WorldWideScience

Sample records for bulk isotropic negative-index

  1. Bulk isotropic negative-index material design for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    Responding to the strong call for isotropic bulk negative index material we propose a Split Cube in Car-cass design. It shows negative refractive index -1.5, figure-of-merit 2 and transmittivity 30% for one layer at the telecommunication wavelength 1.6 μm. Effective parameters converge fast...

  2. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  3. Nested structures approach in designing an isotropic negative-index material for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...... on the refractive index reaching -2.3 and the figure of merit as high as 2.7. The structure exhibits potential for application as a building block of isotropic negative-index materials....

  4. Nested structures approach for bulk 3D negative index materials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    constitutive elements possess cubic symmetry, thus we preserve it for the whole unit cell. The concept can be applied for any frequencies; however, we are targeting optical and THz ranges. We report on numerical characterization of two particular designs, called as “split-cube-in-cage” and “split......-cube-in-carcass”, revealing negative index behaviour. Two approaches are applied – effective parameters approximation and phenomenological one, showing excellent correlation in results. The designs show good results in isotropy of effective properties and their convergence with the thickness of a sample. Apart from design...

  5. The split cube in a cage: bulk negative-index material for infrared applications

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, C.

    2009-01-01

    are obtained by two different numerical techniques: the Fourier modal method and the finite integrals method, thus ensuring their validity. The SCiC exhibits a refractive index of −0.6 for frequencies close to the telecommunication bands. The fast convergence of effective parameters allows consideration...... of the SCiC as a bulk (effectively homogeneous) negative-index metamaterial even for a single layer. The bulk-like nature together with the cubic symmetry of the unit cell make the SCiC a promising candidate for potential applications at telecommunication frequencies....

  6. Non-collinear wave mixing for a bulk wave phase velocity measurement in an isotropic solid

    NARCIS (Netherlands)

    Demcenko, A.

    2013-01-01

    A measurement method is presented to estimate the bulk wave phase velocity in an isotropic solid when longitudinal or shear wave velocity is known. This method is based on the non-collinear plane wave interaction theory and it does not need to estimate the phase time-of-flight and wave propagation

  7. Attenuation modelling of bulk waves generated by a point source in an isotropic medium

    Energy Technology Data Exchange (ETDEWEB)

    Ramadas, C. [Composites Research Center, R and D, Pune (India)

    2016-10-15

    Attenuation of a bulk wave, generated by a point source, propagating in an isotropic medium, is due to the geometry and nature of the material involved. In numerical simulations, if the complete domain of propagation is modeled, then it captures the attenuation of a wave caused due to its geometry. To model the attenuation of the wave caused due to the nature of the material, it is required to know the material'attenuation coefficient. Since experimental measurement on attenuation of a wave involves both the effects of geometry and material, a method based on curve fitting to estimate the material'attenuation coefficient from effective attenuation coefficient, is proposed. Using the material'attenuation coefficient in the framework of Rayleigh damping model, numerical modeling on attenuation of both the bulk waves - longitudinal and shear excited by a point source was carried out. It was shown that the proposed method captures the attenuation of bulk waves caused on account of geometry as well as nature of the material.

  8. Isotropic optical metamaterials

    DEFF Research Database (Denmark)

    Lederer, Falk; Rockstuhl, C.; Menzel, C.

    2010-01-01

    Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...

  9. Interferometric characterization of a sub-wavelength near-infrared negative index metamaterial.

    Science.gov (United States)

    Zhang, Xuhuai; Davanço, Marcelo; Maller, Kara; Jarvis, Thomas W; Wu, Chihhui; Fietz, Chris; Korobkin, Dmitriy; Li, Xiaoqin; Shvets, Gennady; Forrest, Stephen R

    2010-08-16

    Negative phase advance through a single layer of near-IR negative index metamaterial (NIM) is identified through interferometric measurements. The NIM unit cell, sub-wavelength in both the lateral and light propagation directions, is comprised of a pair of Au strips separated by two dielectric and one Au film. Numerical simulations show that the negative phase advance through the single-layer sample is consistent with the negative index exhibited by a bulk material comprised of multiple layers of the same structure. We also numerically demonstrate that the negative index band persists in the lossless limit.

  10. Negative-Index Media for Matter Waves

    Science.gov (United States)

    Perales, F.; Bocvarski, V.; Baudon, J.; Hamamda, M.; Grucker, J.; Dutier, G.; Mainos, C.; Boustimi, M.; Ducloy, M.

    2010-02-01

    One reviews the recently introduced field of matter-wave "meta-optics", i.e. the extension of optical negative-index media (NIM) to atom optics. After emphasizing the differences with light meta-optics and particularly the necessary transient character of NIM's in atom optics, we present the way of generating matter-wave NIM's and their general properties: negative refraction, atom meta-lenses. Finally their specific features are reviewed: longitudinal wave packet narrowing associated to a time-reversal effect, transient revivals of evanescent matter waves and atom reflection echoes at a potential barrier.

  11. Modulation instability of structured-light beams in negative-index metamaterials

    CERN Document Server

    Silahli, Salih Z; Litchinitser, Natalia M

    2016-01-01

    One of the most fundamental properties of isotropic negative-index metamaterials, namely opposite directionality of the Poynting vector and the wavevector, enable many novel linear and nonlinear regimes of light-matter interactions. Here, we predict distinct characteristics of azimuthal modulation instability of optical vortices with different topological charges in negative-index metamaterials with Kerr-type and saturable nonlinearity. We derive an analytical expression for the spatial modulation-instability gain for the Kerr-nonlinearity case and show that a specific condition relating the diffraction and the nonlinear lengths must be fulfilled for the azimuthal modulation instability to occur. Finally, we investigate the rotation of the necklace beams due to the transfer of orbital angular momentum of the generating vortex onto the movement of solitary necklace beams. We show that the direction of rotation is opposite in the positive- and negative-index materials.

  12. Structures with negative index of refraction

    Science.gov (United States)

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  13. Comparison between experiment and theory in the temperature variation of film tension above the bulk isotropic transition in free-standing liquid-crystal films.

    Science.gov (United States)

    Veum, M; Duelge, L; Droske, J; Nguyen, H T; Huang, C C; Mirantsev, L V

    2009-09-01

    Using differential scanning calorimetry, the transition enthalpies and temperatures for the bulk smectic-isotropic phase transition have been measured for a series of liquid-crystal compounds. For five compounds, those values were used as parameters in a microscopic mean-field model to predict the temperature dependence of the difference in free-energy density between a sample of material in a free-standing smectic film and that in the bulk. The model predicts a weak temperature dependence below the bulk clearing point and a pronounced monotonic increase with temperature above the transition temperature. The compounds used in this study were chosen specifically because they were also the subject of a previous independent experimental study [M. Veum, Phys. Rev. E 74, 011703 (2006)] that demonstrated a sudden monotonic increase in the free-standing film tension with temperature, which is qualitatively consistent with the predictions of the above-mentioned mean-field model. This study presents a direct and quantitative comparison between the predictions of the mean-field model and the results from previous tension experiments.

  14. Microscopic mirrorless negative-index optical parametric oscillator

    OpenAIRE

    Popov, Alexander K; Myslivets, Sergey A; Shalaev, V. M.

    2009-01-01

    The feasibility and extraordinary properties of mirrorless optical parametric oscillations in a microscopic strongly absorbing slab of negative-index metamaterial are shown. They stem from the backwardness of electromagnetic waves inherent with this type of metamaterial.

  15. Dynamics of evanescent matter waves in negative-index media

    Science.gov (United States)

    Hamamda, M.; Bocvarski, V.; Perales, F.; Baudon, J.; Dutier, G.; Mainos, C.; Boustimi, M.; Ducloy, M.

    2010-11-01

    Semi-evanescent and evanescent matter waves produced by an atom wave packet impinging on a repulsive barrier can be back-refracted and reconstructed by the application of negative-index 'comoving' potential pulses. One shows that those collapses and revivals generate a matter wave confined on both sides of the barrier border ('surface matter wave') and should be observable via the retardation of atom reflection from the barrier interface. This property, joined to the possibility recently demonstrated of inducing negative refraction of atom waves, makes such potentials a matter-wave counterpart of negative-index materials or 'meta materials' well known in light optics.

  16. Negative-index metamaterials: looking into the unit cell

    NARCIS (Netherlands)

    Burresi, M.; Diessel, D.; van Oosten, D.|info:eu-repo/dai/nl/269286470; Linden, Stefan; Wegener, M.; Kuipers, L.

    2010-01-01

    With their potential for spectacular applications, like superlensing and cloaking, metamaterials are a powerful class of nanostructured materials. All these applications rely on the metamaterials acting as a homogeneous material. We investigate a negative index metamaterial with a phase-sensitive

  17. Dynamics of evanescent matter waves in negative-index media

    Energy Technology Data Exchange (ETDEWEB)

    Hamamda, M; Bocvarski, V; Perales, F; Baudon, J; Dutier, G; Mainos, C; Boustimi, M; Ducloy, M, E-mail: jacques.baudon@univ-paris13.f [Laboratoire de Physique des Lasers, CNRS-UMR 7538, Universite Paris 13, 99 Av. J B Clement, 93430-Villetaneuse (France)

    2010-11-14

    Semi-evanescent and evanescent matter waves produced by an atom wave packet impinging on a repulsive barrier can be back-refracted and reconstructed by the application of negative-index 'comoving' potential pulses. One shows that those collapses and revivals generate a matter wave confined on both sides of the barrier border ('surface matter wave') and should be observable via the retardation of atom reflection from the barrier interface. This property, joined to the possibility recently demonstrated of inducing negative refraction of atom waves, makes such potentials a matter-wave counterpart of negative-index materials or 'meta materials' well known in light optics.

  18. Demonstration of a Three-dimensional Negative Index Medium Operated at Multiple-angle Incidences by Monolithic Metallic Hemispherical Shells.

    Science.gov (United States)

    Yeh, Ting-Tso; Huang, Tsung-Yu; Tanaka, Takuo; Yen, Ta-Jen

    2017-04-07

    We design and construct a three-dimensional (3D) negative index medium (NIM) composed of gold hemispherical shells to supplant an integration of a split-ring resonator and a discrete plasmonic wire for both negative permeability and permittivity at THz gap. With the proposed highly symmetric gold hemispherical shells, the negative index is preserved at multiple incident angles ranging from 0° to 85° for both TE and TM waves, which is further evidenced by negative phase flows in animated field distributions and outweighs conventional fishnet structures with operating frequency shifts when varying incident angles. Finally, the fabrication of the gold hemispherical shells is facilitated via standard UV lithographic and isotropic wet etching processes and characterized by μ-FTIR. The measurement results agree the simulated ones very well.

  19. Active microwave negative-index metamaterial transmission line with gain.

    Science.gov (United States)

    Jiang, Tao; Chang, Kihun; Si, Li-Ming; Ran, Lixin; Xin, Hao

    2011-11-11

    We studied the active metamaterial transmission line at microwave frequency. The active composite right-handed or left-handed transmission line was designed to incorporate a germanium tunnel diode with a negative differential resistance property as the gain device at the unit cell level. Measurements of the fabricated planar transmission line structures with one-, two-, and three-unit cells showed that the addition of the dc pumped tunnel diodes not only provided gain but also maintained the left handedness of the transmission line metamaterial. Simulation results agree well with experimental observation. This work demonstrated that negative index material can be obtained with a net gain when an external source is incorporated.

  20. Subsurface bending and reorientation of tilted vortex lattices in bulk isotropic superconductors due to Coulomb-like repulsion at the surface

    Science.gov (United States)

    Herrera, E.; Guillamón, I.; Galvis, J. A.; Correa, A.; Fente, A.; Vieira, S.; Suderow, H.; Martynovich, A. Yu.; Kogan, V. G.

    2017-11-01

    We study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β -Bi2Pd in tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.

  1. Negative Index Materials and Plasmonic Antennas Based Nanocouplers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei

    negative index material. The wave propagation retrieval method for metamaterials with linear and circular eigenpolarizations and the field averaging of the restored Bloch mode method are proposed for metamaterials effective properties characterization. The methods are based on observation of the wave...... propagation in the metamaterial slab. The methods are unambiguous, simple, can be applied to lossy and lossless metamaterials with negative and positive refractive index, permittivity and permeability. The technology of silver nanometallization of complex 3D dielectric structures is developed....... The metallization is based on silver reduction from the silver-ammonia complex with formaldehyde. Continuous and smooth silver layer can be deposited starting from 30 nm. The technology can be used for the complex photonic structures fabrication for the infrared frequencies. The coupling effects between...

  2. Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms.

    Science.gov (United States)

    Bossard, Jeremy A; Yun, Seokho; Werner, Douglas H; Mayer, Theresa S

    2009-08-17

    Negative index metamaterial designs for the mid-infrared with low absorption and impedance mismatch losses are presented. A robust genetic algorithm is employed to optimize the flexible metamaterial structure for targeted refractive index and impedance values. A new figure of merit is introduced to evaluate the impedance match of the metamaterial to free space. Two designs are presented demonstrating low-loss characteristics for a thin metamaterial with two metal screens and a thick metamaterial stack with five screens. The device performance is analyzed when adding more screens to the structure, revealing that optimizing a thick stack produces a metamaterial with properties approaching those of a bulk material. (c) 2009 Optical Society of America

  3. Sub-picosecond optical switching with a negative index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Dani, Keshav M [Los Alamos National Laboratory; Upadhya, Prashant C [Los Alamos National Laboratory; Zahyum, Ku [CHTM-UNM

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  4. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    Directory of Open Access Journals (Sweden)

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  5. Plasmon-Enhanced Photonic Crystal Negative Index Materials for Superlensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Negative index materials (NIMs) offer tremendous potential for the formation of highly compact as well as large-area deployable thin-film optical components. Omega...

  6. Three-dimensional isotropic metamaterial consisting of domain-structure

    Science.gov (United States)

    Gong, Boyi; Zhao, Xiaopeng

    2012-03-01

    Whether an artificially designed negative-index structure could be regarded as a homogeneous medium or not rests with the ratio of its structural unit (man-made atom) over the operation wavelength. However, this definition is ambiguous, and usually the ratio is too large to rigorously meet the effective medium theory. In this paper a three-dimensional (3D) isotropic structure is presented which is obtained from a two-dimensional (2D) isotropic structure rotating on its axis for a circle, and the material is silver. Numerical studies confirm that both the 2D and 3D structures can realize a negative refractive index at microwave wavelengths. Observing the monitored surface current distributions and analogizing the molecular current and the magnetic domain, we suggest a new concept of domain-structure to explain the interior structure of this metamaterial, and finally conclude that the 3D structure is a kind of domain-structured and isotropic metamaterial.

  7. Isotropic Single Negative Metamaterials

    Directory of Open Access Journals (Sweden)

    P. Protiva

    2008-09-01

    Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.

  8. Experimental measurement of negative index in an all-dielectric metamaterial

    Science.gov (United States)

    Lepetit, T.; Akmansoy, É.; Ganne, J.-P.

    2009-09-01

    We designed and fabricated an all-dielectric metamaterial which exhibits negative index of refraction. This metamaterial consists of one layer made up of two sets of high permittivity resonators. We experimentally showed that this metamaterial exhibits resonant effective permeability and permittivity issued from the first two modes of Mie resonances, respectively, and that matching both these parameters results in negative effective index.

  9. Lateral beam shift at transmission through layered structures with negative index material

    Science.gov (United States)

    Vuković, Slobodan M.; Aleksić, Najdan B.; Timotijević, Dejan V.; Belic, Milivoj R.

    2012-03-01

    We studied electromagnetic wave transmission through layered structures that include negative index materials. The excitation of leaky guided modes leads to the formation of anomalous lateral shifts in the reflected beam with a double-peak structure and in the transmitted beam with a single-peak structure. In the absence of losses, we demonstrate that the total transparency (i.e. zero reflection) of the slab waveguide with the negative index material can be achieved under conditions in which high reflectivity is normally expected. We demonstrate the trade-off effect between the high transmission and the high lateral shift. This peculiar effect exists not only for the pure TE or the pure TM polarization of the obliquely incident radiation, but also under certain circumstances for both of them simultaneously i.e. for the nonpolarized radiation.

  10. Wide-angle infrared absorber based on negative index plasmonic metamaterial

    OpenAIRE

    Avitzour, Yoav; Urzhumov, Yaroslav A.; Shvets, Gennady

    2008-01-01

    A metamaterials-based approach to making a wide-angle absorber of infrared radiation is described. The technique is based on an anisotropic Perfectly Impedance Matched Negative Index Material (PIMNIM). It is shown analytically that a sub-wavelength in all three dimensions PIMNIM enables absorption of close to 100% for incidence angles up to $45\\deg$ to the normal. A specific implementation of such frequency-tunable PIMNIM based on plasmonic metamaterials is presented. Applications to infrared...

  11. Toward creating isotropic microwave composites with negative refraction

    Science.gov (United States)

    Simovski, C. R.; Sauviac, B.

    2004-04-01

    The properties of artificial isotropic microwave composites which would possess simultaneously negative permittivity and permeability are studied theoretically. Four kinds of composites are considered. Two of them concern media with split-ring resonator particles with different particle arrangements. The other two are realized with Omega particles. An analytical antenna model of the electromagnetic behavior of a split-ring resonator (SRR) is suggested and verified by numerical simulations. Next, material parameters of composite media made with SRR or Omega particles are calculated. Both mixtures can create negative index media, but Omega composites are more prospective for obtaining negative real values of permittivity and permeability than the split-ring resonators.

  12. A single-layer wide-angle negative-index metamaterial at visible frequencies

    Science.gov (United States)

    Burgos, Stanley P.; de Waele, Rene; Polman, Albert; Atwater, Harry A.

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50∘ angular range, yielding a wide-angle NIM at visible frequencies.

  13. High symmetry versus optical isotropy of a negative-index metamaterial

    DEFF Research Database (Denmark)

    Menzel, Christoph; Rockstuhl, Carsten; Lliew, Rumen

    2010-01-01

    Optically isotropic metamaterials MMs are required for the implementation of subwavelength imaging systems. At first glance one would expect that their design should be based on unit cells exhibiting a cubic symmetry being the highest crystal symmetry. It is anticipated that this is a sufficient...

  14. Isotropic stochastic rotation dynamics

    Science.gov (United States)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  15. A Negative Index Metamaterial to Enhance the Performance of Miniaturized UWB Antenna for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Md. Zulfiker Mahmud

    2017-11-01

    Full Text Available A new, compact planar wideband negative index metamaterial based on a modified split ring resonator (SRR is studied to enhance performance of ultrawideband antenna. A compact, metamaterial (MTM-inspired microstrip antenna is presented for microwave imaging system (MIS application. Two layers of left-handed metamaterial array (2 × 4 of the unit cell are placed on the radiating patch and the ground plane, respectively. Each left-handed metamaterial (LHM unit cell was constructed by modifying a square split ring resonator (SRR, resulting in negative permeability and permittivity with a stable negative refractive index. The results shows that it has a significant impact on the performance of conventional patch antenna in terms of transmission co-efficient, efficiency and low loss. Compared to antenna without LHM, it is shown that the bandwidth is significantly broadened up to a few megahertz and becomes more convergent leading to the achievement of desired properties for ultra-wideband (UWB applications leading to microwave imaging. The proposed MTM antenna structure is fabricated on commercially-available, flame-retardant material of size 26 × 22 × 1.6 mm3 with 4.6 dielectric constants, due to its low cost and convenience for making multilayer printed circuit boards (PCBs. The antenna achieves 3.1 GHz to 10.71 GHz of impedance bandwidth (−10 dB, which covers the full UWB band. The use of double-layer negative index MTM unit cells enhances UWB performance, and the improved radiation efficiency, nearly directional radiation pattern, acceptable gain, stable surface current and negative refractive index make this MTM antenna a suitable candidate for UWB applications.

  16. Bulk metamaterials: Design, fabrication and characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Alabastri, Alessandro

    2009-01-01

    Bulk metamaterials claim a lot of attention worldwide. We report about our activity and advances in design, fabrication and characterization of metal-dielectric composites with three-dimensional lattices. The nomenclature of designs exhibiting negative index behaviour in the near infrared includes...

  17. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainabl...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  18. New design of multi-band negative-index metamaterial and absorber at visible frequencies

    Science.gov (United States)

    Gong, Boyi; Guo, Fan; Zou, Wenkang; Chen, Lin; Song, Kun; Zhao, Xiaopeng

    2017-08-01

    A new negative-index metamaterial (NIM) structure is proposed by designing the metallic holes of traditional double-fishnet (DF) structures from uniform sizes to several different sizes. Numerical results demonstrate that the new metamaterial, as an improved variant of the DF structure, achieved a multi-band negative refractive index across a wide range of visible frequencies from 470 THz to 540 THz, which covers the red, orange, yellow, and green regions of the visible spectra. Meanwhile, a low-profile nanostrctured absorber was obtained when one side of the perforated metal layer of this multi-band NIM was substituted with a continuous metal film with the same thickness. The absorber showed the high absorption of more than 95% at multiple frequencies of 511, 520, 523, 525, and 527 THz. The behavior of multi-frequency response effectively broadened the working bandwidth. Finally, the physical mechanism of the multi-band operating characteristics of NIM and absorber was analyzed with the distributions of current intensity at different resonant frequencies.

  19. Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands.

    Science.gov (United States)

    Gao, Li; Shigeta, Kazuki; Vazquez-Guardado, Abraham; Progler, Christopher J; Bogart, Gregory R; Rogers, John A; Chanda, Debashis

    2014-06-24

    We report advances in materials, designs, and fabrication schemes for large-area negative index metamaterials (NIMs) in multilayer "fishnet" layouts that offer negative index behavior at wavelengths into the visible regime. A simple nanoimprinting scheme capable of implementation using standard, widely available tools followed by a subtractive, physical liftoff step provides an enabling route for the fabrication. Computational analysis of reflection and transmission measurements suggests that the resulting structures offer negative index of refraction that spans both the visible wavelength range (529-720 nm) and the telecommunication band (1.35-1.6 μm). The data reveal that these large (>75 cm(2)) imprinted NIMs have predictable behaviors, good spatial uniformity in properties, and figures of merit as high as 4.3 in the visible range.

  20. Isotropic radical CO{sub 2}{sup -} in biological apatites

    Energy Technology Data Exchange (ETDEWEB)

    Rudko, V.V. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)], E-mail: vv_rudko@yahoo.com; Ishchenko, S.S.; Vorona, I.P.; Baran, N.P. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)

    2007-10-15

    The isotropic CO{sub 2}{sup -} EPR spectrum at g{approx}2.0006 for {gamma}-irradiated powders of dental enamel annealed at different temperatures up to 320{sup 0}C is studied. The signal intensity is found to increase with the growth of annealing temperature up to 240{sup 0}C. This finding contradicts to the existing model of isotropic CO{sub 2}{sup -} radical in apatites. The possible models of the radical in biological apatite are analyzed and discussed. On the basis of the results obtained it is suggested that in tooth enamel apatite the isotropic CO{sub 2}{sup -} radical is the bulk radical localized in structural voids of hydroxyapatite lattice, which occur in the vicinity of a carbon radical in position B.

  1. Realizing a variable isotropic depolarizer.

    Science.gov (United States)

    Shaham, Assaf; Eisenberg, Hagai S

    2012-07-01

    We demonstrate an isotropic depolarizing channel with a controllable degree of depolarization. The depolarizer is composed of four birefringent crystals and half-wave plates. Quantum process tomography results of the depolarization effect on single photons agree well with the theoretical prediction. This depolarizer can be used to test quantum communication protocols with photons.

  2. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications.

    Science.gov (United States)

    Islam, Md Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais

    2015-01-23

    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm³, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4-12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  3. The use of negative indexes of health to evaluate quality of care in a primary-care group practice.

    Science.gov (United States)

    Heineken, P A; Charles, G; Stimson, D H; Wenell, C; Stimson, R H

    1985-03-01

    A quality assessment method using negative indexes of health as a measure of the quality of medical care was applied in a hospital-based primary-care group practice. During a 5-year period, records of 1,147 patients were analyzed. The study led to several observations regarding the use of this method in this setting: 1) The negative indexes of health method encourages physicians to include both primary and secondary preventive measures in their practice of medicine and to see their role as a broad one, from providing good care to individual patients to influencing public policy. 2) Most medical records do not now contain all the data required for use of this method. 3) In cases where this method identifies only a few instances of possibly preventable disease or untimely death, it is impossible to know whether the care is good and the method of evaluation is sensitive, or whether the care is poor and the method is insensitive to deficiencies in care.

  4. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  5. Isotropic transformation acoustics and applications

    Science.gov (United States)

    Su, Xiaoshi; Norris, Andrew N.

    2017-04-01

    A novel class of acoustic metamaterial is proposed for directional collimation of a cylindrical source into a plane wave beam. The effect is based on transformation acoustics which retains the exact form of the wave equation under conformal mapping from a circular region to a triangular area. The transformation is adjustable, allowing the acoustic energy to be equally radiated in three directions, or preferentially in a single direction. Importantly, the material properties in the physical domain are isotropic and therefore practically realizable. Two example devices are proposed using cylindrical elastic shells in water as the metamaterial elements and demonstrated using full wave simulations. This approach has potential applications beyond acoustic antenna design in beam-steering and wavefront manipulation.

  6. Isotropic Chiral Objects With Zero Backscattering

    CERN Document Server

    Karilainen, Antti O

    2012-01-01

    In this paper we study electrically small chiral objects with isotropic response and zero backscattering. A bi-isotropic sphere is used as a simple example and its zero-backscattering conditions are studied. A theoretical model of an object composed of three orthogonal chiral particles made of conducting wire is presented as an analog of the zero-backscattering bi-isotropic sphere. A potential application of the object as a receiving antenna or a sensor with the ability to receive power from an arbitrary direction without backscattering is discussed.

  7. Focusing of dipole radiation by a negative index chiral layer. 2. A thin layer as compared with the wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Guzatov, D V [Yanka Kupala State University of Grodno, Grodno (Belarus); Klimov, V V [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    Using the quasi-static approximation we have found exact analytical solutions to the problem of the field of a point electromagnetic source in the presence of a layer of a bi-isotropic (chiral) metamaterial. At some parameters of the problem, the resulting solution can be represented as a set of several point sources (electric and magnetic), which are images of the original source. If the original source is located near the layer, these images become real sources of the field. This paradoxical solution is then generalised to the case taking into account the retardation effects, which allows one to physically interpret the obtained solutions as a set of sources and 'sinks' of circularly polarised waves. (metamaterials)

  8. Focusing of dipole radiation by a negative index chiral layer. 2. A thin layer as compared with the wavelength

    Science.gov (United States)

    Guzatov, D. V.; Klimov, V. V.

    2014-12-01

    Using the quasi-static approximation we have found exact analytical solutions to the problem of the field of a point electromagnetic source in the presence of a layer of a bi-isotropic (chiral) metamaterial. At some parameters of the problem, the resulting solution can be represented as a set of several point sources (electric and magnetic), which are images of the original source. If the original source is located near the layer, these images become real sources of the field. This paradoxical solution is then generalised to the case taking into account the retardation effects, which allows one to physically interpret the obtained solutions as a set of sources and 'sinks' of circularly polarised waves.

  9. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented.......In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  10. Electromechanical stress analysis of transversely isotropic solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.H.; Ballou, J.K.

    1977-03-01

    The mechanical behavior of superconducting magnets deviates from isotropy due to their construction techniques, which involve layering superconductor, insulation, and sometimes structural reinforcement within the windings. Previous mechanical analyses considered the windings of a magnet to behave isotropically. This paper describes an analytical solution for the deflection, stress, and strain of axisymmetric, electromechanically loaded, and rotationally transversely isotropic solenoids. The results indicate that for magnets with a large radial build compared to inner radius, transverse isotropy has a dramatic effect upon the mechanical response to load; for magnets with a small radial build compared to inner radius, transverse isotropy has a negligible effect.

  11. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    Science.gov (United States)

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-05-20

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.

  12. On horizons in homogeneous isotropic universes

    Science.gov (United States)

    Patzelt, Harald

    1990-11-01

    In homogeneous isotropic universes the particle horizon defines causally connected regions. For inflationary universes it is known that microphysics can interact coherently only on a much smaller scale. Here an interaction horizon is introdued that allows this scale to be determined for Robertson-Walker models. During inflation its upper bound is the event horizon.

  13. Reduction of Dirac structures along isotropic subbundles

    OpenAIRE

    Calvo, I; Falceto, F.; Zambon, M

    2007-01-01

    Given a Dirac subbundle and an isotropic subbundle of a Courant algebroid, we provide a canonical method to obtain a new Dirac subbundle. When the original Dirac subbundle is involutive (i.e., a Dirac structure) this construction has interesting applications, for instance to Dirac's theory of constraints and to the Marsden-Ratiu reduction in Poisson geometry.

  14. ANALYTICAL BENDING SOLUTION OF ALL CLAMPED ISOTROPIC ...

    African Journals Online (AJOL)

    ANALYTICAL BENDING SOLUTION OF ALL CLAMPED ISOTROPIC RECTANGULAR PLATE ON WINKLER’S FOUNDATION USING CHARACTERISTIC ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

  15. Isotropic-nematic spinodal decomposition dynamics

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2005-01-01

    The initial stage of isotropic-nematic spinodal demixing kinetics of suspensions of very long and thin, stiff, repulsive rods is analyzed on the basis of the N -particle Smoluchowski equation. Equations of motion for the reduced probability density function of the position and orientation of a rod

  16. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  17. Computations of Quasiconvex Hulls of Isotropic Sets

    Czech Academy of Sciences Publication Activity Database

    Heinz, S.; Kružík, Martin

    2017-01-01

    Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics Impact factor: 0.496, year: 2016 http:// library .utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf

  18. Isotropization of the quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, T.; Gelis, F.

    2014-06-15

    We report here recent analytical and numerical work on the theoretical treatment of the early stages of heavy ion collisions, that amounts to solving the classical Yang–Mills equations with fluctuating initial conditions. Our numerical simulations suggest a fast isotropization of the pressure tensor of the system. This trend appears already for small values of the coupling constant α{sub s}. In addition, the system exhibits an anomalously small shear viscosity.

  19. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...... dependence of the diffusion tensors, which causes the measured isotropic diffusivity to depend on gradient frame orientation. In turn, this conflates orientation dispersion with ensemble variance in isotropic diffusivity. Second, additional contributions to the apparent variance in isotropic diffusivity...

  20. DNS of Shock / Isotropic Turbulence Interaction

    Science.gov (United States)

    Grube, Nathan; Taylor, Ellen; Martín, Pino

    2010-11-01

    We discuss DNS of Shock / Isotropic Turbulence Interactions (SITI). We vary the incoming turbulence Mach number up to 0.8 and the convective Mach number up to 5 in order to determine their effects on the interaction. These cases are challenging due to the presence of shocklets in the incoming turbulence as well as significant motion of the main shock. Shock-capturing must be used at all points while still maintaining low enough numerical dissipation to preserve the turbulent fluctuations. We use the linearly- and nonlinearly-optimized Weighted Essentially Non-Oscillatory (WENO) method[1,2]. Particular attention is paid to the inflow boundary condition, where we find the use of snapshots of "frozen" turbulence from decaying isotropic box simulations to be unsatisfactory. We instead use time-varying inflow data generated by a separate forced isotropic turbulence simulation with a specified convection speed. This allows us to access flow conditions where the assumptions of Taylor's Hypothesis are not met. 1.) Mart'in, M.P., Taylor, E.M., Wu, M., and Weirs, V.G., JCP 220(1) 270-89, 2006. 2.) Taylor, E.M., Wu, M., and Mart'in, M.P., JCP 223(1) 384-97, 2007.

  1. Topological optimization for the design of microstructures of isotropic cellular materials

    Science.gov (United States)

    Radman, A.; Huang, X.; Xie, Y. M.

    2013-11-01

    The aim of this study was to design isotropic periodic microstructures of cellular materials using the bidirectional evolutionary structural optimization (BESO) technique. The goal was to determine the optimal distribution of material phase within the periodic base cell. Maximizing bulk modulus or shear modulus was selected as the objective of the material design subject to an isotropy constraint and a volume constraint. The effective properties of the material were found using the homogenization method based on finite element analyses of the base cell. The proposed BESO procedure utilizes the gradient-based sensitivity method to impose the isotropy constraint and gradually evolve the microstructures of cellular materials to an optimum. Numerical examples show the computational efficiency of the approach. A series of new and interesting microstructures of isotropic cellular materials that maximize the bulk or shear modulus have been found and presented. The methodology can be extended to incorporate other material properties of interest such as designing isotropic cellular materials with negative Poisson's ratio.

  2. An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials

    KAUST Repository

    Takahashi, Kazuaki Z.

    2012-11-13

    Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate

  3. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  4. Nanoparticle-doped isotropic liquid crystals

    Science.gov (United States)

    Parfenov, Alexander; Xia, Xiaowei; Shapoury, Alireza; DeHoog, Edward A.; Zhang, Fang; Pradhan, Shilpa; Aye, Tin M.; Shih, Min-Yi; Hall, Arlynn Z.; Cooper, Thomas M.

    2011-10-01

    We demonstrate a new material composed of isotropic liquid crystal (ILC) blended with semiconductor nanoparticles, which could result in a novel high-speed, multiple-notch broadband passive optical switch to selectively discriminate bands of electromagnetic radiation in intelligence, surveillance, or reconnaissance systems. The new material has been demonstrated high nonlinear 3rd order optical Kerr coefficients (light-induced refractive index change, n2) exceeding 100 times of classic nonlinear material CS2 with n2 = 1.2E-11 esu. Details of fabrication and experimental results are presented.

  5. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and calculation of the corresponding proportionality factors. In the present paper radial and torsional vibrational modes are considered on the basis of an exact solution of 3-D equations of motion of an isotropic body in spherical coordinates. The solutions...

