Bulk Comptonization by Turbulence in Accretion Disks
Kaufman, J
2016-01-01
Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...
Bulk Comptonization by turbulence in accretion discs
Kaufman, J.; Blaes, O. M.
2016-06-01
Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.
Mainardi, L I; Farinelli, R; Kuulkers, E; Rodriguez, J; Hannikainen, D; Savolainen, P; Piraino, S; Bazzano, A; Santangelo, A
2009-01-01
The aim of this work is to investigate in a physical and quantitative way the spectral evolution of bright Neutron Star Low-Mass X-ray Binaries (NS LMXBs), with special regard to the transient hard X-ray tails. We analyzed INTEGRAL data for five sources (GX 5-1, GX 349+2, GX 13+1, GX 3+1, GX 9+1) and built broad-band X-ray spectra from JEM-X1 and IBIS/ISGRI data. For each source, X-ray spectra from different states were fitted with the recently proposed model compTB. The spectra have been fit with a two-compTB model. In all cases the first compTB describes the dominant part of the spectrum that we interpret as thermal Comptonization of soft seed photons ( 1 keV), likely from the neutron star and the innermost part of the system, the Transition Layer, are Comptonized by matter in a converging flow. The presence and nature of this second compTB component (be it a pure blackbody or Comptonized) are related to the inner local accretion rate which can influence the transient behaviour of the hard tail: high values...
Compton Scattering from Bulk and Surface of Water
Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David
2014-03-01
Elastic and Compton scattering at grazing angle X-ray incidence from water show distinct behaviors below and above the critical angle for total reflections suggesting surface restructuring of the water surface. Using X-ray synchrotron radiation in reflectivity mode, we collect the Thomson and Compton scattering signals with energy dispersive detector at various angles near the normal to surface as a function of the angle of incidence. Analysis of the ratio between the Thomson and Compton intensity above the critical angle (which mainly probes bulk water) is a constant as expected from incoherent scattering from single water molecule, whereas the signal from the surface shows strong angular dependence on the incident angle. Although we do not fully understand the phenomena, we attribute the observation to more organized water at the interface. Ames Laboratory, DOE under contract No. DE-AC02-07CH11358 and Advanced Photon Source, DOE under contract No. DE-AC02-06CH11357.
Variation of bulk Lorentz factor in AGN jets due to Compton rocket in a complex photon field
Vuillaume, Thomas; Petrucci, Pierre-Olivier
2015-01-01
Radio-loud active galactic nuclei are among the most powerful objects in the universe. In these objects, most of the emission comes from relativistic jets getting their power from the accretion of matter onto supermassive black holes. However, despite the number of studies, a jet's acceleration to relativistic speeds is still poorly understood. It is widely known that jets contain relativistic particles that emit radiation through several physical processes, one of them being the inverse Compton scattering of photons coming from external sources. In the case of a plasma composed of electrons and positrons continuously heated by the turbulence, inverse Compton scattering can lead to relativistic bulk motions through the Compton rocket effect. We investigate this process and compute the resulting bulk Lorentz factor in the complex photon field of an AGN composed of several external photon sources. We consider various sources here: the accretion disk, the dusty torus, and the broad line region. We take their geo...
Vuillaume, Thomas; Henri, Gilles
2014-01-01
AGNs jets are known to display relativistic motion on parsec scales but the accelerating mechanism as well as the exact bulk Lorentz factor of the flow are still a matter of discussion. Under certain assumptions, a plasma can be accelerated to relativistic speeds through the Compton rocket effect. Here, we study this effect and the resulting bulk Lorentz factor in the complex environment of an AGN including various external sources. This is the proceedings to the IAU Symposium 313.
Validation of Compton Scattering Monte Carlo Simulation Models
Weidenspointner, Georg; Hauf, Steffen; Hoff, Gabriela; Kuster, Markus; Pia, Maria Grazia; Saracco, Paolo
2014-01-01
Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.
On the inverse Compton scattering model of radio pulsars
Qiao, G J; Liu Jian Fei; Han, J L; Zhang, B
2000-01-01
Some characteristics of the inverse Compton scattering (ICS) model are reviewed. At least the following properties of radio pulsars can be reproduced in the model: core or central emission beam, one or two hollow emission cones, different emission heights of these components, diverse pulse profiles at various frequencies, linear and circular polarization features of core and cones.
Bulk dynamics for interfacial growth models
López, Cristóbal; Santos, Fernando; Garrido, P. L.
