WorldWideScience

Sample records for bulk deformation structures

  1. Structural features of plastic deformation in bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Scudino, S., E-mail: s.scudino@ifw-dresden.de; Shakur Shahabi, H.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); Kaban, I.; Escher, B.; Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Vaughan, G. B. M. [European Synchrotron Radiation Facilities ESRF, BP220, 38043 Grenoble (France)

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  2. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  3. Structure and magnetic properties of bulk nanocrystalline Nd-Fe-B permanent magnets prepared by hot pressing and hot deformation

    Institute of Scientific and Technical Information of China (English)

    SONG Jie; YUE Ming; ZUO Jianhua; ZHANG Zirui; LIU Weiqiang; ZHANG Dongtao; ZHANG Jiuxing

    2013-01-01

    Structure and magnetic properties were studied for bulk nanocrystalline Nd-Fe-B permanent magnets that were prepared at 650 ℃ for 3 min under 300 MPa using the SPS-3.20-MK-V sintering machine and the hot pressed magnets were then submitted to hot deformation with height reduction of 50%,60%,70%,80%,and 85%.Effects of height reduction (HR) and deformation temperature on the structure and magnetic properties of the magnets were investigated.The crystal structure was evaluated by means of X-ray diffraction (XRD) and the microstructure was observed by transmission electron microscopy (TEM).The magnetic properties of the magnets were investigated by vibrating sample magnetometer (VSM).As the height reduction increased,the remanence (Br) of the magnets increased first,peaks at 1.3 T with HR=60%,then decreased again,and the coercivity (Hci) of the magnets decreased monotonically.On the other hand,as the deformation temperature increased,the Br of the magnets increased first,peaks at 1.36 T with HR=60%,then decreased again,and the Hci of the magnets decreased monotonically.Under optimal conditions,the hot deformed magnet possessed excellent magnetic properties as Br=l.36 T,Hci=1143 kA/m,and (BH)max=370 kJ/m3,suggesting the good potential of the magnets in practical applications.

  4. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  5. Dynamic Plastic Deformation (DPD): A Novel Technique for Synthesizing Bulk Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While some superior properties of nanostructured materials (with structural scales below 100 nm) have attracted numerous interests of material scientists, technique development for synthesizing nanostructured metals and alloys in 3-dimensional (3D) bulk forms is still challenging despite of extensive investigations over decades.Here we report a novel synthesis technique for bulk nanostructured metals based on plastic deformation at high Zener-Hollomon parameters (high strain rates or low temperatures), i.e., dynamic plastic deformation (DPD).The basic concept behind this approach will be addressed together with a few examples to demonstrate the capability and characteristics of this method. Perspectives and future developments of this technique will be highlighted.

  6. Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor

    Science.gov (United States)

    Degtyarev, M. V.; Pilyugin, V. P.; Akshentsev, Yu. N.; Kuznetsova, E. I.; Krinitsina, T. P.; Blinova, Yu. V.; Sudareva, S. V.; Romanov, E. P.

    2016-08-01

    A synthesized MgB2 superconductor has been investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and by the measurements of the superconducting characteristics and microhardness after cold high-pressure deformation in a Toroid chamber and in Bridgman anvils and subsequent high-temperature annealing. A nanocrystalline structure is formed in the superconductor after high-pressure treatment, but internal cracks appear, and the critical current density decreases strongly. The annealing leads to a coarsening of the structure and to an increase in the critical current density up to 5.8-6.7 × 104 A/cm2, which is more than three times greater than that in the initial state.

  7. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    Energy Technology Data Exchange (ETDEWEB)

    Farbaniec, L., E-mail: lfarban1@jhu.edu [Université Paris 13, Sorbonne Paris Cité, LSPM, CNRS, 99 Avenue J.B. Clément, 93430 Villetaneuse (France); Dirras, G., E-mail: dirras@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, LSPM, CNRS, 99 Avenue J.B. Clément, 93430 Villetaneuse (France); Krawczynska, A.; Mompiou, F. [Université Paul Sabatier, CEMES, CNRS, 29 rue Jeanne Marvig 31055 Toulouse (France); Couque, H. [Nexter Munitions, 7 route de Guerry, 18200 Bourges (France); Naimi, F.; Bernard, F. [Institut Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, BP 47870, 21078 Dijon (France); Tingaud, D. [Université Paris 13, Sorbonne Paris Cité, LSPM, CNRS, 99 Avenue J.B. Clément, 93430 Villetaneuse (France)

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  8. Layered Structures in Deformed Metals and Alloys

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Layered structures characterize metals and alloys deformed to high strain. The morphology is typical lamellar or fibrous and the interlamellar spacing can span several length scales down to the nanometer dimension. The layered structures can be observed in bulk or in surface regions, which is shown...... by the way of examples of different processing routes: friction, wire drawing, shot peening, high pressure torsion and rolling. The interlamellar spacing reaches from 5-10 nanometers to about one micrometer and the analysis will cover structural evolution, strengthening parameters and strength......-structure relationships. Finally, the results will be discussed based on universal principles for the evolution of microstructure and properties during plastic deformation of metals and alloys from low to high strain....

  9. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.;

    2006-01-01

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics...... of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  10. Deformation behavior during nanoindentation in Ce-based bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lingchen; XING Dongmei; ZHANG Taihua; WEI Bingchen; LI Weihuo; WANG Yuren

    2006-01-01

    The deformation behavior and the effect of the loading rate on the plastic deformation in Ce-based bulk metallic glasses (BMGs) were investigated through nanoindentation tests. The results showed that the loading rate dependence of plastic deformation during nanoindentation measurements in the Ce-based BMGs is quite unique in contrast to that of other BMG alloys. The load-displacement (P-h)curves of Ce60Al15Cu10Ni15 BMG exhibit a homogeneous plastic deformation at low loading rates, and a prominent serrated flow at high strain rates, whereas,the P-h curves of Ce65Al10Cu10Ni10Nb5 exhibit homogenous plastic deformation at all studied loading rates. The room temperature creep behavior could clearly be observed in these two alloys. The mechanism of the unique plastic deformation feature in the Ce-based BMGs was studied.

  11. Rapid Finite Element Analysis of Bulk Metal Forming Process Based on Deformation Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Peng; DONG Xiang-huai; FU Li-jun

    2009-01-01

    The one-step finite element method (FEM), based on plastic deformation theory, has been widely used to simulate sheet metal forming processes, but its application in bulk metal forming simulation has been seldom investigated, because of the complexity involved. Thus, a bulk metal forming process was analyzed using a rapid FEM based on deformation theory. The material was assumed to be rigid-plastic and strain-hardened. The constitutive relationship between stress and total strain was adopted, whereas the incompressible condition was enforced by penalty function. The geometrical non-linearity in large plastic deformation was taken into consideration. Furthermore, the force boundary condition was treated by a simplified equivalent approach, considering the contact history. Based on constraint variational principle, the deformation FEM was proposed. The one-step forward simulation of axisymmetric upsetting process was performed using this method. The results were compared with those obtained by the traditional incremental FEM to verify the feasibility of the proposed method.

  12. Deformation behavior of Zr-based bulk metallic glass and composite in the supercooled liquid region

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Zr-based bulk metallic glass (BMG) with a composition of (Zr75Cu25)78.5Ta4Ni10Al7.5 and a bulk metallic glass matrix composite (BMGC) with a composition of (Zr75Cu25)74.5Ta8Ni10Al7.5 have been prepared by copper-mold casting. The compres-sive deformation behavior of the BMG and BMGC was investigated in the super-cooled region at different temperatures and various strain rates ranging from 8×10-4s-1 to 8×10-2s-1. It was found that both the strain rate and test temperature signifi-cantly affect the deformation behavior of the two alloys. The deformation follows Newtonian flow at low strain rates but non-Newtonian flow at high strain rates. The deformation mechanism for the two kinds of alloys was discussed in terms of the transition state theory.

  13. Deformation-induced martensitic transformation in Cu-Zr-Al(Ti) bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ram Bachchan; Pauly, Simon; Das, Jayanta; Eckert, Juergen [Institut fuer Komplexe Materialien, IFW Dresden (Germany)

    2009-07-01

    Plastic deformation of Cu-Zr-(Al, Ti) bulk metallic glass (BMG) composites induces a martensitic phase transformation from the B2 to the B19* CuZr phase. Addition of Ti to binary Cu-Zr increases the temperature above which the B2 CuZr phase becomes stable. This affects the phase formation upon quenching in Cu-Zr-Ti BMG composites. The deformation-induced martensitic transformation is believed to cause the strong work hardening and to contribute to the large compressive deformability with plastic strains up to 15%.

  14. Deformation behavior of Fe-based bulk metallic glass during nanoindentation

    Institute of Scientific and Technical Information of China (English)

    LI Lei; LIU Yuan; ZHANG TaiHua; GU JianSheng; WEI BingChen

    2008-01-01

    Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore, it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work, the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow, the typical plastic deformation feature of BMGs, could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition, the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

  15. Deformation behavior of Fe-based bulk metallic glass during nanoindentation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore,it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work,the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow,the typical plastic deformation feature of BMGs,could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition,the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

  16. Deformed metals - structure, recrystallisation and strength

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    2011-01-01

    It is shown how new discoveries and advanced experimental techniques in the last 25 years have led to paradigm shifts in the analysis of deformation and annealing structures of metals and in the way the strength of deformed samples is related to structural parameters. This is described in three...... sections: structural evolution by grain subdivision, recovery and recrystallisation and strength-structure relationships....

  17. Direct non-destructive observation of bulk nucleation in 30% deformed aluminum

    DEFF Research Database (Denmark)

    West, Stine; Schmidt, Søren; Sørensen, Henning Osholm

    2009-01-01

    A 30% deformed aluminum sample was mapped non-destructively using three-dimensional X-ray diffraction (3DXRD) before and after annealing to nucleation of recrystallization. Nuclei appeared in the bulk of the sample. Their positions and volumes were determined, and the crystallographic orientations...

  18. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Lin; SHAN De-Bin; MA Ming-Zhen; GUO Bin

    2008-01-01

    The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high ternperatures.

  19. Watching the growth of bulk grains during recrystallization of deformed metals

    DEFF Research Database (Denmark)

    Schmidt, Søren; Fæster Nielsen, Søren; Gundlach, C.;

    2004-01-01

    We observed the in situ growth of a grain during recrystallization in the bulk of a deformed sample. We used the three-dimensional x-ray diffraction microscope located at the European Synchrotron Radiation Facility in Grenoble, France. The results showed a very heterogeneous growth pattern...

  20. Deformation-induced orientation spread in individual bulk grains of an interstitial-free steel

    DEFF Research Database (Denmark)

    Oddershede, Jette; Wright, J.P.; Beaudoin, A.;

    2015-01-01

    Three-dimensional X-ray diffraction was employed to characterize the lattice rotations of individual bulk grains in a 9% tensile deformed sample of interstitial-free steel. Three grains of initially close orientation that are representative of the scatter of all investigated grains with tensile a...

  1. Structural refinement and coarsening in deformed metals

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Xing, Q.

    2005-01-01

    The microstructural refinement by plastic deformation is analysed in terms of key parameters, the spacing between and the misorientation angle across the boundaries subdividing the structure. Coarsening of such structures by annealing is also characterised. For both deformed and annealed structur...

  2. Stochastic deformation of a thermodynamic symplectic structure

    Science.gov (United States)

    Kazinski, P. O.

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  3. Shear bands in a bulk metallic glass after large plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qu, D.D.; Wang, Y.B.; Liao, X.Z.; Shen, J. (Harbin); (Sydney)

    2012-10-23

    A transmission electron microscopy investigation is conducted to trace shear bands in a Zr{sub 53}Cu{sub 18.7}Ni{sub 12}Al{sub 16.3} bulk metallic glass after experiencing 4% plastic deformation. Shear band initiation, secondary shear band interactions, mature shear band broadening and the interactions of shear bands with shear-induced nanocrystals are captured. Results suggest that the plasticity of the bulk metallic glass is enhanced by complex shear bands and their interactions which accommodate large plastic strain and prevent catastrophic shear band propagation.

  4. Microscale characterization of deformation defects in bulk intermetallics alloys using electron channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Crimp, M.A.; Simkin, B.A.; Ng, B.C.; Bieler, T.R. [Dept. of Chemical Engineering and Materials Science, Michigan State Univ., East Lansing (United States); Mason, D.E. [Dept. of Mechanical Engineering, Michigan State Univ., East Lansing (United States); Dept. of Mathematics and Computer-Science, Albion Coll., Albion (United States)

    2003-07-01

    Electron channeling contrast imaging (ECCI), which allows dislocations and twins to be examined in the near surface region of bulk samples, has been used to study these deformation defects in a number of intermetallic alloys. Because ECCI is carried out on bulk samples in a field emission SEM, it is well suited for carrying out in-situ deformation studies under well defined stress states. In the present study, the advantages of ECCI has been used to study the effect of thermal treatment on the generation of dislocations during crack propagation in single crystal NiAl and to examine the nature of microcrack initiation at grain boundaries in a near {gamma} TiAl alloy. (orig.)

  5. Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites

    Directory of Open Access Journals (Sweden)

    Dianyu Wu

    2015-11-01

    Full Text Available The microstructures and mechanical properties of (Cu0.5Zr0.5100−xZnx (x = 0, 1.5, 2.5, 4.5, 7, 10, and 14 at. % bulk metallic glass (BMG composites were studied. CuZr martensitic crystals together with minor B2 CuZr and amorphous phases dominate the microstructures of the as-quenched samples with low Zn additions (x = 0, 1.5, and 2.5 at. %, while B2 CuZr and amorphous phases being accompanied with minor martensitic crystals form at a higher Zn content (x = 4.5, 7, 10, and 14 at. %. The fabricated Cu-Zr-Zn BMG composites exhibit macroscopically appreciable compressive plastic strain and obvious work-hardening due to the formation of multiple shear bands and the deformation-induced martensitic transformation (MT within B2 crystals. The present BMG composites could be a good candidate as high-performance structural materials.

  6. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  7. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  8. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  9. Reformation Capability of Short-Range Order and Their Medium-Range Connections Regulates Deformability of Bulk Metallic Glasses

    Science.gov (United States)

    Li, Congling; Wei, Yujie; Shi, Xinghua

    2015-07-01

    Metallic glasses (MGs) typically have high yield strength while low ductility, and the latter is commonly considered as the Achilles’ heel of MGs. Elucidate the mechanism for such low ductility becomes the research focus of this field. With molecular level simulations, we show the degree of short-range order (SRO) of atomic structure for brittle Fe-based glass decreases dramatically during the stretch, while mild change occurs in ductile Zr-based glass. The reformation capability for SRO and their medium-range connections is found to be the primary characteristics to differentiate the deformability between the two metallic glasses. We suspect that, in addition to the strength of networks formed by SRO structure, the reformation capability to reform SRO networks also plays the key role in regulating the ductility in metallic glasses. Our study provides important insights into the understanding about the mechanisms accounting for ductility or brittleness of bulk metallic glasses.

  10. Deformation and failure of bulk metallic glasses under different initial temperatures

    Directory of Open Access Journals (Sweden)

    Li J.C.

    2015-01-01

    Full Text Available Based on the coupled thermo-mechanical model, a constitutive model for bulk metallic glasses (BMGs, which is generalized to the multi-axial stress state and considers the effects of free volume, heat and hydrostatic stress, has been modified in the present paper. Besides, a failure criterion of critical free volume concentration is introduced based on the coalescence mechanism of free volume. The constitutive model as well as the failure criterion is implemented into the LS-DYNA commercial software by user material subroutine (UMAT. Then FEM simulations for different initial material temperatures are conducted and the evolutions of material parameter as well as corresponding macroscopic mechanical behaviour of material are analyzed. Relative analysis shows that the initial material temperature significantly affects the deformation and failure of material.

  11. Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.;

    2006-01-01

    Bulk Cu60Zr20Ti20 metallic glass has been rolled at room temperature (RT) and cryogenic temperature (CIF) up to 97% in thickness reduction, and the dependences of microstructure on the strain and temperature have been investigated. It is revealed that as the deformation proceeds below a critical...

  12. Formation of bulk refractive index structures

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  13. Design of Hierarchical Structures for Synchronized Deformations

    Science.gov (United States)

    Seifi, Hamed; Javan, Anooshe Rezaee; Ghaedizadeh, Arash; Shen, Jianhu; Xu, Shanqing; Xie, Yi Min

    2017-01-01

    In this paper we propose a general method for creating a new type of hierarchical structures at any level in both 2D and 3D. A simple rule based on a rotate-and-mirror procedure is introduced to achieve multi-level hierarchies. These new hierarchical structures have remarkably few degrees of freedom compared to existing designs by other methods. More importantly, these structures exhibit synchronized motions during opening or closure, resulting in uniform and easily-controllable deformations. Furthermore, a simple analytical formula is found which can be used to avoid collision of units of the structure during the closing process. The novel design concept is verified by mathematical analyses, computational simulations and physical experiments.

  14. Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

    Directory of Open Access Journals (Sweden)

    K. K. Song

    2013-01-01

    Full Text Available The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-“double”-to-“triple”-double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys.

  15. Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

    Science.gov (United States)

    Song, K. K.; Pauly, S.; Sun, B. A.; Tan, J.; Stoica, M.; Kühn, U.; Eckert, J.

    2013-01-01

    The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-"double"-to-"triple"-double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys.

  16. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T G

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article Super Plastic Bulk Metallic Glasses at Room Temperature, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is always single shear. The stress

  17. Classical covariant Poisson structures and Deformation Quantization

    CERN Document Server

    Berra-Montiel, Jasel; Palacios-García, César D

    2014-01-01

    Starting with the well-defined product of quantum fields at two spacetime points, we explore an associated Poisson structure for classical field theories within the deformation quantization formalism. We realize that the induced star-product is naturally related to the standard Moyal product through the causal Green functions connecting points in the space of classical solutions to the equations of motion. Our results resemble the Peierls-DeWitt bracket analyzed in the multisymplectic context. Once our star-product is defined we are able to apply the Wigner-Weyl map in order to introduce a generalized version of Wick's theorem. Finally, we include a couple of examples to explicitly test our method: the real scalar field and the bosonic string. For both models we have encountered generalizations of the creation/annihilation relations, and also a generalization of the Virasoro algebra in the bosonic string case.

  18. Deformation compatibility control for engineering structures methods and applications

    CERN Document Server

    Zhu, Hanhua; Chen, Mengchong; Deng, Jianliang

    2017-01-01

    This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods’ deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the constructi...

  19. Bulk properties of light deformed nuclei derived from a medium-modified meson-exchange interaction

    CERN Document Server

    Grümmer, F; Ma, Z Y; Krewald, S

    1996-01-01

    Deformed Hartree-Fock-Bogoliubov calculations for finite nuclei are carried out. As residual interaction, a Brueckner G-matrix derived from a meson-exchange potential is taken. Phenomenological medium modifications of the meson masses are introduced. The binding energies, radii, and deformation parameters of the Carbon, Oxygen, Neon, and Magnesium isotope chains are found to be in good agreement with the experimental data.

  20. Structural Transformations in Metallic Materials During Plastic Deformation

    Science.gov (United States)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-02-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  1. Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.W. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gu, L. [WPI, Advance Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Xie, G.Q. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, W., E-mail: wzhang@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, A. [WPI, Advance Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, H.F., E-mail: hfzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-04-15

    The relation between icosahedral short-range ordering (ISRO) and plastic deformation was investigated in Zr{sub 70-x}Nb{sub x}Cu{sub 13.5}Ni{sub 8.5}Al{sub 8} (at.%, x = 0, 2, 4, 6, 7, 8, 10) bulk metallic glasses (BMG). The formation of icosahedral quasicrystal (I-phase) during the annealing process implies that ISRO widely exists in these materials. The degree of ISRO is thermodynamically evaluated to show that ISRO increases with increasing Nb content. Compression tests indicate that BMG with 0-7 at.% Nb possess similar unusual plastic deformability, which is attributed to ISRO-mediated local distribution of free volume (FV) and ISRO prompted deformation-induced crystallization. A proposed core-shell model coupled with transmission electron microscopy analysis demonstrates that the FV is distributed more heterogeneously with increasing ISRO, which is beneficial for multiplying the shear bands. Deformation-induced crystallization is facilitated, owing to the low interfacial energy of the nucleation and growth of the crystals attributed to ISRO in the amorphous matrix, which improves plasticity by consuming energy and the product altering the stress field in the amorphous matrix. Design of new ductile BMG is discussed in these strategies.

  2. Deformation of wrinkled membrane inflatable structures under concentrated loads

    Institute of Scientific and Technical Information of China (English)

    WANG Chang-guo; DU Xing-wen; WAN Zhi-min; HE Xiao-dong

    2008-01-01

    The axisymmetric deformation of a paraboloidal membrane inflatable structure subjected to a concentrated load at its apex and a uniform intemal pressure was analyzed.The wrinkle angle was obtained according to the membrane theory when wrinkles appeared and determined the wrinkle region.The wrinkled deformation was obtained based on the relaxed energy function.The effects of inflation pressure and concentrated loads on the wrinkle ansle were analyzed and the deformation Was obtained at the apex of structure.According to the numerical analysis,the shape of deformed meridians with wrinkles Was obtained.

  3. The Lagrangian Deformation Structure of Three-Dimensional Steady Flow

    CERN Document Server

    Lester, Daniel R; Borgne, Tanguy Le; de Barros, Felipe P J

    2016-01-01

    Fluid deformation and strain history are central to wide range of fluid mechanical phenomena ranging from fluid mixing and particle transport to stress development in complex fluids and the formation of Lagrangian coherent structures (LCSs). To understand and model these processes it is necessary to quantify Lagrangian deformation in terms of Eulerian flow properties, currently an open problem. To elucidate this link we develop a Protean (streamline) coordinate transform for steady three-dimensional (3D) flows which renders both the velocity gradient and deformation gradient upper triangular. This frame not only simplifies computation of fluid deformation metrics such as fi?nite-time Lyapunov exponents (FTLEs) and elucidates the deformation structure of the flow, but moreover explicitly recovers kinematic and topological constraints upon deformation such as those related to helicity density and the Poincar\\'{e}-Bendixson theorem. We apply this transform to several classes of steady 3D flow, including helical ...

  4. Effect of the cooling rate on plastic deformability of a Zr-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The present work found the plastic deformability of Zr65Cu17.5Ni10Al7.5 BMG dependent on the cooling rate during the formation from the molten state alloy. The deformation behavior in the compression test of φ 2 mm Zr65Cu17.5Ni10Al7.5 BMGs as-cast or lathed from different sizes as-cast samples was characterized, and they exhibited different plastic strains. The compressive plastic strain increases with the decreasing diameter of the as-cast specimens, i.e. with increasing the cooling rate. It is suggested that free volume content in the BMGs, which is related to the cooling rate during the rapid solidification, could play an important role in the deformation process of the BMGs.

  5. Relationship between nano-scale deformation of coal structure and metamorphic-deformed environments

    Institute of Scientific and Technical Information of China (English)

    JU Yiwen; JIANG Bo; HOU Quanlin; WANG Guiliang

    2005-01-01

    There is a more consanguineous relation between nano-scale deformation of coal structure and metamorphic-deformed environment. In different metamorphic-deformed environments, deformation in the coal structure can occur not only at micro-scale, but also at nano-scale, and even leads to the change of molecular structure and nano-scale pore (<100 nm) structure. The latter is the main space absorbing coalbed methane. Through X-ray diffraction (XRD) and liquid-nitrogen absorption methods, the characteristics of macromolecular and nano-scale pore structures of coals in different metamorphic-deformed environments and deformational series of coals have been studied. By combining with high-resolution transmission electron microcopy (HRTEM), the macromolecular and nano-scale pore structures are also directly observed. These results demonstrate that the stacking Lc of the macromolecular BSU in tectonic coals increases quickly from the metamorphic-deformed environment of low rank coals to that of high rank coals. For different deformed tectonic coals, in the same metamorphic-deformed environment, the difference of Lc is obvious. These changes reflect chiefly the difference of different temperature and stress effect of nano-scale deformation in tectonic coals. The factor of temperature plays a greater role in the increase of macromolecular structure parameters Lc, the influence of stress factor is also important. With the stress strengthening, Lc shows an increasing trend, and La /Lc shows a decreasing trend. Therefore, Lc and La /Lc can be used as the indicator of nano-scale deformation degree of tectonic coals. With increasing temperature and pressure, especially oriented stress, the orientation of molecular structure becomes stronger, and ordering degree of C-nets and the arrangement of BSU are obviously enhanced. For the deformation of nano-scale pore structure, in the same metamorphic-deformed environment, along with the strengthening of stress, the ratio of mesopores to

  6. The effect of high temperature plastic deformation on the thermal stability and microstructure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-Mail: lliu2000@public.wh.hb.cn; Chen, Q. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Chan, K.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hong Kong (China); Wang, J.F. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Pang, G.K.H. [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2007-03-25

    The plastic deformation of Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} (numbers indicate at.%) bulk metallic glass (BMG) was conducted in the supercooled liquid region under uniaxial tension with various strain rates ranging from 8.3 x 10{sup -4} to 2 x 10{sup -2} s{sup -1}. It was found that the deformation behavior of the BMG is strongly dependent on strain rate. Thermal and structural investigations revealed that the plastic deformation reduced the thermal stability of Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} BMG and promoted crystallization or reordering of the amorphous structure. To clarify the correlation between strain and structure of the BMG, the sample that was deformed at a high strain rate and exhibited significant necking was selected for a detailed investigation of its structure in different parts (e.g., the tip, middle and end parts) by conventional and high-resolution transmission electron microscopy. It was found that a band crystalline structure with a strongly crystallographic orientation was formed at the tip part, while inhomogeneous nanocrystallization occurred in the middle parts, and the amorphous structure remained almost unchanged in the end part. The different structures observed in different parts of the deformed sample are attributed to the inhomogeneous deformation of the BMG at high strain rates.

  7. Structural refinement and deformation mechanisms in nanostructured metals

    DEFF Research Database (Denmark)

    Lu, K.; Hansen, Niels

    2009-01-01

    Deformation mechanisms in metals deformed to ultrahigh strains are analyzed based on a general pattern of grain subdivision down to structural scales 10 nm. The materials analyzed are medium- to high-stacking fault energy face-centered cubic and body-centered cubic metals with different loading...... conditions. The analysis points to dislocation glide as the dominant deformation mechanism at different length scales supplemented by a limited amount of twinning at the finest scales. With decreasing deformation temperature and increasing strain rate, the contribution of twinning increases...

  8. Structural and magnetic properties of bulk nanocrystalline Erbium metal

    Directory of Open Access Journals (Sweden)

    Ming Yue

    2011-06-01

    Full Text Available Bulk nanocrystalline Erbium metals were prepared via Spark Plasma Sintering (SPS and subsequent annealing process. The nanocrystalline Er metals have the same hexagonal close packed structure as that of coarse-grained sample. Decrease in grain size results in remarkable changes in the three magnetic ordering temperatures of the nanocrystalline Er metal. At 5 K, the magnetization drops by 10.9%, while the coercivity increases by 4 times for nanocrystalline Er compared with those of coarse-grained sample. These results indicate the remarkable influence of the nanostructure on the magnetism of Er due to finite size effect.

  9. Microscale Mechanical Deformation Behaviors and Mechanisms in Bulk Metallic Glasses Investigated with Micropillar Compression Experiments

    Science.gov (United States)

    Ye, Jianchao

    2011-12-01

    Over the past years of my PhD study, the focused-ion-beam (FIB) based microcompression experiment has been thoroughly investigated with respect to the small-scale deformation in metallic glasses. It was then utilized to explore the elastic and plastic deformation mechanisms in metallic glasses. To this end, micropillars with varying sample sizes and aspect ratios were fabricated by the FIB technique and subsequently compressed on a modified nanoindentation system. An improved formula for the measurement of the Young's modulus was derived by adding a geometrical prefactor to the Sneddon's solution. Through the formula, geometry-independent Young's moduli were extracted from microcompression experiments, which are consistent with nanoindentation results. Furthermore, cyclic microcompression was developed, which revealed reversible inelastic deformation in the apparent elastic regime through high-frequency cyclic loading. The reversible inelastic deformation manifests as hysteric loops in cyclic microcompression and can be captured by the Kelvin-type viscoelastic model. The experimental results indicate that the free-volume zones behave essentially like supercooled liquids with an effective viscosity on the order of 1 x 108 Pas. The microscopic yield strengths were first extracted with a formula derived based on the Mohr-Coulomb law to account for the geometrical effects from the tapered micropillar and the results showed a weak size effect on the yield strengths of a variety of metallic-glass alloys, which can be attributed to Weibull statistics. The nature of the yielding phenomenon was explored with the cyclic micro-compression approach. Through cyclic microcompression of a Zr-based metallic glass, it can be demonstrated that its yielding stress increases at higher applied stress rate but its yielding strain is kept at a constant of ~ 2%. The room-temperature post-yielding deformation behavior of metallic glasses is characterized by flow serrations, which were

  10. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...

  11. Effect of deformation on the structural state of piracetam

    Science.gov (United States)

    Kanunnikova, O. M.; Mikhailova, S. S.; Karban', O. V.; Mukhgalin, V. V.; Aksenova, V. V.; Sen'kovskii, B. V.; Pechina, E. A.; Lad'yanov, V. I.

    2016-04-01

    The effect of various deformation actions on the structure-phase transformations in piracetam of modifications I and II with a sodium acetate addition is studied. Mechanical activation and pressing are shown to cause the polymorphic transformation of modification I into modification II, and modification III forms predominantly during severe plastic deformation by torsion. The structural difference between the piracetam molecules of modifications I and II is found to be retained in aqueous solutions.

  12. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites

    Science.gov (United States)

    Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.

    2009-09-01

    In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.

  13. Deformation-strengthening during rolling Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Hu, Yuyan

    2007-01-01

    Mechanical strength evolutions during rolling the Cu60Zr20Ti20 bulk metallic glass (BMG) at room temperature (RT) and cryogenic temperature (CT) have been investigated by measuring the microhardness. The hardness slightly increases during the initial rolling stage as a result of the gradually...... enhanced microinhomogeneity of chemical composition, and then dramatically rises owing to phase separation at CT or phase separation plus nanocrystallization at RT. It is revealed that the Cu-rich separated amorphous phases from the matrix possess higher strengths than the original and Cu-poor separated...

  14. Relativistic models of magnetars: structure and deformations

    CERN Document Server

    Colaiuda, A; Gualtieri, L; Pons, J A

    2007-01-01

    We find numerical solutions of the coupled system of Einstein-Maxwell's equations with a linear approach, in which the magnetic field acts as a perturbation of a spherical neutron star. In our study, magnetic fields having both poloidal and toroidal components are considered, and higher order multipoles are also included. We evaluate the deformations induced by different field configurations, paying special attention to those for which the star has a prolate shape. We also explore the dependence of the stellar deformation on the particular choice of the equation of state and on the mass of the star. Our results show that, for neutron stars with mass M = 1.4 Msun and surface magnetic fields of the order of 10^15 G, a quadrupole ellipticity of the order of 10^(-6) - 10^(-5) should be expected. Low mass neutron stars are in principle subject to larger deformations (quadrupole ellipticities up to 10^(-3) in the most extreme case). The effect of quadrupolar magnetic fields is comparable to that of dipolar componen...

  15. Structural and mechanical modifications induced on Zr-based bulk metallic glass by laser shock peening

    Science.gov (United States)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-12-01

    In this study, surface modification of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass (BMG) has been studied in an effort to improve the mechanical properties by laser shock peening (LSP) treatment. The phase structure, mechanical properties, and microstructural evolution of the as-cast and LSP treated specimens were systematically investigated. It was found that the vit1 BMG still consisted of fully amorphous structure after LSP treatment. Measurements of the heat relaxation indicate that a large amount of free volume is introduced into vit1 BMG during LSP process. LSP treatment causes a decrease of hardness attributable to generation of free volume. The plastic deformation ability of vit1 BMG was investigated under three-point bending conditions. The results demonstrate that the plastic strain of LSP treated specimen is 1.83 times as large as that of the as-cast specimen. The effect of LSP technology on the hardness and plastic deformation ability of vit1 BMG is discussed on the basis of free volume theory. The high dense shear bands on the side surface, the increase of striations and critical shear displacement on the tensile fracture region, and more uniform dimples structure on the compressive fracture region also demonstrate that the plasticity of vit1 BMG can be enhanced by LSP.

  16. Perovskite-type oxides - Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.

    1988-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  17. Grain interaction mechanisms leading to intragranular orientation spread in tensile deformed bulk grains of interstitial-free steel

    DEFF Research Database (Denmark)

    Winther, Grethe; Wright, Jonathan P.; Schmidt, Søren

    2017-01-01

    environments representing the bulk texture, yet their deformation-induced rotations are very different. The ALAMEL model is employed to analyse the grain interaction mechanisms. Predictions of this model qualitatively agree with the directionality and magnitude of the experimental orientation spread. However......, quantitative agreement requires fine-tuning of the boundary conditions. The majority of the modelled slip is accounted for by four slip systems also predicted to be active by the classical Taylor model in uniaxial tension, and most of the orientation spread along the grain boundaries is caused by relative...... variations in the activities of these. Although limited to two grains, the findings prove that shear at the grain boundaries as accounted for by the ALAMEL model is a dominant grain interaction mechanism....

  18. Study of organic solar cells with stacked bulk heterojunction structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-fang; XU Zheng; ZHAO Su-ling; ZHANG Fu-jun; LI Yan; WU Chun-yu; CHEN Yue-ning

    2008-01-01

    Organic solar cells with stacked bulk heterojunction(BHJ) are investigated based on conjugated polymer. By using the solution spin-coating method, Poly[2-methoxy, 5-(2'-ethyl-hexyloxy) -1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles (50 nm) are mixed as the optical sense layer. Ag is used as inter-layer to connect the upper BILl cell and the lower cell. The structures are ITO/PEDOT:PSS/MEH-PPV/Ag/MEH-PPV:ZnO/Al. The open circuit voltage (Voc) of a stacked cell is about 3.7 times of that of an individual organic solar cell (ITO/PEDOT:PSS/MEH-PPV/A1). The short circuit current (Jsc) of a stacked cell is increased by about 1.6 times of that of individual one.

  19. Step Structure in Cold-Rolled Deformed Nanocrystalline Nickel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Yan; WU Xiao-Lei; XIA Bao-Yu; ZHOU Ming-Zhe; ZHOU Shi-Jie; JIA Chong

    2005-01-01

    @@ The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (GB),and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about 100nm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from GBs.However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.

  20. Structure, Deformations and Gravitational Wave Emission of Magnetars

    CERN Document Server

    Gualtieri, L; Ferrari, V

    2010-01-01

    Neutron stars can have, in some phases of their life, extremely strong magnetic fields, up to 10^15-10^16 G. These objects, named magnetars, could be powerful sources of gravitational waves, since their magnetic field could determine large deformations. We discuss the structure of the magnetic field of magnetars, and the deformation induced by this field. Finally, we discuss the perspective of detection of the gravitational waves emitted by these stars.

  1. Structure, deformations and gravitational wave emission of magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, L; Ciolfi, R; Ferrari, V, E-mail: leonardo.gualtieri@roma1.infn.it [Dipartimento di Fisica, ' Sapienza' Universita di Roma and Sezione INFN Roma1, piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2011-06-07

    Neutron stars can have, in some phases of their life, extremely strong magnetic fields, up to 10{sup 15-16} G. These objects, named magnetars, could be powerful sources of gravitational waves, since their magnetic field could determine large deformations. We discuss the structure of the magnetic field of magnetars, and the deformation induced by this field. Finally, we discuss the prospects of detection of the gravitational waves emitted by these stars.

  2. Deformation-induced dehydration structures in the Nankai accretionary prism

    Science.gov (United States)

    Famin, V.; Byrne, T.; Lewis, J. C.; Kanagawa, K.; Behrmann, J.; Iodp 314/315/316 Scientists, E.

    2008-12-01

    This study investigates the chemical changes caused by deformation in the hanging wall of a major, probably seismogenic thrust fault in the Kumano forearc basin, Nankai Trough. In cores from IODP Expedition 315 (site C0001), the clay sediments display numerous deformation structures including tilted beddings, decimeter scale faults and shear zones with normal or thrust offsets, and clusters of parallel curviplanar veins interpreted as earthquake-induced dewatering structures. Curviplanar veins are often observed to merge into small oblique shear zones with millimeter offsets, or to branch on larger shear zones with a ~30° angle. This suggests that some shear zones may form by the coalescence of veins. Curviplanar veins and shear zones appear darker than the surrounding clay at the macroscopic observation scale, and brighter and therefore denser under CT-scan imaging. At the micro-scale, clay has a preferred crystallographic orientation in the deformation structures and no preferred orientation outside. Electron probe micro-analysis reveals that the dark material has a higher sum of major elements (65-80 wt%), i.e. a lower volatile content (assumed to be mostly water) than the host sediment (50-60 wt%). All the major elements are equally enriched in proportion to the volatile depletion. Mass balance calculation indicates that a 20-30 wt% water loss is required to account for chemical change in the deformation microstructures. The water loss may be due to clay dehydration or to pore collapse. Shear zones are equally dehydrated as the curviplanar veins from the mass balance standpoint. In 1 m3 of sediment, a deformed volume of 1 % should produce about 6.2 L of water. Given the low permeability of the sediment, dehydration may increase the pore pressure and enhance further deformation. Deformation localization would be self-sustained by fluid overpressure, suggesting that dewatering veins may evolve into larger deformation structures after an earthquake.

  3. Local melting to design strong and plastically deformable bulk metallic glass composites

    Science.gov (United States)

    Qin, Yue-Sheng; Han, Xiao-Liang; Song, Kai-Kai; Tian, Yu-Hao; Peng, Chuan-Xiao; Wang, Li; Sun, Bao-An; Wang, Gang; Kaban, Ivan; Eckert, Jürgen

    2017-02-01

    Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique of instantaneously and locally arc-melting BMG plate to artificially induce the precipitation of B2 crystals in the glassy matrix and then to tune mechanical properties. Through adjusting local melting process parameters (i.e. input powers, local melting positions, and distances between the electrode and amorphous plate), the size, volume fraction, and distribution of B2 crystals were well tailored and the corresponding formation mechanism was clearly clarified. The resultant BMG composites exhibit large compressive plasticity and high strength together with obvious work-hardening ability. This compelling approach could be of great significance for the steady development of metastable CuZr-based alloys with excellent mechanical properties.

  4. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  5. Study on silicon nanocrystals and polymer bulk heterojunction structures

    Science.gov (United States)

    Sugaya, Michihiro; Ding, Yi; Zhou, Shu; Nozaki, Tomohiro

    2015-09-01

    Silicon nanocrystals (SiNCs) and semiconductor-polymer (P3HT) nanostructured thin film is investigated for better understanding of bulk heterojunction structure of hybrid solar cell and improving its photon-to-electron conversion performance. SiNCs are synthesized by VHF plasma CVD using silicon tetrachloride. SiNC thin film transistor (TFT) was fabricated to investigate carrier transport properties of SiNC network. As a result, hydrogen-terminated SiNCs behave as n-type semiconductor materials, and electron mobility of SiNC network is improved dramatically. In contrast, chlorine-terminated SiNCs behave as metallic materials and show poor electron transport property because of surface doping effect: electrons are not flow over the SiNC network due to a large electronegativity of chlorine. Additionally, when the chlorine-terminated SiNCs are blended with P3HT, new peaks appear in FTIR absorption spectrum. The result implies that the thiophene structure, which forms the hole transporting pathway, may be damaged by highly reactive surface chlorine and therefore the hole transport property of Cl:SiNCs/P3HT blended film would be deteriorated dramatically. These results are well correlated with Cl- and H-terminated/P3HT hybrid solar cell performance.

  6. QuikForm: Intelligent deformation processing of structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, R.J.; Wellman, G.W.

    1994-09-01

    There currently exists a critical need for tools to enhance the industrial competitiveness and agility of US industries involved in deformation processing of structural alloys. In response to this need, Sandia National Laboratories has embarked upon the QuikForm Initiative. The goal of this program is the development of computer-based tools to facilitate the design of deformation processing operations. The authors are currently focusing their efforts on the definition/development of a comprehensive system for the design of sheet metal stamping operations. The overall structure of the proposed QuikForm system is presented, and the focus of their thrust in each technical area is discussed.

  7. Co2 injection into oil reservoir associated with structural deformation

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In this work, the problem of structural deformation with two-phase flow of carbon sequestration is presented. A model to simulate miscible CO2 injection with structural deformation in the aqueous phase is established. In the first part of this paper, we developed analytical solution for the problem under consideration with certain types of boundary conditions, namely, Dirichlet and Neumann boundary conditions. The second part concerns to numerical simulation using IMPDES scheme. A simulator based on cell-centered finite difference method is used to solve this equations system. Distributions of CO2 saturation, and horizontal and vertical displacements have been introduced.

  8. Chemical etching of deformation sub-structures in quartz

    Science.gov (United States)

    Wegner, M. W.; Christie, J. M.

    1983-02-01

    Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.

  9. Structure modulated electrostatic deformable mirror for focus and geometry control.

    Science.gov (United States)

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

  10. Investigations on structural thinning in deformation machining stretching mode

    Science.gov (United States)

    Singh, Arshpreet; Nirala, Harish Kumar; Agrawal, Anupam

    2016-10-01

    Deformation machining is a combination of thin structure machining and single point incremental forming/bending. This process enables the creation of monolithic, complex structures and geometries, which are difficult or sometimes impossible to manufacture employing conventional manufacturing techniques. Section thinning of the formed structure is a measure of process formability and influences the strength and stiffness of the formed component. In this study, experimental and finite element investigations on structural thinning in Deformation machining stretching mode have been performed. Structural thinning was found out to be highly non uniform along the forming depth at varying forming angles. A compensation strategy in thin structure machining has been proposed for uniform section thickness in incremental forming.

  11. Deformation tests and failure process analysis of an anchorage structure

    Institute of Scientific and Technical Information of China (English)

    Zhao Tongbin; Yin Yanchun; Tan Yunliang; Song Yimin

    2015-01-01

    In order to study the failure process of an anchorage structure and the evolution law of the body’s defor-mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail-ure process of an anchorage structure:elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a ‘V’ shape. In the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-crack. The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.

  12. Analysing intracellular deformation of polymer capsules using structured illumination microscopy

    Science.gov (United States)

    Chen, Xi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Yan, Yan; Noi, Ka Fung; Ping, Yuan; Caruso, Frank

    2016-06-01

    Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces, which induce capsule deformation during cell uptake, vary between cell lines, indicating that the capsules are exposed to higher mechanical forces in HeLa cells, followed by RAW264.7 and then differentiated THP-1 cells. Our study demonstrates the use of super-resolution SIM in analysing intracellular capsule deformation, offering important insights into the cellular processing of drug carriers in cells and providing fundamental knowledge of intracellular mechanobiology. Furthermore, this study may aid in the design of novel drug carriers that are sensitive to deformation for enhanced drug release properties.Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces

  13. Thermal rectification in non-linear structures with bulk losses

    Science.gov (United States)

    Schmidt, Martin; Kottos, Tsampikos

    2013-03-01

    A mechanism for thermal rectification based on the interplay between non-uniform bulk losses with nonlinearity is presented. We theoretically analyze the phenomenon using an anharmonic array of coupled oscillators coupled to the left and right with two Langevin reservoirs. A third probe thermostat (with temperature TB) is placed in an asymmetric position in the bulk of the lattice thus breaking the translational symmetry and leading to rectification of heat flow. We note that for TB = 0 this Langevin term is equivalent to a simple friction. We find that an increase of the friction strength can increase both the asymmetry and heat flux. Visiting Student from Germany

  14. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  15. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    Science.gov (United States)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  16. Finite Element Analysis of Deformed Legs of Offshore Platform Structures

    Institute of Scientific and Technical Information of China (English)

    柳春图; 秦太验; 段梦兰

    2002-01-01

    The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived bythe finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of thismethod, the stresses of some platform structures are calculated and analyzed.

  17. Structure and properties of nanocrystalline rare earth bulks prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    卢年端; 宋晓艳; 刘雪梅; 张久兴

    2009-01-01

    A series of rare earth bulks with the ultrafine nanocrystalline structure were prepared by applying an "oxygen-free" (an environmental oxygen concentration less than 0.5 ppm) in-situ synthesis system, where the inert-gas condensation was combined with the spark plasma sintering technology into an entirely closed system. The thermal and mechanical properties of the prepared ultrafine nanocrystalline bulks were characterized and compared with those of the raw polycrystalline bulks. It was found that the speci...

  18. Influence of thermal treatments and plastic deformation on the atomic mobility in Zr{sub 50.7}Cu{sub 28}Ni{sub 9}Al{sub 12.3} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, J.C.; Pelletier, J.M., E-mail: jean-marc.pelletier@insa-lyon.fr

    2014-12-05

    Highlights: • Atomic mobility in Zr-based metallic glass were evaluated by DMA and nanoindentation. • Atomic mobility is reduced by physical aging while increased by plastic deformation. • The atomic mobility in metallic glasses are related to concentration of “defects”. • Value of the Kohlrausch exponent β{sub KWW} in the Zr-based metallic glass is around 0.5. - Abstract: The atomic mobility in Zr{sub 50.7}Cu{sub 28}Ni{sub 9}Al{sub 12.3} bulk metallic glass has been evaluated as a function of temperature and the influence of different treatments (thermal annealing, plastic deformation) has been investigated using mechanical spectroscopy and nanoindentation technique. In particular the loss factor has been measured. This parameter is connected to the energy loss during the application of a periodic stress and therefore is sensitive to atomic movements. Master curves can be obtained, confirming the validity of the time–temperature superposition principle. The atomic mobility is reduced during physical aging (also called structural relaxation) but increased after a plastic deformation (a rejuvenation of the material is then induced). In the framework of the nanoindentation tests and mechanical spectroscopy, the concentration of “defects” in metallic glasses increases by deformation (i.e. cold-rolling) while decreases after structural relaxation and crystallization. These results are discussed using the concept of quasi-point defects, which assist the atomic movements.

  19. ROLE OF UNDERGROUND STRUCTURE DEFORMATION VELOCITY IN THE ANALYSIS OF BLAST-RESISTANT STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    赵晓兵; 方秦

    2002-01-01

    The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role of deformation velocity of the structure will truthfully describe the actual situation of structural vibration. With the one-dimensional plane wave theory, the expression of load on the structural periphery is developed, and the generalized variation principle for the dynamic analysis of underground arched-bar structures is given. At the same time, the results of the numerical calculation are compared.

  20. Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization

    Science.gov (United States)

    Zatsepin, D. A.; Boukhvalov, D. W.; Gavrilov, N. V.; Zatsepin, A. F.; Shur, V. Ya.; Esin, A. A.; Kim, S. S.; Kurmaev, E. Z.

    2017-04-01

    The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO2-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO2 host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO2:Pb, whereas in thin-film morphology the PbO2-like structure becomes dominating, essentially contributing weak O/Pb bonding (PbxOy defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity "insertion" into the structure of bulk TiO2 was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO2 because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about 1 eV up.

  1. Fast Detection of Material Deformation through Structural Dissimilarity

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Parkinson, Dilworth

    2015-10-29

    Designing materials that are resistant to extreme temperatures and brittleness relies on assessing structural dynamics of samples. Algorithms are critically important to characterize material deformation under stress conditions. Here, we report on our design of coarse-grain parallel algorithms for image quality assessment based on structural information and on crack detection of gigabyte-scale experimental datasets. We show how key steps can be decomposed into distinct processing flows, one based on structural similarity (SSIM) quality measure, and another on spectral content. These algorithms act upon image blocks that fit into memory, and can execute independently. We discuss the scientific relevance of the problem, key developments, and decomposition of complementary tasks into separate executions. We show how to apply SSIM to detect material degradation, and illustrate how this metric can be allied to spectral analysis for structure probing, while using tiled multi-resolution pyramids stored in HDF5 chunked multi-dimensional arrays. Results show that the proposed experimental data representation supports an average compression rate of 10X, and data compression scales linearly with the data size. We also illustrate how to correlate SSIM to crack formation, and how to use our numerical schemes to enable fast detection of deformation from 3D datasets evolving in time.

  2. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Shear deformation plate continua of large double layered space structures

    Science.gov (United States)

    Hefzy, Mohamed Samir; Nayfeh, Adnan H.

    1986-01-01

    A simple method is presented to model large rigid-jointed lattice structures as continuous elastic media with couple stresses using energy equivalence. In the analysis, the transition from the discrete system to the continuous media is achieved by expanding the displacements and the rotations of the nodal points in a Taylor series about a suitable chosen origin. The strain energy of the continuous media with couple stresses is then specialized to obtain shear deformation plate continua. Equivalent continua for single layered grids, double layered grids, and three-dimensional lattices are then obtained.

  4. Ocean acidification causes structural deformities in juvenile coral skeletons.

    Science.gov (United States)

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  5. Voronoi Structural Evolution of Bulk Silicon upon Melting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shi-Liang; ZHANG Xin-Yu; WANG Lin-Min; QI Li; ZHANG Su-Hong; ZHU Yan; LIU Ri-Ping

    2011-01-01

    @@ The Voronoi structural evolution of silicon upon melting is investigated using a molecular dynamics simulation.At temperatures below the melting point, the solid state system is identified to have a four-fold coordination structure .As the temperature increases, the five-fold coordination and six-fold coordination structures and are observed.This is explained in terms of increasing atomic displacement due to thermal motion and the trapping of the moving atoms by others.At temperatures above the melting point, nearly ali of the four-fold coordination structures grows into multiple-fold coordination ones.%The Voronoi structural evolution of silicon upon melting is investigated using a molecular dynamics simulation. At temperatures below the melting point, the solid state system is identified to have a four-told coordination structure (4,0,0,0). As the temperature increases, the five-fold coordination (2,3,0,0) and six-fold coordination structures (2,2,2,0) and (0,6,0,0) are observed. This is explained in terms of increasing atomic displacement due to thermal motion and the trapping of the moving atoms by others. At temperatures above the melting point, nearly all of the four-fold coordination structures grows into multiple-fold coordination ones.

  6. CHARACTERIZATION OF PLASTICALLY-INDUCED STRUCTURAL CHANGES IN A Zr-BASED BULK METALLIC GLASS USING POSITRON ANNIHILATION SPECTROCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Flores, K M; Kanungo, B P; Glade, S C; Asoka-Kumar, P

    2005-09-16

    Flow in metallic glasses is associated with stress-induced cooperative rearrangements of small groups of atoms involving the surrounding free volume. Understanding the details of these rearrangements therefore requires knowledge of the amount and distribution of the free volume and how that distribution evolves with deformation. The present study employs positron annihilation spectroscopy to investigate the free volume change in Zr{sub 58.5}Cu{sub 15.6}Ni{sub 12.8}Al{sub 10.3}Nb{sub 2.8} bulk metallic glass after inhomogeneous plastic deformation by cold rolling and structural relaxation by annealing. Results indicate that the size distribution of open volume sites is at least bimodal. The size and concentration of the larger group, identified as flow defects, changes with processing. Following initial plastic deformation the size of the flow defects increases, consistent with the free volume theory for flow. Following more extensive deformation, however, the size distribution of the positron traps shifts, with much larger open volume sites forming at the expense of the flow defects. This suggests that a critical strain is required for flow defects to coalesce and form more stable nanovoids, which have been observed elsewhere by high resolution TEM. Although these results suggest the presence of three distinct open volume size groups, further analysis indicates that all groups have the same line shape parameter. This is in contrast to the distinctly different interactions observed in crystalline materials with multiple defect types. This similarity may be due to the disordered structure of the glass and positron affinity to particular atoms surrounding open-volume regions.