  6. An exhaustive list of isotropic apocalyptic scenarios

    CERN Document Server

    Parnovsky, S L

    2016-01-01

    We study the possible types of future singularities in the isotropic homogeneous cosmological models for the arbitrary equation of state of the contents of the Universe. We obtain all known types of these singularities as well as two new types using a simple approach. No additional singularity types are possible. We name the new singularities type "Big Squeeze" and "Little Freeze". The "Big Squeeze" is possible only in the flat Universe after a finite time interval. The density of the matter and dark energy tends to zero and its pressure to minus infinity. This requires the dark energy with a specific equation of state that has the same asymptotical behaviour at low densities as the generalised Chaplygin gas. The "Little Freeze" involves an eternal expansion of the Universe. Some solutions can mimic the $\\Lambda$CDM model.

  7. Scattering from isotropic plasma coated nihility sphere

    Science.gov (United States)

    Hussan, M. M.; Ghaffar, A.; Alkanhal, Majeed A. S.; Naz, M. Y.; Ur Rehman, Sajjad; Khan, Y.

    2017-06-01

    In this study, it is observed that when an isotropic collisional plasma coating layer is produced on a nihility sphere, its back scattering efficiency becomes non-zero. Field equations, at each interface, are expanded in terms of spherical wave vector functions (SWVFs) by enforcing the extended classical wave scattering theory. Electromagnetic boundary conditions are applied at both interfaces, i.e., free space-plasma and plasma layer-nihility sphere core to obtain the scattering coefficients. The obtained scattering coefficients are used to calculate the forward scattering, back scattering, and extinction efficiencies. The obtained computational results show that an increase in collisional frequency causes a decrease in both forward and backscattered efficiencies and an increase in extinction efficiency. Furthermore, the numerical results indicate that an increase in plasma density causes an increase in both forward and backscattered efficiencies and a decrease in extinction efficiency.

  8. Kinematical uniqueness of homogeneous isotropic LQC

    CERN Document Server

    Engle, Jonathan

    2016-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space $\\mathbb{R}_{\\mathrm{Bohr}}$, as well as for the Fleischhack one $\\mathbb{R} \\sqcup \\mathbb{R}_{\\mathrm{Bohr}}$. We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on $\\mathbb{R}_{\\mathrm{Bohr}}$ is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on $\\mathbb{R}$ in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  9. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  10. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  11. 19 CFR 149.4 - Bulk and break bulk cargo.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from the...

  12. Active Colloids in Isotropic and Anisotropic Electrolytes

    Science.gov (United States)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  13. The problem of isotropic rectangular plate with four clamped edges

    Indian Academy of Sciences (India)

    This report discusses in exact solution of the governing equation of an isotropic rectangular plate with four clamped edges. A numerical method for clamped isotropic rectangular plate under distributed loads and an exact solution of the governing equation in terms of trigonometric and hyperbolic function are given. Finally ...

  14. Einstein–Maxwell Field Equation in Isotropic Coordinates: An ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Einstein–Maxwell Field Equation in Isotropic Coordinates: An Application to Modeling Superdense Star ... Space Sci., 330, 353) solution of the general relativistic field equations in isotropic coordinates by using simple form of electric intensity E that involve charge parameter K . Our solution is well behaved ...

  15. Polonium bulk and surface vibrational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tigrine, Rachid; Bourahla, Boualem [Laboratoire de Physique PEC UMR 6087, Universite du Maine, Le Mans (France); Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou (Algeria); Khater, Antoine

    2009-07-15

    Calculations are presented for the bulk phonons and for surface Rayleigh phonons and resonances for Polonium, the only element known to form in the simple cubic lattice. The static stability of this lattice has been confirmed recently by ab initio simulations which yield two bulk elastic constants, c{sub 11} and c{sub 12}. Constitutive equations are derived for the isotropic cubic lattice based upon the Fuchs's method. This permits effectively a numerical evaluation of central potential force constants for Polonium from the ab initio results. Numerical calculations are then made for the material vibration dynamics in the force constant model with the use of the matching method. The numerical applications yield for Polonium the bulk phonon branches along[100],[110], and [111], and the Rayleigh phonons and surface resonances along the[010] direction in an unreconstructed (001) surface. The local vibration densities of states are calculated for bulk and surface sites for this element. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. A modified failure criterion for transversely isotropic rocks

    Directory of Open Access Journals (Sweden)

    Omid Saeidi

    2014-03-01

    Full Text Available A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Mechanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consideration. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy indexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.

  17. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  18. Isotropic microscale mechanical properties of coral skeletons.

    Science.gov (United States)

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-05-06

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species:solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus E(IT) were determined from the analysis of several load-depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty,the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76-77 GPa range, and H(IT) in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in H(IT) is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure,observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections.

  19. Anisotropic Charged Fluid Sphere in Isotropic Coordinates

    Directory of Open Access Journals (Sweden)

    Neeraj Pant

    2014-01-01

    Full Text Available We have presented a class of charged superdense star models, starting with a static spherically symmetric metric in isotropic coordinates for anisotropic fluid by considering Hajj-Boutros-(1986 type metric potential and a specific choice of electrical intensity E and anisotropy factor Δ which involve charge parameter K and anisotropy parameter α. The solution is well behaved for all the values of Schwarzschild compactness parameter u lying in the range 0

  20. Vortex stretching in a homogeneous isotropic turbulence

    Science.gov (United States)

    Hirota, M.; Nishio, Y.; Izawa, S.; Fukunishi, Y.

    2017-04-01

    Stretching vortices whose sizes are in the inertial subrange of a homogeneous isotropic turbulence are picked up, and the geometric relations with the neighboring vortices whose scales are twice larger are studied. Hierarchical vortices are extracted using a Fourier band-pass filter, and each extracted vortex is reconstructed as a set of short cylindrical segments along the vortex axis to discuss the vortex interactions. As a result, it is shown that the directions of larger vortices near the segments of the fast stretching vortices tend to be orthogonal to the direction of the stretching segments, and the locations of the larger vortices that contribute most to the stretching of smaller vortex segments are likely to be found in the direction with the relative angle of 45° from the axes of the stretching vortex segments. And, the vortices with the second highest contributions tend to be in the directions 45° from the stretching segments’ axes and orthogonal to the directions of the highest contributing vortices.

  1. Homogeneous and isotropic calorimetry for space experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, N., E-mail: mori@fi.infn.it [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Adriani, O. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Basti, A. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bigongiari, G. [University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Bonechi, L. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bonechi, S. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Bongi, M. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bottai, S. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Brogi, P. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); D' Alessandro, R. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Detti, S.; Lenzi, P. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Maestro, P.; Marrocchesi, P.S. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Papini, P. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); and others

    2013-12-21

    Calorimetry plays an essential role in experiments observing high energy gamma and cosmic rays in space. The observational capabilities are mainly limited by the geometrical dimensions and the mass of the calorimeter. Since deployable mass depends on the design of the detector and the total mass of the payload, it is important to optimize the geometrical acceptance of the calorimeter for rare events, its granularity for particle identification, and its absorption depth for the measurement of the particle energy. A design of a calorimeter that could simultaneously optimize these characteristics assuming a mass limit of about 1.6 t has been studied. As a result, a homogeneous calorimeter instrumented with cesium iodide (CsI) crystals was chosen as the best compromise given the total mass constraint. The most suitable geometry found is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is very large, and allows for optimal electromagnetic particle identification and energy measurement, while the interaction length is at least sufficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. Two prototypes have been constructed and preliminary tests with high energy ion and muon beams are reported.

  2. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-11-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  3. A defect mediated lamellar to isotropic transition of amphiphile bilayers

    OpenAIRE

    Pal, Antara; Pabst, Georg; Raghunathan, V. A.

    2011-01-01

    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  4. LORENTZ-FACTOR-ISOTROPIC-LUMINOSITY/ENERGY CORRELATIONS OF GAMMA-RAY BURSTS AND THEIR INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Lue Jing; Zou Yuanchuan; Lei Weihua; Wu Qingwen; Wang Dingxiong [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang Bing; Lue Houjun [Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 Maryland Parkway, Box 454002, Las Vegas, NV 89154-4002 (United States); Liang Enwei, E-mail: zouyc@hust.edu.cn, E-mail: leiwh@hust.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics, Guangxi University, Nanning 530004 (China)

    2012-05-20

    The bulk Lorentz factor of the gamma-ray burst (GRB) ejecta ({Gamma}{sub 0}) is a key parameter to understanding GRB physics. Liang et al. have discovered a correlation between {Gamma}{sub 0} and isotropic {gamma}-ray energy: {Gamma}{sub 0}{proportional_to}E{sup 0.25}{sub {gamma},iso,52}. By including more GRBs with updated data and more methods to derive {Gamma}{sub 0}, we confirm this correlation and obtain {Gamma}{sub 0} {approx_equal} 91E{sup 0.29}{sub {gamma},iso,52}. Evaluating the mean isotropic {gamma}-ray luminosities L{sub {gamma},iso} of the GRBs in the same sample, we discover an even tighter correlation {Gamma}{sub 0} {approx_equal} 249L{sup 0.30}{sub {gamma},iso,52}. We propose an interpretation to this later correlation. Invoking a neutrino-cooled hyperaccretion disk around a stellar mass black hole as the central engine of GRBs, we derive jet luminosity powered by neutrino annihilation and baryon loading from a neutrino-driven wind. Applying beaming correction, we finally derive {Gamma}{sub 0}{proportional_to}L{sup 0.22}{sub {gamma},iso}, which is consistent with the data. This suggests that the central engine of long GRBs is likely a stellar mass black hole surrounded by a hyper-accreting disk.

  5. Effect of bulk Lorentz violation on anisotropic brane cosmologies

    Science.gov (United States)

    Heydari-Fard, Malihe

    2012-04-01

    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early time behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters βi,i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.

  6. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-06-10

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  7. Orientation-specificity of adaptation: isotropic adaptation is purely monocular.

    Directory of Open Access Journals (Sweden)

    John Cass

    Full Text Available Numerous studies have found that prolonged exposure to grating stimuli reduces sensitivity to subsequently presented gratings, most evidently when the orientations of the adapting and test patterns are similar. The rate of sensitivity loss varies with angular difference indicating both the presence and bandwidths of psychophysical 'orientation channels'. Here we study the orientation dependency of contrast adaptation measured both monoptically and dichoptically. Earlier psychophysical reports show that orientation bandwidths are broader at lower spatial frequencies, and we confirm this with a simple von Mises model using 0.25 vs. 2 c.p.d. gratings. When a single isotropic (orientation invariant parameter is added to this model, however, we find no evidence for any difference in bandwidth with spatial frequency. Consistent with cross-orientation masking effects, we find isotropic adaptation to be strongly low spatial frequency-biased. Surprisingly, unlike masking, we find that the effects of interocular adaptation are purely orientation-tuned, with no evidence of isotropic threshold elevation. This dissociation points to isotropic (or 'cross-orientation' adaptation being an earlier and more magnocellular-like process than that which supports orientation-tuned adaptation and suggests that isotropic masking and adaptation are likely mediated by separate mechanisms.

  8. Orientation-specificity of adaptation: isotropic adaptation is purely monocular.

    Science.gov (United States)

    Cass, John; Johnson, Ameika; Bex, Peter J; Alais, David

    2012-01-01

    Numerous studies have found that prolonged exposure to grating stimuli reduces sensitivity to subsequently presented gratings, most evidently when the orientations of the adapting and test patterns are similar. The rate of sensitivity loss varies with angular difference indicating both the presence and bandwidths of psychophysical 'orientation channels'. Here we study the orientation dependency of contrast adaptation measured both monoptically and dichoptically. Earlier psychophysical reports show that orientation bandwidths are broader at lower spatial frequencies, and we confirm this with a simple von Mises model using 0.25 vs. 2 c.p.d. gratings. When a single isotropic (orientation invariant) parameter is added to this model, however, we find no evidence for any difference in bandwidth with spatial frequency. Consistent with cross-orientation masking effects, we find isotropic adaptation to be strongly low spatial frequency-biased. Surprisingly, unlike masking, we find that the effects of interocular adaptation are purely orientation-tuned, with no evidence of isotropic threshold elevation. This dissociation points to isotropic (or 'cross-orientation') adaptation being an earlier and more magnocellular-like process than that which supports orientation-tuned adaptation and suggests that isotropic masking and adaptation are likely mediated by separate mechanisms.

  9. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  10. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    We present a new design for a unit cell with the cubic symmetry and sizes less than one sixth of the vacuum wavelength possessing a negative refractive index in the IR region. The main challenges in designing and fabricating metamaterials nowadays are in obtaining isotropic electric and magnetic......). At this wavelength the refraction index is equal to -1.44. These values together with the effective cubic symmetry of the unit cell entitle us to assume the high potential of the suggested design as a constitutive block for an isotropic, relatively low-loss, metamaterial in the near IR region....

  11. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2013-02-04

    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  12. "Understanding" cosmological bulk viscosity

    OpenAIRE

    Zimdahl, Winfried

    1996-01-01

    A universe consisting of two interacting perfect fluids with the same 4-velocity is considered. A heuristic mean free time argument is used to show that the system as a whole cannot be perfect as well but neccessarily implies a nonvanishing bulk viscosity. A new formula for the latter is derived and compared with corresponding results of radiative hydrodynamics.

  13. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  14. direct method of analysis of an isotropic rectangular plate direct ...

    African Journals Online (AJOL)

    eobe

    This work. This work evaluates the static analysis of an isotropic rectangular plate with various ... used to obtain the total potential energy of the plate by employing the static elastic theory of plate. static elastic theory of plate. The shape func he shape func he shape .... finite site particles and the overall response of such a.

  15. Ricci flow of warped product metrics with positive isotropic curvature ...

    Indian Academy of Sciences (India)

    We study the asymptotic behaviour of the ODE associated to the evolution of curvature operator in the Ricci flow of a doubly warped product metric on S p + 1 × S 1 with positive isotropic curvature. Author Affiliations. H A Gururaja1. Department of Mathematics, St. Aloysius College, Mangalore 575 003, India. Dates.

  16. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235

  17. Switch isotropic/anisotropic wettability via dual-scale rods

    Directory of Open Access Journals (Sweden)

    Yang He

    2014-10-01

    Full Text Available It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  18. The structure of foam cells: isotropic plateau polyhedra

    NARCIS (Netherlands)

    Hilgenfeldt, Sascha; Kraynik, A.M.; Reinelt, D.A.; Sullivan, J.M.

    2004-01-01

    A mean-field theory for the geometry and diffusive growth rate of soap bubbles in dry 3D foams is presented. Idealized foam cells called isotropic Plateau polyhedra (IPPs), with F identical spherical-cap faces, are introduced. The geometric properties (e.g., surface area S, curvature R, edge length

  19. Thermo elastic waves with thermal relaxation in isotropic micropolar ...

    Indian Academy of Sciences (India)

    In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an infinitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic ...

  20. Isotropic Scattering in a Flatland Half-Space

    OpenAIRE

    d'Eon, Eugene; Williams, MMR

    2018-01-01

    We solve the Milne, constant-source and albedo problems for isotropic scattering in a two-dimensional "Flatland" half-space via the Wiener-Hopf method. The Flatland $H$-function is derived and benchmark values and some identities unique to Flatland are presented. A number of the derivations are supported by Monte Carlo simulation.

  1. The problem of isotropic rectangular plate with four clamped edges

    Indian Academy of Sciences (India)

    ... received considerable attention because of its technical importance. This paper analyses the deflections of an isotropic rectangular clamped thin plates under uniformly distributed loads. A plate is called thin when its thickness is at least one order of magnitude smaller than the span of the plate. The bending and buckling.

  2. Analysis of vibration frequency in transversely-isotropic semilinear ...

    African Journals Online (AJOL)

    Analysis of vibration frequency in transversely-isotropic semilinear elastic thin plate. AP Akinola, BA Olokuntoye, OO Fadodun, AS Botokinni. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE ...

  3. Semiclassical States Associated with Isotropic Submanifolds of Phase Space

    Science.gov (United States)

    Guillemin, V.; Uribe, A.; Wang, Z.

    2016-12-01

    We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.

  4. Thermo elastic waves with thermal relaxation in isotropic micropolar ...

    Indian Academy of Sciences (India)

    elastic media. In isotropic elastic media Lord & Shulman (1967), Dhaliwal & Sherief (1980) deduced independently the generalized version of classical coupled theory. In the above theories flux rate ...... Eringen A C 1973 Linear theory of non-local microelasticity and dispersion of plane waves. Lett. Appl. Eng. Sci. 1: 11–17.

  5. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  6. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...

  7. Micromegas in a bulk

    CERN Document Server

    Giomataris, Ioanis; Andriamonje, Samuel A; Aune, S; Charpak, Georges; Colas, P; Giganon, Arnaud; Rebourgeard, P C; Salin, P; Rebourgeard, Ph.

    2006-01-01

    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicine

  8. Micromegas in a bulk

    Energy Technology Data Exchange (ETDEWEB)

    Giomataris, I. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)]. E-mail: ioa@hep.saclay.cea.fr; De Oliveira, R. [CERN, Geneva (Switzerland); Andriamonje, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Aune, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Charpak, G. [CERN, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Fanourakis, G. [Institute of Nuclear Physcis, NCSR Demokritos, Aghia Paraskevi 15310 (Greece); Ferrer, E. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Giganon, A. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Rebourgeard, Ph. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Salin, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)

    2006-05-10

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine.

  9. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  10. Linearization of homogeneous, nearly-isotropic cosmological models

    CERN Document Server

    Pontzen, Andrew

    2010-01-01

    Homogeneous, nearly-isotropic Bianchi cosmological models are considered. Their time evolution is expressed as a complete set of non-interacting linear modes on top of a Friedmann-Robertson-Walker background model. This connects the extensive literature on Bianchi models with the more commonly-adopted perturbation approach to general relativistic cosmological evolution. Expressions for the relevant metric perturbations in familiar coordinate systems can be extracted straightforwardly. Amongst other possibilities, this allows for future analysis of anisotropic matter sources in a more general geometry than usually attempted. We discuss the geometric mechanisms by which maximal symmetry is broken in the context of these models, shedding light on the origin of different Bianchi types. When all relevant length-scales are super-horizon, the simplest Bianchi I models emerge (in which anisotropic quantities appear parallel transported). Finally we highlight the existence of arbitrarily long near-isotropic epochs in ...

  11. Viscous propulsion in active transversely-isotropic media

    CERN Document Server

    Cupples, Gemma; Smith, David J

    2016-01-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhan...

  12. Torsion-induced optical rotation in isotropic glass media.

    Science.gov (United States)

    Vasylkiv, Yuriy; Adamenko, Dmitro; Kvasnyuk, Oleksiy; Smaga, Ihor; Skab, Ihor; Shopa, Yaroslav; Vlokh, Rostyslav

    2015-03-20

    We have revealed that torsion stresses produce an optical activity effect in initially isotropic glass media. The optical activity caused by spatially inhomogeneous mechanical stresses has been experimentally studied for a standard glass BK7 subjected to torques, using a single-beam polarimetry and a polarizer-sample-analyzer scheme. The torsion-gyration coefficient for the BK7 glass has been determined as (3.96±0.82)×10-17  m3/N.

  13. Toward creating isotropic microwave composites with negative refraction

    OpenAIRE

    Simovski, C. R.; Sauviac, B.

    2003-01-01

    The properties of artificial isotropic microwave composites which would possess simultaneously negative permittivity and permeability are studied theoretically. Four kinds of composites are considered. Two of them concern media with split-ring resonator particles with different particle arrangements. The other two are realized with Omega particles. An analytical antenna model of the electromagnetic behavior of a split-ring resonator (SRR) is suggested and verified by numerical simulations. Ne...

  14. Transversely isotropic higher-order averaged structure tensors

    Science.gov (United States)

    Hashlamoun, Kotaybah; Federico, Salvatore

    2017-08-01

    For composites or biological tissues reinforced by statistically oriented fibres, a probability distribution function is often used to describe the orientation of the fibres. The overall effect of the fibres on the material response is accounted for by evaluating averaging integrals over all possible directions in space. The directional average of the structure tensor (tensor product of the unit vector describing the fibre direction by itself) is of high significance. Higher-order averaged structure tensors feature in several models and carry similarly important information. However, their evaluation has a quite high computational cost. This work proposes to introduce mathematical techniques to minimise the computational cost associated with the evaluation of higher-order averaged structure tensors, for the case of a transversely isotropic probability distribution of orientation. A component expression is first introduced, using which a general tensor expression is obtained, in terms of an orthonormal basis in which one of the vectors coincides with the axis of symmetry of transverse isotropy. Then, a higher-order transversely isotropic averaged structure tensor is written in an appropriate basis, constructed starting from the basis of the space of second-order transversely isotropic tensors, which is constituted by the structure tensor and its complement to the identity.

  15. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  16. Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres

    NARCIS (Netherlands)

    Göncü, Fatih; Duran Vinent, Orencio; Durán, Orencio; Luding, Stefan

    2010-01-01

    The isotropic compression of polydisperse packings of frictionless spheres is modeled with the Discrete Element Method (DEM). The evolution of coordination number, fraction of rattlers, isotropic fabric, and pressure (isotropic stress) is reported as function of volume fraction for different system

  17. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    Science.gov (United States)

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  19. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  20. Identifying Isotropic Events Using a Regional Moment Tensor Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Dreger, D S; Walter, W R

    2008-11-04

    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.

  1. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  2. Modelling of the decay of isotropic turbulence by the LES

    Energy Technology Data Exchange (ETDEWEB)

    Abdibekov, U S; Zhakebaev, D B, E-mail: uali1@mail.ru, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University (Kazakhstan)

    2011-12-22

    This work deals with the modelling of degeneration of isotropic turbulence. To simulate the turbulent process the filtered three-dimensional nonstationary Navier-Stokes equation is used. The basic equation is closed with the dynamic model. The problem is solved numerically, and the equation of motion is solved by a modified method of fractional steps using compact schemes, the equation for pressure is solved by the Fourier method with a combination of matrix factorization. In the process of simulation changes of the kinetic energy of turbulence in the time, micro scale of turbulence and changes of inlongitudinal-transverse correlation functions are obtained, longitudinal and transverse one-dimensional spectra are defined.

  3. Reflection of electromagnetic waves at a biaxial-isotropic interface

    Science.gov (United States)

    Njoku, E. G.

    1983-01-01

    The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.

  4. Silicone elastomers capable of large isotropic dimensional change

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, James; Worsley, Marcus A.

    2017-07-18

    Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.

  5. Localization by Acoustic Emission in Transversely Isotropic Slate

    Directory of Open Access Journals (Sweden)

    Bjorn Debecker

    2011-01-01

    Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.

  6. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  7. Genericness of Big Bounce in isotropic loop quantum cosmology

    OpenAIRE

    Date, Ghanashyam; Hossain, Golam Mortuza

    2004-01-01

    The absence of isotropic singularity in loop quantum cosmology can be understood in an effective classical description as the universe exhibiting a Big Bounce. We show that with scalar matter field, the big bounce is generic in the sense that it is independent of quantization ambiguities and details of scalar field dynamics. The volume of the universe at the bounce point is parametrized by a single parameter. It provides a minimum length scale which serves as a cut-off for computations of den...

  8. Electromagnetic cloaking of conducting cylinders using homogeneous and isotropic media

    Science.gov (United States)

    Gana, Usman M.

    2017-08-01

    Scattering characteristics of cloaked conducting cylinders is investigated. An attempt is made in replacing the difficult anisotropic material properties required of a cloack with simple ones. The anisotropic material parameters of the cylindrical cloaking shell was approximated by homogeneous, isotropic layers and effective medium approximation was employed in determining the parameters of the layers. Scattering of both polarized (TM & TE) and un-polarized plane electromagnetic waves was studied in the far field. Scattering cross sections of different kinds of cylindrical cloaks are presented and the merits of their structures outlined. Significant reductions in scattering cross sections, compared with bare cylinders, were realized by some of the structures studied.

  9. Observation of isotropic electron temperature in the turbulent E region

    Directory of Open Access Journals (Sweden)

    S. Saito

    Full Text Available Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular direction; electron heating by E region plasma turbulence is isotropic. We discuss the implications of our observation for the "plasmon"-electron as well as the wave Joule heating models of the anomalous electron heating in the E region.

    Key words. Ionosphere (auroral ionosphere; plasma temperature and density; plasma waves and instabilities

  10. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  11. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  12. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  13. Even harmonic generation in isotropic media of dissociating homonuclear molecules

    CERN Document Server

    Silva, R E F; Morales, F; Smirnova, O; Ivanov, M; Martín, F

    2016-01-01

    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schr\\"odinger equation for $H$$_2$$^+$ and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are pro...

  14. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  15. Isotropic-Nematic Phase Transitions in Gravitational Systems

    Science.gov (United States)

    Roupas, Zacharias; Kocsis, Bence; Tremaine, Scott

    2017-06-01

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  16. Charged isotropic non-Abelian dyonic black branes

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2015-05-01

    Full Text Available We construct black holes with a Ricci-flat horizon in Einstein–Yang–Mills theory with a negative cosmological constant, which approach asymptotically an AdSd spacetime background (with d≥4. These solutions are isotropic, i.e. all space directions in a hypersurface of constant radial and time coordinates are equivalent, and possess both electric and magnetic fields. We find that the basic properties of the non-Abelian solutions are similar to those of the dyonic isotropic branes in Einstein–Maxwell theory (which, however, exist in even spacetime dimensions only. These black branes possess a nonzero magnetic field strength on the flat boundary metric, which leads to a divergent mass of these solutions, as defined in the usual way. However, a different picture is found for odd spacetime dimensions, where a non-Abelian Chern–Simons term can be incorporated in the action. This allows for black brane solutions with a magnetic field which vanishes asymptotically.

  17. Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence.

    Science.gov (United States)

    Verma, Siddhartha; Blanquart, G

    2014-06-01

    The geometric orientation of the subfilter-scale scalar-flux vector is examined in homogeneous isotropic turbulence. Vector orientation is determined using the eigenframe of the resolved strain-rate tensor. The Schmidt number is kept sufficiently large so as to leave the velocity field, and hence the strain-rate tensor, unaltered by filtering in the viscous-convective subrange. Strong preferential alignment is observed for the case of Gaussian and box filters, whereas the sharp-spectral filter leads to close to a random orientation. The orientation angle obtained with the Gaussian and box filters is largely independent of the filter width and the Schmidt number. It is shown that the alignment direction observed numerically using these two filters is predicted very well by the tensor-diffusivity model. Moreover, preferred alignment of the scalar gradient vector in the eigenframe is shown to mitigate any probable issues of negative diffusivity in the tensor-diffusivity model. Consequentially, the model might not suffer from solution instability when used for large eddy simulations of scalar transport in homogeneous isotropic turbulence. Further a priori tests indicate poor alignment of the Smagorinsky and stretched vortex model predictions with the exact subfilter flux. Finally, strong filter dependence of subfilter scalar-flux orientation suggests that explicit filtering may be preferable to implicit filtering in large eddy simulations.

  18. Anisotropic Self-Assembly from Isotropic Colloidal Building Blocks.

    Science.gov (United States)

    Rey, Marcel; Law, Adam D; Buzza, D Martin A; Vogel, Nicolas

    2017-12-06

    Spherical colloidal particles generally self-assemble into hexagonal lattices in two dimensions. However, more complex, non-hexagonal phases have been predicted theoretically for isotropic particles with a soft repulsive shoulder but have not been experimentally realized. We study the phase behavior of microspheres in the presence of poly(N-isopropylacrylamide) (PNiPAm) microgels at the air/water interface. We observe a complex phase diagram, including phases with chain and square arrangements, which exclusively form in the presence of the microgels. Our experimental data suggests that the microgels form a corona around the microspheres and induce a soft repulsive shoulder that governs the self-assembly in this system. The observed structures are fully reproduced by both minimum energy calculations and finite temperature Monte Carlo simulations of hard core-soft shoulder particles with experimentally realistic interaction parameters. Our results demonstrate how complex, anisotropic assembly patterns can be realized from entirely isotropic building blocks by control of the interaction potential.

  19. Elastoplastic properties of transversely isotropic sintered metal fiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, T.F. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics and Center for Nano and Micro Mechanics, AML, Tsinghua University, Beijing 100084 (China); Deng, Z.C. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116024 (China)

    2016-04-26

    Sintering of layered metal fiber sheets produces a structured, tunable, paper-like material that holds promise for thermal and biomaterial applications. Particularly promising for these areas is a material system synthesized by the sequential-overlap method, which produces a networked, transversely isotropic open cell porous material. Engineering application of these materials has been limited due in part to uncertainty about their mechanical responses. Here, we present a comprehensive structural and mechanical characterization of these materials, and define a modeling framework suitable for engineering design. X-ray tomography revealed a layered structure with an isotropic fiber distribution within each layer. In-plane uniaxial compression and tension tests revealed a linear dependence of Young's modulus and yield strength upon relative fiber density. Out-of-plane tests, however, revealed much lower Young's modulus and strength, with quartic and cubic dependence upon relative density, respectively. Fiber fracture was the dominant mode of failure for tension within the “in-plane” directions of the fiber layers, and fiber decohesion was the dominant mode of failure for tension applied in the “out-of-plane” direction, normal to the layers. Models based upon dispersions of beams predicted both in-plane and out-of-plane elastoplastic properties as a function of the relative density of fibers. These models provide a foundation for mechanical design with and optimization of these materials for a broad range of potential applications.

  20. An Areal Isotropic Spline Filter for Surface Metrology.

    Science.gov (United States)

    Zhang, Hao; Tong, Mingsi; Chu, Wei

    2015-01-01

    This paper deals with the application of the spline filter as an areal filter for surface metrology. A profile (2D) filter is often applied in orthogonal directions to yield an areal filter for a three-dimensional (3D) measurement. Unlike the Gaussian filter, the spline filter presents an anisotropic characteristic when used as an areal filter. This disadvantage hampers the wide application of spline filters for evaluation and analysis of areal surface topography. An approximation method is proposed in this paper to overcome the problem. In this method, a profile high-order spline filter serial is constructed to approximate the filtering characteristic of the Gaussian filter. Then an areal filter with isotropic characteristic is composed by implementing the profile spline filter in the orthogonal directions. It is demonstrated that the constructed areal filter has two important features for surface metrology: an isotropic amplitude characteristic and no end effects. Some examples of applying this method on simulated and practical surfaces are analyzed.

  1. Stochastic representations of seismic anisotropy: transversely isotropic effective media models

    Science.gov (United States)

    Song, Xin; Jordan, Thomas H.

    2017-06-01

    We apply Jordan's self-consistent, second-order Born theory to compute the effective stiffness tensor for spatially stationary, stochastic models of 3-D elastic heterogeneity. The effects of local anisotropy can be separated from spatially extended geometric anisotropy by factoring the covariance of the moduli into a one-point variance tensor and a two-point correlation function. The latter is incorporated into the rescaled Kneer tensor, which is contracted against the one-point variance tensor to yield a second-order perturbation to the Voigt average. The theory can handle heterogeneity with orthotropic stochastic symmetry, but the calculations presented here are restricted to media with transversely isotropic (TI) statistics. We thoroughly investigate TI stochastic media that are locally isotropic. If the heterogeneity aspect ratio η is unity, the effective medium is isotropic, and the main effect of the scattering is to reduce the moduli. The two limiting regimes are a 2-D vertical stochastic bundle (η → 0), where the P and S anisotropy ratios are negative, and a 1-D horizontal stochastic laminate (η → ∞), where they are positive. The effective-medium equations for the latter yield the second-order approximation to Backus's exact solution, demonstrating the connection between Backus theory and self-consistent effective-media theory. Comparisons of the exact and second-order results for non-Gaussian laminates indicate that the approximation should be adequate for moduli heterogeneities less than about 30 per cent and thus valid for most seismological purposes. We apply the locally isotropic theory to data from the Los Angeles Basin to illustrate how it can be used to explain shallow seismic anisotropy. To assess the relative contributions of geometric and local anisotropy to the effective anisotropy, we consider a rotational model for stochastic anisotropic variability proposed by Jordan. In this model, the axis of a hexagonally symmetric stiffness

  2. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  3. An Accurate Hardware Sum-of-Cisoids Fading Channel Simulator for Isotropic and Non-Isotropic Mobile Radio Environments

    Directory of Open Access Journals (Sweden)

    L. Vela-Garcia

    2012-01-01

    Full Text Available The rapid technological development in the field of wireless communications calls for devices capable of reproducing and simulating the behavior of the channel under realistic propagation conditions. This paper presents a hardware fading channel simulator that is able to generate stochastic processes characterized by symmetrical and asymmetrical Doppler power spectral densities (PSDs depending on the assumption of isotropic or non-isotropic scattering. The concept of the proposed hardware simulator is based on an implementation of the sum-of-cisoids (SOC method. The hardware simulator is capable of handling any configuration of the cisoid's amplitudes, frequencies, and phases. Each of the cisoids that constitutes the SOC model is implemented using a piecewise polynomial approximation technique. The investigation of the higher-order statistics of the generated fading processes, like the level-crossing rate (LCR and the average duration of fades (ADF, shows that our design is able to reproduce accurately the key features of realistic channel models that are considered as candidates for the latest wireless communication standards.

  4. Birefringent Stable Glass with Predominantly Isotropic Molecular Orientation

    Science.gov (United States)

    Liu, Tianyi; Exarhos, Annemarie L.; Alguire, Ethan C.; Gao, Feng; Salami-Ranjbaran, Elmira; Cheng, Kevin; Jia, Tiezheng; Subotnik, Joseph E.; Walsh, Patrick J.; Kikkawa, James M.; Fakhraai, Zahra

    2017-09-01

    Birefringence in stable glasses produced by physical vapor deposition often implies molecular alignment similar to liquid crystals. As such, it remains unclear whether these glasses share the same energy landscape as liquid-quenched glasses that have been aged for millions of years. Here, we produce stable glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene molecules that retain three-dimensional shapes and do not preferentially align in a specific direction. Using a combination of angle- and polarization-dependent photoluminescence and ellipsometry experiments, we show that these stable glasses possess a predominantly isotropic molecular orientation while being optically birefringent. The intrinsic birefringence strongly correlates with increased density, showing that molecular ordering is not required to produce stable glasses or optical birefringence, and provides important insights into the process of stable glass formation via surface-mediated equilibration. To our knowledge, such novel amorphous packing has never been reported in the past.

