evaluated by azo dyes under visible light, and 63% of them was degraded after 16 hours in a continuous-flow photocatalytic system. For membrane separation/recover system, the recovery efficiency reached 99.5% after the ultrafiltration had been carried out for 90 min, and the result indicated that the photocatalyst was able to be separated/recovered completely.

  1. Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: system analysis and optimization through experimental design strategies. (United States)

    Rodríguez de San Miguel, Eduardo; Vital, Xóchitl; de Gyves, Josefina


    Chromium(VI) transport through a supported liquid membrane (SLM) system containing the commercial ionic liquid CYPHOS IL101 as carrier was studied. A reducing stripping phase was used as a mean to increase recovery and to simultaneously transform Cr(VI) into a less toxic residue for disposal or reuse. General functions which describe the time-depending evolution of the metal fractions in the cell compartments were defined and used in data evaluation. An experimental design strategy, using factorial and central-composite design matrices, was applied to assess the influence of the extractant, NaOH and citrate concentrations in the different phases, while a desirability function scheme allowed the synchronized optimization of depletion and recovery of the analyte. The mechanism for chromium permeation was analyzed and discussed to contribute to the understanding of the transfer process. The influence of metal concentration was evaluated as well. The presence of different interfering ions (Ca(2+), Al(3+), NO3(-), SO4(2-), and Cl(-)) at several Cr(VI): interfering ion ratios was studied through the use of a Plackett and Burman experimental design matrix. Under optimized conditions 90% of recovery was obtained from a feed solution containing 7mgL(-1) of Cr(VI) in 0.01moldm(-3) HCl medium after 5h of pertraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ultrafast photoinduced charge separation in naphthalene diimide based multichromophoric systems in liquid solutions and in a lipid membrane. (United States)

    Banerji, Natalie; Fürstenberg, Alexandre; Bhosale, Sheshanath; Sisson, Adam L; Sakai, Naomi; Matile, Stefan; Vauthey, Eric


    The photophysical properties of multichromophoric systems consisting of eight red or blue naphthalene diimides (NDIs) covalently attached to a p-octiphenyl scaffold, as well as a blue bichromophoric system with a biphenyl scaffold, have been investigated in detail using femtosecond time-resolved spectroscopy. The blue octachromophoric systems have been recently shown to self-assemble as supramolecular tetramers in lipid bilayer membranes and to enable generation of a transmembrane proton gradient upon photoexcitation ( Bhosale, S. ; Sisson, A. L. ; Talukdar, P. ; Fürstenberg, A. ; Banerji, N. ; Vauthey, E. ; Bollot, G. ; Mareda, J. ; Röger, C. ; Würthner, F. ; Sakai, N. ; Matile, S. Science 2006, 313, 84 ). A strong reduction of the fluorescence quantum yield was observed when going from the single NDI units to the multichromophoric systems in methanol, the effect being even stronger in a vesicular lipid membrane. Fluorescence up-conversion measurements reveal ultrafast self-quenching in the multichromophoric systems, whereas the formation of the NDI radical anion, evidenced by transient absorption measurements, points to the occurrence of photoinduced charge separation. The location of the positive charge could not be established unambiguously from the transient absorption measurements, but energetic considerations indicate that charge separation should occur between two NDI units in the blue systems, whereas both an NDI unit and the p-octiphenyl scaffold could act as electron donor in the red system. The lifetime of the charge-separated state was found to increase from 22 to 45 ps by going from the bi- to the octachromophoric blue systems in methanol, while a 400 ps decay component was observed in the lipid membrane. This lifetime lengthening is explained in terms of charge migration that is most efficient when the octachromophoric systems are assembled as supramolecular tetramers in the lipid membrane. Furthermore, the average charge-separated state lifetime


    NARCIS (Netherlands)



    Non-ionic detergents (0.03-0.5%) are used as additives to the eluents when integral membrane proteins are subjected to ion-exchange high-performance liquid chromatography (HPIEC). It is not known whether this concentration should bear some relation to the critical micelle concentration (CMC) of a

  4. Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid

    Directory of Open Access Journals (Sweden)

    Abdulrahman Bahrami


    Full Text Available This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD (% values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens.

  5. Bulk Nanostructured Materials (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.


    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  6. Gas permeable-membrane for hydrogenotrophic denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Hasar, Halil [Center for Biotechnology Research, Firat University, Elazig (Turkey); Ipek, Ubeyde [Department of Environmental Engineering, Firat University, Elazig (Turkey)


    The membrane biofilm reactor (MBfR) involves a process in which the membrane provides effective H{sub 2}utilization as an electron donor. MBfRs overcome the problems caused from the particularly low solubility of the gas delivered into a liquid by means of a gas-permeable membrane. The study demonstrates that the MBfR is successful in the effective removal of nitrate from drinking water or nitrified water, involving a hydraulic retention time of 25 min for a maximum nitrate removal of 98%. The H{sub 2} flux reaches a level of 1.24 g H{sub 2}/m {sup 2} d when the denitrification rate achieves 3.5 g N/m {sup 2} d at 0.2 atm H{sub 2} pressure. The results indicate that the biofilm on outer walls of the gas permeable membrane utilizes all of the H{sub 2} gas effectively as an electron donor since the H{sub 2} is not detectable in the bulk liquid. In the future, the MBfR could be an attractive process for water and wastewater engineers due to its applicability for treatment of secondary effluent from industrial and municipal wastewater and drinking water. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Bulk Dynamics of Droplets in Liquid-Liquid Axial Cyclones

    NARCIS (Netherlands)

    Van Campen, L.J.A.M.


    Separation of oil and water is an essential step in the treatment of the production streams from fossil oil wells. Settling by gravity is a robust though voluminous process and therewith expensive method at remote locations, leading to a need for smaller separation equipment. In this thesis, we

  8. Polymer membrane based electrolytic cell and process for the direct generation of hydrogen peroxide in liquid streams (United States)

    White, James H. (Inventor); Schwartz, Michael (Inventor); Sammells, Anthony F. (Inventor)


    An electrolytic cell for generating hydrogen peroxide is provided including a cathode containing a catalyst for the reduction of oxygen, and an anode containing a catalyst for the oxidation of water. A polymer membrane, semipermeable to either protons or hydroxide ions is also included and has a first face interfacing to the cathode and a second face interfacing to the anode so that when a stream of water containing dissolved oxygen or oxygen bubbles is passed over the cathode and a stream of water is passed over the anode, and an electric current is passed between the anode and the cathode, hydrogen peroxide is generated at the cathode and oxygen is generated at the anode.

  9. Structural characterization of the voltage-sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry. (United States)

    Gupta, S; Dura, J A; Freites, J A; Tobias, D J; Blasie, J K


    The voltage-sensor domain (VSD) is a modular four-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of X-ray crystal structures for a few voltage-gated potassium (Kv) channels and a voltage-gate sodium (Nav) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e., nonconducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially oriented within a single phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) membrane investigated by X-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces, thus achieving partial to full hydration, respectively (Gupta et al. Phys. Rev. E2011, 84, 031911-1-15). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the submolecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected submolecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of

  10. Membrane distillation for milk concentration

    NARCIS (Netherlands)

    Moejes, S.N.; Romero Guzman, Maria; Hanemaaijer, J.H.; Barrera, K.H.; Feenstra, L.; Boxtel, van A.J.B.


    Membrane distillation is an emerging technology to concentrate liquid products while producing high quality water as permeate. Application for desalination has been studied extensively the past years, but membrane distillation has also potential to produce concentrated food products like

  11. Chemically Cross-Linked MOF Membrane Generated from Imidazolium-Based Ionic Liquid-Decorated UiO-66 Type NMOF and Its Application toward CO2 Separation and Conversion. (United States)

    Yao, Bing-Jian; Ding, Luo-Gang; Li, Fei; Li, Jiang-Tao; Fu, Qi-Juan; Ban, Yujie; Guo, Ang; Dong, Yu-Bin


    Carbon dioxide capture and transformation are of great importance to make cuts in greenhouse gas emissions. Nanometal-organic frameworks (NMOFs) could serve as ideal fillers for polymer membranes owing to their structural diversity and regulable microenvironment of the nanocage. Herein, a bifunctional, robust, and chemically cross-linked NMOF-based membrane was successfully constructed by the postsynthetic polymerization of imidazolium-based ionic liquid (IL)-decorated UiO-66 type nanoparticles (NPs) and the isocyanate-terminated polyurethane oligomer under mild conditions. The IL-modified MOF-polymer membranes exhibit a highly selective adsorption for CO2 over N2 and CH4. In addition, the obtained membrane can also be a highly active heterogeneous catalyst for CO2 transformation by cycloaddition with epoxide under an ambient pressure.