  7. The Detection of Structural Deformation Errors in Attitude Determination

    Institute of Scientific and Technical Information of China (English)

    M. J. Moore; C. Rizos; J. Wang

    2003-01-01

    In the determination of the attitude parameters from a multi-antenna GPS array, one of the major assumptions is that the body frame is rigid at all times. If this assumption is not true then the derived attitude parameters will be in error. It is well known that in airborne platforms the wings often experience some displacement during flight, especially during periods of initializing maneouvres, such as taking off, landing,and banking. Often it is at these points in time that it is most critical to have the most precise attitude parameters.There are a number of techniques available for the detection of modeling errors.The CUSUM algorithm has successfully been implemented in the past to detect small persistent changes. In this paper the authors investigate different methods of generating the residuals, to be tested by the CUSUM algorithm, in an effort to determine which technique is best suited for the detection of structural deformation of an airborne platform. The methods investigated include monitoring the mean of the residuals generated from the difference between the known body frame coordinates, and those calculated from the derived attitude parameters. The generated residuals are then passed to a CUSUM algorithm to detect any small persistent changes. An alternative method involves transforming the generated residuals into the frequency domain through the use of the Fast Fourier Transform. The CUSUM algorithm is then used to detect any frequency changes. The final technique investigated involves transforming the generated residuals using the Haar wavelet. The wavelet coefficients are then monitored by the CUSUM algorithm in order to detect any significant change to the rigidity of the body frame.Detecting structural deformation, and quantifying the degree of deformation, during flight will ensure that these effects can be removed from the system, thus ensuring the most precise and reliable attitude parameter solutions. This paper, through a series

  8. Deformable registration of multi-modal data including rigid structures

    Energy Technology Data Exchange (ETDEWEB)

    Huesman, Ronald H.; Klein, Gregory J.; Kimdon, Joey A.; Kuo, Chaincy; Majumdar, Sharmila

    2003-05-02

    Multi-modality imaging studies are becoming more widely utilized in the analysis of medical data. Anatomical data from CT and MRI are useful for analyzing or further processing functional data from techniques such as PET and SPECT. When data are not acquired simultaneously, even when these data are acquired on a dual-imaging device using the same bed, motion can occur that requires registration between the reconstructed image volumes. As the human torso can allow non-rigid motion, this type of motion should be estimated and corrected. We report a deformation registration technique that utilizes rigid registration for bony structures, while allowing elastic transformation of soft tissue to more accurately register the entire image volume. The technique is applied to the registration of CT and MR images of the lumbar spine. First a global rigid registration is performed to approximately align features. Bony structures are then segmented from the CT data using semi-automated process, and bounding boxes for each vertebra are established. Each CT subvolume is then individually registered to the MRI data using a piece-wise rigid registration algorithm and a mutual information image similarity measure. The resulting set of rigid transformations allows for accurate registration of the parts of the CT and MRI data representing the vertebrae, but not the adjacent soft tissue. To align the soft tissue, a smoothly-varying deformation is computed using a thin platespline(TPS) algorithm. The TPS technique requires a sparse set of landmarks that are to be brought into correspondence. These landmarks are automatically obtained from the segmented data using simple edge-detection techniques and random sampling from the edge candidates. A smoothness parameter is also included in the TPS formulation for characterization of the stiffness of the soft tissue. Estimation of an appropriate stiffness factor is obtained iteratively by using the mutual information cost function on the result

  9. Preparation and mechanism study of bulk pure rare-earth metals with amorphous and nanocrystalline structures

    Institute of Scientific and Technical Information of China (English)

    LI ErDong; SONG XiaoYan; ZHANG JiuXing; LU NianDuan

    2007-01-01

    The preparation and the mechanism study of bulk pure rare-earth metals with amorphous and nanocrystalline structures, which were produced by spark plasma sintering (SPS), were carried out in this paper. With different processing parameters, the amorphous, two phases of amorphous and nanocrystalline, and complete nanocrystalline microstructures have been obtained. The nano-grain sizes in the bulk nanocrystalline materials are found smaller than the original powder particles sizes, which may change the conventional viewpoint that the grains in the sintered bulk are generally coarser than the raw powder particles. The technique developed in the present work can be extended to the preparation of many other nano bulk metal materials, and thus enables the studies of the nano-size effects on the physical, chemical and mechanical properties of bulk nano materials.

  10. Linking structure to fragility in bulk metallic glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shuai, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Stolpe, Moritz, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Evenson, Zach [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Bednarcik, Jozef [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kruzic, Jamie J. [Material Science, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  11. Segmentation of Pathological Structures by Landmark-Assisted Deformable Models.

    Science.gov (United States)

    Ibragimov, Bulat; Korez, Robert; Likar, Bostjan; Pernus, Franjo; Xing, Lei; Vrtovec, Tomaz

    2017-02-13

    Computerized segmentation of pathological structures in medical images is challenging, as, in addition to unclear image boundaries, image artifacts and traces of surgical activities, the shape of pathological structures may be very different from the shape of normal structures. Even if a sufficient number of pathological training samples are collected, statistical shape modeling cannot always capture shape features of pathological samples as they may be suppressed by shape features of a considerably larger number of healthy samples. At the same time, landmarking can be efficient in analyzing pathological structures but often lacks robustness. In this paper, we combine the advantages of landmark detection and deformable models into a novel supervised multi-energy segmentation framework that can efficiently segment structures with pathological shape. The framework adopts the theory of Laplacian shape editing that was introduced in the field of computer graphics, so that the limitations of statistical shape modeling are avoided. The performance of the proposed framework was validated by segmenting fractured lumbar vertebrae from three-dimensional (3D) computed tomography (CT) images, atrophic corpora callosa from two-dimensional (2D) magnetic resonance (MR) crosssections and cancerous prostates from 3D MR images, resulting respectively in a Dice coefficient of 84.7 ± 5.0%, 85.3 ± 4.8% and 78.3 ± 5.1%, and boundary distance of 1.14 ± 0.49 mm, 1.42 ± 0.45mm and 2.27 ± 0.52 mm. The obtained results were shown to be superior in comparison to existing deformable modelbased segmentation algorithms.

  12. Bulk band structure of Bi2Te3

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Aguilera, Irene; Bianchi, Marco;

    2014-01-01

    -electron full-potential linearized augmented-plane-wave (FLAPW) formalism, fully taking into account spin-orbit coupling. Quasiparticle effects produce significant changes in the band structure of Bi2Te3 when compared to LDA. Experimental and calculated results are compared in the spectral regions where...... distinct differences between the LDA and GW results are present. Overall a superior agreement with GW is found, highlighting the importance of many-body effects in the band structure of this family of topological insulators....

  13. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  14. On Hopf algebroid structure of kappa-deformed Heisenberg algebra

    CERN Document Server

    Lukierski, Jerzy; Woronowicz, Mariusz

    2016-01-01

    The $(4+4)$-dimensional $\\kappa$-deformed quantum phase space as well as its $(10+10)$-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the $(10+10)$-dimensional quantum phase space is the double of $D=4$ $\\kappa$-deformed Poincar\\'e Hopf algebra $\\mathbb{H}$ and the standard $(4+4)$-dimensional space is its subalgebra generated by $\\kappa$-Minkowski coordinates $\\hat{x}_\\mu$ and corresponding commuting momenta $\\hat{p}_\\mu$. Every Heisenberg double appears as the total algebra of a Hopf algebroid over a base algebra which is in our case the coordinate sector. We exhibit the details of this structure, namely the corresponding right bialgebroid and the antipode map. We rely on algebraic methods of calculation in Majid-Ruegg bicrossproduct basis. The target map is derived from a formula by J-H. Lu. The coproduct takes values in the bimodule tensor product over a base, what is expressed as the presence of coproduct gauge freedom.

  15. Tooth and bone deformation: structure and material properties by ESPI

    Science.gov (United States)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  16. Structure and dynamics of pentacene on SiO2: From monolayer to bulk structure

    Science.gov (United States)

    Brillante, Aldo; Bilotti, Ivano; Della Valle, Raffaele Guido; Venuti, Elisabetta; Girlando, Alberto; Masino, Matteo; Liscio, Fabiola; Milita, Silvia; Albonetti, Cristiano; D'angelo, Pasquale; Shehu, Arian; Biscarini, Fabio

    2012-05-01

    We have used confocal micro Raman spectroscopy, atomic force microscopy (AFM), and x-ray diffraction (XRD) to investigate pentacene films obtained by vacuum deposition on SiO2 substrates. These methods allow us to follow the evolution of lattice structure, vibrational dynamics, and crystal morphology during the growth from monolayer, to TF, and, finally, to bulk crystal. The Raman measurements, supported by the AFM and XRD data, indicate that the film morphology depends on the deposition rate. High deposition rates yield two-dimensional nucleation and quasi-layer-by-layer growth of the T-F form only. Low rates yield three-dimensional nucleation and growth, with phase mixing occurring in sufficiently thick films, where the T-F form is accompanied by the “high-temperature” bulk phase. Our general findings are consistent with those of previous work. However, the Raman measurements, supported by lattice dynamics calculations, provide additional insight into the nature of the TFs, showing that their characteristic spectra originate from a loss of dynamical correlation between adjacent layers.

  17. A Holographic Model for Pseudogap in BCS-BEC Crossover (I): Pairing Fluctuations, Double-Trace Deformation and Dynamics of Bulk Bosonic Fluid

    CERN Document Server

    DeWolfe, Oliver; Wu, Chaolun

    2016-01-01

    We build a holographic model for the pairing fluctuation pseudogap phase in fermionic high temperature superconductivity/superfluidity based on the BCS-BEC crossover scenario. The pseudogap originates from incoherent Cooper pairing and has been observed in recent cold atom experiments. The strength of Cooper pairing and hence the BCS-BEC crossover is controlled by an effective 4-Fermi interaction and we argue that the double-trace deformation for charged scalar operator is a close analog in large N field theories. We employ the double-trace deformed Abelian Higgs model of holographic superconductors and propose that the incoherent fluctuations of the charged scalar in the bulk is the holographic dual of the fluctuating Cooper pairs. Using a Madelung transformation and the velocity-potential formalism, we develop a quantum fluid dynamics as an effective theory for these bulk fluctuations. The new fluid dynamics takes care of the boundary conditions required by AdS/CFT and encodes the vacuum polarization effect...

  18. Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

    Directory of Open Access Journals (Sweden)

    Kim Seong-Min

    2015-01-01

    Full Text Available This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

  19. Shape-dependent global deformation modes of large protein structures

    Science.gov (United States)

    Miloshevsky, Gennady V.; Hassanein, Ahmed; Jordan, Peter C.

    2010-05-01

    Conformational changes are central to the functioning of pore-forming proteins that open and close their molecular gates in response to external stimuli such as pH, ionic strength, membrane voltage or ligand binding. Normal mode analysis (NMA) is used to identify and characterize the slowest motions in the gA, KcsA, ClC-ec1, LacY and LeuT Aa proteins at the onset of gating. Global deformation modes of the essentially cylindrical gA, KcsA, LacY and LeuT Aa biomolecules are reminiscent of global twisting, transverse and longitudinal motions in a homogeneous elastic rod. The ClC-ec1 protein executes a splaying motion in the plane perpendicular to the lipid bilayer. These global collective deformations are determined by protein shape. New methods, all-atom Monte Carlo Normal Mode Following and its simplification using a rotation-translation of protein blocks (RTB), are described and applied to gain insight into the nature of gating transitions in gA and KcsA. These studies demonstrate the severe limitations of standard NMA in characterizing the structural rearrangements associated with gating transitions. Comparison of all-atom and RTB transition pathways in gA clearly illustrates the impact of the rigid protein block approximation and the need to include all degrees of freedom and their relaxation in computational studies of protein gating. The effects of atomic level structure, pH, hydrogen bonding and charged residues on the large-scale conformational changes associated with gating transitions are discussed.

  20. Deformation Quantization of Poisson Structures Associated to Lie Algebroids

    Directory of Open Access Journals (Sweden)

    Nikolai Neumaier

    2009-09-01

    Full Text Available In the present paper we explicitly construct deformation quantizations of certain Poisson structures on E*, where E → M is a Lie algebroid. Although the considered Poisson structures in general are far from being regular or even symplectic, our construction gets along without Kontsevich's formality theorem but is based on a generalized Fedosov construction. As the whole construction merely uses geometric structures of E we also succeed in determining the dependence of the resulting star products on these data in finding appropriate equivalence transformations between them. Finally, the concreteness of the construction allows to obtain explicit formulas even for a wide class of derivations and self-equivalences of the products. Moreover, we can show that some of our products are in direct relation to the universal enveloping algebra associated to the Lie algebroid. Finally, we show that for a certain class of star products on E* the integration with respect to a density with vanishing modular vector field defines a trace functional.

  1. Structure and physical properties of silicon clusters and of vacancy clusters in bulk silicon

    CERN Document Server

    Sieck, A

    2000-01-01

    different from the solid. The calculated stabilities and positron-lifetimes of vacancy clusters in bulk silicon indicate the positron-lifetimes of about 435 ps detected in irradiated silicon to be related to clusters of 9 or 10 vacancies. The vacancies in these clusters form neighboring hexa-rings and, therefore, minimize the number of dangling bonds. In this thesis the growth-pattern of free silicon clusters and vacancy clusters in bulk silicon is investigated. The aim is to describe and to better understand the cluster to bulk transition. Silicon structures in between clusters and solids feature new interesting physical properties. The structure and physical properties of silicon clusters can be revealed by a combination of theory and experiment, only. Low-energy clusters are determined with different optimization techniques and a density-functional based tight-binding method. Additionally, infrared and Raman spectra, and polarizabilities calculated within self-consistent field density-functional theory are...

  2. Elastic deformations disrupt structural superlubricity in large contacts

    Science.gov (United States)

    Sharp, Tristan A.; Pastewka, Lars; Robbins, Mark O.

    Force microscopy experiments observe ultra-low friction between solids with incommensurate lattice structures. This phenomenon is referred to as superlubricity and is due to a cancellation of lateral forces because surfaces sample all relative local configurations with equal probability. We use simulations to show that elasticity disrupts superlubricity in sufficiently large circular contacts. The simulations include atomic-scale geometry and reach micron-scales. For rigid solids, cancellation is complete except at the contact boundary. The static friction force per contact area, τ, falls as a power of contact radius, τ ~a - 3 / 2 . Elastic deformations limit this cancellation when the contact radius a is larger than a characteristic length scale set by the core width of interfacial dislocations, bcore. For a >bcore sliding of moderately incommensurate contacts is dominated by dislocation motion and, at large a, τ approaches a constant value near the Peierls stress needed to move edge dislocations. Surprisingly, the stress in commensurate contacts drops to nearly the same value at large a. We conclude that true structural lubricity does not occur in large contacts, although the constant shear stress drops rapidly with bcore. NSF IGERT, DAAD.

  3. Dislocation Structures in Creep-deformed Polycrystalline MgO

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen

    1972-01-01

    energy of 76 ± 12 kcal/mol. The creep rate is independent of grain size. The dislocation structure was investigated by transmission electron microscopy. The total dislocation density follows the relation, σ=bG√ρ, commonly found for metals. The dislocations form a 3-dimensional network in which many......Secondary creep of polycrystalline MgO with grain sizes of 100 and 190 μm was investigated at 1300° to 1460°C under compressive loads of 2.5 to 5.5 kgf/mm2. The dependence of creep rate on load follows a power law with an exponent of 3.2±0.3. The process is thermally activated, with an activation...... dislocation segments lie in their slip or climb planes. On the basis of this structure, a model is proposed in which glide is the principal cause of deformation but the rate-limiting process, i.e. annealing of the network, is diffusion-controlled. Theoretical estimates and experimental results agree within 1...

  4. Structural Changes in Deformed Soft Magnetic Ni-Based Metallic Glass

    NARCIS (Netherlands)

    Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.

    2009-01-01

    The effects of intensive plastic deformation of the soft magnetic metallic glass Ni Si 13 on the structural relaxation were examined. The enthalpy changes studied by differential scanning calorimetry revealed that the intensive plastic deformation was associated with the partial structural relaxatio

  5. On the modelling of the dynamics of elastically deformable floating structures

    DEFF Research Database (Denmark)

    Seng, Sopheak; Malenica, Sime; Jensen, Jørgen Juncher;

    2015-01-01

    In this paper we are reexamining the dynamic equations of an elastically deformable floating structure to identify and evaluate the contribution from the inertia cross coupling terms which commonly have been neglected due to the assumption of small structural deformation. Numerical experiments...

  6. A simulation model for analysing brain structure deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Sergio Di [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy); Lutzemberger, Ludovico [Department of Neuroscience, Institute of Neurosurgery, University of Pisa, Via Roma, 67-56100 Pisa (Italy); Salvetti, Ovidio [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy)

    2003-12-21

    Recent developments of medical software applications from the simulation to the planning of surgical operations have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  7. Complex structure-induced deformations of sigma-models

    CERN Document Server

    Bykov, Dmitri

    2016-01-01

    We describe a deformation of the principal chiral model (with an even-dimensional target space G) by a B-field proportional to the K\\"ahler form on the target space. The equations of motion of the deformed model admit a zero-curvature representation. As a simplest example, we consider the case of G=S^1 x S^3. We also apply a variant of the construction to a deformation of the AdS_3 x S^3 x S^1 (super-)sigma-model.

  8. Crustal Structure of Salton Trough using Deformable Layer Tomography

    Science.gov (United States)

    Yuan, F.

    2012-12-01

    Salton Trough is an important geologic structure to understand the active rift between Imperial Fault and San Andreas Fault. To determine the underground geometry of Salton Trough and its nearby faults, we analyzed seismic phase data recorded by Southern California Earthquake Data Center (SCEDC). Both 2-D and 3-D models have been made to refine the velocity model so as to determine the basin and moho geometry beneath Salton Trough region. Here three inline and five cross-line velocity profiles were built by using 2D Deformable Layer Tomography (DLT) method. From these 2D profiles, we can see that the velocity gradient is very small in the low velocity zone. The low velocity anomaly can be detected beneath the axis of the Salton Trough around the depth of 19-21 km, and the relatively high velocity can be seen beneath the San Andreas faults. Within 100*150*40 km3 model volume, 90,180 P-wave and S-wave first arrival picks from 27,663 local events (from 2001 to 2012), which were obtained from 44 stations, were used to build 3D seismic velocity model of the crust. During the iterations of velocity updating, full 3-D ray tracing is implemented. From these 3-D velocity models with different sizes of grids, low velocity anomalies are present under the southwest of Salton Sea, while high velocity zone is present across Southern San Andreas Fault throughout all the depths. Profiles from 2-D velocity models compared to 3-D velocity models show similar geometry. 3-D crustal structure, which is determined from 3-D DLT, helps to better understand the divergent boundary between the North American and the Pacific tectonic plates

  9. Deformed configurations, band structures and spectroscopic properties of = 50 Ge and Se nuclei

    Indian Academy of Sciences (India)

    S K Ghorui; C R Praharaj

    2014-04-01

    The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost’ spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed well-mixed = 1/2+ neutron orbit comes down in energy (from the shell above = 50) to break the = 50 spherical shell closure. A = 7− isomer is predicted in 84Se at fairly low excitation energy. At higher excitation energies (8 MeV), a deformed band with = 7/2+–1/2− (based on $h_{11/2}$) neutron 1p–1h excitation, for 82Ge and 84Se, is shown in our calculation. Our study gives insight into possible deformed structures at spherical shell closure.

  10. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    each subgrain, but larger variations between different subgrains. On average, subgrains experience backward strains, whereas dislocation walls are strained in a forward direction. Based on these observations the necessary revision of the classical composite model is outlined. Additionally, subgrain...... relaxation occurs, but no changes in number, size and orientation of the subgrains are observed. The radial profile asymmetry becomes reversed, when pre-deformed specimens are deformed in tension along a perpendicular axis....

  11. Evaluation of soft sediment deformation structures along the Fethiye–Burdur Fault Zone, SW Turkey

    Indian Academy of Sciences (India)

    Mehmet Ozcelik

    2016-03-01

    Burdur city is located on lacustrine sedimentary deposits at the northeastern end of the Fethiye–Burdur Fault Zone (FBFZ) in SW Turkey. Fault steps were formed in response to vertical displacement along normal fault zones in these deposits. Soft sediment deformation structures were identified at five sitesin lacustrine sediments located on both sides of the FBFZ. The deformed sediments are composed of unconsolidated alternations of sands, silts and clay layers and show different morphological types. The soft sediment deformation structures include load structures, flame structures, slumps, dykes, neptuniandykes, drops and pseudonodules, intercalated layers, ball and pillow structures, minor faults and water escape structures of varying geometry and dimension. These structures are a direct response to fluid escape during liquefaction and fluidization mechanism. The driving forces inferred include gravitationalinstabilities and hydraulic processes. Geological, tectonic, mineralogical investigations and age analysis were carried out to identify the cause for these soft sediment deformations. OSL dating indicated an age ranging from 15161±744 to 17434±896 years for the soft sediment deformation structures. Geological investigations of the soft sediment deformation structures and tectonic history of the basin indicate that the main factor for deformation is past seismic activity.

  12. Controlled deformation of vesicles by flexible structured media

    Science.gov (United States)

    Zhang, Rui; Zhou, Ye; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-01-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau–de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  13. Internal Structure and Mineralogy of Differentiated Asteroids Assuming Chondritic Bulk Composition: The Case of Vesta

    Science.gov (United States)

    Toplis, M. J.; Mizzon, H.; Forni, O.; Monnereau, M.; Prettyman, T. H.; McSween, H. Y.; McCoy, T. J.; Mittlefehldt, D. W.; DeSanctis, M. C.; Raymond, C. A.; Russell, C. T.

    2012-01-01

    Bulk composition (including oxygen content) is a primary control on the internal structure and mineralogy of differentiated asteroids. For example, oxidation state will affect core size, as well as Mg# and pyroxene content of the silicate mantle. The Howardite-Eucrite-Diogenite class of meteorites (HED) provide an interesting test-case of this idea, in particular in light of results of the Dawn mission which provide information on the size, density and differentiation state of Vesta, the parent body of the HED's. In this work we explore plausible bulk compositions of Vesta and use mass-balance and geochemical modelling to predict possible internal structures and crust/mantle compositions and mineralogies. Models are constrained to be consistent with known HED samples, but the approach has the potential to extend predictions to thermodynamically plausible rock types that are not necessarily present in the HED collection. Nine chondritic bulk compositions are considered (CI, CV, CO, CM, H, L, LL, EH, EL). For each, relative proportions and densities of the core, mantle, and crust are quantified. Considering that the basaltic crust has the composition of the primitive eucrite Juvinas and assuming that this crust is in thermodynamic equilibrium with the residual mantle, it is possible to calculate how much iron is in metallic form (in the core) and how much in oxidized form (in the mantle and crust) for a given bulk composition. Of the nine bulk compositions tested, solutions corresponding to CI and LL groups predicted a negative metal fraction and were not considered further. Solutions for enstatite chondrites imply significant oxidation relative to the starting materials and these solutions too are considered unlikely. For the remaining bulk compositions, the relative proportion of crust to bulk silicate is typically in the range 15 to 20% corresponding to crustal thicknesses of 15 to 20 km for a porosity-free Vesta-sized body. The mantle is predicted to be largely

  14. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Ivo Marek

    2016-05-01

    Full Text Available In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation.

  15. Study of structural changes of Zr-based bulk metallic glasses upon annealing and deformation treatments

    OpenAIRE

    2009-01-01

    Consultable des del TDX Títol obtingut de la portada digitalitzada Los materiales conocidos como vidrios metálicos han sido sujeto de estudio e todo el mundo desde los años 50, por el cual se ha conseguido un progreso importante en el entendimiento del comportamiento de estos materiales. Como el nombre sugiere, son aleaciones metálicas amorfas en las que no existe el orden a largo alcance. La ausencia de este tipo de orden les dota de propiedades físicas, químicas y mecánicas que son...

  16. Study of structural changes in Zr-based bulk metallic glasses upon annealing and deformation treatments

    OpenAIRE

    2008-01-01

    Los materiales conocidos como vidrios metálicos han sido sujeto de estudio e todo el mundo desde los años 50, por el cual se ha conseguido un progreso importante en el entendimiento del comportamiento de estos materiales. Como el nombre sugiere, son aleaciones metálicas amorfas en las que no existe el orden a largo alcance. La ausencia de este tipo de orden les dota de propiedades físicas, químicas y mecánicas que son únicas comparadas con las de otros materiales metálicos convencionales.S...

  17. On the existence of deformed Lie-Poisson structures for quantized groups

    CERN Document Server

    Lyakhovsky, V D

    1996-01-01

    The geometrical description of deformation quantization based on quantum duality principle makes it possible to introduce deformed Lie-Poisson structure. It serves as a natural analogue of classical Lie bialgebra for the case when the initial object is a quantized group. The explicit realization of the deformed Lie-Poisson structure is a difficult problem. We study the special class of such constructions characterized by quite a simple form of tanjent vector fields. It is proved that in such a case it is sufficient to find four Lie compositions that form two deformations of the first order and four Lie bialgebras. This garantees the existence of two families of deformed Lie-Poisson structures due to the intrinsic symmetry of the initial compositions. The explicit example is presented.

  18. Emergence of Bulk CsCl Structure in $(CsCl)_{n}Cs^{+}$ Cluster Ions

    CERN Document Server

    Aguado, A

    2000-01-01

    The emergence of CsCl bulk structure in (CsCl)nCs+ cluster ions is investigated using a mixed quantum-mechanical/semiempirical theoretical approach. We find that rhombic dodecahedral fragments (with bulk CsCl symmetry) are more stable than rock-salt fragments after the completion of the fifth rhombic dodecahedral atomic shell. From this size (n=184) on, a new set of magic numbers should appear in the experimental mass spectra. We also propose another experimental test for this transition, which explicitely involves the electronic structure of the cluster. Finally, we perform more detailed calculations in the size range n=31--33, where recent experimental investigations have found indications of the presence of rhombic dodecahedral (CsCl)32Cs+ isomers in the cluster beams.

  19. Vortex methods for fluid-structure interaction problems with deforming geometries and their application to swimming

    Science.gov (United States)

    Gazzola, Mattia; Chatelain, Philippe; Koumoutsakos, Petros

    2010-11-01

    We present a vortex particle-mesh method for fluid-structure interaction problems. The proposed methodology combines implicit interface capturing, Brinkmann penalization techniques, and the self-consistent computation of momentum transfer between the fluid and the structure. In addition, our scheme is able to handle immersed bodies characterized by non-solenoidal deformations, allowing the study of arbitrary deforming geometries. This attractively simple algorithm is shown to accurately reproduce reference simulations for rigid and deforming structures. Its suitability for biological locomotion problems is then demonstrated with the simulation of self-propelled anguilliform swimmers.

  20. Deformation analysis of ferrite/pearlite banded structure under uniaxial tension using digital image correlation

    Science.gov (United States)

    Zhang, Xiaochuan; Wang, Yong; Yang, Jia; Qiao, Zhixia; Ren, Chunhua; Chen, Cheng

    2016-10-01

    The ferrite/pearlite banded structure causes the anisotropic behavior of steel. In this paper, digital image correlation (DIC) was used to analyze the micro deformation of this microstructure under uniaxial tension. The reliability of DIC for this application was verified by a zero-deformation experiment. The results show that the performance of DIC can satisfy the requirements of the tensile deformation measurement. Then, two uniaxial tensile tests in different directions (longitudinal direction and transverse direction) were carried out and DIC was used to measure the micro deformation of the ferrite/pearlite banded structure. The measured results show that the ferrite bands undergo the main deformation in the transverse tension, which results in the relatively weaker tensile properties in the transverse direction than in the longitudinal direction. This work is useful to guide the modification of the bands morphology and extend the application scope of DIC.

  1. Inner Structure of Boiling Nucleus and Interfacial Energy Between Nucleus and Bulk Liquid

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Dong; TIAN Yong; PENG Xiao-Feng; WANG Bu-Xuan

    2004-01-01

    @@ A model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent on the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provide solid theoretical evidence to clarify the definition of nucleation rate and understand the nucleation phenomenon with insight into the physical nature.

  2. Application of color structured light pattern to measurement of large out-of-plane deformation

    Institute of Scientific and Technical Information of China (English)

    Xing Lü; Jun-Hong Zhou; Dong-Dong Liu; Jue Zhang

    2011-01-01

    Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.

  3. Structural ensembles of the north belt of Venus deformations and possible mechanisms of their formation

    Science.gov (United States)

    Markov, M. S.

    1986-01-01

    The author discusses structural formations in the northern deformation belt of Venus, studied according to the data of the radar pictures obtained with the Venera 15 and 16 probes. He shows that it consists of regions of compression with submeridional orientation, regions of displacement, extending in the sublatitudinal direction and individual slightly deformed blocks. He puts forward the hypothesis that the formation of these structures is related with horizontal movements in the mantle in the sublatitudinal direction.

  4. Cracking in reinforced concrete structures due to imposed deformations

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, A.

    1997-04-01

    This thesis is concerned with modeling of the cracking process in reinforced concrete due to imposed deformations. Cracking is investigated both at early ages, during hydration, and at mature age when the final properties of the concrete are reached. One of the most important material characteristics of the concrete at early ages, the Young`s modulus is determined by means of a dynamic method called the resonance frequency method. 40 refs

  5. Structural defects and electronic structure of N-ion implanted TiO2: Bulk versus thin film

    Science.gov (United States)

    Zatsepin, D. A.; Boukhvalov, D. W.; Kurmaev, E. Z.; Zhidkov, I. S.; Gavrilov, N. V.; Korotin, M. A.; Kim, S. S.

    2015-11-01

    Systematic investigation of atomic structure of N-ion implanted TiO2 (thin films and bulk ceramics) was performed by XPS measurements (core levels and valence bands) and first-principles density functional theory (DFT) calculations. In bulk samples experiment and theory demonstrate anion N → O substitution. For the thin films case experiments evidence valuable contributions from N2 and NO molecule-like structures and theoretical modeling reveals a possibility of formation of these species as result of the appearance of interstitial nitrogen defects on the various surfaces of TiO2. Energetics of formation of oxygen vacancies and its key role for band gap reduction is also discussed.

  6. Influence of strain on the copper structure under controlled deformation path conditions

    Directory of Open Access Journals (Sweden)

    G. Niewielski

    2006-04-01

    Full Text Available Purpose: One of the methods of plastic deformation under complex deformation path conditions is compression with oscillatory torsion. The observable effects in the form of changing force parameters and structure changes confirm the possibility of deformation to a value many times higher than in the case of methods traditionally applied for forming. This article presents the results of the influence of compression with oscillatory torsion on structural phenomena occurring in copper deformed in such a way.Design/methodology/approach: The examinations were conducted at a compression/oscillatory torsion test stand. The structural examinations were conducted with the use of light and electron microscopy.Findings: In experimental investigations, a reduction of unit pressures was observed when compared to conventional compression. The structural examinations indicated substantial differences in the mechanisms of plastic deformation conducted in both conventional and combined way.Research limitations/implications: There are premises which show that a metallic material of a nanometric structure can be obtained in this way (top-down method, by the accumulation of great plastic deformation. Metallic materials characterized by grain size below 100nm are distinguished by unconventional properties. Further examinations should focus on conducting experiments in a way that would enable grain size reduction to a nanometric size. This will enable the cumulation of greater deformation in the material.Originality/value: The method of compression with oscillatory torsion is an original method developed at the Silesian University of Technology, owing to which it is possible to obtain high deformation values (SPD without risking the loss of cohesion of the material. Thorough understanding of the changes taking place in the structure of metals subjected to compression with oscillatory torsion will allow the optimal choice of process parameters in order to achieve a

  7. Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels

    Science.gov (United States)

    Tokizane, M.; Matsumura, N.; Tsuzaki, K.; Maki, T.; Tamura, I.

    1982-08-01

    The effect of prior deformation on the processes of tempering and austenitizing of lath martensite was studied by using low carbon steels. The recrystallization of as-quenched lath martensite was not observed on tempering while the deformed lath martensite easily recrystallized. The behavior of austenite formation in deformed specimens was different from that in as-quenched specimens because of the recrystallization of deformed lath martensite. The austenitizing behavior (and thus the austenite grain size) in deformed specimens was controlled by the competition of austenite formation with the recrystallization of lath martensite. In the case of as-quenched (non-deformed) lath martensite, the austenite particles were formed preferentially at prior austenite grain boundaries and then formed within the austenite grains mainly along the packet, block, and lath boundaries. On the other hand, in the case of lightly deformed (30 to 50 pct) lath martensite, the recrystallization of the matrix rapidly progressed prior to the formation of austenite, and the austenite particles were formed mainly at the boundaries of fairly fine recrystallized ferrite grains. When the lath martensite was heavily deformed (75 to 84 pct), the austenite formation proceeded almost simultaneously with the recrystallization of lath martensite. In such a situation, very fine austenite grain structure was obtained most effectively.

  8. Marine terraces; datum planes for study of structural deformation

    Science.gov (United States)

    Huber, N.K.

    1975-01-01

    Along the earthquake-prone coastal area of north-central California, geologists are searching for criteria to establish the nature, extent, and rate of crustal movement or deformation that may be related to activity along known or postulated faults. This search has led to a study of marine terraces along the coast between San Francisco and Santa Cruz in the area that is transected by the Seal Cove-San Gregorio-Palo Colorado fault, a branch of the San Andreas fault system. 

  9. On RR Couplings and Bulk Singularity Structures of Non-BPS Branes

    CERN Document Server

    Hatefi, Ehsan

    2015-01-01

    We compute the five point world sheet scattering amplitude of a symmetric closed string Ramond-Ramond , a transverse scalar field, a world volume gauge field and a real tachyon in both world volume and transverse directions of brane in type IIA and IIB superstring theory. We provide the complete analysis of $$ S-matrix and show that both $u'$ and $t$ channel bulk singularity structures can also be examined by this S-matrix. Various remarks about the generalised Bianchi identities for the other pictures have also been made.

  10. On RR couplings and bulk singularity structures of non-BPS branes

    Science.gov (United States)

    Hatefi, Ehsan

    2016-09-01

    We compute the five point world sheet scattering amplitude of a symmetric closed string Ramond-Ramond, a transverse scalar field, a world volume gauge field and a real tachyon in both world volume and transverse directions of brane in type IIA and IIB superstring theory. We provide the complete analysis of S-matrix and show that both u‧ = u +1/4 and t channel bulk singularity structures can also be examined by this S-matrix. Various remarks about new restricted Bianchi identities on world volume for the other pictures have also been made.

  11. On RR couplings and bulk singularity structures of non-BPS branes

    Directory of Open Access Journals (Sweden)

    Ehsan Hatefi

    2016-09-01

    Full Text Available We compute the five point world sheet scattering amplitude of a symmetric closed string Ramond–Ramond, a transverse scalar field, a world volume gauge field and a real tachyon in both world volume and transverse directions of brane in type IIA and IIB superstring theory. We provide the complete analysis of S-matrix and show that both u′=u+14 and t channel bulk singularity structures can also be examined by this S-matrix. Various remarks about new restricted Bianchi identities on world volume for the other pictures have also been made.

  12. Facile synthesis of tin phosphite nanosheets via exfoliated bulk crystals: Electronic structure and piezoelectric property.

    Science.gov (United States)

    Song, Jun-Ling; Zhang, Xi-Rui; Lu, Rui-Feng

    2016-08-01

    Tin phosphite nanosheets were synthesized by a facile exfoliation method. SnHPO3 nanosheets with a thickness of ∼2.6nm readily form a stable colloidal suspension in ethanol using ultrasonic method. Structures and optical properties of the obtained nanosheets were investigated. The prepared SnHPO3 nanosheets exhibit an obvious blue-shift in UV absorbance compared with bulk SnHPO3 crystal materials. Moreover, the piezoelectric coefficients of SnHPO3 monolayer were calculated based on density functional theory, which are larger than that of h-BN monolayer, indicating this material could be a good candidate for designing electro-optical nano-devices.

  13. Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature.

    Science.gov (United States)

    Tan, J; Wang, G; Liu, Z Y; Bednarčík, J; Gao, Y L; Zhai, Q J; Mattern, N; Eckert, J

    2014-01-28

    A model Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) is selected to explore the structural evolution on the atomic scale with decreasing temperature down to cryogenic level using high energy X-ray synchrotron radiation. We discover a close correlation between the atomic structure evolution and the strength of the BMG and find out that the activation energy increment of the concordantly atomic shifting at lower temperature is the main factor influencing the strength. Our results might provide a fundamental understanding of the atomic-scale structure evolution and may bridge the gap between the atomic-scale physics and the macro-scale fracture strength for BMGs.

  14. Stripe structure CdTe-CdZnTe-CdTe in a bulk single crystal

    Science.gov (United States)

    Azoulay, M.; Sinvani, M.; Mizrachi, M.; Feldstein, H.

    1994-03-01

    In this paper we present a study that was aimed at performing a selective diffusion of Zn into CdTe. A single crystal CdTe wafer fabricated into a "tooth-like" structure which was further subjected to high temperature annealing in the presence of Zn vapour. The sample was then cut parallel to the diffusion direction and a Zn concentration analysis, using an electron microprobe, was performed. As expected, the stripe structure CdTe-CdZnTe-CdTe has been confirmed. The Zn decay profiles were fitted to a modified diffusion model, suggesting a bulk diffusion mechanism coupled with a surface reaction. Practical implementation of this stripe structure for an infrared light waveguide is being evaluated.

  15. Plastic deformation modelling of tempered martensite steel block structure by a nonlocal crystal plasticity model

    Directory of Open Access Journals (Sweden)

    Martin Boeff

    2014-01-01

    Full Text Available The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.

  16. Effect of high temperature deformation on the structure of Ni based superalloy

    Directory of Open Access Journals (Sweden)

    A. Nowotnik

    2008-04-01

    Full Text Available Purpose: A study on the hot deformation behaviour and dynamic structural processes (dynamic precipitation operating during deformation at elevated temperatures of nickel based superalloy was presented.Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloy of Inconel 718 at constant true strain rates of 10-4, 4x10-4s-1 within a temperature range of 720-1150°C. True stress-true strain curves and microstructure analysis of hot deformed alloy were described. Microstructure examination has been carried out on the compressed samples of Inconel 718 alloy using an optical microscope - Nikon 300 and in the scanning electron microscope HITACHI S-3400 (SEM in a conventional back-scattered electron mode on polished sections etched with Marble’s solution.Findings: Structural observations of deformed at high temperatures, previously solution treated Inconel alloy revealed non uniform deformation effects. Distribution of molybdenum-rich carbides was found to be affected by localized flow within the investigated strain range at relatively low deformation temperatures 720 - 850°C. Microstructural examination of the alloy also shown that shear banding, cavities growth and intergranular cracks penetrating through the whole grains were responsible for decrease in the flow stress at temperature of 720, 800 and 850°C and a specimen fracture at larger strains. On the basis of received flow stress values activation energy of a high-temperature deformation process was estimated. Mathematical dependences (σpl -T and σpl - and compression data were used to determine material’s constants. These constants allowed to derive a formula that describes the relationship between strain rate ( ε, deformation temperature (T and flow stress σpl.Research limitations/implications: Even though, the light optical microstructure observation of deformed samples revealed some effects of heterogeneous distribution of

  17. Viscous model of lithosphere rheology, stress distribution, integrated strength, and bulk failure: application to and implications from examples of intracratonic rifts and inversion structures

    Science.gov (United States)

    Stephenson, R. A.; Ershov, A.

    2001-12-01

    One way in which theoretical rheological models of the lithosphere can be constrained by geological data is through estimations of the lithosphere's integrated strength. When an applied force exceeds this, then the lithosphere should lose its integrity and undergo irreversible deformation (WLF - "whole lithosphere failure"). The geological expression of this kind of deformational regime is the development of rifts (in extension) and inverted structures (in compression). By considering intracratonic structures rather than marginal ones it is possible to exclude additional extraneous influences and infer the net effect of intraplate stresses. Here, actual intraplate structures are considered in terms of a rheological model in which the non-brittle part of the lithosphere deforms viscously (by creep) in response to applied forces. This is in contrast to conventional estimations of total lithosphere strength based on "yield stress envelopes" in which "ductile" deformation is taken to be time-invariant (plastic). Taking into account the implications of adopting a viscous rheology in place of a plastic one in evaluating the "strength" of the lithosphere, it is necessary to incorporate the time-dependence of stresses, strains and strain rates and also the dependence of the bulk strain rate on the total applied force. This means that the duration of loading of tectonic forces prior to eventual rifting or inversion is also an important model variable. The mechanism that controls strain rate and stress distribution in the lithosphere prior to WLF in the model is one of stress redistribution from ductile deformation zones into elastic ones, as determined by stress relaxation in the former and stress amplification in the latter given an assumed constant applied boundary force. A stable equilibrium regime of deformation occurs when, at each point within the lithosphere, the stress reduction effected by viscous relaxation equals the stress increase effected by the applied force

  18. Evolution of dislocation structure and modelling of deformation resistance in CaF2 single crystals

    OpenAIRE

    Sadrabadi, Peiman

    2007-01-01

    he evolution of dislocation structure during plastic deformation in pure 111}-oriented CaF2 single crystals was investigated at constant strain rate (10−5 s−1) and constant stress (1 < / MPa < 22) in the temperature range of 0.5 < T/Tm < 0.8. The steady state and transient deformation behavior of the material is described by the composite model on the basis of microstructural data. In the following sections the important conclusions are briefly summarized. Microstructure evolution...

  19. Influence of deformation on structural-phase state of weld material in St3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander, E-mail: galvas.kem@gmail.ru; Ababkov, Nicolay, E-mail: n.ababkov@rambler.ru; Ozhiganov, Yevgeniy, E-mail: zhigan84@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail: tezaurusn@gmail.com; Koneva, Nina, E-mail: koneva@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  20. Structural relaxation of acridine orange dimer in bulk water and inside a single live lung cell

    Science.gov (United States)

    Chowdhury, Rajdeep; Nandi, Somen; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2016-02-01

    Structural relaxation of the acridine orange (AO) dimer in bulk water and inside a single live lung cell is studied using time resolved confocal microscopy and molecular dynamics (MD) simulations. The emission maxima ( λem max ˜ 630 nm) of AO in a lung cancer cell (A549) and a non-cancer lung fibroblast cell (WI38) suggest that AO exists as a dimer inside the cell. Time-dependent red shift in emission maximum indicates dynamic relaxation of the AO dimer (in the excited state) with a time constant of 500-600 ps, both in bulk water and inside the cell. We have calculated the equilibrium relaxation dynamics of the AO dimer in the ground state using MD simulations and found a slow component of time scale ˜350 ps. The intra- and inter-molecular components of the total relaxation dynamics of the AO dimer reveal the presence of a slow component of the order of a few hundred picoseconds. Upon restricting intra-molecular dye dynamics by harmonic constraint between AO monomers, the slow component vanishes. Combining the experimental observations and MD simulation results, we ascribe the slow component of the dynamic relaxation of the AO dimer to the structural relaxation, namely, fluctuations in the distance between the two monomers and associated fluctuation in the number of water molecules.

  1. On the adsorption properties of magnetic fluids: Impact of bulk structure

    Science.gov (United States)

    Kubovcikova, Martina; Gapon, Igor V.; Zavisova, Vlasta; Koneracka, Martina; Petrenko, Viktor I.; Soltwedel, Olaf; Almasy, László; Avdeev, Mikhail V.; Kopcansky, Peter

    2017-04-01

    Adsorption of nanoparticles from magnetic fluids (MFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR) and related to the bulk structural organization of MFs concluded from small-angle neutron scattering (SANS). The initial aqueous MF with nanomagnetite (co-precipitation reaction) stabilized by sodium oleate and MF modified by a biocompatible polymer, poly(ethylene glycol) (PEG), were considered. Regarding the bulk structure it was confirmed in the SANS experiment that comparatively small and compact (size 30 nm) aggregates of nanoparticle in the initial sample transfer to large and developed (size>130 nm, fractal dimension 2.7) associates in the PEG modified MF. This reorganization in the aggregates correlates with the changes in the neutron reflectivity that showed that a single adsorption layer of individual nanoparticles on the oxidized silicon surface for the initial MF disappears after the PEG modification. It is concluded that all particles in the modified fluid are in the aggregates that are not adsorbed by silicon.

  2. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  3. Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph.

    Science.gov (United States)

    Du, Dawei; Qi, Honggang; Li, Wenbo; Wen, Longyin; Huang, Qingming; Lyu, Siwei

    2016-08-01

    Recent advances in online visual tracking focus on designing part-based model to handle the deformation and occlusion challenges. However, previous methods usually consider only the pairwise structural dependences of target parts in two consecutive frames rather than the higher order constraints in multiple frames, making them less effective in handling large deformation and occlusion challenges. This paper describes a new and efficient method for online deformable object tracking. Different from most existing methods, this paper exploits higher order structural dependences of different parts of the tracking target in multiple consecutive frames. We construct a structure-aware hyper-graph to capture such higher order dependences, and solve the tracking problem by searching dense subgraphs on it. Furthermore, we also describe a new evaluating data set for online deformable object tracking (the Deform-SOT data set), which includes 50 challenging sequences with full annotations that represent realistic tracking challenges, such as large deformations and severe occlusions. The experimental result of the proposed method shows considerable improvement in performance over the state-of-the-art tracking methods.

  4. Evolution of shear bands, free volume, and structure in room temperature rolled Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuanli; Shi, Bo; Ma, Zhikun; Li, Jiangong, E-mail: lijg@lzu.edu.cn

    2015-01-19

    The evolution of the shear band, free volume, and structure in room temperature rolled Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass was investigated. It was found that the average shear band density increases monotonously with increasing strain. For the room temperature rolled Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass with a strain of 99%, a high density of shear bands with an average spacing of 31 nm was observed. The absolute free volume content was determined based on the free volume model and found to increase monotonously with increasing strain. The free volume content in the room temperature rolled Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass with a strain of 99% is 34% higher than its as-cast counterpart. Neither phase separation nor crystallization occurs in all the deformed samples. The coordination number of the first coordination shell decreases and the degree of disorder of atomic arrangement increases with increasing strain.

  5. Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement

    CERN Document Server

    Soti, Atul Kumar; Sheridan, John

    2015-01-01

    Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

  6. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  7. Bulk electronic, elastic, structural, and dielectric properties of the Weyl semimetal TaAs

    Science.gov (United States)

    Buckeridge, J.; Jevdokimovs, D.; Catlow, C. R. A.; Sokol, A. A.

    2016-03-01

    We present results of electronic structure calculations of the bulk properties of the Weyl semimetal TaAs. The emergence of Weyl (massless) fermions in TaAs, due to its electronic band structure, is indicative of a new state of matter in the condensed phase that is of great interest for fundamental physics and possibly new applications. Many of the physical properties of the material, however, are unknown. We have calculated the structural parameters, dielectric function, elastic constants, phonon dispersion, electronic band structure, and Born effective charges using density functional theory within the generalized gradient approximation, including spin-orbit coupling where necessary. Our results provide essential information on the material; and our calculations agree well with the relatively small number of experimental data available. Moreover, we have determined the relative stability of the ground state body-centered tetragonal phase with respect to other common binary phases as a function of pressure at the athermal limit, predicting a transition to the CsCl cubic structure at 23.3 GPa. Finally, we have determined the band structure using an unbiased hybrid density functional that includes 25% exact exchange, in order to refine the previously determined positions in k space of the Weyl points.

  8. Critical Analysis on the Structural and Magnetic Properties of Bulk and Nanocrystalline Cu-Fe-O

    Directory of Open Access Journals (Sweden)

    D. Paul Joseph

    2010-01-01

    Full Text Available Nanocrystalline and bulk samples of “Fe”-doped CuO were prepared by coprecipitation and ceramic methods. Structural and compositional analyses were performed using X-ray diffraction, SEM, and EDAX. Traces of secondary phases such as CuFe2O4, Fe3O4, and α-Fe2O3 having peaks very close to that of the host CuO were identified from the Rietveld profile analysis and the SAED pattern of bulk and nanocrystalline Cu0.98Fe0.02O samples. Vibrating Sample Magnetometer (VSM measurements show hysteresis at 300 K for all the samples. The ferrimagnetic Neel transition temperature ( was found to be around 465°C irrespective of the content of “Fe”, which is close to the value of cubic CuFe2O4. High-pressure X-Ray diffraction studies were performed on 2% “Fe”-doped bulk CuO using synchrotron radiation. From the absence of any strong new peaks at high pressure, it is evident that the secondary phases if present could be less than the level of detection. Cu2O, which is diamagnetic by nature, was also doped with 1% of “Fe” and was found to show paramagnetic behavior in contrast to the “Fe” doped CuO. Hence the possibility of intrinsic magnetization of “Fe”-doped CuO apart from the secondary phases is discussed based on the magnetization and charge state of “Fe” and the host into which it is substituted.

  9. Influence of Plastic Deformation Process on the Structure and Properties of Alloy WE43

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2016-03-01

    Full Text Available The paper describes the results of structure and properties tests of flat bars made of alloy WE43 obtained in the process of extrusion with the use of KOBO method. An analysis of structure changes was conducted both in initial state and after plastic deformation.

  10. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    Science.gov (United States)

    Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe

    2013-06-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  11. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    CERN Document Server

    Sakellariadou, Mairi; Vitiello, Giuseppe

    2013-01-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  12. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  13. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Science.gov (United States)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  14. Simulation of the effects of voids on the deformation behavior of bulk amorphous alloys%含孔洞大块非晶合金变形行为的数值研究

    Institute of Scientific and Technical Information of China (English)

    徐剑晴; 王宇

    2011-01-01

    建立能够描述静水压力影响和塑性体积膨胀的率相关的大块非晶合金本构模型.通过编写ABAQUS材料用户子程序VUMAT,对含不同形态孔洞的Zr基大块非晶合金的变形行为进行有限元分析,并对其细观变化规律进行研究.%A rate-dependent constitutive model for the deformation behavior of amorphous alloys with the effects of hydrostatic-pressure sensitivity and plastically-dilatancy was developed. The constitutive model was implemented in a finite element analysis to study the effects of the voids on the deformation behavior of bulk amorphous alloys by writing a user subroutine in ABAQUS/VUMAT. The mesoscope evolvement law of the deformation was also studied.