  5. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  6. Giant isotropic magnetostrain of GaCMn3

    Science.gov (United States)

    Guo, X. G.; Tong, P.; Lin, J. C.; Yang, C.; Zhang, K.; Lin, S.; Song, W. H.; Sun, Y. P.

    2017-02-01

    Normal magnetostriction (MS), which comes from the gradual rotation of magnetic domains in ferromagnets, is anisotropic and smoothly dependent on the applied magnetic field. In cubic antiperovskite compound GaCMn3, a sharp shrink of lattice volume takes place at the antiferromagnetic (AFM) to intermediate magnetic (IM) phase transition. Below the Neel temperature (˜143 K), the AFM-IM transformation can be driven by external magnetic field, leading to a giant isotropic MS of ˜1700 ppm comparable to that of commercial Terfenol-D. In contrast to normal MS, the field-induced magnetostrain exhibits a rapid switch behavior at the critical field. Furthermore, good reversibility and stability were demonstrated for the giant MS of GaCMn3 compound.

  7. Solitary plane waves in an isotropic hexagonal lattice

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth

    1998-01-01

    Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different directions on the plane are found by using the pseudospectral method. The main point of our studies is that the lattice model is isotropic and we show that the sound velocity is the same...... for different directions of wave propagation. The pseudospectral method allows us to obtain solitary wave solutions with very narrow profile, the thickness of which may contain a few atoms or even less than one lattice spacing (i.e., essentially discrete solutions). Since these nonlinear waves are quite narrow......, details of lattice microstructure appear to be important for their motion. Particularly, the regime of their propagation qualitatively depends on whether or not the direction of their motion occurs along the lattice bonds. Two types of solitary plane waves are found and studied. The stability...

  8. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    Science.gov (United States)

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Renormalization Group Running of Newton's G: The Static Isotropic Case

    CERN Document Server

    Hamber, H W; Hamber, Herbert W.; Williams, Ruth M.

    2007-01-01

    Corrections are computed to the classical static isotropic solution of general relativity, arising from non-perturbative quantum gravity effects. A slow rise of the effective gravitational coupling with distance is shown to involve a genuinely non-perturbative scale, closely connected with the gravitational vacuum condensate, and thereby, it is argued, related to the observed effective cosmological constant. Several analogies between the proposed vacuum condensate picture of quantum gravitation, and non-perturbative aspects of vacuum condensation in strongly coupled non-abelian gauge theories are developed. In contrast to phenomenological approaches, the underlying functional integral formulation of the theory severely constrains possible scenarios for the renormalization group evolution of couplings. The expected running of Newton's constant $G$ is compared to known vacuum polarization induced effects in QED and QCD. The general analysis is then extended to a set of covariant non-local effective field equati...

  10. Homogeneous, isotropic turbulence phenomenology, renormalization, and statistical closures

    CERN Document Server

    McComb, W David

    2014-01-01

    Fluid turbulence is often referred to as 'the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of...

  11. Fast response and transparent optically isotropic liquid crystal diffraction grating.

    Science.gov (United States)

    Manda, Ramesh; Pagidi, Srinivas; Bhattacharyya, Surjya Sarathi; Park, Chul Ho; Lim, Young Jin; Gwag, Jin Seog; Lee, Seung Hee

    2017-10-02

    We have demonstrated an electrically tunable less polarization sensitive and fast response nanostructured polymer dispersed liquid crystal (nano-PDLC) diffraction grating. Fabricated nano-PDLC is optically transparent in visible wavelength regime. The optical isotropic nature was increased by minimizing the liquid crystal droplet size below visible wavelength thereby eliminated scattering. Diffraction properties of in-plane switching (IPS) and fringe-field switching (FFS) cells were measured and compared with one another up to four orders. We have obtained a pore-type polymer network constructed by highly interlinked polymer beads at which the response time is improved by strong interaction of liquid crystal molecules with polymer beads at interface. The diffraction pattern obtained by transparent nano-PDLC film has several interesting properties such as less polarization dependence and fast response. This device can be used as transparent tunable diffractor along with other photonic application.

  12. Anisotropic to Isotropic Phase Transitions in the Early Universe

    Directory of Open Access Journals (Sweden)

    Ajaib M. A.

    2012-04-01

    Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.

  13. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.

    Science.gov (United States)

    Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene

    2011-02-14

    We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the

  14. Circular random motion in diatom gliding under isotropic conditions.

    Science.gov (United States)

    Gutiérrez-Medina, Braulio; Guerra, Andrés Jiménez; Maldonado, Ana Iris Peña; Rubio, Yadiralia Covarrubias; Meza, Jessica Viridiana García

    2014-11-13

    How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms.

  15. Isotropic radio background from quark nugget dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Kyle; Zhitnitsky, Ariel R., E-mail: arz@physics.ubc.ca

    2013-07-09

    Recent measurements by the ARCADE2 experiment unambiguously show an excess in the isotropic radio background at frequencies below the GHz scale. We argue that this excess may be a natural consequence of the interaction of visible and dark matter in the early universe if the dark matter consists of heavy nuggets of quark matter. Explanation of the observed radio band excess requires the introduction of no new parameters, rather we exploit the same dark matter model and identical normalization parameters to those previously used to explain other excesses of diffuse emission from the centre of our galaxy. These previously observed excesses include the WMAP Haze of GHz radiation, keV X-ray emission and MeV gamma-ray radiation.

  16. Impedances of rigid cylindrical foundations embedded in transversely isotropic soils

    Science.gov (United States)

    Barros, P. L. A.

    2006-06-01

    A complete formulation and implementation for assessment of the response to dynamic loads of cylindrical rigid structures embedded in transversely isotropic elastic half-spaces is presented. The analysis is performed in the frequency domain and the steady-state structure response is obtained. The method is based on a non-singular version of the indirect boundary element method which uses influence functions, instead of Green's functions, as fundamental solutions. These influence functions are the response of an elastic half-space to distributed, internally applied loads. The proposed method imposes full bonding contact between the foundation and the surrounding soil. Numerical results for displacement (vertical and horizontal) and rotation (twisting and rocking) impedances, showing the influence of the soil anisotropy, are presented. Results for the soil-structure interface tractions and for the displacement field throughout the half-space are also shown.

  17. A theoretical study of the isotropic cut sphere fluids

    Science.gov (United States)

    Chamoux, Antoine; Perera, Aurélien

    1998-05-01

    The cut sphere fluid is studied in the isotropic phase by the Percus Yevick (PY) and the Hypernetted Chain (HNC) integral equation techniques, as well as by the theory recently proposed which is based on a geometrical interpretation of the direct correlation function. Fluids of cut spheres with thicknesses L* ranging from 0 to 0.7 have been studied, and detailed results for L*=0.1, 0.2, and 0.3 are reported. The L*=0 case is also examined. A new simplified version of the numerical implementation of the PY and HNC closures is proposed here. The results for pressures and structural properties are compared with the available simulations results and the recent theoretical results from the authors. The important feature of the present work is to show the ability of the HNC theory to predict the cubatic phase observed in the computer simulations for thicknesses around 0.2. The nematic phase is also predicted by the HNC theory for thicknesses smaller than L*=0.12. In agreement with previously obtained results, the detailed analysis of the PY theory results show that this approximation is unable to predict an instability toward any of the orientationally ordered fluid phases. The geometrical approach shows the correct trend for an isotropic to nematic transition, but exhibits an instability toward the cubatic phase only for thicknesses above L*=0.5, thus providing an illustration of the inability of standard density functional type theories to fully describe complex fluids. This study also sheds some light on the major differences between the three approaches in the treatment of many body density correlations.

  18. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  19. Radiation effects in bulk silicon

    Science.gov (United States)

    Claeys, Cor; Vanhellemont, Jan

    1994-01-01

    This paper highlights important aspects related to irradiation effects in bulk silicon. Some basic principles related to the interaction of radiation with material, i.e. ionization and atomic displacement, are briefly reviewed. A physical understanding of radiation effects strongly depends on the availability of appropriate analytical tools. These tools are critically accessed from a silicon bulk viewpoint. More detailed information, related to the properties of the bulk damage and some dedicated application aspects, is given for both electron and proton irradiations. Emphasis is placed on radiation environments encountered during space missions and on their influence on the electrical performance of devices such as memories and image sensors.

  20. Comparison of contrast-enhanced isotropic 3D-GRE-T1WI sequence versus conventional non-isotropic sequence on preoperative staging of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xiaoduo Yu

    Full Text Available To compare contrast-enhanced isotropic 3D-GRE-T1WI sequence vs. conventional non-isotropic sequence in terms of image quality, estimated signal-to-noise ratio (eSNR, relative tumor contrast and performance of cervical cancer staging.This retrospective study was approved by the institutional review board, and informed consent was waived. Seventy-one patients (47 ± 9.4 years, with pathologically-confirmed cervical cancer underwent axial contrast-enhanced 1 mm3 isotropic 3D-GRE-T1WI sequence (herein referred to Isotropy, and 3-mm-thick non-isotropic sagittal and coronal sequences. Image quality score, eSNR and relative contrast between tumor to myometrium, gluteal muscle, and fat respectively, were compared between 3-mm-thick reconstructed images from Isotropy and directly scanned non-isotropic images by paired t-test. Difference in tumor staging obtained from Isotropy and combined Three-planes including reconstructed axial images, directly scanned sagittal and coronal sequence were compared by McNemar test.Both sequences showed similar image quality. Reconstructed images demonstrated higher eSNR, equal or lower relative tumor contrast compared with non-isotropic images. Compared with performing diagnosis on Three-planes, both reviewers showed higher accuracy when diagnosing vaginal invasion on Isotropy (p = 0.039 and 0.003, respectively.Compared with non-isotropic sequence, 3.0T MR isotropic 3D-GRE-T1WI sequence exhibited better eSNR, providing more reliable clinical information for preoperative staging of cervical cancer.

  1. Silicon Bulk Micromachined Vibratory Gyroscope

    Science.gov (United States)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.

    1996-01-01

    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  2. Proceedings of BulkTrans '89

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Papers were presented on bulk commodity demand; steel industry bulk trades; grains and the world food economy; steam coal and cement demand; shipping profitability; bulk carrier design and economics; bulk ports and terminals; ship unloading; computers in bulk terminals; and conveyors and stockyard equipment.

  3. Combatting bulking sludge with ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Wuensch, B.; Heine, W.; Neis, U. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Sanitary and Environmental Engineering

    2002-07-01

    Bulking and floating sludge cause great problems in many waste water treatment plants with biological nutrient removal. The purification as well as the sludge digestion process can be affected. These problems are due to the interlaced structure of filamentous microorganisms, which have an impact on the sludge's settling behaviour. Foam is able to build up a stable layer, which does not settle in the secondary clarifier. Foam in digestion causes a reduction of the degree of stabilisation and of the biogas production. We use low-frequency ultrasound to combat filamentous organisms in bulking sludge. Low-frequency ultrasound is suitable to create high local shear stresses, which are capable of breaking the filamentous structures of the sludge. After preliminary lab-scale tests now a full-scale new ultrasound equipment is operating at Reinfeld sewage treatment plant, Germany. The objective of this study is to explore the best ultrasound configuration to destroy the filamentous structure of bulking and foaming sludge in a substainable way. Later this study will also look into the effects of ultrasound treated bulking sludge on the anaerobic digestion process. Up to now results show that the settling behaviour of bulking sludge is improved. The minimal ultrasound energy input for destruction of bulking structure was determined. (orig.)

  4. Diffraction Coefficients of a Semi-Infinite Planar Crack Embedded in a Transversely-Isotropic Space

    Science.gov (United States)

    Gautesen, A.; Fradkin, L.; Zernov, V.

    2007-03-01

    We develop a semi-analytical procedure for calculating the diffraction coefficients for cracks perpendicular to the symmetry axis of a transversely-isotropic medium. The problem is of interest in the mathematical modeling of NDE (non-destructive evaluation) of austenitic steels, which are found in claddings and other welds in the nuclear reactors and can be modelled as transversely isotropic.

  5. Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media

    CERN Document Server

    Kim, Seulong

    2016-01-01

    Bi-isotropic media, which include isotropic chiral media and Tellegen media as special cases, are the most general form of linear isotropic media where the electric displacement and the magnetic induction are related to both the electric field and the magnetic intensity. In inhomogeneous bi-isotropic media, electromagnetic waves of two different polarizations are coupled to each other. In this paper, we develop a generalized version of the invariant imbedding method for the study of wave propagation in arbitrarily-inhomogeneous stratified bi-isotropic media, which can be used to solve the coupled wave propagation problem accurately and efficiently. We verify the validity and usefulness of the method by applying it to several examples, including the wave propagation in a uniform chiral slab, the surface wave excitation in a bilayer system made of a layer of Tellegen medium and a metal layer, and the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations in inhomogeneous Telle...

  6. Modelling of bulk superconductor magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  7. A Comprehensive Theory of Yielding and Failure for Isotropic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R M

    2006-08-10

    A theory of yielding and failure for homogeneous and isotropic materials is given. The theory is calibrated by two independent, measurable properties and from those it predicts possible failure for any given state of stress. It also differentiates between ductile yielding and brittle failure. The explicit ductile-brittle criterion depends not only upon the material specification through the two properties, but also and equally importantly depends upon the type of imposed stress state. The Mises criterion is a special (limiting) case of the present theory. A close examination of this case shows that the Mises material idealization does not necessarily imply ductile behavior under all conditions, only under most conditions. When the first invariant of the yield/failure stress state is sufficiently large relative to the distortional part, brittle failure will be expected to occur. For general material types, it is shown that it is possible to have a state of spreading plastic flow, but as the elastic-plastic boundary advances, the conditions for yielding on it can change over to conditions for brittle failure because of the evolving stress state. The general theory is of a three dimensional form and it applies to full density materials for which the yield/failure strength in uniaxial tension is less than or at most equal to the magnitude of that in uniaxial compression.

  8. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong

    2017-11-11

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  9. The Maximum Isotropic Energy of Gamma-ray Bursts

    Science.gov (United States)

    Atteia, J.-L.; Heussaff, V.; Dezalay, J.-P.; Klotz, A.; Turpin, D.; Tsvetkova, A. E.; Frederiks, D. D.; Zolnierowski, Y.; Daigne, F.; Mochkovitch, R.

    2017-03-01

    The most energetic gamma-ray bursts (GRBs) are remarkable sources releasing huge amounts of energy on short timescales. Their prompt emission, which usually lasts a few seconds, is so bright that it is visible across the whole observable universe. Studying these extreme events may provide clues on the nature of GRB progenitors and on the physical processes at work in relativistic jets. In this paper, we study the bright end of the isotropic energy distribution of long GRBs. We use two samples of long GRBs with redshift detected by Fermi/GBM or Konus-Wind, two instruments that measure the spectral shape and the energetics of the prompt emission accurately. We focus on GRBs within a range of redshifts z = 1-5, a volume that contains a large number of energetic GRBs, and we propose a simple method to reconstruct the bright end of the GRB energy distribution from the observed one. We find that the GRB energy distribution cannot be described by a simple power law but requires a strong cutoff above 1{--}3× {10}54 erg. We attribute this feature to an intrinsic limit on the energy per unit of solid angle radiated by GRBs.

  10. Magnetic resonance investigations of lipid motion in isotropic bicelles.

    Science.gov (United States)

    Andersson, August; Mäler, Lena

    2005-08-16

    The dynamics of DMPC in different isotropic bicelles have been investigated by NMR and EPR methods. The local dynamics were obtained by interpretation of 13C NMR relaxation measurements of DMPC in the bicelles, and these results were compared to EPR spectra of spin-labeled lipids. The overall size of the bicelles was investigated by PFG NMR translational diffusion measurements. The dynamics and relative sizes were compared among three different bicelles: [DMPC]/[DHPC] = 0.25, [DMPC]/[DHPC] = 0.5, and [DMPC]/[CHAPS] = 0.5. The local motion is found to depend much more strongly on the choice of the detergent, rather than the overall size of the bicelle. The results provide an explanation for differences in apparent dynamics for different peptides, which are bound to bicelles. This in turn determines under what conditions reasonable NMR spectra can be observed. A model is presented in which extensive local motion, in conjunction with the overall size, affects the spectral properties. An analytical expression for the size dependence of the bicelles, relating the radius of the bilayer region with physical properties of the detergent and the lipid, is also presented.

  11. Helical bottleneck effect in 3D homogeneous isotropic turbulence

    Science.gov (United States)

    Stepanov, Rodion; Golbraikh, Ephim; Frick, Peter; Shestakov, Alexander

    2018-02-01

    We present the results of modelling the development of homogeneous and isotropic turbulence with a large-scale source of energy and a source of helicity distributed over scales. We use the shell model for numerical simulation of the turbulence at high Reynolds number. The results show that the helicity injection leads to a significant change in the behavior of the energy and helicity spectra in scales larger and smaller than the energy injection scale. We suggest the phenomenology for direct turbulent cascades with the helicity effect, which reduces the efficiency of the spectral energy transfer. Therefore the energy is accumulated and redistributed so that non-linear interactions will be sufficient to provide a constant energy flux. It can be interpreted as the ‘helical bottleneck effect’ which, depending on the parameters of the injection helicity, reminds one of the well-known bottleneck effect at the end of inertial range. Simulations which included the infrared part of the spectrum show that the inverse cascade hardly develops under distributed helicity forcing.

  12. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Landi Degl’Innocenti, Egidio [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  13. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  14. Cosmological simulations of isotropic conduction in galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Britton; O' Shea, Brian W.; Voit, G. Mark; Ventimiglia, David [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Skillman, Samuel W., E-mail: smit1685@msu.edu [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States)

    2013-12-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  15. Traveltime approximations for transversely isotropic media with an inhomogeneous background

    KAUST Repository

    Alkhalifah, Tariq

    2011-05-01

    A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.

  16. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    Science.gov (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  17. Cosmological Simulations of Isotropic Conduction in Galaxy Clusters

    Science.gov (United States)

    Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.

    2013-12-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ~5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  18. Glycolaldehyde and Ethylene Glycol on Nearly Isotropic Comets

    Science.gov (United States)

    Butler, Jayden; Zellner, Nicolle; McCaffrey, Vanessa

    2017-01-01

    The delivery of glycolaldehyde (GLA) and ethylene glycol (EG) could be could be important for understanding the origin of life. GLA, the simplest sugar, is a building block for ribose, the backbone of RNA; EG is a reduced alcohol variant of GLA, found to be created by the impact of GLA under simulated cometary impact conditions (McCaffrey et al. 2014). GLA and EG have been found in regions of the interstellar medium and recently on nearly isotropic comets (NICs), which originate in the Oort Cloud. NICs are long period comets (P > 200 years) and have orbits that are nearly randomly inclined to the ecliptic plane (Mumma & Charnley et al. 2011). Based on impact experiments that assess survivability of these molecules (McCaffrey et al. 2014), we aim to determine the mass of GLA and EG that could have been delivered on comets since the formation of the Solar System. The focus of the current study is to determine the abundances of GLA and EG on C/1995 O1 (Hale-Bopp), C/2012 F6 (Lemmon), C/2013 R1 (Lovejoy 2013), and C/2014 Q2 (Lovejoy 2014), all of which have been found to possess at least one of these molecules. Using published values of observed production rates of water, GLA, and EG (e.g., Biver et al. 2015), we have estimated a range of masses of these molecules of interest on their host comets. Even with a high degree of uncertainty in comet diameters and volumes, we estimate that 109 to 1017 kg of these molecules could be delivered by a single comet, and that 108 to 1017 kg could have survived the impact.

  19. Dynamic mechanical properties of isotropic/anisotropic silicon magnetorheological elastomer composites

    Science.gov (United States)

    Sapouna, K.; Xiong, Y. P.; Shenoi, R. A.

    2017-11-01

    This study examines the principle of combining isotropic and anisotropic magnetorheological elastomers (MRE) in parallel and series configurations, to adjust the zero-field dynamic stiffness and damping capability of silicon MREs without compromising MR effect. The dynamic mechanical properties can be further tailored by adjusting the isotropic/anisotropic ratio. Damping of parallel configuration isotropic/anisotropic composites can be increased by combining MREs made with iron particles of small (4-6 μm) and large (magnetic field-strain amplitude coupling effects were examined under a dynamic compressive strain where the amplitude was varied from 0.25% to 1.5%.

  20. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  1. Bulk fields with brane terms

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales (CAFPE), Universidad de Granada, E-18071 Granada (Spain); Perez-Victoria, M. [Dipartimento di Fisica ' ' G. Galilei' ' , Universita di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); Santiago, J. [Institute for Particle Physics Phenomenology, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2004-07-01

    In theories with branes, bulk fields get in general divergent corrections localized on these defects. Hence, the corresponding brane terms are renormalized and should be included in the effective theory from the very beginning. We review the phenomenology associated to brane kinetic terms for different spins and backgrounds, and point out that renormalization is required already at the classical level. (orig.)

  2. Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    CERN Document Server

    Frankland, J D; Bacri, C O; Bellaize, N; Bocage, F; Borderie, B; Bougault, R; Brou, R; Buchet, P; Chbihi, A; Chomaz, P; Colin, J; Colonna, M; Cussol, D; Dayras, R; Demeyer, A N; Doré, D; Durand, D; Galíchet, E; Genouin-Duhamel, E; Gerlic, E; Guarnera, A; Guinet, D; Lautesse, P; Laville, J L; Le Neindre, N; Lecolley, J F; Legrain, R; Louvel, M; Maskay, A M; Nalpas, L; Nguyen, A D; Plagnol, E; Pârlog, M; Rivet, M F; Rosato, E; Saint-Laurent, F; Salou, S; Squalli, M; Steckmeyer, J C; Tabacaru, G; Tamain, B; Tassan-Got, L; Tirel, O; Vient, E; Volant, C; Wieleczko, J P

    2001-01-01

    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36 A MeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32 A MeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain.

  3. Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Frankland, J.D. E-mail: frankland@ganil.fr; Borderie, B.; Colonna, M.; Rivet, M.F.; Bacri, Ch.O.; Chomaz, Ph.; Durand, D.; Guarnera, A.; Parlog, M.; Squalli, M.; Tabacaru, G.; Auger, G.; Bellaize, N.; Bocage, F.; Bougault, R.; Brou, R.; Buchet, P.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Guinet, D.; Lautesse, P.; Laville, J.L.; Lecolley, J.F.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Nguyen, A.D.; Plagnol, E.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Steckmeyer, J.C.; Tamain, B.; Tassan-Got, L.; Tirel, O.; Vient, E.; Volant, C.; Wieleczko, J.P

    2001-07-02

    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36 A MeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32 A MeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain.

  4. MIMO Channel Capacity in 2D and 3D Isotropic Environments

    Directory of Open Access Journals (Sweden)

    Ryan J. Pirkl

    2012-01-01

    Full Text Available We analyze theoretical distributions of MIMO channel capacity for different antennas in 2D and 3D statistically isotropic environments, which may be generated by multiprobe anechoic and reverberation chambers, respectively. We observe that the two environments yield comparable capacity distributions provided that (1 the 2D statistically isotropic environment’s capacity data are taken at many different antenna orientations and (2 the radiation elements have a low directivity. When these conditions are met, we find that the relative error between the 2D statistically isotropic environment’s orientation-combined capacity distribution and the 3D statistically isotropic environment’s capacity distribution is typically less than 10% for signal-to-noise ratios greater than 5 dB.

  5. Interval estimation of the mass fractal dimension for isotropic sampling percolation clusters

    OpenAIRE

    Moskalev, P. V.; Grebennikov, K. V.; Shitov, V. V.

    2011-01-01

    This report focuses on the dependencies for the center and radius of the confidence interval that arise when estimating the mass fractal dimensions of isotropic sampling clusters in the site percolation model.

  6. Reversed Circular Dichroism of Isotropic Chiral Mediums with Negative Real permeability and permittivity

    OpenAIRE

    Lakhtakia, Akhlesh

    2002-01-01

    Negative real parts of the permittivity and permeability lead an isotropic chiral medium to exhibit circular dichroism that is reversed with respect to that exhibited by an identical medium but the real parts of whose permittivity and permeability are positive.

  7. Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Torres del Castillo, G.F. [Departamento de Fisica Matematica, Instituto de Ciencias, Universidad Autonoma de Puebla, 72570 Puebla (Mexico); Tepper G, T. [Escuela de Ciencias, Departamento de Fisica y Matematicas, Universidad de Las Americas-Puebla, Santa Catarina Martir, 72820 Cholula, Puebla (Mexico)

    2002-07-01

    It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)

  8. A new isotropic cell for studying the thermo-mechanical behavior of unsaturated expansive clays

    OpenAIRE

    Tang, Anh Minh; Cui, Yu-Jun; Barnel, Nathalie

    2007-01-01

    International audience; This paper presents a new suction-temperature controlled isotropic cell that can be used to study the thermo-mechanical behavior of unsaturated expansive clays. The vapor equilibrium technique is used to control the soil suction; the temperature of the cell is controlled using a thermostat bath. The isotropic pressure is applied using a volume/pressure controller that is also used to monitor the volume change of soil specimen. Preliminary experimental results showed go...

  9. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    OpenAIRE

    Shakhawan Al-Zangana; Maria Iliut; Gökçen Boran; Michael Turner; Aravind Vijayaraghavan; Ingo Dierking

    2016-01-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such ...

  10. Bulk density of small meteoroids

    Science.gov (United States)

    Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.

    2011-06-01

    Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also

  11. Bulk Lorentz factors of gamma-ray bursts

    Science.gov (United States)

    Ghirlanda, G.; Nappo, F.; Ghisellini, G.; Melandri, A.; Marcarini, G.; Nava, L.; Salafia, O. S.; Campana, S.; Salvaterra, R.

    2018-01-01

    Knowledge of the bulk Lorentz factor Γ0 of gamma-ray bursts (GRBs) allows us to compute their comoving frame properties shedding light on their physics. Upon collisions with the circumburst matter, the fireball of a GRB starts to decelerate, producing a peak or a break (depending on the circumburst density profile) in the light curve of the afterglow. Considering all bursts with known redshift and with an early coverage of their emission, we find 67 GRBs (including one short event) with a peak in their optical or GeV light curves at a time tp. For another 106 GRBs we set an upper limit tpUL. The measure of tp provides the bulk Lorentz factor Γ0 of the fireball before deceleration. We show that tp is due to the dynamics of the fireball deceleration and not to the passage of a characteristic frequency of the synchrotron spectrum across the optical band. Considering the tp of 66 long GRBs and the 85 most constraining upper limits, we estimate Γ0 or a lower limit Γ0LL. Using censored data analysis methods, we reconstruct the most likely distribution of tp. All tp are larger than the time Tp,γ when the prompt γ-ray emission peaks, and are much larger than the time Tph when the fireball becomes transparent, that is, tp>Tp,γ>Tph. The reconstructed distribution of Γ0 has median value 300 (150) for a uniform (wind) circumburst density profile. In the comoving frame, long GRBs have typical isotropic energy, luminosity, and peak energy ⟨ Eiso ⟩ = 3(8) × 1050 erg, ⟨ Liso ⟩ = 3(15) × 1047 erg s-1, and ⟨ Epeak ⟩ = 1(2) keV in the homogeneous (wind) case. We confirm that the significant correlations between Γ0 and the rest frame isotropic energy (Eiso), luminosity (Liso), and peak energy (Ep) are not due to selection effects. When combined, they lead to the observed Ep-Eiso and Ep-Liso correlations. Finally, assuming a typical opening angle of 5 degrees, we derive the distribution of the jet baryon loading which is centered around a few 10-6M⊙.

  12. A GENERALIZED CROSS-PROPERTY RELATION BETWEEN THE ELASTIC MODULI AND CONDUCTIVITY OF ISOTROPIC POROUS MATERIALS WITH SPHEROIDAL PORES

    Directory of Open Access Journals (Sweden)

    Willi Pabst

    2016-12-01

    Full Text Available A new generalized cross-property relation is proposed for predicting the relative elastic moduli (Young's modulus, shear modulus, bulk modulus from the relative conductivities (thermal or electrical of isotropic porous materials with spheroidal pores. Using this cross-property-relation it is possible to estimate the elastic moduli when the conductivites are known (either from real-world measurements or from numerical calculations on digital microstructures and vice versa. This generalized cross-property relation contains the case of spherical or isometric pores as a special case, but is sufficiently general to account for the properties of materials with strongly anisometric pores, i.e. randomly orientated prolate and oblate pores, including the extreme cases of pore channels or microcracks. The exponent of this cross-property relation is shown in graphical form and - for future reference with respect to practical applications - its numerical values are listed in tabular form as a function of the pore aspect ratio and the Poisson ratio of the solid

  13. Bulk Moisture and Salinity Sensor

    Science.gov (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  14. Gold based bulk metallic glass

    OpenAIRE

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-01-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  15. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: applications to the isotropic liquid/vapor interface and isotropic/nematic transition.

    Science.gov (United States)

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-21

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, k(B)T(conf)=/, where ∇(r) is the nabla operator of position vector r. As far as we know, T(conf) was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T(conf) is much more widespread with more common potentials (Lennard Jones, electrostatic, ...). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.

  16. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  17. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material

    CERN Document Server

    Ni, Jincheng; Zhang, Chenchu; Hu, Yanlei; Yang, Liang; Lao, Zhaoxin; Xu, Bing; Li, Jiawen; Wu, Dong; Chu, Jiaru

    2016-01-01

    Optical vortices, as a kind of structured beam with helical phase wavefronts and doughnut shape intensity distribution, have been used for fabricating chiral structures in metal and spiral patterns in anisotropic polarization-dependent azobenzene polymer. However, in isotropic polymer, the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to two-dimensional doughnut intensity profile of optical vortices. Here we develop a powerful strategy for realizing chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave, which produces three-dimensional (3D) spiral optical fields. This coaxial interference beams are creatively produced by designing the contrivable holograms consisting of azimuthal phase and equiphase loaded on liquid-crystal spatial light modulator. Then, in isotropic polymer, 3D chiral microstructures are achieved under illumination of the coaxial interference femtosecond laser beams with their chirality controlled by ...

  18. A 3D printed dual GSM band near isotropic on-package antenna

    KAUST Repository

    Zhen, Su

    2017-10-25

    In this paper, we propose an on-package dual band monopole antenna with near-isotropic radiation pattern for GSM mobile applications. The proposed antenna is well matched for both GSM 900 and 1800 bands and provides decent gain for both the bands (1.67 and 3.27 dBi at 900 MHz and 1800 MHz respectively). The antenna is printed with silver ink on a 3D printed polymer based package. The package houses the GSM electronics and the battery. By optimizing the antenna arms width and length, a near-isotropic radiation pattern is achieved. Unlike the published isotropic antennas which are either single band or large in size, the proposed antenna covers both GSM bands with required bandwidth and is only half wavelength long. The design is low cost and highly suitable for various GSM applications such as localization, in additional to conventional communication applications.

  19. On the Speed of Rotation of the Isotropic Space (the Home of Photons)

    Science.gov (United States)

    Rabounski, Dmitri

    2009-10-01

    This paper applies the mathematical method of chronometric invariants, which are physical observable quantities in the General Theory of Relativity (Zelmanov A.L., Soviet Physics Doklady, 1956, v.1, 227-230). The isotropic region of the four-dimensional space-time is considered. This is the home for massless light-like particles (e.g. photons). It is shown that the isotropic space rotates, at each its point, with a linear velocity equal to the velocity of light. Even if the problem is tackled in the simplified conditions of Special Relativity, the same result is obtained. It is shown that the light-speed rotation of the isotropic space has a purely geometrical origin due to the space-time metric, where time is presented as the fourth coordinate, expressed through the velocity of light. This presentation is dedicated to Hermann Minkowski, on the 100th anniversary of his ``Raum und Zeit''.

  20. Excitation of surface waves on the interfaces of general bi-isotropic media

    CERN Document Server

    Kim, Seulong

    2016-01-01

    We study theoretically the characteristics of surface waves excited at the interface between a metal and a general bi-isotropic medium, which includes isotropic chiral media and Tellegen media as special cases. We derive an analytical dispersion relation for surface waves, using which we calculate the effective index and the propagation length numerically. We also calculate the absorptance, the cross-polarized reflectance and the spatial distribution of the electromagnetic fields for plane waves incident on a bilayer system consisting of a metal layer and a bi-isotropic layer in the Kretschmann configuration, using the invariant imbedding method. The results obtained using the invariant imbedding method agree with those obtained from the dispersion relation perfectly. In the case of chiral media, the effective index is an increasing function of the chirality index, whereas in Tellegen media, it is a decreasing function of the Tellegen parameter. The propagation length for surface waves in both cases increase ...

  1. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  2. High-Oriented Thermoelectric Nano-Bulk Fabricated from Thermoelectric Ink

    Science.gov (United States)

    Koyano, M.; Mizutani, S.; Hayashi, Y.; Nishino, S.; Miyata, M.; Tanaka, T.; Fukuda, K.

    2017-05-01

    Printing technology is expected to provide innovative and environmentally friendly processes for thermoelectric (TE) module fabrication. As described in this paper, we propose an orientation control process using plastic deformation at high temperatures and present high-oriented TE nano-bulks fabricated from bismuth telluride (Bi-Te) TE inks using this process. In the case of n-type Bi-Te, surface x-ray diffraction reveals that crystalline grains in the plastic-deformed nano-bulk demonstrate a c-plane orientation parallel to the pressed face. According to the high orientation, electrical resistivity ρ, thermal conductivity κ, and figure of merit ZT show anisotropic behavior. It is noteworthy that ( ZT)// almost reaches unity ( ZT)// ˜1 at 340 K, even at low temperatures of the plastic deformation process. In contrast, the ZT of plastic-deformed p-type nano-bulk indicates isotropic behavior. The difference in the process temperature dependence of ZT suggests that n-type and p-type nano-bulk orientation mechanisms mutually differ.