  12. Specular and off-specular neutron scattering from solid-supported glycolipid membrane multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, Emanuel; Tanaka, Motomu [Physikalisch-Chemisches Institut, Universitaet Heidelberg (Germany); Rehfeldt, Florian [Lehrstuhl fuer Biophysik E22, Technische Universitaet Muenchen (Germany); Deme, Bruno [Institut Laue-Langevin, Grenoble (France); Gege, Christian; Schmidt, Richard [Fachbereich Chemie, Universitaet Konstanz (Germany)


    Solid-supported glycolipid membrane multilayers, acting as well-defined model systems for the study of saccharide-mediated inter-membrane interactions, were studied by specular and off-specular neutron scattering. Experiments were carried out at controlled temperatures and humidities, as well as under bulk water using a self-developed liquid cell. Force-distance relationships were recorded by measuring at various osmotic pressures. Mechanical properties of the studied membranes (i.e. bending moduli and inter-membrane compression moduli) were extracted by comparing scattering signals to reciprocal space maps simulated in the framework of smectic crystal theory. The results demonstrate that distinct variations in the oligosaccharide headgroup structures of the glycolipid molecules can result in significant changes in bending modulus and inter-membrane interactions.

  13. Integration of the free liquid membrane into electrokinetic supercharging - capillary electrophoresis for the determination of cationic herbicides in environmental water samples. (United States)

    Chui, Mei Qi; Thang, Lee Yien; See, Hong Heng


    A new approach based on the integration of the free liquid membrane (FLM) into electrokinetic supercharging (EKS) was demonstrated to be a new powerful tool used in order to enhance online preconcentration efficiency in capillary electrophoresis (CE). A small plug of water immiscible organic solvent was used as a membrane interface during the electrokinetic sample injection step in EKS in order to significantly enhance the analyte stacking efficiency. The new online preconcentration strategy was evaluated for the determination of paraquat and diquat present in the environmental water samples. The optimised FLM-EKS conditions employed were as follows: hydrodynamic injection (HI) of 20mM potassium chloride as leading electrolyte at 50mbar for 75s (3% of the total capillary volume) followed by the HI of tris(2-ethylhexyl) phosphate (TEHP) as FLM at a 1mm length (0.1% of the capillary volume). The sample was injected at 10kV for 360s, followed by the HI of 20mM cetyl trimethylammonium bromide (CTAB) as terminating electrolyte at 50mbar for 50s (2% of the total capillary volume). The separation was performed in 12mM ammonium acetate and 30mM NaCl containing 20% MeOH at +25kV with UV detection at 205nm. Under optimised conditions, the sensitivity was enhanced between 1500- and 1866-fold when compared with the typical HI at 50mbar for 50s. The detection limit of the method for paraquat and diquat was 0.15-0.20ng/mL, with RSDs below 5.5%. Relative recoveries in spiked river water were in the range of 95.4-97.5%. A comparison was also made between the proposed approach with sole preconcentration of the field-enhanced sample injection (FASI) and EKS in the absence of the FLM. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Application of Phosphonium Ionic Liquids as Ion Carriers in Polymer Inclusion Membranes (PIMs) for Separation of Cadmium(II) and Copper(II) from Aqueous Solutions. (United States)

    Pospiech, Beata

    Facilitated transport through polymer inclusion membranes (PIMs) is a promising method for simultaneous separation and removal of valuable and toxic metal ions from aqueous solutions. Recently, ionic liquids (ILs) have been used as extracting agents for metal ions due to their unique physicochemical properties. This paper presents research on the facilitated transport of cadmium(II) and copper(II) ions from aqueous chloride solutions through PIMs with phosphonium ILs as new selective ion carriers. Cellulose triacetate membranes containing o-nitrophenyl octyl ether (ONPOE) as a plasticizer and Cyphos IL 101 [trihexyl(tetradecyl)phosphonium chloride] or Cyphos IL 104 [trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate] as the ion carriers have been prepared and applied for investigations. Cd(II) ions were transported preferably from hydrochloric acid solutions containing Cu(II) ions through the PIMs. Higher selectivity coefficient of Cd(II) over Cu(II) (SCd/Cu) from 0.1 mol·dm(-3) hydrochloric acid was obtained for PIM with Cyphos IL 104 as the ion carrier. The influence of HCl and NaCl concentrations in the source phase on metal ion transport across PIM doped with Cyphos 104 was studied. It was found that the initial fluxes of Cd(II) and Cu(II) increase with increasing chloride ions concentration in the source phase. The selectivity coefficient for Cd(II) over Cu(II) decreases with increasing HCl concentration in the source phase. The results suggest that the separation system presented in this paper can be useful for the removal of Cd(II) from acidic chloride solutions in the presence of Cu(II).

  15. Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles. (United States)

    Dittmer, Jens; Thøgersen, Lea; Underhaug, Jarl; Bertelsen, Kresten; Vosegaard, Thomas; Pedersen, Jan M; Schiøtt, Birgit; Tajkhorshid, Emad; Skrydstrup, Troels; Nielsen, Niels Chr


    Detailed insight into the interplay between antimicrobial peptides and biological membranes is fundamental to our understanding of the mechanism of bacterial ion channels and the action of these in biological host-defense systems. To explore this interplay, we have studied the incorporation, membrane-bound structure, and conformation of the antimicrobial peptide alamethicin in lipid bilayers using a combination of 1H liquid-state NMR spectroscopy and molecular dynamics (MD) simulations. On the basis of experimental NMR data, we evaluate simple in-plane and transmembrane incorporation models as well as pore formation for alamethicin in DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine/1,2-dihexanoyl-sn-glycero-3-phosphatidylcholine) bicelles. Peptide-lipid nuclear Overhauser effect (NOE) and paramagnetic relaxation enhancement (PRE) data support a transmembrane configuration of the peptide in the bilayers, but they also reveal that the system cannot be described by a single simple conformational model because there is a very high degree of dynamics and heterogeneity in the three-component system. To explore the origin of this heterogeneity and dynamics, we have compared the NOE and PRE data with MD simulations of an ensemble of alamethicin peptides in a DMPC bilayer. From all-atom MD simulations, the contacts between peptide, lipid, and water protons are quantified over a time interval up to 95 ns. The MD simulations provide a statistical base that reflects our NMR data and even can explain some initially surprising NMR results concerning specific interactions between alamethicin and the lipids.

  16. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. (United States)

    Viñas, Pilar; Aguinaga, Nerea; Campillo, Natalia; Hernández-Córdoba, Manuel


    The present study compares two new sample preparation methods, stir bar sorptive extraction (SBSE) and membrane-assisted solvent extraction (MASE) coupled to the novel technique of ultra-performance liquid chromatography (UPLC) for the sensitive, selective and solvent-free determination of six oxazole fungicide residues (hymexazol, drazoxolon, vinclozolin, chlozolinate, oxadixyl and famoxadone) in wine and juices. The analytes were separated on a rapid resolution C(18) column (50 mm x 4.6 mm, I.D., 1.8 microm) thermostated at 50 degrees C with isocratic elution using a 50/50 (v/v) water/acetonitrile (ACN) mobile phase at a flow-rate of 1 mL min(-1) and detected by diode-array detection (DAD). The UPLC method rapidly separates the fungicides (7 min). The best results as regards sensitivity, repeatability and analyte recovery were obtained using SBSE with a polydimethylsiloxane (PDMS) twister, at 60 degrees C for 30 min with stirring at 1700 rpm in the presence of a 0.1M acetate/acetic acid buffer (pH 5) and 20% (m/v) sodium chloride. Liquid desorption was performed with 100 microL of a 80/20 (v/v) ACN/water solution in a desorption time of 15 min. With the PDMS polymer, an apolar phase, hymexazol and oxadixyl were not extracted. Consequently, the SBSE procedure can only be applied to the other four fungicides. Detection limits ranged from 0.05 to 2.5 microgL(-1) at a signal to noise ratio of 3, depending on the compound. Recoveries obtained for spiked samples were satisfactory (83-113%) for all compounds. The proposed method was successfully applied to the analysis of different samples, residues of chlozolinate and drazoxolon being found in samples of red wine and grape juice, respectively.