  15. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bo; Qu, Zhenghui; Li, Ming [School of Resources and Earth Science, China University of Mining and Technology, Xuzhou 221116 (China); Key Laboratory of CBM Resource and Reservoir-generating Process, China Ministry of Education, Xuzhou 221116 (China); Wang, Geoff G.X. [School of Chemical Engineering, The University of Queensland, QLD 4072 (Australia)

    2010-06-01

    Tectonically deformed coal is defined as coal formed by superimposed reformations from tectonic stress. The Huaibei coalfield is typically composed of various tectonically deformed coals containing rich coalbed methane resources. However, the occurrence of coal seam in this area is complicated largely by the structural deformation, which has not yet been evaluated systematically for exploration and exploitation of coalbed methane. In this study, tectonism in Huaibei coalfield is discussed by combining systematic analyses on the occurrence of coal seams and the formation of coalbed methane reservoirs. The study shows that, with structural deformation in the study area, the coal seams in Huaibei coalfield are distributed in north-south tectonic blocks and east-west tectonic zones. North tectonic block of Huaibei coalfield is not favourable for exploitation of coalbed methane because of low gas content or disadvantageous structural conditions. Within the south tectonic block, the east Suzhou syncline contains high gas content but coal permeability is very low. This area is generally not suitable for exploitation of coalbed methane and is a dangerous mining area due to gas outburst because of the widely developed mylonitic coals. South Suzhou and Nanping synclines in the middle part of the south tectonic block are exposed to relatively weak structural deformations. These synclines contain coals with high gas content and moderate permeability, which are beneficial for exploration and exploitation of coalbed methane. Linhuan mining area in the south tectonic block is generally not suitable for exploitation of coalbed methane, mainly because of well developed normal faults and interlayer slip structure, and presence of mylonitic coal, resulting in low gas content and poor structural conditions for mining coalbed methane. In contrast, Guoyang mining area in the west part of the south tectonic block, where tectonically deformed coal was generally underdeveloped, is a

  16. Bulk modulus and high-pressure crystal structures of tetrakis(trimethylsilyl)methane C

    Science.gov (United States)

    Dinnebier; Carlson; van Smaalen S

    2000-04-01

    The pressure dependence of the crystal structure of cubic tetrakis(trimethylsilyl)methane C[Si(CH3)3]4 (TC) (P 10 GPa) a transformation is observed into a c.c.p. structure that is different from the face-centred-cubic structure at ambient conditions. A non-linear compression behaviour is observed, which could be described by a Vinet relation in the range 0.28-4.8 GPa. The extrapolated bulk modulus of the high-pressure phase III was determined to be K0 = 7.1 (8) GPa. The crystal structures in phase III are refined against X-ray powder data measured at several pressures between 0.49 and 4.8 GPa, and the molecules are found to be fully ordered. This is interpreted to result from steric interactions between neighbouring molecules, as shown by analysing the pressure dependence of intramolecular angles, torsion angles and intermolecular distances. Except for their cell dimensions, phases I, II and III are found to be isostructural to the corresponding phases at low temperatures.

  17. Numerical modeling of nonlinear deformation and buckling of composite plate-shell structures under pulsed loading

    Science.gov (United States)

    Abrosimov, N. A.

    1999-11-01

    Nonlinear three-dimensional problems of dynamic deformation, buckling, and posteritical behavior of composite shell structures under pulsed loads are analyzed. The structure is assumed to be made of rigidly joined plates and shells of revolution along the lines coinciding with the coordinate directions of the joined elements. Individual structural elements can be made of both composite and conventional isotropic materials. The kinematic model of deformation of the structural elements is based on Timoshenko-type hypotheses. This approach is oriented to the calculation of nonstationary deformation processes in composite structures under small deformations but large displacements and rotation angles, and is implemented in the context of a simplified version of the geometrically nonlinear theory of shells. The physical relations in the composite structural elements are based on the theory of effective moduli for individual layers or for the package as a whole, whereas in the metallic elements this is done in the framework of the theory of plastic flow. The equations of motion of a composite shell structure are derived based on the principle of virtual displacements with some additional conditions allowing for the joint operation of structural elements. To solve the initial boundary-value problem formulated, an efficient numerical method is developed based on the finite-difference discretization of variational equations of motion in space variables and an explicit second-order time-integration scheme. The permissible time-integration step is determined using Neumann's spectral criterion. The above method is especially efficient in calculating thin-walled shells, as well as in the case of local loads acting on the structural element, when the discretization grid has to be condensed in the zones of rapidly changing solutions in space variables. The results of analyzing the nonstationary deformation processes and critical loads are presented for composite and isotropic

  18. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  19. Direct observation of the band structure in bulk hexagonal boron nitride

    Science.gov (United States)

    Henck, Hugo; Pierucci, Debora; Fugallo, Giorgia; Avila, José; Cassabois, Guillaume; Dappe, Yannick J.; Silly, Mathieu G.; Chen, Chaoyu; Gil, Bernard; Gatti, Matteo; Sottile, Francesco; Sirotti, Fausto; Asensio, Maria C.; Ouerghi, Abdelkarim

    2017-02-01

    A promising route towards nanodevice applications relies on the association of graphene and transition metal dichalcogenides with hexagonal boron nitride (h -BN ). Due to its insulating nature, h -BN has emerged as a natural substrate and gate dielectric for graphene-based electronic devices. However, some fundamental properties of bulk h -BN remain obscure. For example, the band structure and the position of the Fermi level have not been experimentally resolved. Here, we report a direct observation of parabolic dispersions of h -BN crystals using high-resolution angle-resolved photoemission spectroscopy (ARPES). We find that h -BN exfoliation on epitaxial graphene enables overcoming the technical difficulties of using ARPES with insulating materials. We show trigonal warping of the intensity maps at constant energy. The valence-band maxima are located around the K points, 2.5 eV below the Fermi level, thus confirming the residual p -type character of typical h -BN .

  20. Variability of structural and electronic properties of bulk and monolayer Si2Te3

    Science.gov (United States)

    Shen, X.; Puzyrev, Y. S.; Combs, C.; Pantelides, S. T.

    2016-09-01

    Silicon telluride has diverse properties for potential applications in Si-based devices ranging from fully integrated thermoelectrics to optoelectronics to chemical sensors. This material has a unique layered structure: it has a hexagonal closed-packed Te sublattice, with Si dimers occupying octahedral intercalation sites. Here, we report a theoretical study of this material in both bulk and monolayer form, unveiling an array of diverse properties arising from reorientations of the silicon dimers between planes of Te atoms. The band gap varies up to 30% depending on dimer orientations. The variation of dimer orientations gives rise to thermal contraction, arising from more dimers aligning out of the plane as the material is heated. Strain also affects the dimer orientations and provides a degree of control of the materials properties, making Si2Te3 a promising candidate for nanoscale mechanical, optical, and memristive devices.

  1. Dynamical effects and terahertz harmonic generation in low-doped bulk semiconductors and submicron structures

    Energy Technology Data Exchange (ETDEWEB)

    Persano Adorno, D.; Capizzo, M.C.; Zarcone, M. [Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze, Ed. 18, 90128, Palermo (Italy)

    2006-08-15

    We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n{sup +}nn{sup +} structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating signal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Mechanical and structural aspects of high temperature deformation in Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Nowotnik

    2008-02-01

    Full Text Available Purpose: Experimental results on hot deformation and dynamic structural processes of nickel based alloy were reviewed. The attention was given to the analysis of dynamic structural processes which operate during hot deformation of the material.Design/methodology/approach: Hot compression tests were performed on solution treated precipitations hardenable nickel based superalloy of Inconel 718 within a temperature range of 720-1150°C at constant true strain rates of 10-4, 4x10-4s-1. The flow stress curves and microstructure of deformed nickel based superalloy were presented.Findings: During hot compression of solution treated material, highly localized flow was observed at relatively low deformation temperatures 720 - 850°C. The particle distribution and their morphology were not found to be affected by localized flow within the investigated strain range. At low strain rate the shear banding and intergranular cracks and cavities growth were found to be responsible for the observed flow stress decrease at 720, 800 and 850°C and might result in a sample fracture at larger strains.Research limitations/implications: In spite of intense strain hardening due to deformation and phase transformation overlapping, light optical microstructure observation of deformed samples did not reveal significant effects of heterogeneous distribution of the phase components. Therefore, in order to complete and confirm obtained results it is recommended to perform further analysis of the alloy by using transmission electron microscopy technique (TEM.Practical implications: An interaction between dynamic precipitation and flow localization may become an important feature of high temperature performance and may also allow producing specific structures of materials.Originality/value: The contribution of flow localization to the strain hardening or flow softening and the flow stress-strain behavior during hot deformation of precipitation hardenable alloys is still a

  3. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.

    Science.gov (United States)

    Zhong, C; Zhang, H; Cao, Q P; Wang, X D; Zhang, D X; Ramamurty, U; Jiang, J Z

    2016-08-02

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and "liquid-like" regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested.

  4. Structural deformation pattern within the NW Qaidam Basin in the Cenozoic era and its tectonic implications

    Science.gov (United States)

    Mao, Liguang; Xiao, Ancheng; Zhang, Hongwei; Wu, Zhankui; Wang, Liqun; Shen, Ya; Wu, Lei

    2016-09-01

    The Qaidam Basin is located in the northeastern Tibetan Plateau and provides an excellent field laboratory in understanding the history and mechanism of the plateau growth. It deformed widely over the northwest during the Cenozoic but with little thrust loading along the margins, where no foreland depression is observed. Based on satellite images, seismic and borehole data, we investigated the structural deformation pattern (including the structural style and timing of deformation) and its formation mechanism within the northwestern Qaidam Basin during the Cenozoic era. Mapping of surface geology shows that the modern Qaidam Basin is characterized by five SE-trending anticlinal belts. Each belt consists of several right-step en echelon anticlines with plenty of normal and strike-slip faults crossing the crests. Those anticlines are generally dominated by double fault systems at different depths: an upper thrust fault system, controlling the anticlines identified on the surface and a lower dextral transpressional fault system characterized by typical flower structures. They are separated by weak layers in the upper Xiaganchaigou or the Shangganchaigou formations. The upper system yields shortening strain 2-5 times larger than that of the lower system and the additional strain is interpreted to be accommodated by hinge-parallel elongation in the upper system. Growth strata indicate that deformation within the Qaidam Basin initiated in the middle Miocene ( 15 Ma) and accelerated in the late Miocene ( 8 Ma). A simple Riedel-P-Shear model is used to explain the deformation mechanism within the northwestern Qaidam Basin.

  5. Measurement of deforming mode of lattice truss structures under impact loading

    Directory of Open Access Journals (Sweden)

    Zhao H.

    2012-08-01

    Full Text Available Lattice truss structures, which are used as a core material in sandwich panels, were widely investigated experimentally and theoretically. However, explanation of the deforming mechanism using reliable experimental results is almost rarely reported, particularly for the dynamic deforming mechanism. The present work aimed at the measurement of the deforming mode of lattice truss structures. Indeed, quasi-static and Split Hopkinson Pressure Bar (SHPB tests have been performed on the tetrahedral truss cores structures made of Aluminum 3003-O. Global values such as crushing forces and displacements between the loading platens are obtained. However, in order to understand the deforming mechanism and to explain the observed impact strength enhancement observed in the experiments, images of the truss core element during the tests are recorded. A method based on the edge detection algorithm is developed and applied to these images. The deforming profiles of one beam are extracted and it allows for calculating the length of beam. It is found that these lengths diminish to a critical value (due to compression and remain constant afterwards (because of significant bending. The comparison between quasi-static and impact tests shows that the beam were much more compressed under impact loading, which could be understood as the lateral inertia effect in dynamic bucking. Therefore, the impact strength enhancement of tetrahedral truss core sandwich panel can be explained by the delayed buckling of beam under impact (more compression reached, together with the strain hardening of base material.

  6. Deformation-induced structural transition in body-centred cubic molybdenum.

    Science.gov (United States)

    Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X

    2014-03-07

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original -oriented body-centred cubic structure to a -oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into -oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.

  7. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    Science.gov (United States)

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers.

  8. Coseismic deformation due to the 2011 Tohoku-oki earthquake: influence of 3-D elastic structure around Japan

    Science.gov (United States)

    Hashima, Akinori; Becker, Thorsten W.; Freed, Andrew M.; Sato, Hiroshi; Okaya, David A.

    2016-09-01

    We investigated the effects of elastic heterogeneity on coseismic deformation associated with the 2011 Tohoku-oki earthquake, Japan, using a 3-D finite element model, incorporating the geometry of regional plate boundaries. Using a forward approach, we computed displacement fields for different elastic models with a given slip distribution. Three main structural models are considered to separate the effects of different kinds of heterogeneity: a homogeneous model, a two-layered model with crust-mantle stratification, and a crust-mantle layered model with a strong subducting slab. We observed two counteracting effects: (1) On large spatial scales, elastic layering with increasing rigidity with depth leads to a decrease in surface displacement. (2) An increase in rigidity from above the slab interface to below causes an increase in surface displacement, because the weaker hanging wall deforms to accommodate coseismic slip. Results for slip inversions associated with the Tohoku-oki earthquake show that slip patterns are modified when comparing homogeneous and heterogeneous models. However, the maximum slip only changes slightly: It increases from 38.5 m in the homogeneous to 39.6 m in the layered case and decreases to 37.3 m when slabs are introduced. Potency, i.e., the product of slip and fault area, changes accordingly. Layering leads to inferred slip distributions that are broader and deeper compared to the homogeneous case, particularly to the south of the overall slip maximum. The introduction of a strong slab leads to a reduction in slip around the slip maximum near the trench. We also find that details of the vertical deformation patterns for heterogeneous models are sensitive to the Poisson's ratio. While elastic heterogeneity does therefore not have a dramatic effect on bulk quantities such as inferred potency, the mechanical response of a layered medium with a slab does lead to a systematically modified slip response, and such effects may bias studies of

  9. High Tc as a consequence of structure deformation

    Energy Technology Data Exchange (ETDEWEB)

    Djajic, R.P. (Faculty of Technical Sciences, Univ. of Novi Sad (Yugoslavia)); Tosic, B.S.; Setrajcic, J.P. (Inst. of Physics, Univ. of Novi Sad (Yugoslavia)); Mirjanic, D.L. (Faculty of Tech., Univ. of Banja Luka (Yugoslavia))

    1991-12-01

    Based on the experimental fact that doped perovskite structures behave as a system of energetically independent thin layers we developed a theoretical model for a single layer behaviour. It was shown that electron and phonon spectra are functions of azimuthal angle which in turn gives the specific relations for Tc which on the other hand differs significantly from the corresponding value in the BCS theory. The crucial fact, which allows the solution of this equation with high Tc, is the electron-electron interaction constant which in a thin doped layer is for an order or two orders of magnitude greater than the same interaction constant in the ideal infinite structure. (orig.).

  10. Altering strength and plastic deformation behavior via alloying and laminated structure in nanocrystalline metals

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-07-29

    Nanoindentation and electron microscope techniques have been performed on sputtering deposited monolayered nanocrystalline CuNb and multilayered CuNb/Cu thin films. Microstructural features, hardness and surface morphologies of residual indentation have been evaluated to identify the effects of alloying and laminated structure on strength and plastic deformation behavior of nanocrystalline metals. By altering the content of Nb in CuNb alloy and adding crystalline Cu layers into CuNb alloy, the volume fraction of amorphous phase in CuNb alloy and interface structures changed dramatically, resulting in various trends that are related to hardness, indentation induced pileup and shear banding deformation. Based on the experimental results, the dominant deformation mechanisms of the CuNb and CuNb/Cu thin films with various Nb contents were proposed and extended to be discussed.

  11. A POF-based distributed strain sensor for detecting deformation of wooden structures

    Science.gov (United States)

    Fukumoto, Takuji; Nakamura, Kentaro; Ueha, Sadayuki

    2008-04-01

    This report presents a feasibility test of the distributed strain sensor based on plastic optical fiber (POF) for detecting deformation of wooden structures. First, a simple method to fix POF cable onto wooden structures is developed, where the dimensions of the fixing plate are determined so as to minimize the OTDR responses due to the fixing tool as well as the slip between the POF cable and the structure. Second, the authors focus on a new function "memory effect" of the POF-based strain sensor. The strain once applied to the POF cable is memorized through the plastic deformation of the core material, and can be read out using OTDR even after the event. The characteristics of the memory effect and its life are discussed experimentally for tensile strain. Third, in this report, we showed that a 5-point measurement with the spatial resolution of around 5 m was possible for the axial elongation imposed on the POF. Then, we apply the present method for detection of deformations of wooden frame structures. We try to detect the direction and magnitude of deformations at four corners of a rectangular wooden frame using a POF cable and OTDR. The availability of the memory effect in multipoint measurements on wooden structures is also discussed.

  12. The effect of structural coefficient on stiffness and deformation of hydrostatic guideway

    Science.gov (United States)

    Lai, Zhifeng; Qiao, Zheng; Zhang, Peng; Wang, Bo; Wu, Yangong

    2016-10-01

    Hydrostatic guideway has been widely used for ultra-precision machine tools due to its high stiffness and motion accuracy. In order to optimize the stiffness and motion accuracy of hydrostatic guideway, the effect of different diameters orifice restrictors on the stiffness and deformation of hydrostatic guideway is investigated in detail in this paper. The theoretically optimal structural coefficient is verified through the experiments. Hydrostatic guideway can obtain the maximum stiffness when the value of optimal structural coefficient is 0.707. And changing the diameter of orifice restrictors is an effective method to adjusting the structural coefficient. Due to the error caused by manufacture and assembly of hydrostatic guideway, the optimal structural coefficient is hard to be obtained accurately. Based on this condition, a larger structural coefficient is adopted to reduce the oil pressure in the pocket of hydrostatic guideway effectively, so that the deformation of guideway can be reduced. And finally, the stiffness loss caused by the deformation decreased. In addition, the experimental results show that the maximum deformation of hydrostatic guideway can be reduced from 2.06μm to 1.82μm and the stiffness arise from 1453N/μm to 1855N/μm when orifice restrictors with 0.15mm diameter are used rather than 0.2mm diameter.

  13. Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition

    DEFF Research Database (Denmark)

    Mattern, N.; Hermann, H.; Roth, S.;

    2003-01-01

    The thermal behavior of the structure of Pd40Cu30Ni10P20 bulk metallic glass has been investigated in situ through the glass transition by means of high-temperature x-ray synchrotron diffraction. The dependence of the x-ray structure factor S(q) of the Pd40Cu30Ni10P20 glass on temperature follows...

  14. Review on compressive deformation of bulk metallic glasses%块体非晶合金压缩变形研究进展

    Institute of Scientific and Technical Information of China (English)

    李明; 刘新才; 潘晶; 鲁贻虎

    2014-01-01

    In this paper,the compressive deformation behavior,samples surfaces and fracture microstructure characteristics have been reviewed at different temperatures and strain rates for bulk metallic glasses (BMGs). BMGs behave like inhomogeneous brittle fracture,non-Newtonian fluid and Newtonian fluid mode respectively at reduced compressing temperature tr=T/Tg ranging of 77 K/Tg≤trdeformation and heat.With tr increas-ing,fracture microstructure characteristics changed from complex and inhomogeneous vein-like pattern to hom-ogeneous one,then to droplets,or lava-flow pattern.In addition,Ni60 Pd20 P17 B3 BMG and Ti40 Zr25 Ni3 Cu12 Be20 BMG behaved like non-Newtonian fluid mode during compressing at tr=0.127-0.503.Finally,this paper also discussed the phenomenon of nanocrystallization during the compression deformation.%在约化压缩变形温度tr=T/Tg 为77 K/T g≤t r

  15. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah

    Science.gov (United States)

    Davatzes, N.C.; Eichhubl, P.; Aydin, A.

    2005-01-01

    Faults in sandstone are frequently composed of two classes of structures: (1) deformation bands and (2) joints and sheared joints. Whereas the former structures are associated with cataclastic deformation, the latter ones represent brittle fracturing, fragmentation, and brecciation. We investigated the distribution of these structures, their formation, and the underlying mechanical controls for their occurrence along the Moab normal fault in southeastern Utah through the use of structural mapping and numerical elastic boundary element modeling. We found that deformation bands occur everywhere along the fault, but with increased density in contractional relays. Joints and sheared joints only occur at intersections and extensional relays. In all locations , joints consistently overprint deformation bands. Localization of joints and sheared joints in extensional relays suggests that their distribution is controlled by local variations in stress state that are due to mechanical interaction between the fault segments. This interpretation is consistent with elastic boundary element models that predict a local reduction in mean stress and least compressive principal stress at intersections and extensional relays. The transition from deformation band to joint formation along these sections of the fault system likely resulted from the combined effects of changes in remote tectonic loading, burial depth, fluid pressure, and rock properties. In the case of the Moab fault, we conclude that the structural heterogeneity in the fault zone is systematically related to the geometric evolution of the fault, the local state of stress associated with fault slip , and the remote loading history. Because the type and distribution of structures affect fault permeability and strength, our results predict systematic variations in these parameters with fault evolution. ?? 2004 Geological Society of America.

  16. Modelling and Simulation of Structural Deformation of Isothermal Subsurface Flow and Carbon Dioxide Injection

    KAUST Repository

    El-Amin, Mohamed

    2011-05-15

    Injection of CO2 in hydrocarbon reservoir has double benefit. On the one hand, it is a profitable method due to issues related to global warming, and on the other hand it is an effective mechanism to enhance hydrocarbon recovery. Such injection associates complex processes involving, e.g., solute transport of dissolved materials, in addition to local changes in density of the phases. Also, increasing carbon dioxide injection may cause a structural deformation of the medium, so it is important to include such effect into the model. The structural deformation modelling in carbon sequestration is important to evaluate the medium stability to avoid CO2 leakage to the atmosphere. On the other hand, geologic formation of the medium is usually heterogeneous and consists of several layers of different permeability. In this work we conduct numerical simulation of two-phase flow in a heterogeneous porous medium domain with dissolved solute transport as well as structural deformation effects. The solute transport of the dissolved component is described by concentration equation. The structural deformation for geomechanics is derived from a general local differential balance equation with neglecting the local mass balance of solid phase and the inertial force term. The flux continuity condition is used at interfaces between different permeability layers of the heterogeneous medium. We analyze the vertical migration of a CO2 plume injected into a 2D layered reservoir. Analysis of distribution of flow field components such as saturation, pressures, velocities, and CO2 concentration are presented.

  17. Deformation quantization of a Kaehler-Poisson structure vanishing on a Levi nondegenerate hypersurface

    OpenAIRE

    Karabegov, Alexander V.

    2006-01-01

    We give an elementary proof of the result by Leichtnam, Tang, and Weinstein that there exists a deformation quantization with separation of variables on a complex manifold endowed with a Kaehler-Poisson structure vanishing on a Levi nondegenerate hypersurface and nondegenerate on its complement.

  18. Shear-deforming textile reinforced concrete for the construction of double-curved structures

    NARCIS (Netherlands)

    Woodington, W.; Bergsma, O.K.; Schipper, H.R.

    2015-01-01

    A composite textile reinforced concrete (TRC) material is developed to overcome the difficulties of constructing double-curved freeform structures. This is possible by shear-deformation of the woven reinforcement. It affects the direction of reinforcement and thickness, resulting in variable orthotr

  19. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility of the nan...

  20. DIRECT SPECTRUM ANALYSIS OF ANELASTIC DEFORMATION RESPONSE DURING STRUCTURAL RELAXATION OF AMORPHOUS METALS

    NARCIS (Netherlands)

    CSACH, K; Ocelik, Vaclav; MISKUF, J; BENGUS, VZ; DUHAJ, P

    1994-01-01

    Direct relaxation time spectrum analysis method has been successfully used to observe and. to study changes in the kinetics of isothermal anelastic deformation response of soft magnetic metallic glass Fe40Ni40B20 during structural relaxation. Computed relaxation time spectra contain three or four qu

  1. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  2. Structural and electronic properties of bulk and low-index surfaces of zincblende PtC

    Science.gov (United States)

    Gokhan Sensoy, Mehmet; Toffoli, Daniele; Ustunel, Hande

    2017-03-01

    Transition metal carbides have been extensively used in diverse applications over the past decade. Their versatility is in part thanks to their unique bonding, which displays a mixture of ionic, metallic and covalent character. While the bulk structure of zincblende (ZB) PtC has been investigated several times, a detailed understanding of the electronic and structural properties of its low-index surfaces is lacking. In this work, we present an ab initio investigation of the properties of five crystallographic ZB PtC surfaces (Pt/C-terminated PtC(1 0 0), PtC(1 1 0) and Pt/C-terminated PtC(1 1 1)). Upon geometry optimization, both polar and nonpolar surfaces undergo a mild interlayer relaxation, without extensive reconstructions. Calculated vacancy formation energies indicate facile C removal on the (1 1 1) surface while Pt-vacancy formation is endothermic. Finally, atomic O adsorption energies on all surfaces reveal a high affinity of the C-terminated surfaces towards this species.

  3. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Brandbyge, Mads; Jacobsen, Karsten Wedel

    1998-01-01

    We have simulated the mechanical deformation of atomic-scale metallic contacts under tensile strain using molecular dynamics and effective medium theory potentials. The evolution of the structure of the contacts and the underlying deformation mechanisms are described along with the calculated...... electronic conductance. Various defects such as intersecting stacking faults, local disorder, and vacancies are created during the deformation. Disordered regions act as weak spots that reduce the strength of the contacts. The disorder tends to anneal out again during the subsequent atomic rearrangements......, but vacancies can be permanently present. The transition states and energies for slip mechanisms have been determined using the nudged elastic band method, and we find a size-dependent crossover from a dislocation-mediated slip to a homogeneous slip when the contact diameter becomes less than a few nm. We show...

  4. Local equivalent welding element to predict the welding deformations of plate-type structures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the Heat Affected Zone (HAZ) of welding joint, the residual strain be-haviors of material under constraint and temperature circulation, as well as the activating mechanism of welding process, this paper addresses a new type welding element for numerical simulation of welding deformation, which is called the LEWE (the local equivalent welding element). This element can describe the basic char-acteristics of welded seam: the local position points of inherent strain, the equiva-lent size, the bending radius (or bending angle) from inherent strain, etc. It could be used to predict the welding deformation of plate-type structure. The comparisons between the computed deflection of welded plate and its experiment measurement are present. The results showed that the LEWE possesses a potential to simulate the deformation of welding process high-efficiently and precisely.

  5. Ab-initio investigation of structural, electronic and optical properties BSb compound in bulk and surface (110 states

    Directory of Open Access Journals (Sweden)

    H A Badehian

    2015-07-01

    Full Text Available In recent work the structural, electronic and optical properties of BSb compound in bulk and surface (110 states have been studied. Calculations have been performed using Full-Potential Augmented Plane Wave (FP-LAPW method by WIEN2k code in Density Functional Theory (DFT framework. The structural properties of the bulk such as lattice constant, bulk module and elastic constants have been investigated using four different approximations. The band gap energy of the bulk and the (110 surface of BSb were obtained about 1.082 and 0.38 eV respectively. Moreover the surface energy, the work function, the surface relaxation, surface state and the band structure of BSb (110 were investigated using symmetric and stoichiometric 15 layers slabs with the vacuum of 20 Bohr. In addition, the real and imaginary parts of the dielectric function of the bulk and the BSb (110 slab were calculated and compared to each other. Our obtained results have a good agreement with the available results.

  6. First-principle study on bulk and (1 1 1) surface of MP (M = K and Rb) in rocksalt structure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qiang; Li, Lei; Xie, Huan-Huan; Lei, Gang; Deng, Jian-Bo; Hu, Xian-Ru, E-mail: huxianru@lzu.edu.cn

    2015-08-01

    The electronic and magnetic properties of bulk and (1 1 1) surfaces for MP (M = K and Rb) in rocksalt structure have been investigated by employing first-principle calculations. The results reveal that the compounds are half-metallic ferromagnets at the equilibrium lattice constants with large half-metallic band gaps of 0.46 and 0.74 eV. The (1 1 1) surfaces of KP and RbP keep their bulk half-metallic property. We study the stabilities of the bulk compounds and their (1 1 1) surfaces as well. The results show that those bulk compounds are more stable in the rocksalt structure than in the tetragonal structure. In addition, the K- and Rb-terminated surfaces are more stable than their P-terminated surfaces. - Highlights: • The half metallic properties of rocksalt-type KP and RbP are studied. • The Slater-Pauling behaviours, energy levels and fat-bands of them are discussed. • The properties to KP's and RBP's (1 1 1) surfaces have been investigated. • The stabilities of bulk compounds and surfaces are studied.

  7. Inherited structures impact on co-seismic surface deformation pattern during the 2013 Balochistan, Pakistan, earthquake

    Science.gov (United States)

    Vallage, Amaury; Klinger, Yann; Grandin, Raphael; Delorme, Arthur; Pierrot-Deseilligny, Marc

    2016-04-01

    The understanding of earthquake processes and the interaction of earthquake rupture with Earth's free surface relies on the resolution of the observations. Recent and detailed post-earthquake measurements bring new insights on shallow mechanical behavior of rupture processes as it becomes possible to measure and locate surficial deformation distribution. The 2013 Mw 7.7 Balochistan earthquake, Pakistan, offers a nice opportunity to comprehend where and why surficial deformation might differs from at-depth localized slip. This earthquake ruptured the Hoshab fault over 200 km; the motion was mainly left lateral with a small and discontinuous vertical component in the southern part of the rupture. Using images with the finest resolution currently available, we measured the surface displacement amplitude and its orientation at the ground surface (including the numerous tensile cracks). We combined these measurements with the 1:500 scale ground rupture map to focus on the behavior of the frontal rupture in the area where deformation distributes. Comparison with orientations of inherited tectonic structures, visible in older rocks formation surrounding the actual 2013 rupture, shows the control exercised by such structures on co-seismic rupture distribution. Such observation raises the question on how pre-existing tectonic structures in a medium, mapped in several seismically active places around the globe; can control the co-seismic distribution of the deformation during earthquakes.

  8. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.

  9. Structural Deformation of CO2+2 in Intense Femtosecond Laser Fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sheng; XIA Yuan-Qin; WANG Yu-Quan; LU Zhen-Zhong; CHEN De-Ying

    2009-01-01

    The angular distributions of CO+ from the dissociation of CO2+2 and CO+2 in intense femtosecond laser fields (45 fs,about 5×1015 W/cm2) are studied at a laser wavelength of 800 nm based on the time-of-flight mass spectra of CO+ fragment ions.The experimental results show that structural deformation occurs in the charge state of CO2+2 and the CO+2 maintains linear geometrical structure.

  10. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    2015-08-01

    Full Text Available Large-scale molecular dynamics (MD simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG structure of bcc Fe (gradient grains with d from 25 nm to 105 nm, and comparisons were made with the uniform nano-grained (NG structure of bcc Fe (grains with d = 25 nm. The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size. In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with d = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with d = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with d = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals.

  11. Structural Characterization of Carbon Nanomaterial Film In Situ Synthesized on Various Bulk Metals

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanofiber films were prepared via a simple chemical vapor deposition (CVD method on various bulk metal substrates including bulk 316 L stainless steel, pure cobalt, and pure nickel treated by surface mechanical attrition treatment (SMAT. The microstructures of the carbon nanomaterial film were studied by SEM, TEM, XRD, and Raman spectroscopy. In this paper, bulk metallic materials treated by SMAT served as substrates as well as catalysts for carbon nanomaterial film formation. The results indicate that the carbon nanofiber films are formed concerning the catalytic effects of the refined metallic particles during CVD on the surface of SMAT-treated bulk metal substrates. However, distinguished morphologies of carbon nanomaterial film are displayed in the case of the diverse bulk metal substrates.

  12. On bulk singularity structures and all order α′ contact terms of BPS string amplitudes

    Directory of Open Access Journals (Sweden)

    Ehsan Hatefi

    2016-10-01

    Full Text Available The entire form of the amplitude of three SYM (involving two transverse scalar fields, a gauge field and a potential Cn−1 Ramond–Ramond (RR form field is found out. We first derive and then start constructing an infinite number of t,s channel bulk singularity structures by means of all order α′ corrections to pull-back of brane in an Effective Field Theory (EFT. Due to presence of the complete form of S-matrix, several new contact interactions as well as new couplings are explored. It is also shown that these couplings can be verified at the level of EFT by either the combinations of Myers terms, pull-back, Taylor expanded of scalar fields or the mixed combination of the couplings of this paper as well as employed Bianchi identities. For the first time, we also derive the algebraic and the complete form of the integrations for some arbitrary combinations of Mandelstam variables and for the most general case ∫d2z|1−z|a|z|b(z−z¯c(z+z¯3 on upper half plane as well.

  13. A bulk metal/ceramic composite material with a cellular structure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhankui; YAO Kefu; LI Jingfeng

    2006-01-01

    A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.

  14. On bulk singularity structures and all order α‧ contact terms of BPS string amplitudes

    Science.gov (United States)

    Hatefi, Ehsan

    2016-10-01

    The entire form of the amplitude of three SYM (involving two transverse scalar fields, a gauge field) and a potential Cn-1 Ramond-Ramond (RR) form field is found out. We first derive and then start constructing an infinite number of t , s channel bulk singularity structures by means of all order α‧ corrections to pull-back of brane in an Effective Field Theory (EFT). Due to presence of the complete form of S-matrix, several new contact interactions as well as new couplings are explored. It is also shown that these couplings can be verified at the level of EFT by either the combinations of Myers terms, pull-back, Taylor expanded of scalar fields or the mixed combination of the couplings of this paper as well as employed Bianchi identities. For the first time, we also derive the algebraic and the complete form of the integrations for some arbitrary combinations of Mandelstam variables and for the most general case ∫d2 z | 1 - z|a | z|b(z - z bar) c(z + z bar) 3 on upper half plane as well.

  15. Domain structure of hard magnetic NdAIFeCo bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnetic domain structure of hard magnetic Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic force microscopy. In the magnetic force images it is shown that the exchange interaction type mag netic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. As the scale of the magnetic domain is much larger than the size of the short-range ordered atomic clusters existing in the BMG, it is believed that the large areas of magnetic contrast are actu ally a collection of a group of clusters aligned in parallel by strong exchange coupling interaction. After fully crystalliza tion, the BMG exhibits paramagnetism. No obvious magnetic contrast is observed in the magnetic force images of fully crystallized samples, except for a small quantity of ferro magnetic crystalline phase with low coercivity and an average size of 900 nm.

  16. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    Science.gov (United States)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  17. A nonlinear deformed su(2) algebra with a two-colour quasitriangular Hopf structure

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Ludu, A; Quesne, C

    1996-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J_0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as ${\\cal A}^+_q(1)$. This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0, 1, 2, .... To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su_q(2) and ${\\cal A}^+_q(1)$, is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su_q(2) is car...

  18. Motion and deformation estimation from medical imagery by modeling sub-structure interaction and constraints

    KAUST Repository

    Sundaramoorthi, Ganesh

    2012-09-13

    This paper presents a novel medical image registration algorithm that explicitly models the physical constraints imposed by objects or sub-structures of objects that have differing material composition and border each other, which is the case in most medical registration applications. Typical medical image registration algorithms ignore these constraints and therefore are not physically viable, and to incorporate these constraints would require prior segmentation of the image into regions of differing material composition, which is a difficult problem in itself. We present a mathematical model and algorithm for incorporating these physical constraints into registration / motion and deformation estimation that does not require a segmentation of different material regions. Our algorithm is a joint estimation of different material regions and the motion/deformation within these regions. Therefore, the segmentation of different material regions is automatically provided in addition to the image registration satisfying the physical constraints. The algorithm identifies differing material regions (sub-structures or objects) as regions where the deformation has different characteristics. We demonstrate the effectiveness of our method on the analysis of cardiac MRI which includes the detection of the left ventricle boundary and its deformation. The experimental results indicate the potential of the algorithm as an assistant tool for the quantitative analysis of cardiac functions in the diagnosis of heart disease.

  19. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Neprochnov, Y.P.

    Analyses of bathymetry, gravity and seismic reflection data of the diffusive plate boundary in the central Indian Ocean reveal a new kind of deformed structure besides the well-reported structures of long-wavelength anticlinal basement rises...

  20. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    Science.gov (United States)

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  1. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    Directory of Open Access Journals (Sweden)

    Wei Liang

    2014-01-01

    Full Text Available Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  2. Main Structural Styles and Deformation Mechanisms in the Northern Sichuan Basin, Southern China

    Institute of Scientific and Technical Information of China (English)

    TANG Liangjie; GUO Tonglou; JIN Wenzheng; YU Yixin; LI Rufeng

    2008-01-01

    The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon.

  3. Internal structure of the nanogratings generated inside bulk fused silica by ultrafast laser direct writing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. P.; Vilar, R. [ICEMS—Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Oliveira, V. [ICEMS—Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Herrero, P. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, Madrid 28049 (Spain)

    2014-08-07

    The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 μm within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 μJ, τ = 560 fs, f = 10 kHz, and v = 100 μm/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 μm and a minor diameter of about 6 μm. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 ± 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 ± 20 × 16 ± 8 × 69 ± 16 nm{sup 3} and 367 ± 239 × 16 ± 8 × 360 ± 194 nm{sup 3}, respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density.

  4. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    Science.gov (United States)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation

  5. Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.

    2013-01-01

    Propagation of large-wavevector bulk plasmonic waves in multilayer hyperbolic metamaterials (HMMs) with two levels of structuring is theoretically studied. It is shown that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a large...

  6. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  7. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kramer, Illan J.

    2012-03-30

    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Shear Stress in MR Fluid with Small Shear Deformation in Bctlattic Structure

    Institute of Scientific and Technical Information of China (English)

    LIU Lisheng; RUAN Zhongwei; ZHAI Pengcheng; ZHANG Qingjie

    2008-01-01

    A theoretical model based on BCT lattice structure was developed.Resultant force in the BCT lattice structure was deduced,following the interaction force of two kinds of magnetic particles.According to empirical FroHlich-Kennelly law,the relationship between the magnetic induction and the magnetic field was discussed,and a predictive formula of shear stresses of the BCT lattice structure model was established for the case of small shear deformation.Compared with the experimental data for different particle volume fractions,the theoretical results of the shear stress indicate the effects of the saturation magnetization and the external magnetic field on the shear stress.

  9. Systematics of fine structure in the α decay of deformed odd-mass nuclei

    Science.gov (United States)

    Ren, Zhongzhou; Ni, Dongdong

    2014-12-01

    We present a detailed analysis of the a-decay fine structure in 32 deformed odd-mass nuclei from Z = 93 to Z = 102. The α-decay half-lives are systematically calculated within the multichannel cluster model (MCCM), which turns out to well reproduce the experimental data and show the neutron deformed shell structure. The branching ratios for various daughter states are investigated in the MCCM and in the WKB barrier penetration approach, respectively. It is found that the MCCM results agree well with the experimental data, while the WKB results have relatively large deviations from the experimental data for the α transitions to the high-lying members of the rotational band.

  10. Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhengyang; Jamali, Mahdi; Smith, Angeline K.; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, 4-174 200 Union Street SE, Minneapolis, Minnesota 55455 (United States)

    2015-03-30

    Spin-orbit torques are studied in Ta/TbFeCo/MgO patterned structures, where the ferrimagnetic material TbFeCo provides a strong bulk perpendicular magnetic anisotropy (bulk-PMA) independent of the interfaces. The current-induced magnetization switching in TbFeCo is investigated in the presence of a perpendicular, longitudinal, or transverse field. An unexpected partial-switching phenomenon is observed in the presence of a transverse field unique to our bulk-PMA material. It is found that the anti-damping torque related with spin Hall effect is very strong, and a spin Hall angle is determined to be 0.12. The field-like torque related with Rashba effect is unobservable, suggesting that the interface play a significant role in Rashba-like torque.

  11. Deformation structures in the frontal prism near the Japan Trench: Insights from sandbox models

    Science.gov (United States)

    Saha, Puspendu; Bose, Santanu

    2016-04-01

    Subduction of bathymetric features in the oceanic plate, e.g., seamounts, aseismic ridges, volcanic plateaus has a strong influence on the development of morphological features and deformation structures in the overriding plate. For example, the subduction of seamounts correlates to a steeper surface slope in the inner wedge than that in the outer wedge. Conversely, the subduction of aseismic ridges causes the development of a steep outer wedge slope and with almost flat inner wedge. Despite the dominance of horst-and-graben structure at many trenches, its influence on frontal wedge growth remains relatively unexplored. We have used sandbox experiments to explore the mechanics of the frontal prism structures near the Japan Trench documented by seismic reflection data and new borehole from IODP Expedition 343 (JFAST). This study investigated the effects of down-dip (normal to trench axis) variations in frictional resistance along a decollement on the structural development of the frontal wedges near subduction zones. Interpretation of seismic reflection images indicates that the wedge has been affected by trench-parallel horst-and-graben structures in the subducting plate. We performed sandbox experiments with down-dip patches of relatively high and low friction on the basal decollement to simulate the effect of variable coupling over subducting oceanic plate topography. Our experiments suggest that high frictional resistance on the basal fault can produce the internal deformation and fault-and-fold structures observed in the frontal wedge by the JFAST expedition. Subduction of patches of varying friction cause a temporal change in the style of internal deformation within the wedge and gave rise to two distinctive structural domains, separated by a break in the surface slope of the wedge: (i) complexly deformed inner wedge with steep surface slope, and (ii) shallow taper outer wedge with a sequence of imbricate thrusts. Our experiments further demonstrate that the

  12. Influence of Bulk Elasticity and Interfacial Tension on the Deformation of Gelled Water-in-Oil Emulsion Droplets: An AFM Study

    NARCIS (Netherlands)

    Filip, D.; Uricanu, V.I.; Duits, M.H.G.; Agterof, W.G.M.; Mellema, J.

    2005-01-01

    We used atomic force microscopy (AFM) to study the deformation and wetting behavior of large (50-250 m) emulsion droplets upon mechanical loading with a colloidal glass probe. Our droplets were obtained from water-in-oil emulsions. By adding gelatin to the water prior to emulsification, also droplet

  13. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)

    2014-07-01

    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  14. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo;

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found at ...

  15. Analysis of Structure and Deformation Mechanisms of Mineral Wool Slabs under Compression

    Directory of Open Access Journals (Sweden)

    Laimutis STEPONAITIS

    2012-06-01

    Full Text Available The products of mineral wool are widely used for thermal insulation of buildings, both at construction of new buildings and at renovation of old ones. The mechanical resistance and stability of them, as well as their energy saving and heat saving requirements are in most cases related to the essential specifications of the building. The mechanical characteristics of these products are subject to structure of material, density, content of binder in the product and to technology of production. Subject to the latter, mineral wool products with different fibrous structure are received, therefore, for the structure of each type, the individual structural models are developed attempting to describe the properties of fibrous systems. The deformability of mineral wool products is conditioned by mobility of fibrous structure, which shows up best under compression by short term loads. This study established the impact of various thicknesses and deformations on changes in structure of rock wool products. It also established that the thickness of mineral wool products conditions and influences considerable changes in their structure.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1926

  16. Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures

    Science.gov (United States)

    Ko, William L.; Richards, W. L.; Tran, Van t.

    2007-01-01

    Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.

  17. The effect of the internal structure of Mars on its seasonal loading deformations

    Science.gov (United States)

    Métivier, Laurent; Karatekin, Özgur; Dehant, Véronique

    2008-04-01

    Mars is continuously subjected to surface loading induced by seasonal mass changes in the atmosphere and ice caps due to the CO 2 sublimation and condensation process. It results in surface deformations and in time variations of gravity. Large wavelength annual and semi-annual variations of gravity (particularly zonal coefficients ΔJ) have been determined using present day geodetic satellite measurements. However loading deformations have been poorly studied for a planet like Mars. In this paper, we compute these deformations and their effect on spacecraft orbiting around Mars. Loading deformations of terrestrial planet are typically investigated assuming a spherical planet, radially symmetric. The mean radial structure of Mars is not well known. In particular the radius of the liquid or solid core remains not precisely determined. One may then wonder what is the effect of these uncertainties on loading deformations. Moreover, Mars presents a strong topography and probably large lateral variations of crustal thickness (relative to the Earth). The paper answer the questions of what is the effect of such lateral heterogeneities on surface deformations, and is the classical way to calculate loading deformation well adapted for a planet like Mars. In order to answer these questions we have investigated theoretically loading deformations of Mars-like planets. We first investigated classical load Love numbers. We show that for degrees inferior to 10, the load Love numbers mainly depend on the radius of the core and on its state, and that for degree greater than 10, they depend on the mean radius of mantle-crust interface. Using a General Circulation Model (GCM) of atmosphere and ice caps dynamics we show that loading vertical displacements have a 4-5 cm magnitude and present a North-South pattern with periodic transitions. Finally we investigated the effect of lateral variations of the crustal thickness on these loading deformations. We show that thickness

  18. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  19. A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes

    Science.gov (United States)

    Lu, Peng-Xian; Qu, Ling-Bo; Cheng, Qiao-Huan

    2013-11-01

    In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.

  20. Deformation analysis through the SBAS-DInSAR technique and geotechnical methods for structural damage assessment

    Science.gov (United States)

    Bonano, M.; Arangio, S.; Calò, F.; Di Mauro, M.; Manunta, M.; Marsella, M.; Sansosti, E.; Sonnessa, A.; Tagliafierro, V.; Lanari, R.

    2012-04-01

    Monitoring of displacements affecting single buildings or human-made infrastructures is of key importance for their diagnostic and damage assessment. The evaluation of the structural damage in urban areas is a critical problem related to the complexity of soil-structure interaction. Indeed, the structural damage is influenced by several factors, such as the uniformity of the settlements, the variability on the soil property, the type of foundations, the rigidity and type of the considered structure, as well as the rate at which the settlements occur. Concerning this latter issue, settlements occurring very slowly over periods of decades or more may be tolerable by masonry or reinforced concrete structures; on the other hand, the same settlements related to a few months or a few years would result in severe structural damage. In this context, remote sensing techniques allow non-invasive and non-destructive deformation analyses over large areas by properly exploiting a large number of space-borne radar data. Within this framework, Differential SAR Interferometry (DInSAR) has emerged as a valuable microwave methodology to detect and monitor ground displacements, with centimeter to millimeter accuracy, by exploiting the phase difference (interferogram) between two SAR images relevant to the same area. Recent developments of advanced DInSAR techniques are aimed at investigating not only single event deformation phenomena, but also the temporal evolution of the detected displacements through the generation of deformation time-series. These approaches benefit of the availability of huge archives of SAR data, including the ones acquired over the last 20 years by the Synthetic Aperture Radar (SAR) sensors on-board the ERS-1/2 and ENVISAT satellites of the European Space Agency (ESA). Among these advanced DInSAR approaches, we focus on the Small BAseline Subset (SBAS) algorithm (Berardino et al., 2002) that implements an easy combination of DInSAR data pairs characterized by

  1. Multi-trace deformations in AdS/CFT. Exploring the vacuum structure of the deformed CFT

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Center for Mathematical Physics, Hamburg (Germany)

    2007-03-15

    We present a general and systematic treatment of multi-trace deformations in the AdS/CFT correspondence in the large N limit, pointing out and clarifying subtleties relating to the formulation of the boundary value problem on a conformal boundary. We then apply this method to study multi-trace deformations in the presence of a scalar VEV, which requires the coupling to gravity to be taken into account. We show that supergravity solutions subject to 'mixed' boundary conditions are in one-to-one correspondence with critical points of the holographic effective action of the dual theory in the presence of a multi-trace deformation, and we find a number of new exact analytic solutions involving a minimally or conformally coupled scalar field satisfying 'mixed' boundary conditions. These include the generalization to any dimension of the instanton solution recently found in hep-th/0611315. Finally, we provide a systematic method for computing the holographic effective action in the presence of a multi-trace deformation in a derivative expansion away from the conformal vacuum using Hamilton-Jacobi theory. Requiring that this effective action exists and is bounded from below reproduces recent results on the stability of the AdS vacuum in the presence of 'mixed' boundary conditions. (orig.)

  2. Mechanical alloying of Cu/Al plates and preparation of bulk amorphous/nanocrystalline composite by thermoplastic deformation%搅拌摩擦法制备Cu-Al非晶/纳米晶复合材料

    Institute of Scientific and Technical Information of China (English)

    徐红霞; 段辉平; 宋洪海

    2013-01-01

    利用搅拌摩擦技术,使叠放在一起的Cu、Al板材发生强烈的热塑性变形.对搅拌区产物的显微结构分析表明:Cu、Al板材被搅拌破碎并充分混合在一起,Cu、Al元素发生扩散并实现合金化;在搅拌区中有许多尺寸> 1μm的非晶相和非晶/纳米晶复合相,非晶相的基体中含有平均尺寸约为5nm的纳米晶.热塑性变形技术不仅可用于块体金属材料的机械合金化,也可用于制备块体非晶/纳米晶复合材料.%Strong thermoplastic deformation of overlapped Cu and Al plates had been realized by stir friction processing. Transmission electron microscopy investigation on the microstructure of the stirred zone demonstrate that the Cu and Al plates are torn into shreds and well-mixed in the stirred zone. The inter-diffusion between Cu and Al shreds happens, resulting in the mechanical alloying of Cu/Al plates. There are many amorphous phases with size of more than 1 micron and amorphous/nanocrystalline composite phases in the deformation zone. The average size of the nanocrystallines surrounded by amorphous phases, is about 5 nanometers. Experimental results strongly suggest that the thermoplastic deformation technique can not only be used to do mechanical alloying for bulk metallic materials but also to fabricate bulk amorphous/crystalline materials.

  3. A structurally based viscoelastic model for passive myocardium in finite deformation

    Science.gov (United States)

    Shen, Jing Jin

    2016-09-01

    This paper discusses the finite-deformation viscoelastic modeling for passive myocardium tissue. The formulations established can also be applied to model other fiber-reinforced soft tissue. Based on the morphological structure of the myocardium, a specific free-energy function is constructed to reflect its orthotropicity. After deriving the stress-strain relationships in the simple shear deformation, a genetic algorithm is used to optimally estimate the material parameters of the myocardial constitutive equation. The results show that the proposed myocardial model can well fit the shear experimental data. To validate the viscoelastic model, it is used to predict the creep and the dynamic responses of a cylindrical model of the left ventricle. Upon comparing the results calculated by the proven myocardial elastic model with those by the viscoelastic model, the merits of the latter are discussed.

  4. Mesoscale structural characterization within bulk materials by high-energy X-ray microdiffraction

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Kvick, Å.

    2001-01-01

    A novel diffraction technique for the local three-dimensional characterization within polycrystalline bulk materials is presented. The technique uses high-energy synchrotron radiation (40 keV

  5. The crustal density structures and deformation scratches in the Qinghai-Tibet Plateau

    Science.gov (United States)

    Sun, Yanyun; Yang, Wencai; Hou, Zunze; Yu, Changqing

    2016-12-01

    After introducing the principals of the multi-scale scratch analysis method of regional gravity data, this paper presents the results of its application to the Qinghai-Tibet Plateau, producing three sets of density disturbance, ridge coefficient, and edge coefficient images. The density disturbance images can be used to delineate the hardness and rheological properties of continental tectonic units. The ridge coefficient images can be used to delineate deformation belts, and the edge coefficient images can be used to determine positioning boundaries of the structural division of the units. These images provide crustal geological and tectonic information from different aspects with depth information, which are able to give quantitative constrains to any possible tectonic models. To the upper crust, these results are basically coincident with surface geological and tectonic mapping. They can also provide more structural information of the middle and lower crust, which conventionally is hard to be accurately inferred. For instance, the density disturbance images show the source-zones and squeezed flows of channel flows in the lower crust, as well as the position of the subduction front of the Indian plate beneath the Himalayan mountain range. The ridge coefficient images provide the positions of suture zones, deformation and subduction volcanic belts, ancient collision belts and strike-slip zones. By combining with these edge coefficient images, one can draw out tectonic maps with different structural units in the middle and lower crust. For example, very high density terranes such as the Kashmir and Chayuhe, are divided from the Himalayan terrane, giving physical reasons for the formation of the western and eastern structural knots in the India-Eurasia collisional belt. The multi-scale scratch analysis not only provides the plane geometry of structures and deformation belts, but also their depth extension and stereoscopic patterns. For instance, a decrease of the low

  6. Car Side Structure Crashworthiness in Pole and Moving Deformable Barrier Side Impacts

    Institute of Scientific and Technical Information of China (English)

    WANG Dazhi; DONG Guang; ZHANG Jinhuan; HUANG Shilin

    2006-01-01

    To clearly understand passenger car structure's crashworthiness in typical side impacts of pole and moving deformable barrier (MDB) impact modes, which could assist the establishment of Chinese vehicle side impact safety regulations, a full midsized car finite element model, calibrated by pole side impact test, was built and the pole side impact according to European New Car Assessment Program (EuroNCAP) and the MDB side impact according to ECE R95 regulations were simulated with LS-DYNA. The accelerations and the structure deformations from simulations were compared. It can be concluded that the pole side impact focuses primarily on side structure crashworthiness as a result of large intrusions, while the MDB side impact focuses primarily on full side structure crashworthiness. Accordingly, occupant protection strategies focus on different aspects to improve side impact safety. In the pole side impact the objective is to maintain the passenger compartment and protect the passenger's head from impacting the pole, while in the MDB side impact the objective is to protect the full human body. In the design of the car side structures, at least these two tests should be considered for assessing their side impact crashworthiness. Conducting these two side impact tests as certified tests provides insights into car safety during side impacts.