  3. DSM Software for Computing Synthetic Seismograms in Transversely Isotropic Spherically Symmetric Media and Its Application

    Science.gov (United States)

    Kawai, K.; Takeuchi, N.; Geller, R. J.

    2002-12-01

    The existence of anisotropy has been suggested in many regions in the Earth. Determining the anisotropic seismic velocity structure of the Earth can contribute to our understanding of geodynamics and rheology. Inversion of observed seismic waveforms is a promising approach for determining the Earth's anisotropic structure, but development of computational algorithms and software for computing synthetic seismograms in anisotropic media is required. Software for computing seismic waveforms in isotropic media based on the Direct Solution Method (DSM; Geller and Ohminato 1994, GJI) has previously been developed and is being used in data analysis, but DSM software for computing synthetic seismograms for anisotropic media has not yet been developed. In this study, we derive algorithms and develop software for computing synthetics for transversely isotropic spherically symmetric media. Our derivation follows previous work for isotropic media (Takeuchi et al. 1996, GRL; Cummins et al. 1997, GJI). The displacement is represented using spherical harmonics for the lateral dependence and linear spline functions for the vertical dependence of the trial functions. The numerical operators derived using these trial functions are then replaced by optimally accurate operators (Geller and Takeuchi 1995, GJI; Takeuchi and Geller 2002, GJI, submitted). Although the number of elastic constants increases from 2 to 5, the numerical operators are basically identical to those for the isotropic case. Our derivation does not require approximations that treat the anisotropic or laterally heterogeneous structure as an infinitesimal perturbation to the isotropic structure. Only spherically symmetric models are considered in this paper, but when our methods can be extended to the 3-D case to permit computation of synthetic seismograms with the same accuracy as for spherically symmetric isotropic models. We present computational examples such as accuracy checks and also some applications to

  4. Refractive Index and Wave Resistance of Homogeneous Plane Waves in Isotropic Media with Losses and Gain

    Science.gov (United States)

    Fisanov, V. V.

    2017-09-01

    Analytical expressions for complex values of the wave number, refractive index, and the characteristic wave impedance of homogeneous electromagnetic plane waves propagating in a linear, homogeneous, isotropic medium with losses and gain are derived. Formulas for determining the type of normal wave as a function of the values of the real and imaginary parts of the permittivity and permeability are obtained, and conditions for the appearance of positive and negative refraction at the interface of two isotropic media are indicated. In the approach applied here, the concept of a negative refractive index is not used.

  5. Modal dynamics of structures with bladed isotropic rotors and its complexity for 2-bladed rotors

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2016-01-01

    The modal dynamics of structures with bladed isotropic rotors is analyzed using Hill’s method. First, analytical derivation of the periodic system matrix shows that isotropic rotors with more than two blades can be represented by an exact Fourier series with 3/rev as the highest order. For 2-bladed...... rotors, the inverse mass matrix has an infinite Fourier series with harmonic components of decreasing norm, thus the system matrix can be approximated by a truncated Fourier series of predictable accuracy. Second, a novel method for automatically identifying the principal solutions of Hill’s eigenvalue...

  6. Direct manipulation of wave amplitude and phase through inverse design of isotropic media

    Science.gov (United States)

    Liu, Y.; Vial, B.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.

    2017-07-01

    In this article we propose a new design methodology allowing us to control both amplitude and phase of electromagnetic waves from a cylindrical incident wave. This results in isotropic materials and does not resort to transformation optics or its quasi-conformal approximations. Our method leads to two-dimensional isotropic, inhomogeneous material profiles of permittivity and permeability, to which a general class of scattering-free wave solutions arise. Our design is based on the separation of the complex wave solution into amplitude and phase. We give two types of examples to validate our methodology.

  7. How to estimate isotropic distributions and mean values in crystalline solids

    Science.gov (United States)

    Kontrym-Sznajd, G.; Dugdale, S. B.

    2015-11-01

    The concept of special directions in the Brillouin zone and the applicability of Houston’s formula (or its extended versions) to both theoretical and experimental investigations are discussed. We propose some expressions to describe the isotropic component in systems having both cubic and non-cubic symmetry. The results presented have implications for both experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements, for example coming from investigations of polycrystalline or powder samples. As George Orwell might have put it: all directions are equal, but some directions are more equal than others.

  8. The comparative study on analytical solutions and numerical solutions of displacement in transversely isotropic rock mass

    Science.gov (United States)

    Zhang, Zhizeng; Zhao, Zhao; Li, Yongtao

    2016-06-01

    This paper attempts to verify the correctness of the analytical displacement solution in transversely isotropic rock mass, and to determine the scope of its application. The analytical displacement solution of a circular tunnel in transversely isotropic rock mass was derived firstly. The analytical solution was compared with the numerical solution, which was carried out by FLAC3D software. The results show that the expression of the analytical displacement solution is correct, and the allowable engineering range is that the dip angle is less than 15 degrees.

  9. Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube

    Science.gov (United States)

    Zheng, Hong-Mei; Fang, Xiao-Yong; Cai, Li-Xia; Yin, Ai-Cha; Jin, Hai-Bo; Yu, Xiao-Xia; Cao, Mao-Sheng

    2014-12-01

    The electronic structures and optical properties of N-doped ZnO bulks and nanotubes are investigated using the first-principles density functional method. The calculated results show that the main optical parameters of ZnO bulks are isotropic (especially in the high frequency region), while ZnO nanotubes exhibit anisotropic optical properties. N doping results show that ZnO bulks and nanotubes present more obvious anisotropies in the low-frequency region. Thereinto, the optical parameters of N-doped ZnO bulks along the [100] direction are greater than those along the [001] direction, while for N-doped nanotubes, the variable quantities of optical parameters along the [100] direction are less than those along the [001] direction. In addition, refractive indexes, electrical conductivities, dielectric constants, and absorption coefficients of ZnO bulks and nanotubes each contain an obvious spectral band in the deep ultraviolet (UV) (100 nm ~ 300 nm). For each of N-doped ZnO bulks and nanotubes, a spectral peak appears in the UV and visible light region, showing that N doping can broaden the application scope of the optical properties of ZnO.

  10. Static deformation due to a long buried dip-slip fault in an isotropic ...

    Indian Academy of Sciences (India)

    Static deformation due to a long buried dip-slip fault in an isotropic half-space welded with an orthotropic half-space. NEERU BALA and SUNITA RANI. ∗. Department of Mathematics, Guru Jambheshwar University of Science and. Technology, Hisar 125 001 e-mail: s−b−rani@rediffmail.com. MS received 29 April 2008; ...

  11. Static deformation due to a long buried dip-slip fault in an isotropic ...

    Indian Academy of Sciences (India)

    Closed-form analytical expressions for the displacements and the stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space due to a dip-slip fault of finite width located at an arbitrary ...

  12. Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence

    NARCIS (Netherlands)

    Tsinober, A.; Vedula, P.; Yeung, P.K.

    2001-01-01

    The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical simulations (DNS) by decomposing the acceleration as the sum of local and convective contributions (aL = ?u/?t and aC = u??u), or alternatively as the sum of irrotational and solenoidal contributions

  13. Ca2+-induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers

    NARCIS (Netherlands)

    Gerritsen, W.J.; Kruijff, B. de; Verkleij, A.J.; Gier, J. de; Deenen, L.L.M. van

    1980-01-01

    Ca2+ induces a structural change in phosphatidylcholine-cardiolipin bilayers, which is visualised by freeze-fracturing as lipidic particles associated with the bilayer and is detected by 31P-NMR as isotropic motion of the phospholipids. In this structure a rapid transbilayer movement of

  14. Multiscale modeling of residual stresses in isotropic conductive adhesives with nano particles

    NARCIS (Netherlands)

    Erinc, M.; Dijk, M. van; Kouznetsova, V.H.

    2012-01-01

    Isotropic Conductive Adhesives (ICAs) are promising candidates for low temperature joining technologies in microelectronics, enabling ultra-fine pitch sizes. Especially in solar and automotive applications, long-term reliability is a prerequisite in new generation electronics. It is essential that

  15. Weak convergence to isotropic complex S α S $S\\alpha S$ random measure

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-09-01

    Full Text Available Abstract In this paper, we prove that an isotropic complex symmetric α-stable random measure ( 0 < α < 2 $0<\\alpha<2$ can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  16. Reliability investigations on LIFT-printed isotropic conductive adhesive joints for system-in-foil applications

    NARCIS (Netherlands)

    Sridhar, A.; Perinchery, S.M.; Smits, E.C.P.; Mandamparambil, R.; Brand, J. van den

    2015-01-01

    The reliability of a commercially available isotropic conductive adhesive (ICA) deposited via laser induced forward transfer (LIFT) printing is reported. ICAs are particularly important for surfacemount device (SMD) integration onto low-cost, large-area system-in-foil (SiF) applications such as

  17. The Projective Andoyer transformation and the connection between the 4-D isotropic oscillator and Kepler systems

    OpenAIRE

    Ferrer, Sebastián

    2010-01-01

    Extending to 4 degrees of freedom a symplectomorphism used in attitude dynamics it is shown in a direct way the connection between the 4-D isotropic harmonic oscillator and the 3-D Kepler systems. This approach made transparent that only when we refer to rectilinear solutions, the {\\sl bilinear relation} defining the KS transformation is needed.

  18. Correlation and Capacity Calculations with Reference Antennas in an Isotropic Environment

    Directory of Open Access Journals (Sweden)

    Thorkild B. Hansen

    2012-01-01

    Full Text Available A reverberation chamber is a convenient tool for over-the-air testing of MIMO devices in isotropic environments. Isotropy is typically achieved in the chamber through the use of a mode stirrer and a turntable on which the device under test (DUT rides. The quality of the isotropic environment depends on the number of plane waves produced by the chamber and on their spatial distribution. This paper investigates how the required sampling rate for the DUT pattern is related to the plane-wave density threshold in the isotropic environment required to accurately compute antenna correlations. Once the plane-wave density is above the threshold, the antenna correlation obtained through isotropic experiments agrees with the antenna correlation obtained from the classical definition, as has been proven theoretically. This fact is verified for the good, nominal, and bad reference antennas produced by CTIA. MIMO channel capacity simulations are performed with a standard base station model and the DUT placed in a single-tap plane-wave reverberation chamber model. The capacity curves obtained with the good, nominal, and bad reference antennas are clearly distinguishable.

  19. Isotropic-nematic phase separation in asymmetrical rod-plate mixtures

    NARCIS (Netherlands)

    Wensink, H.H.; Vroege, G.J.; Lekkerkerker, H.N.W.

    2001-01-01

    Recent experiments on mixtures of rodlike and platelike colloidal particles have uncovered the phase behavior of strongly asymmetrical rod-plate mixtures. In these mixtures, in which the excluded volume of the platelets is much larger than that of the rods, an extended isotropic (I)–plate-rich

  20. Emergence of a thin shell structure during collapse in isotropic coordinates

    Science.gov (United States)

    Beauchesne, Hugues; Edery, Ariel

    2012-02-01

    Numerical studies of gravitational collapse in isotropic coordinates have recently shown an interesting connection between the gravitational Lagrangian and black hole thermodynamics. A study of the actual spacetime was not the main focus of this work and, in particular, the rich and interesting structure of the interior has not been investigated in much detail and remains largely unknown. We elucidate its features by performing a numerical study of the spacetime in isotropic coordinates during gravitational collapse of a massless scalar field. The most salient feature to emerge is the formation of a thin shell of matter just inside the apparent horizon. The energy density and Ricci scalar peak at the shell and there is a jump discontinuity in the extrinsic curvature across the apparent horizon, the hallmark that a thin shell is present in its vicinity. At late stages of the collapse, the spacetime consists of two vacuum regions separated by the thin shell. The interior is described by an interesting collapsing isotropic universe. It tends towards a vacuum (never reaches a perfect vacuum) and there is a slight inhomogeneity in the interior that plays a crucial role in the collapse process as the areal radius tends to zero. The spacetime evolves towards a curvature (physical) singularity in the interior, both a Weyl and Ricci singularity. In the exterior, our numerical results match closely the analytical form of the Schwarzschild metric in isotropic coordinates, providing a strong test of our numerical code.

  1. Exploitation of homogeneous isotropic turbulence models for optimization of turbulence remote sensing

    NARCIS (Netherlands)

    Oude Nijhuis, A.C.P.; Krasnov, O.K.; Unal, C.M.H.; Russchenberg, H.W.J.; Yarovoy, A.

    2015-01-01

    Homogeneous isotropic turbulence (HIT) models are compared, with respect to optimization of turbulence remote sensing. HIT models have different applications such as load calculation for wind turbines (Mann, 1998) or droplet track modelling (Pinsky and Khain, 2006). Details of vortices seem of less

  2. Homogeneous isotropization and equilibration of a strongly coupled plasma with a critical point

    Science.gov (United States)

    Critelli, Renato; Rougemont, Romulo; Noronha, Jorge

    2017-12-01

    We use holography to investigate the process of homogeneous isotropization and thermalization in a strongly coupled N=4 Super Yang-Mills plasma charged under a U(1) subgroup of the global SU(4) R-symmetry which features a critical point in its phase diagram. Isotropization dynamics at late times is affected by the critical point in agreement with the behavior of the characteristic relaxation time extracted from the analysis of the lowest non-hydrodynamic quasinormal mode in the SO(3) quintuplet (external scalar) channel of the theory. In particular, the isotropization time may decrease or increase as the chemical potential increases depending on whether one is far or close enough to the critical point, respectively. On the other hand, the thermalization time associated with the equilibration of the scalar condensate, which happens only after the system has relaxed to a (nearly) isotropic state, is found to always increase with chemical potential in agreement with the characteristic relaxation time associated to the lowest non-hydrodynamic quasinormal mode in the SO(3) singlet (dilaton) channel. These conclusions about the late dynamics of the system are robust in the sense that they hold for different initial conditions seeding the time evolution of the far-from-equilibrium plasma.

  3. Periodic Driving at High Frequencies of an Impurity in the Isotropic XY Chain

    Science.gov (United States)

    Corsi, Livia; Genovese, Giuseppe

    2017-09-01

    We study the isotropic XY chain with a transverse magnetic field acting on a single site and analyse the long time behaviour of the time-dependent state of the system when a periodic perturbation drives the impurity. We find that for high frequencies the state approaches a periodic orbit synchronised with the forcing and provide the explicit rate of convergence to the asymptotics.

  4. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    Science.gov (United States)

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-08-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 oC) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.

  5. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  6. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  7. A first-principles study of cementite (Fe3C and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Directory of Open Access Journals (Sweden)

    G. Ghosh

    2015-08-01

    Full Text Available A comprehensive computational study of elastic properties of cementite (Fe3C and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT, all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA. Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i single-crystal elastic constants, Cij, of above M3Cs; (ii anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii isotropic (polycrystalline elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio of M3Cs by homogenization of calculated Cijs; and (iv acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  8. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  9. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Qualitative and Quantitative Assessment of Isotropic Ankle Magnetic Resonance Imaging: Three-Dimensional Isotropic Intermediate-Weighted Turbo Spin Echo versus Three-Dimensional Isotropic Fast Field Echo Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun; Su; Yoon, Young Cheol; Kwon, Jong Won [Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul (Korea, Republic of); Choe, Bong Keun [Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2012-07-15

    To compare the image quality of volume isotropic turbo spin echo acquisition (VISTA) imaging method with that of the three-dimensional (3D) isotropic fast field echo (FFE) imaging method applied for ankle joint imaging. MR imaging of the ankles of 10 healthy volunteers was performed with VISTA and 3D FFE sequences by using a 3.0 T machine. Two radiologists retrospectively assessed the tissue contrast between fluid and cartilage (F-C), and fluid and the Achilles tendon (F-T) with use of a 4-point scale. For a quantitative analysis, signal-to-noise ratio (SNR) was obtained by imaging phantom, and the contrast ratios (CRs) were calculated between F-T and F-C. Statistical analyses for differences in grades of tissue contrast and CRs were performed. VISTA had significantly superior grades in tissue contrast of F-T (p = 0.001). Results of 3D FFE had superior grades in tissue contrast of F-C, but these result were not statistically significant (p 0.157). VISTA had significantly superior CRs in F-T (p = 0.002), and 3D FFE had superior CRs in F-C (p = 0.003). The SNR of VISTA was higher than that of 3D FFE (49.24 vs. 15.94). VISTA demonstrates superior tissue contrast between fluid and the Achiles tendon in terms of quantitative and qualitative analysis, while 3D FFE shows superior tissue contrast between fluid and cartilage in terms of quantitative analysis.

  11. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers

    Directory of Open Access Journals (Sweden)

    J.M. Ilnytskyi

    2010-01-01

    Full Text Available A coarse-grained simulation model for a third generation liquid crystalline dendrimer (LCDr is presented. It allows, for the first time, for a successful molecular simulation study of a relation between the shape of a polyphilic macromolecular mesogen and the symmetry of a macroscopic phase. The model dendrimer consists of a soft central sphere and 32 grafted chains each terminated by a mesogen group. The mesogenic pair interactions are modelled by the recently proposed soft core spherocylinder model of Lintuvuori and Wilson [J. Chem. Phys, 128, 044906, (2008]. Coarse-grained (CG molecular dynamics (MD simulations are performed on a melt of 100 molecules in the anisotropic-isobaric ensemble. The model LCDr shows conformational bistability, with both rod-like and disc-like conformations stable at lower temperatures. Each conformation can be induced by an external aligning field of appropriate symmetry that acts on the mesogens (uniaxial for rod-like and planar for disc-like, leading to formation of a monodomain smectic A (SmA or a columnar (Col phase, respectively. Both phases are stable for approximately the same temperature range and both exhibit a sharp transition to an isotropic cubic-like phase upon heating. We observe a very strong coupling between the conformation of the LCDr and the symmetry of a bulk phase, as suggested previously by theory. The study reveals rich potential in terms of the application of this form of CG modelling to the study of molecular self-assembly of liquid crystalline macromolecules.

  12. Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia [Berkeley Lab and University of California, Berkeley, CA 94720 (United States); Migliaccio, Marina [Università di Roma Tor Vergata, via della Ricerca Scientifica, 1, Roma (Italy); Pagano, Luca [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California (United States); Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma (Italy); Natoli, Paolo [Dipartimento di Fisica, Università di Ferrara, via G. Saragat 1, Ferrara (Italy); Polenta, Gianluca, E-mail: giulia.gubitosi@berkeley.edu, E-mail: Marina.Migliaccio@roma2.infn.it, E-mail: luca.pagano@jpl.nasa.gov, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: paolo.natoli@roma2.infn.it, E-mail: gianluca.polenta@asdc.asi.it [Agenzia Spaziale Italiana Science Data Center, c/o ESRIN, via Galileo Galilei, Frascati (Italy)

    2011-11-01

    We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.

  13. Goos-Hänchen Lateral Displacements at the Interface between Isotropic and Gyroelectric Media

    Directory of Open Access Journals (Sweden)

    Jinbao Wang

    2013-01-01

    Full Text Available A detailed study on Goos-Hänchen (GH lateral displacements of the reflected and transmitted waves propagating at the interface between an isotropic medium and a gyroelectric medium in Voigt configuration is presented. After the reflection coefficient and transmission coefficient are derived, based on the stationary phase approach, GH lateral displacements are obtained analytically. The numerical results for a specific gyroelectric medium are also given. It shows that with the existence of an applied magnetic field, the GH effect occurs not only during total reflection but also during nontotal reflection, which is not true for isotropic media. Moreover, due to the nonreciprocal property of the gyroelectric medium, the sign of the incident angle also influences the displacements. Finite-element method simulations have verified the theoretical results.

  14. Global distribution of energetic proton precipitations equatorward of the boundary of isotropic fluxes

    Science.gov (United States)

    Semenova, N. V.; Yahnina, T. A.; Yahnin, A. G.; Demekhov, A. G.

    2017-07-01

    Based on data of the NOAA POES satellite, the global distribution of the occurrence rate of precipitations of energetic protons ( E > 30 keV) equatorward of the boundary of isotropic fluxes has been constructed for the first time. It has been shown that the occurrence rate of proton precipitations inside the zone of anisotropic fluxes is maximum in daytime hours (1100-1600 MLT) at latitudes L = 6-9 and decreases in evening and morning hours. Comparison of the obtained results about proton precipitations with the spatial distribution of the occurrence rate of electromagnetic ion-cyclotron (EMIC) waves in the equatorial magnetosphere according to results of satellite observations demonstrates a close relationship between them. This corroborates that precipitations of energetic protons equatorward of the boundary of isotropic fluxes are a consequence of the development of the ion-cyclotron instability in the equatorial magnetosphere.

  15. Kerr effect at high electric field in the isotropic phase of mesogenic materials.

    Science.gov (United States)

    Li, Bing-Xiang; Borshch, Volodymyr; Shiyanovskii, Sergij V; Liu, Shao-Bin; Lavrentovich, Oleg D

    2015-11-01

    The well-known Kerr effect in isotropic fluids consists in the appearance of uniaxial orientational order and birefringence that grows as the square of the applied electric field. We predict and observe that at a high electric field, the Kerr effect displays features caused by the nonlinear dependence of dielectric permittivity on the field-induced orientational order parameter. Namely, the field-induced birefringence grows faster than the square of the electric field and the dynamics of birefringence growth slows down as the field increases. As a function of temperature, the field-induced birefringence is inversely proportional to the departure from an asymptotic critical temperature, but this temperature is no longer a constant (corresponding to the lower limit of the supercooled isotropic phase) and increases proportionally to the square of the electric field.

  16. Design of 3D isotropic metamaterial device using smart transformation optics.

    Science.gov (United States)

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

  17. Oscillating test of the isotropic shift of the speed of light.

    Science.gov (United States)

    Baynes, Fred N; Tobar, Michael E; Luiten, Andre N

    2012-06-29

    In this Letter, we present an improved constraint on possible isotropic variations of the speed of light. Within the framework of the standard model extension, we provide a limit on the isotropic, scalar parameter κ̃(tr) of 3±11×10({-10), an improvement by a factor of 6 over previous constraints. This was primarily achieved by modulating the orientation of the experimental apparatus with respect to the velocity of Earth. This orientation modulation shifts the signal for Lorentz invariance to higher frequencies, and we have taken advantage of the higher stability of the resonator at shorter time scales, together with better rejection of systematic effects, to provide a new constraint.

  18. Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Frankland, J.D.; Rivet, M.F.; Borderie, B. [Paris-11 Univ., Inst. de Physique Nucleaire, 91 - Orsay (France)] [and others

    2000-07-01

    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36 A.MeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32 A.MeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain. (authors)

  19. The bulk, surface and corner free energies of the square lattice Ising model

    Science.gov (United States)

    Baxter, R. J.

    2017-01-01

    We use Kaufman’s spinor method to calculate the bulk, surface and corner free energies {f}{{b}},{f}{{s}},{f}{{s}}\\prime ,{f}{{c}} of the anisotropic square lattice zero-field Ising model for the ordered ferromagnetic case. For {f}{{b}},{f}{{s}},{f}{{s}}\\prime our results of course agree with the early work of Onsager, McCoy and Wu. We also find agreement with the conjectures made by Vernier and Jacobsen (VJ) for the isotropic case. We note that the corner free energy f c depends only on the elliptic modulus k that enters the working, and not on the argument v, which means that VJ’s conjecture applies for the full anisotropic model. The only aspect of this paper that is new is the actual derivation of f c, but by reporting all four free energies together we can see interesting structures linking them.

  20. MICROHARDNESS OF BULK-FILL COMPOSITE MATERIALS.

    Science.gov (United States)

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-12-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fi l (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and x-tra base (XB), and conventional control material X-Flow (XF). Composite samples (n=5) were polymerized for 20 s with Bluephase G2 curing unit. Vickers hardness was used to determine microhardness of each material at the surface, and at 2-mm and 4-mm depth. GSO on average recorded significantly higher microhardness values than bulk-fill materials (pcomposite XF revealed similar microhardness values as SDR, but significantly lower than XB (pmaterials was lower than microhardness of the conventional composite material (GSO). Surface microhardness of low-viscosity materials was generally even lower. The microhardness of all tested materials at 4 mm was not different from their surface values. However, additional capping layer was a necessity for low-viscosity bulk-fill materials due to their low microhardness.

  1. Surface-induced discrete smectic order in the isotropic phase of 12 CB in cylindrical pores

    Science.gov (United States)

    Iannacchione, Germano S.; Mang, Joseph T.; Kumar, Satyendra; Finotello, Daniele

    1994-11-01

    Through specific-heat and x-ray scattering studies, we show the existence of surface-induced discrete smectic order in the isotropic phase for dodecylcyanobiphenyl (12CB) confined to Anopore membranes. A quantized smectic layer growth is promoted by the pore surface when treated with an aliphatic acid of varying chain length. No surface-induced smectic order develops in untreated or lecithin treated pores nor in liquid crystals that possess a nematic phase.

  2. Spin-wave logic devices based on isotropic forward volume magneto-static waves

    OpenAIRE

    Klingler, Stefan; Pirro, Philipp; Brächer, Thomas; Leven, Britta; Hillebrands, Burkard; Chumak, Andrii V.

    2015-01-01

    We propose the utilization of isotropic forward volume magneto-static spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Mor...

  3. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    OpenAIRE

    Gerald Artner; Gentner, Philipp K.; Johann Nicolics; Mecklenbräuker, Christoph F.

    2017-01-01

    A carbon fiber reinforced polymer (CFRP) laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the...

  4. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front.

    Science.gov (United States)

    Kazansky, Peter G; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Beresna, Martynas; Gecevičius, Mindaugas; Svirko, Yuri; Akturk, Selcuk; Qiu, Jianrong; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-10

    We present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing.

  5. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    Science.gov (United States)

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    Science.gov (United States)

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  7. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    KAUST Repository

    Zhang, Zhendong

    2017-12-17

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.

  8. A finite-difference modeling of Love channel waves in transversely isotropic medium

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H. [Inha Univ., Incheon (Korea, Republic of); Lee, S.S. [Korea Mining Promotion Corp., Seoul (Korea, Republic of)

    1994-06-30

    The present paper deals with numerical modeling of Love channel waves in transversely isotropic elastic medium. First, an explicit finite-difference scheme of second order approximation is formulated with the wave equation of SH particle displacement in transversely isotropic medium. Since it is a heterogeneous formulation, it should enable efficient modeling of complex model structures without additional treatment of the internal boundary matching. With a model of isotropic coal seam embedded in high velocity host rock, seismograms are synthesized and turn out to be essentially identical with published ones of Korn and Stockl. Next, anisotropic coal seams are investigated. It is found that the horizontal velocity of the seam appears to play a major role of determining the group velocity of Love channel waves. The group velocity increases with the increase of the horizontal velocity or vice versa. However, further study will be needed to exploit fully Love channel waves for the determination of lithology, stratification, fracture in sedimentary rocks, for instance, for hydrocarbon exploration and development. (author). 21 refs., 3 tabs., 10 figs.

  9. Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj M. Ghugal

    2016-12-01

    Full Text Available A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure   analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero transverse shear stresses on the upper and lower surface of plate is satisfied. Hence the present formulation does not require the shear correction factor generally associated with the first order shear deformable theory. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Closed-form analytical solutions for simply supported square isotropic thick plates subjected to single sinusoidal distributed loads are obtained. Numerical results for static flexure analysis include the effects of side to thickness ratio and plate aspect ratio for simply supported isotropic plates. Numerical results are obtained using MATLAB programming. The results of present theory are in close agreement with those of higher order shear deformation theories and exact 3D elasticity solutions.

  10. Design methodology of single-feed compact near-isotropic antenna design

    KAUST Repository

    Su, Zhen

    2017-06-07

    The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.

  11. Fatigue Isotropy in Cross-Rolled, Hardened Isotropic-Quality Steel

    Science.gov (United States)

    Temmel, C.; Karlsson, B.; Ingesten, N.-G.

    2008-05-01

    Deformation and forging operations often introduce microstructural orientation and, therewith, mechanical anisotropy to steel. Flattened manganese sulfide inclusions are held responsible for a great part of fatigue anisotropy. Isotropic-quality (IQ) steel maintains the mechanical isotropy of the material, even after a deformation operation. Isotropic material generally contains little S and, therewith, few manganese sulfides. Further, the IQ steels used in this investigation were Ca treated. The Ca treatment improves the shape stability of the sulfides, even during a hot-working deformation. Two commercial materials were compared for their fatigue response, a standard medium-carbon steel with 0.04 wt pct S and a low-sulfur variant that underwent IQ treatment. The two batches were cross-rolled to plates with a deformation ratio of 4.5, leading to in-plane isotropy. Tension-compression fatigue testing was performed in longitudinal and short transversal directions relative to the rolling plane. The results showed strong anisotropy of the fatigue behavior for the standard material. The performance in the short transverse direction, with the principal stress perpendicular to the flattened inclusions, was inferior. The IQ material with nearly spherical inclusions was almost perfectly isotropic, with only slightly worse fatigue response in the short transverse direction.

  12. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids

    Science.gov (United States)

    Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.

    2017-10-01

    The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.

  13. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Anna I Sulatskaya

    Full Text Available In this work, the fluorescence of thioflavin T (ThT was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0. The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.

  14. Generic first-order phase transitions between isotropic and orientational phases with polyhedral symmetries

    Science.gov (United States)

    Liu, Ke; Greitemann, Jonas; Pollet, Lode

    2018-01-01

    Polyhedral nematics are examples of exotic orientational phases that possess a complex internal symmetry, representing highly nontrivial ways of rotational symmetry breaking, and are subject to current experimental pursuits in colloidal and molecular systems. The classification of these phases has been known for a long time; however, their transitions to the disordered isotropic liquid phase remain largely unexplored, except for a few symmetries. In this work, we utilize a recently introduced non-Abelian gauge theory to explore the nature of the underlying nematic-isotropic transition for all three-dimensional polyhedral nematics. The gauge theory can readily be applied to nematic phases with an arbitrary point-group symmetry, including those where traditional Landau methods and the associated lattice models may become too involved to implement owing to a prohibitive order-parameter tensor of high rank or (the absence of) mirror symmetries. By means of exhaustive Monte Carlo simulations, we find that the nematic-isotropic transition is generically first-order for all polyhedral symmetries. Moreover, we show that this universal result is fully consistent with our expectation from a renormalization group approach, as well as with other lattice models for symmetries already studied in the literature. We argue that extreme fine tuning is required to promote those transitions to second-order ones. We also comment on the nature of phase transitions breaking the O(3 ) symmetry in general cases.

  15. Vertical Dynamic Response of Pile Embedded in Layered Transversely Isotropic Soil

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2014-01-01

    Full Text Available The dynamic response of pile embedded in layered transversely isotropic soil and subjected to arbitrary vertical harmonic force is investigated. Based on the viscoelastic constitutive relations for a transversely isotropic medium, the dynamic governing equation of the transversely isotropic soil is obtained in cylindrical coordinates. By introducing the fictitious soil pile model and the distributed Voigt model, the governing equations of soil-pile system are also derived. Firstly, the vertical response of the soil layer is solved by using the Laplace transform technique and the separation of variables technique. Secondly, the analytical solution of velocity response in the frequency domain and its corresponding semianalytical solution of velocity response in the time domain are derived by means of inverse Fourier transform and convolution theorem. Finally, based on the obtained solutions, a parametric study has been conducted to investigate the influence of the soil anisotropy on the vertical dynamic response of pile. It can be seen that the influence of the shear modulus of soil in the vertical plane on the dynamic response of pile is more notable than the influence of the shear modulus of soil in the horizontal plane on the dynamic response of pile.

  16. STRESS STATE OF TRANSVERSELY ISOTROPIC ROCKS NEAR PRESSURIZED HYDRAULIC TUNNEL OF HORSESHOE CROSS-SECTION

    Directory of Open Access Journals (Sweden)

    Bautdinov Damir Tahirovich

    2017-10-01

    Full Text Available The parametric analysis of the stress state of a transversally isotropic rock mass near a pressurized hydraulic tunnel of a box-shaped form is carried out. Pressurized hydro-technical tunnels of box-shaped cross-section are widely used in the field of hydraulic engineering construction and are one of the complex, labor-intensive and expensive types of structures that make up the main structures of waterworks, melioration systems and water supply systems. As a culvert and water supply facilities they are built underground if the open excavation is impossible or not economical, or when the tunnel runs through a densely populated or densely built-up area, or when landslides, screes, rockfalls are possible. Violation of integrity of the rock mass, in particular, caused by tunneling, modifies the stress-strain state (SSS of the rock mass, which leads to appearance of tensile stresses in some places, and in some cases, to significant compressive stresses. If these stresses exceed the design strengths of rock to tension and compression, respectively, then the collapse of the working roof and buckling of the side walls and the bottom of the tunnel may occur. Subject: analysis of the stress state of transversally isotropic rocks near the pressurized hydraulic tunnel of horseshoe cross-section caused by the internal head of water. Research objectives: determination of real values of circumferential stresses along the development contour. Materials and methods: solution of the problem of plane deformation of the theory of elasticity for a transversely isotropic medium containing tunnel excavation cannot be obtained by analytical methods, and therefore the stress-strain analysis was carried out by the finite element method using the ANSYS software package, MCE. Results: determination of stresses along the development contour, construction of diagrams and graphs showing the effects of the anisotropy conditions and Poisson’s ratio. The tangential stresses

  17. A brief overview of bulk metallic glasses

    National Research Council Canada - National Science Library

    Mingwei Chen

    2011-01-01

      The discovery of bulk metallic glasses (BMGs) has stimulated widespread research enthusiasm because of their technological promise for practical applications and scientific importance in understanding glass formation and glass phenomena...