  17. Microfabricated bulk wave acoustic bandgap device (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol


    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  18. Liquid/liquid heat exchanger (United States)

    Miller, C. G.


    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  19. A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids-liquid separation. (United States)

    Hall, Eric R; Monti, Alessandro; Mohn, William W


    CEBPR system also revealed many uncultured organisms that have not been well characterized. The study demonstrated that a simple replacement of a secondary clarifier with membrane solids-liquid separation is sufficient to shift the composition of an activated sludge microbial community significantly. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Ion Exchange and Antibiofouling Properties of Poly(ether sulfone) Membranes Prepared by the Surface Immobilization of Brønsted Acidic Ionic Liquids via Double-Click Reactions. (United States)

    Yi, Zhuan; Liu, Cui-Jing; Zhu, Li-Ping; Xu, You-Yi


    Brønsted acidic ionic liquids (BAILs) are unique ionic liquids that display chemical structures similar to zwitterions, and they were typically used as solvents and catalysts. In this work, an imidazole-based BAIL monolayer was fabricated onto poly(ether sulfone) (PES) membranes via surface clicking reactions, and the multifunctionality, including ion exchange and biofouling resistance to proteins and bacteria, was demonstrated, which was believed to be one of few works in which BAIL had been considered to be a novel fouling resistance layer for porous membranes. The successful immobilization of the BAILs onto a membrane surface was confirmed by X-ray photoelectron spectroscopy analysis, contact angle measurement, and ζ potential determination. The results from Raman spectroscopy showed that, as a decisive step prior to zwitterion, the BAIL was deprotonated in aqueous solution, and biofouling resistance to proteins and bacteria was found. However, BAIL displayed ion exchange ability at lower pH, and surface hydrophilicity/hydrophobicity of membranes could be tuned on purpose. Our results have demonstrated that the BAIL grafted onto membranes will not only act as an antibiofouling barrier like zwitterions but also provide a platform for surface chemical tailoring by ion exchange, the property of which will become especially important in acidic solutions where the fouling resistance performances of zwitterions are greatly weakened.

  1. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor. (United States)

    Bressler, Eyal; Pines, Ophry; Goldberg, Israel; Braun, Sergei


    Conversion of fumaric acid (FA) to L-malic acid (LMA) was carried out in a bioreactor divided by two supported liquid membranes (SLMs) into three compartments: Feed, Reaction, and Product. The Feed/Reaction SLM, made of tri-n-octylphosphine oxide (vol 10%) in ethyl acetate, was selective toward the substrate, fumaric acid (S(FA/LMA) = 10). The Reaction/Product SLM, made of di(2-ethylhexyl) phosphate (vol 10%) in dichloromethane, was selective toward the product, L-malic acid (S(LMA/FA) = 680). Immobilized yeast engineered to overproduce the enzyme fumarase [E.C.] was placed in the Reaction compartment and served as the catalyst. The yeast was immobilized in small glasslike beads of alginate-silicate sol-gel matrix. The construction of the bioreactor ensured unidirectional flow of the substrate from the Feed to the Reaction and of the product from the Reaction to the Product compartments, with the inorganic counterion traveling in the opposite direction. The conversion of almost 100%, above the equilibrium value of ca. 84% and higher than that for the industrial process, 70%, was achieved. In contrast to the existing industrial biocatalytic process resulting in L-malic acid salts, direct production of the free acid is described.

  2. Biological treatment of fracturing waste liquid in a membrane-coupled internal circulation aerobic biological fluidized bed with the assistance of coagulation. (United States)

    Tu, Yizhou; Liu, Xing-Peng; Li, Hui-Qiang; Yang, Ping


    Fracturing waste liquid (FWL) is generated during shale gas extraction and contains high concentrations of suspended solid, salinity and organic compounds, which needs proper management to prevent excessive environmental disruption. Biological treatment of the FWL was attempted in this study using a membrane-coupled internal circulation aerobic biological fluidized bed (MC-ICABFB) after being treated by coagulation. The results showed that poly aluminum chloride (PAC) of 30 g/L, polyacrylamide (PAM) of 20 mg/L and pH of 7.0 were suitable choices for coagulation. The pretreated FWL mixed with synthetic wastewater at different ratios were used as the influent wastewater for the reactor. The MC-ICABFB had relatively good performance on COD and NH4+-N removal and the main residual organic compound in the effluent was phthalates according to the analysis of GC-MC profiles. In addition, a suitable pretreatment process for the FWL to facilitate biological treatment of the wastewater needs further research.

  3. X-ray Reflectivity Study of the Interaction of an Imidazolium-Based Ionic Liquid with a Soft Supported Lipid Membrane. (United States)

    Bhattacharya, G; Giri, R P; Saxena, H; Agrawal, V V; Gupta, A; Mukhopadhyay, M K; Ghosh, S K


    Ionic liquids (ILs) are important for their antimicrobial activity and are found to be toxic to some microorganisms. To shed light on the mechanism of their activities, the interaction of an imidazolium-based IL 1-butyl-3-methylimidazolium tetrfluoroborate ([BMIM][BF4]) with E. coli bacteria and cell-membrane-mimicking lipid mono- and bilayers has been studied. The survival of the bacteria and corresponding growth inhibition are observed to be functions of the concentration of the IL. The IL alters the pressure-area isotherm of the monolayer formed at an air-water interface by the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid. The in-plane elasticity of the lipid layer is reduced as a consequence of the insertion of this IL. The X-ray reflectivity study from a polymer-supported lipid bilayer shows strong perturbation in the self-assembled structure of the bilayer due to the interaction. As a consequence, there is a considerable decrease in bilayer thickness and a corresponding increase in electron density. These results, however, depend on the chain configurations of the lipid molecules.

  4. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi


    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  5. Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. (United States)

    Terzic, Senka; Senta, Ivan; Matosic, Marin; Ahel, Marijan


    Ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was applied for the identification of transformation products (TPs) of fluoroquinolone (norfloxacin and ciprofloxacin) and macrolide (azithromycin, erythromycin, and roxitromycin) antimicrobials in wastewater effluents from a Zenon hollow-fiber membrane bioreactor (MBR). The detected TPs were thoroughly characterized using the accurate mass feature for the determination of the tentative molecular formulae and MS-MS experiments for the structural elucidation of unknowns. Several novel TPs, which have not been previously reported in the literature, were identified. The TPs of azithromycin and roxithromycin, identified in MBR effluent, were conjugate compounds, which were formed by phosphorylation of desosamine moiety. Transformation of fluoroquinolones yielded two types of products: conjugates, formed by succinylation of the piperazine ring, and smaller metabolites, formed by an oxidative break-up of piperazine moiety to form the 7-[(2-carboxymethyl)amino] group. A semi-quantitative assessment of these TPs suggested that they might have contributed significantly to the overall balance of antimicrobial residues in MBR effluents and thus to the overall removal efficiency. Determination of TPs during a period of 2 months indicated a conspicuous dynamics, which warrants further research to identify microorganisms involved and treatment conditions leading to their formation.

  6. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device. (United States)

    Bautista-Flores, Ana Nelly; De San Miguel, Eduardo Rodríguez; Gyves, Josefina de; Jönsson, Jan Åke


    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed  depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN-) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively).

  7. Nickel (II Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM Device

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson


    Full Text Available Nickel (II preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration and to the sample properties (donor pH on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed  depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN- and dissolved organic matter (DOM in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively.