  7. Magnetic characterisation of large grain, bulk Y-Ba-Cu-O superconductor-soft ferromagnetic alloy hybrid structures

    Science.gov (United States)

    Philippe, M. P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2014-07-01

    Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume.

  8. Rheo-Raman microscope: Tracking molecular structures as a function of deformation and temperature

    Science.gov (United States)

    Plog, Jan P.; Meyer, Matt; De Vito, Francesca; Soergel, Fritz; Kotula, Anthony

    2016-05-01

    The Rheo-Raman Microscope combines rheology, Raman spectroscopy and polarization light microscopy and provides comprehensive insight into a material's bulk as well as micro structural properties under well defined and reproducible conditions such as temperature or shear profiles. The simultaneous acquisition with three independent analytical methods is advantageous for investigation of structural changes occurring for example in gelation, melting or crystallization. Details of this hyphenated instrumentation as well as selected results including temperature induced melting of a polymer emulsion and crystallization of a polymer melt are presented in this contribution.

  9. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  10. Earthquake-related soft-sediment deformation structures in Palaeogene on the continental shelf of the East China Sea

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Earthquake,as disastrous events in geological history,can be recorded as soft-sediment deformation.In the Palaeogene of the East China Sea shelf,the soft-sediment deformation related to earthquake event is recognized as seismic micro-fractures,micro-corrugated laminations,liquefied veins,'vibrated liquefied layers',deformed cross laminations and convolute laminations,load structures,flame structures,brecciation,slump structures and seismodisconformity.There exists a lateral continuum,the wide spatial distribution and the local vertical continuous sequences of seismites including slump,liquefaction and brecciation.In the Palaeogene of East China Sea shelf,where typical soft-sediment deformation structures were developed,clastic deposits of tidal-flat,delta and river facies are the main background deposits of Middle-Upper Eocene Pinghu Formation and Oligocene Huagang Formation.This succession also records diagnostic marks of event deposits and basinal tectonic activities in the form of seismites.

  11. Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    Syha, M.; Rheinheimer, W.; Bäurer, M.

    2012-01-01

    of microstructure evolution. We present the first microstructure reconstruction of a perovskite comprising 849 grains and detailed interface orientation evaluations of individual grains. Comparison of structural and topological quantities to metallographic investigations and statistical grain models demonstrates......The three-dimensional grain boundary network of sintered bulk strontium titanate is reconstructed using X-ray diffraction contrast tomography, a non-destructive technique for determining the grain shape and crystallographic orientation in polycrystals that is ideally suited for detailed studies...

  12. Engineering the Propagation of High-k Bulk Plasmonic Waves in Multilayer Hyperbolic Metamaterials by Multiscale Structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, John E.

    and feature exotic physical effects such as broadband singularity in the photonic density of states. It was shown that these photonic states are mainly populated by propagating high-k bulk plasmons, stemming from hybridization of short-range surface plasmon polaritons (SRSPPs) supported by individual metallic...... enhancement of spontaneous emission or blackbody radiation. In addition, the proposed structures can be employed to investigate other aspects of light-matter interaction in unusual environments....

  13. Investigation of preparation methods on surface/bulk structural relaxation and glass fragility of amorphous solid dispersions.

    Science.gov (United States)

    Ke, Peng; Hasegawa, Susumu; Al-Obaidi, Hisham; Buckton, Graham

    2012-01-17

    The objective of this study was to investigate the effect of preparation methods on the surface/bulk molecular mobility and glass fragility of solid dispersions. Solid dispersions containing indomethacin and PVP K30 were chosen as the model system. An inverse gas chromatography method was used to determine the surface structural relaxation of the solid dispersions and these data were compared to those for bulk relaxation obtained by DSC. The values of τ(β) for the surface relaxation were 4.6, 7.1 and 1.8h for melt quenched, ball milled and spray dried solid dispersions respectively, compared to 15.6, 7.9 and 9.8h of the bulk. In all systems, the surface had higher molecular mobility than the bulk. The glass fragility of the solid dispersions was also influenced by the preparation methods with the most fragile system showing the best stability. The zero mobility temperature (T(0)) was used to correlate with the physical stability of the solid dispersions. Despite having similar T(g) (65°C), the T(0) of the melt quenched, ball milled and spray dried samples were 21.6, -4.2 and 16.7°C respectively which correlated well with their physical stability results. Therefore, T(0) appears to be a better indicator than T(g) for predicting stability of amorphous materials.

  14. Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS/NEMS

    Science.gov (United States)

    2012-08-01

    Champaign Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS/ NEMS AFOSR Grant # FA9550-09-1...Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS/ NEMS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Behavior of PZT Films for MEMS  PZT thin films are used in MEMS devices, such as micro- sensors , actuators, and RF-MEMS  Always fabricated in

  15. Dynamic analysis of a rotating rigid-flexible coupled smart structure with large deformations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on Hamilton's principle, a new kind of fully coupled nonlinear dynamic model for a rotating rigid-flexible smart structure with a tip mass is proposed. The geometrically nonlinear effects of the axial, transverse displacement and rotation angle are considered by means of the first-order approximation coupling (FOAC) model theory, in which large deformations and the centrifugal stiffening effects are considered. Three kinds of systems are established respectively, which are a structure without piezoelectric layer, with piezoelectric layer in open circuit and closed circuit. Several simulations based on simplified models are presented to show the differences in characteristics between structures with and without the tip mass, between smart beams in closed and open circuit, and between the centrifugal effects in high speed rotating state or not. The last simulation calculates the dynamic response of the structure subjected to external electrical loading.

  16. Lipid memberane:inelastic deformation of surface structure by an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline state have been investigated using an atomic force microscope(AFM),We have observed the inelastic deformation of the sample surface,The AFM tip causes persistent deformation of the surface of the lipid membrane,in which some of the lipid molecules are eventually pushed or dragged by the AFM tip.The experiment shows how the surface structure of the lipid membrane can be created by the interaction between the AFM tip and lipid membrane.When the operating force exceeds 10-8N,it leads to large deformations of the surface.A squareregion of about 1×1um2 is created by the scanning probe on the surface,When the operating force is between 10-11N and 10-8N,it can image the topography of the surface of the lipid membrane.The stability of the sample is related to the concentration of the medium in which the sample is prepared.

  17. Lipid membrane: inelastic deformation of surface structure by an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    张静; 孙润广

    2002-01-01

    The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline statehave been investigated using an atomic force microscope (AFM). We have observed the inelastic deformation of thesample surface. The AFM tip causes persistent deformation of the surface of the lipid membrane, in which some of thelipid molecules are eventually pushed or dragged by the AFM tip. The experiment shows how the surface structure ofthe lipid membrane can be created by the interaction between the AFM tip and lipid membrane. When the operatingforce exceeds 10-8 N, it leads to large deformations of the surface. A square region of about 1×1μm2 is created by thescanning probe on the surface. When the operating force is between 10-11N and 10-8N, it can image the topographyof the surface of the lipid membrane. The stability of the sample is related to the concentration of the medium in whichthe sample is prepared.

  18. Measurement of terrace deformation and crustal shortening of some renascent fold zones within Kalpin nappe structure

    Institute of Scientific and Technical Information of China (English)

    YANG XiaoPing; RAN YongKang; CHENG JianWu; CHEN LiChun; XU XiWei

    2007-01-01

    The Kalpin nappe structure is a strongest thrust and fold deformation belt in front of the Tianshan Mountains since the Cenozoic time. The tectonic deformation occurred in 5-6 striking Mesozoic-Cenozoic fold zones, and some renascent folds formed on the recent alluvial-proluvial fans in front of the folded mountains. We used the total station to measure gully terraces along the longitudinal topographic profile in the renascent fold zones and collected samples from terrace deposits for age determination. Using the obtained formation time and shortening amount of the deformed terraces, we calculated the shortening rate of 4 renascent folds to be 0.1±0.03 mm/a, 0.12±0.04 mm/a, 0.59±0.18 mm/a, and 0.26±0.08 mm/a, respectively. The formation time of the renascent folds is some later than the major tectonic uplift event of the Qinghai-Tibet Plateau 0.14 Ma ago. It may be the long-distance effect of this tectonic event on the Tianshan piedmont fold belt.

  19. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  20. 3D visualization of deformation structures and potential fluid pathways at the Grimsel Test Site

    Science.gov (United States)

    Schneeberger, Raphael; Kober, Florian; Berger, Alfons; Spillmann, Thomas; Herwegh, Marco

    2015-04-01

    Knowledge on the ability of fluids to infiltrate subsurface rocks is of major importance for underground constructions, geothermal or radioactive waste disposal projects. In this study, we focus on the characterization of water infiltration pathways, their 3D geometries and origins. Based on surface and subsurface mapping in combination with drill core data, we developed by the use of MoveTM (Midland Valley Exploration Ltd.) a 3D structural model of the Grimsel Test Site (GTS). GTS is an underground laboratory operated by NAGRA, the Swiss organisation responsible for the management of nuclear waste. It is located within a suite of post-Variscan magmatic bodies comprising former granitic and granodioritic melts, which are dissected by mafic and aplitic dikes. During Alpine orogeny, the suite was tectonically overprinted within two stages of ductile deformation (Wehrens et al., in prep.) followed by brittle overprint of some of the shear zones during the retrograde exhumation history. It is this brittle deformation, which controls today's water infiltration network. However, the associated fractures, cataclasites and fault gouges are controlled themselves by aforementioned pre-existing mechanical discontinuities, whose origin ranges back as far as to the magmatic stage. For example, two sets of vertically oriented mafic dikes (E-W and NW-SE striking) and compositional heterogeneities induced by magmatic segregation processes in the plutonic host rocks served as nucleation sites for Alpine strain localization. Subsequently, NE-SW, E-W and NW-SE striking ductile shear zones were formed, in combination with high temperature fracturing while dissecting the host rocks in a complex 3D pattern (Wehrens et al, in prep.). Whether the ductile shear zones have been subjected to brittle reactivation and can serve as infiltration pathways or not, depends strongly on their orientations with respect to the principal stress field. Especially where deformation structures intersect

  1. Photonic band structures of two-dimensional photonic crystals with deformed lattices

    Institute of Scientific and Technical Information of China (English)

    Cai Xiang-Hua; Zheng Wan-Hua; Ma Xiao-Tao; Ren Gang; Xia Jian-Bai

    2005-01-01

    Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

  2. Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Yao;

    2015-01-01

    Poly(lactic acid) (PLA) is a bio-based and compostable thermoplastic polyester that has rapidly evolved into a competitive commodity material over the last decade. One key bottleneck in expanding the field of application of PLA is the control of its structure and properties. Therefore, in situ...... by differential scanning calorimetry (DSC). The obtained results showed that the deformation and yield stress of glassy PLA are strongly dependent on the stretching temperatures together with the transition from mesophase to mesocrystal and the formation of cavities. With the increase in drawing temperature...

  3. Influence of adhesive shear deformation on laminate structural behavior with application to parabolic trough solar collectors

    Science.gov (United States)

    Clauss, D. B.; Reuter, R. C., Jr.

    1983-02-01

    A simplified theory for the bending behavior of a thin flat bilamina panel was developed which includes the effects of shear deformation in the central adhesive layer. Static equilibrium equations for elastic thermomechanical cylindrical bending of a thin plate are used. A solution form is proposed which greatly facilitates application of this theory to structural panels with numerous discrete property changes in the variable direction. The influence of adhesive shear stiffness parameters upon overall laminate behavior is characterized through numerical examples typifying various thermal and mechanical loading conditions.

  4. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    Science.gov (United States)

    Hatefi, Ehsan

    2016-04-01

    All four point functions of brane anti brane system including their correct all order α' corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR, gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s'+t')-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α' corrections in the presence of brane anti brane system where various remarks will be also pointed out.

  5. On D-brane-Anti D-brane Effective actions and their all order Bulk Singularity Structures

    CERN Document Server

    Hatefi, Ehsan

    2016-01-01

    All four point functions of brane anti brane system including their correct all order $\\alpha'$ corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of $$ is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR, gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute $$ S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of $u'$ gauge field and $(u+s'+t')$ bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effect...

  6. Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations

    Science.gov (United States)

    Crespo-Blanc, Ana; Comas, Menchu; Balanyá, Juan Carlos

    2016-06-01

    We proposed a reconstruction of one of the tightest orogenic arcs on Earth: the Gibraltar Arc System. This reconstruction, which includes onshore and offshore data, is completed for approximately 9 Ma. The clues that lead us to draw it are based on a review in terms of structures and age of the superposed deformational events that took place during Miocene, with special attention to the external zones. This review and new structural data presented in this paper permit us to constrain the timing of vertical axis-rotations evidenced by previously published paleomagnetic data, and to identify homogeneous domains in terms of relationships between timing of deformation events, (re)magnetization and rotations. In particular, remagnetization in the Betics took place after the main shortening which produced the external fold-and-thrust belts (pre-upper Miocene), but was mostly previous to a contractive reorganization that affected the whole area; it should have occurred during lower Tortonian (between 9.9 and 11 Ma). From Tortonian to Present, block-rotations as high as 53° took place. Together with plate convergence, they accommodated a tightening and lengthening of the Gibraltar Arc System and drastically altered its geometry. As the orientation and position of any pre-9 Ma kinematic indicator or structural element is also modified, our reconstruction should be used as starting point for any pre-Tortonian model of the westernmost orogenic segment of the Alpine-Mediterranean system.

  7. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, M.P., E-mail: M.Philippe@ulg.ac.be [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Fagnard, J.-F.; Kirsch, S. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A. [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Vanderheyden, B.; Vanderbemden, P. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium)

    2014-07-15

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  8. In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, B.; Niendorf, T.; Lackmann, J. [Lehrstuhl fuer Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Thoene, M.; Troester, T. [Lehrstuhl fuer Leichtbau im Automobil (Automotive Lightweight Construction), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Maier, H.J., E-mail: hmaier@mail.upb.de [Lehrstuhl fuer Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany)

    2011-10-15

    Highlights: {yields} The present study focused on deformation behavior and failure mechanisms in lattice structure produced by selective laser melting (SLM). {yields} It is demonstrated that heat treatments can be used to increase the energy absorption of an SLM-processed structure. {yields} An in situ testing procedure was introduced, where local strains were calculated by digital image correlation {yields} Shear failure could be predicted by localization using Tresca strains. {yields} The approach employed provides a means to understand the microstructure-mechanical property-local deformation relationship. - Abstract: Cellular materials are promising candidates for load adapted light-weight structures. Direct manufacturing (DM) tools are effective methods to produce non-stochastic structures. Many DM studies currently focus on optimization of the geometric nature of the structures obtained. The literature available so far reports on the mechanical properties but local deformation mechanisms are not taken into account. In order to fill this gap, the current study addresses the deformation behavior of a lattice structure produced by selective laser melting (SLM) on the local scale by means of a comprehensive experimental in situ approach, including electron backscatter diffraction, scanning electron microscopy and digital image correlation. SLM-processed as well as heat treated lattice structures made from TiAl6V4 alloy were employed for mechanical testing. It is demonstrated that the current approach provides means to understand the microstructure-mechanical property-local deformation relationship to allow for optimization of load adapted lattice structures.

  9. Geomorphic and paleoseismic evidence for late Quaternary deformation in the southwest Kashmir Valley, India: Out-of-sequence thrusting, or deformation above a structural ramp?

    Science.gov (United States)

    Madden, C.; Ahmad, S.; Meigs, A.

    2011-12-01

    In the northwest Himalaya, partitioning of Indian-Eurasian convergence across multiple active structures, including a fold at the deformation front, and the Riasi thrust 60 km to the north, suggests that strain is partially accommodated by out-of-sequence thrusting. Deformation of the Plio-Pleistocene Karawa deposits (KD) and latest Pleistocene fluvial terraces on the southwest side of the Kashmir Valley (KV) indicate that deformation also occurs 100 km north of the deformation front. A historical record of 13 earthquakes in the valley over the last millennium, including damaging earthquakes in 1555 and 1885, further suggests that the KV is a locus of active deformation. We use geomorphic mapping, terrace profiling, paleoseismic trenching, and radiometric dating to constrain the extent, timing, rate and style of deformation in the KV. Tectonic geomorphic mapping on high-resolution satellite imagery reveals a series of discontinuous scarps, which we call the Balapora fault (BF), cutting the KD and younger terraces over 45-60 km south of the Jehlum River. Near the north end of the BF, only the highest three of six strath terraces that cross the fault along the Shaliganaga River are deformed, and optically stimulated luminescence (OSL) ages on the highest undeformed terrace show that the fault has not moved there in 50 +/-3 ka. To the south, a flight of five strath terraces along the Sasara River have been uplifted by the BF. Correlating soil and loess stratigraphy from the youngest deformed terrace dated terraces in nearby drainages suggests that deformation has occurred since ~50 ka. Further south, along the Rembiara River (RR), the BF deforms two regionally extensive terraces. Using an OSL age of 51 +/-11 ka collected from fluvial deposits a few meters above the lower strath, and a measured strath elevation above the river of 19 +/- 1 m at the fault, we calculate an average incision rate of 0.3-0.5 mm/yr. An exposure on the left bank of the RR reveals that the BF

  10. Crustal Structure and Deformation of the Yakutat Microplate: New Insights From STEEP Marine Seismic Reflection Data

    Science.gov (United States)

    Lowe, L. A.; Gulick, S. P.; Christeson, G.; van Avendonk, H.; Reece, R.; Elmore, R.; Pavlis, T.

    2008-12-01

    In fall 2008, we will conduct an active source marine seismic experiment of the offshore Yakutat microplate in the northern Gulf of Alaska. The survey will be conducted aboard the academic research vessel, R/V Marcus Langseth, collecting deep-penetrating multi-channel seismic reflection survey using an 8-km, 640 channel hydrophone streamer and a 6600 cu. in., 36 airgun array. The survey is the concluding data acquisition phase for the ST. Elias Erosion and tectonics Project (STEEP), a multi-institution NSF-Continental Dynamics project investigating the interplay of climate and tectonics in the Chugach-St. Elias Mountains in southern Alaska. The experiment will also provide important site survey information for possible future Integrated Ocean Drilling Program investigations. Two profiles coincident with wide-angle refraction data (see Christeson, et al., this session) will image structural changes across the Dangerous River Zone from east to west and the Transition Fault from south to north. We will also image the western portion of the Transition Fault to determine the nature of faulting along this boundary including whether or not the Pacific Plate is underthrusting beneath the Yakutat microplate as part of this collision. Our westernmost profile will image the Kayak Island Zone, typically described as the northern extension of the Aleutian megathrust but which may be a forming suture acting as a deformation backstop for the converging Yakutat and North American plates. Profiles across the Pamplona Zone, the current Yakutat-North America deformation front, will further constrain relative timing of structural development and the depth of deformation on the broad folds and thrust faults that comprise the area. This new dataset will allow further insight into regional tectonics of the St. Elias region as well as provide more detail regarding the development of the south Alaskan margin during major Plio-Pleistocene glacial- interglacial periods.

  11. Simulation of CO2 Injection in Porous Media with Structural Deformation Effect

    KAUST Repository

    Negara, Ardiansyah

    2011-06-18

    Carbon dioxide (CO2) sequestration is one of the most attractive methods to reduce the amount of CO2 in the atmosphere by injecting it into the geological formations. Furthermore, it is also an effective mechanism for enhanced oil recovery. Simulation of CO2 injection based on a suitable modeling is very important for explaining the fluid flow behavior of CO2 in a reservoir. Increasing of CO2 injection may cause a structural deformation of the medium. The structural deformation modeling in carbon sequestration is useful to evaluate the medium stability to avoid CO2 leakage to the atmosphere. Therefore, it is important to include such effect into the model. The purpose of this study is to simulate the CO2 injection in a reservoir. The numerical simulations of two-phase flow in homogeneous and heterogeneous porous media are presented. Also, the effects of gravity and capillary pressure are considered. IMplicit Pressure Explicit Saturation (IMPES) and IMplicit Pressure-Displacements and an Explicit Saturation (IMPDES) schemes are used to solve the problems under consideration. Various numerical examples were simulated and divided into two parts of the study. The numerical results demonstrate the effects of buoyancy and capillary pressure as well as the permeability value and its distribution in the domain. Some conclusions that could be derived from the numerical results are the buoyancy of CO2 is driven by the density difference, the CO2 saturation profile (rate and distribution) are affected by the permeability distribution and its value, and the displacements of the porous medium go to constant values at least six to eight months (on average) after injection. Furthermore, the simulation of CO2 injection provides intuitive knowledge and a better understanding of the fluid flow behavior of CO2 in the subsurface with the deformation effect of the porous medium.

  12. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys.

    Science.gov (United States)

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-12-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  13. Monte Carlo calculations on the magnetization profile and domain wall structure in bulk systems and nanoconstricitons

    Energy Technology Data Exchange (ETDEWEB)

    Serena, P. A. [Instituto de Ciencias de Materiales de Madrid, Madrid (Spain); Costa-Kraemer, J. L. [Instituto de Microelectronica de Madrid, Madrid (Spain)

    2001-03-01

    A Monte Carlo algorithm suitable to study systems described by an anisotropic Heisenberg Hamiltonian is presented. This technique has been tested successfully with 3D and 2D systems, illustrating how magnetic properties depend on the dimensionality and the coordination number. We have found that magnetic properties of constrictions differ from those appearing in bulk. In particular, spin fluctuations are considerable larger than those calculated for bulk materials. In addition, domain walls are strongly modified when a constriction is present, with a decrease of the domain-wall width. This decrease is explained in terms of previous theoretical works. [Spanish] Se presenta un algoritmo de Monte Carlo para estudiar sistemas discritos por un hamiltoniano anisotropico de Heisenburg. Esta tecnica ha sido probada exitosamente con sistemas de dos y tres dimensiones, ilustrado con las propiedades magneticas dependen de la dimensionalidad y el numero de coordinacion. Hemos encontrado que las propiedades magneticas de constricciones difieren de aquellas del bulto. En particular, las fluctuaciones de espin son considerablemente mayores. Ademas, las paredes de dominio son fuertemente modificadas cuando una construccion esta presente, originando un decrecimiento del ancho de la pared de dominio. Damos cuenta de este decrecimiento en terminos de un trabajo teorico previo.

  14. Effect of Temperature, Fractional Deformation, and Cooling Rate on the Structure and Properties of Steel 09GNB

    Science.gov (United States)

    Kodzhaspirov, G. E.; Sulyagin, R. V.

    2005-01-01

    The effect of temperature, divisibility of deformation, and cooling rate in high-temperature thermomechanical treatment (HTTMT) on the structure and mechanical properties of low-alloy steel 09GNB is studied. The steel is used as a high-strength material for the production of offshore structures, strips, and other welded articles. The study is performed using the method of experimental design where the parameters are fractional deformation (number of passes in rolling), final temperature of the deformation, and rate of post-deformation cooling. The results of the experiments are used to construct regression equations describing the qualitative and quantitative effect of the parameters of HTTMT on the mechanical properties of the steel. Microstructure and fracture surfaces of the steel are analyzed.

  15. Tracking molecular structure deformation of nitrobenzene and its torsion-vibration coupling by intense pumping CARS

    Science.gov (United States)

    Wang, Chang; Wu, Hong-Lin; Song, Yun-Fei; He, Xing; Yang, Yan-Qiang; Tan, Duo-Wang

    2016-11-01

    The structural deformation induced by intense laser field of liquid nitrobenzene (NB) molecule, a typical molecule with restricting internal rotation, is tracked by time- and frequency-resolved coherent anti-Stokes. Raman spectroscopy (CARS) technique with an intense pump laser. The CARS spectra of liquid NB show that the NO2 torsional mode couples with the NO2 symmetric stretching mode, and the NB molecule undergoes ultrafast structural deformation with a relaxation time of 265 fs. The frequency of NO2 torsional mode in liquid NB (42 cm-1) at room temperature is found from the sum and difference combination bands involving the NO2 symmetric stretching mode and torsional mode in time- and frequency-resolved CARS spectra. Project supported by the National Natural Science Foundation of China (Grant Nos. 21173063 and 21203047), the Foundation of Heilongjiang Bayi Agricultural University, China (Grant No. XZR2014-16), NSAF (Grant No. U1330106), and the Special Research Project of National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics (Grant No. 2012-S-07).

  16. Differential-algebraic approach to large deformation analysis of frame structures subjected to dynamic loads

    Institute of Scientific and Technical Information of China (English)

    HU Yu-jia; ZHU Yuan-yuan; CHENG Chang-jun

    2008-01-01

    A nonlinear mathematical model for the analysis of large deformation of frame structures with discontinuity conditions and initial displacements,subject to dynamic loads is formulated with arc-coordinates.The differential quadrature element method (DQEM)is then applied to discretize the nonlinear mathematical model in the spatial domain.An effective method is presented to deal with discontinuity conditions of multivariables in the application of DQEM.A set of DQEM discretization equations are obtained,which are a set of nonlinear differential-algebraic equations with singularity in the time domain.This paper also presents a method to solve nonlinear differential-algebra equations.As application,static and dynamical analyses of large deformation of frames and combined frame structures,subjected to concentrated and distributed forces,are presented.The obtained results are compared with those in the literatares.Numerical results show that the proposed method is general,and effective in dealing with discontinuity conditions of multi-variables and solving difierential-algebraic equations.It requires only a small number of nodes and has low computation complexity with high precision and a good convergence property.

  17. Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples

    Energy Technology Data Exchange (ETDEWEB)

    Assar, S.T., E-mail: soha_talaat@yahoo.com; Abosheiasha, H.F.

    2015-01-15

    Nanoparticles of Ni{sub 1−x}Ca{sub x}Fe{sub 2}O{sub 4} (x=0.0, 0.02, 0.04, 0.06 and 0.10) were prepared by citrate precursor method. A part of these samples was sintered at 600 °C for 2 h in order to keep the particles within the nano-size while the other part was sintered at 1000 °C to let the particles to grow to the bulk size. The effect of Ca{sup 2+} ion substitution in nickel ferrite on some structural, magnetic, electrical and thermal properties was investigated. All samples were characterized by using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). A two probe method was used to measure the dc electrical conductivity whereas the photoacoustic (PA) technique was used to determine the thermal diffusivity of the samples. To interpret different experimental results for nano and bulk samples some cation distributions were assumed based on the VSM and XRD data. These suggested cation distributions give logical explanations for other experimental results such as the observed values of the absorption bands in FTIR spectra and the dc conductivity results. Finally, in the thermal measurements it was found that increasing the Ca{sup 2+} ion content causes a decrease in the thermal diffusivity of both nano and bulk samples. The explanation of this behavior is ascribed to the phonon-phonon scattering. - Highlights: • The physical properties of both nano and bulk samples of Ni-Ca ferrites were investigated. • Cation distribution plays a vital role in tailoring the physical properties of all the samples. • The dc conductivity of the nanosamples is higher than their bulk counterparts. • Increasing Ca{sup 2+} content enhances M{sub s}, M{sub r}, and σ{sub dc} of the bulk samples over their nanocounterparts. • The behavior of thermal diffusivity of the samples attributed to the phonon-phonon scattering.

  18. The significance of the ProtDeform score for structure prediction and alignment.

    Directory of Open Access Journals (Sweden)

    Jairo Rocha

    Full Text Available BACKGROUND: When a researcher uses a program to align two proteins and gets a score, one of her main concerns is how often the program gives a similar score to pairs that are or are not in the same fold. This issue was analysed in detail recently for the program TM-align with its associated TM-score. It was shown that because the TM-score is length independent, it allows a P-value and a hit probability to be defined depending only on the score. Also, it was found that the TM-scores of gapless alignments closely follow an Extreme Value Distribution (EVD. The program ProtDeform for structural protein alignment was developed recently and is characterised by the ability to propose different transformations of different protein regions. Our goal is to analyse its associated score to allow a researcher to have objective reasons to prefer one aligner over another, and carry out a better interpretation of the output. RESULTS: The study on the ProtDeform score reveals that it is length independent in a wider score range than TM-scores and that PD-scores of gapless (random alignments also approximately follow an EVD. On the CASP8 predictions, PD-scores and TM-scores, with respect to native structures, are highly correlated (0.95, and show that around a fifth of the predictions have a quality as low as 99.5% of the random scores. Using the Gold Standard benchmark, ProtDeform has lower probabilities of error than TM-align both at a similar speed. The analysis is extended to homology discrimination showing that, again, ProtDeform offers higher hit probabilities than TM-align. Finally, we suggest using three different P-values according to the three different contexts: Gapless alignments, optimised alignments for fold discrimination and that for superfamily discrimination. In conclusion, PD-scores are at the very least as valuable for prediction scoring as TM-scores, and on the protein classification problem, even more reliable.

  19. Off-Yrast low-spin structure of deformed nuclei at mass number A∼150

    Energy Technology Data Exchange (ETDEWEB)

    Krugmann, Andreas

    2014-07-14

    -spinflip parts of the cross section has been done. Here, for the first time, the Pygmy Dipole Resonance (PDR) has been identified in the heavy deformed nucleus {sup 154}Sm that appears as a double-hump structure in the E1 response. A possible interpretation of this double-hump structure in terms of a deformation splitting analogously to the Giant Dipole Resonance (GDR) has been given. In case of the spinflip cross section, a broad distribution in the excitation energy range between 6 and 12 MeV has been observed. The distribution and the extracted sum strength are in good accordance with previous experiments.

  20. Alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden: A new shock wave-induced deformation feature

    Science.gov (United States)

    Agarwal, A.; Reznik, B.; Alva-Valdivia, L. M.; Srivastava, D. C.

    2017-03-01

    This paper reports peculiar alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden. The combined microscopic and spectroscopic studies of the micro/nanoscale wedges reveal that these are deformation-induced features. First, samples showing wedges, 12 out of 18 studied, are distributed in the impact structure within a radius of up to 10 km from the crater center. Second, the margins between the augite and labradorite wedges are sharp and the {110} prismatic cleavage of augite develops into fractures and thereafter into wedges. The fractures are filled with molten labradorite pushed from the neighboring bulk labradorite grain. Third, compared to the bulk labradorite, the dislocation density and the residual strain in the labradorite wedges are significantly higher. A possible mechanism of genesis of the wedges is proposed. The mechanism explains that passing of the shock waves in the basement dolerite induced (i) formation of microfractures in augite and labradorite; (ii) development of the augite prismatic cleavages into the wedges, which overprint the microfracture in the labradorite wedges; and (iii) thereafter, infilling of microfractures in the augite wedges by labradorite.

  1. Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes

    Science.gov (United States)

    Sigüenza, J.; Mendez, S.; Ambard, D.; Dubois, F.; Jourdan, F.; Mozul, R.; Nicoud, F.

    2016-10-01

    This paper constitutes an extension of the work of Mendez et al. (2014) [36], for three-dimensional simulations of deformable membranes under flow. An immersed thick boundary method is used, combining the immersed boundary method with a three-dimensional modeling of the structural part. The immersed boundary method is adapted to unstructured grids for the fluid resolution, using the reproducing kernel particle method. An unstructured finite-volume flow solver for the incompressible Navier-Stokes equations is coupled with a finite-element solver for the structure. The validation process relying on a number of test cases proves the efficiency of the method, and its robustness is illustrated when computing the dynamics of a tri-leaflet aortic valve. The proposed immersed thick boundary method is able to tackle applications involving both thin and thick membranes/closed and open membranes, in significantly high Reynolds number flows and highly complex geometries.

  2. Peculiarities of Specimen Preparation for the Investigation of Woven Structure Deformations using Image Analysis

    Directory of Open Access Journals (Sweden)

    Jovita DARGIENĖ

    2013-03-01

    Full Text Available The paper presents a method based on non – contact image analysis, which allows to simplify experimental process and increase measurement accuracy, identifying local deformations of woven material. Striving to gain accuracy of image analysis results, specimen preparation and deformation process fixation stages are of great importance. For the studies differently marked specimen groups were prepared. Their behaviour in process of tension was analysed using a special calibrated image acquisition system. Using digital images of deformed specimen the displacement of the marked surface elements - points and their shape changes were measured and material deformations in separate specimen parts (A and B were described. According the obtained results zones of uniform deformations were established and it confirmed that stretched specimen was deformed unevenly. Mild deformations obtained in part A and the highest values of deformation recorded in the centre of part B: local deformations in the transverse to tension direction were set up to -42.9 % and 27.6 % of local elongation along tension direction. Results of local deformation variation explain buckling phenomenon of bias stretched fabric. Particular local deformation values allow us to describe behaviour of deformed material, bring opportunities to perform experimental and modelling comparison of the results. The suggested methodology could be applied for the investigation of differently deformed material behaviour.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3830

  3. Bulk growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of Imidazolium L-Ascorbate

    Science.gov (United States)

    Saripalli, Ravi Kiran; Bhat, H. L.; Elizabeth, Suja

    2016-09-01

    Bulk, transparent organic nonlinear optical (NLO) single-crystals of imidazolium L-Ascorbate (ImLA) were grown using slow-evaporation. Crystal structure was determined by single crystal X-ray diffraction analysis. Preliminary linear optical measurements through UV-Visible and infrared spectroscopy revealed good optical transmittance and a low near-UV cutoff wavelength at 256 nm. Kurtz and Perry powder test revealed that ImLA is a phase-matchable NLO material with a second harmonic generation (SHG) efficiency of 1.2 times larger than that of standard KH2PO4 (KDP). Laser damage thresholds were determined for ImLA.

  4. Electronic structure, bulk and magnetic properties of MB{sub 6} and MB{sub 12} borides

    Energy Technology Data Exchange (ETDEWEB)

    Baranovskiy, A.E. [Institute for Low Temperature Physics and Engineering, NASU, Kharkov 61103 (Ukraine)]. E-mail: baranovskiy@ilt.kharkov.ua; Grechnev, G.E. [Institute for Low Temperature Physics and Engineering, NASU, Kharkov 61103 (Ukraine); Fil, V.D. [Institute for Low Temperature Physics and Engineering, NASU, Kharkov 61103 (Ukraine); Ignatova, T.V. [Institute for Low Temperature Physics and Engineering, NASU, Kharkov 61103 (Ukraine); Logosha, A.V. [Institute for Low Temperature Physics and Engineering, NASU, Kharkov 61103 (Ukraine); Panfilov, A.S. [Institute for Low Temperature Physics and Engineering, NASU, Kharkov 61103 (Ukraine); Svechkarev, I.V. [Institute for Low Temperature Physics and Engineering, NASU, Kharkov 61103 (Ukraine); Shitsevalova, N.Yu. [Institute for Problems of Materials Science, NASU, Kiev 03680 (Ukraine); Filippov, V.B. [Institute for Problems of Materials Science, NASU, Kiev 03680 (Ukraine); Eriksson, O. [Department of Physics, University of Uppsala, S-751 21 Uppsala (Sweden)

    2007-09-13

    The bulk and magnetic properties of MB{sub 6} and MB{sub 12} were investigated on the basis of first principles electronic structure calculations. The elastic constants were measured for ZrB{sub 12}, HoB{sub 12}, ErB{sub 12}, TmB{sub 12}, LuB{sub 12}, YB{sub 6} and LaB{sub 6} compounds at low temperatures. The calculated equations of states and balanced crystal orbital overlap populations have allowed to analyse bonding and magnetic properties of MB{sub 6} and MB{sub 12}.

  5. Internal deformation in layered Zechstein-III K-Mg salts. Structures formed by complex deformation and high contrasts in viscosity observed in drill cores.

    Science.gov (United States)

    Raith, Alexander; Urai, Janos L.

    2016-04-01

    During the evaporation of a massive salt body, alternations of interrupted and full evaporation sequences can form a complex layering of different lithologies. Viscosity contrasts of up to five orders of magnitude between these different lithologies are possible in this environment. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. How up to 200m thick layers of these evaporites affect salt deformation at different scales is not well known. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt. To gain a better understanding of the internal deformation of these layers we analyzed K-Mg salt rich drill cores out of the Zechstein III-1b subunit from the Veendam Pillow 10 km southeast of Groningen, near the city Veendam in the NE Netherlands. The study area has a complex geological history with multiple tectonic phases of extension and compression forming internal deformation in the pillow but also conserving most of the original layering. Beside halite the most common minerals in the ZIII-1b are carnallite, kieserite, anhydrite and bischofite alternating in thin layers of simple composition. Seismic interpretation revealed that the internal structure of the Veendam Pillow shows areas, in which the K-Mg salt rich ZIII 1b layer is much thicker than elsewhere, as a result of salt deformation. The internal structure of the ZIII-1b on the other hand, remains unknown. The core analysis shows a strong strain concentration in the weaker Bischofite (MgCl2*6H20) and Carnallite (KMgCl3*6H20) rich layers producing tectonic breccias and highly strained layers completely overprinting the original layering. Layers formed by alternating beds

  6. An ab initio study of the structure and atomic transport in bulk liquid Ag and its liquid-vapor interface

    Science.gov (United States)

    del Rio, Beatriz G.; González, David J.; González, Luis E.

    2016-10-01

    Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals propagating excitations whose dispersion at long wavelengths is compatible with the experimental sound velocity. Results are also reported for other transport coefficients. Additional simulations have also been performed so as to study the structure of the free liquid surface. The calculated longitudinal ionic density profile shows an oscillatory behaviour, whose properties are analyzed through macroscopic and microscopic methods. The intrinsic X-ray reflectivity of the surface is predicted to show a layering peak associated to the interlayer distance.

  7. Existing Resources, Standards, and Procedures for Precise Monitoring and Analysis of Structural Deformations. Volume 2. Appendices

    Science.gov (United States)

    1992-09-01

    APPENDIX 5. Geometrical Analysis of Deformation Surveys APPENDIX 6. Integrated Analysis of Deformation Surveys at Mactaquac APPENDIX 7. Combination of...1989a). "Integrated analysis of deformation surveys at Mactaquac ." International Water Power and Dam Construction, August, pp. 17-22. Czaja, J. (1971...New Brunswick P.O.Box 4400 Fredericton, N.B., E3B 5A3, Canada APPENDIX 6. INTEGRATED ANALYSIS OF DEFORMATION SURVEYS AT MACTAQUAC A-. k . - .. USA and

  8. Thermally assisted deformation of structural superplastics and nanostructured materials: A personal perspective

    Indian Academy of Sciences (India)

    K A Padmanabhan

    2003-02-01

    Optimal structural superplasticity and the deformation of nanostructured materials in the thermally activated region are regarded as being caused by the same physical process. In this analysis, grain/interphase boundary sliding controls the rate of deformation at the level of atomistics. Boundary sliding develops to a mesoscopic level by plane interface formation involving two or more boundaries and at this stage the rate controlling step is boundary migration. In other words, grain/interphase boundary sliding is viewed as a two-scale process. The non-zero, unbalanced shear stresses present at the grain/interphase boundaries ensure that near-random grain rotation is also a non-rate controlling concomitant of this mechanism. Expressions have been derived for the free energy of activation for the atomic scale rate controlling process, the threshold stress that should be crossed for the commencement of mesoscopic boundary sliding, the inverse Hall-Petch effect and the steady state rate equation connecting the strain rate to the independent variables of stress, temperature and grain size. Beyond the point of inflection in the log stress-log strain rate plot, climb controlled multiple dislocation motion within the grains becomes increasingly important and at sufficiently high stresses becomes rate controlling. The predictions have been validated experimentally.

  9. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    Science.gov (United States)

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  10. High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability

    Science.gov (United States)

    Xiong, Ding-Bang; Cao, Mu; Guo, Qiang; Tan, Zhanqiu; Fan, Genlian; Li, Zhiqiang; Zhang, Di

    2016-01-01

    By using CuO/graphene-oxide/CuO sandwich-like nanosheets as the building blocks, bulk nacre-inspired copper matrix nano-laminated composite reinforced by molecular-level dispersed and ordered reduced graphene oxide (rGO) with content as high as ∼45 vol% was fabricated via a combined process of assembly, reduction and consolidation. Thanks to nanoconfinement effect, reinforcing effect, as well as architecture effect, the nanocomposite shows increased specific strength and at least one order of magnitude greater recoverable deformation ability as compared with monolithic Cu matrix. PMID:27647264

  11. Simulation Study of Stress and Deformation Behaviour of Debonded Laminated Structure

    Science.gov (United States)

    Hirwani, C. K.; Mittal, H.; Panda, S. K.; Mahapatra, S. S.; Mandal, S. K.; De, A. K.

    2017-02-01

    The bending strength and deformation characteristics of the debonded laminated plate under the uniformly distributed loading (UDL) have been investigated in this research article. For the simulation study, an internally damaged laminated plate structure model has been developed in ANSYS based on the first-order shear deformable kinematic theory via ANSYS parametric design language (APDL) code. The internal debonding within the laminated structure is incorporated using two sub-laminate approach. Further, the convergence (different mesh densities), as well as the validity (comparing the responses with published results) of the present simulation model, have been performed by solving the deflection responses under the influence of transversely loaded layered structure. Also, to show the coherence of the simulation analysis the results are compared with the experimental bending results of the homemade Glass/Epoxy composite with artificial delamination. For the experimental analysis, Glass/Epoxy laminated composite seeded with delamination at the central mid-plane of the laminate is fabricated using an open mould hand lay-up composites fabrication technique. For the computational purpose, the necessary material properties of fabricated composite plate evaluated experimentally via uniaxial tensile test (Universal Testing Machine INSTRON-1195). Further, the bending (three-point bend test) test is conducted with the help of Universal Testing Machine INSTRON-5967. Finally, the effect different geometrical and material parameters (thickness ratio, modular ratio, constraint conditions) and magnitude of the loading on the static deflection and stress behaviour of the delaminated composite plate are investigated thoroughly by solving different kinds of numerical illustrations and discussed in detail.

  12. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    Energy Technology Data Exchange (ETDEWEB)

    Hatefi, Ehsan [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)

    2016-04-27

    All four point functions of brane anti brane system including their correct all order α{sup ′} corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR, gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s{sup ′}+t{sup ′})-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α{sup ′} corrections in the presence of brane anti brane system where various remarks will be also pointed out.

  13. Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry.

    Science.gov (United States)

    Pouch, Alison M; Tian, Sijie; Takebe, Manabu; Yuan, Jiefu; Gorman, Robert; Cheung, Albert T; Wang, Hongzhi; Jackson, Benjamin M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2015-12-01

    Deformable modeling with medial axis representation is a useful means of segmenting and parametrically describing the shape of anatomical structures in medical images. Continuous medial representation (cm-rep) is a "skeleton-first" approach to deformable medial modeling that explicitly parameterizes an object's medial axis and derives the object's boundary algorithmically. Although cm-rep has effectively been used to segment and model a number of anatomical structures with non-branching medial topologies, the framework is challenging to apply to objects with branching medial geometries since branch curves in the medial axis are difficult to parameterize. In this work, we demonstrate the first clinical application of a new "boundary-first" deformable medial modeling paradigm, wherein an object's boundary is explicitly described and constraints are imposed on boundary geometry to preserve the branching configuration of the medial axis during model deformation. This "boundary-first" framework is leveraged to segment and morphologically analyze the aortic valve apparatus in 3D echocardiographic images. Relative to manual tracing, segmentation with deformable medial modeling achieves a mean boundary error of 0.41 ± 0.10 mm (approximately one voxel) in 22 3DE images of normal aortic valves at systole. Deformable medial modeling is additionally demonstrated on pathological cases, including aortic stenosis, Marfan syndrome, and bicuspid aortic valve disease. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.

  14. Correlation between structural, electrical and magnetic properties of GdMnO{sub 3} bulk ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Samantaray, S. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Mishra, D.K. [Department of Physics, Institute of Technical Education and Research, S ‘O’ A University, Bhubaneswar 751030, Odisha (India); Pradhan, S.K. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Mishra, P.; Sekhar, B.R. [Institue of Physics, Sachivalaya Marg, Bhubaneswar, Odisha (India); Behera, Debdhyan [Advanced Materials Technology Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha (India); Rout, P.P.; Das, S.K. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Sahu, D.R. [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Roul, B.K., E-mail: ims@iopb.res.in [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India)

    2013-08-15

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO{sub 3} (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO{sub 3}. Room temperature dielectric constant (ε{sub r}) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO{sub 3} at room temperature as multifunctional materials. - Highlights: • Preparation of single-phasic polycrystalline GdMnO{sub 3} sample by the solid state sintering route. • Observation of square type P–E hysteresis loop with higher saturation and remnant polarization. • Observation of antiferromagnetic behavior at 40 K in polycrystalline GdMnO{sub 3}. • Possibility of room temperature application of GdMnO{sub 3} as multifunctional material.

  15. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis structures with 8 ms time-resolution. During active contraction (1 Hz stimulation, mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis was observed between the orthogonal short-axes (i.e., width and depth of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the

  16. Structure and properties of Fe-Cr-Mo-C bulk metallic glasses obtained by die casting method

    Directory of Open Access Journals (Sweden)

    W. Pilarczyk

    2010-09-01

    Full Text Available urpose: The goal of this work is to investigate structure and properties of Fe54Cr16Mo12C18 alloy rods with different diameters obtained by the pressure die casting method.Design/methodology/approach: Master alloy ingot with compositions of Fe54Cr16Mo12C18 was prepared by induction melting of pure Fe, Cr, Mo, C elements in argon atmosphere. The investigated material were cast in form of rods with different diameters. Glassy and crystalline structures were examined by X-ray diffraction. The microscopic observation of the fracture morphology was carried out by the SEM with different magnification. The thermal properties of the studied alloy were examined by DTA and DSC method.Findings: These materials exhibit high glass-forming ability, excellent mechanical properties and corrosion resistance.Research limitations/implications: It is difficult to obtain a metallic glass of Fe54Cr16Mo12C18 alloy. The investigations carried out on the different samples of Fe54Cr16Mo12C18 bulk metallic alloy allowed to state that the studied ribbon was amorphous whereas rods were amorphous – crystalline.Originality/value: The formation and investigation of the casted Fe-Cr-Mo-C bulk materials and the study of glass-forming ability of this alloy.

  17. Soft-sediment deformation structures in cores from lacustrine slurry deposits of the Late Triassic Yanchang Fm. (central China)

    Science.gov (United States)

    Yang, Renchao; Loon, A. J. (Tom) van; Yin, Wei; Fan, Aiping; Han, Zuozhen

    2016-09-01

    The fine-grained autochthonous sedimentation in the deep part of a Late Triassic lake was frequently interrupted by gravity-induced mass flows. Some of these mass flows were so rich in water that they must have represented slurries. This can be deduced from the soft-sediment deformation structures that abound in cores from these lacustrine deposits which constitute the Yanchang Fm., which is present in the Ordos Basin (central China). The flows and the resulting SSDS were probably triggered by earthquakes, volcanic eruptions, shear stress of gravity flows, and/or the sudden release of overburden-induced excess pore-fluid pressure. The tectonically active setting, the depositional slope and the high sedimentation rate facilitated the development of soft-sediment deformations, which consist mainly of load casts and associated structures such as pseudonodules and flame structures. Sediments with such deformations were occasionally eroded by slurries and became embedded in their deposits.

  18. Half-lives and fine structure for the α decay of deformed even-even nuclei

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The α-decay properties of well-deformed even-even nuclei are systematically calculated within the multichannel cluster model (MCCM). Instead of working in the WKB framework, the quasibound solution to the coupled Schro¨dinger equation is presented with outgoing wave boundary conditions, and the coupling potential is taken into full account in terms of the general quantum theories. The calculated α-decay half-lives are found to agree well with the experimental data with a mean factor of less than 2. The fine structure observed in α decay is also well reproduced by the four-channel microscopic calculation. Very strikingly, the MCCM can give relatively precise descriptions of the branching ratio to excited 4+ states, which is often overestimated in the usual WKB calculations. We expect it to be a significant development of theoretical models toward quantitative descriptions of α transitions to high-spin daughter states.

  19. Half-lives and fine structure for the α decay of deformed even-even nuclei

    Science.gov (United States)

    Ni, DongDong; Ren, ZhongZhou

    2011-08-01

    The α-decay properties of well-deformed even-even nuclei are systematically calculated within the multichannel cluster model (MCCM). Instead of working in the WKB framework, the quasibound solution to the coupled Schrödinger equation is presented with outgoing wave boundary conditions, and the coupling potential is taken into full account in terms of the general quantum theories. The calculated α-decay half-lives are found to agree well with the experimental data with a mean factor of less than 2. The fine structure observed in α decay is also well reproduced by the four-channel microscopic calculation. Very strikingly, the MCCM can give relatively precise descriptions of the branching ratio to excited 4+ states, which is often overestimated in the usual WKB calculations. We expect it to be a significant development of theoretical models toward quantitative descriptions of α transitions to high-spin daughter states.

  20. The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I

    Directory of Open Access Journals (Sweden)

    Christopher M. Ormerod

    2011-05-01

    Full Text Available We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-P_{VI}.

  1. Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes

    Science.gov (United States)

    Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele

    2015-04-01

    Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the

  2. A workflow for sub-/seismic structure and deformation quantification of 3-D reflection seismic data sets across different scales

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, C.M.; Lohr, T.; Oncken, O. [GFZ Potsdam (Germany); Tanner, D.C. [Goettingen Univ. (Germany). GZG; Endres, H. [RWTH Aachen (Germany)]|[TEEC, Isernhagen (Germany); Trappe, H.; Kukla, P. [TEEC, Isernhagen (Germany)

    2007-09-13

    The evolution of a sedimentary basin is mostly affected by deformation. Large-scale, subsurface deformation is typically identified by seismic data, sub-seismic small-scale fractures by well data. Between these two methods, we lack a deeper understanding of how deformation scales. We analysed a 3-D reflection seismic data set in the North German Basin, in order to determine the magnitude and distribution of deformation and its accumulation in space and time. A five-step approach is introduced for quantitative deformation and fracture prediction. An increased resolution of subtle tectonic lineaments is achieved by coherency processing, allowing to unravel the kinematics in the North German Basin from structural interpretation. Extensional events during basin initiation and later inversion are evident. 3-D retrodeformation shows major-strain magnitudes between 0-20% up to 1.3 km away from a fault trace, and variable deviations of associated extensional fractures. Good correlation of FMI data, strain distribution from retro-deformation and from geostatistic tools (see also Trappe et al., this volume) allows the validation of the results and makes the prediction of small-scale faults/fractures possible. The temporal component will be gained in the future by analogue models. The suggested workflow is applicable to reflection seismic surveys and yields in great detail both the tectonic history of a region as well as predictions for hydrocarbon plays or deep groundwater or geothermal reservoirs. (orig.)