  18. Boundary-bulk relation in topological orders

    Science.gov (United States)

    Kong, Liang; Wen, Xiao-Gang; Zheng, Hao

    2017-09-01

    In this paper, we study the relation between an anomaly-free n + 1D topological order, which are often called n + 1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n + 1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the "bulk" for a given gapped boundary phase. In this paper, we show that the n + 1D "bulk" phase is given by the "center" of the nD boundary phase. In other words, the geometric notion of the "bulk" corresponds precisely to the algebraic notion of the "center". We achieve this by first introducing the notion of a morphism between two (potentially anomalous) topological orders of the same dimension, then proving that the notion of the "bulk" satisfies the same universal property as that of the "center" of an algebra in mathematics, i.e. "bulk" = center". The entire argument does not require us to know the precise mathematical description of a (potentially anomalous) topological order. This result leads to concrete physical predictions.

  19. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  20. Free vibration analysis of a finite-length isotropic solid elliptic cylinder using exact three dimensional elasticity theory

    National Research Council Canada - National Science Library

    Hasheminejad, Seyyed M; Ghaheri, Ali

    2013-01-01

    A three-dimensional analytical model based on Navier's displacement equation of motion is developed to describe the free vibrations of a simply supported elastic isotropic solid elliptical cylinder of finite length...

  1. Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials.

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-27

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  2. Production of krypton and xenon isotopes in thick stony and iron targets isotropically irradiated with 1600 MeV protons

    National Research Council Canada - National Science Library

    Gilabert, E; Lavielle, B; Michel, R; Leya, I; Neumann, S; Herpers, U

    2002-01-01

    Abstract— Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS...

  3. Unbiased stereological estimation of d-dimensional volume in Rn from an isotropic random slice through a fixed point

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Kiêu, K

    1994-01-01

    Unbiased stereological estimators of d-dimensional volume in R(n) are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental ...... lemma, an explicit formula for the probability that an isotropic random r-slice in R(n) through 0 hits a fixed point in R(n) is given....

  4. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  5. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  6. Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy

    KAUST Repository

    Waheed, Umair bin

    2013-09-01

    On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.

  7. Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the Design of Diffusion Tensor Imaging Experiments*

    Science.gov (United States)

    Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.

    2017-01-01

    Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561

  8. The thermalization of soft modes in non-expanding isotropic quark gluon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mehtar-Tani, Yacine [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States)

    2017-05-15

    We discuss the role of elastic and inelastic collisions and their interplay in the thermalization of the quark–gluon plasma. We consider a simplified situation of a static plasma, spatially uniform and isotropic in momentum space. We focus on the small momentum region, which equilibrates first, and on a short time scale. We obtain a simple kinetic equation that allows for an analytic description of the most important regimes. The present analysis suggests that the formation of a Bose condensate, expected when only elastic collisions are present, is strongly hindered by the inelastic, radiative, processes.

  9. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  10. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    Science.gov (United States)

    Gao, Zhiwen; Zhou, Youhe

    2015-04-01

    Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  11. Constitutive relations in multidimensional isotropic elasticity and their restrictions to subspaces of lower dimensions

    Science.gov (United States)

    Georgievskii, D. V.

    2017-07-01

    The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke's law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.

  12. Study of the roughness in a photoresist masked, isotropic, SF6-based ICP silicon etch

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Petersen, Dirch Hjorth; Hansen, Ole

    2006-01-01

    = 40 - 70 mTorr. Here the normalized roughness is the ratio of the roughness amplitude to the etch depth. The rough etching processes showed characteristic high-aspect-ratio and crystal-orientation-dependent surface morphology. The temporal evolution of this roughness was studied, and observations...... suggest a gradual buildup of surface contamination (redeposits) originating from the photoresist mask. A model was used to analyze the etched profiles with respect the internal etching conditions. The almost isotropic etching profiles, obtained in both rough and smooth etching processes, are generally...

  13. Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    This paper describes a model of the frog skeletal muscle fiber that includes the effects of the transverse tubular system (T system) on propagation. Uniform propagation on an isolated fiber suspended in Ringer's solution or in air is simulated by placing the cylindrical fiber model in a concentric...... three-dimensional isotropic volume conductor. The current through the T system outlets at the sarcolemmal surface is comparable in magnitude to the sarcolemmal current density, but is of opposite polarity. When it is added to the sarcolemmal current, the resulting triphasic waveform has a 100% increase...

  14. Isotropic to smectic A phase transitions in a porous matrix a case of multiporous phase coexistence

    CERN Document Server

    Bellini, T; Link, D R

    2003-01-01

    The one-dimensional smectic ordering of the liquid crystal 10CB incorporated in the pores of a silica aerogel has been investigated via x-ray scattering. Although the smectic order is made short-ranged by the aerogel host and the amplitude of the associated Bragg-like peak grows continuously with decreasing temperature, part of the first-order character of the 10CB's direct isotropic-smectic phase transition is retained in the discontinuous temperature dependence of the smectic correlation length. This behaviour contrasts with that of materials where the smectic phase develops from a locally orientationally ordered nematic and can be interpreted as a nucleation-type process.

  15. Surface tension of isotropic-nematic interfaces: fundamental measure theory for hard spherocylinders.

    Science.gov (United States)

    Wittmann, René; Mecke, Klaus

    2014-03-14

    A fluid constituted of hard spherocylinders is studied using a density functional theory for non-spherical hard particles, which can be written as a function of weighted densities. This is based on an extended deconvolution of the Mayer f-function for arbitrarily shaped convex hard bodies in tensorial weight functions, which depend each only on the shape and orientation of a single particle. In the course of an examination of the isotropic-nematic interface at coexistence the functional is applied to anisotropic and inhomogeneous problems for the first time. We find good qualitative agreement with other theoretical predictions and also with Monte Carlo simulations.

  16. A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed Mumford-Shah Image Segmentation

    Science.gov (United States)

    2016-05-01

    boundaries between them. The values are designated by c1 and c2 and are obtained on the regions Σ and Σc respectively. The two regions and values are unknowns...model. For the remainder of the paper, we refer to L1−αL2 as the weighted difference of anisotropic and isotropic TV: Jani−αJiso = ‖ ux ‖1 + ‖uy‖1−α... ux |2 + |uy|2‖1 (3) where it is understood that these norms are operating on the gradients of the image. Here, α ∈ [0, 1] and is chosen based on

  17. Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids

    DEFF Research Database (Denmark)

    Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt

    2014-01-01

    We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic....... The dereverberation performance of the algorithm is evaluated using computer simulations with realistic hearing aid microphone signals including head-related effects. The algorithm is shown to work well with signals reverberated both by synthetic and by measured room impulse responses, achieving improvements...

  18. Thermodynamics of isotropic and anisotropic layered magnets: renormalization group approach and 1/N expansion

    OpenAIRE

    Irkhin, V. Yu.; Katanin, A. A.

    1997-01-01

    The O(N) model of layered antiferro- and ferromagnets with a weak interlayer coupling and/or easy-axis anisotropy is considered. A renormalization group (RG) analysis in this model is performed, the results for N=3 being expected to agree with those of the 1/M expansion in the CP^{M-1} model at M=2. The quantum and classical cases are considered. A crossover from an isotropic 2D-like to 3D Heisenberg (or 2D Ising) regime is investigated within the 1/N expansion. Analytical results for the tem...

  19. First-order goniospectrophotometric spectral modeling of isotropic and anisotropic colorant mixtures.

    Science.gov (United States)

    Kruschwitz, Jennifer D T; Berns, Roy S

    2014-02-01

    Color modeling of translucent and opaque media commonly uses two-constant Kubelka-Munk (KM) turbid media theory. KM theory is designed for isotropic color systems that rely on absorption and scatter to produce an overall reflected color. KM theory has previously been considered inadequate to use with interference pigments (IPs) due to their specular reflected, angle-dependent color and anisotropic behavior. If, however, an IP's reflected color is considered to contribute to the background reflectance and not as a colorant in a mixture with a conventional colorant, KM theory can be used. KM theory was successfully implemented to predict the goniospectrophotometric, normalized spectral reflectance of conventional colorants and IP mixtures.

  20. The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens

    DEFF Research Database (Denmark)

    Nyengaard, Jens Randel; Gundersen, Hans Jørgen Gottlieb

    1992-01-01

    The very simple and strong principle of vertical sections devised by Baddeley et al. has been a major advance in stereology when any kind of anisotropy is present in the specimen under study. On the other hand, some important stereological estimators still require isotropic, uniform random sectio....... This paper deals with a simple technique for embedding specimens in rubber moulds with spherical cavities. After the embedding, any handling or the resulting sphere independent of the specimen will induce isotropy of the final histological sections....

  1. Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.

    Science.gov (United States)

    Zami-Pierre, F; de Loubens, R; Quintard, M; Davit, Y

    2016-08-12

    We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability.

  2. A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process

    Science.gov (United States)

    Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong

    2017-11-01

    Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.

  3. Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators.

    Science.gov (United States)

    Yahiaoui, Riad; Hanai, Kenichiro; Takano, Keisuke; Nishida, Tsubasa; Miyamaru, Fumiaki; Nakajima, Makoto; Hangyo, Masanori

    2015-07-01

    Quasi-monodisperse dielectric particles organized in a periodic hexagonal network on an aluminum surface are exploited numerically and experimentally as a single-layered near-perfect absorber in the terahertz regime. Of particular interest are titanium dioxide (TiO(2)) microspheres because of their large dielectric permittivity and isotropic shape leading to Mie resonances with insensitive polarization. Absorption higher than 80% at normal incidence covering two distinct ranges of frequencies is demonstrated experimentally. Furthermore, the performance of the metamaterial absorber is kept over a wide range of incident angles.

  4. Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.

    Science.gov (United States)

    Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-07-01

    We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.

  5. A variation iteration method for isotropic velocity-dependent potentials: Scattering case

    Energy Technology Data Exchange (ETDEWEB)

    Eed, H. [Applied Science Private University, Basic Science Department, Amman (Jordan)

    2014-12-01

    We propose a new approximation scheme to obtain analytic expressions for the Schroedinger equation with isotropic velocity-dependent potential to determine the scattering phase shift. In order to test the validity of our approach, we applied it to an exactly solvable model for nucleon-nucleon scattering. The results of the variation iteration method (VIM) formalism compare quite well with those of the exactly solvable model. The developed formalism can be applied in problems concerning pion-nucleon, nucleon-nucleon, and electron-atom scattering. (orig.)

  6. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore); Sun Jianbo [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  7. A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung [Department of Physics, HCMC University of Pedagogy, 280 An Duong Vuong, Ward 10, Dist. 5, Ho Chi Minh City (Viet Nam)

    2009-05-01

    We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./.

  8. The generalized Cauchy relation: a probe for local structure in materials with isotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bactavatchalou, R [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Alnot, P [Universite Henri Poincare, Nancy I (France); Bailer, J [Universite du Luxembourg (Luxembourg); Kolle, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Mueller, U [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Philipp, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Rouxel, D [Universite Henri Poincare, Nancy I (France); Sanctuary, R [Universite du Luxembourg (Luxembourg); Tschoepe, A [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Vergnat, Ch [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Wetzel, B [Institut fuer Verbundwerkstoffe TU Kaiserslautern 67663 Kaiserslautern (Germany); Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg)

    2006-05-15

    The elastic properties of the isotropic state of condensed matter are given by the elastic constants ell and c44. In the liquid state the static shear stiffness c44 vanishes whereas at sufficient high probe frequencies a dynamic shear stiffness may appear. In that latter case the question about the existence of a Cauchy relation appears. It will be shown that a pure Cauchy relation can appear only under special conditions which are rarely fulfilled. For all investigated materials, including ceramics, liquids and glasses, a linear relation between ell and c44 called generalized Cauchy relation is observed, which, surprisingly, follows a linear transformation.

  9. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  10. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface......The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...

  11. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  12. Thermal and Electric Cloaking Effect in Concentric Composite Made of Homogeneous Bulk and Porous Semiconductors

    Science.gov (United States)

    Tarkhanyan, Roland H.; Niarchos, Dimitris G.

    2015-12-01

    A new material platform is presented to manipulate heat and charge transportation in steady-state conditions. More precisely, we investigate the conceptual realization of a concentric composite made of the same isotropic and homogeneous semiconductor material with layers of different porosity, and show the possibility of a simultaneous cloaking performance in such a device for both heat flux and electric current without disturbing external fields. The background medium in the composite is a porous material with a periodical 3D cubic lattice of spherical hollow pores while the cylindrical shell is made from the same bulk material with zero porosity. A sound analytical expression is found for the volume fraction of the pores at which bi-functional cloaking effect can be realized. To validate our theoretical results, we also demonstrate the temperature and heat flux profiles as well as the voltage and current profiles in numerical simulations for a composite consisting of bulk (cylindrical shell) and porous (background) n-type silicon layers.

  13. Three-Dimensional Approaches to Assembling Negative Index Metamedia

    Science.gov (United States)

    2012-04-02

    demonstration of electromagnetic tunneling through an epsilon near zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008...Energy Transfer to CdTe Nanowires via Polymer Orientation," J. Phys. Chem. C 113, 109 (2009). MURI Final Report 16 38. R. Merlin... Heterostructures ," Phys. Rev. Lett. 105, 176803 (2010). 58. D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, "Measurements of the

  14. Collective dynamics of atoms embedded into negative index materials

    Science.gov (United States)

    Wei, Fang; Li, Gao-xiang; Ficek, Zbigniew

    2017-05-01

    The dynamics of two two-level atoms embedded near to the interface of paired metamaterial slabs, one of negative permeability and the other of negative permittivity are studied. The interface behaves as a plasmonic waveguide composed of surface-plasmon polariton modes. It is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasma field to the atoms. In the case of the resonant coupling, the plasma field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms are completely equivalent to those of a four-atom system. Moreover, two threshold coupling strengths exist, one corresponding to the strength of coupling of the plasma field to the symmetric and the other to the antisymmetric modes of the system. The thresholds distinguish between the non-Markovian and Markovian regimes of the evolutions. The solutions predict a large and long living entanglement mediated by the plasma field in both Markovian and non-Markovian regimes of the evolution. We also show that a simultaneous Markovian and non-Markovian regimes of the evolution may occur in which the memory effects exist over a finite evolution time. Keywords: met

  15. Negative-Index Media for Matter-Wave Optics

    Science.gov (United States)

    Baudon, J.; Hamamda, M.; Grucker, J.; Boustimi, M.; Perales, F.; Dutier, G.; Ducloy, M.

    2009-04-01

    We consider the extension of optical metamaterials to matter waves and then the down scaling of metaoptics to nanometric wavelengths. We show that the generic property of pulsed comoving magnetic fields allows us to fashion the wave-number dependence of the atomic phase shift. It can be used to produce a transient negative group velocity of an atomic wave packet, which results into a negative refraction of the matter wave. Application to slow metastable argon atoms Ar*(P23) shows that the device is able to operate either as an efficient beam splitter or an atomic metalens.

  16. Self-Assembled Soft Optical Negative Index Materials

    Science.gov (United States)

    2008-08-05

    dividing the results of the closed aperture Z-scan by those from the open aperture Z-scan. The source of the Z-scan can be directly from a laser or...orientation and relative position with respect to precision scribe lines. This type of mapping enabled us to examine regions .of interest in optical...chirality of cysteine stabilizers has the distinct effect on both the growth kinetics and the optical properties of CdTe nanocrystals synthesized in

  17. Thermal relics in cosmology with bulk viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, A. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Lambiase, G. [Universita di Salerno, Dipartimento di Fisica E.R. Caianiello, Fisciano (Italy); INFN, Gruppo Collegato di Salerno, Fisciano (Italy)

    2015-03-01

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, which cannot be explained by conventional cosmology and particle physics. (orig.)

  18. A mechanistic analysis of bulk powder caking

    Science.gov (United States)

    Calvert, G.; Curcic, N.; Ghadiri, M.

    2013-06-01

    Bulk powder transformations, such as caking, can lead to numerous problems within industry when storing or processing materials. In this paper a new Environmental Caking Rig (ECR) is introduced and has been used to evaluate the caking propensity of a hygroscopic powder as a function of temperature, Relative Humidity (RH), mechanical stress and also when RH is cycled. A linear relationship exists between cake strength and the extent of bulk deformation, here defined by the engineering strain. An empirical model has been used to predict the caking behaviour based on consolidation stress and environmental conditions.

  19. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  20. Dynamic Response of Shear-Flexible Cylindrical Isotropic Shells with Clamped Edges

    Directory of Open Access Journals (Sweden)

    Zafer I. Sakka

    2006-01-01

    Full Text Available It is fundamental to obtain the natural frequencies and the corresponding mode shapes for cylindrical shells in order to determine their response to different dynamic loading. In this paper an analytical investigation to the free vibration response of moderately-thick shear flexible isotropic cylindrical shells with all edges clamped is presented. The Sander’s kinematic relations for moderately thick cylindrical shell panels are utilized to develop the governing partial differential equations in conjunction with the boundary conditions. A recently developed generalized Navier’s approach, based on a boundary continuous double Fourier series expansion, is used as a solution methodology. A parametric study is presented with respect to various thicknesses, length and radius of curvature of the shell panel. The convergence of the solution method is established numerically for various parametric properties. The present results are compared with the results obtained from finite element method using a four-node isoparametric shell element. The results thus presented should serve as bench-mark solutions for future comparisons with numerical and approximate methods for calculation of free vibration parameters of moderately-thick isotropic cylindrical shells.

  1. On the Schrodinger equations with isotropic and anisotropic fourth-order dispersion

    Directory of Open Access Journals (Sweden)

    Elder J. Villamizar-Roa

    2016-01-01

    Full Text Available This article concerns the Cauchy problem associated with the nonlinear fourth-order Schrodinger equation with isotropic and anisotropic mixed dispersion. This model is given by the equation $$ i\\partial_tu+\\epsilon \\Delta u+\\delta A u+\\lambda|u|^\\alpha u=0,\\quad x\\in\\mathbb{R}^{n},\\; t\\in \\mathbb{R}, $$ where A is either the operator $\\Delta^2$ (isotropic dispersion or $\\sum_{i=1}^d\\partial_{x_ix_ix_ix_i}$, $1\\leq d

  2. Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice

    Science.gov (United States)

    Gschwind, A.; Klopotek, M.; Ai, Y.; Oettel, M.

    2017-07-01

    Using grand-canonical Monte Carlo (GCMC) simulations, we investigate the isotropic-nematic phase transition for hard rods of size L ×1 ×1 on a three-dimensional cubic lattice. We observe such a transition for L ≥6 . For L =6 , the nematic state has a negative order parameter, reflecting the co-occurrence of two dominating orientations. For L ≥7 , the nematic state has a positive order parameter, corresponding to the dominance of one orientation. We investigate rod lengths up to L =25 and find evidence for a very weakly first-order isotropic-nematic transition, while we cannot completely rule out a second-order transition. It was not possible to detect a density jump at the transition, despite using large systems containing several 105 particles. The probability density distributions P (Q ) from the GCMC simulations near the transition are very broad, pointing to strong fluctuations. Our results complement earlier results on the demixing (pseudonematic) transition for an equivalent system in two dimensions, which is presumably of Ising type and occurs for L ≥7 . We compare our results to lattice fundamental measure theory (FMT) and find that FMT strongly overestimates nematic order and consequently predicts a strong first-order transition. The rod packing fraction of the nematic coexisting states, however, agree reasonably well between FMT and GCMC.

  3. Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field

    Science.gov (United States)

    Huete, César; Jin, Tai; Martínez-Ruiz, Daniel; Luo, Kun

    2017-11-01

    Linear interaction analysis (LIA) is employed to investigate the interaction of reactive and nonreactive shock waves with isotropic vortical turbulence. The analysis is carried out, through Laplace-transform technique, accounting for long-time effects of vortical disturbances on the burnt-gas flow in the fast-reaction limit, where the reaction-region thickness is significantly small in comparison with the most representative turbulent length scales. Results provided by the opposite slow-reaction limit are also recollected. The reactive case is here restricted to situations where the overdriven detonation front does not exhibit self-induced oscillations nor inherent instabilities. The interaction of the planar detonation with a monochromatic pattern of perturbations is addressed first, and then a Fourier superposition for three-dimensional isotropic turbulent fields is employed to provide integral formulas for the amplification of the kinetic energy, enstrophy, and anisotropy downstream. Transitory evolution is also provided for single-frequency disturbances. In addition, further effects associated to the reaction rate, which have not been included in LIA, are studied through direct numerical simulations. The numerical computations, based on WENO-BO4-type scheme, provide spatial profiles of the turbulent structures downstream for four different conditions that include nonreacting shock waves, unstable reacting shock (sufficiently high activation energy), and stable reacting shocks for different detonation thicknesses. Effects of the propagation Mach number, chemical heat release, and burn rate are analyzed.

  4. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-05-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  5. Testing the magnetotail configuration based on observations of low-altitude isotropic boundaries during quiet times

    Science.gov (United States)

    Ilie, R.; Ganushkina, N.; Toth, G.; Dubyagin, S.; Liemohn, M. W.

    2015-12-01

    We investigate the configuration of the geomagnetic field on the nightside magnetosphere during a quiet time interval based on National Oceanic and Atmospheric Administration Polar Orbiting Environment Satellites Medium Energy Proton and Electron Detector (NOAA/POES MEPED) measurements in combination with numerical simulations of the global terrestrial magnetosphere using the Space Weather Modeling Framework. Measurements from the NOAA/POES MEPED low-altitude data sets provide the locations of isotropic boundaries; those are used to extract information regarding the field structure in the source regions in the magnetosphere. In order to evaluate adiabaticity and mapping accuracy, which is mainly controlled by the ratio between the radius of curvature and the particle's Larmor radius, we tested the threshold condition for strong pitch angle scattering based on the MHD magnetic field solution. The magnetic field configuration is represented by the model with high accuracy, as suggested by the high correlation coefficients and very low normalized root-mean-square errors between the observed and the modeled magnetic field. The scattering criterion, based on the values of k=Rcρ ratio at the crossings of magnetic field lines, associated with isotropic boundaries, with the minimum B surface, predicts a critical value of kCR˜33. This means that, in the absence of other scattering mechanisms, the strong pitch angle scattering takes place whenever the Larmor radius is ˜33 times smaller than the radius of curvature of the magnetic field, as predicted by the Space Weather Modeling Framework.

  6. Isotropic Zero Thermal Expansion and Local Vibrational Dynamics in (Sc,Fe)F3.

    Science.gov (United States)

    Qin, Feiyu; Chen, Jun; Aydemir, Umut; Sanson, Andrea; Wang, Lu; Pan, Zhao; Xu, Jiale; Sun, Chengjun; Ren, Yang; Deng, Jinxia; Yu, Ranbo; Hu, Lei; Snyder, G Jeffrey; Xing, Xianran

    2017-09-18

    Scandium fluoride (ScF3) exhibits a pronounced negative thermal expansion (NTE), which can be suppressed and ultimately transformed into an isotropic zero thermal expansion (ZTE) by partially substituting Sc with Fe in (Sc0.8Fe0.2)F3 (Fe20). The latter displays a rather small coefficient of thermal expansion of -0.17 × 10(-6)/K from 300 to 700 K. Synchrotron X-ray and neutron pair distribution functions confirm that the Sc/Fe-F bond has positive thermal expansion (PTE). Local vibrational dynamics based on extended X-ray absorption fine structure indicates a decreased anisotropy of relative vibration in the Sc/Fe-F bond. Combined analysis proposes a delicate balance between the counteracting effects of the chemical bond PTE and NTE from transverse vibration. The present study extends the scope of isotropic ZTE compounds and, more significantly, provides a complete local vibrational dynamics to shed light on the ZTE mechanism in chemically tailored NTE compounds.

  7. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  8. Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case

    Science.gov (United States)

    Gondolo, Paolo; Scopel, Stefano

    2017-09-01

    We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysis to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.

  9. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  10. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  11. Universality of spectrum of passive scalar variance at very high Schmidt number in isotropic steady turbulence

    Science.gov (United States)

    Gotoh, Toshiyuki

    2012-11-01

    Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.

  12. Effects of Homogenous Isotropic Turbulence on the Droplet Size Distribution and Clustering

    Science.gov (United States)

    Hager, Rachael; Savas, Ömer

    2017-11-01

    In clouds, the main growth mechanism of droplets with diameters 10-50 μm , known as the size-gap, is collision and coalescence. Atmospheric turbulence is known to increase the droplet growth rate in this range by enhancing the relative velocity between droplets and the formation of droplet clustering, thus increasing the droplet collision rate. The purpose here is to understand further how isotropic, homogeneous turbulence affects the evolution of the droplet size spectrum and the droplet concentration characteristics in the size-gap. Two sets of experiments are conducted in a 40-cm Eaton box, at the center of which homogeneous turbulence is generated. Flow images are taken of aluminum-oxide particles ranging from 0.5-5 μm in various flow conditions using a continuous wave laser sheet. Particle clustering and flow structures are examined for a range of Stokes numbers, where clustering is quantified using the radial distribution function. Secondly, droplets with an average diameter of 10 μm are injected into the turbulence box under various flow conditions. PDA is used to study the development of the droplet size distribution in isotropic, homogeneous turbulence.

  13. Rocking Rotation of a Rigid Disk Embedded in a Transversely Isotropic Half-Space

    Directory of Open Access Journals (Sweden)

    Seyed Ahmadi

    2014-06-01

    Full Text Available The asymmetric problem of rocking rotation of a circular rigid disk embedded in a finite depth of a transversely isotropic half-space is analytically addressed. The rigid disk is assumed to be in frictionless contact with the elastic half-space. By virtue of appropriate Green's functions, the mixed boundary value problem is written as a dual integral equation. Employing further mathematical techniques, the integral equation is reduced to a well-known Fredholm integral equation of the second kind. The results related to the contact stress distribution across the disk region and the equivalent rocking stiffness of the system are expressed in terms of the solution of the obtained Fredholm  integral  equation. When the rigid disk is located on the surface or at the remote boundary, the exact closed-form solutions are presented. For verification purposes, the limiting case of an isotropic half-space is considered and the results are verified with those available in the literature. The jump behavior in the results at the edge of the rigid disk for the case of an infinitesimal embedment is highlighted analytically for the first time. Selected numerical results are depicted for the contact stress distribution across the disk region, rocking stiffness of the system, normal stress, and displacement components along the radial axis. Moreover, effects of anisotropy on the rocking stiffness factor are discussed in detail.

  14. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  15. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    Science.gov (United States)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  16. On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)

    2006-01-01

    In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.

  17. Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number

    Science.gov (United States)

    Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui

    2013-11-01

    To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.

  18. Elastic Cherenkov effects in transversely isotropic soft materials-I: Theoretical analysis, simulations and inverse method

    Science.gov (United States)

    Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping

    2016-11-01

    A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.

  19. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  20. Traveltime approximations for inhomogeneous transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-04-30

    Traveltime information is crucial for parameter estimation, especially if the medium is described by a set of anisotropy parameters. We can efficiently estimate these parameters if we are able to relate them analytically to traveltimes, which is generally hard to do in inhomogeneous media. I develop traveltime approximations for transversely isotropic media with a horizontal symmetry axis (HTI) as simplified and even linear functions of the anisotropy parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to the anellipticity parameter, η and the azimuth of the symmetry axis (typically associated with the fracture direction) from a generally inhomogeneous, elliptically anisotropic background medium. Such a perturbation is convenient since the elliptically anisotropic information might be obtained from well velocities in HTI media. Thus, we scan for only η and the symmetry-axis azimuth. The resulting approximations can provide a reasonably accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations. They also help extend the inhomogenous background isotropic or elliptically anisotropic models to an HTI one with a smoothly variable η and symmetry-axis azimuth. © 2012 European Association of Geoscientists & Engineers.

  1. Finite element implementation of a new model of slight compressibility for transversely isotropic materials.

    Science.gov (United States)

    Pierrat, B; Murphy, J G; MacManus, D B; Gilchrist, M D

    2016-01-01

    Modelling transversely isotropic materials in finite strain problems is a complex task in biomechanics, and is usually addressed by using finite element (FE) simulations. The standard method developed to account for the quasi-incompressible nature of soft tissues is to decompose the strain energy function (SEF) into volumetric and deviatoric parts. However, this decomposition is only valid for fully incompressible materials, and its use for slightly compressible materials yields an unphysical response during the simulation of hydrostatic tension/compression of a transversely isotropic material. This paper presents the FE implementation as subroutines of a new volumetric model solving this deficiency in two FE codes: Abaqus and FEBio. This model also has the specificity of restoring the compatibility with small strain theory. The stress and elasticity tensors are first derived for a general SEF. This is followed by a successful convergence check using a particular SEF and a suite of single-element tests showing that this new model does not only correct the hydrostatic deficiency but may also affect stresses during shear tests (Poynting effect) and lateral stretches during uniaxial tests (Poisson's effect). These FE subroutines have numerous applications including the modelling of tendons, ligaments, heart tissue, etc. The biomechanics community should be aware of specificities of the standard model, and the new model should be used when accurate FE results are desired in the case of compressible materials.

  2. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee

    2016-06-01

    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  3. Cellulosic ethanol byproducts as a bulking agent

    Science.gov (United States)

    J.M. Considine; D. Coffin; J.Y. Zhu; D.H. Mann; X. Tang

    2017-01-01

    Financial enhancement of biomass value prior to pulping requires subsequent use of remaining materials; e.g., high value use of remaining stock material after cellulosic ethanol production would improve the economics for cellulosic ethanol. In this work, use of enzymatic hydrolysis residual solids (EHRS), a cellulosic ethanol byproduct, were investigated as a bulking...

  4. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  5. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    157–161. c Indian Academy of Sciences. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy. J K YU. ∗. , Y H WANG, G Z XING, Q QIAO, B LIU, Z J CHU, C L LI and F YOU. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,.

  6. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 1. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy. J K Yu Y H Wang G Z Xing Q Qiao B Liu Z J Chu C L Li F You. Volume 38 Issue 1 February 2015 pp 157-161 ...

  7. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  8. Thermal bulk polymerization of cholesteryl acrylate

    NARCIS (Netherlands)

    de Visser, A.C.; de Groot, K.; Feijen, Jan; Bantjes, A.

    1971-01-01

    The thermal bulk polymerization of cholesteryl acrylate was carried out in the solid phase, the mesomorphic phase, and the liquid phase to study the effect of monomer ordering on polymerization rate and polymer properties. The rate increased with decreasing ordering (or enhanced mobility) of the

  9. A large-scale biomass bulk terminal

    NARCIS (Netherlands)

    Wu, M.R.

    2012-01-01

    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials

  10. Modelling ventilated bulk storage of agromaterials

    NARCIS (Netherlands)

    Grubben, N.L.M.; Keesman, K.J.

    2015-01-01

    Storage of season-dependent agro-materials is a key process in providing food, feed and biomass throughout the whole year. We review the state of the art in physical modelling, simulation and control of ventilated bulk storage facilities, and in particular the storage of potatoes, from a

  11. Teaching Advanced SQL Skills: Text Bulk Loading

    Science.gov (United States)

    Olsen, David; Hauser, Karina

    2007-01-01

    Studies show that advanced database skills are important for students to be prepared for today's highly competitive job market. A common task for database administrators is to insert a large amount of data into a database. This paper illustrates how an up-to-date, advanced database topic, namely bulk insert, can be incorporated into a database…

  12. Transformation kinetics for surface and bulk nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Elena, E-mail: elena.villa@unimi.it [University of Milan, Department of Mathematics, via Saldini 50, 20133 Milano (Italy); Rios, Paulo R., E-mail: prrios@metal.eeimvr.uff.br [Universidade Federal Fluminense, Escola de Engenharia Industrial Metalurgica de Volta Redonda, Av. dos Trabalhadores 420, 27255-125 Volta Redonda, RJ (Brazil)] [RWTH Aachen University, Institut fuer Metallkunde und Metallphysik, D-52056 Aachen (Germany)

    2010-04-15

    A rigorous mathematical approach based on the causal cone and stochastic geometry concepts is used to derive new exact expressions for transformation kinetics theory. General expressions for the mean volume density and the volume fraction are derived for both surface and bulk nucleation in a general Borel subset of R{sup 3}. In practice, probably any specimen shape of engineering interest is going to be a Borel set. An expression is also derived for the important case of polyhedral shape, in which surface nucleation may take place on the faces, edges and vertices of the polyhedron as well as within the bulk. Moreover, explicit expressions are given for surface and bulk nucleation for three specific shapes of engineering relevance: two parallel planes, an infinitely long cylinder and a sphere. Superposition is explained in detail and it permits the treatment of situations in which surface and bulk nucleation take place simultaneously. The new exact expressions presented here result in a significant increase in the number of exactly solvable cases available to formal kinetics.

  13. Scientific computing on bulk synchronous parallel architectures

    NARCIS (Netherlands)

    Bisseling, R.H.; McColl, W.F.

    1993-01-01

    Bulk synchronous parallel architectures oer the prospect of achieving both scalable parallel performance and architecture independent parallel software. They provide a robust model on which to base the future development of general purpose parallel computing systems. In this paper, we theoretically

  14. Radiopacity of bulk fill flowable resin composite materials | Yildirim ...

    African Journals Online (AJOL)

    Objectives: The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x‑tra Base Bulk Fill). Materials and Methods: Six specimens of each material with a thickness of 1 mm were prepared, and ...