  8. Graphene Quantum Dots/Eggshell Membrane Composite as a Nano-sorbent for Preconcentration and Determination of Organophosphorus Pesticides by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Vahideh Abdollahi


    Full Text Available In this study graphene quantum dots/eggshell membrane nanocomposite (GQDS/ESM is prepared and used as an efficient solid-phase extraction (SPE sorbent for preconcentration of organophosphorus pesticides (OPPs from aqueous solutions. The retained analytes on the sorbent are stripped by acetonitrile and subsequently are determined by high-performance liquid chromatography. Various parameters affecting the extraction efficiency of OPPs on the GQDS/ESM, such as solution pH, amount of nano-sorbent, sample loading flow rate, elution conditions and sample volume are investigated. The results demonstrated that the proposed method has a wide dynamic linear range (0.05–100 ng mL-1, good linearity (R2>0.997 and low detection limits (0.006-0.32 ng mL-1. High enrichment factors are achieved ranging from 110 to 140. In the optimum experimental conditions, the established method is successfully applied for the determination of OPPs in spiked water samples (well, tap, shaft and canal and apple juice. Satisfactory recovery results show that the sample matrices under consideration do not significantly affect the extraction process.

  9. Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell (United States)

    Kazdal, Timur J.; Lang, Sebastian; Kühl, Frank; Hampe, Manfred J.


    The fuel cell technology is a key element for the hydrogen energy economy and therefore crucial for sustainable development. High temperature proton exchange membrane (HT-PEM) fuel cells (FC) can be operated with reformate gas and thus represent an important bridging technology for the energy transition to a renewable energy based system. HT-PEM FCs based on phosphoric acid (PA) are still subject to intense research, investigating the electrolyte behaviour. By enhancing state of the art 2D FEM simulations of FCs with the vapour liquid equilibrium of water-phosphoric acid and evaporation kinetics, a model was created in which the local concentration of PA can be calculated. Knowledge of the concentration field yields the basis for calculating the locally varying ionic conductivity and other physical properties. By describing the volume expansion behaviour of PA it was possible to predict the catalyst particle deactivation due to the swelling of PA. The in situ concentration predicted by the simulation ranges from 96 to 111 wt%. The model was validated using measured data of a single cell design for different temperatures and pressures. By varying the PA content flooding of the simulated fuel cell could be observed and was linked to humidification effects.

  10. A large-scale biomass bulk terminal


    Wu, M.R.


    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials that will be the major international trade flows in the future, the characteristics of these potential biomass materials, the interaction between the material properties and terminal equipment, the pe...

  11. Giant plasma membrane vesicles: models for understanding membrane organization. (United States)

    Levental, Kandice R; Levental, Ilya


    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage


    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  13. Biomimetic membranes and methods of making biomimetic membranes (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong


    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  14. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)


    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  15. "Understanding" cosmological bulk viscosity


    Zimdahl, Winfried


    A universe consisting of two interacting perfect fluids with the same 4-velocity is considered. A heuristic mean free time argument is used to show that the system as a whole cannot be perfect as well but neccessarily implies a nonvanishing bulk viscosity. A new formula for the latter is derived and compared with corresponding results of radiative hydrodynamics.

  16. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.


    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  17. Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein: cytochrome b(6)f complex from spinach and the cyanobacterium Mastigocladus laminosus. (United States)

    Whitelegge, Julian P; Zhang, Huamin; Aguilera, Rodrigo; Taylor, Ross M; Cramer, William A


    Highly active cytochrome b(6)f complexes from spinach and the cyanobacterium Mastigocladus laminosus have been analyzed by liquid chromatography with electrospray ionization mass spectrometry (LCMS+). Both size-exclusion and reverse-phase separations were used to separate protein subunits allowing measurement of their molecular masses to an accuracy exceeding 0.01% (+/-3 Da at 30,000 Da). The products of petA, petB, petC, petD, petG, petL, petM, and petN were detected in complexes from both spinach and M. laminosus, while the spinach complex also contained ferredoxin-NADP(+) oxidoreductase (Zhang, H., Whitelegge, J. P., and Cramer, W. A. (2001) Flavonucleotide:ferredoxin reductase is a subunit of the plant cytochrome b(6)f complex. J. Biol. Chem. 276, 38159-38165). While the measured masses of PetC and PetD (18935.8 and 17311.8 Da, respectively) from spinach are consistent with the published primary structure, the measured masses of cytochrome f (31934.7 Da, PetA) and cytochrome b (24886.9 Da, PetB) modestly deviate from values calculated based upon genomic sequence and known post-translational modifications. The low molecular weight protein subunits have been sequenced using tandem mass spectrometry (MSMS) without prior cleavage. Sequences derived from the MSMS spectra of these intact membrane proteins in the range of 3.2-4.2 kDa were compared with translations of genomic DNA sequence where available. Products of the spinach chloroplast genome, PetG, PetL, and PetN, all retained their initiating formylmethionine, while the nuclear encoded PetM was cleaved after import from the cytoplasm. While the sequences of PetG and PetN revealed no discrepancy with translations of the spinach chloroplast genome, Phe was detected at position 2 of PetL. The spinach chloroplast genome reports a codon for Ser at position 2 implying the presence of a DNA sequencing error or a previously undiscovered RNA editing event. Clearly, complete annotation of genomic data requires detailed

  18. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. (United States)

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop


    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Membrane Gas Absorption

    NARCIS (Netherlands)

    Jansen, A.E.; Klaassen, R.; Feron, P.H.M.


    Membrane gas absorption processes are absorption processes utilising hollow fibre membranes as contacting media for gas and liquid flows. The principle of operation and engineering aspects are discussed, followed by discussion of a number of typical applications. Benefits in terms of operation,

  20. Supported inorganic membranes (United States)

    Sehgal, Rakesh; Brinker, Charles Jeffrey


    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  1. Combined fibroblast growth factor receptor 4 cell membrane chromatography online with high performance liquid chromatography/mass spectrometry to screen active compounds in Brassica albla. (United States)

    Zhang, Tao; Han, Shengli; Huang, Jing; Wang, Sicen


    We investigated an analytical method for the recognition separation, and identification of active components from the traditional Chinese medicinal plant Brassica albla L. using fibroblast growth factor receptor 4 cell membrane chromatography (FGFR4/CMC) with high performance liquid chromatography/mass spectrometry (HPLC/MS). HEK293-FGFR4 cells were obtained by stable transfection of the HEK293 cell line with pcDNA3.1 vector containing the FGFR4 gene. Crude extracts of B. albla L. were firstly subjected to FGFR4/CMC column, and the retain contents on the FGFR4/CMC column were then transferred and enriched using a pre-column, and a ten port column switcher were used between FGFR4/CMC column and HPLC. The retained components on FGFR4/CMC column were then directly delivered to the HPLC/MS system for separation and identification. Gefitinib, nicotine, atenolol, and nimodipine were used in order to verify FGFR4/CMC-HPLC/MS system specificity. Subsequently, we investigated the reproducibility and reliability of the FGFR4/CMC-HPLC/MS system. Finally, sinapine was identified as an active component of B. albla L. The MTT colorimetric assay revealed sinapine could inhibit the proliferation of HEK293-FGFR4 cells with dose dependence. Competitive displacement assay approved getitinib could occupy binding site of sinapine with competition way. And FleX dock simulation further exhibited sinapine and gefitinib could bind with the FGFR4 tyrosine active domain. Thus, sinapine is a potential tumor antagonist that acts on the tyrosine kinase domain. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. High performance liquid chromatography-tandem mass spectrometry for the analysis of 10 pesticides in water: a comparison between membrane-assisted solvent extraction and solid phase extraction. (United States)

    van Pinxteren, Manuela; Bauer, Coretta; Popp, Peter


    This work describes the application of two sample preparation methods: membrane-assisted solvent extraction (MASE) and solid phase extraction (SPE) in combination with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) for the determination of 10 pesticides in surface and ground water. Optimal extraction conditions for MASE were 60 min extraction time at 30 degrees C with a solvent volume of 100 microL toluene. 5 microL of the toluene extract were directly injected in the HPLC-MS-MS system. Concerning SPE, two materials were tested and C18 was superior to Oasis HLB. Complete desorption was ensured by desorbing the SPE (C18) cartridge with 3 mL of an acetonitrile/methanol mixture (1:1). After evaporation, the extract was injected in the analytical system. Analyte breakthrough was not found for the investigated compounds. For both methods, high extraction yields were achieved, in detail 71% (metalaxyl) till 105% (linuron) for MASE and 52% (ethiofencarb) till 77% (prometryne) for SPE (C18). Detection limits were in the low ng/L range for both methods and precision, expressed as the relative standard deviation (RSD) of the peak areas was below 13%. Five real water samples were analyzed applying both extraction methods. The results were in good agreement and standard addition proved that no matrix effects (such as ion suppression) occurred. In this comparison SPE has the potential of larger sensitivity whereas faster analysis and slightly better recoveries were achieved with MASE. MASE shows potential to be a promising alternative to the conventional off-line SPE concerning low to medium polar compounds.