  3. Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera

    2016-07-01

    While nascent oceanic lithosphere at slow to fast spreading mid-ocean ridges (MOR) is relatively well studied, much less is known about the lithospheric structure and properties at ultraslow MORs. Here we present microearthquake data from a 1 year ocean bottom seismometer deployment at the amagmatic, oblique supersegment of the ultraslow spreading Southwest Indian Ridge. A refraction seismic experiment was performed to constrain upper lithosphere P-velocities and results were used to construct a 1D velocity model for earthquake location. Earthquake foci were located individually and subsequently relocated relative to each other to sharpen the image of seismically active structures. Frequent earthquake activity extends to 31 km beneath the seafloor, indicating an exceptionally thick brittle lithosphere and an undulating brittle-ductile transition that implies significant variations in the along-axis thermal structure of the lithosphere. We observe a strong relation between petrology, microseismicity distribution, and topography along the ridge axis: Peridotite-dominated areas associate with deepest hypocenters, vast volumes of lithosphere that deforms aseismically as a consequence of alteration, and the deepest axial rift valley. Areas of basalt exposure correspond to shallower hypocenters, shallower and more rugged axial seafloor. Focal mechanisms deviate from pure extension and are spatially variable. Earthquakes form an undulating band of background seismicity and do not delineate discrete detachment faults as common on slow spreading ridges. Instead, the seismicity band sharply terminates to the south, immediately beneath the rift boundary. Considering the deep alteration, large steep boundary faults might be present but are entirely aseismic.

  4. The structure of the hydrated electron in bulk and at interfaces: Does the hydrated electron occupy a cavity?

    Science.gov (United States)

    Casey, Jennifer Ryan

    experimental temperature dependence in the optical absorption spectrum and show the wrong trends in the resonance Raman spectrum. We also explore the differences between non-cavity and cavity models by quantifying the electron-water overlap, referring to the non-cavity model as an 'inverse plum pudding,' where the water molecules are embedded within the electron density. Finally, we examine hydrated electrons in the presence of an air/water interface. Experiments indicate that most likely electrons do not reside at the surface, and if they do, they have structural and dynamical properties reminiscent of the bulk. Our calculated Potentials of Mean Force indicate that both cavity and non-cavity electrons prefer to be solvated by the bulk, but that the cavity electron has a local free energy minimum near the surface. These calculated interfacial cavity electrons behave very differently than cavity electrons in the bulk, in direct contrast to experimental evidence. From the work presented in this thesis, it is clear that the non-cavity electron is the most appropriate one-electron model we have for the structure of the hydrated electron.

  5. Metal nanoparticles in condensed media: preparation and the bulk and surface structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Olenin, A Yu; Lisichkin, Georgii V [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The results of studies on the chemical synthesis and biosynthesis of metal nanoparticles in condensed media published after 2000 are analyzed and described systematically. The growth and transformations of the metallic core of nanoparticles as well as the composition and structure of the surface layer are considered and their effects on the nanoparticle size and shape are analyzed.

  6. Material structure-composite morphology-photovoltaic performance relationship for organic bulk heterojunction solar cells.

    Science.gov (United States)

    Troshin, Pavel A; Mukhacheva, Olga A; Goryachev, Andrey E; Dremova, Nadezhda N; Voylov, Dmitry; Ulbricht, Christoph; Egbe, Daniel A M; Sariciftci, Niyazi Serdar; Razumov, Vladimir F

    2012-10-01

    Conjugated PPV-PPE copolymer has been investigated in organic solar cells in combination with twelve different fullerene derivatives. It was shown that the length of solubilizing alkyl chains in the fullerene derivative structures correlates well with the performance of photovoltaic cells.

  7. Bulk Modulus and Electronic Band Structure of ZnGa2X4 (X=S,Se): a First-Principles Study

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiao-Shu; MI Shu; SUN eeng-Jun; LU Yuan; LIANG Jiu-Qing

    2009-01-01

    First-principles local density functional calculations are presented for the compounds ZnGa2X4 (X = S, Se). We investigate the bulk moduli and electronic band structures in a defect chalcopyrite structure. The lattice constants and internal parameters axe optimized. The electronic structures are analysed with the help of total and partial density of states. The relation between the cohesive energy and the unit cell volume is obtained by fully relaxed structures. We derive the bulk modulus of ZnGa2X4 by fitting the Birch-Murnaghan's equation of state. The extended Cohen's empirical formula agrees well with our ab initio results.

  8. Progressive Indosinian N-S deformation of the Jiaochang structure in the Songpan-Ganzi fold-belt, Western China.

    Science.gov (United States)

    Deng, Bin; Liu, Shugen; Liu, Sun; Jansa, Luba; Li, Zhiwu; Zhong, Yong

    2013-01-01

    Integrated field data, microstructural and three-dimensional strain analyses are used to document coaxial N-S shortening and southward increase in deformation intensity and metamorphism at the Jiaochang structure. Two episodes of deformation (D1,D2) with localized post-D2 deformation have been identified in the area. The first deformation (D1) episode is defined by a main axial-plane of parallel folds observable on a micro- to kilometer-scale, while the second episode of deformation (D2) is defined by micro-scale metamorphic folds, associated with E-W oriented stretching lineation. These processes are the result of Indosinian tectonism (Late Triassic to Early Jurassic) characterized by nearly coaxial N-S compression and deformation. This is indicated by E-W trending, sub-parallel to parallel foliation (S1, e.g. axial-plane of folds, and S2, i.e. axial-plane of metamorphic folds, crenulation cleavage) and lineation (L1, e.g. axis of folds, and L2, i.e. stretching lineation, axis of metamorphic folds and B-axis of echelon lens). Most of the porphyroblasts and minerals (e.g. pyrite, biotite) show two growth phases with localized growth in the third phase (muscovite). The progressive D1-D2 structure is widespread in the south of the Jiaochang area, but only D1 structure crops out at the north. The strain intensity (γ), compression ratios (c%) and octahedral strain intensity (εs) are similar across the Jiaochang structure (i.e., γ ≈ 1.8, c ≈ 27%, εs = 0.9), showing a broad range of Flinn values (K = 0.77 to 7.57). The long-axis orientations are roughly symmetric between two limbs of the structure. Therefore, we suggest that the architecture of the Jiaochang structure has been controlled by coaxial N-S shortening and deformation (D1-D2) during the Indosinian tectonic epoch, with insignificant post-D2 deformation.

  9. Progressive Indosinian N-S deformation of the Jiaochang structure in the Songpan-Ganzi fold-belt, Western China.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Integrated field data, microstructural and three-dimensional strain analyses are used to document coaxial N-S shortening and southward increase in deformation intensity and metamorphism at the Jiaochang structure. Two episodes of deformation (D1,D2 with localized post-D2 deformation have been identified in the area. The first deformation (D1 episode is defined by a main axial-plane of parallel folds observable on a micro- to kilometer-scale, while the second episode of deformation (D2 is defined by micro-scale metamorphic folds, associated with E-W oriented stretching lineation. These processes are the result of Indosinian tectonism (Late Triassic to Early Jurassic characterized by nearly coaxial N-S compression and deformation. This is indicated by E-W trending, sub-parallel to parallel foliation (S1, e.g. axial-plane of folds, and S2, i.e. axial-plane of metamorphic folds, crenulation cleavage and lineation (L1, e.g. axis of folds, and L2, i.e. stretching lineation, axis of metamorphic folds and B-axis of echelon lens. Most of the porphyroblasts and minerals (e.g. pyrite, biotite show two growth phases with localized growth in the third phase (muscovite. The progressive D1-D2 structure is widespread in the south of the Jiaochang area, but only D1 structure crops out at the north. The strain intensity (γ, compression ratios (c% and octahedral strain intensity (εs are similar across the Jiaochang structure (i.e., γ ≈ 1.8, c ≈ 27%, εs = 0.9, showing a broad range of Flinn values (K = 0.77 to 7.57. The long-axis orientations are roughly symmetric between two limbs of the structure. Therefore, we suggest that the architecture of the Jiaochang structure has been controlled by coaxial N-S shortening and deformation (D1-D2 during the Indosinian tectonic epoch, with insignificant post-D2 deformation.

  10. Effect of combined deformation on the structure and properties of copper and titanium alloys

    Science.gov (United States)

    Stolyarov, V. V.; Pashinskaya, E. G.; Beigel'Zimer, Ya. E.

    2010-10-01

    The effect of a combination scheme of severe plastic deformation and subsequent cold rolling or electroplastic rolling on the deformability, microstructural evolution, and mechanical properties of copper, titanium of various purities, and a titanium alloy of an equiatomic composition is studied. The combined deformation method is shown to create a number of new nanostructured and ultrafine-grained states with a high strength and ductility.

  11. Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells

    KAUST Repository

    Vandewal, Koen

    2013-08-27

    The performance of polymer:fullerene solar cells is strongly affected by the active layer morphology and polymer microstructure. In this Perspective, we review ongoing research on how structural factors influence the photogeneration and collection of charge carriers as well as charge carrier recombination and the related open-circuit voltage. We aim to highlight unexplored research opportunities and provide some guidelines for the synthesis of new conjugated polymers for high-efficiency solar cells. © 2013 American Chemical Society.

  12. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  13. UMAT Implementation of Coupled, Multilevel, Structural Deformation and Damage Analysis of General Hereditary Materials

    Science.gov (United States)

    Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.; Trowbridge, D.

    2000-01-01

    Extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis and life assessment of structures composed of advanced monolithic and composite (CMC, MMC, and PMC) materials. Recently, emphasis has been placed on concurrently addressing three important and related areas of constitutive and degradation modeling; i.e. (i) mathematical formulation, (ii) algorithmic developments for the updating (integrating) of external (e.g. stress) and internal state variable, as well as (iii) parameter estimation for the characterization of the specific model. This concurrent perspective has resulted in; i) the formulation of a fully-associative viscoelastoplastic model (GVIPS), (ii) development of an efficient implicit integration and it's associative, symmetric, consistent tangent stiffness matrix algorithm for integration of the underlying rate flow/evolutionary equations, and iii) a robust, stand-alone, Constitutive Material Parameter Estimator (COMPARE) for automatically characterizing the various time-dependent, nonlinear, material models. Furthermore, to provide a robust multi-scale framework for the deformation and life analysis of structures composed of composite materials, NASA Glenn has aggressively pursued the development of a sufficiently general, accurate, and efficient micromechanics approach known as the generalized method of cells (GMC). This work has resulted in the development of MAC/GMC, a stand-alone micromechanics analysis tool that can easily and accurately design/analyze multiphase (composite) materials subjected to complex histories. MAC/GMC admits generalized, physically based, deformation and damage models for each constituent and provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that comprise the material. Consequently, MAC/GMC can

  14. Electronic structure of reconstructed InAs(001) surfaces - identification of bulk and surface bands based on their symmetries

    Science.gov (United States)

    Olszowska, Natalia; Kolodziej, Jacek J.

    2016-02-01

    Using angle-resolved photoelectron spectroscopy (ARPES) band structures of indium- and arsenic-terminated InAs(001) surfaces are investigated. These surfaces are highly reconstructed, elementary cells of their lattices contain many atoms in different chemical configurations, and moreover, they are composed of domains having related but different reconstructions. These domain-type surface reconstructions result in the reciprocal spaces containing regions with well-defined k→∥-vector and regions with not-well-defined one. In the ARPES spectra most of the surface related features appear as straight lines in the indeterminate k→∥-vector space. It is shown that, thanks to differences in crystal and surface symmetries, the single photon energy ARPES may be successfully used for classification of surface and bulk bands of electronic states on complex, highly reconstructed surfaces instead of the most often used variable photon energy studies.

  15. Studies on bulk growth, structural and microstructural characterization of 4-aminobenzophenone single crystal grown from vertical Bridgman technique

    Indian Academy of Sciences (India)

    S P Prabhakaran; R Ramesh Babu; G Bhagavannarayana; K Ramamurthi

    2014-02-01

    Bulk single crystal of 4-aminobenzophenone with a size of 25 mm dia. and 35 mm length has been grown by vertical Bridgman technique. The crystal system of the grown crystal was confirmed by X-ray diffraction analysis. Crystalline perfection was analysed by high resolution X-ray diffraction studies. Chemical etching was carried out for the first time in 4-aminobenzophenone single crystal to study the defects presented in the grown crystal and the growth mechanism involved. Several organic etchants were employed with different etching time to select suitable etchant for studying dislocation pattern and other structural defects existing in the grown crystal. Etch patterns such as spirals and striations observed for the selective etchants provide considerable information on growth mechanism of the crystal.

  16. Dominance of interface chemistry over the bulk properties in determining the electronic structure of epitaxial metal/perovskite oxide heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Scott A.; Du, Yingge; Gu, Meng; Droubay, Timothy C.; Hepplestone, Steven; Sushko, Petr

    2015-06-09

    We show that despite very similar crystallographic properties and work function values in the bulk, epitaxial Fe and Cr metallizations on Nb:SrTiO3(001) generate completely different heterojunction electronic properties. Cr is Ohmic whereas Fe forms a Schottky barrier with a barrier height of 0.50 eV. This contrast arises because of differences in interface chemistry. In contrast to Cr [Chambers, S. A. et al., Adv. Mater. 2013, 25, 4001.], Fe exhibits a +2 oxidation state and occupies Ti sites in the perovskite lattice, resulting in negligible charge transfer to Ti, upward band bending, and Schottky barrier formation. The differences between Cr and Fe are understood by performing first-principles calculations of the energetics of defect formation which corroborate the observed interface chemistry and structure.

  17. Structure-induced resonant tail-state regime absorption in polymer: fullerene bulk-heterojunction solar cells

    Science.gov (United States)

    Pfadler, Thomas; Kiel, Thomas; Stärk, Martin; Werra, Julia F. M.; Matyssek, Christian; Sommer, Daniel; Boneberg, Johannes; Busch, Kurt; Weickert, Jonas; Schmidt-Mende, Lukas

    2016-05-01

    In this work, we present resonant tail-state regime absorption enhanced organic photovoltaics. We combine periodically structured TiO2 bottom electrodes with P3HT-PCBM bulk-heterojunction solar cells in an inverted device configuration. The wavelength-scale patterns are transferred to the electron-selective bottom electrodes via direct laser interference patterning, a fast method compatible with roll-to-roll processing. Spectroscopic and optoelectronic device measurements suggest polarization-dependent absorption enhancement along with photocurrent generation unambiguously originating from the population of tail states. We discuss the effects underlying these absorption patterns with the help of electromagnetic simulations using the discontinuous Galerkin time domain method. For this, we focus on the total absorption spectra along with spatially resolved power loss densities. Our simulations stress the tunability of the absorption resonances towards arbitrary wavelength regions.

  18. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros

    2016-11-25

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.

  19. Emergence of Coherent Localized Structures in Shear Deformations of Temperature Dependent Fluids

    Science.gov (United States)

    Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios E.

    2016-12-01

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states—in the form of similarity solutions—that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in uc(Katsaounis) and uc(Tzavaras) (SIAM J Appl Math 69:1618-1643, 2009).

  20. Bulk and interfacial molecular structure near liquid-liquid critical points

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares-Papayanopoulos, Emilio

    2000-09-01

    Critical behaviour occurs when two coexisting phases merge identity without abrupt change in physical properties. The detail of this behaviour is nowadays considered universal, being dominated by the divergence of the correlation length {xi}. Following this universality, the detailed behaviour can be studied experimentally using any convenient system. For that reason, the study of fluids, and in particular fluid mixtures, offers a useful platform since critical behaviour in such systems can often be studied at convenient temperatures and pressures. Although criticality is a consequence of the divergence of {xi}, and so in a sense is a large-scale phenomenon, nevertheless it has an influence on events at molecular level. This aspect of criticality has received relatively little study compared to the enormous effort expended over the past thirty years in elucidating the macroscopic or phenomenological aspects of criticality. The signature of criticality at molecular level is the central theme running through this research.The aim of the work described in this thesis was to investigate the surface and transport properties of near-critical binary liquid mixtures. The surface properties mainly concerned the adsorption and wetting behaviour at the vapour-liquid and liquid-solid interfaces. The transport property studied was the shear viscosity at bulk or macroscopic level and the corresponding property at molecular or microscopic level, the micro viscosity. The work presented in this thesis comprises the experimental measurements and the theoretical interpretations drawn from the results. The experimental work was varied, using both classical and modern techniques. The theoretical interpretation was used as directed towards validating and comparing the results of the experimental programme with the predictions of the current classical critical-state theories. The systems investigated have been mostly alkane + perfluoroalkane mixtures or mixtures with very similar

  1. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study.

    Science.gov (United States)

    Mardis, Kristy L; Webb, Jeremy N; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  2. Pore formation by antimicrobial peptides: structural tendencies in bulk and quasi-2D membrane systems

    Science.gov (United States)

    Gordon, Vernita; Yang, Lihua; Davis, Matthew; Som, A.; Tew, G.; Wong, Gerard

    2007-03-01

    Antimicrobial peptides are cationic, amphiphilic structures that are key components of innate immunity. A prototypical family of synthetic analogs are the phenylene ethynylene antimicrobial oligomers (AMOs), which have hydrophobic alkyl chains connected to cationic hydrophilic regions. Synchrotron small-angle x-ray scattering (SAXS) shows that when AMO is mixed with concentrated model membranes, initially in the form of Small Unilamellar Vesicles, the sample forms the inverted hexagonal phase. This is a 3-dimensional phase characterized by a regular array of size-defined water channels. We demonstrate how this structural tendency is expressed when AMOs interact with dilute model membranes in the form of Giant Unilamellar Vesicles (GUVs). Using confocal microscopy, we see that applying AMO to the GUVs causes small encapsulated molecules to be released while large molecules are retained, indicating that size-defined pores have been created. Examining the partial release of polydisperse intermediately-sized molecules allows a closer measurement of the pore size, and there are indications that this single-vesicle microscopy will allow elucidation of the kinetics of the pore-forming process.

  3. Deformations of crystal frameworks

    CERN Document Server

    Borcea, Ciprian S

    2011-01-01

    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite.

  4. Finite deformation analysis of continuum structures with time dependent anisotropic elastic plastic material behavior (LWBR/AWBA Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Hutula, D.N.

    1980-03-01

    A finite element procedure is presented for finite deformation analysis of continuum structures with time-dependent anisotropic elastic-plastic material behavior. An updated Lagrangian formulation is used to describe the kinematics of deformation. Anisotropic constitutive relations are referred, at each material point, to a set of three mutually orthogonal axes which rotate as a unit with an angular velocity equal to the spin at the point. The time-history of the solution is generated by using a linear incremental procedure with residual force correction, along with an automatic time step control algorithm which chooses time step sizes to control the accuracy and numerical stability of the solution.

  5. Elastic Moduli Inheritance and Weakest Link in Bulk Metallic Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Lu, Z.P. [University of Science and Technology, Beijing; Clausen, Bjorn [Los Alamos National Laboratory (LANL); Brown, Donald [Los Alamos National Laboratory (LANL)

    2012-01-01

    We show that a variety of bulk metallic glasses (BMGs) inherit their Young s modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in-situ neutron diffraction studies of an elastically deformed BMG, suggests a scenario of rubber-like viscoelasticity owing to a hierarchy of atomic bonds in BMGs.

  6. Ultrafast laser induced electronic and structural modifications in bulk fused silica

    Science.gov (United States)

    Mishchik, K.; D'Amico, C.; Velpula, P. K.; Mauclair, C.; Boukenter, A.; Ouerdane, Y.; Stoian, R.

    2013-10-01

    Ultrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission from resonantly and non-resonantly excited defect states reveals accumulation of non-bridging oxygen hole centers (NBOHCs) in positive index domains and oxygen deficiency centers (ODCs) with O2- ions segregation in void-like regions and in the nanostructured domains, reflecting the interaction strength. Complementary Raman investigations put into evidence signatures of the different environments where photo-chemical densification (bond rearrangements) and mechanical effects can be indicated. NBOHCs setting in before visible index changes serve as precursors for subsequent compaction build-up, indicating a scenario of cold, defect-assisted densification for the soft type I irradiation regime. Additionally, we observe hydrodynamic effects and severe bond-breaking in type II zones with indications of phase transition. These observations illuminate densification paths in fused silica in low power irradiation regimes, and equally in energetic ranges, characterized by

  7. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the

  8. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales of...

  9. Structural evolution of the Rieserferner Pluton: insight into the localization of deformation and regional tectonics implications

    Science.gov (United States)

    Ceccato, Alberto; Pennacchioni, Giorgio

    2016-04-01

    The Rieserferner pluton (RFP, Eastern Alps, 32.2±0.4 Ma, Romer et al. 2003) represents a relatively deep intrusion (12-15 km; Cesare, 1994) among Periadriatic plutons. The central portion of the RFP consists of dominant tonalites and granodiorites that show a sequence of solid-state deformation structures developed during pluton cooling and exhumation. This sequence includes: (1) quartz veins, filling two set of steeply-dipping joints trending respectively E-W and NW-SE, commonly showing a millimetric grain size and associated with strike-slip displacement. (2) Quartz- and locally epidote-filled shallowly E-dipping joint set, commonly exploited as discrete derived from both the quartz veins and the host tonalite. These mylonites show a composite sense of shear with a first stage of left-lateral strike-slip followed by a top-to-E dip-slip (normal) movement. The synmylonitic assemblage includes biotite + plagioclase + white mica + epidote ± sphene ± garnet. (3) Set of N-S-trending steeply-dipping joints. These joints are concentrated in zones 1-2 m wide, separated by otherwise un-jointed domains a few tens to hundred meters wide, and are commonly exploited as brittle-ductile faults with dominant dip-slip (normal) kinematics. The mineral assemblage of fault rocks includes white mica + calcite ± chlorite ± quartz. The joints/faults are locally involved in folding. (4) Mafic dikes, dated at 26.3±3 Ma (Steenken et al., 2000), locally injecting the N-S trending set of joints. (5) Cataclasite- and pseudotachylyte-bearing faults also forming a set of steeply-dipping N-S-trending structures. These faults are commonly associated with epidote veins surrounded by bleaching haloes. (6) Zeolite-bearing faults marked by whitish cataclasites, fault gouges and mirror-like surfaces. These faults have a complex oblique- to strike-slip kinematics with an overall N-S trending lineation. As observed in other plutons (e.g. Adamello; Pennacchioni et al., 2006), the network of

  10. Internal state variable models for micro-structure in high temperature deformation of titanium alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Jiao; LI MiaoQuan; LI XiaoLi

    2008-01-01

    There exists an interaction between microstructural evolution and deformation behavior in high temperature deformation of titanium alloys. And the microstruc-ture of titanium alloys is very sensitive to the process parameters of plastic de-formation process. In this paper, on the basis of plastic deformation mechanism of metals and alloys, a microstructural model including dislocation density rate equa-tion and grain growth rate equation is established with the dislocation density rate being an internal state variable. Applying the model to the high temperature de-formation process of Ti60 titanium alloy, the average relative errors of grain sizes between the experiments and the predictions are 9.47% for sampled data, and 13.01% for non-sampled data.

  11. Calcium Sulfoaluminate Sodalite (Ca 4 Al 6 O 12 SO 4 ) Crystal Structure Evaluation and Bulk Modulus Determination

    KAUST Repository

    Hargis, Craig W.

    2013-12-12

    The predominant phase of calcium sulfoaluminate cement, Ca 4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al 6O12)SO4 is presented. Rietveld refinements showed the orthorhombic crystal structure to best match the observed peak intensities and positions for pure Ca4(Al6O 12)SO4. The compressibility of Ca4(Al 6O12)SO4 was studied using cubic, orthorhombic, and tetragonal crystal structures due to the lack of consensus on the actual space group, and all three models provided similar results of 69(6) GPa. With its divalent cage ions, the bulk modulus of Ca4(Al6O 12)SO4 is higher than other sodalites with monovalent cage ions, such as Na8(AlSiO4)6Cl2 or Na8(AlSiO4)6(OH)2·H 2O. Likewise, comparing this study to previous ones shows the lattice compressibility of aluminate sodalites decreases with increasing size of the caged ions. Ca4(Al6O12)SO4 is more compressible than other cement clinker phases such as tricalcium aluminate and less compressible than hydrated cement phases such as ettringite and hemicarboaluminate. © 2013 The American Ceramic Society.

  12. Innovative design of composite structures: Axisymmetric deformations of unsymmetrically laminated cylinders loaded in axial compression

    Science.gov (United States)

    Hyer, M. W.; Paraska, P. J.

    1990-01-01

    The study focuses on the axisymmetric deformation response of unsymmetrically laminate cylinders loaded in axial compression by known loads. A geometrically nonlinear analysis is used. Though buckling is not studied, the deformations can be considered to be the prebuckling response. Attention is directed at three 16 layer laminates: a (90 sub 8/0 sub 8) sub T; a (0 sub 8/90 sub 8) sub T and a (0/90) sub 4s. The symmetric laminate is used as a basis for comparison, while the two unsymmetric laminates were chosen because they have equal but opposite bending-stretching effects. Particular attention is given to the influence of the thermally-induced preloading deformations that accompany the cool-down of any unsymmetric laminate from the consolidation temperature. Simple support and clamped boundary conditions are considered. It is concluded that: (1) The radial deformations of an unsymmetric laminate are significantly larger than the radial deformations of a symmetric laminate, although for both symmetric and unsymmetric laminates the large deformations are confined to a boundary layer near the ends of the cylinder; (2) For this nonlinear problem the length of the boundary layer is a function of the applied load; (3) The sign of the radial deformations near the supported end of the cylinder depends strongly on the sense (sign) of the laminate asymmetry; (4) For unsymmetric laminates, ignoring the thermally-induced preloading deformations that accompany cool-down results in load-induced deformations that are under predicted; and (5) The support conditions strongly influence the response but the influence of the sense of asymmetry and the influence of the thermally-induced preloading deformations are independent of the support conditions.

  13. Molecular Dynamics Simulation of Structural Characterization of Elastic and Inelastic Deformation in ZrCu Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shidong Feng

    2014-01-01

    Full Text Available The nanoscopic deformation behaviors in a ZrCu metallic glass model during loading-unloading process under uniaxial compression have been analyzed on the basis of the molecular dynamics (MD. The reversible degree of shear origin zones (SOZs is used as the structural indicator to distinguish the elastic deformation and inelastic deformation of ZrCu metallic glass at the atomic level. We find that the formation of SOZs is reversible at the elastic stage but irreversible at the inelastic stage during the loading and unloading processes. At the inelastic stage, the full-icosahedra fraction in SOZs is quickly reduced with increased strain and the decreasing process is also irreversible during the unloading processes.

  14. Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces.

    Science.gov (United States)

    Politi, José Roberto dos Santos; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc

    2013-08-14

    The geometric and electronic structure of catalytically relevant molybdenum carbide phases (cubic δ-MoC, hexagonal α-MoC, and orthorhombic β-Mo2C) and their low Miller-index surfaces have been investigated by means of periodic density functional theory (DFT) based calculations with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Comparison to available experimental data indicates that this functional is particularly well suited to study these materials. The calculations reveal that β-Mo2C has a stronger metallic character than the other two polymorphs, both β-Mo2C and δ-MoC have a large ionic contribution, and δ- and α-MoC exhibit the strongest covalent character. Among the various surfaces explored, the calculations reveal the high stability of the δ-MoC(001) nonpolar surface, Mo- and C-terminated (001) polar surfaces of α-MoC, and the nonpolar (011) surface of β-Mo2C. A substantially low work function of only 3.4 eV is predicted for β-Mo2C(011), suggesting that this system is particularly well suited for (electro)catalytic processes where surface → adsorbate electron transfer is essential. The overall implications for heterogeneously catalysed reactions by these molybdenum carbide nanoparticles are also discussed.

  15. Femtosecond-laser fabrication of cyclic structures in the bulk of transparent dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetov, S K; Ganin, D V; Lapshin, K E; Obidin, A Z [Physics Instrumentation Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Troitsk, Moscow Region (Russian Federation)

    2015-08-31

    We report the results of the experiments on developing precision micromachining technology, obtained under the conditions of focusing the pulses of a femtosecond (FS) laser into the volume of a transparent material, which is important, particularly, in the processing of biomaterials in ophthalmology. The implementation conditions and some characteristic features of the special regime of micromachining are determined, when at a definite relation between the sample scanning velocity and the repetition rate of FS pulses the region, destroyed by the laser radiation, is shifted along the optical axis towards the objective and back, forming cyclic patterns inside the sample. It is supposed that the main causes of the damage region shift are the induced modification of the refractive index and the reduction of the damage threshold due to the change in the material density and structure in the microscopic domain, adjacent to the boundary of the cavity produced by the previous pulse. The results of the performed study with the above regime taken into account were used in the technology of precision cutting of crystals, glasses and polymers. The best quality of the cut surface is achieved under the conditions, eliminating the appearance of the cyclic regime. In the samples of polycarbonate, polymethyl methacrylate and fused silica the cylindrical cavities were obtained with the aspect ratio higher than 200, directed along the laser beam, and microcapillaries with the diameter 1 – 2 μm in the direction, perpendicular to this beam. (interaction of laser radiation with matter)

  16. Femtosecond-laser fabrication of cyclic structures in the bulk of transparent dielectrics

    Science.gov (United States)

    Vartapetov, S. K.; Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.

    2015-08-01

    We report the results of the experiments on developing precision micromachining technology, obtained under the conditions of focusing the pulses of a femtosecond (FS) laser into the volume of a transparent material, which is important, particularly, in the processing of biomaterials in ophthalmology. The implementation conditions and some characteristic features of the special regime of micromachining are determined, when at a definite relation between the sample scanning velocity and the repetition rate of FS pulses the region, destroyed by the laser radiation, is shifted along the optical axis towards the objective and back, forming cyclic patterns inside the sample. It is supposed that the main causes of the damage region shift are the induced modification of the refractive index and the reduction of the damage threshold due to the change in the material density and structure in the microscopic domain, adjacent to the boundary of the cavity produced by the previous pulse. The results of the performed study with the above regime taken into account were used in the technology of precision cutting of crystals, glasses and polymers. The best quality of the cut surface is achieved under the conditions, eliminating the appearance of the cyclic regime. In the samples of polycarbonate, polymethyl methacrylate and fused silica the cylindrical cavities were obtained with the aspect ratio higher than 200, directed along the laser beam, and microcapillaries with the diameter 1 - 2 μm in the direction, perpendicular to this beam.

  17. Influence of impurity hydrogen on the structure and properties of bulk Li and pressure effects

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhiming; MA; Yanming; HE; Zhi; GUI; Tian; HE; Wenjiong; LIU; Bingbing; ZOU; Guangtian

    2006-01-01

    The structure and properties of a 16-atom body-centered cubic lithium cell with an interstitial hydrogen atom are studied using a pseudopotential-plane-wave method within the density functional theory at 0 K and high pressures.The host lattice is dramatically distorted by the introduction of H.Although the hydrogen atom is stable at the tetragonal site in perfect bcc host lattice,it favors the octahedral site formed by six nonequivalent Li atoms after full relaxation of the cell,showing P4/mmm symmetry within the pressures ranging from 0 to 6 GPa.The lattice ratio (a/c) changes irregularly with external pressure at about 3 GPa.The hydrogen band lies in the bottom of the valence band,separated by a gap from the metallic bands,illustrating the electronegativity of hydrogen.High reflectivity in the low frequency area induced by the impurity hydrogen is observed when only interband transitions are taken account of.A dip in reflectivity due to parallel band transitions is observed at ~0.4 eV.Another dip at ~4.3 eV appears when external pressure increases over 4 GPa.

  18. Structures of Syn-deformational Granites in the Longquanguan Shear Zone and Their Monazite Electronic Microprobe Dating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinjiang; ZHAO Lan; LIU Shuwen

    2006-01-01

    The Longquanguan shear zone is an important structural belt in the North China Craton,separating the underlying Fuping complex from the overlying Wutai complex. This shear zone has experienced three episodes of deformation: the first and main episode is a ductile top-to-ESE shear along the gently northwest-west dipping foliations, while the other two episodes are later collapse sliding. Prolonged granites parallel to the shear foliations make one of the main compositions of the Longquanguan shear zone. These granites experienced deformation to form mylonitic rocks when they emplaced during the first episode of deformation. Structural characters of the granites and their contacts to the country rocks indicate that these granites possibly resulted from in-situ partial remelting by shearing, i.e., they are syn-deformational granites. Monazites in these mylonitic granites are magmatic minerals and their crystallization ages may represent ages of the magmatic events, and also the ages for the main deformation of the Longquanguan shear zone. Monazite electronic microprobe dating were carried on two samples of granite, which gives multiple peak ages, among which 1,846 Ma and 1,877 Ma are the main peak ages for the two samples. These ages represent the main deformation of the Longquanguan shear zone, which is consistent with the main regional geological event at about 1,850 Ma caused by the collision between the Eastern and Western Blocks in North China. The good match between the monazite ages and the corresponding regional tectono-thermal events shows the feasibility and reliability of monazite electronic microprobe dating.

  19. Structural deformities of deciduous teeth in patients with hypophosphatemic vitamin D-resistant rickets

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Ooshima, T.; Lily, T.S.; Yasufuku, Y.; Sobue, S.

    1988-02-01

    Structural deformities of deciduous teeth from patients with hypophosphatemic vitamin D-resistant rickets (HVDRR) (1 male and 2 female patients) were examined by means of transmitted light microscopy, contact microradiography, and x-ray microanalysis. Freshly extracted teeth were fixed in formalin and subsequently hemisected longitudinally through the midline. One half was prepared for ground sections and the other half for decalcified sections. Neither gross nor microscopic abnormalities were present in enamel of patients with HVDRR. The concentration of calcium and phosphorus and the calcium/phosphorus ratio of the enamel of patients with HVDRR were nearly equal to those of normal teeth, although the degree of radiopacity was less in HVDRR. On the other hand, numerous microscopic abnormalities in the dentin of patients with HVDRR were found, such as interglobular dentin, wide predentin zones, and tubular defects. The concentration of phosphorus in the dentin of a patient with familial HVDRR was extremely low. Furthermore, formation of reparative dentin was observed at the pulp horn of teeth in patients with HVDRR that had been subjected to definite attrition at the corresponding dentin site.

  20. Review of the Structure of Bulk Power Markets Grid of the Future White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, B.J.

    2000-05-02

    This paper is intended to provide an understanding of the needs of a restructured electricity market and some of the market methods and systems that have developed to address those needs. Chapter 2 discusses the historic market framework of vertically integrated utilities. Chapter 3 introduces the changes to the vertically integrated utility brought about by restructuring. It discusses generation and transmission planning, control and the regulatory process. It also summarizes reliability, security and adequacy. Chapter 4 discusses the basic structures of generation and transmission markets along with transmission-congestion contracts (TCCs) and transmission pricing principles. A discussion is given of the 12 ancillary services needed to reliably operate the power system. Chapter 4 also deals with the role of transmission in opening up markets to competition. In California increments (incs) and decrements (decs) are bid to overcome price differences in different zones caused by congestion. In PJM, any member can purchase Fixed Transmission Rights (FTRs) which allows the member to ''collect rent'' on congested lines and essentially obtain a hedge against congestion. There has been a worrisome slowdown in the growth of the transmission system in the United States since about the mid 70's. However, there are methods for providing incentives for construction of new transmission using tariffs. The California and PJM transmission planning processes are outlined. The Federal Energy Regulatory Commission (FERC) has recently issued a proposed rulemaking on Regional Transmission Organizations (RTOs) which stated that the traditional methods of grid management are showing signs of strain and may be inadequate to support efficient and reliable transmission operations. Chapter 5 provides examples of market implementations and a discussion of the price spikes seen in the Midwest in the summers of 1998 and 1999. An examination of six restructured market

  1. Refinement of atomic and magnetic structures using neutron diffraction for synthesized bulk and nano-nickel zinc gallate ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ata-Allah, S.S. [Reactor Physics Department, NRC, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt); Balagurov, A.M. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Moscow region (Russian Federation); Hashhash, A. [Reactor Physics Department, NRC, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt); Bobrikov, I.A. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Moscow region (Russian Federation); Hamdy, Sh. [Reactor Physics Department, NRC, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    2016-01-15

    The parent NiFe{sub 2}O{sub 4} and Zn/Ga substituted spinel ferrite powders have been prepared by solid state reaction technique. As a typical example, the Ni{sub 0.7}Zn{sub 0.3}Fe{sub 1.5}Ga{sub 0.5}O{sub 4} sample has been prepared by sol–gel auto combustion method with the nano-scale crystallites size. X-ray and Mössbauer studies were carried out for the prepared samples. Structure and microstructure properties were investigated using the time-of-flight HRFD instrument at the IBR-2 pulsed reactor, at a temperatures range 15–473 K. The Rietveld refinement of the neutron diffraction data revealed that all samples possess cubic symmetry corresponding to the space group Fd3m. Cations distribution show that Ni{sup 2+} is a complete inverse spinel ion, while Ga{sup 3+} equally distributed between the two A and B-sublattices. The level of microstrains in bulk samples was estimated as very small while the size of coherently scattered domains is quite large. For nano-structured sample the domain size is around 120 Å.

  2. MBE growth of Sb-based bulk nBn infrared photodetector structures on 6-inch GaSb substrates

    Science.gov (United States)

    Liu, Amy W. K.; Lubyshev, Dmitri; Qiu, Yueming; Fastenau, Joel M.; Wu, Ying; Furlong, Mark J.; Tybjerg, Marius; Martinez, Rebecca J.; Mowbray, Andrew; Smith, Brian

    2015-06-01

    The GaSb-based 6.1 Å lattice constant family of materials and heterostructures provides rich bandgap engineering possibilities and have received considerable attention for their potential and demonstrated performance in infrared (IR) detection and imaging applications. Mid-wave and long-wave IR photodetectors are progressing toward commercial manufacturing applications. To succeed, they must move from research laboratory settings to general semiconductor production, and high-quality GaSb-based epitaxial wafers with diameter larger than the current standard 3-inch are highly desirable. 4-inch GaSb substrates have been in production for a couple of years and are now commercially available. Recently, epi-ready GaSb substrates with diameter in excess of 6-inch were successfully produced. In this work, we report on the MBE (Molecular Beam Epitaxy) growth of generic MWIR bulk nBn photodetectors on 6-inch diameter GaSb substrates. The surface morphology, optical and structural quality of the epiwafers as evaluated by atomic force microscopy (AFM), Nomarski microscopy, low temperature photoluminescence (PL) spectroscopy, and high-resolution x-ray diffraction (XRD) will be discussed. Current density versus voltage (J-V) and photoresponsivity measurements from large-area mesa diode fabricated will also be reported. Material and device properties of these 6-inch epiwafers will be compared to similar structures grown on commercially available 4-inch diameter GaSb substrates.

  3. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.

    Science.gov (United States)

    Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei

    2016-01-01

    In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining.

  4. PREDICTION OF THE VALUE OF IRREVERSIBLE DEFORMATION OF ROAD STRUCTURE FROM THE IMPACT OF TRAFFIC

    Directory of Open Access Journals (Sweden)

    F. V. Matvienko

    2011-07-01

    Full Text Available Problem statement. The study of irreversible strains in areas of non-rigid pavement with asphalt coating under the influence of traffic flow requires development of methodologies for assessment of the operational status of asphalt concrete pavement subjected to the formation of ruts. To pre-dict the magnitude of irreversible deformation of the pavement, that is rut, mathematical model, methodology and instruments to measure the parameters of road construction should be developed.Results and conclusions. Measurements of the deflection of road construction and rut parameters, including wear and plastic deformation, proved the adequacy of the proposed mathematical model. Obtained analytical dependences allow prediction of pavement wear, plastic deformation and subgrade deterioration. In contrast to the known ones, they take into account the impact of traffic on the formation of a rut. Proposed methods allow estimation of irreversible pavement deformations based on the values obtained with the help of instruments.

  5. Delineating shallow Neogene deformation structures in northeastern Pará State using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Dilce F. Rossetti

    2003-06-01

    Full Text Available The geological characterization of shallow subsurface Neogene deposits in northeastern Pará State using Ground Penetrating Radar (GPR revealed normal and reverse faults, as well as folds, not yet well documented by field studies. The faults are identified mostly by steeply-dipping reflections that sharply cut the nearby reflections causing bed offsets, drags and rollovers. The folds are recognized by reflections that are highly undulating, configuring broad concave and convex-up features that are up to 50 m wide and 80 to 90 ns deep. These deformation structures are mostly developed within deposits of Miocene age, though some of the faults might continue into younger deposits as well. Although the studied GPR sections show several diffractions caused by trees, differential degrees of moisture, and underground artifacts, the structures recorded here can not be explained by any of these ''noises''. The detailed analysis of the GPR sections reveals that they are attributed to bed distortion caused by brittle deformation and folding. The record of faults and folds are not widespread in the Neogene deposits of the Bragantina area. These GPR data are in agreement with structural models, which have proposed a complex evolution including strike-slip motion for this area from the Miocene to present.A caracterização geológica de depósitos neógenos ocorrentes em sub-superfície rasa no nordeste do Estado do Pará, usando Radar de Penetração no Solo (GPR, revelou a presença de falhas normais e reversas, bem como dobras, ainda não documentadas em estudos de campo prévios. As falhas são identificadas por reflexões inclinadas que cortam bruscamente reflexões vizinhas, causando freqüentes deslocamentos de camadas. As dobras são reconhecidas por reflexões fortemente ondulantes, configurando feições côncavas e convexas que medem até 50 m de amplitude e 80 a 90 m de profundidade. Estas estruturas deformacionais desenvolvem-se, principalmente

  6. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    Science.gov (United States)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  7. Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity

    Science.gov (United States)

    Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey

    2017-01-01

    Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.

  8. Effect of multiaxial deformation Max-strain on the structure and properties of Ti-Ni alloy

    Science.gov (United States)

    Khmelevskaya, I. Yu; Kawalla, R.; Prokoshkin, S. D.; Komarov, V. S.

    2014-08-01

    The severe plastic deformation (SPD) forming ultrafine-grained (nanocrystalline or nanosubgrained) structure is one of the most effective ways to improve the functional properties of Ti-Ni-based shape memory alloys [1, 2]. In the present work, the SPD of near-equiatomic Ti-Ni alloy was carried out using the multi-axial deformation module Max-strain, which is a part of the physical simulation system "Gleeble 3500". The deformation was performed at a constant temperature of 400°C with speed of 0.5 mm/s in six passes without interpass pauses. The accumulated true strain was about 3. As a result, a mixed ultrafine-grained/subgrained structure with grain/subgrain sizes from 50 to 300 nm and a high density of free dislocations formed. The resulting structure is close to a nanoscale region and provides a significant advantage in the basic functional property - completely recoverable strain - as compared with a conventional recrystallized structure: 7% versus 2%.

  9. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    Science.gov (United States)

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-07-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.

  10. Structural Properties of Bulk and Aqueous Systems of PEO-PIB-PEO Triblock Copolymers as Studied by Small-Angle Neutron Scattering and Cryo-Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Mortensen, Kell; Talmon, Yeshayahu; Gao, Bo

    1997-01-01

    The phase behavior of a low molecular weight (M-w = 6000) symmetric triblock copolymer of poly(ethylene oxide) and poly(isobutylene), PEO-PIB-PEO, in the bulk as well in aqueous, D2O, solutions has been studied using small-angle neutron scattering and cryo-transmission electron microscopy....... In aqueous solutions PEO-PIB-PEO self-associates into micelles. At low polymer concentration, the micelles predominantly have threadlike form, with lengths of typically 1-2000 Angstrom. Those coexist, however, with spheroidal micelles of similar diameter. For a polymer concentration above roughly 20......% the aggregates probably have a more disclike shape, as the micelles organize in lamellar structure. The 30% solution forms a bulk lamellar structure which, upon shear, organizes in a monodomain crystal. The bulk, PEO-PIB-PEO block copolymer forms at low temperatures a lamellar ordered phase induced by the PEO...

  11. Effects of FeSb6 octahedral deformations on the electronic structure of LaFe4Sb12

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph

    2011-09-01

    First-principles density functional based electronic structure calculations are performed in order to clarify the influence of FeSb6 octahedral deformations on the structural and electronic structure properties of LaFe 4Sb12. Our results show that octahedral tiltings correlate with the band dispersions and, consequently, the band masses. While total energy variation points at an enhanced role of lattice anharmonicity, flat bands emerge from a redistribution of the electronic states. © 2011 Elsevier B.V. All rights reserved.

  12. Evolution of deformation structures under varying loading conditions followed in situ by high angular resolution 3DXRD

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, B.;

    2009-01-01

    intermittently. When the traction is terminated, stress relaxation occurs and number, size and orientation of subgrains are found to be constant. The subgrain structure freezes and only a minor clean-up of the dislocation structure is observed. When changing the tensile direction after pre-deformation in tension......, a systematic correlation between the degree of strain path change and the changes in the dislocation structure quantified by the volume fraction of the subgrains is established. For obtaining the subgrain volume fraction, a new fitting method has been developed for partitioning the contributions of subgrains...

  13. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB{sub 2} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Phaneendra, Konduru, E-mail: phaneendra-50@yahoo.com; Asokan, K., E-mail: phaneendra-50@yahoo.com; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Vasanth Kung, New Delhi-110067 (India); Awana, V. P. S. [Quantum Phenomena and Applications, National Physical Laboratory, K S Krishnan Marg, New Delhi-110012 (India); Sastry, S. Sreehari [Dept. of Physics, Acharya Nagarjuna University, Guntur-522510 (India)

    2014-04-24

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB{sub 2}) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ∼ 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [ρ (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB{sub 2} phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (J{sub c}) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  14. Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure.

    Science.gov (United States)

    Stevenson, Bradley S; Drilling, Heather S; Lawson, Paul A; Duncan, Kathleen E; Parisi, Victoria A; Suflita, Joseph M

    2011-04-01

    The oil-water-gas environments of oil production facilities harbour abundant and diverse microbial communities that can participate in deleterious processes such as biocorrosion. Several molecular methods, including pyrosequencing of 16S rRNA libraries, were used to characterize the microbial communities from an oil production facility on the Alaskan North Slope. The communities in produced water and a sample from a 'pig envelope' were compared in order to identify specific populations or communities associated with biocorrosion. The 'pigs' are used for physical mitigation of pipeline corrosion and fouling and the samples are enriched in surface-associated solids (i.e. paraffins, minerals and biofilm) and coincidentally, microorganisms (over 10(5) -fold). Throughout the oil production facility, bacteria were more abundant (10- to 150-fold) than archaea, with thermophilic members of the phyla Firmicutes (Thermoanaerobacter and Thermacetogenium) and Synergistes (Thermovirga) dominating the community. However, the structure (relative abundances of taxa) of the microbial community in the pig envelope was distinct due to the increased relative abundances of the genera Thermacetogenium and Thermovirga. The data presented here suggest that bulk fluid is representative of the biofilm communities associated with biocorrosion but that certain populations are more abundant in biofilms, which should be the focus of monitoring and mitigation strategies.

  15. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB2 bulk samples

    Science.gov (United States)

    Phaneendra, Konduru; Asokan, K.; Awana, V. P. S.; Sastry, S. Sreehari; Kanjilal, D.

    2014-04-01

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB2) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ˜ 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [ρ (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB2 phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (Jc) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  16. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components.

    Science.gov (United States)

    Puppulin, Leonardo; Sugano, Nobuhiko; Zhu, Wenliang; Pezzotti, Giuseppe

    2014-03-01

    Structural modifications were studied at the molecular scale in two highly crosslinked UHMWPE materials for hip-joint acetabular components, as induced upon application of (uniaxial) compressive strain to the as-manufactured microstructures. The two materials, quite different in their starting resins and belonging to different manufacturing generations, were a single-step irradiated and a sequentially irradiated polyethylene. The latter material represents the most recently launched gamma-ray-irradiated polyethylene material in the global hip implant market. Confocal/polarized Raman spectroscopy was systematically applied to characterize the initial microstructures and the microstructural response of the materials to plastic deformation. Crystallinity fractions and preferential orientation of molecular chains have been followed up during in vitro deformation tests on unused cups and correlated to plastic strain magnitude and to the recovery capacity of the material. Moreover, analyses of the in vivo deformation behavior of two short-term retrieved hip cups are also presented. Trends of preferential orientation of molecular chains as a function of residual strain were similar for both materials, but distinctly different in their extents. The sequentially irradiated material was more resistant to plastic deformation and, for the same magnitude of residual plastic strain, possessed a higher capacity of recovery as compared to the single-step irradiated one.

  17. Soft-sediment deformation structures in cores from lacustrine slurry deposits of the Late Triassic Yanchang Fm. (central China

    Directory of Open Access Journals (Sweden)

    Yang Renchao

    2016-09-01

    Full Text Available The fine-grained autochthonous sedimentation in the deep part of a Late Triassic lake was frequently interrupted by gravity-induced mass flows. Some of these mass flows were so rich in water that they must have represented slurries. This can be deduced from the soft-sediment deformation structures that abound in cores from these lacustrine deposits which constitute the Yanchang Fm., which is present in the Ordos Basin (central China.

  18. Effect of rolling-assisted deformation on the formation of an ultrafine-grained structure in a two-phase titanium alloy subjected to severe plastic deformation

    Science.gov (United States)

    Demakov, S. L.; Elkina, O. A.; Illarionov, A. G.; Karabanalov, M. S.; Popov, A. A.; Semenova, I. P.; Saitova, L. R.; Shchetnikov, N. V.

    2008-06-01

    The effect of rolling in the temperature range 450 650°C on the fragmentation of the primary phase in a hot-rolled VT6 alloy rod preliminarily subjected to severe plastic deformation by equal-channel angular pressing at 700°C (scheme B c, the angle between the channels is 135°, 12 passes) is studied. Rolling at 450°C without preliminary ECAP is shown not to cause α-phase fragmentation and to favor intense cold working of the alloy due to multiple slip. ECAP provides partial fragmentation of the initial structure of the α phase and changes the morphology of the retained β phase: it transforms from a continuous matrix phase into separated precipitates located between α particles. This transformation activates the fragmentation of the α phase during rolling at 550°C owing to the development of twinning and polygonization processes apart from multiple slip. Both a decrease (to 450°C) and an increase (to 625 650°C) in the rolling temperature as compared to 550°C lead to the formation of a less homogeneous and fragmented structure because of weakly developed recovery and intense cold working in the former case and because of the beginning of recrystallization and the suppression of twinning in the latter case. A relation between the structure that forms upon SPD followed by rolling and the set of its properties is found. A general scheme is proposed for the structural transformations that occur during ECAP followed by rolling at various temperatures.

  19. ARPES investigation on the surface vs bulk electronic structures of correlated topological insulators YbB6 and other rare earth hexaborides

    Science.gov (United States)

    Xu, Nan; Matt, C. E.; Pomjakushina, E.; Dil, J. H.; Landolt, G.; Ma, J. Z.; Shi, X.; Dhaka, R. S.; Plumb, N. C.; Radovic, M.; Rogalev, V.; Strocov, V.; Kim, T. K.; Hoesch, M.; Conder, K.; Mesot, J.; Ding, H.; Shi, Ming

    2015-03-01

    Using ARPES performed in wide photon energy range we systematically studied the bulk and surface electronic structures of a topological mixed- valence insulator candidate, YbB6. The bulk B-2p states are probed with bulk-sensitive soft X-ray ARPES, exhibiting strong three-dimensionality with the band top locating 80 meV below the EF at the X point. The measured bulk Yb-4f states are located at 1 and 2.3 eV below EF, which hybridize with the dispersive B-2p states. The bulk band structures obtained by experiments are substantially different from the first principle calculations, but it can be better described by adding a correlation parameter U = 7 eV, indicating YbB6 is a correlated system. Using surface-sensitive VUV ARPES, we revealed two-dimensional surface states which form three electron-like FSs with Dirac-cone-like dispersions. The odd number of surface FSs gives the first indication that the surface states are topological non-trivial. The spin-resolved ARPES measurements provide further evidence that these surface states are spin polarized with spin locked to the crystal momentum. Recent results on the TI phase in other rare earth hexaborides will also be shown.