  15. Bulk sulfur (S) deposition in China

    Science.gov (United States)

    Liu, Lei; Zhang, Xiuying; Wang, Shanqian; Zhang, Wuting; Lu, Xuehe

    2016-06-01

    A systematic dataset of an observation network on a national scale has been organized to investigate the spatial distribution of bulk sulfur (S) deposition (Sdep) throughout China during 2000-2013, representing by far the most detailed data set to track the bulk sulfur deposition throughout China since 2000. Such a dataset is needed for ecosystem studies and for developing emission control policies. Bulk Sdep values showed great variations, ranging from 2.17 to 70.55 kg ha-1 y-1, with an average of 22.99 kg ha-1 y-1. The average rate of bulk Sdep located in East Coastal region (35.97 kg ha-1 y-1), Middle Yangtze region (57.90 kg ha-1 y-1), Middle Yellow River region (23.42 kg ha-1 y-1), North Coastal region (42.19 kg ha-1 y-1), Northeast region (34.28 kg ha-1 y-1), South Coastal region (36.97 kg S ha-1 y-1), Southwest region (33.85 kg ha-1 y-1) was 4.50, 7.24, 2.93, 5.28, 4.29, 4.63 and 4.24 times than that in Northwest region (7.99 kg ha-1 y-1). Bulk Sdep over China was mainly from fossil fuel combustion (76.96%), biomass burning (7.64%), crust (6.22%), aged sea salt (5.48%) and agriculture (3.68%). A systematic observation network on a national scale should be established to conduct a long-term monitoring atmospheric Sdep (including wet and dry deposition), based on exiting ecological stations administrated by different departments in China.

  16. Limit theorems for Lévy walks in d dimensions: rare and bulk fluctuations

    Science.gov (United States)

    Fouxon, Itzhak; Denisov, Sergey; Zaburdaev, Vasily; Barkai, Eli

    2017-04-01

    We consider super-diffusive Lévy walks in d≥slant 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called ‘infinite density’, describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d  >  1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.

  17. Collapse pressure analysis of transversely isotropic thick-walled cylinder using Lebesgue strain measure and transition theory.

    Science.gov (United States)

    Aggarwal, A K; Sharma, Richa; Sharma, Sanjeev

    2014-01-01

    The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of "stress saving" that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.

  18. Dual-Dipole UHF RFID Tag Antenna with Quasi-Isotropic Patterns Based on Four-Axis Reflection Symmetry

    Directory of Open Access Journals (Sweden)

    Chunfang Qin

    2013-01-01

    Full Text Available In many RFID practical applications, it is required that reader can effectively read tags which are placed in radiation covering area randomly. In this paper, a passive UHF dual-dipole tag antenna with quasi-isotropic patterns is designed, which can reduce the sensibility of tag read-orientation in a long distance. Two dipoles with four-axis reflection symmetric structure are used, and the two arms of the dipole are bent to fill the space of the antenna. In this way, a quasi-isotropic tag is easier to be obtained. The test results show that the gain deviation of the proposed antenna was less than 3.25 dB, and the maximum reading range in different directions was from 6.9 m to 10.0 m, with better quasi-isotropic performance and reading range than other commercial tags.

  19. Perbandingan tingkat kebocoran mikro resin komposit bulk-filldengan teknik penumpatan oblique incremental dan bulk

    Directory of Open Access Journals (Sweden)

    Dimas Puja Permana

    2016-12-01

    Full Text Available Micoleakage comparison of bulk-fillcomposite beetwen oblique incremental and bulk placement techniques. Resin composite bulk-fill was a new type of resin composite that speed up application process of composite. The concept of bulk-fill composite allows composite to fill at a depth of 4 mm and minimizes polymerization shrinkage. This study aims to determine the comparison of placement techniques (oblique incremental/bulk of bulk-fill composite on microleakage in class I preparations. Thirty two human maxillary premolar were stored in distilled water, then Class I preparations were made with the depth of the cavity which was 4 mm (3 x 3 x 4. The teeth were randomly divided into two groups, group 1 uses oblique incremental placement technique and group 2 with bulk placement technique. Samples were stored in an incubator at a temperature of 37 °C for 24 hours, then it was thermocycled manually, 100 cycles at temperature between 5 °C and 55 °C. Microleakage was measured using a digital microscope with a 100 X magnification in millimeters using a microscope micrometer calibration ruler with 0,1 mm level of accuracy after immersion in 0,3% methylene blue and sectioned using separating disc. The result of this study revealed that in group 1 microleakage range was 1.0 mm - 2.7 mm with an average 1.625 mm, and in group 2 microleakage range was 3.6 mm - 4.0 mm with an average of 3.763 mm. The data were analyzed using T-test. The analysis showed a significant difference between two groups (p <0.05. The conclusion of this study was bulk-fill composite in class I cavities with oblique incremental placement technique produces less microleakage than bulk placement technique.   ABSTRAK Resin komposit bulk-fill adalah resin komposit yang dirancang untuk mempercepat proses aplikasi resin komposit. Konsep bulk-fill memungkinkan resin komposit ditumpat sekaligus 4 mm dan mengalami pengerutan polimerisasi minimal. Penelitian ini bertujuan mengetahui efek teknik

  20. Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.

    Science.gov (United States)

    Dias, Sílvia Costa; Ølsen, Oystein E

    2012-11-01

    MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.

  1. Effect of Quasi-Isotropic Antenna Orientation on Indoor Multipath Propagation Characteristics in RSN Applications

    Directory of Open Access Journals (Sweden)

    Abdelhamid Bou-El-Harmel

    2017-01-01

    Full Text Available In the RFID sensor networks (RSN, the orientations of the antennas used in the network nodes have a significant influence on the propagation characteristics. In this article, we investigated the effects of the two antennas’ orientation of different radiation and polarization on the multipath propagation characteristics. This study is evaluated in a typical indoor environment by computer simulations based on the three-dimensional (3D ray-tracing method. This method is based on geometric optics and uniform diffraction theory and also it offers significant advantages in terms of accurate and comprehensive prediction of propagation characterization. The simulations have been performed at frequency 915 MHz and the propagation characteristics are compared in terms of received power level (Pr and Root-Mean-Square (RMS delay spread for a quasi-isotropic 3D cubic antenna with circular polarization and for an omnidirectional dipole with linear polarization in the LOS, NLOS, and OLOS scenarios.

  2. Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System

    Science.gov (United States)

    Carney, Matthew Eli (Inventor); Jenett, Benjamin (Inventor); Gershenfeld, Neil (Inventor)

    2017-01-01

    A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.

  3. Fluence Rate in UV Photoreactor for Disinfection of Water: Isotropically Radiating Cylinder

    Directory of Open Access Journals (Sweden)

    Roman Ilinsky

    2014-01-01

    Full Text Available The calculation of fluence rate in the photochemical reactor using ultraviolet (UV radiation for disinfection of water for the case, when a cylinder of infinite length is used as a light source, has been considered. Such a cylinder is filled with an isotropically radiating medium. The dependence of the fluent rate on the diameter of the radiating cylinder has been analytically analyzed. The limiting case when the diameter of the radiating cylinder tends to zero has been considered and the notion of “effective interval” has been introduced. Based on this notion, the comparison of fluence rates for the cylinders of finite and infinite lengths has been performed. In the calculations of fluence rate, it is advisable to use the Chebyshev method for the operations of numerical integration.

  4. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  5. Theoretical investigation into the possibility of multiorbital magnetically ordered states in isotropically superstrained graphene

    Science.gov (United States)

    Craco, L.

    2017-10-01

    Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.

  6. Determination of fracture parameters for interface cracks in transverse isotropic magnetoelectroelastic composites

    Directory of Open Access Journals (Sweden)

    Lei Jun

    2015-01-01

    Full Text Available To determine fracture parameters of interfacial cracks in transverse isotropic magnetoelectroelastic composites, a displacement extrapolation formula was derived. The matrix-form formula can be applicable for both material components with arbitrary poling directions. The corresponding explicit expression of this formula was obtained for each poling direction normal to the crack plane. This displacement extrapolation formula is only related to the boundary quantities of the extended crack opening displacements across crack faces, which is convenient for numerical applications, especially for BEM. Meantime, an alternative extrapolation formula based on the path-independent J-integral and displacement ratios was presented which may be more adaptable for any domain-based numerical techniques like FEM. A numerical example was presented to show the correctness of these formulae.

  7. Corrsin's Hypothesis and Two-Particle Dispersion in Isotropic, Stationary Turbulence

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter

    On the basis of Corrsin’s independence hypothesis, in conjunction with specific assumptions about the form of the distance-neighbour function, an equation is derived for twoparticle dispersion in isotropic turbulence with no mean motion. It is formulated in terms of the mean-square difference...... for the scale free k−5/3 energy spectrum as well as for the von K´arm´an spectrum. The model implies that only when the outer scale is infinite, i.e. in the limit where the energy spectrum is of the form k−5/3, will there be a Cεt 3 range of the mean-square separation between the two particles. In this limiting...

  8. A Homogeneous and Isotropic Universe in Lorentz Gauge Theory of Gravity

    CERN Document Server

    Borzou, Ahmad

    2016-01-01

    Lorentz gauge theory of gravity was recently introduced. We study the homogeneous and isotropic universe of this theory. It is shown that some time after the matter in the universe is diluted enough, at $z \\sim 0.6$, the decelerating expansion shifts spontaneously to an accelerating one without a dark energy. We discuss that Lorentz gauge theory puts no constraint on the total energy content of the universe at present time and therefore the magnitude of vacuum energy predicted by field theory is not contradictory anymore. It is demonstrated that in this theory the limit on the number of relativistic particles in the universe is much looser than in GR. An inflationary mechanism is discussed as well. We show that the theory, unlike GR, does not require the slow-roll or similar conditions to drive the inflation at the beginning of the universe.

  9. Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor

    Science.gov (United States)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    This paper presents a probabilistic acoustic emission (AE) source localization algorithm for isotropic plate structures. The proposed algorithm requires only one sensor and uniformly monitors the entire area of such plates without any blind zones. In addition, it takes a probabilistic approach and quantifies localization uncertainties. The algorithm combines a modal acoustic emission (MAE) and a reflection-based technique to obtain information pertaining to the location of AE sources. To estimate confidence contours for the location of sources, uncertainties are quantified and propagated through the two techniques. The approach was validated using standard pencil lead break (PLB) tests on an Aluminum plate. The results demonstrate that the proposed source localization algorithm successfully estimates confidence contours for the location of AE sources.

  10. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees

    Science.gov (United States)

    Zhuo, R. F.; Qiao, L.; Feng, H. T.; Chen, J. T.; Yan, D.; Wu, Z. G.; Yan, P. X.

    2008-11-01

    In this paper, ZnO nanowires and ZnO nanotrees have been prepared and their microwave absorption properties have been investigated in detail. Complex permittivity and permeability of the ZnO nanostructures and paraffin composites have been measured in a frequency of 0.1-18 GHz. Excellent microwave absorption performances have been observed in ZnO nanotree composite compared to ZnO nanowire composite, and the maximum absorption is enhanced as the concentration of the nanotrees increases in the composite. The value of minimum reflection loss for the composites with 60 vol % ZnO nanotrees is -58 dB at 4.2 GHz with a thickness of 4.0 mm. Such strong absorption is attributed to the unique isotropic antenna morphology of the ZnO nanotrees in the composite.

  11. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  12. Sedimentation of elongated non-motile prolate spheroids in homogenous isotropic turbulence

    CERN Document Server

    Ardekani, M Niazi; Brandt, L; Karp-Boss, L; Bearon, R N; Variano, E A

    2016-01-01

    Phytoplankton are the foundation of aquatic food webs. Through photosynthesis, phytoplankton draw down CO2 at magnitudes equivalent to forests and other terrestrial plants and convert it to organic material that is then consumed by other organisms of phytoplankton in higher trophic levels. Mechanisms that affect local concentrations and velocities are of primary significance to many encounter-based processes in the plankton including prey-predator interactions, fertilization and aggregate formation. We report results from simulations of sinking phytoplankton, considered as elongated spheroids, in homogenous isotropic turbulence to answer the question of whether trajectories and velocities of sinking phytoplankton are altered by turbulence. We show in particular that settling spheroids with physical characteristics similar to those of diatoms weakly cluster and preferentially sample regions of down-welling flow, corresponding to an increase of the mean settling speed with respect to the mean settling speed in ...

  13. Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity

    Science.gov (United States)

    Delorme, Rolland; Tabiai, Ilyass; Laberge Lebel, Louis; Lévesque, Martin

    2017-02-01

    This paper presents a generalization of the original ordinary state-based peridynamic model for isotropic linear viscoelasticity. The viscoelastic material response is represented using the thermodynamically acceptable Prony series approach. It can feature as many Prony terms as required and accounts for viscoelastic spherical and deviatoric components. The model was derived from an equivalence between peridynamic viscoelastic parameters and those appearing in classical continuum mechanics, by equating the free energy densities expressed in both frameworks. The model was simplified to a uni-dimensional expression and implemented to simulate a creep-recovery test. This implementation was finally validated by comparing peridynamic predictions to those predicted from classical continuum mechanics. An exact correspondence between peridynamics and the classical continuum approach was shown when the peridynamic horizon becomes small, meaning peridynamics tends toward classical continuum mechanics. This work provides a clear and direct means to researchers dealing with viscoelastic phenomena to tackle their problem within the peridynamic framework.

  14. An inkjet printed near isotropic 3-D antenna with embedded electronics for wireless sensor applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    A 3-D (cube-shaped) antenna, which has been inkjet printed on a paper substrate and integrated with embedded electronics, is presented for the first time. A 1.5λ0 dipole is uniquely implemented on all the faces of the cube to achieve near isotropic radiation pattern. The antenna measures 13mm × 13mm × 13mm, where each side of the cube corresponds to only 0.1λ0 (at 2.4 GHz). Measurements with driving electronics placed inside the cube have shown that the antenna performance is not affected by the presence of embedded circuits. The cube antenna design is highly suitable for mobile sensing applications.

  15. Analysis of isotropic tapered beams by using symmetric smoothed particle hydrodynamics method

    Directory of Open Access Journals (Sweden)

    Armağan Karamanlı

    2016-10-01

    Full Text Available The Symmetric Smoothed Particle Hydrodynamics (SSPH method is applied to solve elastostatic deformations of isotropic tapered beams subjected to different sets of boundary conditions. Governing equations are presented by using either the Euler-Bernoulli and Timoshenko beam theories. The performance of the SSPH method is evaluated by using different numbers of nodes in the problem domain and employing different beam theories for the numerical solutions of the iostropic tapered beam problems. To validate the performance of the SSPH method, comparison studies in terms of transverse deflections and axial stresses are carried out with the analytical solutions of Euler Bernoulli Beam Theory. Since there is no available closed form solutions of the problems based on the Timoshenko Beam Theory, the analytical solutions obtained by the Euler Beam Theory are used for the comparison purposes. It is observed that the SSPH method has the conventional convergence properties and yields smaller L2 error.

  16. Isotropic-to-nematic phase transition of liquid crystals confined in nanoemulsion droplets

    Science.gov (United States)

    Bono, S.; Takanishi, Y.; Yamamoto, J.

    2015-01-01

    We fabricated liquid crystalline nanoemulsions (LCNEs) by introducing low molecular weight liquid crystals (LMWLCs) into the core of nanoemulsions, and investigated the phase transition behavior of LMWLCs in the core part with the various weight ratios of LMWLCs to surfactants. The polarized dynamic light scattering measurement was performed to estimate the radii of LCNEs, and it is found that their radii can be controlled by the weight ratio of LMLCs to surfactant polymers. In the depolarized light scattering, it was revealed that the order of the isotropic-nematic phase transition behavior changes from the first order to biased second order with decreasing radius of LCNEs because of the three-dimensional confinement effect surrounded by an anchoring surface.

  17. Three-dimensional, isotropic imaging of mouse brain using multi-view deconvolution light sheet microscopy

    Directory of Open Access Journals (Sweden)

    Sa Liu

    2017-09-01

    Full Text Available We present a three-dimensional (3D isotropic imaging of mouse brain using light-sheet fluorescent microscopy (LSFM in conjunction with a multi-view imaging computation. Unlike common single view LSFM is used for mouse brain imaging, the brain tissue is 3D imaged under eight views in our study, by a home-built selective plane illumination microscopy (SPIM. An output image containing complete structural information as well as significantly improved resolution (∼4 times are then computed based on these eight views of data, using a bead-guided multi-view registration and deconvolution. With superior imaging quality, the astrocyte and pyramidal neurons together with their subcellular nerve fibers can be clearly visualized and segmented. With further including other computational methods, this study can be potentially scaled up to map the connectome of whole mouse brain with a simple light-sheet microscope.

  18. Calculation of point isotropic buildup factors of gamma rays for water and lead

    Directory of Open Access Journals (Sweden)

    A. S. H.

    2001-12-01

    Full Text Available   Exposure buildup factors for water and lead have been calculated by the Monte-Carlo method for an isotropic point source in an infinite homogeneous medium, using the latest cross secions available on the Internet. The types of interactions considered are ,photoelectric effect, incoherent (or bound-electron Compton. Scattering, coherent (or Rayleigh scattering and pair production. Fluorescence radiations have also been taken into acount for lead. For each material, calculations were made at 10 gamma ray energies in the 40 keV to 10 MeV range and up to penetration depths of 10 mean free paths at each energy point. The results presented in this paper can be considered as modified gamma ray exposure buildup factors and be used in radiation shielding designs.

  19. Thermal stresses in a spherical pressure vessel having temperature-dependent, transversely isotropic, elastic properties

    Science.gov (United States)

    Tauchert, T. R.

    1976-01-01

    Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct approximate solutions for the response of a thick-walled sphere to uniform pressure loads and an arbitrary radial temperature distribution. The thermoelastic properties of the sphere are assumed to be transversely isotropic and nonhomogeneous; variations in the elastic stiffness and thermal expansion coefficients are taken to be an arbitrary function of the radial coordinate and temperature. Numerical examples are presented which illustrate the effect of the temperature-dependence upon the thermal stress field. A comparison of the approximate solutions with a finite element analysis indicates that Ritz methods offer a simple, efficient, and relatively accurate approach to the problem.

  20. Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning.

    Science.gov (United States)

    Schwarz, Mathias; Buehler, Andreas; Ntziachristos, Vasilis

    2015-01-01

    Optoacoustic (photoacoustic) imaging is often performed with one-dimensional transducer arrays, in analogy to ultrasound imaging. Optoacoustic imaging using linear arrays offers ease of implementation but comes with several performance drawbacks, in particular poor elevation resolution, i.e. the resolution along the axis perpendicular to the focal plane. Herein, we introduce and investigate a bi-directional scanning approach using linear arrays that can improve the imaging performance to quasi-isotropic transverse resolution. We study the approach theoretically and perform numerical simulations and phantom measurements to evaluate its performance under defined conditions. Finally, we discuss the features and the limitations of the proposed method. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermo-oxidative degradation assessment in quasi-isotropic carbon fiber/epoxy composites

    Science.gov (United States)

    Daily, Connor; Barnard, Dan J.; Jones, Roger W.; McClelland, John F.; Bowler, Nicola

    2015-03-01

    Components made from polymer matrix composites (PMCs) are finding increasing use in armored vehicles for the purpose of weight savings and fuel efficiency. Often times, these PMC components are installed next to engines, or in other high-temperature environments within the vehicle. The present work investigates the change in surface chemistry and its correlation with changes in the interlaminar shear strength (ILSS) due to accelerated thermo-oxidative aging of a quasi-isotropic carbon fiber reinforced epoxy laminate. Samples are aged isothermally at various temperatures whose selection is guided by degradation steps revealed by thermo-gravimetric analysis. Fourier transform infrared (FTIR) photoacoustic spectroscopy is utilized to identify the chemical changes due to aging, and compression-test results reveal a non-linear decrease in ILSS with increasing aging temperature. A correlation between the FTIR and ILSS data sets suggests that nondestructive FTIR techniques may be used for assessing ILSS of PMCs.

  2. Novel Kinetic Theory of the Classical Isotropic Oscillator Gas, the Flexible Shell Model

    Science.gov (United States)

    Schruben, Dale

    2013-12-01

    Ever since Chapman and Enskog first used the hard sphere model to evaluate the collision integral in the Boltzmann equation, more sophisticated models for molecular encounters have been sought. Rotation of molecules in kinetic theory has been pursued with a number of models, such as the spherocylinder or loaded sphere, to account for that aspect. As these efforts continued, more workers started to incorporate quantum mechanics methods in pursuit of solutions to the Boltzmann equation. Progress there with both rotational and vibrational features of molecules has been attained. Until now though, there has been no classical vibration model for molecules in kinetic theory. Far from standard kinetic theory, here a simple classical mechanics isotropic oscillator is combined, through a flexible shell, with the hard sphere model in a full Chapman Enskog procedure. The intent here has been to introduce the model, so items like translational-vibrational coupling have not been included. Still, the results compliment literature.

  3. Analytical applications and effective properties of a second gradient isotropic elastic material model

    Science.gov (United States)

    Enakoutsa, Koffi

    2015-06-01

    Recently, the works by Toupin, Mindlin, Sokolowski and Germain have been developed following two research streams. In the first one, higher-order gradient continuum models were developed based on the Cauchy tetrahedron argument (see, e.g., dell'Isola and Seppecher in Comptes Rendus de l Academie de Sciences 17 Serie IIb: Mecanique, Physique, Chimie, Astronomie 321:303-308, 1995, Meccanica 32:33-52 1997, Zeitschrift fr Angewandte Mathematik und Physik 63(6):1119-1141, 2012). In the second one, the structure of higher-order gradient models is developed with a view to the applications. In particular in the model of linear isotropic solids proposed by Dell'Isola, Sciarra and Vidoli (DSV), the main constitutive equation is obtained for the case of second gradient models. This model introduces in addition to the two well-known Lame's elastic constants five constitutive constants. The practical applications of this model remain in its infancy since the issue of determining the new moduli it introduces is not yet completely addressed. Also, analytical solutions of simple boundary value problems that can be helpful to grasp some of the physical foundations of this model are missing. This paper aims to address these two issues by providing the analytical solutions for two model problems, a spherical shell subjected to axisymmetric loading conditions and the circular bending of a beam in plane strain, both the beam and the shell obeying the DSV second gradient isotropic elastic model. The solution of the circular bending of a beam has served to grasp some of the physical soundness of the model. A framework based on homogenization under inhomogeneous boundary conditions is also suggested to determine the unknown constitutive constants, which are provided in the particular case of elastic porous heterogeneous materials.

  4. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; hide

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  5. Technical note: Accelerated nonrigid motion-compensated isotropic 3D coronary MR angiography.

    Science.gov (United States)

    Correia, Teresa; Cruz, Gastão; Schneider, Torben; Botnar, René M; Prieto, Claudia

    2018-01-01

    To develop an accelerated and nonrigid motion-compensated technique for efficient isotropic 3D whole-heart coronary magnetic resonance angiography (CMRA) with Cartesian acquisition. Highly efficient whole-heart 3D CMRA was achieved by combining image reconstruction from undersampled data using compressed sensing (CS) with a nonrigid motion compensation framework. Undersampled acquisition was performed using a variable-density Cartesian trajectory with radial order (VD-CAPR). Motion correction was performed in two steps: beat-to-beat 2D translational correction with motion estimated from interleaved image navigators, and bin-to-bin 3D nonrigid correction with motion estimated from respiratory-resolved images reconstructed from undersampled 3D CMRA data using CS. Nonrigid motion fields were incorporated into an undersampled motion-compensated reconstruction, which combines CS with the general matrix description formalism. The proposed approach was tested on 10 healthy subjects and compared against a conventional twofold accelerated 5-mm navigator-gated and tracked acquisition. The proposed method achieves isotropic 1.2-mm Cartesian whole-heart CMRA in 5 min ± 1 min (~8× acceleration). The proposed approach provides good-quality images of the left and right coronary arteries, comparable to those of a twofold accelerated navigator-gated and tracked acquisition, but scan time was up to about four times faster. For both coronaries, no significant differences (P > 0.05) in vessel sharpness and length were found between the proposed method and reference scan. The feasibility of a highly efficient motion-compensated reconstruction framework for accelerated 3D CMRA has been demonstrated in healthy subjects. Further investigation is required to assess the clinical value of the method. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets

    Science.gov (United States)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  7. Lipid concentration and molar ratio boundaries for the use of isotropic bicelles.

    Science.gov (United States)

    Beaugrand, Maïwenn; Arnold, Alexandre A; Hénin, Jérôme; Warschawski, Dror E; Williamson, Philip T F; Marcotte, Isabelle

    2014-06-03

    Bicelles are model membranes generally made of long-chain dimyristoylphosphatidylcholine (DMPC) and short-chain dihexanoyl-PC (DHPC). They are extensively used in the study of membrane interactions and structure determination of membrane-associated peptides, since their composition and morphology mimic the widespread PC-rich natural eukaryotic membranes. At low DMPC/DHPC (q) molar ratios, fast-tumbling bicelles are formed in which the DMPC bilayer is stabilized by DHPC molecules in the high-curvature rim region. Experimental constraints imposed by techniques such as circular dichroism, dynamic light scattering, or microscopy may require the use of bicelles at high dilutions. Studies have shown that such conditions induce the formation of small aggregates and alter the lipid-to-detergent ratio of the bicelle assemblies. The objectives of this work were to determine the exact composition of those DMPC/DHPC isotropic bicelles and study the lipid miscibility. This was done using (31)P nuclear magnetic resonance (NMR) and exploring a wide range of lipid concentrations (2-400 mM) and q ratios (0.15-2). Our data demonstrate how dilution modifies the actual DMPC/DHPC molar ratio in the bicelles. Care must be taken for samples with a total lipid concentration ≤250 mM and especially at q ∼ 1.5-2, since moderate dilutions could lead to the formation of large and slow-tumbling lipid structures that could hinder the use of solution NMR methods, circular dichroism or dynamic light scattering studies. Our results, supported by infrared spectroscopy and molecular dynamics simulations, also show that phospholipids in bicelles are largely segregated only when q > 1. Boundaries are presented within which control of the bicelles' q ratio is possible. This work, thus, intends to guide the choice of q ratio and total phospholipid concentration when using isotropic bicelles.

  8. A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion.

    Science.gov (United States)

    Jiang, Tao; McKinley, R F Andrew; McGill, Melanie A; Angers, Stephane; Harris, Tony J C

    2015-10-19

    To form regulated barriers between body compartments, epithelial cells polarize into apical and basolateral domains and assemble adherens junctions (AJs). Despite close links with polarity networks that generate single polarized domains, AJs distribute isotropically around the cell circumference for adhesion with all neighboring cells [1-3]. How AJs avoid the influence of polarity networks to maintain their isotropy has been unclear. In established epithelia, trans cadherin interactions could maintain AJ isotropy [4], but AJs are dynamic during epithelial development and remodeling [5, 6], and thus specific mechanisms may control their isotropy. In Drosophila, aPKC prevents hyper-polarization of junctions as epithelia develop from cellularization to gastrulation [7]. Here, we show that aPKC does so by inhibiting a positive feedback loop between Bazooka (Baz)/Par-3, a junctional organizer [5, 8-10], and centrosomes. Without aPKC, Baz and centrosomes lose their isotropic distributions and recruit each other to single plasma membrane (PM) domains. Surprisingly, our loss- and gain-of-function analyses show that the Baz-centrosome positive feedback loop is driven by Par-1, a kinase known to phosphorylate Baz and inhibit its basolateral localization [8, 11, 12]. We find that Par-1 promotes the positive feedback loop through both centrosome microtubule effects and Baz phosphorylation. Normally, aPKC attenuates the circuit by expelling Par-1 from the apical domain at gastrulation. The combination of local activation and global inhibition is a common polarization strategy [13-16]. Par-1 seems to couple both effects for a potent Baz polarization mechanism that is regulated for the isotropy of Baz and AJs around the cell circumference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants.

    Science.gov (United States)

    Pelaez-Vargas, A; Gallego-Perez, D; Magallanes-Perdomo, M; Fernandes, M H; Hansford, D J; De Aza, A H; Pena, P; Monteiro, F J

    2011-06-01

    Titanium implants are the gold standard in dentistry; however, problems such as gingival tarnishing and peri-implantitis have been reported. For zirconia to become a competitive alternative dental implant material, surface modification techniques that induce guided tissue growth must be developed. To develop alternative surface modification techniques to promote guided tissue regeneration on zirconia materials, for applications in dental implantology. A methodology that combined soft lithography and sol-gel chemistry was used to obtain isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates. The materials were characterized via chemical, structural, surface morphology approaches. In vitro biological behavior was evaluated in terms of early adhesion and viability/metabolic activity of human osteoblast-like cells. Statistical analysis was conducted using one-way ANOVA/Tukey HSD post hoc test. Isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates were obtained using a combined approach based on sol-gel technology and soft lithography. Micropatterned silica surfaces exhibited a biocompatible behavior, and modulated cell responses (i.e. inducing early alignment of osteoblast-like cells). After 7d of culture, the cells fully covered the top surfaces of pillar microstructured silica films. The micropatterned silica films on zirconia showed a biocompatible response, and were capable of inducing guided osteoblastic cell adhesion, spreading and propagation. The results herein presented suggest that surface-modified ceramic implants via soft lithography and sol-gel chemistry could potentially be used to guide periodontal tissue regeneration, thus promoting tight tissue apposition, and avoiding gingival retraction and peri-implantitis. Copyright © 2011 Academy of Dental Materials. All rights reserved.

  10. Magnetic compressibility and Isotropic Scale-Invariant Dissipation of Solar Wind Turbulence

    Science.gov (United States)

    Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Y. V.; Hnat, B.; Sahraoui, F.

    2010-12-01

    The anisotropic nature of solar wind magnetic fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field ACE, and Cluster FGM and STAFF observations spanning five decades in scales from the inertial to dissipation ranges of plasma turbulence. We find an abrupt transition at ion kinetic scales to a single isotropic stochastic process as characterized by the single functional form of the probability density functions (PDFs) of fluctuations that characterizes the dissipation range on all observable scales. In contrast to the inertial range, this is accompanied by a successive scale-invariant reduction in the ratio between parallel and transverse power. We suggest that this reflects the phase space nature of the cascade which operates in a scale-invariant isotropic manner in the (kinetic) dissipation range - distinct from the anisotropic phenomenology in the (magnetohydrodynamic) inertial range. Alternatively, if we assume that non-linear effects are weak in the dissipation range and use the results of the linear dispersion theory of waves; then our measurements of fluctuation anisotropy provide deep insight into the nature of these waves. In particular, using these measurements to form a measure for the scale-by-scale magnetic compressibility, we can distinguish between the competing hypotheses of oblique kinetic Alfven waves versus Whistler waves dominating the energy transfer in the dissipation range. By looking at the scale-by-scale PDFs of the fluctuations we will also comment on how reasonable the assumption of linear theory is as we cross from the inertial to the dissipation range of plasma turbulence.

  11. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  12. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Enhanced bulk polysilicon production using silicon tubes

    Science.gov (United States)

    Jafri, Ijaz; Chandra, Mohan; Zhang, Hui; Prasad, Vish; Reddy, Chandra; Amato-Wierda, Carmela; Landry, Marc; Ciszek, Ted

    2001-05-01

    A novel technique using silicon tubes for the production of bulk polysilicon via chemical vapor deposition is presented. Our experimental studies with a model reactor indicate that the polysilicon growth inside the silicon tube (15.3 g) exceeds that of the calculated polysilicon growth on silicon slim rods (4.3 g) over 55 h of deposition time. A computational model is also being developed to simulate the growth rates of the model reactor. Preliminary computational results from this model show a slightly asymmetric temperature distribution at the reactor center line with a 1000 sccm argon flow at 850°C reactor temperature. Both these experimental and computational modeling studies have identified key criteria for the prototype reactor being designed for bulk polysilicon growth.

  14. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  15. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  16. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  17. A large-scale biomass bulk terminal

    OpenAIRE

    Wu, M.R.

    2012-01-01

    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials that will be the major international trade flows in the future, the characteristics of these potential biomass materials, the interaction between the material properties and terminal equipment, the pe...

  18. Raman characterization of bulk ferromagnetic nanostructured graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)

    2012-08-15

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  19. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization...... is conducted by depositing a minute mass by means of focused ion beam. The total noise in the currently applied measurement system allows for a mass resolution of 0.4 fg in air....

  1. Scaling Bulk Data Analysis with Mapreduce

    Science.gov (United States)

    2017-09-01

    Writing Bulk_Extractor MapReduce 101 List of References 105 viii Initial Distribution List 113 ix THIS PAGE INTENTIONALLY LEFT BLANK x List of Figures...dedicated Experts -Formal definition presented -Large technology growth
 -Everyone has email, cell phones, networks Adolescence
 -Growth in Academics ...period is where we see those requirements come to fruition with an explosive growth into the academic community. This period marks a point where research

  2. An Extended Hardness Limit in Bulk Nanoceramics

    Science.gov (United States)

    2014-01-01

    to fabricate bulk, fully dense and high-purity nanocrystalline ceramics with unprecedentedly small nanometer- sized grains. Using magnesium aluminate ...nanocrystalline ceramic sintered at 2 GPa and 795 C. The diffraction peaks correspond to stoichiometric magnesium aluminate [42] and a nickel ring that holds...is found to be 3.6005 ± 0.0079 g cm3, which is equal to that of stoichiometric magnesium aluminate [43] and reveals that the produced ceramics are

  3. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    Science.gov (United States)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  4. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  5. Dynamic analysis of slab track on multi-layered transversely isotropic saturated soils subjected to train loads

    Science.gov (United States)

    Zhan, Yongxiang; Yao, Hailin; Lu, Zheng; Yu, Dongming

    2014-12-01

    The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE < 1 and RG < 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.

  6. Laplace-transform-based method to calculate back-reflected radiance from an isotropically scattering half-space

    NARCIS (Netherlands)

    Rinzema, K.; Hoenders, B.J; Ferwerda, H.A

    We present a method to determine the back-reflected radiance From an isotropically scattering half-space with matched boundary. This method has the advantage that it leads very quickly to the relevant equations, the numerical solution of which is also quite easy. Essentially, the method is derived

  7. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    Science.gov (United States)

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3 ∞ [Eu 2 (BDC) 3 ]·2DMF·2H 2 O (BDC 2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  8. Materials for Bulk Acoustic Resonators and Filters

    Science.gov (United States)

    Loebl, Hans-Peter

    2003-03-01

    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  9. Extraordinary plasticity of ductile bulk metallic glasses.