2000-01-01
We study the influence of the bulk dynamics of a growing cluster of particles on the properties of its interface. First, we define a general bulk growth model by means of a continuum Master equation for the evolution of the bulk density field. This general model just considers an arbitrary addition of particles (though it can be easily generalized to consider subtraction) with no other physical restriction. The corresponding Langevin equation for this bulk density field is derived where the i...
Constraint on Parameters of Inverse Compton Scattering Model for PSR B2319+60
Indian Academy of Sciences (India)
H. G. Wang; M. Lv
2011-03-01
Using the multifrequency radio profiles of pulsar PSR B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained.
Model independent dispersion approach to proton Compton scattering
International Nuclear Information System (INIS)
The proton Compton scattering at low and intermediate energies is studied by means of a dispersion framework which exploits in an optimal way the (fixed momentum transfer) analyticity properties of the amplitudes in conjunction with the consequences of the (s-channel) unitarity. The mathematical background of the work consists of methods specific to boundary value problems for analytic vector-valued functions and interpolation theory. In comparison with previous related work, the external problems to be solved now are much more difficult because of the inclusion of the photoproduction input and also lead to additional computational complications. The lower bounds on the differential cross-section, obtained without any reference to subtractions and annihilation channel contributions, appear sufficiently restrictive to evidentiate rigorously some inconsistencies between results of single pion photoproduction multipole extractions and proton Compton scattering data. (author)
Ion-heated thermal Comptonization models and x-ray spectral correlations in active galactic nuclei
International Nuclear Information System (INIS)
Recent Ginga observations of the Seyfert 1 galaxies NGC 4051 and MCG 6-30-15 show a positive correlation between the 2-10 keV luminosity and photon spectral index α. Similar behavior has also been reported in Exosat and Einstein observations of other active galactic nuclei, and is suggested in hard x-ray low-state data of the galactic black-hole candidate Cygnus X-1. A two-temperature thermal Comptonization model with internal soft-photon production provides a simple explanation for this correlation. The electron temperature, determined by a balance between ion heating and radiative cooling, decreases in response to an enhancement of the soft photon flux, resulting in a softening of the spectrum and an increase in the soft x-ray luminosity. The bulk of the soft photons are produced through pion production in collisions between the hot ions. Pivoting of the spectrum at photon energies var-epsilon > 50 keV is a consequence of variations in the ion temperature. An important test of the model would be time correlations between soft and hard x-ray bands. 17 refs., 9 figs., 1 tab
An X-ray Imaging Survey of Quasar Jets -- Testing the Inverse Compton Model
Marshall, H L; Schwartz, D A; Murphy, D W; Lovell, J E J; Worrall, D M; Birkinshaw, M; Perlman, E S; Godfrey, L; Jauncey, D L
2011-01-01
We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the distribution of alpha_rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence exp...
An X-ray IMAGING SURVEY OF QUASAR JETS: TESTING THE INVERSE COMPTON MODEL
International Nuclear Information System (INIS)
We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the distribution of α rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky, so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with a high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence expected from the IC-CMB model. For a subset of our sample with known superluminal motion based on VLBI observations, we estimate the angle of the kiloparsec-scale jet to the line of sight by considering the additional information in the bends observed between parsec- and kiloparsec-scale jets. These angles are sometimes much smaller than estimates based on the IC-CMB model with a Lorentz factor of 15, indicating that these jets may decelerate significantly from parsec scales to kiloparsec scales.
The limitations of resonant Compton scattering as a gamma-ray burst model
Brainerd, J. J.
1992-01-01
Resonant Compton upscattering is commended as a mechanism that produces a hard gamma-ray spectrum while suppressing X-rays. This model, however, has severe physical and observational limitations. Effective X-ray suppression places a lower limit on the electron density; above this limit X-rays scatter multiple times, so the single-scattering approximation of this mechanism is invalid. Multiple scattering produces a spectrum that is much harder than the single-scattering spectrum. As the Thomson optical depth of a power-law electron beam approaches unity, photon spawning commences at a high rate and physically invalidates the underlying electron distribution. The Compton upscattering model is therefore only valid over a narrow range of electron densities. An observational consequence of this model is the absence of the third cyclotron resonance. Resonant scattering produces gamma-rays that propagate nearly along the magnetic field. The resonant cross section of the third harmonic, which is strongly angle dependent, falls below the Compton continuum for these gamma rays. The observation of a third cyclotron resonance in a gamma-ray burst spectrum would eliminate resonant Compton scattering as a gamma-ray burst process.