  20. The influence of structural defects on intra-granular critical currents of bulk MgB2

    OpenAIRE

    Serquis, A.; Liao, X. Z.; Civale, L.; Zhu, Y. T.; Coulter, J. Y.; Peterson, D E; Mueller, F. M.

    2003-01-01

    Bulk MgB2 samples were prepared under different synthesis conditions and analyzed by scanning and transmission electron microscopy. The critical current densities were determined from the magnetization versus magnetic field curves of bulk and powder-dispersed-in-epoxy samples. Results show that through a slow cooling process, the oxygen dissolved in bulk MgB2 at high synthesis temperatures can segregate and form nanometer-sized coherent precipitates of Mg(B,O)2 in the MgB2 matrix. Magnetizati...

  1. Dual influence of the rejuvenation of Southern Tianshan and Western Kunlun orogen on the Cenozoic structure deformation of Tarim Basin, northwestern China: A superposition deformation model from Bachu Uplift

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement),Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Tianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.

  2. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  3. Various aspects of the Deformation Dependent Mass model of nuclear structure

    CERN Document Server

    Petrellis, D; Minkov, N

    2015-01-01

    Recently, a variant of the Bohr Hamiltonian was proposed where the mass term is allowed to depend on the beta variable of nuclear deformation. Analytic solutions of this modified Hamiltonian have been obtained using the Davidson and the Kratzer potentials, by employing techniques from supersymmetric quantum mechanics. Apart from the new set of analytic solutions, the newly introduced Deformation-Dependent Mass (DDM) model offered a remedy to the problematic behaviour of the moment of inertia in the Bohr Hamiltonian, where it appears to increase proportionally to the square of beta. In the DDM model the moments of inertia increase at a much lower rate, in agreement with experimental data. The current work presents an application of the DDM-model suitable for the description of nuclei at the point of shape/phase transitions between vibrational and gamma-unstable or prolate deformed nuclei and is based on a method that was successfully applied before in the context of critical point symmetries.

  4. Internal state variable models for micro- structure in high temperature deformation of titanium alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    There exists an interaction between microstructural evolution and deformation behavior in high temperature deformation of titanium alloys. And the microstruc- ture of titanium alloys is very sensitive to the process parameters of plastic de- formation process. In this paper, on the basis of plastic deformation mechanism of metals and alloys, a microstructural model including dislocation density rate equa- tion and grain growth rate equation is established with the dislocation density rate being an internal state variable. Applying the model to the high temperature de- formation process of Ti60 titanium alloy, the average relative errors of grain sizes between the experiments and the predictions are 9.47% for sampled data, and 13.01% for non-sampled data.

  5. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

    DEFF Research Database (Denmark)

    Zhang, Aihua; Peng, Mingzeng; Willatzen, Morten;

    2017-01-01

    , in the framework of the 6 × 6 k·p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields...... to elucidate the effects of the piezoelectric potential and the deformation potential on the strain-dependent luminescence. The experimentally measured photoluminescence variatio½n as a function of pressure can be qualitatively explained by the theoretical results....

  6. Structure and deformations of strongly magnetized neutron stars with twisted torus configurations

    CERN Document Server

    Ciolfi, R; Gualtieri, L

    2010-01-01

    We construct general relativistic models of stationary, strongly magnetized neutron stars. The magnetic field configuration, obtained by solving the relativistic Grad-Shafranov equation, is a generalization of the twisted torus model recently proposed in the literature; the stellar deformations induced by the magnetic field are computed by solving the perturbed Einstein's equations; stellar matter is modeled using realistic equations of state. We find that in these configurations the poloidal field dominates over the toroidal field and that, if the magnetic field is sufficiently strong during the first phases of the stellar life, it can produce large deformations.

  7. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    OpenAIRE

    Philippe, Matthieu; Fagnard, Jean-François; Kirsch, Sébastien; Xu, Zhihan; Dennis, Anthony; Shi, Yunhua; Cardwell, David A.; Vanderheyden, Benoît; Vanderbemden, Philippe

    2014-01-01

    Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surfa...

  8. Evolution of orientations and deformation structures within individual grains in cold rolled columnar grained nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Winther, Grethe;

    2011-01-01

    Columnar grained Ni is used as a model material allowing simultaneous non-surface investigations of the evolution of crystallographic orientations and deformation microstructures within individual grains as a function of rolling strain up to ε=0.7. Electron channelling contrast and electron...

  9. 3D EBSD charactyerization of deformation structures in commercial purity aluminum

    DEFF Research Database (Denmark)

    Fengxiang, Lin; Godfrey, A.; Juul Jensen, Dorte;

    2010-01-01

    A method to map the microstructure in deformed aluminum in three dimensions is presented. The method employs serial sectioning by mechanical polishing, and electropolishing to obtain a good surface quality, and orientation mapping of individual grains in each section by electron backscattered dif...

  10. Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, U.

    2007-01-01

    A novel synchrotron-based technique "high angular resolution 3DXRD" is presented in detail, and applied to the characterization of oxygen-free, high-conductivity copper at a tensile deformation of 2%. The position and shape in reciprocal space of 14 peaks originating from deeply embedded individual...

  11. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  12. Structural coarsening during annealing of an aluminum plate heavily deformed using ECAE

    DEFF Research Database (Denmark)

    Mishin, Oleg V.; Zhang, Yubin; Godfrey, A.

    2015-01-01

    The microstructure and softening behaviour have been investigated in an aluminum plate heavily deformed by equal channel angular extrusion and subsequently annealed at 170 °C. It is found that at this temperature the microstructure evolves by coarsening with no apparent signs of recrystallization...

  13. Kinetics deformation of current-voltage characteristics of the varistor oxide structures due to overcharging of the localized states

    Directory of Open Access Journals (Sweden)

    Tonkoshkur A. S.

    2014-12-01

    Full Text Available Prolonged exposure of zinc oxide varistors to the electrical load leads to current-voltage characteristics (CVC deformation, which is associated with a change in the height and width of the intergranular barriers, which are main structural element of the varistors. Polarization phenomena in zinc oxide ceramics are studied in a number of works, but those are mainly limited to the study of the physics of the CVC deformation process and to determining the parameters of localized electronic states involved in this process. This paper presents the results on the simulation of the deformation of pulse CVC of a separate intergranular potential barrier at transient polarization/depolarization, associated with recharging of surface electronic states (SES, which cause this barrier. It is found that at high density of SES their degree of electron filling is small and the effect of DC voltage leads to a shift of pulse current-voltage characteristics into the region of small currents. Conversely, the low density SES are almost completely filled with electrons, and after crystallite polarization CVC is shifted to high currents. Experimental studies have confirmed the possibility of applying the discovered laws to ceramic varistor structures. The proposed model allows interpreting the «anomalous» effects (such as increase in the classification voltage and reduction of active losses power observed during the varistors accelerated aging test.

  14. Structural and magnetic properties of rapidly quenched and as-cast bulk NdFeBCu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Ll, J.L. [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, Havana 10400 (Cuba)]. E-mail: sanchez@fisica.uh.cu; Bustamante S, R. [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, Havana 10400 (Cuba); Barthem, V.M.T.S. [Instituto de Fisica, UFRJ, CT, Bloco A, C.P. 68528, 21945-970, Rio de Janeiro (Brazil); Miranda, P.E.V. de [Departamento de Engenharia Metalurgica e de Materiais, COPPE, UFRJ, C.P. 68505, 21945-970, Rio de Janeiro (Brazil)

    2005-07-15

    A study of the structural and magnetic properties of as-cast and melt spun (x)Nd{sub 2}Fe{sub 14}B(100-x)Nd{sub 70}Cu{sub 30} alloys (x=10, 50 and 75%wt.) is presented. In as-cast alloys for x=10wt%. the formation of a high coercivity phase, referred to as N (T{sub C}=240 deg. C, {sub i}H{sub C}=4.9kOe) is found. N is a (Nd-Fe)-based phase with a Fe/Nd ratio lower than that of phase Nd{sub 2}Fe{sub 14}B ({phi}). It is suggested that this phase is related to the A{sub 1} phase found in binary Nd-Fe alloys. In melt-spun alloys, at the same x value of 10wt%, another hard phase is found which is suggested to be the Nd{sub 6}Fe{sub 13}Cu {delta}-phase (T{sub C}=192 deg. C, {sub i}H{sub C}=4.8kOe). Transmission electron microscope (TEM) micrographs of the ribbons with x=10wt% shows the formation of nanograins with a non-uniform grain size distribution. In cast alloys with x=50 and 75wt% large slab-like grains of {phi} are formed, in the inter-granular region a Nd-Cu eutectic phase and Nd grains, are observed. High coercivities are obtained in ribbons with x=50wt% ({sub i}H{sub C}=19.7kOe) and 75wt% ({sub i}H{sub C}=13.0kOe). A slight reduction in the Curie temperature of the {phi}-phase with respect to the bulk value is found in these ribbons.

  15. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future.

  16. MAPPING FLOW LOCALIZATION PROCESSES IN DEFORMATION OF IRRADIATED REACTOR STRUCTURAL ALLOYS - FINAL REPORT. Nuclear Energy Research Initiative Program No. MSF99-0072. Period: August 1999 through September 2002. (ORNL/TM-2003/63)

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    2003-09-26

    Metals that can sustain plastic deformation homogeneously throughout their bulk tend to be tough and malleable. Often, however, if a metal has been hardened it will no longer deform uniformly. Instead, the deformation occurs in narrow bands on a microscopic scale wherein stresses and strains become concentrated in localized zones. This strain localization degrades the mechanical properties of the metal by causing premature plastic instability failure or by inducing the formation of cracks. Irradiation with neutrons hardens a metal and makes it more prone to deformation by strain localization. Although this has been known since the earliest days of radiation damage studies, a full measure of the connection between neutron irradiation hardening and strain localization is wanting, particularly in commercial alloys used in the construction of nuclear reactors. Therefore, the goal of this project is to systematically map the extent of involvement of strain localization processes in plastic deformation of three reactor alloys that have been neutron irradiated. The deformation processes are to be identified and related to changes in the tensile properties of the alloys as functions of neutron fluence (dose) and degree of plastic strain. The intent is to define the role of strain localization in radiation embrittlement phenomena. The three test materials are a tempered bainitic A533B steel, representing reactor pressure vessel steel, an annealed 316 stainless steel and annealed Zircaloy-4 representing reactor internal components. These three alloys cover the range of crystal structures usually encountered in structural alloys, i.e. body-centered cubic (bcc), face-centered cubic (fcc), and close-packed hexagonal (cph), respectively. The experiments were conducted in three Phases, corresponding to the three years duration of the project. Phases 1 and 2 addressed irradiations and tensile tests made at near-ambient temperatures, and covered a wide range of neutron fluences

  17. Theoretical investigation of the electronic structures and magnetic properties of the bulk and surface (001) of the quaternary Heusler alloy NiCoMnGa

    Energy Technology Data Exchange (ETDEWEB)

    Al-zyadi, Jabbar M. Khalaf, E-mail: Jabbar_alzyadi@yahoo.com [Department of Physics, College of Education, University of Basrah, Basrah 6100 (Iraq); Gao, G.Y. [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Kai-Lun [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of sciences, Shenyang 110015 (China)

    2015-03-15

    In this paper, we study the electronic structures, magnetic properties, and half-metallicity of the bulk and (001) surface of Heusler alloy NiCoMnGa. Our first-principles calculations exhibit that, within the generalized gradient approximation (GGA) of the electronic exchange–correlation functional, the quaternary Heusler alloy NiCoMnGa is a half-metallic ferromagnet at the equilibrium lattice constant of 5.795 Ǻ with a total spin magnetic moment of 5 μ{sub B} per formula unit. The calculated total atomic magnetic moment follows the Slater–Pauling rule. At the same equilibrium lattice constant, the half-metallicity confirmed in the bulk NiCoMnGa, is destroyed at both MnGa- and NiCo-terminated (001) surfaces and subsurfaces. Based on the magnetic property calculations, the magnetic moments of Co, Mn, and Ga atoms at the NiCo- and MnGa-terminated surfaces increase with respect to the corresponding bulk values while the atomic magnetic moment of Ni at the NiCo-terminated surface decreases. - Highlights: • The bulk NiCoMnGa quaternary-Heusler alloy is found to be a half-metallic ferromagnet. • Surface studies show that the half-metallicity of bulk NiCoMnGa is destroyed. • The magnetic moments are increased (decreased) at the (001) surface. • The quaternary-Heusler alloy follows a Slater–Pauling behavior.

  18. The formation, structure, and properties of the Au-Co alloys produced by severe plastic deformation under pressure

    Science.gov (United States)

    Tolmachev, T. P.; Pilyugin, V. P.; Ancharov, A. I.; Chernyshov, E. G.; Patselov, A. M.

    2016-02-01

    The mechanical alloying of Au-Co mixtures, which are systems with high positive mixing enthalpy, is studied following high-pressure torsion deformation at room and cryogenic temperatures. X-ray diffractometry in synchrotron radiation and scanning microscopy are used to investigate the sequence of structural changes in the course of deforming the mixtures up to the end state of the fcc substitutional solid solution based on gold. The mechanical properties of the alloys are measured both during mixture processing and after mechanical alloying. Microfractographic studies are performed. Factors that facilitate the solubility of Co in Au, namely, increased processing pressure, cobalt concentration in a charge mixture, true strain, and temperature decreased to cryogenic level have been identified.

  19. Temperature Distribution and Thermal Deformation of the Crystallization Roller Based on the Direct Thermal-Structural Coupling Method

    Science.gov (United States)

    Pan, Liping; He, Zhu; Li, Baokuan; Zhou, Kun; Sun, Ke

    2017-03-01

    The temperature distribution and the thermal deformation of the crystallization roller have a significant effect on the forming process of the thin steel strip. Finite element analysis has been used to simulate the temperature distribution and the thermal deformation in a crystallization roller through the direct thermal-structural coupling analysis method. Various parameters, such as different rotational velocities, diverse locations of cooling water pipes, and typical velocities of cooling water have been systematically investigated. It is found that the temperature and the equivalent stress of the outer surface reach the steady state after 30 s of rotations, and they are influenced remarkably by the factors of rotational velocity and cooling water pipe depth. Meanwhile, the radial displacement approaches the steady state after 300 s of revolutions and is significantly affected by the cooling water velocity.

  20. Temperature Distribution and Thermal Deformation of the Crystallization Roller Based on the Direct Thermal-Structural Coupling Method

    Science.gov (United States)

    Pan, Liping; He, Zhu; Li, Baokuan; Zhou, Kun; Sun, Ke

    2016-12-01

    The temperature distribution and the thermal deformation of the crystallization roller have a significant effect on the forming process of the thin steel strip. Finite element analysis has been used to simulate the temperature distribution and the thermal deformation in a crystallization roller through the direct thermal-structural coupling analysis method. Various parameters, such as different rotational velocities, diverse locations of cooling water pipes, and typical velocities of cooling water have been systematically investigated. It is found that the temperature and the equivalent stress of the outer surface reach the steady state after 30 s of rotations, and they are influenced remarkably by the factors of rotational velocity and cooling water pipe depth. Meanwhile, the radial displacement approaches the steady state after 300 s of revolutions and is significantly affected by the cooling water velocity.

  1. ZrCuNiAl块体非晶合金的低温压缩变形行为%Compressive deformation behavior of ZrCuNiAl bulk metallic glass at low temperature

    Institute of Scientific and Technical Information of China (English)

    孙亚娟; 翟延慧

    2016-01-01

    Low temperature compression tests for the Zr 55.7 Cu23 Ni9 Al12.3 bulk metallic glass ( BMG) were carried out at the strain rate of 4 × 10 -4 s-1 and at the temperature of 143 K on Instron 5500 universal-testing machine , and the compressive deformation behavior of the Zr55.7 Cu23 Ni9 Al12.3 BMG during low temperature compression was investigated .The results show that the compressive yield strength and plasticity of the Zr55.7 Cu23 Ni9 Al12.3 BMG improve as testing temperature decreasing from 298 K to 143 K.Meanwhile, the phenomenon of ductile-to-brittle transition ( DBT) in traditional crystalline material is not observed with the decrease of temperature .The increase of yield strength is attributed to the nucleation of shear bands which requires a higher applied load at low temperature .Dense and multiple shear bands which are contributed to the enhanced ductility are observed on the side surface of the low temperature fractured samples .%采用Instron 5500万能试验机对Zr55.7 Cu23 Ni9 Al12.3块体非晶合金进行了应变速率为4×10-4 s-1、环境温度为143 K的低温压缩试验,研究了其低温压缩变形行为。结果表明,当测试环境温度从298 K(室温)降低到143 K时,该合金的强度和塑性均呈增加的趋势,且未出现传统晶态材料的冷脆性现象。分析表明,其屈服强度的增加源于低温下剪切带的形核需要更高的载荷,而低温下断口侧面高密度剪切带的形成导致了其塑性的增加。

  2. Mechanism and control of the structural evolution of a polymer solar cell from a bulk heterojunction to a thermally unstable hierarchical structure.

    Science.gov (United States)

    Chen, Charn-Ying; Tsao, Cheng-Si; Huang, Yu-Ching; Liu, Hung-Wei; Chiu, Wen-Yen; Chuang, Chih-Min; Jeng, U-Ser; Su, Chun-Jen; Wu, Wei-Ru; Su, Wei-Fang; Wang, Leeyih

    2013-08-21

    We simultaneously employed grazing incidence small-angle and wide-angle X-ray scattering (GISAXS and GIWAXS) techniques to quantitatively study the structural evolution and kinetic behavior of poly(3-hexylthiophene) (P3HT) crystallization, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) aggregation and amorphous P3HT/PCBM domains from a bulk heterojunction (BHJ) to a thermally unstable structure. The independent phase separation regimes on the nanoscale (∼10 nm), mesoscale (∼100 nm) and macroscale (∼μm) are revealed for the first time. Bis-PCBM molecules as inhibitors incorporated into the P3HT/PCBM blend films were adopted as a case study of a control strategy for improving the thermal stability of P3HT/PCBM solar cell. The detailed information on the formation, growth, transformation and mutual interaction between different phases during the hierarchical structural evolution of P3HT/PCBM:xbis-PCBM (x = 8-100%) blend films are presented herein. This systematic study proposes the mechanisms of thermal instability for a polymer/fullerene-based solar cell. We demonstrate a new fundamental concept that the structural evolution and thermal stability of mesoscale amorphous P3HT/PCBM domains during heating are the origin of controlling thermal instability rather than those of nanoscale thermally-stable BHJ structures. It leads to a low-cost and easy-fabrication control strategy for effectively tailoring the hierarchical morphology against thermal instability from molecular to macro scales. The optimum treatment achieving high thermal stability, control of mesoscale domains, can be effectively designed. It is independent of the original BHJ nanostructure design of a polymer/fullerene-based solar cell with high performance. It advances the general knowledge on the thermal instability directly arising from the nanoscale structure.

  3. Ductile deformation, boudinage and low angle normal faults. An overview of the structural variability at present-day rifted margins

    Science.gov (United States)

    Clerc, Camille; Jolivet, Laurent; Ringenbach, Jean-Claude; Ballard, Jean-François

    2016-04-01

    High quality industrial seismic profiles acquired along most of the world's passive margins present stunningly increased resolution that leads to unravel an unexpected variety of structures. An important benefit of the increased resolution of recent seismic profiles is that they provide an unprecedented access to the processes occurring in the middle and lower continental crust. We present a series of so far unreleased profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear and low angle detachment faulting. The lower crust in passive margins appears much more intensely deformed than usually represented. At the foot of both magma-rich and magma-poor margins, we observe clear indications of ductile deformation of the deep continental crust along large-scale shallow dipping shear zones. These shear zones generally show a top-to-the-continent sense of shear consistent with the activity of overlying continentward dipping normal faults observed in the upper crust. This pattern is responsible for a migration of the deformation and associated sedimentation and/or volcanic activity toward the ocean. In some cases, low angle shear zones define an anastomosed pattern that delineates boudin-like structures. The interboudins areas seem to localize the maximum of deformation. The lower crust is intensely boudinaged and the geometry of those boudins seems to control the position and dip of upper crustal normal faults. We present some of the most striking examples (Uruguay, West Africa, Barents sea…) and discuss their implications for the time-temperature-subsidence history of the margins.

  4. Effect of substrate offcut on AlGaN/GaN HFET structures on bulk GaN substrates

    Science.gov (United States)

    Leach, J. H.; Biswas, N.; Paskova, T.; Preble, E. A.; Evans, K. R.; Wu, M.; Ni, X.; Li, X.; Özgür, Ü.; Morkoç, H.

    2011-02-01

    Bulk GaN substrates promise to bring the full potential of nitride-based devices to bear since they offer a low thermal and lattice mismatched alternative to foreign substrates for epitaxial growth. However, due to the high cost and low availability of bulk GaN substrates, effects such as surface misorientation (offcut), surface polishing, and preparation of such substrates on subsequent epitaxy are still not well understood. As such, AlGaN/GaN heterostructures with nominal Al compositions of 25% were grown by MOCVD on semi-insulating bulk GaN substrates with offcuts ranging from 0.05 to 1.95° in the m-direction (10 10) to attempt to determine the optimal offcut for bulk GaN substrates for AlGaN-based HFET devices. X-ray diffraction (XRD) studies indicate that the Al composition does not vary with offcut, however reciprocal space mapping shows evidence of strain relaxation of the AlGaN in samples grown on substrates with offcut >1.1°. Additionally, we observed a minimum in sheet resistance of the 2DEGs for substrates with offcuts near 0.5°, arising from higher mobilities in these samples. Evidence of an optimal substrate misorientation is important for AlGaN-based devices grown on bulk GaN substrates.

  5. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    Science.gov (United States)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  6. Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys

    Science.gov (United States)

    Crisan, O.; Crisan, A. D.; Mercioniu, I.; Nicula, R.; Vasiliu, F.

    2016-03-01

    FePt-based alloys are currently under scrutiny for their possible use as materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that may operate at higher temperatures than the classic Nd-Fe-B magnets. Within this study, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. In the as-cast FeCoPt ribbons, a three-phase structure comprising well-ordered CoFePt and CoPt L10 phases embedded in a disordered fcc FePt matrix was evidenced by XRD, HREM and SAED. Extended transmission electron microscopy analysis demonstrates the incipient formation of ordered L10 phases. X-ray diffraction was used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. In the as-cast state, the co-existence of hard magnetic CoFePt and CoPt L10 tetragonal phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains (grain sizes from 1 to 7 nm). Following a thermal treatment of 1 h at 670 °C, the soft magnetic fcc matrix phase transforms to tetragonal L10 phases (disorder-order transition). The resulting CoPt and CoFePt L10 phases have grains of around 5-20 nm in size. In the as-cast state, magnetic measurements show a quite large remanence (0.75 T), close to the value of the parent L10 FePt phase. Coercive fields of about 200 kA/m at 5 K were obtained, comparable with those reported for some FePt-based bulk alloys. Upon annealing both remanence and coercivity are increased and values of up to 254 kA/m at 300 K are obtained. The polycrystalline structure of the annealed FeCoPt samples, as well as the formation of multiple c-axis domains in different CoPt and CoFePt regions (which leads to a reduction of the magneto-crystalline anisotropy) may account for the observed coercive fields that are lower than in the case of very thin FeCoPt films. A

  7. Late Pleistocene-Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequion River valley, Central Precordillera, Argentina

    Directory of Open Access Journals (Sweden)

    Perucca Laura P

    2014-07-01

    Full Text Available Evidence of earthquake-induced liquefaction features in the Acequión river valley, central western Argentina, is analysed. Well-preserved soft-sediment deformation structures are present in Late Pleistocene deposits; they include two large slumps and several sand dikes, convolutions, pseudonodules, faults, dish structures and diapirs in the basal part of a shallow-lacustrine succession in the El Acequión River area. The water-saturated state of these sediments favoured deformation.

  8. Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei

    Science.gov (United States)

    Praharaj, Choudhury

    2016-03-01

    We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.

  9. Seismically induced soft-sediment deformation structures revealed by X-ray computed tomography of boring cores

    Science.gov (United States)

    Nakashima, Yoshito; Komatsubara, Junko

    2016-06-01

    X-ray computed tomography (CT) allows us to visualize three-dimensional structures hidden in boring cores nondestructively. We applied medical X-ray CT to cores containing seismically induced soft-sediment deformation structures (SSDSs) obtained from the Kanto region of Japan, where the 2011 off the Pacific coast of Tohoku Earthquake occurred. The CT images obtained clearly revealed various types of the seismically induced SSDSs embedded in the cores: a propagating sand dyke bent complexly by the preexisting geological structure, deformed laminations of fluidized sandy layers, and two types of downward mass movement (ductile downward folding and brittle normal faulting) as compensation for upward sand transport through sand dykes. Two advanced image analysis techniques were applied to the sand dyke CT images for the first time. The GrowCut algorithm, a specific digital image segmentation technique that uses cellular automata, was used successfully to extract the three-dimensional complex sand dyke structures embedded in the sandy sediments, which would have been difficult to achieve using a conventional image processing technique. Local autocorrelation image analysis was performed to detect the flow pattern aligned along the sand dykes objectively. The results demonstrate that X-ray CT coupled with advanced digital image analysis techniques is a promising approach to studying the seismically induced SSDSs in boring cores.

  10. Crystal structure, thermal and compositional deformations of {beta}-CsB{sub 5}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Bubnova, R. [Institute of the Silicate Chemistry Russian Academy of Sciences, Ul. Odoevskogo, 24/2, 199155, St Petersburg (Russian Federation); Dinnebier, R.E. [Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Filatov, S.; Anderson, J. [Saint Petersburg State University, University Emb., 7/9, 199034, St. Petersburg (Russian Federation)

    2007-02-15

    The crystal structure of {beta}-CsB{sub 5}O{sub 8} has been determined from X-ray powder diffraction data using synchrotron radiation: Pbca, a = 7.8131(3) Aa, b=12.0652(4) Aa, c=14.9582(4) Aa, Z=8, {rho}{sub calc}=2.967 g/cm{sup 3}, R-p=0.076, R-wp=0.094. {beta}-CsB{sub 5}O{sub 8} was found to be isostructural with {beta}-KB{sub 5}O{sub 8} and {beta}-RbB{sub 5}O{sub 8}. The crystal structure consists of a double interlocking framework built up from B-O pentaborate groups. The crystal structure exhibits a highly anisotropic thermal expansion: {alpha}{sub a}=53, {alpha}{sub b}=16, {alpha}{sub c}=14 .10{sup -6}/K; the anisotropy may be caused by partial straightening of the screw chains of the pentaborate groups. The similarity of the thermal and compositional (Cs-Rb-K substitution) deformations of CsB{sub 5}O{sub 8} is revealed: increasing the radius of the metal by 0.01 Aa leads to the same deformations of the crystal structure as increasing the temperature by 35 C. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Influence of deformation temperature on structural variation and shape-memory effect of a thermoplastic semi-crystalline multiblock copolymer

    Directory of Open Access Journals (Sweden)

    W. Yan

    2015-07-01

    Full Text Available A multiblock copolymer termed as PCL-PIBMD, consisting of crystallizable poly(ε-caprolactone (PCL segments and crystallizable poly(3S-isobutyl-morpholine-2,5-dione (PIBMD segments, has been reported as a material showing a thermally-induced shape-memory effect. While PIBMD crystalline domains act as netpoints to determine the permanent shape, both PCL crystalline domains and PIBMD amorphous domains, which have similar transition temperatures (Ttrans can act as switching domains. In this work, the influence of the deformation temperature (Tdeform = 50 or 20°C, which was above or below Ttrans, on the structural changes of PCL-PIBMD during uniaxial deformation and the shapememory properties were investigated. Furthermore, the relative contribution of crystalline PCL and PIBMD amorphous phases to the fixation of the temporary shape were distinguished by a toluene vapor treatment approach. The results indicated that at 50°C, both PCL and PIBMD amorphous phases can be orientated during deformation, resulting in thermallyinduced crystals of PCL domains and joint contribution to the switching domains. In contrast at 20°C, the temporary shape was mainly fixed by PCL crystals generated via strain-induced crystallization.

  12. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes (Miura Peninsula, Japan)

    Science.gov (United States)

    Mazumder, Rajat; van Loon, A. J. (Tom); Malviya, Vivek P.; Arima, Makoto; Ogawa, Yujuro

    2016-10-01

    The Mio-Pliocene Misaki Formation of the Miura Group (Miura Peninsula, Japan) shows an extremely wide variety of soft-sediment deformation structures. The most common deformation structures are load casts and associated flame structures, dish-and-pillar structures, synsedimentary faults, multilobated convolutions, chaotic deformation structures, sedimentary veins and dykes, and large-scale slides and slump scars. The formation, which accumulated in a deep-sea environment (2000-3000 m), is well exposed in and around Jogashima; it consists of relative thin (commonly dm-scale) alternations of deep-marine fine-grained sediments and volcanic ejecta that are, as a rule, coarse-grained. Since the formation represents fore-arc deposits of the Izu-Bonin and the Honsu arc collision zone, it might be expected that tectonic activity also played a role as a trigger of the soft-sediment deformation structures that abound in these sediments. This is indicated, indeed, by the abundance of soft-sediment deformations over large lateral distances that occur in numerous beds that are sandwiched between undeformed beds. On the basis of their characteristics and the geological context, these layers can be explained satisfactorily only by assuming deformation triggered by seismicity, which must be related to the Izu-Bonin and Honsu arc collision. The layers thus form deep-marine seismites.

  13. The dynamic process of atmospheric water sorption in [BMIM][Ac]: quantifying bulk versus surface sorption and utilizing atmospheric water as a structure probe.

    Science.gov (United States)

    Chen, Yu; Cao, Yuanyuan; Yan, Chuanyu; Zhang, Yuwei; Mu, Tiancheng

    2014-06-19

    The dynamic process of the atmospheric water absorbed in acetate-based ionic liquid 1-butyl-3-methyl-imidazolium acetate ([BMIM][Ac]) within 360 min could be described with three steps by using two-dimensional correlation infrared (IR) spectroscopy technique. In Step 1 (0-120 min), only bulk sorption via hydrogen bonding interaction occurs. In Step 2 (120-320 min), bulk and surface sorption takes place simultaneously via both hydrogen bonding interaction and van der Waals force. In Step 3, from 320 min to steady state, only surface sorption via van der Waals force occurs. Specifically, Step 2 could be divided into three substeps. Most bulk sorption with little surface sorption takes place in Step 2a (120-180 min), comparative bulk and surface sorption happens in Step 2b (180-260 min), and most surface sorption while little bulk sorption occurs in Step 2c (260-320 min). Interestingly, atmospheric water is found for the first time to be able to be used as a probe to detect the chemical structure of [BMIM][Ac]. Results show that one anion is surrounded by three C4,5H molecules and two anions are surrounded by five C2H molecules via hydrogen bonds, which are very susceptible to moisture water especially for the former one. The remaining five anions form a multimer (equilibrating with one dimer and one trimer) via a strong hydrogen bonding interaction, which is not easily affected by the introduction of atmospheric water. The alkyl of the [BMIM][Ac] cation aggregates to some extent by van der Walls force, which is moderately susceptible to the water attack. Furthermore, the proportion of bulk sorption vs surface sorption is quantified as about 70% and 30% within 320 min, 63% and 37% within 360 min, and 11% and 89% until steady-state, respectively.

  14. Measuring structure deformations of a composite glider by optical means with on-ground and in-flight testing

    Science.gov (United States)

    Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf

    2016-12-01

    In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.

  15. Structure-Processing Relationships in Solution Processable Polymer Thin Film Transistors and Small Molecule Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Perez, Louis A.

    A regio-regular (RR) conjugated copolymer based on cyclopenta[2,1-b:3,4- b]dithiophene (CDT) and pyridal[2,1,3]thiadiazole (PT) structural units was prepared by using polymerization reactions involving reactants specifically designed to avoid random orientation of the asymmetric PT heterocycle. Compared to its regio-irregular (RI) counterpart, the RR polymer exhibits a two orders of magnitude increase in hole mobility from 0.005 to 0.6 cm2V -1s-1. To probe the reason for this difference in mobility, we examined the crystalline structure and its orientation in thin films of both copolymers as a function of depth via grazing incidence wide angle X-ray scattering (GIWAXS). In the RI film, the pi-pi stacking direction of the crystallites is mainly perpendicular to the substrate normal (edge-on orientation) while in the RR film the crystallites adopt a mixed pi-pi stacking orientation in the center of the film as well as near the interface between the polymer and the dielectric layer. These results demonstrate that control of backbone regularity is another important design criterion to consider in the synthesis and optimization of new conjugated copolymers with asymmetric structural units. Solution processed organic photovoltaic devices (OPVs) have emerged as a promising sustainable energy technology due to their ease of fabrication, potential to enable low-cost manufacturing, and ability to be incorporated onto light-weight flexible substrates. To date, the most efficacious OPV device architecture, the bulk heterojunction (BHJ), consists of a blend of a light-harvesting conjugated organic electron donating molecule and a strong electron-accepting compound (usually a soluble fullerene derivative e.g. [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). BHJ layer morphology, which has been shown to be highly dependent on processing, has a significant effect on OPV performance. It is postulated that optimal BHJ morphologies consist of discrete bicontinuous nanoscale

  16. Deformation in the Bolivian Subandes: a reconstruction of geologic structures along two transects across the Andean Front in Southern Bolivia

    Science.gov (United States)

    Hadeen, Xennephone; Zeilinger, Gerold

    2016-04-01

    The Southern Bolivian Subandes is a highly tectonically active region in the Andes since deformation began approx. 10 Ma ago. The study area is located in the Southern Bolivian Subandes southwest of Santa Cruz. Observations were taken along two transects with each being around 100 km long. They stretch from the Subandes-Interandean boundary into the Chaco Plain. The northern transect extends from Abapó in the Chaco Plain and it continues west near Vallegrande and ends just west of Pucara near La Higuera. The southern transect initiates near Charagua in the Chaco Plain. Then it continues west through Villa Vaca Guzmán and ends around 25 km west of Monteagudo. Structural and stratigraphic data were collected along the two transects. The locations of major geologic structures such as thrust faults, anticlines and synclines were mapped. The map along with the data from the two cross sections was then used to generate a 3D model of the Subandean fold and thrust belt between Abapó and Monteagudo. The cross sections were than restored to quantify the amount of shortening that had occurred over the past 10 million years. The southern transect has undergone 65 km of shortening while 50 to 80 km of shortening have transpired along the less constrain northern transect. The estimated rate of deformation averages at 8 mm/yr. The timing of deformation may differ between the two transects. Deformation may have initiated earlier or undergone at a faster rate in the northern transect than in the southern transect. It is also possible that the decollement is shallower in the western portion of the northern transect. We observe that the east propagating anticlines verge to the west. This may be due to the anticlines being cut by exposed or blind thrust faults and then rotated counterclockwise. They rotate while piggybacking on younger thrust faults that developed and propagate to the east of the anticlines. We postulate deformation continues to propagate eastward into the Chaco

  17. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D

    2003-08-28

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s{sup -1}, at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions.

  18. Pleomorphic structural imperfections caused by pulsed Bi-implantation in the bulk and thin-film morphologies of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, D.A. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Boukhvalov, D.W., E-mail: danil@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763 (Korea, Republic of); Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Kurmaev, E.Z. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Gavrilov, N.V. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Kim, S.S. [School of Materials Science and Engineering, Inha University, Incheon 22212 (Korea, Republic of); Zhidkov, I.S. [Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation)

    2016-08-30

    Highlights: • Bismuth doped bulk and thin-filmTiO{sub 2} host were examined experimentally and theoretically applying XPS and DFT methods. • Combination of bismuth ions and oxygen vacancies is the propagated type of defects. • In the bulk morphology of TiO{sub 2} both experiment and theory demonstrate the formation of Bi{sub 2}O{sub 3}-like structures. • An aggregation of Bi-impurities occurs on the surfaces of thin-films. - Abstract: The results of combined experimental and theoretical study of pleomorphic substitutional and clustering effects in Bi-doped TiO{sub 2} hosts (bulk and thin-film morphologies) are presented. Bi-doping of the bulk and thin-film titanium dioxide was made with help of pulsed ion-implantation (E{sub Bi}{sup +} = 30 keV, D = 1 × 10{sup 17} cm{sup −2}) without posterior tempering. The X-ray photoelectron spectroscopy (XPS) qualification (core-levels and valence bands) and Density-Functional Theory (DFT) calculations were employed in order to study the electronic structure of Bi-ion implanted TiO{sub 2} samples. According to XPS data obtained and DFT calculations, the Bi → Ti cation substitution occurs in Bi-implanted bulk TiO{sub 2}, whereas in the thin-film morphology of TiO{sub 2}:Bi the Bi-atoms have metal-like clusters segregation tendency. Based on the combined XPS and DFT considerations the possible reasons and mechanism for the observed effects are discussed. It is believed that established peculiarities of bismuth embedding into employed TiO{sub 2} hosts are mostly the sequence of pleomorphic origin for the formed “bismuth–oxygen” chemical bonding.

  19. A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Bale, Rahul; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-10-01

    Many problems of interest in biological fluid mechanics involve interactions between fluids and solids that require the coupled solution of momentum equations for both the fluid and the solid. In this work, we develop a mathematical framework and an adaptive numerical method for such fluid-structure interaction (FSI) problems in which the structure may be rigid, deforming, or elastic. We employ an immersed boundary (IB) formulation of the problem that permits us to avoid body conforming discretizations and to use fast Cartesian grid solvers. Rigidity and deformational kinematic constraints are imposed using a formulation based on distributed Lagrange multipliers, and a conventional IB method is used to describe the elasticity of the immersed body. We use Cartesian grid adaptive mesh refinement (AMR) to discretize the equations of motion and thereby obtain a solution methodology that efficiently captures thin boundary layers at fluid-solid interfaces as well as flow structures shed from such interfaces. This adaptive methodology is validated for several benchmark problems in two and three spatial dimensions. In addition, we use this scheme to simulate free swimming, including the maneuvering of a two-dimensional model eel and a three-dimensional model of the weakly electric black ghost knifefish.

  20. Experimental investigation of the influence on static and cyclic deformation of structural soft clay of stress level

    Institute of Scientific and Technical Information of China (English)

    CHEN Yunmin; CHEN Yingping; HUANG Bo

    2007-01-01

    This paper presents the experimental results performed to study the static and cyclic deformation behavior of undisturbed and remolded soft clays sampling from Xiaoshan.The consolidation tests indicated that the vertical strains of undisturbed soft clay could be divided into three stages with load increasing,however,the remolded clays were almost independent of stress level.The two cut-off points of these three stages are the preconsolidation stress and the structural yielding stress of the original clay,which could be determined by shear wave velocity measurement.The strains developed during cyclic tests of undisturbed and remolded soft clay,both having one turning point under different amplitude of cyclic stress.The strain developed slowly and stayed at a low level at the early stage,but developed quickly in a different way when the turning points were achieved and finally became great.The turning strains changed with different cyclic stress amplitudes,but they almost fell on a linear line whether undisturbed or remolded.Furthermore,the turning points of the remolded clay all fell on the same line of different confining stresses,including which of the undisturbed soft clay under confining pressure was larger than structural yielding stress.It was also found that the deformation characteristic of undisturbed and remolded Xiaoshan clay tend to be consistent when the structure of undisturbed soft clay is damaged.

  1. Palaeoseismicity in relation to basin tectonics as revealed from soft-sediment deformation structures of the Lower Triassic Panchet formation, Raniganj basin (Damodar valley), eastern India

    Indian Academy of Sciences (India)

    Abhik Kundu; Bapi Goswami; Patrick G Eriksson; Abhijit Chakraborty

    2011-02-01

    The Raniganj basin in the Damodar valley of eastern India is located within the riftogenic Gondwana Master-Basin. The fluvio-lacustrine deposits of the Lower Triassic Panchet Formation of the Damodar valley in the study area preserve various soft-sediment deformation structures such as slump folds, convolute laminae, flame structures, dish-and-pillar structures, sandstone dykes, pseudonodules and syn-sedimentary faults. Although such soft-sediment deformation structures maybe formed by various processes, in the present area the association of these structures, their relation to the adjacent sedimentary rocks and the tectonic and depositional setting of the formation suggest that these structures are seismogenic. Movements along the basin margin and the intra-basinal faults and resultant seismicity with moderate magnitude (2–5 on Richter scale) are thought to have been responsible for the soft-sediment deformations.

  2. Soft-sediment deformation structures in seismically affected deep-sea Miocene turbidites (Cilento Basin, southern Italy

    Directory of Open Access Journals (Sweden)

    Valente Alessio

    2014-07-01

    Full Text Available Soft-sediment deformation structures (SSDS are widespread in the upper part of the S. Mauro Formation (Cilento Group, Middle-Late Miocene. The succession is represented mainly by thick and very thick, massive, coarse-grained sandstones, deposited by rapid sedimentation of high-density turbidity currents. The most common SSDS are short pillars, dishes, sedimentary sills and convolutions. They occur mostly in the upper parts of sandstone beds. Vertical tubes of 4-5 cm in diameter and up to 50 cm long constitute the most striking structures. They begin in the middle part of sandstone beds, which are basically massive or contain faint dish structures. These tubes can bifurcate upwards and/ or pass into bedding-parallel veins or dikes. The vertical tubes sometimes form sand volcanoes on the then sedimentary surface.

  3. Electronic Transport Through Carbon Nanotubes: Effects of Structural Deformation and the Tube Chirality

    Science.gov (United States)

    Maiti, Amitesh; Svizhenko, Alexei; Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Atomistic simulations using a combination of classical force field and Density-Functional-Theory (DFT) show that carbon atoms remain essentially sp2 coordinated in either bent tubes or tubes pushed by an atomically sharp AFM tip. Subsequent Green's-function-based transport calculations reveal that for armchair tubes there is no significant drop in conductance, while for zigzag tubes the conductance can drop by several orders of magnitude in AFM-pushed tubes. The effect can be attributed to simple stretching of the tube under tip deformation, which opens up an energy gap at the Fermi surface.

  4. Lifetime Reliability Estimate and Extreme Permanent Deformations of Randomly Excited Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1983-01-01

    to be the outcome of identically distributed, independent stochastic variables,for which a model is suggested. Further assuming the interarrival times of the elementary loading histories to be specified by a Poisson process, and the duration of these to be small compared to the designed life-time, the accumulated...... plastic deformation during several loadings can be modelled as a filtered Poisson process. Using the Markov property of this quantity the considered first-passage problem as well as the related extreme distribution problems are then solved numerically, and the results are compared to simulation studies....

  5. X-ray Diffractions of Deformation Structure in Polycrystalline Fe-32Mn-5Si Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    T he change of microstructure with strain was investigated in a Fe-32Mn-5Si austenitic alloy at room temperature by X-raydiffraction profile analysis. The experimental results show that the Fe-32Mn-5Si alloy is deformed by the strain-induced γ→εtransformation and the twinning except dislocation slip at room temperature. The amount of strain-induced ε-martensite, thestacking fault probability and the twinning probability all exhibit parabolic relationship with increasing strain. The stackingfault probability is higher than the twinning probability.

  6. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    Science.gov (United States)

    Prentice, A. J. R.

    1999-01-01

    Callisto, NH3 ice makes up -5% of the condensate mass next to h-rock (approximately 50%) and H2O ice (approximately 45%). Detailed thermal and structural models for each of Europa, Ganymede and Callisto are constructed on the basis of the above initial bulk chemical compositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912 M (sub E) and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertia coefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass approximately 0.116 M (sub G), and an outer H2O ice mantle of mass approximately 0.502 M (sub G) is needed to explain the gravity data. Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826 M (sub C) containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3 (raised dot) 2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field.

  7. Magnetic, structural and geochronologic evidence bearing on volcanic sources and Oligocene Deformation of Ash Flow Tuffs, northeast Nevada

    Science.gov (United States)

    Palmer, H. C.; MacDonald, W. D.; Hayatsu, A.

    1991-02-01

    Magnetic properties of mid-Tertiary volcanic rocks west of Jiggs in northeast Nevada were investigated for the purposes of interpreting igneous, structural, and tectonic processes in this part of the Basin and Range province. Anisotropy of magnetic susceptibility (AMS) patterns reflect flow fabrics and suggest previously unknown sources for these ash flow tuffs. Paleomagnetic and structural evidence suggest counterclockwise relative rotation of the southern part of the area with respect to the north. New stratigraphic, chemical and K-Ar isotopic data support these interpretations. Dacite to rhyolite ash flow tuffs of the Indian Well Formation were subdivided into two main units: the lower and predominant tuff of Jiggs (35.8-37.0 Ma) and the unconformably overlying but areally restricted tuff of Hackwood (30.8 Ma). The Jiggs unit has two polarities whereas the Hackwood has only a reversed polarity remanence. Together these units with tilt correction define a pole (92°E, 87°N, dp = 6°, dm = 8°) for approximately 30-37 Ma. This pole is concordant with coeval North American reference poles, indicating that this zone of approximately 30 km NS extent has not undergone significant vertical axis rotation relative to the North American reference. Andesite lavas of normal magnetic polarity and of 32.5-Ma age characterize the Diamond Hills immediately to the south. We interpret this region, from both structural evidence and discordant paleomagnetic direction, to have rotated approximately 25° counterclockwise relative to the Indian Well volcanic units to the north. The apparent rotation of the Diamond Hills is possibly the result of drag on the left-lateral Garcia fault which limits the Diamond Hills on the southwest. Analysis of AMS data suggests, by patterns of the K1 axes, two distinct sources for the Jiggs unit: a northern buried source and a central partially buried source. Lithologic evidence consistent with proximal vent facies is found near the latter source. An

  8. Pre-lithification structures, deformation mechanisms, and fabric ellipsoids in slumped turbidites from the Pigeon Point Formation, California

    Science.gov (United States)

    Paterson, Scott R.; Tobisch, Othmar T.

    1993-06-01

    Paterson, S.R. and Tobisch, O.T. 1993. Pre-lithification structures, deformation mechanisms, and fabric ellipsoids in slumped turbidites from the Pigeon Point Formation, California. Tectonophysics, 222: 135-149. Quantitative fabric, structural, and microstructural analyses of pre-lithification folds, foliations, and lineations formed by slumping of turbidite sequences in the Cretaceous Pigeon Point Formation, California, provide a useful comparison with strain and microstructures developed in lithified and tectonically deformed turbidites. Our results indicate the following: (1) multiple generations of folds, cleavages, and lineations can develop prior to any post-lithification tectonic deformation (2) individual grains in sandstones have variable axial ratios, but the ratios and orientations of large populations of grains define fabric ellipsoids with small axial ratios ( ave. = 1.25:1.13:1) (3) phyllosilicate grains define moderate flattening fabrics (reflecting 20-40% shortening or volume loss), with the intensity of alignment partly controlled by the percent of quartz and feldspar grains (4) the fabric ellipsoids in sand-rich layers largely reflect deposition and slumping: pre- and post-slump compactions did not occur, in sand-rich units but did align clay particles in mud-siltstone units, and (5) intra-grain microstructures in quartz and feldspar (e.g., undulose extinction, subgrains) are inherited or recycled features rather than representing effects of post-lithification strains. Our data also suggest that prelithification slumping occurred by pervasive grain rotation and grain boundary sliding in saturated sands with some local movement of material along bedding horizons. A likely model for the folding and associated fabrics is that buckling and fold-hinge flattening drove fluid expulsion, which in turn caused local grain-scale realignment, transposition of bedding, and the development of an axial planar cleavage in the hinge zones. Continued fluid flow was

  9. Fluid–structure coupling analysis of deformation and stress in impeller of an axial-flow pump with two-way passage

    Directory of Open Access Journals (Sweden)

    Ji Pei

    2016-04-01

    Full Text Available Axial-flow pump with a two-way passage has been widely employed in irrigation and drainage projects. Because of the shape of the two-way inlet passage, the impeller easily induces vibration due to unstable turbulent flow. This vibration results in structural cracks and even hinders the safe operation of the pump. Deformation and stress distributions in the impeller were calculated using two-way coupled fluid–structure interaction simulations, and a quantitative analysis of blade deformation and stress is carried out to determine the structure critical region. The results show that the values of deformation and stress significantly decrease with an increasing flow rate and a decreasing head, and the maximum total deformation can be found in the impeller rim, while the maximum equivalent stress can be obtained near the impeller hub. The total deformations in the blade rim decrease from blade leading edge to trailing edge, and the equivalent stress in the blade hub initially increases and then declines, and in the end, it rapidly increases from the blade outlet to inlet. These results reveal the deformation and stress in the impeller to ensure reliability and specific theoretical guidance for the structural optimization design of a pump device.

  10. Deformation quantization of principal bundles

    CERN Document Server

    Aschieri, Paolo

    2016-01-01

    We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles, and more in general to the deformation of Hopf-Galois extensions. First we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next we twist deform a subgroup of the group of authomorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations we obtain noncommutative principal bundles with noncommutative fiber and base space as well.

  11. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, D R; Sherby, O D; Syn, C K

    1999-07-01

    Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

  12. Composites based on cellulose fiber nonwovens and a water soluble polymer 1. Structure and strength-deformation characteristics of cellulose fiber nonwovens and structural characteristics of the composites

    Science.gov (United States)

    Cerpakovska, D.; Kalnins, M.

    2012-03-01

    The results of a study on the strength-deformation characteristics (tensile elastic modulus, ultimate strength, elongation at break, and punching and tearing strengths) of two kinds of cellulose fiber nonwovens (CFNs) with dissimilar void content and different geometrical parameters of cellulose fibers are discussed. The structural characteristics of composites prepared by impregnation with poly(vinyl alcohol) water solutions are analyzed, too. Composites with volume fractions of polymer up to 0.4% and volume fractions of voids up to 0.3% were prepared. Filling of voids by the polymer occurred without significant changes in the structure of CFNs. The fraction of closed voids increased with polymer content.

  13. -Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  14. Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in ALE and fully Eulerian coordinates

    Science.gov (United States)

    Frei, S.; Richter, T.; Wick, T.

    2016-09-01

    In this work, we develop numerical schemes for mechano-chemical fluid-structure interactions with long-term effects. We investigate a model of a growing solid interacting with an incompressible fluid. A typical example for such a situation is the formation and growth of plaque in blood vessels. This application includes two particular difficulties: First, growth may lead to very large deformations, up to full clogging of the fluid domain. We derive a simplified set of equations including a fluid-structure interaction system coupled to an ODE model for plaque growth in Arbitrary Lagrangian Eulerian (ALE) coordinates and in Eulerian coordinates. The latter novel technique is capable of handling very large deformations up to contact. The second difficulty stems from the different time scales: while the dynamics of the fluid demand to resolve a scale of seconds, growth typically takes place in a range of months. We propose a temporal two-scale approach using local small-scale problems to compute an effective wall stress that will enter a long-scale problem. Our proposed techniques are substantiated with several numerical tests that include comparisons of the Eulerian and ALE approaches as well as convergence studies.