    Science.gov (United States)

    Chen, Mingwei; Inoue, Akihisa; Zhang, Wei; Sakurai, Toshio

    2006-06-23

    Shear bands generally initiate strain softening and result in low ductility of metallic glasses. In this Letter, we report high-resolution electron microscope observations of shear bands in a ductile metallic glass. Strain softening caused by localized shearing was found to be effectively prevented by nanocrystallization that is in situ produced by plastic flow within the shear bands, leading to large plasticity and strain hardening. These atomic-scale observations not only well explain the extraordinary plasticity that was recently observed in some bulk metallic glasses, but also reveal a novel deformation mechanism that can effectively improve the ductility of monolithic metallic glasses.

  10. "Work-Hardenable" ductile bulk metallic glass.

    Science.gov (United States)

    Das, Jayanta; Tang, Mei Bo; Kim, Ki Buem; Theissmann, Ralf; Baier, Falko; Wang, Wei Hua; Eckert, Jürgen

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  11. Towards bulk based preconditioning for quantum dotcomputations

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  12. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  13. Binary Ni-Nb bulk metallic glasses

    Science.gov (United States)

    Xia, L.; Li, W. H.; Fang, S. S.; Wei, B. C.; Dong, Y. D.

    2006-01-01

    We studied the glass forming ability of Ni-Nb binary alloys and found that some of the alloys can be prepared into bulk metallic glasses by a conventional Cu-mold casting. The best glass former within the compositional range studied is off-eutectic Ni62Nb38 alloy, which is markedly different from those predicted by the multicomponent and deep eutectic rules. The glass formation mechanism for binary Ni-Nb alloys was studied from the thermodynamic point of view and a parameter γ* was proposed to approach the ability of glass formation against crystallization.

  14. Cosmological Brane World Solutions with Bulk Scalar Fields

    OpenAIRE

    Davis, Stephen C.

    2001-01-01

    Cosmological brane world solutions are found for five-dimensional bulk spacetimes with a scalar field. A supergravity inspired method for obtaining static solutions is combined with a method for finding brane cosmologies with constant bulk energies. This provides a way to generate full (bulk and brane) cosmological solutions to brane worlds with bulk scalar fields. Examples of these solutions, and their cosmological evolution, are discussed.

  15. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  16. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  17. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  18. Use of containers to carry bulk and break bulk commodities and its impact on gulf region ports and international trade.

    Science.gov (United States)

    2014-08-01

    The University of New Orleans Transportation Institute was tasked by the Louisiana Transportation Research Center (LTRC) in mid-2012 to assess the use of containers to transport bulk and break bulk commodities and to determine what their impact would...

  19. Bulk magnetic domain stability controls paleointensity fidelity

    Science.gov (United States)

    Paterson, Greig A.; Muxworthy, Adrian R.; Yamamoto, Yuhji; Pan, Yongxin

    2017-12-01

    Nonideal, nonsingle-domain magnetic grains are ubiquitous in rocks; however, they can have a detrimental impact on the fidelity of paleomagnetic records—in particular the determination of ancient magnetic field strength (paleointensity), a key means of understanding the evolution of the earliest geodynamo and the formation of the solar system. As a consequence, great effort has been expended to link rock magnetic behavior to paleointensity results, but with little quantitative success. Using the most comprehensive rock magnetic and paleointensity data compilations, we quantify a stability trend in hysteresis data that characterizes the bulk domain stability (BDS) of the magnetic carriers in a paleomagnetic specimen. This trend is evident in both geological and archeological materials that are typically used to obtain paleointensity data and is therefore pervasive throughout most paleomagnetic studies. Comparing this trend to paleointensity data from both laboratory and historical experiments reveals a quantitative relationship between BDS and paleointensity behavior. Specimens that have lower BDS values display higher curvature on the paleointensity analysis plot, which leads to more inaccurate results. In-field quantification of BDS therefore reflects low-field bulk remanence stability. Rapid hysteresis measurements can be used to provide a powerful quantitative method for preselecting paleointensity specimens and postanalyzing previous studies, further improving our ability to select high-fidelity recordings of ancient magnetic fields. BDS analyses will enhance our ability to understand the evolution of the geodynamo and can help in understanding many fundamental Earth and planetary science questions that remain shrouded in controversy.

  20. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-09-01

    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  1. Substantial bulk photovoltaic effect enhancement via nanolayering

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1-x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  2. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  3. New insights on the direct activation of isotropic petroleum pitch by alkaline hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Vilaplana-Ortego, E.; Lillo-Rodenas, M.A.; Alcaniz-Monge, J.; Cazorla-Amoros, D.; Linares-Solano, A. [Grupo de Materiales Carbonosos y Medio Ambiente, Dpto. Quimica Inorganica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2010-02-15

    The paper provides interesting evidences that a low softening point isotropic petroleum pitch can be used as a good carbon precursor for the preparation of activated carbons. The activation is carried out by KOH and/or NaOH and the resulting activated carbons present well developed porosity. Such hydroxide activations can be done directly on the pristine petroleum pitch (P) or on the pitch that has been submitted to an air stabilisation followed by a N{sub 2} heat treatment (TAN). In general, KOH activation produces better results than NaOH, both in terms of porosity and yield, the results obtained for the activation of TAN being impressive because of the good porosity developments and high yields reached. The different treatments carried out over the petroleum pitch precursor clearly show that they significantly influence the extent of microporosity development. This is due to different changes occurring in the porous structure of the precursor as a function of the treatment carried out. The efficiency of the activation process increases as the mesophase content of the precursor decreases, as well as the mesophase formation during the activation process is avoided. (author)

  4. Generalized thermoelastic extensional and flexural wave motions in homogenous isotropic plate by using asymptotic method

    Science.gov (United States)

    Sharma, J. N.; Sharma, P. K.; Rana, S. K.

    2011-01-01

    In this paper the asymptotic method has been applied to investigate propagation of generalized thermoelastic waves in an infinite homogenous isotropic plate. The governing equations for the extensional, transversal and flexural motions are derived from the system of three-dimensional dynamical equations of linear theories of generalized thermoelasticity. The asymptotic operator plate model for extensional and flexural free vibrations in a homogenous thermoelastic plate leads to sixth and fifth degree polynomial secular equations, respectively. These secular equations govern frequency and phase velocity of various possible modes of wave propagation at all wavelengths. The velocity dispersion equations for extensional and flexural wave motion are deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate. The approximation for long and short waves along with expression for group velocity has also been obtained. The Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations and its equivalence established with that of asymptotic method. The numeric values for phase velocity, group velocity and attenuation coefficients has also been obtained using MATHCAD software and are shown graphically for extensional and flexural waves in generalized theories of thermoelastic plate for solid helium material.

  5. Surface-induced order in the isotropic phase of thin smectogenic films: a deuteron NMR study*

    Science.gov (United States)

    Jin, Tao; Finotello, Daniele

    2002-03-01

    Using deuteron NMR, we study the pretransitional wetting behavior in the isotropic phase for different thickness smectogenic films formed in Anopore membranes. The membranes, with 200nm pores are treated with different surfactants that promote homeotropic alignment including lecithin, silane and palmitic acid. Previous work on 12CB completely filling the Anopore pores showed a discrete substrate-induced bilayer-by-bilayer growth of smectic order[1, 2]. In this study, thin smectogenic films with effective thickness ranging from one monolayer up to about twenty molecular layers are prepared using the solvent evaporation method. The effect of the different surfactants and the thickness of its coating on the surface-induced order for the semctogenic is reflected in the spectral patterns obtained as a function of temperature and angular orientation in the NMR field. [1]. G. S. Iannacchione et al, Phys. Rev. Lett, 73, 2708 (1994). [2] G. P. Crawford et al, unpublished. *Supported by NSF-ALCOM 89-20147 and NSF-INT 98-15313

  6. Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution

    Science.gov (United States)

    Chen, Hsueh-Ying; Tycko, Robert

    2018-02-01

    We demonstrate the feasibility of high-resolution 1H magnetic resonance imaging (MRI) at low temperatures by obtaining an MRI image of 20 μm diameter glass beads in glycerol/water at 28 K with 2.8 μm isotropic resolution. The experiments use a recently-described MRI apparatus (Moore and Tycko, 2015) with minor modifications. The sample is contained within a radio-frequency microcoil with 150 μm inner diameter. Sensitivity is additionally enhanced by paramagnetic doping, optimization of the sample temperature, three-dimensional phase-encoding of k-space data, pulsed spin-lock detection of 1H nuclear magnetic resonance signals, and spherical sampling of k-space. We verify that the actual image resolution is 2.7 ± 0.3 μm by quantitative comparisons of experimental and calculated images. Our imaging approach is compatible with dynamic nuclear polarization, providing a path to significantly higher resolution in future experiments.

  7. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F

    2014-01-01

    Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.

  8. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.

    Science.gov (United States)

    Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R

    2013-11-15

    Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material. © 2013 Elsevier Ltd. All rights reserved.

  9. Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence

    Science.gov (United States)

    Olivares, Felipe; Zunino, Luciano; Gulich, Damián; Pérez, Darío G.; Rosso, Osvaldo A.

    2017-10-01

    We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H =5 /6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.

  10. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets

    Science.gov (United States)

    Riedinger, Andreas; Ott, Florian D.; Mule, Aniket; Mazzotti, Sergio; Knüsel, Philippe N.; Kress, Stephan J. P.; Prins, Ferry; Erwin, Steven C.; Norris, David J.

    2017-07-01

    Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counter-intuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials.

  11. Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence

    Science.gov (United States)

    Overholt, M. R.; Pope, S. B.

    1996-11-01

    Mixing of a passive scalar in statistically homogeneous, isotropic, and stationary turbulence with a mean scalar gradient is investigated via direct numerical simulation, for Taylor-scale Reynolds numbers, Rλ, from 28 to 185. Multiple independent simulations are performed to get confidence intervals, and local regression smoothing is used to further reduce statistical fluctuations. The scalar fluctuation field, φ(x,t), is initially zero, and develops to a statistically stationary state after about four eddy turnover times. Quantities investigated include the dissipation of scalar flux, which is found to be significant; probability density functions (pdfs) and joint-pdfs of the scalar, its derivatives, scalar dissipation, and mechanical dissipation; and conditional expectations of scalar mixing, ∇2φ. A linear model for scalar mixing jointly conditioned on the scalar and v-velocity is developed, and reproduces the data quite well. Also considered is scalar mixing jointly conditioned on the scalar and scalar dissipation. Terms appearing in the balance equation for the pdf of φ are examined. From a solution of the scalar pdf equation two sufficient conditions arise for the scalar pdf to be Gaussian. These are shown to be well satisfied for moderate values of the scalar, and approximately so for large fluctuations. Many correlations are also presented, including ρ(v,φ), which changes during the evolution of the scalar from a value of unity when initialized to the stationary value of 0.5-0.6.

  12. Modeling of evolution of shape of ductile metal disk for isotropic bombardment

    Science.gov (United States)

    Osipov, Dulustaan R.; Yakovlev, Boris V.; Matveev, Andrei I.; Osipov, Dulustan A.

    2017-11-01

    This work is devoted to a calculation of formation time of a toroidal shape of a flat piece of ductile metal in enrichment of minerals. Gold grains occurring in nature, in most cases, originally have a form of a flat plate (the scaly form). Continuous bombardment of the surface of a piece of gold with surrounding grains of sand during the enrichment of ores in various jigging, separation, and crusher devices results in the piece assuming a toroidal shape. When separating, the shape of the grains in the form of a torus is considered to be the most effective. Therefore, the problem of calculation of the formation time of the toroidal shape of the piece of gold is urgent. In this paper, we propose a physical model for the formation of the toroidal shape of the piece of ductile metal, in which an isotropic, homogeneous flow of particles deforming a plane body (disk) is introduced. Based on the proposed physical model, a mathematical model of evolution of the surface under deformation of a body was developed. A first-order differential equation is obtained with respect to the deformable surface, which is solved by the Runge-Kutta method. As a result of the study, the dependence of the deformed surface on the time was determined.

  13. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J

    2013-10-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

  14. How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology.

    Science.gov (United States)

    Herculano-Houzel, Suzana; von Bartheld, Christopher S; Miller, Daniel J; Kaas, Jon H

    2015-04-01

    The number of cells comprising biological structures represents fundamental information in basic anatomy, development, aging, drug tests, pathology and genetic manipulations. Obtaining unbiased estimates of cell numbers, however, was until recently possible only through stereological techniques, which require specific training, equipment, histological processing and appropriate sampling strategies applied to structures with a homogeneous distribution of cell bodies. An alternative, the isotropic fractionator (IF), became available in 2005 as a fast and inexpensive method that requires little training, no specific software and only a few materials before it can be used to quantify total numbers of neuronal and non-neuronal cells in a whole organ such as the brain or any dissectible regions thereof. This method entails transforming a highly anisotropic tissue into a homogeneous suspension of free-floating nuclei that can then be counted under the microscope or by flow cytometry and identified morphologically and immunocytochemically as neuronal or non-neuronal. We compare the advantages and disadvantages of each method and provide researchers with guidelines for choosing the best method for their particular needs. IF is as accurate as unbiased stereology and faster than stereological techniques, as it requires no elaborate histological processing or sampling paradigms, providing reliable estimates in a few days rather than many weeks. Tissue shrinkage is also not an issue, since the estimates provided are independent of tissue volume. The main disadvantage of IF, however, is that it necessarily destroys the tissue analyzed and thus provides no spatial information on the cellular composition of biological regions of interest.

  15. Multi-scale analysis of local flow topology in isotropic turbulence

    Science.gov (United States)

    Danish, Mohammad; Meneveau, Charles

    2017-11-01

    Knowledge of local flow-topology, as described by the velocity gradients, is useful to develop insights of turbulence processes, such as energy cascade, material element deformation, etc. Much has been learned in recent past about flow-topology at the smallest (viscous) scales of turbulence. However, less is known at larger (or inertial) scales of turbulence. In this work, we present a detailed study on the scale-dependence of various quantities of our interest, like population fraction of different flow-topologies, joint probability distribution of second and third invariants of velocity gradient tensor, etc. We use a new filter proposed by Eyink & Aluie to decompose the flow into small and large scales. We provide further insights for the observed behavior of scale-dependence by examining the probability fluxes appearing in the Fokker-Plank equation. Specifically, we aim to understand whether the differences observed between the viscous and inertial range are due to different effects caused by pressure, subgrid-scale or viscous stresses, or various combination thereof. For this purpose, we use the isotropic turbulence dataset at Reλ = 433 available at JHTDB and the analysis tools developed for SciServer, including FFT to evaluate filtering and gradients. Supported by the National Science Foundation (Grants No. 1507469 and 1633124).

  16. On the local virial theorems for linear and isotropic harmonic oscillator potentials in d dimensions

    Science.gov (United States)

    Bencheikh, K.; Nieto, L. M.

    2010-09-01

    For the system of noninteracting fermions in a one-body potential V(\\overrightarrow{\\vphantom{A}r}), the local virial theorems (LVT) are relations, at a given point \\overrightarrow{\\vphantom{A}r} in space, between this potential, kinetic energy and particle densities. It was recently shown (Brack et al 2010 J. Phys. A: Math. Theor. 43 255204) that for d-dimensional linear and also for isotropic harmonic oscillator potentials these LVTs are exactly satisfied. We present alternative and simple proofs of these theorems, by consideration of the canonical or Bloch density matrix and its relation to the kinetic energy density. The explicit analytical forms of the Bloch density matrix are used for the above-mentioned potentials to achieve the proofs. For the case of linear potential, we obtain a more general result for the so-called semilocal virial theorem, and for the harmonic oscillator potential case we derive a new relationship between the diagonal part of the canonical bloch density and the kinetic energy density.

  17. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  18. Processing an acoustic microscope's spatiotemporal signal to determine the parameters of an isotropic layer

    Science.gov (United States)

    Titov, S. A.; Levin, V. M.; Petronyuk, Yu. S.

    2017-11-01

    This paper presents a method for measuring the thickness and velocities of body waves and the density of an isotropic layer by a pulse scanning acoustic microscope. The method is based on recording the microscope signal as a function of the displacement magnitude of the focused ultrasonic transducer along its axis perpendicular to the sample surface and on the decomposition of the recorded 2D spatiotemporal signal into the spectrum of plane pulse waves. The velocities of the longitudinal and transverse waves and the layer's thickness are calculated from the relative delays of the components of the spectrum of plane waves reflected from the surfaces of the layer and the density is computed by the amplitudes of these components. An experimental investigation of a test sample in the form of a glass plate carried out in the 50-MHz range shows that the error in measuring the thickness and velocities of body waves does not exceed 1% and the density measurement error does not exceed 10%.

  19. Size estimates for fat inclusions in an isotropic Reissner–Mindlin plate

    Science.gov (United States)

    Morassi, Antonino; Rosset, Edi; Vessella, Sergio

    2018-02-01

    In this paper we consider the inverse problem of determining, within an elastic isotropic thick plate modelled by the Reissner–Mindlin theory, the possible presence of an inclusion made of a different elastic material. Under some a priori assumptions on the inclusion, we deduce constructive upper and lower estimates of the area of the inclusion in terms of a scalar quantity related to the work developed in deforming the plate by applying simultaneously a couple field and a transverse force field at the boundary of the plate. The approach allows us to consider plates with a boundary of Lipschitz class. The first author is supported by PRIN 2015TTJN95 ‘Identification and monitoring of complex structural systems’. The second author is supported by FRA 2016 ‘Problemi Inversi, dalla stabilità alla ricostruzione’, Università degli Studi di Trieste. The second and the third authors are supported by Progetto GNAMPA 2017 ‘Analisi di problemi inversi: stabilità e ricostruzione’, Istituto Nazionale di Alta Matematica (INdAM).

  20. Experimental Exploration of Electrostatic Charge on Particle Pair Relative Velocity in Homogeneous and Isotropic Turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Tripathi, Anjan; Liang, Zach; Meng, Hui

    2015-11-01

    Study of droplet collision and cloud formation should consider the effects of both turbulence and electrostatic charge on particle dynamics. We present the first experimental observation of radial relative velocity (RV) of charged particles in homogeneous and isotropic turbulence (HIT). Charges on particles were generated through triboelectric effect between the inner wall of the chamber and the particles. To measure charge distribution, a particle-laden head-on impinging flow mimicking our HIT chamber conditions was built and holographic particle tracking was applied to quantify particle charges by measuring their displacements in an electric field. Particles were observed to have opposite charges. Next, in our HIT chamber, we measured particle RV by a novel 4-frame particle tracking velocimetry technique with and without charges on particles, wherein charges were neutralized by coating the interior of the HIT chamber with conductive carbon paint. We compared RV under the same turbulence conditions between charged particles and neutral particles and observed that when particles were oppositely charged, their mean inward RV increased at small separation distances. This result is consistent with recent theory and simulations (Lu and Shaw, Physics of Fluids, 2015). This work was supported by the National Science Foundation through a Collaborative Research Grant CBET-0967407.

  1. Hybrid Model for Homogenization of the Elastoplastic Properties of Isotropic Matrix Composites

    Science.gov (United States)

    Fedotov, A. F.

    2017-07-01

    A hybrid homogenization model for calculating the effective elastoplastic properties of isotropic matrix composites is suggested. The hybrid model combines the continuous deformation models of heterogeneous solid and porous materials. A distinctive feature of the model is the calculation of concentration coefficients of the average Hill strains in terms of the effective volumes of strain averaging. The effective volumes of averaging are determined by solving the boundary-value problem on plastic deformation of a simplified structural model of a two-phase composite considering the porous state of matrix. A comparison of calculation results with experimental data upon constructing deformation diagrams for polymer-matrix and metal-matrix composites is carried out. The possibility of changing the properties of the metal matrix in producing composites is mentioned. Therefore, the adequacy of analytical models greatly depends on the accuracy of identification of material constants of the matrix. On the whole, the new model described the plastic deformation of matrix composites more accurately than the Mori-Tanaka model. The analytical model proposed has a simpler sampling scheme, a simple computation algorithm, and ensured the same calculation accuracy for the deformation diagram of an aluminum-matrix composite as the numerical finite-element model created by the ABAQUS software.

  2. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within a specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.

  3. A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals.

    Directory of Open Access Journals (Sweden)

    Tiantian Xu

    Full Text Available Diffusion-weighted magnetic resonance imaging is a non-invasive imaging method that has been increasingly used in neuroscience imaging over the last decade. Partial volume effects (PVEs exist in sampling signal for many physical and actual reasons, which lead to inaccurate fiber imaging. We overcome the influence of PVEs by separating isotropic signal from diffusion-weighted signal, which can provide more accurate estimation of fiber orientations. In this work, we use a novel response function (RF and the correspondent fiber orientation distribution function (fODF to construct different signal models, in which case the fODF is represented using dictionary basis function. We then put forward a new index Piso, which is a part of fODF to quantify white and gray matter. The classic Richardson-Lucy (RL model is usually used in the field of digital image processing to solve the problem of spherical deconvolution caused by highly ill-posed least-squares algorithm. In this case, we propose an innovative model integrating RL model with spatial regularization to settle the suggested double-models, which improve noise resistance and accuracy of imaging. Experimental results of simulated and real data show that the proposal method, which we call iRL, can robustly reconstruct a more accurate fODF and the quantitative index Piso performs better than fractional anisotropy and general fractional anisotropy.

  4. Pitch Control of Hexagonal Non-Close-Packed Nanosphere Arrays Using Isotropic Deformation of an Elastomer.

    Science.gov (United States)

    Huang, Xiaolu; Bjork, Matthew; Ratchford, Daniel C; Yeom, Junghoon

    2017-10-31

    Self-assembly of colloidal nanospheres combined with various nanofabrication techniques produces an ever-increasing range of two-dimensional (2D) ordered nanostructures, although the pattern periodicity is typically bound to the original interparticle spacing. Deformable soft lithography using controlled deformation of elastomeric substrates and subsequent contact printing transfer offer a versatile method to systematically control the lattice spacing and arrangements of the 2D nanosphere array. However, the anisotropic nature of uniaxial and biaxial stretching as well as the strain limit of solvent swelling makes it difficult to create well-separated, ordered 2D nanosphere arrays with large-area hexagonal arrangements. In this paper, we report a simple, facile approach to fabricate such arrays of polystyrene nanospheres using a custom-made radial stretching apparatus. The maximum stretchability and spatial uniformity of the poly(dimethylsiloxane) (PDMS) elastomeric substrate is systematically investigated. A pitch increase as large as 213% is demonstrated using a single stretching-and-transfer process, which is at least 3 times larger than the maximum pitch increase achievable using a single swelling-and-transfer process. Unlike the colloidal arrays generated by the uniaxial and biaxial stretching, the isotropic expansion of radial stretching allows the hexagonal array to retain its original structure across the entire substrate. Upon radial strain applied to the PDMS sheet, the nanosphere array with modified pitch is transferred to a variety of target substrates, exhibiting different optical behaviors and serving as an etch mask or a template for molding.

  5. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets

    Science.gov (United States)

    Mule, Aniket; Mazzotti, Sergio; Knüsel, Philippe N.; Kress, Stephan J. P.; Prins, Ferry; Erwin, Steven C.; Norris, David J.

    2017-01-01

    Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counterintuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead-halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface, and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials. PMID:28369052

  6. Migration velocity analysis using a transversely isotropic medium with tilt normal to the reflector dip

    KAUST Repository

    Alkhalifah, T.

    2010-06-13

    A transversely isotropic model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TTI model. Though this model, in some cases, can not be represented physically like in the case of conflicting dips, it handles all dips with the assumption of symmetry axis normal to the dip. It provides a process in which areas that meet this feature is handled properly. We use efficient downward continuation algorithms that utilizes the reflection features of such a model. For lateral inhomogeneity, phase shift migration can be easily extended to approximately handle lateral inhomogeneity, because unlike the general TTI case the DTI model reduces to VTI for zero dip. We also equip these continuation algorithms with tools that expose inaccuracies in the velocity. We test this model on synthetic data of general TTI nature and show its resilience even couping with complex models like the recently released anisotropic BP model.

  7. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium

    Science.gov (United States)

    Chatelin, Simon; Gennisson, Jean-Luc; Bernal, Miguel; Tanter, Mickael; Pernot, Mathieu

    2015-05-01

    The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field’s II software and shear wave propagation described by using the Green’s formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.

  8. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T

    CERN Document Server

    Larbalestier, D C; Trociewitz, U P; Kametani, F; Scheuerlein, C; Dalban-Canassy, M; Matras, M; Chen, P; Craig, N C; Lee, P J; Hellstrom, E E

    2014-01-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J$_c$. To minimize such grain boundary obstacles, HTS conductors such as REBa$_2$Cu$_3$O$_{7−x}$ and (Bi, Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10−x}$ are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi$_2$2Sr$_2$CaCu$_2$O$_{8−x}$ (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb$_3$Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very hi...

  9. Principal curvatures and area ratio of propagating surfaces in isotropic turbulence

    Science.gov (United States)

    Zheng, Tianhang; You, Jiaping; Yang, Yue

    2017-10-01

    We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.

  10. An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-01-01

    Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.

  11. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  12. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Sergei [Los Alamos National Laboratory

    2008-01-01

    We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.

  13. Numerical simulation of the thermal effect of a laser--induced plasma on isotropic turbulence

    Science.gov (United States)

    Ghosh, Shankar; Mahesh, Krishnan

    2008-11-01

    The interaction of a laser--induced plasma with isotropic turbulence is studied using numerical simulations. The simulations use air as the working fluid and assume local thermodynamic equilibrium. The numerical method is fully spectral and uses a shock capturing scheme in a corrector step. Turbulent Reynolds number Reλ= 30 and fluctuation Mach numbers Mt= 0.001 and 0.3 are considered. Mt of 0.001 is chosen to correspond to low speed experiments (e.g. Comte--Bellot and Corrsin 1971). Here, the shock wave propagates on a much faster time--scale compared to the turbulence evolution. The turbulence ahead of the shock is therefore almost frozen. At Mt of 0.3 the time--scales of the shock wave are comparable to that of the background. In both cases, the mean flow has a significant effect on the turbulence. The effect of the turbulence on the time scale of shock formation and the shock velocity and distortion is studied. The turbulence experiences strong compression due to the shock wave and strong expansion in the core. Turbulence intensities are enhanced and suppressed due to the effects of compression and expansion respectively. This behavior is spatially inhomogeneous and non--stationary in time. Spatial and one--point temporal statistics are discussed. Also kinetic energy budgets are computed and will be discussed.

  14. Migration using a transversely isotropic medium with symmetry normal to the reflector dip

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    A transversely isotropic (TI) model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TI (TTI) model. Although this model cannot be represented physically in all situations, for example, in the case of conflicting dips, it handles arbitrary reflector orientations under the assumption of symmetry axis normal to the dip. Using this assumption, we obtain efficient downward continuation algorithms compared to the general TTI ones, by utilizing the reflection features of such a model. Phase-shift migration can be easily extended to approximately handle lateral inhomogeneity using, for example, the split-step approach. This is possible because, unlike the general TTI case, the DTI model reduces to VTI for zero dip. These features enable a process in which we can extract velocity information by including tools that expose inaccuracies in the velocity model in the downward continuation process. We test this model on synthetic data corresponding to a general TTI medium and show its resilience. 2011 Tariq Alkhalifah and Paul Sava.

  15. CONSTRAINTS ON THE BULK LORENTZ FACTORS OF GRB X-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Shuang-Xi; Wang, Fa-Yin; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2015-07-01

    X-ray flares were discovered in the afterglow phase of gamma-ray bursts (GRBs) by the Swift satellite a decade ago and are known as a canonical component in GRB X-ray afterglows. In this paper, we constrain the Lorentz factors of GRB X-ray flares using two different methods. For the first method, we estimate the lower limit on the bulk Lorentz factor with the flare duration and jet break time. In the second method, the upper limit on the Lorentz factor is derived by assuming that the X-ray flare jet has undergone saturated acceleration. We also re-estimate the initial Lorentz factor with GRB afterglow onsets, and find the coefficient of the theoretical Lorentz factor is 1.67 rather than the commonly used 2 for the interstellar medium (ISM) and 1.44 for the wind case. We find that the correlation between the limited Lorentz factor and the isotropic radiation energy of X-ray flares in the ISM case is more consistent with that of prompt emission than the wind case in a statistical sense. For a comparison, the lower limit on the Lorentz factor is statistically larger than the extrapolation from prompt bursts in the wind case. Our results indicate that X-ray flares and prompt bursts are produced by the same physical mechanism.

  16. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-06-17

    ... IAEA International Atomic Energy Agency IMDG Code International Maritime Dangerous Goods Code IMO... authorized for bulk transportation by vessel and include special handling procedures based on the IMSBC Code... Management Facility (M-30), U.S. Department of Transportation, West Building Ground Floor, Room W12-140, 1200...

  17. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes

    2014-01-01

    diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across......%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all...... of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10...

  18. Organoboron polymers for photovoltaic bulk heterojunctions.

    Science.gov (United States)

    Cataldo, Sebastiano; Fabiano, Simone; Ferrante, Francesco; Previti, Francesco; Patanè, Salvatore; Pignataro, Bruno

    2010-07-15

    We report on the application of three-coordinate organoboron polymers, inherently strong electron acceptors, in flexible photovoltaic (PV) cells. Poly[(1,4-divinylenephenylene)(2,4,6-triisopropylphenylborane)] (PDB) has been blended with poly(3-hexylthiophene-2,5-diyl) (P3HT) to form a thin film bulk heterojunction (BHJ) on PET/ITO substrates. Morphology may be modulated to give a high percentage of domains (10-20 nm in size) allowing exciton separation. The photoelectric properties of the BHJs in devices with aluminium back electrodes were imaged by light beam induced current (LBIC) and light beam induced voltage (LBIV) techniques. Open circuit voltages, short circuit currents and overall external quantum efficiencies obtained are among the highest reported for all-polymer PV cells. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  1. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  2. Interface control of bulk ferroelectric polarization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P [University of California, Berkeley; Luo, Weidong [ORNL; Yi, D. [University of California, Berkeley; Zhang, J.-X. [University of California, Berkeley; Rossell, M.D. [Lawrence Berkeley National Laboratory (LBNL); Yang, C.-H. [Korea Advanced Institute of Science and Technology; You, L. [University of California, Berkeley; Singh-Bhalla, G. B. [University of California, Berkeley & LBNL; Yang, S.Y [University of California, Berkeley; He, Q [University of California, Berkeley; Ramasse, Q. M. [Lawrence Berkeley National Laboratory (LBNL); Erni, R. [Lawrence Berkeley National Laboratory (LBNL); Martin, L. W. [University of Illinois, Urbana-Champaign; Chu, Y. H. [University of California, Berkeley; Pantelides, Sokrates T [ORNL; Pennycook, Stephen J [ORNL; Ramesh, R. [University of California, Berkeley

    2012-01-01

    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.

  3. Criticality in Bulk Metallic Glass Constituent Elements

    Science.gov (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-11-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  4. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram...... range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  5. How Many Bulk Metallic Glasses Are There?

    Science.gov (United States)

    Li, Yanglin; Zhao, Shaofan; Liu, Yanhui; Gong, Pan; Schroers, Jan

    2017-11-13

    Quantitative prediction of glass forming ability using a priori known parameters is highly desired in metallic glass development; however proven to be challenging because of the complexity of glass formation. Here, we estimate the number of potential metallic glasses (MGs) and bulk metallic glasses (BMGs) forming systems and alloys, from empirically determined alloy design rules based on a priori known parameters. Specifically, we take into account atomic size ratio, heat of mixing, and liquidus temperature, which we quantify on binary glasses and centimeter-sized BMGs. When expanding into higher order systems that can be formed among 32 practical elements, we reduce the composition space for BMG formation using developed criteria by 106 times and estimate ∼3 million binary, ternary, quaternary, and quinary BMGs alloys.

  6. Rotary adsorbers for continuous bulk separations

    Science.gov (United States)

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  7. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio

    2018-01-01

    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  8. Generation and Stability of Bulk Nanobubbles.

    Science.gov (United States)

    Oh, Seung Hoon; Kim, Jong-Min

    2017-04-18

    Recently, extremely small bubbles, referred to as nanobubbles, have drawn increased attention due to their novel properties and great potential for various applications. In this study, a novel method for the generation of bulk nanobubbles (BNBs) was introduced, and stability of fabricated BNBs was investigated. BNBs were created from CO2 gas with a mixing method; the chemical identity and phase state of these bubbles can be determined via infrared spectroscopy. The presence of BNBs was observed with a nanoparticle tracking analysis (NTA). The ATR-FTIR spectra of BNBs indicate that the BNBs were filled with CO2 gas. Furthermore, the BNB concentration and its ζ-potential were about 2.94 × 108 particles/mL and -20 mV, respectively (24 h after BNB generation with a mixing time of 120 min). This indicates the continued existence and stability of BNBs in water for an extended period of time.

  9. Assessment of bioburden encapsulated in bulk materials

    Science.gov (United States)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  10. Analytical solution to the 1D Lemaitre's isotropic damage model and plane stress projected implicit integration procedure

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    In the present paper, for the first time in literature an exact analytical solution to Lemaitre's isotropic damage model is developed for the special case of uniaxial tensile testing. This is achieved by taking advantage of a convenient formulation of the isotropic hardening function, which allows...... obtaining an integral relationship between total strain and effective stress. By means of the generalized binomial theorem, an expression in terms of infinite series is subsequently derived. The solution is found to simplify considerably existing techniques for material parameters identification based...... on optimization, as all issues associated with classical numerical solution procedures of the constitutive equations are eliminated. In addition, an implicit implementation of the plane stress projected version of Lemaitre's model is discussed, showing that the resulting algebraic system can be reduced...