  3. Investigation on the Synergistic Complexation of Ni(II with 1,10-Phenanthroline and Dithizone at Hexane-Water Interface Using Centrifugal Liquid Membrane-Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Yoki Yulizar


    Full Text Available Complex formation of Ni(II and 1,10-phenanthroline (C12H8N2/Phen with the addition of dithizone (C13H12N4S/HDz at the hexane-water interface has been studied by direct measurement spectrophotometry using the centrifugal liquid membrane (CLM method. Ni(II ion with Phen formed a cationic complex of Ni(C12H8N222+ or NiPhen22+. That complex dissolved in the aqueous phase and had two UV absorption spectrum maxima wavelengths, max 270 and 292 nm. Observation of complex formation was performed variations of pH and ligand concentration. The pH caused protonation that affected the amount of the formed complex. With the variations of ligand concentrations, the greater was the concentration of ligands the greater was the formed complex. Based on the Batch method, the HDz ligand addition into the NiPhen22+ cationic complex produced ion association complex of Ni(C13H11N4S2(C12H8N2 or NiDz2Phen at max 403 nm, and is extracted in the organic phase. Measurement results using CLM method showed that NiDz2Phen complex was formed at hexane-water interface with max 523 nm. Comparison of Phen with HDz ligand concentrations affected the initial formation rate of NiDz2Phen complex. The greater concentration of Phen ligand increased the initial rate of formation for synergistic complex. The obtained data using CLM method indicated that the synergistic complex formation rate constant of NiDz2Phen at the interface, k was 0.30 s-1.

  4. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device (United States)

    Bautista-Flores, Ana Nelly; de San Miguel, Eduardo Rodríguez; de Gyves, Josefina; Jönsson, Jan Åke


    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2−, SO42−, Cl−, NO3−, CO32−, CN−) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = −8617.3 + 30.5T with an activation energy of 56.7 kJ mol−1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively). PMID:24957733

  5. Matrix effect during the membrane-assisted solvent extraction coupled to liquid chromatography tandem mass spectrometry for the determination of a variety of endocrine disrupting compounds in wastewater. (United States)

    Iparraguirre, A; Navarro, P; Rodil, R; Prieto, A; Olivares, M; Etxebarria, N; Zuloaga, O


    Membrane-assisted solvent extraction (MASE) coupled to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was studied for the determination of a variety of emerging and priority compounds in wastewater. Among the target analytes studied certain hormones (estrone (E1), 17β-estradiol (E2), androsterone (ADT), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES), equilin (EQ), testosterone (TT), mestranol (MeEE2), 19-norethisterone (NT), progesterone (PG) and equilenin (EQN)), alkylphenols (APs) (4-tert-octylphenol (4tOP), nonylphenol technical mixture (NPs) and 4n-octylphenol (4nOP)) and BPA were included. The work was primarily focused in the LC-MS/MS detection step, both in terms of variable optimization and with respect to the matrix effect study. Both, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were assessed both in the negative and positive mode, including the optimization of MS/MS operating conditions. The best results were obtained, in most of the cases, for ESI using 0.05% ammonium hydroxide as buffer solution in the mobile phase, composed with methanol and water. Under optimum detection conditions, matrix effect during the detection step was thoroughly studied. Dilution, correction with deuterated analogues and clean-up of the extracts were evaluated for matrix effect correction. Clean-up with Florisil together with correction with deuterated analogues provided the most satisfactory results, with apparent recoveries in the 57-136% range and method detection limits in the low ngL(-1) level for most of the analytes. For further validation of the method, two separated extraction procedures, the above mentioned MASE, and conventional solid phase extraction (SPE) were compared during the analysis of real samples and comparable results were successfully obtained for E1, E2, EE2, DES, NT, TT, EQ, PG, BPA, ADT, 4nOP, 4tOP, NPs and EQN. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Water Membrane Evaporator (United States)

    Ungar, Eugene K.; Almlie, Jay C.


    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  7. Micromegas in a bulk

    CERN Document Server

    Giomataris, Ioanis; Andriamonje, Samuel A; Aune, S; Charpak, Georges; Colas, P; Giganon, Arnaud; Rebourgeard, P C; Salin, P; Rebourgeard, Ph.


    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicine

  8. Micromegas in a bulk

    Energy Technology Data Exchange (ETDEWEB)

    Giomataris, I. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)]. E-mail:; De Oliveira, R. [CERN, Geneva (Switzerland); Andriamonje, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Aune, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Charpak, G. [CERN, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Fanourakis, G. [Institute of Nuclear Physcis, NCSR Demokritos, Aghia Paraskevi 15310 (Greece); Ferrer, E. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Giganon, A. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Rebourgeard, Ph. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Salin, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)


    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine.

  9. Improving Liquid Entry Pressure of Polyvinylidene Fluoride (PVDF Membranes by Exploiting the Role of Fabrication Parameters in Vapor-Induced Phase Separation VIPS and Non-Solvent-Induced Phase Separation (NIPS Processes

    Directory of Open Access Journals (Sweden)

    Faisal Abdulla AlMarzooqi


    Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.

  10. Impact and Penetration of Nanoparticle Suspension Drops into Porous Membranes (United States)

    Sahu, Rakesh; Yarin, Alexander; Pourdeyhimi, Behnam


    The impacts and dynamic penetration of drops with suspended nanoparticles into porous membranes are studied experimentally and theoretically. This type of penetration is radically different from the wettability-driven imbibition. Two types of membranes are used in the experiments: (i) glass fiber filter membrane (wettable) and (ii) PTFE depth filter (non-wettable). The nanoparticle entrainment and deposition inside the membrane bulk is used to mostly visualize the ultimate penetration fronts of the carrier fluid by observing the cut cross-sections of the filter membranes, albeit also provides an insight into potentially new applications like circuit printing on nonwovens. The experimental results demonstrate that during the dynamic focusing responsible for water penetration into micro- and nanopores, water can penetrate into a non-wettable porous medium (PTFE). Water also penetrates by the same focusing mechanism into the wettable glass fiber membrane, where it additionally spreads on a much longer time scale due to the wettability-driven flow. A theory explaining dynamic penetration of liquid into porous medium after drop impact is proposed. It is used to explain and predict water penetration into the non-wettable media after drop impact, and the results are compared with the experimental data. The work was supported by the Nonwovens Cooperative Research Center (NCRC).

  11. Shotgun analysis of membrane proteomes by an improved SDS-assisted sample preparation method coupled with liquid chromatography-tandem mass spectrometry. (United States)

    Lin, Yong; Jiang, Huajun; Yan, Yujun; Peng, Bin; Chen, Jinhua; Lin, Haiyan; Liu, Zhonghua


    Analysis of the membrane proteins, particularly the integral membrane proteins, is limited by the inherent membrane hydrophobicity. Sodium dodecyl sulfate (SDS) is one of the most efficient reagents used for the extraction of membrane proteins, but its presence in samples interferes with LC-MS-based proteomic analyses because it affects RP-LC separations and electrospray ionization. In this paper, we present an improved sample preparation strategy based on SDS-assisted digestion and peptide-level SDS-removal using an optimized potassium dodecyl sulfate (KDS) precipitation method (SSDP method) for shotgun analysis of the membrane proteome. This method utilizes a high concentration of SDS (1.0%) to lyse the membranes and to solubilize the hydrophobic membrane proteins, resulting in a more complete protein digestion in the diluted SDS buffer (0.1% SDS), and a high efficiency of SDS removal and peptide recovery by the optimized KDS precipitation for protein identification. The SSDP method provides evidence that proteins can be efficiently digested, and the SDS can be decreased to 95% peptide recovery. Compared to other sample preparation methods commonly used in shotgun membrane proteomics, the newly developed method not only increased the identified number of the total proteins, membrane proteins and integral membrane proteins by an average of 33.1%, 37.2% and 40.5%, respectively, but also leading to the identification of highest number of matching peptides. All the results showed that the method yielded better recovery and reliability in the identification of the proteins especially the highly hydrophobic integral membrane proteins, and thus providing a promising tool for the shotgun analysis of membrane proteome. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Eco Issues in Bulk Materials Handling Technologies in Ports

    Directory of Open Access Journals (Sweden)

    Nenad Zrnić


    Full Text Available This paper deals with eco issues in bulk materials handling in ports. Solid, free-flowing materials are said to be in bulk. Bulk materials handling is very difficult, because it incorporates all the features of liquids, gasses and mass solids. Energy efficiency, dust emissions in nearby environment, dust explosions, jamming, noise, handling of hazardous materials and protection of materials from contamination are issues that will be considered in this paper. Here are also presented possible solutions for some of these issues

  13. Superhydrophobic Membrane Contactor for Acid Gas Removal (United States)

    Faiqotul Himma, Nurul; Gede Wenten, I.