  15. RETRACTED: The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available At the request of the Author, the following article Zhang, W, Hou, W, Hu, Ping and Ma, Z (2014 The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading Advances in Mechanical Engineering published 17 November 2014. doi: 10.1155/2014/214681has been retracted due to errors discovered by the authors. On Page 3, the definition of component force in Equation 4 is incorrect. (2 On Page 4, the definition of component force in Equation 11 is incorrect. Moreover this equation should not have parameterM(length of cell wall, because a mistake was made in the process of calculation. Because of the above reasons, the conclusion obtained from the mechanical model is incorrect and should instead state that the Elastic Buckling and Plastic Collapse are both yield modes of this structure (3 On Page 5, the FEA model used in this article is not appropriate, because the deformation of single cell is not homogeneous, which means that the geometrical non-linear effect on single cell model is greater. So in the actual whole structure we may not obtain the results that were described in Page 6 Paragraph 2. (4 The data in figures 8 (page 6 and 9 (page 7 is incorrect and the values of effective Young’s modulus and plateau stress are much larger than reasonable values. The definition of effective stress is wrong in the FEA model, which means the effective stress should be calculated by the total width of cell instead of length of horizontal cell wall. For example, in Figure 8, the plateau stress can reach 140Mpa, this is not reasonable because there are many holes in this cellular structure, and its mechanical properties should be much lower than material properties of cell wall. The reasonable plateau stress should be around 2Mpa. The authors takes responsibility for these errors and regret the publication of invalid results. The nonlinear compressive response and deformation of an auxetic cellular structure that has

  16. THE STRUCTURE OF THE LITHOSPHERIC MANTLE OF THE SIBERAIN CRATON AND SEISMODYNAMICS OF DEFORMATION WAVES IN THE BAIKAL SEISMIC ZONE

    Directory of Open Access Journals (Sweden)

    A. A. Stepashko

    2015-09-01

    Full Text Available  The evolution and specific features of seismogynamics of the Baikal zones are reviewed in the context of interactions between deep deformation waves and the regional structure of the lithospheric mantle. The study is based on a model of the mantle structure with reference to chemical compositions of mantle peridotites from ophiolotic series located in the south-western framing of the Siberian craton (Fig. 1. The chemical zonation of the lithospheric mantle at the regional scale is determined from results of analyses of the heterogeneity of compositions of peridotites (Fig. 2, Table 1 and variations of contents of whole rock major components, such as iron, magnesium and silica (Fig. 3. According to spatial variations of the compositions of peridotites, the mantle has the concentric zonal structure, and the content of SiO2 is regularly decreasing, while concentrations of FeO∑ and MgO are increasing towards the centre of such structure (Fig. 4. This structure belongs to the mantle of the Siberian craton, which deep edge extends beyond the surface contour of the craton and underlies the north-western segment of the Central Asian orogenic belt.Results of the studies of peridotites of the Baikal region are consistent with modern concepts [Snyder, 2002; O’Reilly, Griffin, 2006; Chen et al., 2009] that suggest that large mantle lenses underlie the Archaean cratons (Fig. 5. The lenses are distinguished by high-density ultrabasic rocks and compose high-velocity roots of cratons which have remained isolated from technic processes. Edges of the mantle lenses may extend a few hundred kilometers beyond the limits of the cratons and underlie orogenic belts that frame the cratons, and this takes place in the south-western segment of the Siberian craton.The revealed structure of the lithospheric mantle is consistent with independent results of seismic and magmatectonical studies of the region. The Angara geoblock is located above the central part of the

  17. Evolution of Shear Bands of Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Matrix Composite in Deformation Process%连续钨丝增强锆基块体金属玻璃变形过程中剪切带的演化

    Institute of Scientific and Technical Information of China (English)

    姜斐; 刘子毅; 陈光

    2011-01-01

    研究体积分数为60%的连续钨丝/Zr41.2 Ti13.8 Cu12.5Ni10Be22.5块体金属玻璃复合材料准静态压缩变形过程中剪切带的演化过程.发现在弹性变形段不形成剪切带,剪切带是在塑性变形过程中产生并发展的,且剪切带的数量随着变形量的增加而增大,间距随着变形量的增加而减小;当间距减小到一定值时产生剪切裂纹并不断扩展,最终导致断裂破坏.%Evolution process of shear bands of tungsten fiber reinforced Zr-based bulk metallic glass matrix composite in deformation process was investigated. It is found that no shear band forms in the elastic stage, the shear band forms and develops in the plastic deformation process. Moreover, the number of shear bands increases with the increase of the deformation quantum, and the shear band spacing decreases with the increase of the deformation quantum. When the shear band spacing reaches the critical value? Shear cracks occur and continuously extend, finally resulting in the fracture failure.

  18. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  19. Bulk-like behavior in the temperature driven martensitic transformation of Cu–Zn–Al thin films with 2H structure

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N., E-mail: nhaberk@cab.cnea.gov.ar [Centro Atómico Bariloche, CNEA, Bustillo 9500, S.C. de Bariloche (Argentina); Condó, A.M. [Centro Atómico Bariloche, CNEA, Bustillo 9500, S.C. de Bariloche (Argentina); Instituto Balseiro, Bustillo 9500, S.C. de Bariloche (Argentina); Espinoza, C. [Instituto Balseiro, Bustillo 9500, S.C. de Bariloche (Argentina); Jaureguizahar, S.; Guimpel, J.; Lovey, F.C. [Centro Atómico Bariloche, CNEA, Bustillo 9500, S.C. de Bariloche (Argentina); Instituto Balseiro, Bustillo 9500, S.C. de Bariloche (Argentina)

    2014-04-05

    Highlights: • Cu–Zn–Al films with burst-type 2H martensitic transformation. • Reproducible martensitic transformation temperature. • Similar hysteresis to those found in bulk reference samples. -- Abstract: This paper reports on the possibility to obtain Cu–Zn–Al films with 2H martensitic structure by fixing the valence electron concentration per atom (e/a) ≈1.53. Films with thickness of ≈5 μm with micrometric grains show martensitic transformation temperature and hysteresis values close to the ones found in bulk samples. This result is different to the one found in Cu–Zn–Al thin films with 18R martensitic structure and similar microstructure, in which the hysteresis presents an increment (≈10 times) compared to bulk samples. This difference can be associated to the intrinsic nature of the 2H transformation which requires more undercooling to produce the nucleation of the martensitic phase. The driving force for the burst-type martensitic transformation decreases the influence of the microstructure in the transformation.

  20. BEARING STRUCTURE AND VERTEBRAL DEFORMATIONS IN CHILDREN OF THE FAR NORTH

    Directory of Open Access Journals (Sweden)

    I. T. Batrshin

    2011-01-01

    Full Text Available A total of 4350 children of indigenous and nonindigenous population of the Far North were examined by computer optical topography. They were divided into 3 groups: 500 children – the indigenous population: the Khanty, Mansi, Nenets, who live in rural areas, 450 – aborigines living in urban areas, 3400 people – the non-indigenous children (migrants. Distinctive features in the bearing form and in prevalence of vertebral deformations were revealed. The indigenous population has the expressed crosssection sizes of a trunk and good indicators of a bearing, children of migrants – a trunk with the expressed longitudinal sizes and the worst indicators of a bearing. Prevalence of a scoliosis in I group – 3,4 %, in II – 5,1 %, and in III – 9,3 %.

  1. Effects of structure on deformation and strength characteristics of transversely isotropic man-made geomaterials

    Science.gov (United States)

    Usoltseva, OM; Tsoi, PA; Semenov, VN

    2017-02-01

    The laboratory tests on uniaxial and triaxial (Karman scheme) compression of bedded specimens (made of equivalent man-made geomaterial, meta-siltstone and shale) has allowed deriving relations between the strength and deformation characteristics and the bedding angle of the specimens. The elasticity and strength are assessed in accordance with the theoretical model by Salamon–Tien and the Hoek–Brown failure criterion. For the bedded geomedia (man-made geomaterial), the Salamon–Tien model yields a satisfactory estimate of the elastic characteristics (elasticity modulus, Poisson’s ratio). Based on the use of the Hoek–Brown criterion, the authors have derived a strength parameter independent of the lateral pressure.

  2. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    Science.gov (United States)

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells.

  3. Contrasting Structures and Deformational History of Syntectonic Granites of Campina Grande and Serra Redonda, Borborema Province, NE Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Wilians de Oliveira Rodrigues

    2011-04-01

    Full Text Available The Campina Grande and Serra Redonda Granites are intrusive along the contact of the Paleoproterozoic basement(Alto Moxotó Domain with the Tonian gneisses (Alto Pajeú Domain of the Borborema Province (northeast Brazil. TheCampina Grande Granite (U-Pb age = 581± 2 Ma shows a concentric oval-shaped structure whereas the Serra RedondaGranite (U-Pb age = 576 ± 3 Ma has a tabular shape, elongated in the NE-SW direction. The plutons are separated bythe left-lateral Galante transcurrent shear zone. In this study, the anisotropy of magnetic susceptibility (AMS was appliedto 64 outcrops of granites to determine the internal structures of these plutons and to explore the relationship betweenmagmatism and deformation in an orogenic setting. The magnetic fabrics are concordant with the metamorphic structure ofthe host rocks. Strike-slip shear zones controlled the emplacement of the Serra Redonda Granite, as indicated by sigmoidalfoliation, defining shear bands associated with the Galante shear zone. In contrast, the magmatic/magnetic fabric of theCampina Grande granite seems to have been produced by body (ascensional forces. The pluton displays an inward dipping, concentric planar fabric parallel to the wall rock contact and lineations highly oblique to the foliation trend. The fabric of the Campina Grande pluton is consistent with a magma moving over a ramp dipping to southwest, with the lineation at high angle to the NE-trending flow direction. The contrasting structures of the plutons reflect the episodic nature of orogenic deformation, which was punctuated by the alternation of weak and strong strains, affecting the fabric development of the syntectonic intrusions.

  4. Evidence for fast seismic lid structure beneath the Californian margin and its implication on regional plate deformation

    Science.gov (United States)

    Lai, V. H.; Graves, R. W.; Wei, S.; Helmberger, D. V.

    2015-12-01

    The lithospheric structure of the Pacific and North American plates play an important role in modulating plate deformation along the California margin. Pure path models indicate that the Pacific plate has a fast thick (80km) lid overlaying a strong low velocity zone (LVZ) extending to beyond 300 km depth. In contrast, the North America structure is characterized by a relatively thin (25-35km) lid and a shallow LVZ. Vertical ray paths have similar travel times across the plate boundary for the two models, making resolution of the transitional structure difficult. Earthquakes such as the 2014 March 10 Mw 6.8 Mendocino and 2014 August 25 Mw 6.0 Napa events recorded at regional distances across California provide an opportunity to study horizontal paths and track the lateral variation in the lower crust-uppermost mantle structure under the Californian margin. Observations from both Napa and Mendocino events show direct SH-wave arrivals at Southern California Seismic Network (SCSN) stations are systematically earlier (up to 10 s) for coastal and island stations relative to inland sites. The shift in SH arrival times may be due to features such as varying crustal thickness, varying upper mantle velocity and the presence of a fast seismic lid. To test the different hypotheses, we perform extensive forward modeling using both 1-D frequency-wavenumber and 3-D finite-difference approaches. The model that best fits the SH arrival times has a fast lid (Vs = 4.7 km/s) underlying the whole California margin, with the lid increasing in thickness from east to west to a maximum thickness about 70 km in the western offshore region. The fast, thick seismic lid lends strength and rigidity to the Pacific plate lithosphere in contrast with the weaker North American continental plate, which influences the overall plate deformation along the Californian margin and is in agreement with GPS measurements.

  5. Hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions

    NARCIS (Netherlands)

    Imole, O.I.; Kumar, N.; Magnanimo, V.; Luding, S.

    2013-01-01

    Stress- and structure-anisotropy (bulk) responses to various deformation modes are studied for dense packings of linearly elastic, frictionless, polydisperse spheres in the (periodic) triaxial box element test configuration. The major goal is to formulate a guideline for the procedure of how to cali

  6. Fully exploitation of SBAS-DInSAR deformation time series for assessing structural damage: the case study of Rome, Italy

    Science.gov (United States)

    Bonano, Manuela; Arangio, Stefania; Calò, Fabiana; Di Mauro, Maria; Marsella, Maria; Manunta, Michele

    2014-05-01

    Remote sensing techniques have demonstrated to be effective tools to support natural and man-made risk mitigation activities. Among these, the Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) technology is largely exploited in geoscience, oil and gas extraction, and landslide fields. Recently, thanks to the large availability of high resolution SAR systems (10 m or less), as well as to the development of advanced data processing techniques, DInSAR products have also started to be effectively used for applications in urban areas to detect localized displacements affecting single buildings and infrastructures. The advanced DInSAR technique referred to as Small Baseline Subset (SBAS) (Lanari et al., 2004) allows us to generate very long deformation time series, by exploiting large SAR datasets spanning up to 20 years (Bonano et al., 2012). Thanks to its capability to investigate wide areas, the SBAS-DInSAR technique is particularly suitable to remotely analyse the structural conditions of buildings located in densely urbanized zones. In this work, we fully exploit the results achieved over the city of Rome, Italy, through the well-established SBAS-DInSAR approach, aimed at performing a quantitative assessment of structural damage in urban areas affected by ground deformation (Arangio et al., 2013). More in details, we present an innovative methodology that integrates the SBAS-DInSAR measurements within an existing model, in order to assess the damage, and possibly estimate the future structural conditions, of single buildings affected by significant foundation settlements. In particular, a semi-empirical approach, based on a laminated beam model (Finno et al., 2005), is applied to investigate the damage of buildings located in the southern part of the city. The obtained results are in substantial agreement with in situ surveys, proving that the presented approach is an effective tool for the preliminary evaluation of the structural conditions in

  7. Comparison of Brazed Residual Stress and Thermal Deformation between X-Type and Pyramidal Lattice Truss Sandwich Structure: Neutron Diffraction Measurement and Simulation Study

    Science.gov (United States)

    Jiang, Wenchun; Wei, Zhiquan; Luo, Yun; Zhang, Weiya; Woo, Wanchuck

    2016-06-01

    This paper uses finite element method and neutron diffraction measurement to study the residual stress in lattice truss sandwich structure. A comparison of residual stress and thermal deformation between X-type and pyramidal lattice truss sandwich structure has been carried out. The residual stresses are concentrated in the middle joint and then decreases gradually to both the ends. The residual stresses in the X-type lattice truss sandwich structure are smaller than those in pyramidal structure. The maximum longitudinal and transverse stresses of pyramidal structure are 220 and 202 MPa, respectively, but they decrease to 190 and 145 MPa for X-type lattice truss sandwich structure, respectively. The thermal deformation for lattice truss sandwich panel structure is of wave shape. The X-type has a better resistance to thermal deformation than pyramidal lattice truss sandwich structure. The maximum wave deformation of pyramidal structure (0.02 mm) is about twice as that of X-type (0.01 mm) at the same brazing condition.

  8. Micro-beam and pulsed laser beam techniques for the micro-fabrication of diamond surface and bulk structures

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Bellini, M. [European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Istituto Nazionale di Ottica (INO-CNR), Largo Enrico Fermi 6, 50125 Firenze (Italy); Bosia, F. [Physics Department and “Nanostructured Interfaces and Surfaces” Inter-departmental Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); INFN Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Calusi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Corsi, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Czelusniak, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); and others

    2015-04-01

    Micro-fabrication in diamond is applicable in a wide set of emerging technologies, exploiting the exceptional characteristics of diamond for application in bio-physics, photonics and radiation detection. Micro ion-beam irradiation and pulsed laser irradiation are complementary techniques, which permit the implementation of complex geometries, by modification and functionalization of surface and/or bulk material, modifying the optical, electrical and mechanical characteristics of the material. In this article we summarize the work done in Florence (Italy), concerning ion beam and pulsed laser beam micro-fabrication in diamond.

  9. A Study on the Hot Deformation Behavior of 47Zr-45Ti-5Al-3V Alloy with Initial Lamellar α Structure

    Science.gov (United States)

    Tan, Yuanbiao; Ji, Liyuan; Duan, Jingli; Liu, Wenchang; Zhang, Jingwu; Liu, Riping

    2016-12-01

    The hot deformation behavior of the 47Zr-45Ti-5Al-3V (wt pct) alloy with initial lamellar α structure was investigated by compression tests in the temperature range of 823 K to 1073 K (550 °C to 800 °C) and strain rate range of 10-3 to 100 s-1. In the α + β phase field, the flow curves exhibited a continuous flow softening. The extent of flow softening first decreased with increasing strain rate from 10-3 to 10-1 s-1, and then increased with further increasing strain rate to 100 s-1. In the single β phase field, the flow curves exhibited a pronounced stress drop at the very beginning of deformation at low temperatures and high strain rates. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At higher temperatures and lower strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependence of the flow stress on deformation temperature and strain rate. The activation energy for deformation at different strains was calculated. In the α + β phase field, the activation energy for deformation increased from 333 to 355 kJ/mol with increasing strain, and then decreased to 312 kJ/mol. In the single β phase, the activation energy for deformation decreased from 169 to 136 kJ/mol with increasing strain.

  10. A Study on the Hot Deformation Behavior of 47Zr-45Ti-5Al-3V Alloy with Initial Lamellar α Structure

    Science.gov (United States)

    Tan, Yuanbiao; Ji, Liyuan; Duan, Jingli; Liu, Wenchang; Zhang, Jingwu; Liu, Riping

    2016-09-01

    The hot deformation behavior of the 47Zr-45Ti-5Al-3V (wt pct) alloy with initial lamellar α structure was investigated by compression tests in the temperature range of 823 K to 1073 K (550 °C to 800 °C) and strain rate range of 10-3 to 100 s-1. In the α + β phase field, the flow curves exhibited a continuous flow softening. The extent of flow softening first decreased with increasing strain rate from 10-3 to 10-1 s-1, and then increased with further increasing strain rate to 100 s-1. In the single β phase field, the flow curves exhibited a pronounced stress drop at the very beginning of deformation at low temperatures and high strain rates. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At higher temperatures and lower strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependence of the flow stress on deformation temperature and strain rate. The activation energy for deformation at different strains was calculated. In the α + β phase field, the activation energy for deformation increased from 333 to 355 kJ/mol with increasing strain, and then decreased to 312 kJ/mol. In the single β phase, the activation energy for deformation decreased from 169 to 136 kJ/mol with increasing strain.

  11. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  12. Deciphering structures and deformation of the Obuom Gold Prospect, Central Ashanti Belt of Ghana: A lithostructural approach

    Science.gov (United States)

    Nunoo, Samuel; Manu, J.; Olarewaju, V. O.; Asiedu, D. K.; Nude, P. M.

    2016-12-01

    The Obuom Gold Prospect is located in the central part of the Paleoproterozoic Birimian Ashanti belt of southwest Ghana. The prospect is approximately 45 km2 and is underlain by basalt, andesite and dacite volcanic beds, graphitic and chlorite phyllites of sedimentary origin and granites. Published works on the Obuom geological terrane, using gravity models, showed that, the structures are more complex than previously thought and may involve multiple thrust slices. This research identified two deformational episodes; the first has a remarkable sinistral sense probably synchronous with an Eoeburnean event with the second, an overprint of dextral shearing during the Eburnean event. The first episode, Do1 is characterized by NW-SE compression which resulted in subvertical NE-SW trending S1 axial plane metamorphic foliation in tight to isoclinal F1 folds with NW-SE trending L1 lineations. The second episode, Do2 indicates continuous shortening which produced nearly upright F2 folds with east-west striking axial planes, slight plunging hinges and associated subparallel crenulation cleavages. The first deformational event Do1 which represent NW-SE compression is observed affecting only the Sefwi Group. The Do2 resulting from N-S compression affected both the Sefwi and Kumasi Groups.

  13. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation

    Science.gov (United States)

    Rajabi, H.; Ghoroubi, N.; Malaki, M.; Darvizeh, A.; Gorb, S. N.

    2016-01-01

    Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex) and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D) finite element (FE) models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs). PMID:27513753

  14. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data

    Indian Academy of Sciences (India)

    K S Krishna; D Gopala Rao; Yu P Neprochnov

    2002-03-01

    Analyses of bathymetry, gravity and seismic reflection data of the diffusive plate boundary in the central Indian Ocean reveal a new kind of deformed structure besides the well-reported structures of long-wavelength anticlinal basement rises and high-angle reverse faults. The structure (basement trough) has a length of about 150 km and deepens by up to 1 km from its regional trend (northward dipping). The basement trough includes a rise at its center with a height of about 1.5 km. The rise is about 10 km wide with rounded upper surface and bounded by vertical faults. A broad free-air gravity low of about 20 mGal and a local high of 8 mGal in its center are associated with the identified basement trough and rise structure respectively. Seismic results reveal that the horizontal crustal compression prevailing in the diffusive plate boundary might have formed the basement trough possibly in early Pliocene time. Differential loading stresses have been generated from unequal crust/sediment thickness on lower crustal and upper mantle rocks. A thin semi-ductile serpentinite layer existing near the base of the crust that is interpreted to have been formed at mid-ocean ridge and become part of the lithosphere, may have responded to the downward loading stresses generated by the sediments and crustal rocks to inject the serpentinites into the overlying strata to form a classic diapiric structure.

  15. Numerical modeling anti-personnel blast mines coupled to a deformable leg structure

    Science.gov (United States)

    Cronin, Duane; Worswick, Mike; Williams, Kevin; Bourget, Daniel; Pageau, Gilles

    2001-06-01

    The development of improved landmine protective footwear requires an understanding of the physics and damage mechanisms associated with a close proximity blast event. Numerical models have been developed to model surrogate mines buried in soil using the Arbitrary Lagrangian Eulerian (ALE) technique to model the explosive and surrounding air, while the soil is modeled as a deformable Lagrangian solid. The advantage of the ALE model is the ability to model large deformations, such as the expanding gases of a high explosive. This model has been validated using the available experimental data [1]. The effect of varying depth of burial and soil conditions has been investigated with these numerical models and compares favorably to data in the literature. The surrogate landmine model has been coupled to a numerical model of a Simplified Lower Leg (SLL), which is designed to mimic the response and failure mechanisms of a human leg. The SLL consists of a bone and tissue simulant arranged as concentric cylinders. A new strain-rate dependant hyperelastic material model for the tissue simulant, ballistic gelatin, has been developed to model the tissue simulant response. The polymeric bone simulant material has been characterized and implemented as a strain-rate dependent material in the numerical model. The numerical model results agree with the measured response of the SLL during experimental blast tests [2]. The numerical model results are used to explain the experimental data. These models predict that, for a surface or sub-surface buried anti-personnel mine, the coupling between the mine and SLL is an important effect. In addition, the soil properties have a significant effect on the load transmitted to the leg. [1] Bergeron, D., Walker, R. and Coffey, C., 1998, “Detonation of 100-Gram Anti-Personnel Mine Surrogate Charges in Sand”, Report number SR 668, Defence Research Establishment Suffield, Canada. [2] Bourget, D., Williams, K., Pageau, G., and Cronin, D.,

  16. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber

    Science.gov (United States)

    Lee, Jinho; Lee, Junsu; Koo, Joonhoi; Chung, Hojai; Lee, Ju Han

    2016-07-01

    We experimentally demonstrate a linearly polarized, passively Q-switched, erbium (Er)-doped fiber laser using a saturable absorber (SA) based on a composite consisting of a bulk-structured bismuth telluride (Bi2Te3) topological insulator (TI) and polyvinyl alcohol (PVA). The SA was constructed on a polarization maintaining (PM) fiber ferrule platform, which had a sandwich structure. Its saturation intensity and modulation depth were measured to be ˜ and ˜4.1%, respectively. Using the prepared Bi2Te3/PVA SA in a PM Er-doped fiber ring laser, stable Q-switched pulses with a degree of polarization of ˜98.6% and an azimuth angle of ˜-0.34 deg were demonstrated. The minimum pulse width was measured to be ˜1.58 μs at a repetition rate of 47.1 kHz. This experimental demonstration verifies that a thin film based on a bulk-structured Bi2Te3 TI can fit into a sandwich-structured SA based on PM fiber ferrules.

  17. Constraining the Late Mesozoic and Early Tertiary Tectonic Evolution of Southern Mexico: Structure and Deformation History of the Tierra Caliente Region.

    Science.gov (United States)

    Cabral-Cano; Draper; Lang; Harrison

    2000-07-01

    We analyze the structure and assess the deformation history of the Tierra Caliente Metamorphic Complex (TCMC) of southern Mexico, where Laramide accretion of exotic terranes is in debate. The TCMC consists of a south-plunging antiform fault that is bounded on both its eastern and western flanks. Tierra Caliente Metamorphic Complex rocks show at least two phases of compressional deformation. The first and most prominent records a mean tectonic transport direction of 068 degrees. This phase is responsible for east-verging asymmetrical folding and thrusting of both metamorphic and superjacent sedimentary rocks. The second phase has an average transport direction of 232 degrees and is restricted to the western portion of the TCMC. A third phase is responsible for normal faulting. Lack of discernible deformation before Late Cretaceous time indicates that the main deformation phase is coincident with Laramide orogenesis elsewhere in the North American Cordillera. The stratigraphy, structure, and deformational history of the TCMC do not require accretion of exotic terranes. We explain the Mesozoic tectonostratigraphic evolution of the TCMC in terms of deposition and deformation of Mesozoic volcanic and sedimentary strata over the attenuated continental crust of the North American plate.

  18. Microstructure of Cu60Zr20Ti20 bulk metallic glass rolled at different strain rates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The structural evolution of Cu60Zr20Ti20 bulk metallic glass during rolling at different strain rates and cryogenic temperature was investigated by X-ray diffraction (XRD),differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the deformation-induced transformation is strongly dependent on the strain rate. At the lowest experimental strain rate of 1.0×10-4 s-1,no phase transformation occurs until the highest deformation degree reaches 95%. In a strain rate range of 5.0×10-4-5.0×10-2 s-1,phase separation oc-curs in a high deformation degree. As the strain rate reaches 5.0×10-1 s-1,phase separation and nanocrystallization concur. The critical deformation degree for oc-currence of phase transformation decreases with the strain rate increasing.

  19. Energetics, relative stabilities, and size-dependent properties of nanosized carbon clusters of different families: fullerenes, bucky-diamond, icosahedral, and bulk-truncated structures.

    Science.gov (United States)

    Yu, M; Chaudhuri, I; Leahy, C; Wu, S Y; Jayanthi, C S

    2009-05-14

    Structures and relative stabilities of carbon clusters belonging to different families have been investigated for diameters d simulation. Carbon clusters studied include fullerenes and fullerene-derived structures (e.g., cages and onions), icosahedral structures, bucky-diamond structures, and clusters cut from the bulk diamond with spherical and facetted truncations. The reason for using a semiempirical MD is partly due to the large number of different cases (or carbon allotropes) investigated and partly due to the size of the clusters investigated in this work. The particular flavor of the semiempirical MD scheme is based on a self-consistent and environment-dependent Hamiltonian developed in the framework of linear combination of atomic orbitals. We find that (i) among the families of carbon clusters investigated, fullerene structures have the lowest energy with the relative energy ordering being E(fullerene) structures is likely at d approximately 8 nm, (iii) the highest occupied molecular orbital-lowest unoccupied molecular orbital gap as a function of the diameter for the case of fullerenes shows an oscillatory behavior with the gap ranging from 2 eV to 6 meV, and the gap approaching that of gapless graphite for d > 3.5 nm, and (iv) there can be three types of phase transformations depending on the manner of heating and cooling in our simulated annealing studies: (a) a bucky-diamond structure --> an onionlike structure, (b) an onionlike --> a cage structure, and (c) a bucky-diamond --> a cage structure.

  20. Pleomorphic structural imperfections caused by pulsed Bi-implantation in the bulk and thin-film morphologies of TiO2

    Science.gov (United States)

    Zatsepin, D. A.; Boukhvalov, D. W.; Kurmaev, E. Z.; Gavrilov, N. V.; Kim, S. S.; Zhidkov, I. S.

    2016-08-01

    The results of combined experimental and theoretical study of pleomorphic substitutional and clustering effects in Bi-doped TiO2 hosts (bulk and thin-film morphologies) are presented. Bi-doping of the bulk and thin-film titanium dioxide was made with help of pulsed ion-implantation (EBi+ = 30 keV, D = 1 × 1017 cm-2) without posterior tempering. The X-ray photoelectron spectroscopy (XPS) qualification (core-levels and valence bands) and Density-Functional Theory (DFT) calculations were employed in order to study the electronic structure of Bi-ion implanted TiO2 samples. According to XPS data obtained and DFT calculations, the Bi → Ti cation substitution occurs in Bi-implanted bulk TiO2, whereas in the thin-film morphology of TiO2:Bi the Bi-atoms have metal-like clusters segregation tendency. Based on the combined XPS and DFT considerations the possible reasons and mechanism for the observed effects are discussed. It is believed that established peculiarities of bismuth embedding into employed TiO2 hosts are mostly the sequence of pleomorphic origin for the formed "bismuth-oxygen" chemical bonding.

  1. Theoretical investigation of the electronic structures and magnetic properties of the bulk and surface (001) of the quaternary Heusler alloy NiCoMnGa

    Science.gov (United States)

    Al-zyadi, Jabbar M. Khalaf; Gao, G. Y.; Yao, Kai-Lun

    2015-03-01

    In this paper, we study the electronic structures, magnetic properties, and half-metallicity of the bulk and (001) surface of Heusler alloy NiCoMnGa. Our first-principles calculations exhibit that, within the generalized gradient approximation (GGA) of the electronic exchange-correlation functional, the quaternary Heusler alloy NiCoMnGa is a half-metallic ferromagnet at the equilibrium lattice constant of 5.795 Ǻ with a total spin magnetic moment of 5 μB per formula unit. The calculated total atomic magnetic moment follows the Slater-Pauling rule. At the same equilibrium lattice constant, the half-metallicity confirmed in the bulk NiCoMnGa, is destroyed at both MnGa- and NiCo-terminated (001) surfaces and subsurfaces. Based on the magnetic property calculations, the magnetic moments of Co, Mn, and Ga atoms at the NiCo- and MnGa-terminated surfaces increase with respect to the corresponding bulk values while the atomic magnetic moment of Ni at the NiCo-terminated surface decreases.

  2. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  3. Deformation of Ordered Mesoporous Silica Structures on Exposure to High Temperatures

    Directory of Open Access Journals (Sweden)

    John B. Lowe

    2014-01-01

    Full Text Available Ordered mesoporous silica materials are of interest for a wide range of applications. In many of these, elevated temperatures are used either in the preparation of the material or during its use. Therefore, an understanding of the effect of high temperature treatments on these materials is desirable. In this work, a detailed structural study is performed on silicas with three representative pore structures: a 2-D hexagonal pore arrangement (SBA-15, a continuous 3D cubic bimodal pore structure (KIT-6, and a 3D large cage pore structure (FDU-12. Each silica is studied as prepared and after treatment at a series of temperatures between 300 and 900°C. Pore structures are imaged using Transmission Electron Microscopy. This technique is used in conjunction with Small-Angle X-ray Diffraction, gas physisorption, and 29Si solid state Nuclear Magnetic Resonance. Using these techniques, the pore size distributions, the unit cell dimensions of the mesoporous structures, and the relative occupancy of the distinct chemical environments of Si within them are cross correlated for the three silicas and their evolution with treatment temperature is elucidated. The physical and chemical properties before, during, and after collapse of these structures at high temperatures are described as are the differences in behavior between the three silica structures.

  4. A NEW DESIGN IMPROVEMENT OF MICROSTRIP U-SHAPE ANTENNA FOR BANDWIDTH ENHANCEMENT USING EBG STRUCTURE DEFORMATION

    Directory of Open Access Journals (Sweden)

    SUDHAKAR SRIVASTAVA

    2012-06-01

    Full Text Available The purpose of this paper is to design a low profile, conformal, small size antenna with high bandwidth along with good compromise in other factors like gain, directivity, efficiency etc. A U-shape patch antenna with suitable geometry is taken to provide good response of bandwidth about 30 % at centre frequency 2.025 GHz.using FR-4 glass epoxy material, on insertion of EBG structure, creating deformities at ground plane side, the band width of the antenna is improved tremendously about 49.36 % at centre frequency 2.35 GHz. The new design of antenna is found suitable for various wireless communications for S-band. The design approach & Simulation results are shown with the help of MOM based full wave simulator IE3D.

  5. Structural-scale levels of development of inelastic martensitic deformation during isothermal loading of submicrocrystalline titanium nickelide in premartensitic condition

    Energy Technology Data Exchange (ETDEWEB)

    Bakach, G. P.; Dudarev, E. F., E-mail: dudarev@spti.tsu.ru; Skosyrskii, A. B. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Maletkina, T. Yu., E-mail: t.maletkina@yandex.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation)

    2015-10-27

    The results are presented of an experimental investigation into the regularities and mechanisms of the development of thermoelastic martensitic transformation in submicrocrystalline alloy Ti{sub 49.4}Ni{sub 50.6} with different ways of thermo-power actions using the methods of optical microscopy in situ and X-ray diffraction. The peculiarities of localization of martensite transformation at the meso- and macroscale levels in this alloy with submicrocrystalline structure are considered. Experimental data on the relay mechanism of propagation of the martensitic transformation are presented. The interrelation between the localization of the martensitic transformation on the meso-and macroscale levels and deformation behavior under isothermal loading alloy Ti{sub 49.4}Ni5{sub 0.6} in submicrocrystalline condition are shown and discussed.

  6. DECAY RATE OF SAINT-VENANT END EFFECTS FOR PLANE DEFORMATIONS OF PIEZOELECTRIC-PIEZOMAGNETIC SANDWICH STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Yan Xue; Jinxi Liu

    2010-01-01

    This paper is concerned with the decay of Saint-Venant end effects for plane deformations of piezoelectric (PE)-piezomagnetic (PM) sandwich structures,where a PM layer is located between two PE layers with the same material properties or reversely.The end of the sandwich structure is subjected to a set of self-equilibrated magneto-electro-elastic loads.The upper and lower surfaces of the sandwich structure are mechanically free,electrically open or shorted as well as magnetically open or shorted.Firstly the constitutive equations of PE materials and PM materials for plane strain are given and normalized.Secondly,the simplified state space approach is employed to arrange the constitutive equations into differential equations in a matrix form.Finally,by using the transfer matrix method,the characteristic equations for eigenvalues or decay rates are derived.Based on the obtained characteristic equations,the decay rates for the PE-PM-PE and PM-PE-PM sandwich structures are calculated.The influences of the electromagnetic boundary conditions,material properties of PE layers and volume fraction on the decay rates are discussed in detail.

  7. An Immersed Boundary Finite-Element Solver for Flow-Induced Deformation of Soft Structures with Application in Cardiac Flows

    Science.gov (United States)

    Bhardwaj, Rajneesh; Mittal, Rajat

    2011-11-01

    The modeling of complex biological phenomena such as cardiac mechanics is challenging. It involves complex three dimensional geometries, moving structure boundaries inside the fluid domain and large flow-induced deformations of the structure. We present a fluid-structure interaction solver (FSI) which couples a sharp-interface immersed boundary method for flow simulation with a powerful finite-element based structure dynamics solver. An implicit partitioned (or segregated) approach is implemented to ensure the stability of the solver. We validate the FSI solver with published benchmark for a configuration which involves a thin elastic plate attached to a rigid cylinder. The frequency and amplitude of the oscillations of the plate are in good agreement with published results and non-linear dynamics of the plate and its coupling with the flow field are discussed. The FSI solver is used to understand left-ventricular hemodynamics and flow-induced dynamics of mitral leaflets during early diastolic filling and results from this study are presented.

  8. Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774).

    Science.gov (United States)

    Frenzel, Max; Harper, Elizabeth M

    2011-05-01

    Vateritic deformities occurring in the invasive heterodont bivalve Corbicula fluminea from several locations in the UK were characterised in detail for the first time using scanning electron microscopy, X-ray diffraction and different geochemical techniques (electron microprobe, ICP-AES, and mass spectrometry). Large volumes of vaterite are produced abnormally in the animals' shells in the form of yellow-green bulges. These are distinguished from the aragonitic parts of the shell by their characteristic micro-structures, content of organic material, trace elemental composition and carbon stable isotope signatures. The most commonly observed micro-structures include columnar vaterite, lamellar vaterite and different irregular structures occurring in all parts of the shell. There are indications that organic material is present largely as intracrystalline impurities or nano-scale phases and not as envelopes around microstructural units. These micro-structures are novel, nothing equivalent having yet been described for other vateritic systems. Euhedral vaterite crystals also occur occasionally. The vaterite has generally higher Mg/Ca and lower Na/Ca, K/Ca than the aragonite. In addition, δ¹³C is also always lower. Microstructural characteristics would suggest loss of biological control probably due to physiological stress(es) inducing the switch to vaterite production. The vaterite might be stabilised by its higher content of organic material and magnesium.

  9. Theory of the magnetic and metal-insulator transitions in RNiO3 bulk and layered structures.

    Science.gov (United States)

    Lau, Bayo; Millis, Andrew J

    2013-03-22

    A slave rotor--Hartree-Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within a unified formulation, the significant aspects of the rare-earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and unstrained thin-film form. For ultrathin films, epitaxial strain and charge transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram.

  10. Comparison of Electronic and Optical Properties of GaN Monolayer and Bulk Structure: a First Principle Study

    Science.gov (United States)

    Imran, Muhammad; Hussain, Fayyaz; Rashid, Muhammad; Ullah, Hafeez; Sattar, Atif; Iqbal, Faisal; Ahmad, Ejaz

    2016-03-01

    The semiconducting two-dimensional (2D) architectures materials have potential applications in electronics and optics. The design and search of new 2D materials have attracted extensive attention recently. In this study, first principle calculation has been done on 2D gallium nitride (GaN) monolayer with respect to its formation and binding energies. The electronic and optical properties are also investigated. It is found that the single isolated GaN sheet is forming mainly ionic GaN bonds despite a slightly weaker GaN interaction as compared with its bulk counterpart. The dielectric constant value of 2D GaN is smaller as compared to 3D GaN due to less effective electronic screening effect in the layer, which is accompanied by lesser optical adsorption range and suggested to be a promising candidate in electronic and optoelectronic devices.

  11. Theory of the Magnetic and Metal-Insulator Transitions in RNiO3 Bulk and Layered Structures

    Science.gov (United States)

    Lau, Bayo; Millis, Andrew J.

    2013-03-01

    A slave rotor—Hartree-Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within a unified formulation, the significant aspects of the rare-earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and unstrained thin-film form. For ultrathin films, epitaxial strain and charge transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram.

  12. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen;

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D...... of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets...

  13. Structural properties of the active layer of discotic hexabenzocoronene/perylene diimide bulk hetero junction photovoltaic devices: The role of alkyl side chain length

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hussein, M., E-mail: m.alhussein@ju.edu.jo [Department of Physics, University of Jordan, Amman 11942 (Jordan); Hesse, H.C.; Weickert, J. [Ludwig-Maximilians-University Munich, Department of Physics and Center for NanoScience(CeNS), Amalienstr.54, 80799 Munich (Germany); Doessel, L.; Feng, X.; Muellen, K. [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Schmidt-Mende, L. [Ludwig-Maximilians-University Munich, Department of Physics and Center for NanoScience(CeNS), Amalienstr.54, 80799 Munich (Germany)

    2011-10-31

    We investigate thin blend films of phenyl-substituted hexa-peri-hexabenzocoronenes (HBC) with various alkyl side chain lengths ((CH{sub 2})n, n = 6, 8, 12 and 16)/perylenediimide (PDI). These blends constitute the active layers in bulk-hetero junction organic solar cells we studied recently [1]. Their structural properties are studied by both scanning electron microscopy and X-ray diffraction measurements. The results support the evidence for the formation of HBC donor-PDI acceptor complexes in all blends regardless of the side chain length of the HBC molecule. These complexes are packed into a layered structure parallel to the substrate for short side chain HBC molecules (n = 6 and 8). The layered structure is disrupted by increasing the side chain length of the HBC molecule and eventually a disordered structure is formed for long side chains (n > 12). We attribute this behavior to the size difference between the aromatic parts of the HBC and PDI molecules. For short side chains, the size difference results in a room for the side chains of the two molecules to fill in the space around the aromatic cores. For long side chains (n > 12), the empty space will not be enough to accommodate this increase, leading to the disruption of the layered structure and a rather disordered structure is formed. Our results highlight the importance of the donor-acceptor interaction in a bulk heterojunction active layer as well as the geometry of the two molecules and their role in determining the structure of the active layer and thus their photovoltaic performance.

  14. Distributed deformation structures in shallow water carbonates subsiding through a simple stress field (Jandaira Formation, NE Brazil)

    Science.gov (United States)

    Bertotti, Giovanni; Bisdom, Kevin; Bezerra, Hilario; Reijmer, John; Cazarin, Carol

    2016-04-01

    Despite the scarcity of major deformation structures such as folds and faults, the flat-lying, post-rift shallow water carbonates of the Jandaira Formation (Potiguar Basin, NE Brazil) display well-organized fracture systems distributed of tens of km2. Structures observed in the outcropping carbonates are sub-vertical, generally N-S trending mode I and hybrid veins and barren fractures, sub-vertical roughly E-W trending stylolites and sub-horizontal stylolites. These features developed during subsidence in a simple and constant stress field characterized by, beside gravity, a significant horizontal stress probably of tectonic origin. The corresponding depth curves have different origin and slopes and, therefore, cross each other resulting in position of the principal stresses which change with depth. As a result, the type and amount of fractures affecting subsiding rocks change despite the fact that the far-field stresses remain constant. Following early diagenesis and porosity elimination in the first 100-200m depth, Jandaira carbonates experienced wholesale fracturing at depths of 400-800m resulting in a network of NNW-NE trending fractures partly organized in conjugate sets with a low interfault angle and a sub-vertical intersection, and sub-vertical stylolites roughly perpendicular to the fractures. Intense fluid circulation was activated as a consequence through the carbonates. With increasing subsidence, sub-horizontal stylolites formed providing calcite which precipitated in the open fractures transforming them in veins. The Jandaira formation lost thereby the permeability it had reached during the previous stage. Because of the lack of major deformation, the outcrops of the Jandaira Formation is an excellent analog for carbonate reservoirs in the Middle East, South Atlantic and elsewhere.

  15. Structural origin of set-reset process in a new bulk Si15Te83Ge2 phase-change memory material

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Gunti

    2011-03-01

    Full Text Available A new phase-change memory material, in bulk, has been prepared by melt-quenching technique, which has a better glass forming ability. This sample is set and resettable relatively easily for several cycles at 2mA SET and RESET input currents, and is likely to be a suitable material for phase-change memory applications. Raman scattering studies have been undertaken during the SET and RESET operations to elucidate the local structural transformations that occur during these operations.

  16. Fine-Scale Structure of the Moho From Receiver Functions: Effects of a Deforming Crust

    Science.gov (United States)

    Zandt, G.; Gilbert, H.; Ozacar, A.; Owens, T. J.

    2004-12-01

    Andrija Mohorovicic, a Croatian seismologist, is credited with the first estimation in 1906 of crustal thickness using the critically refracted phase Pn. The crust-mantle boundary has become commonly known as the Moho and its depth, structure, formation, and evolution remains an important research topic in seismology, petrology, and tectonics. Other seismic phases sensitive to Moho depth and structure are the converted phases Ps and Sp, and the associated 2p1s and 1p2s reverberation phases that are isolated in receiver function waveforms. With sufficient station coverage, multiple receiver functions can be migrated and stacked into cross-sections of the crust. Crustal cross-sections from tectonically active regions reveal dramatic variations in amplitude and frequency content of Moho phases that we associate with fine-scale structure, and possibly anisotropy at the crust-mantle boundary. The Moho amplitude or "brightness" is a measure of the crust-mantle impedance contrast, thickness and structure within the crust-mantle boundary, and effects of scattering from 3D structure. Processes directly related to these Moho structures include crustal thickening, crustal extension, crustal flow, delamination or convective removal, and eclogitization. Therefore, the fine-scale seismological structure of the Moho is an important constraint in regional tectonic reconstructions. Examples of receiver function crustal images and their tectonic implications from the western US, South American Andes, and the Tibetan plateau will be reviewed.

  17. Direct observation of nucleation in the bulk of an opaque sample

    Science.gov (United States)

    Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z.; Liu, Qing; Juul Jensen, Dorte

    2017-02-01

    Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.

  18. Structure, dynamics, and function of the hammerhead ribozyme in bulk water and at a clay mineral surface from replica exchange molecular dynamics.

    Science.gov (United States)

    Swadling, Jacob B; Wright, David W; Suter, James L; Coveney, Peter V

    2015-03-01

    Compared with proteins, the relationship between structure, dynamics, and function of RNA enzymes (known as ribozymes) is far less well understood, despite the fact that ribozymes are found in many organisms and are often conceived as "molecular fossils" of the first self-replicating molecules to have arisen on Earth. To investigate how ribozymal function is governed by structure and dynamics, we study the full hammerhead ribozyme in bulk water and in an aqueous clay mineral environment by computer simulation using replica-exchange molecular dynamics. Through extensive sampling of the major conformational states of the hammerhead ribozyme, we are able to show that the hammerhead manifests a free-energy landscape reminiscent of that which is well known in proteins, exhibiting a "funnel" topology that guides the ribozyme into its globally most stable conformation. The active-site geometry is found to be closely correlated to the tertiary structure of the ribozyme, thereby reconciling conflicts between previously proposed mechanisms for the self-scission of the hammerhead. The conformational analysis also accounts for the differences reported experimentally in the catalytic activity of the hammerhead ribozyme, which is reduced when interacting with clay minerals as compared with bulk water.

  19. The Structural Evolution of the Calabrian Forearc: A Multidisciplinary Approach to Investigating Time-Transgressive Deformation in a Subduction-Rollback System

    Science.gov (United States)

    Reitz, Margaret A.

    This dissertation investigates the temporal and spatial variations in deformation of the Calabrian forearc during the evolution of the subduction-rollback system. In addition to contributing new data to the area, I develop three strategies for understanding recent and active deformation by linking long-term structural data with short-term geomorphological data. First, setting a "baseline" of deformation is important when studying plate boundaries. Through the structural mapping of an uplifted forearc basin, I conclude that rapid rollback is characterized by tectonic quiescence in the Calabrian forearc when it is located far from collision (from ~12 Ma -- ~5 Ma). This "baseline" provides a framework from which I interpret younger phases of deformation. In the middle Pliocene (~5-4 Ma), an arc-parallel shortening event characterizes the first stage of forearc collision in my field area. These folded sediments are later tilted, but structural data from the field cannot constrain the age or structure responsible for this youngest phase of deformation. The Neto River dissects this tilted surface opening up the possibly of linking structural data with geomorphic data from river erosion. I collected a transect of river sediment samples for 10Be analysis to determine variation in catchment-wide erosion rates through the modern day deformation. I, then, developed a numerical model that describes changes in erosion rate through time with the structural growth of the tilted surface. The model is the first of its kind to use catchment-wide erosion rates to constrain a structural model. The model results constrain the age of the beginning of deformation to 850 ka and suggest that a fold with a migrating hinge caused tilting of the surface. The model provides the basis for my hypothesis that the forearc is experiencing an arc-perpendicular shortening strain, which contradicts conclusions from GPS data and the well-documented extension in the western part of the forearc. To

  20. The Cyclic Deformation Behavior of Severe Plastic Deformation (SPD Metals and the Influential Factors

    Directory of Open Access Journals (Sweden)

    Charles C. F. Kwan

    2012-02-01

    Full Text Available A deeper understanding of the mechanical behavior of ultra-fine (UF and nanocrystalline (NC grained metals is necessary with the growing interest in using UF and NC grained metals for structural applications. The cyclic deformation response and behavior of UF and NC grained metals is one aspect that has been gaining momentum as a major research topic for the past ten years. Severe Plastic Deformation (SPD materials are often in the spotlight for cyclic deformation studies as they are usually in the form of bulk work pieces and have UF and NC grains. Some well known techniques in the category of SPD processing are High Pressure Torsion (HPT, Equal Channel Angular Pressing (ECAP, and Accumulative Roll-Bonding (ARB. In this report, the literature on the cyclic deformation response and behavior of SPDed metals will be reviewed. The cyclic response of such materials is found to range from cyclic hardening to cyclic softening depending on various factors. Specifically, for SPDed UF grained metals, their behavior has often been associated with the observation of grain coarsening during cycling. Consequently, the many factors that affect the cyclic deformation response of SPDed metals can be summarized into three major aspects: (1 the microstructure stability; (2 the limitation of the cyclic lifespan; and lastly (3 the imposed plastic strain amplitude.

  1. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  2. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  3. Insight into the structural deformations of beta-cyclodextrin caused by alcohol cosolvents and guest molecules.

    Science.gov (United States)

    Zhang, Haiyang; Ge, Chunling; van der Spoel, David; Feng, Wei; Tan, Tianwei

    2012-03-29

    Beta-cyclodextrin (β-CD) is an ideal candidate for a host molecule, and it is used as such in drug delivery and separation technology. The structural behavior of free β-CD and host-guest complexes of β-CD with two isoflavonoid isomers (puerarin and daidzin) in aqueous alcohol solutions, covering methanol, ethanol, 2-propanol, and 1-propanol, was investigated through molecular dynamics (MD) simulations. The MD results highlighted aspects of the structural flexibility and rigidity of β-CD in different alcohol solutions. The alcohol residence time within the β-CD cavity, solvent distribution around β-CD, and guest-induced structural changes were analyzed. Interaction with puerarin endowed β-CD with a more rigid structure than with daidzin and a weaker ternary complex β-CD/puerarin/alcohol was formed with a local participation of water molecules. The retention behavior of puerarin and daidzin on a β-CD-coupled medium was determined via chromatographic experiments and simulation results provided a structural explanation for such interactions.

  4. [The nasal valve area: structure, function, clinical aspects and treatment. Sulsenti's technic for correction of valve deformities].