  11. The offset-midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Hao, Qi

    2014-12-30

    Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.

  12. Experimental Study of Inertial Particle-Pair Relative Velocity in Isotropic Turbulence

    Science.gov (United States)

    Dou, Zhongwang

    The investigation of turbulence-enhanced inertial particle collision in isotropic turbulence could improve our understanding and modeling of many particle-laden turbulent flows in engineering and nature. In this study, we investigate one of the most critical factors of particle collision - particle-pair relative velocity (RV) in three major steps. First, to generate a reliable homogeneous and isotropic turbulence (HIT) field, we have designed and implemented a high Reynolds number (R lambda), enclosed, fan-driven HIT chamber in the shape of 'soccer ball', conducive for studying inertial particle dynamics using whole-field imaging techniques. The characterization of turbulence in this near-zero-mean flow chamber was performed using a new two-scale particle imaging velocimetry (PIV) approach. The measurement results showed that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48mm diameter) of the chamber with minimized gravity effect. A maximum Rlambda of 384 was achieved. Second, to measure particle-pair RV accurately, we have employed numerical experiments to systemically analyze the measurement error in the previous particle-pair RV measurement by holographic PIV. We found that accurate RV measurement requires high accuracy of both particle positioning and particle pairing. To meet these requirements, we have devised a novel planar 4-frame particle tracking velocimetry technique (4F-PTV) combining two PIV systems. It tracks particles in four consecutive frames in high speed to increase particle pairing accuracy. Furthermore, the particles are tracked only in a thin laser light sheet, thus negating the intrinsic position uncertainty in the depth direction in holographic PIV. In addition, we have studied the laser thickness effect on the RV measurement and attempted to use Monte Carlo analysis to correct this effect. Third, and most importantly, to better understand turbulence-enhanced inertial particle collision, we

  13. Star-forming galaxies significantly contribute to the isotropic gamma-ray background

    Science.gov (United States)

    Linden, Tim

    2017-10-01

    The origin of the isotropic gamma-ray background (IGRB)—the portion of the extragalactic gamma-ray sky that is not resolvable into individual point sources—provides a powerful probe into the evolution of the high-energy Universe. Star-forming galaxies (SFGs) are among the most likely contributors to the IGRB, though their contribution is difficult to constrain because their flux distribution is dominated by numerous faint sources. We produce a novel joint-likelihood analysis of the γ -ray emission from 584 SFGs, utilizing advanced statistical techniques to compare the distribution of low-significance excesses against the non-Poissonian γ -ray background fluctuations. We first examine the theoretically well-motivated relationship between the far-IR and γ -ray luminosities of SFGs, utilizing a model where the γ -ray luminosity is given by log10 (Lγ/(erg s-1 ))=αlog10 (LIR /(10 10L⊙))+β . We calculate best-fit parameters α =1.18 ±0.15 , β =38.49 ±0.24 , with a log-normal dispersion in this relationship given by σ =0.39 ±0.12 . The best-fit values of α and β are consistent with previous studies. We find a larger dispersion in the far-IR to γ -ray correlation than previous studies. This dispersion is significant at the level of 5.7 σ . These results imply that SFGs significantly contribute to the IGRB, producing between 61.0-18.3+30.2% of the total IGRB intensity above an energy of 1 GeV. Along with recent works, this strongly indicates that multiple source classes provide comparable contributions to the IGRB intensity. We discuss the implication of these results for the interpretation of the IceCube neutrinos.

  14. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  15. Feasibility of 1.6-mm isotropic voxel diffusion tensor tractography in depicting limbic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Shunrou [Iwate Medical University, Advanced Medical Research Center, Takizawa (Japan); Sasaki, Makoto [Iwate Medical University, Department of Radiology, Morioka (Japan); Kanbara, Yoshiyuki [Iwate Medical University, Memorial Heart Center, Morioka (Japan); Inoue, Takashi [Kohnan Hospital, Department of Neurosurgery, Taihaku-ku, Sendai (Japan); Hirooka, Ryonoshin; Ogawa, Akira [Iwate Medical University, Department of Neurosurgery, Morioka (Japan)

    2008-02-15

    We attempted to assess the feasibility of a 1.6-mm isotropic voxel diffusion tensor imaging (DTI) tractography at 3T in visualizing nerve bundles in the limbic system. We examined 20 healthy volunteers by conventional DTI with a voxel size of 1.6 x 1.6 x 3.0 mm and by high-resolution DTI with a voxel size of 1.6 x 1.6 x 1.6 mm and generated tractographs of three limbic nerve bundles: the fornix, cingulum, and uncinate fasciculus. We visually assessed whether these bundles reached their targets and compared their diffusion parameters between the two techniques. The entire pathways of the fornix, cingulum, and uncinate fasciculus were more readily visualized by high-resolution DTI than by conventional DTI. Among these, the fimbria of the fornix and the uncinate fasciculus adjacent to the temporal pole were identified more frequently by high-resolution DTI (visualization rate 83 and 100%, respectively) than by conventional DTI (visualization rate 63 and 83%, respectively) at a statistical significance of P < 0.05 and P < 0.01, respectively. Fractional anisotropy values in the fornix, cingulum, and uncinate fasciculus by high-resolution DTI were significantly higher than those by conventional DTI (P < 0.01); in contrast, the apparent diffusion coefficient values of all these fibers except that of the fornix remained unchanged between the two techniques. The 1.6-mm istropic voxel DTI at 3T is a feasible visualization tool and can improve the precision of tracking nerve bundles of the limbic system. (orig.)

  16. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  17. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  18. Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation

    Science.gov (United States)

    Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.

    2012-01-01

    Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.

  19. Testing the Isotropic Universe Using the Gamma-Ray Burst Data of Fermi/GBM

    Science.gov (United States)

    Řípa, Jakub; Shafieloo, Arman

    2017-12-01

    The sky distribution of gamma-ray bursts (GRBs) has been intensively studied by various groups for more than two decades. Most of these studies test the isotropy of GRBs based on their sky number density distribution. In this work, we propose an approach to test the isotropy of the universe through inspecting the isotropy of the properties of GRBs such as their duration, fluences, and peak fluxes at various energy bands and different timescales. We apply this method on the Fermi/Gamma-ray Burst Monitor (GBM) data sample containing 1591 GRBs. The most noticeable feature we found is near the Galactic coordinates l≈ 30^\\circ , b≈ 15^\\circ , and radius r≈ 20^\\circ {--}40^\\circ . The inferred probability for the occurrence of such an anisotropic signal (in a random isotropic sample) is derived to be less than a percent in some of the tests while the other tests give results consistent with isotropy. These are based on the comparison of the results from the real data with the randomly shuffled data samples. Considering the large number of statistics we used in this work (some of which are correlated with each other), we can anticipate that the detected feature could be a result of statistical fluctuations. Moreover, we noticed a considerably low number of GRBs in this particular patch, which might be due to some instrumentation or observational effects that can consequently affect our statistics through some systematics. Further investigation is highly desirable in order to clarify this result, e.g., utilizing a larger future Fermi/GBM data sample as well as data samples of other GRB missions and also looking for possible systematics.

  20. Body-wave radiation patterns and AVO in transversely isotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Tsvankin, I.

    1994-03-01

    It is well known that the angular dependence of reflection coefficients may be significantly distorted in the presence of elastic anisotropy. However, the influence of anisotropy on amplitude-versus-offset analysis (AVO) is not limited to reflection coefficients. AVO signatures (e.g., AVO gradient) in anisotropic media are also distorted by the redistribution of energy along the wavefront of the wave travelling down to the reflector and back up to the surface. Significant anisotropy above the target horizon may be rather typical of sand-shale sequences commonly encountered in AVO analysis. Here, I examine the influence of P- and S-wave radiation patterns on AVO in the most common anisotropic model - transversely isotropic media. A concise analytic solution, obtained in the weak-anisotropy approximation, provides a convenient way to estimate the impact of the distortions of the radiation patterns on AVO results. It is shown that the shape of the P-wave radiation pattern in the range of angles most important to AVO analysis (0 - 40{degrees}) is mostly dependent on the difference between Thomsen parameters {epsilon} and {beta}. For media with {epsilon} - {beta} > 0 (the most common case), the P-wave amplitude may drop substantially over the first 25{degrees} - 40{degrees} from vertical. There is no simple correlation between the strength of velocity anisotropy and angular amplitude variations: for instance, for models with a fixed positive {epsilon} - {beta} the amplitude distortions are less pronounced for larger anisotropies {epsilon} and {beta}. The distortions of the SV-wave radiation pattern are usually much more significant than those for the P-wave. The anisotropic directivity factor for the incident wave may be of equal or greater importance for AVO than the influence of anisotropy on the reflection coefficient.

  1. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

    Science.gov (United States)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-10-01

    We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

  2. Direct Numerical Simulation of Particles-Bubbles Collisions Kernel in Homogeneous Isotropic Turbulence

    Directory of Open Access Journals (Sweden)

    Hassan E. Fayed

    2013-09-01

    Full Text Available Particles and bubbles suspended in homogeneous isotropic turbulence are tracked and their collisions frequency is determined as a function of particle Stokes number. The carrier phase velocity fluctuations are determined by Direct Numerical Simulations (DNS. The effects of the dispersed phases on the carrier phase are neglected. Particles and bubbles of sizes on the order of Kolmogorov length scale are treated as point masses. In addition to Stokes drag, the pressure gradient in the carrier phase and added-mass forces are also included. Equations of motion of dispersed phases are integrated simultaneously with the equations of the carrier phase using the same time stepping scheme. The collision model used here allows overlap of particles and bubbles. Simulations for three turbulence Reynolds numbers ReΛ = 57, 77, and 96 have been performed. Collisions kernel, radial relative velocity, and radial distribution function found by DNS are compared to theoretical models over a range of particle Stokes number. Comparisons are made with Zaichik et al. [22] model, which is applicable to heavy particles, and Zaichik et al. [23] model which is valid for an arbitrary Stokes number. Zaichik et al. [23] is essentially a model for the radial relative velocity, and for the purpose of computing the collision kernel, it assumes the radial distribution function to be one. In general, good agreement between DNS and Zaichik et al. models is obtained for radial relative velocity for both particle-particle and particle-bubble collisions. The DNS results show that around Stokes number of unity particles of the same group undergo expected preferential concentration while particles and bubbles are segregated. The segregation behavior of particles and bubbles leads to a radial distribution function that is less than one. Existing theoretical models do not account for effects of this segregation behavior of particles and bubbles on the radial distribution function.

  3. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  4. Thermomagnetic effect on the propagation of Rayleigh waves in an isotropic homogeneous elastic half-space under initial stress

    Directory of Open Access Journals (Sweden)

    Rajeev Ghatuary

    2015-12-01

    Full Text Available Rayleigh wave propagation in an isotropic homogeneous initially stressed thermoelastic half-space under the effect of magnetic field has been studied using Green–Lindsay (GL theory of generalized thermoelasticity. The frequency equation has been obtained for Rayleigh waves. The Rayleigh wave velocity is computed numerically for different values of initial stress parameter, magnetic pressure number, thermoelastic coupling parameter, and wave number for aluminium material, and the results obtained are compared graphically.

  5. Absolutely continuous spectrum for the isotropic Maxwell operator with coefficients that are periodic in some directions and decay in other

    CERN Document Server

    Filonov, N

    2004-01-01

    The purpose of this paper is to prove that the spectrum of an isotropic Maxwell operator with electric permittivity and magnetic permeability that are periodic along certain directions and tending to a constant super-exponentially fast in the remaining directions is purely absolutely continuous. The basic technical tools is a new ``operatorial'' identity relating the Maxwell operator to a vector-valued Schroedinger operator. This operator is then studied using a method developed by the authors in a previous paper.

  6. A first-principles polarized Raman method for determining whether a uniform region of a sample is crystalline or isotropic.

    Science.gov (United States)

    Weisman, Andrew L; DuBay, Kateri H; Willets, Katherine A; Friesner, Richard A

    2014-12-14

    Previous methods for determining whether a uniform region of a sample is crystalline or isotropic-what we call the "state of internal orientation" S-require a priori knowledge of properties of the purely crystalline and purely isotropic states. In addition, these methods can be ambiguous in their determination of state S for particular materials and, for a given material, the spectral methods can be ambiguous when using particular peaks. Using first-principles Raman theory, we have discovered a simple, non-resonance, polarized Raman method for determining the state S that requires no information a priori and will work unambiguously for any material using any vibrational mode. Similar to the concept behind "magic angle spinning" in NMR, we have found that for a special set of incident/analyzed polarizations and scattering angle, the dependence of the Raman modulation depth M on the sample composition-and, for crystalline regions, the unit cell orientation-falls out completely, leaving dependence on only whether the region is crystalline (M = 1) or isotropic (M = 0). Further, upon scanning between homogeneous regions or domains within a heterogeneous sample, our signal M is a clear detector of the region boundaries, so that when combined with methods for determining the orientations of the crystalline domains, our method can be used to completely characterize the molecular structure of an entire heterogeneous sample to a very high certainty. Interestingly, our method can also be used to determine when a given mode is vibrationally degenerate. While simulations on realistic terthiophene systems are included to illustrate our findings, our method should apply to any type of material, including thin films, molecular crystals, and semiconductors. Finally, our discovery of these relationships required derivations of Raman intensity formulas that are at least as general as any we have found, and herein we present our comprehensive formulas for both the crystalline and

  7. Laplace-transform-based method to calculate back-reflected radiance from an isotropically scattering half-space

    OpenAIRE

    Rinzema, K.; Hoenders, B. J.; Ferwerda, H.A.

    1997-01-01

    We present a method to determine the back-reflected radiance From an isotropically scattering half-space with matched boundary. This method has the advantage that it leads very quickly to the relevant equations, the numerical solution of which is also quite easy. Essentially, the method is derived from a mathematical criterion that effectively forbids the existence of solutions to the transport equation which grow exponentially as one moves away from the surface and deeper into the medium. Pr...

  8. Radiopacity of bulk fill flowable resin composite materials.

    Science.gov (United States)

    Yildirim, T; Ayar, M K; Akdag, M S; Yesilyurt, C

    2017-02-01

    The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x-tra Base Bulk Fill). Six specimens of each material with a thickness of 1 mm were prepared, and digital radiographs were taken, using a CCD sensor along with an aluminum stepwedge and 1 mm-thick tooth slice. The mean gray level of each aluminum stepwedge and selected materials was measured, using the equal-density area tool of Kodak Dental Imaging software. The equivalent thickness of aluminum for each material was then calculated by using the stepwedge values in the CurveExpert version 1.4 program. The radiopacity of bulk fill flowable composites sorted in descending order as follows: Beautifil Bulk Flowable (2.96 mm Al) = x-tra base bulk fill (2.92 mm Al) = SureFil SDR Flow (2.89 mm Al) > Filtek Bulk Fill Flow (2.51 mm Al) (P materials had a radiopacity greater than dentin and enamel; their adequate radiopacity will help the clinicians during radiographic examination of restorations. Bulk fill composite materials have greater radiopacity, enabling clinicians to distinguish the bulk fill composites from dentin and enamel.

  9. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  10. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  11. Preliminary investigation of the effect of electric charge on particle-pair relative velocity in isotropic turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Kailu, Tushar; Liang, Zach; Meng, Hui

    2017-11-01

    In many particle-laden turbulent flows including thunderstorm clouds and aerosol sprays, the particles may be electrically charged. How the Coulomb force between charged particles competes with the turbulence forces on particle motion is not yet fully understood. Mean inward particle pair relative velocity (particle RV), a quantity relevant for particle collision in isotropic turbulence, is expected to be affected by charge. We extend our recent particle tracking velocimetry (PTV) study on particle pair relative velocity in fan-driven isotropic turbulence to particles with charge. To accomplish this, we established a method to independently vary particle charge distributions by balancing particle density and size while keeping constant Reλ and St, developed a unique instrument to measure particle charge using in-line holography, and measured particle RV using PTV at three levels of charge under a single flow condition. We present charged particle RV measurements from the experiments at Reλ = 343, St 1.19, and charge of order 10-15 Coulombs, which show that particle RV increases with magnitude of bipolar charge. This study paves the way for a comprehensive exploration of relative motion of charged particle in isotropic turbulence. This work was supported by NSF CBET-0967407.

  12. Bulk Modulus Relaxation in Partially Molten Dunite?

    Science.gov (United States)

    Jackson, I.; Cline, C. J., II

    2016-12-01

    Synthetic solgel-derived Fo90 olivine was mixed with 3.5 wt % basaltic glass and hot-pressed within Ni/Fe foil to produce a dense aggregate expected to contain a small melt fraction at temperatures ≥ 1100°C. This specimen was precision ground and tested in both torsional and flexural forced oscillation to determine the relaxation behavior of both shear (G) and bulk (K) moduli at seismic frequencies. A recent upgrade of our experimental facility allows such measurements to be made without alteration of the driver/detector geometry, and uses an oscillating bending force rather than a bending moment, as previously described. The torsional and flexural tests were conducted in a gas apparatus at 200 MPa confining pressure, with oscillation periods ranging between 1 and 1000 s, during slow staged-cooling from 1300 to 25°C. Shear modulus and associated dissipation data are consistent with those for melt-bearing olivine specimens previously tested in torsion, with a pronounced dissipation peak superimposed on high-temperature background within the 1-1000 s observational window at temperatures of 1100-1200°C. A filament elongation model relates the observed flexural measurements to the variations along the experimental assembly of the complex Young's modulus (E*), bending moment and diametral moment of inertia. With E* given by 1/E*=1/(3G*) + 1/(9K*), and the complex shear modulus (G*) derived from torsional oscillation, any relaxation of K can be identified. Preliminary modeling shows that the viscoelastic properties in flexure are broadly consistent with those expected from the shear-mode viscoelasticity with anharmonic (real) values of K. However, some discrepancies between modeled results and flexure data at super-solidus temperatures require further investigation of possible differences in shear modulus relaxation between the torsional and flexural modes, and of potential relaxation of the bulk modulus through stress-induced changes in melt redistribution and

  13. Bulk density and relationship air/water of horticultural substrate

    OpenAIRE

    Fernandes,Carolina; Corá, José Eduardo

    2004-01-01

    Change on substrate bulk density during the growing period may negatively affect other substrate physical properties and, consequently, plant growth. The objectives of this research were 1) to characterize physical properties of two horticultural substrates (S1 and S2), 2) to evaluate the effect of different bulk densities values of those substrates on their air/water relationship, and 3) to develop mathematical functions to estimate the air/water relationship by increasing substrates bulk de...

  14. Isolation and characterization of culturable bacteria from bulk soil ...

    African Journals Online (AJOL)

    Olaf _SK

    2015-03-18

    Mar 18, 2015 ... pods with large brownish-black oil and protein-rich seeds. (Holse et al., 2010). ... nutrition and increase food availability in arid ecological zones. .... 3. Bulk. Eight. BP6, BP7, BP8, BP9, BP10, BP11, BP12, BP13. 4. Bulk. Three. BP14, BP15, BP16. 5. Bulk. Three. BP17, BP18, BP19. 6. Rhizosphere. Two.

  15. Determination of Bulk Dimensional Variation in Castings

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  16. FAA bulk technology overview for explosives detection

    Science.gov (United States)

    Novakoff, Alan K.

    1993-04-01

    The Federal Aviation Administration (FAA) is the leading federal agency responsible for encouraging and fostering the development of a safe, secure, and efficient national airspace system (NAS). Our goal is to establish an operating environment that ensures a threat-free system to preclude acts of terrorism and fatalities. As part of the process to meet this goal, our research and development activities continually search for technologies to ensure aviation security. Recent acts of terrorism against the aviation community have demonstrated an increasing level of sophistication in the design and deployment of explosive devices. In order to prevent the introduction of explosives onto an aircraft they must be detected prior to passenger and baggage loading. The Bulk Detection program is one method of developing a number of technologies that 'see' into and 'alarm' on suspect baggage. These detection devices must be capable of providing this serve with a confidence commensurate with the state-of-the- art available today. This program utilizes the expertise of government agencies, universities and industries working toward constructing their plans and executing their designs to produce the best available equipment.

  17. Recent developments of film bulk acoustic resonators

    Science.gov (United States)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  18. Tip-enhanced bulk photovoltaic effect

    Science.gov (United States)

    Sturman, B.; Podivilov, E.

    2017-10-01

    Using the conventional macroscopic description of the bulk photovoltaic effect we analyze the light-induced currents and electric fields arising in the optical configuration with a continuous bottom electrode and a small circular top electrode. This scheme is relevant to recent experiments on the tip-enhanced photovoltaic effect in ferroelectrics. It is shown that a light-induced electric field remains nonzero inside the sample even in the short-circuit regime. Moreover, it is enhanced compared to the photovoltaic field in a large area and strongly enhanced near the top electrode. A field-assisted collection of charge carriers from the illuminated area produces a strong local enhancement of the current density near the top electrode. The tip-enhanced electric field is typically parallel to the photovoltaic current. It is sufficient to repolarize the crystal near the top electrode. The effect of the tip enhancement on the light-current transformation efficiency is considered, and predictions for the tip radius and sample thickness dependencies of the total light-induced current are made.

  19. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  20. Dilepton radiation and bulk viscosity in heavy-ion collisions

    Science.gov (United States)

    Vujanovic, Gojko; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles; Heinz, Ulrich

    2017-08-01

    Starting from IP-Glasma initial conditions, we investigate the effects of bulk pressure on thermal dilepton production at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) energies. Though results of the thermal dilepton v2 under the influence of both bulk and shear viscosity is presented for top RHIC energy, more emphasis is put on LHC energy where such a calculation is computed for the first time. The effects of the bulk pressure on thermal dilepton v2 at the LHC are explored through bulk-induced modifications on the dilepton yield.

  1. Subtalar instability: imaging features of subtalar ligaments on 3D isotropic ankle MRI.

    Science.gov (United States)

    Kim, Tae Hyung; Moon, Sung Gyu; Jung, Hong-Geun; Kim, Na Ra

    2017-11-21

    MRI analysis of subtalar ligaments in the tarsal sinus has not been well performed. We retrospectively investigated the appearance of subtalar ligaments using 3D isotropic MRI and compared imaging findings of subtalar ligaments between patients with subtalar instability (STI) and controls. Preoperative MRIs of 23 STI patients treated with arthroscopic subtalar reconstruction were compared to MRIs of 23 age- and sex-matched control subjects without STI. Thickness and width of anterior capsular ligament (ACL) and interosseous talocalcaneal ligament (ITCL) as well as thickness of calcaneofibular ligament (CFL) and anterior talofibular ligament (ATFL) were measured. Abnormalities in ACL, ITCL, CFL, ATFL, cervical ligament, and inferior extensor retinaculum were analyzed. STI patients had significantly smaller ACL thickness and ACL width than controls (ACL thickness: 1.73 mm vs. 2.22 mm, p = 0.007; ACL width: 7.21 mm vs. 8.80 mm, p = 0.004). ACL thickness of ≤2.1 mm had a sensitivity of 66.7% and a specificity of 66.7% for diagnosis of STI. ACL width of ≤7.9 mm had a sensitivity of 80.0% and a specificity of 76.2% for the diagnosis of STI. However, thickness and width of ITCL, thickness of CFL, or thickness of ATFL was not significantly different between the two groups. Absence or complete tear of ACL was significantly more frequent in STI patients than that in controls (34.8% vs. 8.7%, p = 0.035). Complete tear of CFL and ATFL was more common in STI patients than that in controls, although the difference between the two groups was not statistically significant. Abnormalities of ITCL, cervical ligament, or inferior extensor retinaculum were not significantly different between the two groups. MRI features of thin or narrow ACLs may suggest STI. Absence or complete tear of ACL was significantly more common in STI patients than that in controls.

  2. Arbitrary quadratures determination of the monoenergetic neutron density in an homogeneous finite sphere with isotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density

  3. Wind tunnel measurements of the preferential concentration of inertial droplets in homogeneous isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bateson, Colin P.; Aliseda, Alberto [University of Washington, Department of Mechanical Engineering, 4000 15th Ave NE, Box 352600, Seattle, WA (United States)

    2012-06-15

    We describe an experimental setup aimed at studying turbulent-induced droplet collisions in a laboratory setting. Our goal is to reproduce conditions relevant to warm-rain formation in clouds. In these conditions, the trajectories of small inertial droplets are strongly influenced by the background air turbulence, and collisions can potentially explain the droplet growth rates and spectrum broadening observed in this type of clouds. Warm-rain formation is currently under strong scrutiny because it is an important source of uncertainty in atmospheric models. A grid at the entrance of a horizontal wind tunnel produces homogeneous isotropic turbulence at a Re{sub {lambda}} in the range of 400-500. Water droplets are injected from the nodes of the turbulence-inducing grid at a volume fraction ({phi}) of 2.7 x 10{sup -5} and with sizes of 10-200 {mu}m. A complex manifold-injection system was developed to obtain uniform water droplet seeding, in terms of both water content and size distribution. We characterize the resulting droplet-laden turbulent flow, and the statistics of droplet pairs are measured and analyzed. We found that the radial distribution function (RDF), a measure of preferential concentration of droplets that plays a key role in collision kernel models, has a large peak at distances below the Kolmogorov microscale of the turbulence. At very long separations, comparable with the integral length scale of the turbulence, these RDFs show a slow decay to the average probability given by the mean droplet number density. Consistent with this result, conditional analysis shows an increased local concentration of droplets within the inertial length scale ({approx} 10-100 Kolmogorov lengths). These results are in good agreement with previous experiments that found clustering of inertial droplets with St {approx} 1 at scales on the order of 10{eta}. Ultimately, our results support the hypothesis that turbulence-induced preferential concentration and enhanced

  4. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi

    2016-11-21

    Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the

  5. Correction: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions.

    Science.gov (United States)

    Parapat, Riny Y; Wijaya, Muliany; Schwarze, Michael; Selve, Sören; Willinger, Marc; Schomäcker, Reinhard

    2016-04-07

    Correction for 'Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions' by Riny Y. Parapat et al., Nanoscale, 2013, 5, 796-805.

  6. Progress in the analysis of non-axisymmetric wave propagation in a homogeneous solid circular cylinder of a piezoelectric transversely isotropic material

    CSIR Research Space (South Africa)

    Every, AG

    2010-01-01

    Full Text Available Non-axisymmetric waves in a free homogeneous piezoelectric cylinder of transversely isotropic material with axial polarization are investigated on the basis of the linear theory of elasticity and linear electromechanical coupling. The solution...

  7. The use of isotropic and anisotropic concepts of damage to the calculation of the long-term strength of steam turbine rotor under conditions of high temperature creep

    OpenAIRE

    Гораш, Є. М.

    2006-01-01

    Within the framework of the research work two typical material models describing isotropic and anisotropic creep-damage processes in metals and alloys are applied to the simulation of the mechanical behaviour of a steam turbine rotor in its service conditions. Numerical solutions of the initial-boundary value problems have been obtained by FEM using solid axisymmetrical type finite elements. For the purpose of adequate long-term strength analysis both isotropic and anisotropic creep-damage mo...

  8. Bulk Vitrification Castable Refractory Block Protection Study

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  9. [Staphylococcus aureus in bulk milk samples].

    Science.gov (United States)

    Benda, P; Vyletĕlová, M

    1995-07-01

    In the years 1993-1994 the occurrence of Staphylococcus aureus was investigated in bulk milk samples in the area where a Baby Food Factory at Zábreh in Moravia is located, and in Bruntál, Zlín and Policka districts. Evaluation of the results was based on ECC Directive 92/46, while the dynamics of S. aureus presence was followed for the whole period of observation as well as in the particular seasons. A total of 4,485 samples was processed. Out of these, 50.7% contained less than 100 CFU/ml of S. aureus, 41.4% contained 100-500 CFU/ml, 6.73% 500-2,000 CFU/ml and 1.14% contained more than 2,000 CFU/ml (Fig. 1). The samples were divided into three categories: private new-established farms, cooperative and State-owned enterprises in the area of the Zábĕh Factory and others (Zlín, Bruntál and Policka districts). There were highly significant differences in the content of staphylococci (P = 0.01%) between the three categories of samples. Ninety-eight percent of samples from private farms, 96% samples from the Zábreh Factory area and 85% of the other samples comply with the regulation EEC 92/64 (Tab. I) for raw cow's milk for the manufacture of products "made with raw milk" whose manufacturing process does not involve any heat treatment (Fig. 2). The occurrence of S. aureus in the Zábreh Factory area shows an expressive seasonal dynamics (P = 0.005%) with maximum values in winter months (December-March) and minimum values in summer months (July-October)-Fig. 3. The same relationship can be seen on more extensive data files for the particular producers (Fig. 4).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Xerophilic mycopopulations of teas in bulk

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2011-01-01

    Full Text Available d.o.o., Novi Sad AU Krunić Vesna J. AF EKOLd.o.o., Novi Sad KW teas % mould contamination % thermal treatment KR nema Other the water, tea is the most popular beverage in the world today. They are used for ages, in the beginning as refreshing drinks, and later more for their healing properties. Teas have been demonstrated to show antioxidative, anti-carcinogenic, and anti-microbial properties. Considering that the teas, during the production, are not treated with any temperature, there is high risk for contamination with different type of microorganisms, especially with moulds. Moulds are ubiquitously distributed in nature and their spores can be found in the atmosphere even at high altitudes and under favorable conditions of temperature and humidity, moulds grow on many commodities including cereals, oil seeds, nuts, herbs and spices. Most of them are potential producers of mycotoxins which present a real hazard to human health. The aim of this work was to investigate total mould count and to identify moulds isolated from teas in bulk, than from teas treated with hot, sterile, distilled water and from the tea filtrates. Tested teas were peppermint, sage, yarrow, black tea, bearberry, lemon balm, mixture of teas from Zlatibor. In teas in balk was observed high contamination with different kinds of moulds (1.84-4.55 cfu/g, such as Aspergillus awamori, A. lovaniensis, A niger, A. phoenicus, A. repens, A. restrictus, A. sydowii, A. versicolor, Eurotium amstelodami, E. chevalieri, E. herbariorum, Penicillium chrysogenum, and Scopulariopsis brevicaulis. The most frequent were species from Aspergillus and Eurotium genera. Thermal treatment with hot, sterile, distilled water reduced the number of fungal colonies. Aspergillus awamori was the most resistant and appeared in six samples of filtrates of tea, Aspergillus niger in one sample and Penicillium chrysogenum in one sample.

  11. Silicon bulk micromachined hybrid dimensional artifact.

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  12. Some fundamental definitions of the elastic parameters for homogenous isotropic linear materials in road design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available increase of only 100 MPa, it would decrease in volume by a factor of 100 MPa/160 GPa = 0.000625, or 0.0625 per cent. The bulk modulus K can be formally defined by Equation 3 below: V pVK ∂ ∂ −= (3) Where: p is pressure, V is volume..., and ∂ ∂P V denotes the partial derivative of pressure with respect to volume. The inverse of the bulk modulus indicates the compressibility of a substance. Strictly speaking, since bulk modulus is a thermodynamic quantity, it is P P P P P P 4...

  13. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available increase of only 100 MPa, it would decrease in volume by a factor of 100 MPa/160 GPa = 0.000625, or 0.0625 per cent. The bulk modulus K can be formally defined by Equation 3 below: V pVK ∂ ∂ −= (3) Where: p is pressure, V is volume..., and ∂ ∂P V denotes the partial derivative of pressure with respect to volume. The inverse of the bulk modulus indicates the compressibility of a substance. Strictly speaking, since bulk modulus is a thermodynamic quantity, it is P P P P P P 4...

  14. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR

    Energy Technology Data Exchange (ETDEWEB)

    Kolbitsch, Christoph, E-mail: christoph.1.kolbitsch@kcl.ac.uk; Prieto, Claudia; Schaeffter, Tobias [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Tsoumpas, Charalampos [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH, United Kingdom and Division of Medical Physics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-08-15

    Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to

  15. 30 CFR 56.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Maintenance § 56.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle...

  16. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    ... Docket, EPA/DC, EPA West, Room 3334, 1301 Constitution Ave. NW., Washington, DC 20460. The Public Reading... telephone number for the Public Reading Room is (202) 566-1744, and the telephone number for the RCRA Docket... defined as PCB bulk product waste in 40 CFR 761.3. The definition of PCB bulk product waste includes ``non...

  17. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    A number of processes is available to synthesise bulk metallic glasses. The crystallisation behaviour and mechanical properties of these alloys pose interesting scientific questions. Upon crystallisation many of these glasses transform to bulk nanocrystals and nanoquasicrystals. A detailed study of the structure and the ...

  18. Simulation-integrated Design of Dry Bulk Terminals

    NARCIS (Netherlands)

    Van Vianen, T.A.

    2015-01-01

    To meet the expected increase of seaborne trade flows for coal and iron ore dry bulk terminals need to be designed or expanded. A comprehensive design method for dry bulk terminals is missing. Designs are currently based on rules-of-thumb, practical experiences and average values for specific design

  19. Influence of bulk dielectric polarization upon PD transients

    DEFF Research Database (Denmark)

    Pedersen, Aage; Crichton, George C; McAllister, Iain Wilson

    1995-01-01

    associated with the actual space charge in the void, and one related to changes in the bulk polarization brought about by changes in the field external to the void due to this space charge. The magnitude of the induced charge and its components are discussed in relation to a heterogeneous bulk dielectric...

  20. A new approximate sum rule for bulk alloy properties

    Science.gov (United States)

    Bozzolo, Guillermo; Ferrante, John

    1992-01-01

    A new, approximate sum rule is introduced for determining bulk properties of multicomponent systems, in terms of the pure components properties. This expression is applied for the study of lattice parameters, cohesive energies, and bulk moduli of binary alloys. The correct experimental trends (i.e., departure from average values) are predicted in all cases.