    Gas-liquid membrane contactor has gained a great attention as an alternative to conventional absorption columns in acid gas removal from natural gas or post-combustion. The membrane contactor offers high mass transfer area and excellent operational flexibility. However, hydrophobic microporous membranes commonly used are still susceptible to wetting by liquid absorbents, leading to the deterioration of absorption performance in long-term operation. Therefore, many studies were recently directed to improve the membrane wetting resistant by endowing superhydrophobicity. This article then presents a review on superhydrophobic membrane development and its application for acid gas removal using membrane contactor. An overview of gas-liquid membrane contactor is firstly presented, followed by the preparation of superhydrophobic membranes. The performances of superhydrophobic membranes in acid gas absorption are then discussed, and the recommendation for future research is finally outlined. This review may provide an insight into the further development of superhydrophobic membrane contactor.

  14. Organic fluid permeation through fluoropolymer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John


    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  15. An online coupled peritoneal macrophage/cell membrane chromatography and high-performance liquid chromatography/mass spectrometry method to screen for anti-inflammatory components from the Chinese traditional medicine Chloranthus multistachys Pei. (United States)

    Li, Weifeng; Xing, Wei; Wang, Sicen; Fan, Ting; Huang, Huimin; Niu, Xiaofeng; He, Langchong


    Cell membrane chromatography (CMC) is a chromatographic biological affinity method that uses specific cell membranes as the stationary phase. In this study, a novel peritoneal macrophage/cell membrane chromatography (PM/CMC)-online-high performance liquid chromatography/mass spectrometry (HPLC/MS) method was established to screen for the anti-inflammatory components from traditional Chinese medicines using hydrocortisone and dexamethasone as standards. The stationary phase of the CMC employed mouse peritoneal macrophage cell membranes. This method was applied to the purification and identification of components in extracts of Chloranthus multistachys Pei. The major component retained by CMC was identified as isofraxidin by HPLC/MS. In vitro experiments revealed that IF was able to inhibit the production of nitric oxide and tumor necrosis factor-α in lipopolysaccharide-stimulated mice and peritoneal macrophages in a dose-dependent manner. The results demonstrated that the PM/CMC-online-HPLC/MS is an effective screening system for the rapid detection, enrichment, and identification of target components from complex samples. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel


    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  17. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin


    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  18. Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application (United States)

    Adu, Kofi; Ma, Danhao; Wang, Yuxiang; Spencer, Michael; Rajagopalan, Ramakrishnan; Wang, C.-Yu; Randall, Clive


    We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm–3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ∼1.11 g cm–3 ± 0.03 g cm–3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ∼32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g–1 and increased to 100 F g–1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ∼100 nA cm‑2 at 2.5 V when held for 72 h.

  19. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL


    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  20. The Molecules of the Cell Membrane. (United States)

    Bretscher, Mark S.


    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  1. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Li Weijun


    Full Text Available Abstract Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins, which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane

  2. Evaluation of a hollow fiber supported liquid membrane device as a chemical surrogate for the measurements of zinc (II) bioavailability using two microalgae strains as biological references. (United States)

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina


    The environmental bioavailability of zinc (II), i.e., the uptake of the element by an organism, was determined using two microalgae species, Scenedesmus acutus and Pseudokirchneriella subcapitata, and estimated using hollow fiber supported liquid membrane (HF-SLM) device as the chemical surrogate. Several experimental conditions were studied including the presence of organic matter, inorganic anions and concomitant cations and pH. The results show strong positive correlation coefficients between the responses given by the HF-SLM and the microalgae species (r = 0.900 for S. acutus and r = 0.876 for P. subcapitata) in multivariate environments (changes in pH, calcium, humic and citrate concentrations). The maximum amount of zinc (II) retained by the HF-SLM (4.7 × 10 -8  mol/cm 2 ) was higher than those for P. subcapitata and S. acutus (9.4 × 10 -11  mol/cm 2 and 6.2 × 10 -11  mol/cm 2 , respectively). The variation in pH (pH 5.5-9) was the variable with the greatest effect on zinc internalization in all systems, increasing approximately 2.5 times for P. subcapitata and 5.5 times for S. acutus respect to pH = 5.5, while the presence of humic acids did not affect the response. The species' concentration analysis of the experimental design at pH = 5.5 indicated that the amount of internalized zinc (II) by the HF-SLM and both microalgae species is strongly dependent on the free zinc concentration (r = 0.910 for the HF-SLM, r = 0.922 for S. acutus and r = 0.954 for P. subcapitata); however, at pH = 9.0, the amount of internalized zinc (II) is strongly dependent on the sum of free zinc and labile species (r = 0.912 for the HF-SLM, r = 0.947 for S. acutus and r = 0.900 for P. subcapitata). The presence of inorganic ligands (chloride, sulfate, phosphate, carbonate, and nitrate) and metal ions (cobalt (II), copper (II), nickel (II), chromium (VI), lead (II) and cadmium (II)) produced different behaviors both in the chemical surrogate and the

  3. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.


    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  4. Fuel cell membrane humidification (United States)

    Wilson, Mahlon S.


    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  5. Survival and growth of Salmonella enterica serovar enteritidis in membrane-processed liquid egg white with pH, temperature, and storage conditions as controlling factors

    National Research Council Canada - National Science Library

    Mukhopadhyay, Sudarsan; Ukuku, Dike; Phillips, John G; Juneja, Vijay K


    .... A study was undertaken to determine the effects of variations in solution pH and process temperature on the removal and growth of Salmonella enterica serovar Enteritidis in liquid egg white (LEW...

  6. Surface Premelting Coupled with Bulk Phase Transitions in Colloidal Crystals (United States)

    Li, Bo; Wang, Feng; Zhou, Di; Cao, Xin; Peng, Yi; Ni, Ran; Liao, Maijia; Han, Yilong


    Colloids have been used as outstanding model systems for the studies of various phase transitions in bulk, but not at interface yet. Here we obtained equilibrium crystal-vapor interfaces using tunable attractive colloidal spheres and studied the surface premelting at the single-particle level by video microscopy. We found that monolayer crystals exhibit a bulk isostructural solid-solid transition which triggers the surface premelting. The premelting is incomplete due to the interruption of a mechanical-instability-induced bulk melting. By contrast, two- or multilayer crystals do not have the solid-solid transition and the mechanical instability, hence they exhibit complete premelting with divergent surface-liquid thickness. These novel interplays between bulk and surface phase transitions cast new lights for both types of transitions.

  7. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin


    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  8. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S


    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  9. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    Directory of Open Access Journals (Sweden)

    Chiara Civardi

    Full Text Available Recently introduced micronized copper (MC formulations, consisting of a nanosized fraction of basic copper (Cu carbonate (CuCO3·Cu(OH2 nanoparticles (NPs, were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA. In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles.

  10. Ceramic membrane development in NGK (United States)

    Araki, Kiyoshi; Sakai, Hitoshi


    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  11. Optical sensors of bulk refractive index using optical fiber resonators (United States)

    Eryürek, M.; Karadag, Y.; Ghafoor, M.; Bavili, N.; Cicek, K.; Kiraz, A.


    Optical fiber resonator (OFR) sensor is presented for bulk liquid refractive index (RI) sensing. The sensing mechanism relies on the spectral shifts of whispering gallery modes (WGMs) of OFRs which are excited using a tapered fiber. OFR liquid RI sensor is fully characterized using water solutions of ethanol and ethylene glycol (EG). A good agreement is achieved between the analytical calculations and experimental results for both TE and TM polarizations. The detection limit for bulk RI is calculated to be between 2.7 - 4.7 × 10-5 refractive index unit (RIU). The OFR sensor provides a robust, easy-to-fabricate and sensitive liquid refractive index sensor which can be employed in lab-on-a-chip applications.