    Science.gov (United States)

    Sulsenti, G; Palma, P

    1989-01-01

    The nasal valve and nasal valve area are two entities which should not be confused. The nasal valve area is the narrowest portion of the nasal passage. It is bounded: medially by the septum; superiorly and laterally by the caudal margin of the upper lateral cartilage and its fibro-adipose attachment to the pyriform aperture ('empty triangle'); inferiorly by the floor of the pyriform aperture. The nasal valve, on the other hand, is the specific slit-like segment between the caudal margin of the upper lateral cartilage and the septum. From a physiological and surgical point of view, this distinction is fundamental. The nasal valve area is the site of the highest nasal resistance. Therefore, small deformities of the valve area may severely impair the dynamics of nasal air flow. Rhinomanometry and nasal endoscopy permit the best definition of valve pathophysiology. After having discussed the various surgical techniques reported in the literature, the authors present an original technique for the surgical correction of valvular deformities. It is completely performed through Cottle's hemitransfixion incision. The technique has several advantages: a) performance of only one incision, sufficient to visualize the entire nasal valve and cartilaginous vault, thus minimizing the risk of scar tissue formation; b) through the space thus created it is possible not only to correct the entire septum, but also to inspect and easily reach the structures constituting the nasal valve area; c) it is possible to use various types of grafts to support or reconstruct the valve area; d) it is possible to reach the key area as well as to do lateral osteotomies: all variations in shape and position of the nasal pyramid may be performed in order to normalize direction and pressures of nasal air flow: e) through the retrograde undermining of the lower lateral cartilages the resistance of the cul-de-sacs may be optimally adjusted; f) it is possible to change the shape, size and position of the

  5. 散粮皮带通廊结构静态性能分析%Static Performance Analysis on Bulk Grain Belt Corridor Structure

    Institute of Scientific and Technical Information of China (English)

    王景起

    2016-01-01

    Belt corridor is a major bulk terminal equipment.Due to its long design life,bulky structure,maintenance complexity,especially harsh seaside working conditions,the corridor’s steel structure is susceptible to corrosion damage, which severely reduces the safety and reliability of the gallery structure.Taking bulk grain belt corridor device in Tianjin Harbour Second Stevedoring Co.,Ltd as the research subject,a finite element analysis model was established according to characteristics of the structure and condition of such equipment and in accordance with design drawings and actual corrosion damages.An in-depth study of the static performance of belt corridor structure was carried out,whichprovides a theoretical basis for the maintenance management scheme.%皮带通廊是散货码头的主要设备之一,由于该类设备的设计寿命较长,结构体积较大,维护节点多,特别是长期处在海边恶劣的工况条件下,其钢结构容易发生锈蚀损伤,严重降低了通廊结构及整套设施的安全可靠性。以天津港第二港埠有限公司散粮皮带通廊设备作为研究对象,根据该类设备的结构及工况特点,并依据设计图纸及实际锈蚀损伤情况,建立有限元分析模型,深入研究了皮带通廊结构的静态性能,为皮带通廊的维护方案提供了理论依据。

  6. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  7. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  8. A biomechanical analysis of the vertebral and rib deformities in structural scoliosis

    NARCIS (Netherlands)

    Veldhuizen, AG; Klein, JP; Webb, PJ; Nijenbanning, G; Cool, JC; von Horn, [No Value

    1999-01-01

    Although the structural changes occurring in the scoliotic spine have been reported as early as the 19th century, the descriptions and biomechanical explanations have not always been complete and consistent. In this study, three-dimensionally rendered CT images of two human skeletons with a scolioti

  9. Structural mechanisms as revealed by real time mechano optical behavior of polylactic acid films in uni and biaxial deformation and heat setting processes

    Science.gov (United States)

    Ou, Xuesong

    In this study, structural development during PLA film processing was investigated with a new instrumented biaxial stretcher capable of real time monitoring of true stress, true strain and in-plane as well as out-of-plane birefringence under fast deformation rates. The effects of stretching rate and mode on mechano-optical behaviors and correspondent morphology development were investigated. At low deformation levels, a linear regime I associated with orientation of amorphous chains was observed in all modes of deformation. Following regime I, a steeper regime II associated with stress induced crystallization was observed during uniaxial constrained width (UCW) stretching under low rates before birefringence begins to level off in regime III due to finite extensibility of chains. During UCW stretching under high rate, regime I transformed directly into regime III, and this is associated with the formation of a very stable nematic mesophase. Direct transformation from regime I to regime III is observed during simultaneous biaxial (SIM) stretching under all rates. The kinetics of structural changes during heat setting from a pre-oriented state was investigated by rapid tracking of in and out-of-plane birefringence of pre-oriented films with a new instrumented annealing chamber capable of fast sample insertion and removal. Development of birefringence, which reflects overall chain orientation, and associated structural evolution during constrained annealing of extended PLA films were clarified. Structural evolution is determined by the competition between chain relaxation and registration of segments into well oriented nuclei that grow during annealing, leading to formation of a long range network of chains that arrests the chains in their oriented state. At low deformation the temporal evolution of birefringence first involves relaxation followed by a rapid increase associated with crystallization. The initial relaxation disappears with increase in deformation in the

  10. Fabrication, Characterization, And Deformation of 3D Structural Meta-Materials

    Science.gov (United States)

    Montemayor, Lauren C.

    Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (mum -- mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation

  11. Active deformation and shallow structure of the Wagner, Consag, and Delfín Basins, northern Gulf of California, Mexico

    Science.gov (United States)

    Persaud, Patricia; Stock, Joann M.; Steckler, Michael S.; MartíN-Barajas, Arturo; Diebold, John B.; GonzáLez-FernáNdez, Antonio; Mountain, Gregory S.

    2003-07-01

    Oblique rifting began synchronously along the length of the Gulf of California at 6 Ma, yet there is no evidence for the existence of oceanic crust or a spreading transform fault system in the northern Gulf. Instead, multichannel seismic data show a broad shallow depression, ˜70 × 200 km, marked by active distributed deformation and six ˜10-km-wide segmented basins lacking well-defined transform faults. We present detailed images of faulting and magmatism based on the high resolution and quality of these data. The northern Gulf crust contains a dense (up to 18 faults in 5 km) complex network of mainly oblique-normal faults, with small offsets, dips of 60-80° and strikes of N-N30°E. Faults with seafloor offsets of tens of meters bound the Lower and two Upper Delfín Basins. These subparallel basins developed along splays from a transtensional zone at the NW end of the Ballenas Transform Fault. Twelve volcanic knolls were identified and are associated with the strands or horsetails from this zone. A structural connection between the two Upper Delfín Basins is evident in the switching of the center of extension along axis. Sonobuoy refraction data suggest that the basement consists of mixed igneous sedimentary material, atypical of mid-ocean ridges. On the basis of the near-surface manifestations of active faulting and magmatism, seafloor spreading will likely first occur in the Lower Delfín Basin. We suggest the transition to seafloor spreading is delayed by the lack of strain-partitioned and focused deformation as a consequence of shear in a broad zone beneath a thick sediment cover.

  12. Non-Archimedean mathematical analysis methods in description of deformation of structurally inhomogeneous geomaterials

    Science.gov (United States)

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2017-02-01

    Under analysis is an approach to mathematical modeling of structurally inhomogeneous rocks considering structural hierarchy and internal self-balanced stresses. The fields of stresses and strains at various scale levels of rock mass medium are characterized using the non-Archimedean analysis methods. It is shown that such model describes accumulationtion of elastic energy in the form of internal self-balanced stresses on a micro-scale. The finite element algorithm and a computer program are developed to solve plane boundary-value problems. The calculated data on compression of a rock specimen are reported. The paper shows that the behavior of plastic strain zones largley depends on the pre-set initital micro-stresses.

  13. Characterizing twist grain boundaries in BCC Nb by molecular simulation: Structure and shear deformation

    Science.gov (United States)

    Liu, Zeng-Hui; Feng, Ya-Xin; Shang, Jia-Xiang

    2016-05-01

    Atomic scale modeling was used to study the structure, energy and shear behaviors of (110) twist grain boundaries (TWGBs) in body-centered cubic Nb. The relation between grain boundary energy (GBE) and the twist angle θ agrees well with the Read-Shockley equation in low-angle range. At higher angles, the GBEs show no distinct trend with the variation of the twist angle or the density of coincident lattice sites. All (110) twist boundaries can be classified into two types: low-angle grain boundaries (LAGBs) and high-angle grain boundaries (HAGBs). LAGBs contain a hexagonal dislocation network (HDN) which is composed of 1/2 [ 111 ], 1/2 [ 1 bar 1 bar 1 ] and [001] screw dislocations. HAGBs can be classified into three sub-types further: special boundaries with low Σ, boundaries in the vicinity of special boundaries with similar structures and ordinary HAGBs consisting of periodic patterns. Besides, a dependence of grain boundary shear response vs the twist angle over the entire twist angle range is obtained. Pure sliding behavior is found at all TWGBs. When θ < 12°, the flow stress of LAGBs is found to be correlated with the HDNs and decreases with the increasing twist angle. For ordinary HAGBs, the magnitude of flow stress is around 0.8-1.0 GPa and the twist angle has little effect on the anisotropy mobility. For special grain boundaries with low Σ, the boundary structures govern the GBEs and shear motion behavior significantly.

  14. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    NARCIS (Netherlands)

    Krishnan, Gopi; Verheijen, Marcel A.; ten Brink, Gert; Palasantzas, George; Kooi, Bart J.

    2013-01-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for

  15. On the Global Structure of Deformed Yang-Mills Theory and QCD(adj) on R^3XS^1

    CERN Document Server

    Anber, Mohamed M

    2015-01-01

    Spatial compactification on R^{3}XS^1_L at small S^1-size L often leads to a calculable vacuum structure, where various "topological molecules" are responsible for confinement and the realization of the center and discrete chiral symmetries. Within this semiclassically calculable framework, we study how distinct theories with the same SU(N_c)/Z_k gauge group (labeled by "discrete theta-angles") arise upon gauging of appropriate Z_k subgroups of the one-form global center symmetry of an SU(N_c) gauge theory. We determine the possible Z_k actions on the local electric and magnetic effective degrees of freedom, find the ground states, and use domain walls and confining strings to give a physical picture of the vacuum structure of the different SU(N_c)/Z_k theories. Some of our results reproduce ones from earlier supersymmetric studies, but most are new and do not invoke supersymmetry. We also study a further finite-temperature compactification to R^{2}XS^1_betaXS^1_L. We argue that, in deformed Yang-Mills theory...

  16. Serviceability limit state related to excessive lateral deformations to account for infill walls in the structural model

    Directory of Open Access Journals (Sweden)

    G. M. S. ALVA

    Full Text Available Brazilian Codes NBR 6118 and NBR 15575 provide practical values for interstory drift limits applied to conventional modeling in order to prevent negative effects in masonry infill walls caused by excessive lateral deformability, however these codes do not account for infill walls in the structural model. The inclusion of infill walls in the proposed model allows for a quantitative evaluation of structural stresses in these walls and an assessment of cracking in these elements (sliding shear diagonal tension and diagonal compression cracking. This paper presents the results of simulations of single-story one-bay infilled R/C frames. The main objective is to show how to check the serviceability limit states under lateral loads when the infill walls are included in the modeling. The results of numerical simulations allowed for an evaluation of stresses and the probable cracking pattern in infill walls. The results also allowed an identification of some advantages and limitations of the NBR 6118 practical procedure based on interstory drift limits.

  17. Structural analysis and deformation characteristics of the Yingba metamorphic core complex, northwestern margin of the North China craton, NE Asia

    Science.gov (United States)

    Yin, Congyuan; Zhang, Bo; Han, Bao-Fu; Zhang, Jinjiang; Wang, Yang; Ai, Sheng

    2017-01-01

    The presence of the Yingba (Yinggete-Bagemaode) metamorphic core complex (MCC) is confirmed near the Sino-Mongolian border in China. We report its structural evolution and the rheological features of ductile shear zones within this complex. Three deformations (Ds, Dm, and Db) since the Late Jurassic are identified. Ds is characterized by ductile structures that resulted from early NW-oriented, low-angle, extensional ductile shearing. Dm is associated with partial melting and magmatic diapirism, which accelerated the formation of the dome-like geometry of the Yingba MCC. Synchronously with or slightly subsequently to Ds and Dm, the Yingba MCC was subjected to brittle, extensional faulting (Db), which was accompanied by the exhumation of the lower crust and the formation of supracrustal basins. The ductile shearing (Ds) developed under greenschist-to amphibolite-facies metamorphic conditions (400-650 °C), as indicated by microstructures in quartz and feldspar, quartz [c] axis fabrics, and two-feldspar geothermometry. The mean kinematic vorticity estimates of 48-62% show a pure shear-preferred flow during Ds. The Yingba MCC provides an excellent sample that recorded an intermediate to high temperature shearing, which also implies the widely extensional regime in northeastern Asia at that time.

  18. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  19. Effect of hydrogen on the structural and phase state and the deformation behavior of the ultrafine-grained Zr–1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Ekaterina N., E-mail: enstepanova@tpu.ru [Institute of Physics and Technology at Tomsk Polytechnic University, Tomsk (Russian Federation); Grabovetskaya, Galina P.; Mishin, Ivan P. [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation)

    2015-10-05

    Highlights: • SPD leads to formation of the UFG structure with an average grain size of 0.4 μm. • Formation of the UFG structure in the Zr–1Nb alloy increases its strength properties. • Hydrogen prevents the development of plastic strain localization in UFG structure. • Hydrogen increases the strain hardening effect and deformation of uniform elongation. • Presence of hydrogen in the UFG Zr–1Nb alloy increases its strength characteristics. - Abstract: The formation of an ultrafine-grained structure with predominantly high-angle grain boundaries and an average grain size of grain–subgrain structure elements of 0.4 μm in zirconium alloys was shown by electron microscopy and X-ray diffraction analysis. The formation of such structure was found to result in the significant increase of the ultimate and yield strengths in comparison with the initial fine-grained state. The strength characteristics of ultrafine-grained Zr–1Nb–0.22H alloy are higher than the corresponding characteristics of the Zr–1Nb alloy. The presence of hydrogen in the solid solution of the ultrafine-grained Zr–1Nb–0.22H alloy during tension at room temperature is found to prevent the development of plastic deformation localization on the meso- and macrolevels and to increase the effect of strain hardening and deformation of uniform extension. At elevated temperatures, the presence of hydrogen reduces the resistance to deformation localization on the macrolevel and the deformation to failure in tensile tests.

  20. High spin structures in the $A\\approx 40$ mass region: from superdeformation to extreme deformation and clusterization (an example of $^{28}$Si)

    CERN Document Server

    Afanasjev, A V

    2016-01-01

    The search for extremely deformed structures in the yrast and near-yrast region of $^{28}$Si has been performed within the cranked relativistic mean field theory up to spin $I=20\\hbar$. The fingerprints of clusterization are seen (well pronounced) in the superdeformed (hyperdeformed) configurations.

  1. Seismically-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina)

    Science.gov (United States)

    Onorato, M. Romina; Perucca, Laura; Coronato, Andrea; Rabassa, Jorge; López, Ramiro

    2016-10-01

    In this paper, evidence of paleoearthquake-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System in the Isla Grande de Tierra del Fuego, southern Argentina, has been identified. Well-preserved soft-sediment deformation structures were found in a Holocene sequence of the Udaeta pond. These structures were analyzed in terms of their geometrical characteristics, deformation mechanism, driving force system and possible trigger agent. They were also grouped in different morphological types: sand dykes, convolute lamination, load structures and faulted soft-sediment deformation features. Udaeta, a small pond in Argentina Tierra del Fuego, is considered a Quaternary pull-apart basin related to the Magallanes-Fagnano Fault System. The recognition of these seismically-induced features is an essential tool for paleoseismic studies. Since the three main urban centers in the Tierra del Fuego province of Argentina (Ushuaia, Río Grande and Tolhuin) have undergone an explosive growth in recent years, the results of this study will hopefully contribute to future analyses of the seismic risk of the region.

  2. Constrained hierarchical least square nonlinear equation solvers. [for indefinite stiffness and large structural deformations

    Science.gov (United States)

    Padovan, J.; Lackney, J.

    1986-01-01

    The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.

  3. Structure of Hamiltonian Matrix and the Shape of Eigenfunctions: Nuclear Octupole Deformation Model

    Institute of Scientific and Technical Information of China (English)

    XING Yong-Zhong; LI Jun-Qing; LIU Fang; ZUO Wei

    2002-01-01

    The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformationmodel, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstates ofa quantum integrable system is studied with the help ofgeneralized Brillouin-Wigner pcrturbation theory. The resultsshow that a significant randomness in this distribution can be observed when its classical counterpart is under the strongchaotic condition. The averaged shape of the eigenfunctions fits with the Gaussian distribution only when the effects ofthe symmetry have been removed.

  4. Lower plate deformation structures along the Costa Rica erosive plate boundary - results from IODP Expedition 344 (CRISP 2)

    Science.gov (United States)

    Brandstätter, Jennifer; Kurz, Walter; Micheuz, Peter; Krenn, Kurt

    2015-04-01

    The primary objective of Integrated Ocean Drilling Program (IODP) Expedition 344 offshore the Osa Peninsula in Costa Rica was to sample and quantify the material entering the seismogenic zone of the Costa Rican erosive subduction margin. Fundamental to this objective is an understanding of the nature of both the subducting Cocos plate crust and of the overriding Caribbean plate. The subducting Cocos plate is investigated trying to define its hydrologic system and thermal state. The forearc structures recorded by the sediment deposited on the forearc, instead, document periods of uplift and subsidence and provide important information about the process of tectonic erosion that characterizes the Costa Rica margin. Offshore the western margin of Costa Rica, the oceanic Cocos plate subducts under the Caribbean plate, forming the southern end of the Middle America Trench. Subduction parameters including the age, convergence rate, azimuth, obliquity, morphology, and slab dip all vary along strike. The age of the Cocos plate at the Middle America Trench decreases from 24 Ma offshore the Nicoya Peninsula to 15 Ma offshore the Osa Peninsula. Subduction rates vary from 70 mm/y offshore Guatemala to 90 mm/y offshore southern Costa Rica. Convergence obliquity across the trench varies from offshore Nicaragua, where it is as much as 25° oblique, to nearly orthogonal southeast of the Nicoya Peninsula. Passage of the Cocos plate over the Galapagos hotspot created the aseismic Cocos Ridge, an overthickened welt of oceanic crust. This ridge is ~25 km thick, greater than three times normal oceanic crustal thickness. During IODP Expedition 344, the incoming Cocos plate was drilled at sites U1381 and U1414. Site U1381 is located ~4.5 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. It is located on a local basement high. Basement relief often focuses fluid flow, so data from this site are likely to document the vigor of fluid flow in this area. Site U

  5. Shear deformation plate continua of large double-layered space structures

    Science.gov (United States)

    Hefzy, M. S.; Nayfeh, A. H.

    1984-01-01

    The energy equivalence to construct equivalent continua for the actual lattice structure is described. An energy equivalent continuum is defined as that which has the same amount of strain and kinetic energies stored in it as the original lattice structure when both are subjected to the same loading conditions. The equivalent continuum is characterized by its strain and kinetic energies from which the constitutive relations and the equations of motion can be derived. A simple method to model large rigid jointed lattices as continuous media with couple stresses is presented. The transition from the discrete system to the continuous medium is achieved by expanding the displacements and the rotations of the nodal points in a Taylor series about a suitable chosen origin. Basic kinematic assumptions are introduced to insure that the assumptions used in deriving the governing equations of the modeled continuum are satisfied. The number of terms retained in the Taylor series expansion will depend upon the properties to be evaluated. This implies that the kind of continuum needed to model from the discrete lattice, before the actual properties are derived was to predetermined.

  6. Image-based dynamic deformation monitoring of civil engineering structures from long ranges

    Science.gov (United States)

    Ehrhart, Matthias; Lienhart, Werner

    2015-02-01

    In this paper, we report on the vibration and displacement monitoring of civil engineering structures using a state of the art image assisted total station (IATS) and passive target markings. By utilizing the telescope camera of the total station, it is possible to capture video streams in real time with 10fps and an angular resolution of approximately 2″/px. Due to the high angular resolution resulting from the 30x optical magnification of the telescope, large distances to the object to be monitored are possible. The laser distance measurement unit integrated in the total station allows to precisely set the camera's focus position and to relate the angular quantities gained from image processing to units of length. To accurately measure the vibrations and displacements of civil engineering structures, we use circular target markings rigidly attached to the object. The computation of the targets' centers is performed by a least squares adjustment of an ellipse according to the Gauß-Helmert model from which the parameters of the ellipse and their standard deviations are derived. In laboratory experiments, we show that movements can be detected with an accuracy of better than 0.2mm for single frames and distances up to 30m. For static applications, where many video frames can be averaged, accuracies of better than 0.05mm are possible. In a field test on a life-size footbridge, we compare the vibrations measured by the IATS to reference values derived from accelerometer measurements.

  7. Towards the determination of deformation rates - pinch-and-swell structures as a natural and simulated paleo-strain rate gage

    Science.gov (United States)

    Peters, Max; Poulet, Thomas; Karrech, Ali; Regenauer-Lieb, Klaus; Herwegh, Marco

    2014-05-01

    Layered rocks deformed under viscous deformation conditions frequently show boudinage, a phenomenon that results from differences in effective viscosity between the involved layers. In the case of continuous necking of a mechanically stiffer layer embedded in a weaker matrix, symmetric boudins are interpreted as the result of dominant visco-plastic deformation (Goscombe et al., 2004). However, information on the physical conditions, material properties and deformation processes are yet unknown. Natural samples deformed under low-grade (Tphysical deformation conditions by either grain growth or grain size reduction following the Paleowattmeter of Austin and Evans (2007) combined with the thermodynamic approach of Regenauer-Lieb and Yuen (2004). Depending on the dissipated energy, grain sizes in these domains vary substantially in space and time. While low strain rates (low stresses) in the swells favor grain growth and GSI dominated deformation, high strain rates in the pinches provoke dramatic grain size reduction with an increasing contribution of GSS as a function of decreasing grain size. The development of symmetric necks observed in nature thus seems to coincide with the transition from dislocation to diffusion creep dominated flow with continuous grain size reduction and growth from swell to neck at relatively high extensional strains. REFERENCES Austin, N. and Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35. Goscombe, B.D., Passchier, C.W. and Hand, M. (2004). Boudinage classification: End-member boudin types and modified boudin structures, Journal of Structural Geology, 26. Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (in press). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research. Karrech, A., Regenauer-Lieb, K. and Poulet, T. (2011a). A Damaged visco-plasticity model for

  8. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  9. Ti{sub 3}GaC{sub 2} and Ti{sub 3}InC{sub 2}: First bulk synthesis, DFT stability calculations and structural systematics

    Energy Technology Data Exchange (ETDEWEB)

    Cuskelly, Dylan T., E-mail: Dylan.cuskelly@uon.edu.au [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Richards, Erin R.; Kisi, Erich H. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Keast, Vicki J. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-10-15

    A simple methodology for identifying possible higher order M{sub n+1}AX{sub n} phases (n≥2) from the chemical characteristics of known phases was developed. The method was used to identify two potential M{sub 3}AC{sub 2} phases Ti{sub 3}GaC{sub 2} and Ti{sub 3}InC{sub 2}. After verifying that the n=1 MAX phases in these systems could be synthesised in bulk using a simple pressureless reactive sintering process, the new phases were synthesised using the same method. DFT calculations were used to test the thermodynamic stability of the new phases against the known competing phases within the same ternary systems. Both were found to be stable although Ti{sub 3}InC{sub 2} only marginally so. Crystal structure refinements and comparison to other MAX phases revealed a linear increase in the c-axis length as a function of the atomic radius of the A element. - Highlights: • Chemical systematics were used to highlight a search window for new MAX phases. • Two new higher order MAX phases, Ti{sub 3}InC{sub 2} and Ti{sub 3}GaC{sub 2}, were synthesised. • Pressureless reactive sintering was effective in producing bulk material. • DFT calculations indicate that the new phases are stable.

  10. Optical and Electron Spin Resonance Studies of Destruction of Porous Structures Formed by Nitrogen-Rare Gas Nanoclusters in Bulk Superfluid Helium

    Science.gov (United States)

    McColgan, Patrick T.; Meraki, Adil; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.

    2016-11-01

    We studied optical and electron spin resonance spectra during destruction of porous structures formed by nitrogen-rare gas (RG) nanoclusters in bulk superfluid helium containing high concentrations of stabilized nitrogen atoms. Samples were created by injecting products of a radio frequency discharge of nitrogen-rare gas-helium gas mixtures into bulk superfluid helium. These samples have a high energy density allowing the study of energy release in chemical processes inside of nanocluster aggregates. The rare gases used in the studies were neon, argon, and krypton. We also studied the effects of changing the relative concentrations between nitrogen and rare gas on thermoluminescence spectra during destruction of the samples. At the beginning of the destructions, α -group of nitrogen atoms, Vegard-Kaplan bands of N_2 molecules, and β -group of O atoms were observed. The final destruction of the samples were characterized by a series bright flashes. Spectra obtained during these flashes contain M- and β -bands of NO molecules, the intensities of which depend on the concentration of molecular nitrogen in the gas mixture as well as the type of rare gas present in the gas mixture.

  11. Characterization of waferstepper and process related front- to backwafer overlay errors in bulk micro machining using electrical overlay test structures

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Bijnen, F.G.C.; Slabbekoorn, J.

    2004-01-01

    To validate the Front- To Backwafer Alignment (FTBA) calibration and to investigate process related overlay errors, electrical overlay test structures are used that requires FTBA [1]. Anisotropic KOH etch through the wafer is applied to transfer the backwafer pattern to the frontwafer. Consequently,

  12. Glacio-tectonic thrust and deformation structures in the Vejle Fjord, Denmark revealed by high-resolution subbottom-profile data

    DEFF Research Database (Denmark)

    Andresen, Katrine Juul; Boldreel, Lars Ole; Wahlgreen, Katrine Bak;

    Surface geomorphological features and partial cliff exposures up till now represent the predominant source of information of glaciation related deformation in Denmark. In this study we apply high-resolution marine reflection seismic data from the Vejle Fjord area, supported by gravity and Rumohr...... of the fjord. To the north, the deformation is expressed by complex internal reflection patterns within discrete sedimentary units including faults and smaller thrust-structures and associated small-scale folding. Channel incisions and clear reflection relations (i.e. truncations, onlaps and downlaps) reveal...... indicating severe deformation which most likely reflects ice progression from a southerly direction; for instance by the Young Baltic Ice Stream c. 19-17 ka. A thick and undisturbed build-out sequence can be observed to the north and in front of the thrust-belt probably representing meltwater sedimentation...

  13. Effect of Anisotropic Velocity Structure on Acoustic Emission Source Location during True-Triaxial Deformation Experiments

    Science.gov (United States)

    Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul

    2016-04-01

    Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of

  14. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains

    Energy Technology Data Exchange (ETDEWEB)

    Gilmanov, Anvar, E-mail: agilmano@umn.edu [Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414 (United States); Le, Trung Bao, E-mail: lebao002@umn.edu [Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414 (United States); Sotiropoulos, Fotis, E-mail: fotis@umn.edu [Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414 (United States); Department of Civil, Environmental and Geo-Engineering, University of Minnesota, Minneapolis, MN 55414 (United States)

    2015-11-01

    We present a new numerical methodology for simulating fluid–structure interaction (FSI) problems involving thin flexible bodies in an incompressible fluid. The FSI algorithm uses the Dirichlet–Neumann partitioning technique. The curvilinear immersed boundary method (CURVIB) is coupled with a rotation-free finite element (FE) model for thin shells enabling the efficient simulation of FSI problems with arbitrarily large deformation. Turbulent flow problems are handled using large-eddy simulation with the dynamic Smagorinsky model in conjunction with a wall model to reconstruct boundary conditions near immersed boundaries. The CURVIB and FE solvers are coupled together on the flexible solid–fluid interfaces where the structural nodal positions, displacements, velocities and loads are calculated and exchanged between the two solvers. Loose and strong coupling FSI schemes are employed enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence especially for low mass ratio problems. The coupled CURVIB-FE-FSI method is validated by applying it to simulate two FSI problems involving thin flexible structures: 1) vortex-induced vibrations of a cantilever mounted in the wake of a square cylinder at different mass ratios and at low Reynolds number; and 2) the more challenging high Reynolds number problem involving the oscillation of an inverted elastic flag. For both cases the computed results are in excellent agreement with previous numerical simulations and/or experiential measurements. Grid convergence tests/studies are carried out for both the cantilever and inverted flag problems, which show that the CURVIB-FE-FSI method provides their convergence. Finally, the capability of the new methodology in simulations of complex cardiovascular flows is demonstrated by applying it to simulate the FSI of a tri-leaflet, prosthetic heart valve in an anatomic aorta and under physiologic pulsatile conditions.

  15. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains

    Science.gov (United States)

    Gilmanov, Anvar; Le, Trung Bao; Sotiropoulos, Fotis

    2015-11-01

    We present a new numerical methodology for simulating fluid-structure interaction (FSI) problems involving thin flexible bodies in an incompressible fluid. The FSI algorithm uses the Dirichlet-Neumann partitioning technique. The curvilinear immersed boundary method (CURVIB) is coupled with a rotation-free finite element (FE) model for thin shells enabling the efficient simulation of FSI problems with arbitrarily large deformation. Turbulent flow problems are handled using large-eddy simulation with the dynamic Smagorinsky model in conjunction with a wall model to reconstruct boundary conditions near immersed boundaries. The CURVIB and FE solvers are coupled together on the flexible solid-fluid interfaces where the structural nodal positions, displacements, velocities and loads are calculated and exchanged between the two solvers. Loose and strong coupling FSI schemes are employed enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence especially for low mass ratio problems. The coupled CURVIB-FE-FSI method is validated by applying it to simulate two FSI problems involving thin flexible structures: 1) vortex-induced vibrations of a cantilever mounted in the wake of a square cylinder at different mass ratios and at low Reynolds number; and 2) the more challenging high Reynolds number problem involving the oscillation of an inverted elastic flag. For both cases the computed results are in excellent agreement with previous numerical simulations and/or experiential measurements. Grid convergence tests/studies are carried out for both the cantilever and inverted flag problems, which show that the CURVIB-FE-FSI method provides their convergence. Finally, the capability of the new methodology in simulations of complex cardiovascular flows is demonstrated by applying it to simulate the FSI of a tri-leaflet, prosthetic heart valve in an anatomic aorta and under physiologic pulsatile conditions.

  16. Precise Timing of Caledonian Structural Deformation Chronology and Its Implications in Southeast Qilian Mountains, China

    Institute of Scientific and Technical Information of China (English)

    Fan Guangming; Lei Dongning

    2007-01-01

    The middle Qilian orogenic belt and Lajishan orogenic belt, both of which were formed in the Caledonian, strike NW-SE direction across southeast Qilian Mountains and their basement consists of pre-Caledonian metamorphic rocks with lozenge-shaped ductile shear zones in the crystalline basement. The blunt angle between the conjugated ductile shear zones ranges from 104° to 114°, indicating approximate 210° of the maximum principal stress. The plateau ages of muscovite 40Ar/39Ar obtained from the mylonitized rocks in the ductile shear zones of Jinshaxia-Hualong-Keque massif within the middle Qilian massif are (405.1±2.4) Ma and (418.3±2.8) Ma, respectively. The chronology data confirm the formation of ductile shear zones in the Caledonian basement metamorphic rocks during the Caledonian orogeny. Furthermore, on the basis of basement rock study, precise timing for the dosing of the Late Paleozoic volcanic basin (or island-arc basin) and Lajishan ocean basin is determined. This provides us a new insight into the closing of ocean basin in the structural evolution of orogenic belt.

  17. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  18. Characterization of Atomic Structure, Relaxation and Phase Transformation Mechanisms in Bulk and Thin Film Amorphous Chalcogenides and Gallium Antimonide

    Science.gov (United States)

    Edwards, Trenton Gerard

    This dissertation details the characterization of the atomic structure, relaxation processes and phase transformation mechanisms in a variety of chalcogenide (selenides and tellurides) and other non-oxide (Ga-Sb alloys) glasses which are highly relevant to optoelectronic and phase change memory applications. One of the principal goals of these studies is to develop a fundamental, atomistic understanding of the structure-property relationships in these materials. Variable temperature Raman spectroscopy is used to the study the structure and its temperature dependent relaxation in GexSe100-x glasses and supercooled liquids with x ≤ 33.33 %. It is shown that the compositional dependence of the relative fractions of the edge- and corner-shared GeSe4 tetrahedra is fully consistent with a structural model based on random connectivity between the tetrahedral and chain elements. Temperature-dependent structural changes involve a progressive conversion of edge-shared to corner shared GeSe4 tetrahedra with decreasing equilibration temperature. The time scale of this structural conversion agrees with both enthalpy and shear relaxation near the glass transition. The temperature dependent change in the edge- vs. corner- sharing tetrahedral speciation is shown to be related to the production of configurational entropy, indicating a connection between structural relaxation, configurational entropy, and viscous flow. A combination of Raman and 77Se nuclear magnetic resonance (NMR) spectroscopy is applied to study the structure of a series of Se-deficient GexSe100-x glasses, with 42 ≥ x ≥ 33.33. Considerable violation of chemical order in the nearest-neighbor coordination environments of the constituent atoms is observed in the stoichiometric GeSe2 glass. On the other hand, the presence of a random distribution of Ge-Ge bonds can be inferred in the Se-deficient glasses. Furthermore, the results of this study conclusively indicate that the structure of these glasses is

  19. Tuning the electronic structure of bulk FeSe with chemical pressure using quantum oscillations and angle resolved photoemission spectroscopy (ARPES)

    Science.gov (United States)

    Coldea, Amalia

    FeSe is a unique and intriguing superconductor which can be tuned into a high temperature superconducting state using applied pressure, chemical intercalation and surface doping. In the absence of magnetism, the structural transition in FeSe is believed to be electronically driven, with the orbital degrees of freedom playing an important part. This scenario supports the stabilization of a nematic state in FeSe, which manifests as a Fermi surface deformation in the presence of strong interactions, as detected by ARPES. Another manifestation of the nematicity is the enhanced nematic susceptibility determined from elastoresistance measurements under applied strain. Isovalent Sulphur substitution onto the Selenium site constitutes a chemical pressure, which subtly modifies the electronic structure of FeSe, suppressing the structural transition without inducing high temperature superconductivity. I will present the evolution of the electronic structure with chemical pressure in FeSe, as determined from quantum oscillations and ARPES studies and I will discuss the suppression of the nematic electronic state and the role of electronic correlations. Experiments were performed at high magnetic field facilities in Tallahassee, Nijmegen and Toulouse and Diamond Light Source, UK. This work is mainly supported by EPSRC, UK (EP/I004475/1, EP/I017836/1) and I acknowledge my collaborators from Refs. .

  20. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  1. SUSY Moose Runs and Hops: An extra dimension from a broken deformed CFT

    CERN Document Server

    Erlich, J; Erlich, Joshua; Tan, Jong Anly

    2006-01-01

    We find a class of four dimensional deformed conformal field theories which appear extra dimensional when their gauge symmetries are spontaneously broken. The theories are supersymmetric moose models which flow to interacting conformal fixed points at low energies, deformed by superpotentials. Using a-maximization we give strong nonperturbative evidence that the hopping terms in the resulting latticized action are relevant deformations of the fixed point theories. These theories have an intricate structure of RG flows between conformal fixed points. Our results suggest that at the stable fixed points each of the bulk gauge couplings and superpotential hopping terms is turned on, in favor of the extra dimensional interpretation of the theory. However, we argue that the higher dimensional gauge coupling is generically small compared to the size of the extra dimension. In the presence of a brane the topology of the extra dimension is determined dynamically and depends on the numbers of colors and bulk and brane ...

  2. Structure and properties of YBa2Cu3O7-δ superconductor doped with bulk cadmium oxide

    Directory of Open Access Journals (Sweden)

    A Echresh

    2010-09-01

    Full Text Available In this paper, the Y1-xCdxBa2Cu3O7-δ superconductor with x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 are prepared using the solid state method and the structure, electrical resistance, critical current density and critical temperature of it, have been studied. The results show that these doping do not affect so much on the structure and lattice parameters. The electrical resistance of samples increased with doping. A little amount of doping cadmium improve critical current density such that the sample x=0.1 has a maximum critical current density among the samples. The critical temperature with doping cadmium up to x=0.2 has little fluctuation and its variation can be ignored, but by increasing up to x=0.5 the critical temperature decreases gradually.

  3. Bioaccessibility of nutrients and micronutrients from dispersed food systems: impact of the multiscale bulk and interfacial structures.

    Science.gov (United States)

    Marze, Sébastien

    2013-01-01

    Many food systems are dispersed systems, that is, they possess at least two immiscible phases. This is generally due to the coexistence of domains with different physicochemical properties separated by many interfaces which control the apparent thermodynamic equilibrium. This feature was and is still largely studied to design pharmaceutical delivery systems. In food science, the recent intensification of in vitro digestion tests to complement the in vivo ones holds promises in the identification of the key parameters controlling the bioaccessibility of nutrients and micronutrients. In this review, we present the developments of in vitro digestion tests for dispersed food systems (mainly emulsions, dispersions and gels). We especially highlight the evidences detailing the roles of the constituting multiscale structures. In a perspective section, we show the potential of structured interfaces to allow controlled bioaccessibility.

  4. Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.

    Science.gov (United States)

    Li, Chen-Yu; Hemmig, Elisa A; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia; Keyser, Ulrich F; Aksimentiev, Aleksei

    2015-02-24

    The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules, a DNA origami plate, placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg(2+) ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.

  5. Roles of hydrogenation, annealing and field in the structure and magnetic entropy change of Tb-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2013-03-01

    Full Text Available The reduction of open-volume regions in Tb-based metallic glass (MG by annealing and hydrogen charging was found to rearrange the atomic structure and tune the magnetic behaviors. After crystallization, the magnetic structure and magnetic entropy change (MEC alters due to the structural transformation, and a plateau-like-MEC behavior can be obtained. The hydrogen concentration after charging at 1mA/cm2 for 576 h reaches as high as 3290 w-ppm. The magnetization behavior and the MEC change due to the modification of the exchange interaction and the random magnetic anisotropy (RMA upon hydrogenation. At low temperatures, irreversible positive MEC was obtained, which is related to the internal entropy production. The RMA-to-exchange ratio acts as a switch to control the irreversible entropy production channel and the reversible entropy transfer channel. The field dependence of the MEC is discussed in term of the competition among Zeeman energy, exchange interaction and RMA.

  6. Structural evolution of the Sarandí del Yí Shear Zone, Uruguay: kinematics, deformation conditions and tectonic significance

    Science.gov (United States)

    Oriolo, S.; Oyhantçabal, P.; Heidelbach, F.; Wemmer, K.; Siegesmund, S.

    2015-10-01

    The Sarandí del Yí Shear Zone is a crustal-scale shear zone that separates the Piedra Alta Terrane from the Nico Pérez Terrane and the Dom Feliciano Belt in southern Uruguay. It represents the eastern margin of the Río de la Plata Craton and, consequently, one of the main structural features of the Precambrian basement of Western Gondwana. This shear zone first underwent dextral shearing under upper to middle amphibolite facies conditions, giving rise to the reactivation of pre-existing crustal fabrics in the easternmost Piedra Alta Terrane. Afterwards, pure-shear-dominated sinistral shearing with contemporaneous magmatism took place under lower amphibolite to upper greenschist facies conditions. The mylonites resulting from this event were then locally reactivated by a cataclastic deformation. This evolution points to strain localization under progressively retrograde conditions with time, indicating that the Sarandí del Yí Shear Zone represents an example of a thinning shear zone related to the collisional to post-collisional evolution of the Dom Feliciano Belt that occurred between the Meso- to Neoproterozoic (>600 Ma) and late Ediacaran-lower Cambrian times.

  7. Structural and magnetic properties of the Gd-based bulk metallic glasses GdFe2, GdCo2, and GdNi2 from first principles

    Science.gov (United States)

    Lizárraga, Raquel

    2016-11-01

    A structural and magnetic characterization of Gd-based bulk metallic glasses, GdFe2, GdCo2, and GdNi2, was performed. Models for the amorphous structures for two magnetic configurations, ferromagnetic and ferrimagnetic, were obtained by means of a first-principles-based method, the stochastic quenching. In all three cases, the ferrimagnetic configuration was energetically more stable than the ferromagnetic one, in perfect agreement with experiments. In the structural analysis, radial and angle distribution functions as well as calculations of bond lengths and average coordination numbers were included. Structural properties are in good agreement with experiments and do not depend on the magnetic configuration. The distribution of magnetic moments shows that amorphous GdFe2 and GdCo2 are both ferrimagnets, with antiparallel alignment of the magnetic moments of the two magnetic sublattices, whereas Ni nearly loses its magnetic moment in amorphous GdNi2, similar to the situation in its crystalline counterpart.

  8. P3HT:DiPBI bulk heterojunction solar cells: morphology and electronic structure probed by multiscale simulation and UV/vis spectroscopy.

    Science.gov (United States)

    Winands, Thorsten; Böckmann, Marcus; Schemme, Thomas; Ly, Phong-Minh Timmy; de Jong, Djurre H; Wang, Zhaohui; Denz, Cornelia; Heuer, Andreas; Doltsinis, Nikos L

    2016-02-17

    Coarse grained molecular dynamics simulations are performed for a mixture of poly(3-hexylthiophene) (P3HT) and diperylene bisimide (DiPBI). The effect of different annealing and cooling protocols on the morphology is investigated and the resulting domain structures are analyzed. In particular, π-stacked clusters of DiPBI molecules are observed whose size decreases with increasing temperature. Domain structure and diffusivity data suggest that the DiPBI subsystem undergoes an order → disorder phase transition between 700 and 900 K. Electronic structure calculations based on density functional theory are carried out after backmapping the coarse grained model onto an atomistic force field representation built upon first principles. UV/vis absorption spectra of the P3HT:DiPBI mixture are computed using time-dependent density functional linear response theory and recorded experimentally for a spin-coated thin film. It is demonstrated that the absorption spectrum depends sensitively on the details of the amorphous structure, thus providing valuable insight into the morphology. In particular, the results show that the tempering procedure has a significant influence on the material's electronic properties. This knowledge may help to develop effective processing routines to enhance the performance of bulk heterojunction solar cells.

  9. Magnetization Response of the Bulk and Supplementary Magnetic Domain Structure in High-Permeability Steel Laminations Visualized In Situ by Neutron Dark-Field Imaging

    Science.gov (United States)

    Betz, B.; Rauscher, P.; Harti, R. P.; Schäfer, R.; Irastorza-Landa, A.; Van Swygenhoven, H.; Kaestner, A.; Hovind, J.; Pomjakushina, E.; Lehmann, E.; Grünzweig, C.

    2016-08-01

    Industrial transformer cores are composed of stacked high-permeability steel laminations (HPSLs). The performance and degree of efficiency of transformers are directly determined by the magnetic properties of each HPSL. In this article, we show how the neutron dark-field image (DFI) allows for the in situ visualization of the locally resolved response of the bulk and supplementary magnetic domain structures in HPSLs under the influence of externally applied magnetic fields. In particular, we investigate the domain formation and growth along the initial magnetization curve up to the saturated state. For decreasing field, we visualize the recurrence of the hysteretic domain structure down to the remanent state. Additionally, the DFI allows us to derive a correlation between the grain orientation and the corresponding volume and supplementary domain structure. Furthermore, we visualize the influence of the insulation coating, introducing desired tensile stresses on the domain structures. To compare our DFI findings to traditional methods, we perform complementary surface-sensitive magneto-optical Kerr-microscopy investigations.

  10. Tracing Lithospheric Structure Using Flexural Rigidity in South America: Implications for Intra-Continental Deformation and Subduction Geometry.

    Science.gov (United States)

    Perez-Gussinye, M.; Lowry, A. R.; Watts, A. B.; Phipps Morgan, J.

    2006-12-01

    The effective elastic thickness of the lithosphere, Te, is a proxy for its flexural rigidity, which primarily depends on thermal gradient and composition. As such Te maps reflect lithospheric structure. We present here a new Te map of South America generated using a compilation of satellite and terrestrial gravity data and a multitapered Bouguer coherence technique. Our Te map reflects the terrane structure of the continent, and correlates well with other published proxies for lithospheric structure: areas with high Te have, in general, high mantle shear wave velocity and low heat flow. Te is high (> 70 km) within the old, stable cratonic nuclei (> ~ 1.5 Ga old); lower Te occurs in areas repeatedly reactivated as major sutures, rift zones and at sites of hotspot magmatism. These areas concentrate most of the intracontinental seismicity and have high heat flow and low seismic velocity, implying that intra-continental deformation repeatedly focuses within thin, hot and hence weak lithosphere and that cratonic interiors are strong enough to inhibit tectonism. Along the Andean chain, Te illuminates interactions between the subducting slab and the pre-existing terrane structure. In the forearc, conductive cooling of the upper plate by the subducting slab primarily controls the rigidity, so that Te is largest (~ 40 km) where the oceanic plate is oldest and coldest (~ 20° S). In the central Andes, Te is relatively low (~ 20 km) along the volcanic chain and the Altiplano and Puna plateaus. We interpret these low Te values to reflect a shallow (70-100 km), hot and possible water-saturated asthenosphere that may extend to the western limit of the Eastern cordillera. Finally, regions of flat slab, located to the North and South of the plateaus, are characterized by high Te. Based on published tomographic results which indicate that the upper plate in the Chile flat slab segment is cratonic, we suggest that the lithospheric structure of the upper plate may influence the

  11. Influence of the irradiation temperature on the surface structure and physical/chemical properties of Ar ion-irradiated bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Menéndez, E., E-mail: Enric.MenendezDalmau@fys.kuleuven.be [KU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Hynowska, A.; Fornell, J.; Suriñach, S. [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Montserrat, J. [Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Campus Universitat Autònoma Barcelona, E-08193 Bellaterra (Spain); Temst, K.; Vantomme, A. [KU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Baró, M.D. [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); García-Lecina, E. [Surfaces Division, IK4-CIDETEC, Parque Tecnológico de San Sebastián, E-20009 Donostia (Spain); Pellicer, E., E-mail: Eva.Pellicer@uab.cat [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Sort, J., E-mail: Jordi.Sort@uab.cat [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain)

    2014-10-15

    Highlights: • Ion irradiation is performed on bulk metallic glasses at 300 K and close to T{sub g}. • Nanocrystallization is observed after high-temperature irradiation. • The mechanical properties are enhanced after the irradiation procedures. • Corrosion resistance is improved after irradiation close to T{sub g}. - Abstract: Surface treatments using multiple Ar ion irradiation processes with a maximum energy and fluence of 200 keV and 1 × 10{sup 16} ions/cm{sup 2}, respectively, have been performed on two different metallic glasses: Zr{sub 55}Cu{sub 28}Al{sub 10}Ni{sub 7} and Ti{sub 40}Zr{sub 10}Cu{sub 38}Pd{sub 12}. Analogous irradiation procedures have been carried out at room temperature (RT) and at T = 620 K (≈0.9 T{sub g}, where T{sub g} denotes the glass transition). The structure, mechanical behavior, wettability and corrosion resistance of the irradiated alloys have been compared with the properties of the as-cast and annealed (T = 620 K) non-irradiated specimens. While ion irradiation at RT does not significantly alter the amorphous structure of the alloys, ion irradiation close to T{sub g} promotes decomposition/nanocrystallization. Consequently, the hardness (H) and reduced Young’s modulus (E{sub r}) decrease after irradiation at RT but they both increase after irradiation at 620 K. While annealing close to T{sub g} increases the hydrophobicity of the samples, irradiation induces virtually no changes in the contact angle when comparing with the as-cast state. Concerning the corrosion resistance, although not much effect is found after irradiation at RT, an improvement is observed after irradiation at 620 K, particularly for the Ti-based alloy. These results are of practical interest in order to engineer appropriate surface treatments based on ion irradiation, aimed at specific functional applications of bulk metallic glasses.

  12. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  13. Structure and properties of nano-confined poly(3-hexylthiophene) in nano-array/polymer hybrid ordered-bulk heterojunction solar cells.

    Science.gov (United States)

    Foong, Thelese Ru Bao; Chan, Khai Leok; Hu, Xiao

    2012-01-21

    The ordered-bulk heterojunction (BHJ) photovoltaic device comprising a semiconducting donor polymer incorporated into pristine/unmodified vertically aligned arrays of metal oxide acceptor nanotubes/nanorods is widely perceived as being structurally ideal for energy conversion but the power conversion efficiencies of such devices remain relatively low (in the order of η = 0.6%) when compared with bilayer or non-ordered bulk heterojunction systems. We explain the incongruity by investigating the morphology and microstructure of regio-regular poly(3-hexyl thiophene) (P3HT) infiltrated and confined within the cavities of TiO(2) nanotube arrays. A series of TiO(2) nanotube arrays with different nanotube diameters and inter-nanotube spacings are fabricated by the liquid-phase atomic layer deposition (LALD) technique, and P3HT is infiltrated into the array cavities via a vacuum-annealing technique. X-Ray diffraction studies reveal that the P3HT chains in both nano-confined and non-confined (i.e. planar film) environments are well-aligned and oriented edge-on with respect to the underlying substrate. Up to 2.5-fold improvement in the incident-photon-to-converted-electron efficiency (IPCE) is observed in ordered-BHJ structures over benchmark planar devices which we attribute to the increase in interfacial area resulting from the use of the nanostructures. However, the large effective surface area conferred by the nano-arrays (up to 9.5 times that of the planar system) suggests that much higher efficiencies could be harnessed. Our study shows that the morphology and orientation of the infiltrated polymer play a critical role in the charge transport of the device, and suggests that better understanding and control of polymer morphology under nano-confinement in the nano-array will be the key to fully reaping the promised benefit of ordered-BHJ devices.

  14. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    Science.gov (United States)

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  15. Deformed Algebras and Generalizations of Independence on Deformed Exponential Families

    Directory of Open Access Journals (Sweden)

    Hiroshi Matsuzoe

    2015-08-01

    Full Text Available A deformed exponential family is a generalization of exponential families. Since the useful classes of power law tailed distributions are described by the deformed exponential families, they are important objects in the theory of complex systems. Though the deformed exponential families are defined by deformed exponential functions, these functions do not satisfy the law of exponents in general. The deformed algebras have been introduced based on the deformed exponential functions. In this paper, after summarizing such deformed algebraic structures, it is clarified how deformed algebras work on deformed exponential families. In fact, deformed algebras cause generalization of expectations. The three kinds of expectations for random variables are introduced in this paper, and it is discussed why these generalized expectations are natural from the viewpoint of information geometry. In addition, deformed algebras cause generalization of independences. Whereas it is difficult to check the well-definedness of deformed independence in general, the κ-independence is always well-defined on κ-exponential families. This is one of advantages of κ-exponential families in complex systems. Consequently, we can well generalize the maximum likelihood method for the κ-exponential family from the viewpoint of information geometry.

  16. Non-ideal operating conditions of the ion source prototype for the ITER neutral beam injector due to thermal deformation of the support structure.

    Science.gov (United States)

    Sartori, E; Pavei, M; Marcuzzi, D; Zaccaria, P

    2014-02-01

    The beam formation and acceleration of the ITER neutral beam injector will be studied in the full-scale ion source, Source for Production of Ions of Deuterium Extracted from a RF plasma (SPIDER). It will be able to sustain 40 A deuterium ion beam during 1-h pulses. The operating conditions of its multi-aperture electrodes will diverge from ideality, as a consequence of inhomogeneous heating and thermally induced deformations in the support structure of the extraction and acceleration grids, which operate at different temperatures. Meeting the requirements on the aperture alignment and distance between the grids with such a large number of apertures (1280) and the huge support structures constitute a challenge. Examination of the structure thermal deformation in transient and steady conditions has been carried out, evaluating their effect on the beam performance: the paper describes the analyses and the solutions proposed to mitigate detrimental effects.

  17. Non-ideal operating conditions of the ion source prototype for the ITER neutral beam injector due to thermal deformation of the support structure

    Science.gov (United States)

    Sartori, E.; Pavei, M.; Marcuzzi, D.; Zaccaria, P.

    2014-02-01

    The beam formation and acceleration of the ITER neutral beam injector will be studied in the full-scale ion source, Source for Production of Ions of Deuterium Extracted from a RF plasma (SPIDER). It will be able to sustain 40 A deuterium ion beam during 1-h pulses. The operating conditions of its multi-aperture electrodes will diverge from ideality, as a consequence of inhomogeneous heating and thermally induced deformations in the support structure of the extraction and acceleration grids, which operate at different temperatures. Meeting the requirements on the aperture alignment and distance between the grids with such a large number of apertures (1280) and the huge support structures constitute a challenge. Examination of the structure thermal deformation in transient and steady conditions has been carried out, evaluating their effect on the beam performance: the paper describes the analyses and the solutions proposed to mitigate detrimental effects.