Geant4 model validation of Compton suppressed system for process monitoring of spent fuel
International Nuclear Information System (INIS)
Nuclear material accountancy is of continuous concern for the regulatory, safeguards, and verification communities. In particular, spent nuclear fuel reprocessing facilities pose one of the most difficult accountancy challenges: monitoring highly radioactive, fluid sample streams in near real-time. The Multi-Isotope Process monitor will allow for near-real-time indication of process alterations using passive gamma-ray detection coupled with multivariate analysis techniques to guard against potential material diversion or to enhance domestic process monitoring. The Compton continuum from the dominant 661.7 keV 137Cs fission product peak obscures lower energy lines which could be used for spectral and multivariate analysis. Compton suppression may be able to mitigate the challenges posed by the high continuum caused by scattering. A Monte Carlo simulation using the Geant4 toolkit is being developed to predict the expected suppressed spectrum from spent fuel samples to estimate the reduction in the Compton continuum. Despite the lack of timing information between decay events in the particle management of Geant4, encouraging results were recorded utilizing only the information within individual decays without accounting for accidental coincidences. The model has been validated with single and cascade decay emitters in two steps: as an unsuppressed system and with suppression activated. Results of the Geant4 model validation will be presented. (author)
Deeply virtual Compton scattering in a relativistic quark model
International Nuclear Information System (INIS)
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N→N and N→Δ transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N→Δ GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)
Deeply virtual Compton scattering in a relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Spitzenberg, T.
2007-09-15
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N{yields}N and N{yields}{delta} transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N{yields}{delta} GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)
Goeke, K.; Guzey, V.; Siddikov, M.
2008-01-01
Within the framework of the Color Glass Condensate model, we evaluate quark and gluon Generalized Parton Distributions (GPDs) and the cross section of Deeply Virtual Compton Scattering (DVCS) in the small-$x_{B}$ region. We demonstrate that the DVCS cross section becomes independent of energy in the limit of very small $x_{B}$, which clearly indicates saturation of the DVCS cross section. Our predictions for the GPDs and the DVCS cross section at high-energies can be tested at the future Elec...
Observational consequences of synchrotron self-Compton models of compact extragalactic X-ray sources
International Nuclear Information System (INIS)
It is stated that recent observations have confirmed the existence of a class of extragalactic X-ray sources different from those with clusters of galaxies. These sources include Cen A, NGC4151, NGC1275, 3C390.3 and 3C273, and are characterised by flat X-ray spectra, low energy X-ray absorption, strong optical emission line spectra, and a compact radio or millimetre component. Some results are given of the application of a synchrotron self-Compton model (SSC) which it is thought can account for many of these observational properties. This model includes the effects of adiabatic expansion and synchrotron losses. From an analysis of these results tentative observational predictions are made about the colours of the nuclei of potential X-ray sources. In this SSC model the non-thermal radio, X-ray and optical emission originate in an extremely small region in the nucleus of the galaxy, and the non-thermal flux causes photoionisation of the gas in this nucleus, resulting in the observed strong emission line optical spectrum. This gas also absorbs low energy X-rays, causing a turnover in the X-ray spectrum. It is assumed that the X-rays are produced by the Compton scattering of lower energy synchrotron photons off the radiating population of relativistic electrons. (U.K.)
Deeply Virtual Compton Scattering on nucleons and nuclei in generalized vector meson dominance model
Göke, K; Siddikov, M
2008-01-01
We consider Deeply Virtual Compton Scattering (DVCS) on nucleons and nuclei in the framework of generalized vector meson dominance (GVMD) model. We demonstrate that the GVMD model provides a good description of the HERA data on the dependence of the proton DVCS cross section on Q^2, W (at Q^2=4 GeV^2) and t. At Q^2 = 8 GeV^2, the soft W-behavior of the GVMD model somewhat underestimates the W-dependence of the DVCS cross section due to the hard contribution not present in the GVMD model. We estimate 1/Q^2 power-suppressed corrections to the DVCS amplitude and the DVCS cross section and find them large. We also make predictions for the nuclear DVCS amplitude and cross section in the kinematics of the future Electron-Ion Collider. We predict significant nuclear shadowing, which matches well predictions of the leading-twist nuclear shadowing in DIS on nuclei.