  12. Smectic elastomer membranes


    Stenull, Olaf


    We present a model for smectic elastomer membranes which includes elastic and liquid crystalline degrees of freedom. Based on our model, we determined the qualitative phase diagram of a smectic elastomer membrane using mean-field theory. This phase diagram is found to comprise five phases, viz. smectic-A--flat, smectic-A--crumpled, smectic-C--flat, smectic-C--crumpled and smectic-C--tubule, where in the latter phase, the membrane is flat in the direction of mesogenic tilt and crumpled in the ...

  13. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances.

    Directory of Open Access Journals (Sweden)

    Hongguang Yu

    Full Text Available Dynamic membrane (DM formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes.

  14. Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. (United States)

    Keshavarz, P; Fathikalajahi, J; Ayatollahi, S


    A steady state model was developed for a microporous hollow fiber membrane contactor operated under partially wetted conditions accompanied by chemical reactions, to analyze CO2 absorption into the aqueous solution of diethanolamine (DEA). The proposed diffusion-reaction model contains reversible chemical reactions in the liquid bulk as well as wetted parts of the membrane pores. A numerical scheme was employed to solve the simultaneous nonlinear mathematical expressions, and the results were validated with experimental data in the literature. The gas phase concentration and velocity profile in axial direction inside the shell, liquid concentration profile in axial and radial directions inside the fibers, and also those within the wetted parts of the pores were predicted by using the model. The results of the model and proposed numerical scheme show that membrane wetting, even in very low fractions, can decrease the absorption flux significantly. The wetting fraction of membrane was predicted both with and without consideration of chemical reactions inside the wetted pores. The results indicate that the chemical reactions inside the wetted pores, which have been disregarded in the literature, have considerable effects on the prediction of membrane wetting fraction.

  15. Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution

    NARCIS (Netherlands)

    Koops, G.H.; Liu, Y.; Liu, Y.; Strathmann, H.


    The preparation of polyethersulfone (PES) hollow fiber membranes has been studied using N-methylpyrrolidone (NMP) as solvent, polyethylene glycol 400 (PEG 400) as weak nonsolvent and water as strong nonsolvent. When PEG 400 is used as polymeric additive to the spinning dope the viscosity of the PES

  16. Antioxidants protect proteins' anchorage to the bilayer by improving plasma membrane integrity of ram spermatozoa during liquid preservation in a soya lecithin-based diluent. (United States)

    Paul, R K; Kumar, D; Naqvi, Smk


    Antioxidants are known to prevent the reactive oxygen species (ROS)-mediated peroxidative damage to the membrane lipids during hypothermic storage of mammalian spermatozoa. We hypothesized here that ROS also affect the lipid-protein interactions, thereby diminishing the membrane's integrity and proteins' anchorage to the bilayer. Antioxidants prevent these damages by scavenging the ROS. Ejaculates from Patanwadi rams were pooled after subjective evaluation and centrifuged using Percoll® . Sperm pellet was resuspended in soya lecithin-Tris-fructose diluent (400 × 106  cells/ml) containing either antioxidants (100 IU/ml catalase + 10 mM reduced glutathione) or no antioxidant. Aliquots were chilled to 5°C in a cabinet and stored in a refrigerator at 3-5°C for 72 hr. Sperm motility, viability, lipid peroxidation (LPO) and hypo-osmotic swelling test (HOST) were performed at 0, 24, 48 and 72 hr. Sperm proteins extracted with 0.5% Triton X-100 were resolved by SDS-PAGE and quantified using Quantity One software (Bio-Rad, USA). The rapid motility, linearity and straight-line velocity (VSL) were found significantly (p membrane integrity and protection of proteins' anchorage to the plasma membrane at 48 and 72 hr of storage. © 2017 Blackwell Verlag GmbH.

  17. Development of a transient response technique for heterogeneous catalysis in liquid phase, Part 2: Applying membrane inlet mass spectrometry (MIMS) for detection of dissolved gasses.

    NARCIS (Netherlands)

    Radivojevic, D.; Ruitenbeek, M.; Seshan, Kulathuiyer; Lefferts, Leonardus


    A home-made analyzer for dissolved gasses in water, based on membrane inlet mass spectrometry (MIMS), was successfully applied for the first time as an in-line method for detection of gases dissolved in an aqueous stream, at the exit of a catalytic reactor in a transient experiment. The technique

  18. Fabrication of green polymeric membranes

    KAUST Repository

    Kim, Dooli


    Provided herein are methods of fabricating membranes using polymers with functionalized groups such as sulfone (e.g., PSf and PES), ether (e.g., PES), acrylonitrile (e.g., PAN), fluoride(e.g., pvdf and other fluoropolymers), and imide (e.g., extem) and ionic liquids. Also provided are membranes made by the provided methods.

  19. Multiphase membrane contactors and reactors

    NARCIS (Netherlands)

    Jani, J.M.


    This thesis describes research work about multiphase contacting/reactions using porous membranes. Membrane based gas-liquid contacting offers many benefits, such as stable operation, easy fabrication and sustainable module design. Furthermore, accurate reaction control, higher mass transport due to

  20. Radiation effects in bulk silicon (United States)

    Claeys, Cor; Vanhellemont, Jan


    This paper highlights important aspects related to irradiation effects in bulk silicon. Some basic principles related to the interaction of radiation with material, i.e. ionization and atomic displacement, are briefly reviewed. A physical understanding of radiation effects strongly depends on the availability of appropriate analytical tools. These tools are critically accessed from a silicon bulk viewpoint. More detailed information, related to the properties of the bulk damage and some dedicated application aspects, is given for both electron and proton irradiations. Emphasis is placed on radiation environments encountered during space missions and on their influence on the electrical performance of devices such as memories and image sensors.

  1. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer


    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...... glasses will at elevated temperatures behave like a highly viscous liquid, which can easily form even complicated geometries in 1 step. The strengths and limitations of forming the 2 materials are analyzed for a micro 3D component in a silver alloy and an Mg-Cu-Y BMG. ©2007 American Institute of Physics...

  2. CO2/CH4 Separation Performance of Ionic-Liquid-Based Epoxy-Amine Ion Gel Membranes under Mixed Feed Conditions Relevant to Biogas Processing.

    Czech Academy of Sciences Publication Activity Database

    Friess, K.; Lanč, M.; Pilnáček, Kryštof; Fíla, V.; Vopička, O.; Sedláková, Zuzana; Cowan, M.G.; McDaniel, W.M.; Noble, R.D.; Gin, D.L.; Izák, Pavel


    Roč. 528, APRIL (2017), s. 64-71 ISSN 0376-7388 R&D Projects: GA ČR GA14-12695S; GA MŠk LH14006; GA TA ČR TE01020080 Institutional support: RVO:67985858 Keywords : epoxy-amine-based ion gel membranes * biogas processing * humid mixed-gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  3. Silicon Bulk Micromachined Vibratory Gyroscope (United States)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.


    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  4. Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella subcapitata and Scenedesmus acutus). (United States)

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina


    The environmental bioavailability of copper was determined using a hollow-fiber supported liquid membrane (HFSLM) device as a chemical surrogate and two microalgae species (Scenedesmus acutus and Pseudokirchneriella subcapitata). Several experimental conditions were studied: pH, the presence of organic matter, inorganic anions, and concomitant cations. The results indicated a strong relationship between the response given by the HFSLM and the microalgae species with free copper concentrations measured by an ion selective electrode (ISE), in accordance with the free-ion activity model (FIAM). A significant positive correlation was evident when comparing the bioavailability results measured by the HFSLM and the S. acutus microalga species, showing that the synthetic device may emulate biological uptake and, consequently, be used as a chemical test for bioavailability measurements using this alga as a biological reference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A


    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  6. In vitro effects of l-carnitine and glutamine on motility, acrosomal abnormality, and plasma membrane integrity of rabbit sperm during liquid-storage. (United States)

    Sarıözkan, Serpil; Ozdamar, Saim; Türk, Gaffari; Cantürk, Fazile; Yay, Arzu


    This study was designed to evaluate the in vitro effects of l-carnitine and glutamine (Gln) on the sperm quality parameters of liquid-stored rabbit semen maintained up to 24 h at 5°C. Pooled and extended ejaculates were divided into two equal portions. l-Carnitine doses of 0.5, 1 and 2mM were added to the first portion, and glutamine was added at the same doses to the second portion. All samples were cooled to 5°C and examined at 0, 6, 12 and 24 h of liquid storage. Supplementation of the semen extender with three different doses of l-carnitine provided significant increases in the percentage of motile sperm at 12 h (Pl-carnitine significantly (Pl-carnitine and Gln provided a protection for sperm against cool storage-induced functional and structural damages. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Proceedings of BulkTrans '89

    Energy Technology Data Exchange (ETDEWEB)


    Papers were presented on bulk commodity demand; steel industry bulk trades; grains and the world food economy; steam coal and cement demand; shipping profitability; bulk carrier design and economics; bulk ports and terminals; ship unloading; computers in bulk terminals; and conveyors and stockyard equipment.

  8. Membrane separation system provides low-cost solution for petroleum marketers

    Energy Technology Data Exchange (ETDEWEB)

    Tiberi, T.P.


    Gasoline tanker-truck loading facilities (bulk gasoline terminals) in the United States are required to use vapor recovery or vapor abatement equipment to minimize the impact of gasoline vapor emissions to the atmosphere. These vapors are generated as liquid product is loaded into the bottom of the delivery tankers. Installing semi-permeable membranes upstream of carbon adsorption units would allow carbon adsorption system to achieve higher recovery efficiencies and overcome the challenges posed by streams with high moisture concentrations. Such a membrane unit separates the bulk of the hydrocarbons and all of the water from the vapor stream. A dry, dilute stream is passed to the carbon bed system for final ''polishing,'' enhancing the bed's performance. The moist, hydrocarbon-rich stream that permeates, or diffuses through, the membrane walls is blended with the vapor stream desorbed from the regenerating carbon bed, and both streams subsequently are pressurized and condensed. The creative use of a membrane separator dehydrates and partially recovers hydrocarbons from the gasoline vapor stream. Due to the improved recovery efficiency of this integrated hybrid system, higher terminal throughputs can be realized with lower hydrocarbon emissions.

  9. Combatting bulking sludge with ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Wuensch, B.; Heine, W.; Neis, U. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Sanitary and Environmental Engineering


    Bulking and floating sludge cause great problems in many waste water treatment plants with biological nutrient removal. The purification as well as the sludge digestion process can be affected. These problems are due to the interlaced structure of filamentous microorganisms, which have an impact on the sludge's settling behaviour. Foam is able to build up a stable layer, which does not settle in the secondary clarifier. Foam in digestion causes a reduction of the degree of stabilisation and of the biogas production. We use low-frequency ultrasound to combat filamentous organisms in bulking sludge. Low-frequency ultrasound is suitable to create high local shear stresses, which are capable of breaking the filamentous structures of the sludge. After preliminary lab-scale tests now a full-scale new ultrasound equipment is operating at Reinfeld sewage treatment plant, Germany. The objective of this study is to explore the best ultrasound configuration to destroy the filamentous structure of bulking and foaming sludge in a substainable way. Later this study will also look into the effects of ultrasound treated bulking sludge on the anaerobic digestion process. Up to now results show that the settling behaviour of bulking sludge is improved. The minimal ultrasound energy input for destruction of bulking structure was determined. (orig.)

  10. Engineering membranes for bone regeneration. (United States)

    Caridade, Sofia Glória Ferreira; Mano, João Filipe Colardelle da Luz


    This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess in order to improve the regeneration of bone. Afterwards, several techniques to engineer bone membranes by using "bulk"-like methods are discussed where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach are discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.

  11. Optical detection of sepsis markers using liquid crystal based biosensors (United States)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.


    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  12. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow visualization (United States)

    Banerjee, Rupak; Kandlikar, Satish G.


    Water management is crucial to the performance of PEM fuel cells. Water is generated as part of the electrochemical reaction, and is removed through the reactant channels. This results in two-phase flow in the reactant channels. Increased understanding of the behavior of the liquid water in the channels allows us to devise better strategies for managing the water content inside the fuel cell. Most previous work has been focused on qualitative information regarding flow pattern maps. The current work presents new algorithms developed in MATLAB® to quantify the liquid water and to identify the flow patterns in the cathode side reactant channels. Parallel channels with dimensions matching those of commercial stacks have been used in this study. The liquid water present in the reactant channels is quantified for different temperature, inlet RH and current density conditions, and the results are presented in terms of area coverage ratio. The dominant flow patterns for the different conditions have been mapped, and trends interpreted on the basis of air flow velocities and saturation conditions within the channels.

  13. Facilitated transport of Pd(II) through a supported liquid membrane (SLM) containing N,N,N Prime ,N Prime -tetra-(2-ethylhexyl) thiodiglycolamide T(2EH)TDGA: A novel carrier

    Energy Technology Data Exchange (ETDEWEB)

    Ruhela, R., E-mail: [Hydrometallurgy Section, Material Processing Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Panja, S. [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, J.N. [Hydrometallurgy Section, Material Processing Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tomar, B.S. [Radio Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tripathi, S.C. [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Hubli, R.C.; Suri, A.K. [Hydrometallurgy Section, Material Processing Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)


    Highlights: Black-Right-Pointing-Pointer Pd(II) was quantitatively transported ({approx}99.9%) within 2 h from 3.0 M HNO{sub 3} medium using 0.05 M T(2EH)TDGA. Black-Right-Pointing-Pointer Pd(II) uptake was very selective over other metal ions present in high level waste solution. Black-Right-Pointing-Pointer The membrane was found to be stable for several consecutive cycles. Black-Right-Pointing-Pointer Palladium transport was found to be diffusion controlled, the diffusion co-efficient value determined to be 3.56 Multiplication-Sign 10{sup -5} cm{sup 2}/s. - Abstract: A novel carrier, N,N,N Prime ,N Prime -tetra-(2-ethylhexyl) thiodiglycolamide, T(2EH)TDGA has been studied for transport of Pd(II) from nitric acid medium across a supported liquid membrane (SLM). Pd(II) was found to be almost quantitatively transported ({approx}99.9%) within 2 h from 3.0 M HNO{sub 3} medium using 0.05 M T(2EH)TDGA in n-dodecane as carrier and 0.01 M thiourea in 0.2 M HNO{sub 3} as strippant. Pd(II) transport was also studied against various parameters like feed acidity, carrier concentration, membrane pore size, etc. Palladium transport was found to be diffusion controlled and the diffusion co-efficient value was found to be 3.56 Multiplication-Sign 10{sup -5} cm{sup 2}/s. Selectivity of T(2EH)TDGA for palladium over other fission products was found to be quite high, with the separation factors for Pd, with respect to different fission products being >10{sup 3}. With respect to leaching out of carrier from the membrane support, the membrane was found to be stable for six consecutive cycles. Thus, T(2EH)TDGA can be used as an efficient carrier of Pd(II) from nitric acid medium.

  14. Rotary adsorbers for continuous bulk separations (United States)

    Baker, Frederick S [Oak Ridge, TN


    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  15. Dynamics of Biomembranes: Effect of the Bulk Fluid

    KAUST Repository

    Bonito, A.


    We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters. © EDP Sciences, 2011.

  16. Membrane Technologies for CO2 Capture

    NARCIS (Netherlands)

    Simons-Fischbein, K.


    This thesis investigates the potential of membrane technology for the effective CO2/CH4 separation. The work focuses on two different membrane processes to accomplish the separation: 1) The use of a gas-liquid membrane contactor for the selective absorption of CO2 from CH4 2) The use of thin, dense

  17. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.


    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  18. Flue gas treatment with membrane gas absorption

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.E.


    Membrane gas absorption is a new, efficient and flexible way to carry out gas-liquid contacting operations with hollow fibre membranes. Advantages of gas absorption membranes over conventional G-L contactors are: -High specific surface area and rapid mass transfer resulting in very compact and low

  19. Modelling of bulk superconductor magnetization (United States)

    Ainslie, M. D.; Fujishiro, H.


    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  20. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano


    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.