Qiao, G J; Zhang, B; Han, J L
2001-01-01
The shapes of pulse profiles, especially their variations with respect to observing frequencies, are very important to understand emission mechanisms of pulsars, while no previous attempt has been made in interpreting the complicated phenomenology. In this paper, we present theoretical simulations for the integrated pulse profiles and their frequency evolution within the framework of the inverse Compton scattering (ICS) model proposed by Qiao (1988) and Qiao & Lin (1998). Using the phase positions of the pulse components predicted by the ``beam-frequency figure'' of the ICS model, we present Gaussian fits to the multi-frequency pulse profiles for some pulsars. It is shown that the model can reproduce various types of the frequency evolution behaviors of pulse profiles observed.
Testing one-zone synchrotron-self-Compton models with spectral energy distributions of Mrk 421
Zhu, Qianqian; Zhang, Pengfei; Yin, Qian-Qing; Zhang, Li; Zhang, Shuang-Nan
2016-01-01
We test one-zone synchrotron self-Compton (SSC) models with high-quality multiwavelength spectral energy distribution (SED) data of Mrk 421. We use Markov chain Monte Carlo (MCMC) technique to fit twelve day-scale SEDs of Mrk 421 with one-zone SSC models. Three types of electron energy distribution (EED), a log-parabola (LP) EED, a power-law log-parabola (PLLP) EED and a broken power-law (BPL) EED, are assumed in fits. We find that the one-zone SSC model with the PLLP EED provides successful fits to all the twelve SEDs. However, the one-zone SSC model with the LP and BPL EEDs fail to provide acceptable fits to the highest energy X-ray data or GeV data in several states. We therefore conclude that the one-zone SSC model works well in explaining the SEDs of Mrk 421, and the PLLP EED is preferred over the LP and BPL EEDs for Mrk 421 during the flare in March 2010. We derive magnetic field $B'\\sim0.01$\\ G, Doppler factor $\\delta_{\\rm D}\\sim$30--50, and the curvature parameter of EED $r\\sim1$--$10$ in the model wi...
Universe Models with Negative Bulk Viscosity
Brevik, Iver
2013-01-01
The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. [Science 339,52 (2013)], where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics,...
International Nuclear Information System (INIS)
A geometrical model of Computed Tomography filtration has been determined from Compton spectroscopy measurements of the X-ray spectra for a tube potential of 120kVp under a fan angle of 0o to 20o in steps of 2o and at 21o from the central ray, while the X-ray tube was kept at 3 o'clock position. The spectrometer consists of a scattering chamber, a low energy Germanium detector (active area of 200mm2 and a thickness of 10mm) model GL0210 (Canberra GmbH, Rüsselsheim, Germany) and an optical feedback pre-amplifier (CANBERRA 2008B). For each fan angle the value of the X-ray path length was iteratively varied in the expression of the relative filter transmission and the computed values were used to estimate the shape of the aluminum filter as a function of the angle. To validate the model, the filter was implemented in a Geant4 Monte-Carlo simulation of the Computed Tomography system. Resulting spectra of simulation and measurement are in good agreement with each other. The X-ray beam at the FOV border is extremely hardened and the photon fluence of the spectra is reduced to 3% in comparison to the photon fluence of the spectra at the center of the X-ray beam
Energy Technology Data Exchange (ETDEWEB)
Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A; Sale, K E; Meyer, A M
2010-03-02
The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representation of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.
Renormalization group approach to causal bulk viscous cosmological models
Energy Technology Data Exchange (ETDEWEB)
Belinchon, J A [Grupo Inter-Universitario de Analisis Dimensional, Dept. Fisica ETS Arquitectura UPM, Av. Juan de Herrera 4, Madrid (Spain); Harko, T [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Mak, M K [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
2002-06-07
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor.
Renormalization group approach to causal bulk viscous cosmological models
International Nuclear Information System (INIS)
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
Bianchi-Type Ⅱ String Cosmological Models with Bulk Viscosity
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2004-01-01
The locally rotationally symmetric Bianchi-type Ⅱ string cosmological models with bulk viscosity are obtained, where an equation of state, p = kλ, and a relation between metric potentials, R = ASn, are adopted. The physical features of the models are also discussed. In special cases the model reduces to the string models without viscosity that was previously given in the literatures.
Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2004-01-01
The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtaina determinate model, an equation of state p = κλ and a relation between metric potentials B = Cn are assumed. Thephysical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuouslyexpanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy densityis ζ∝1 p1/2.
A Joint Model Of X-ray And Infrared Backgrounds. II. Compton-Thick AGN Abundance
Shi, Yong; Armus, Lee
2013-01-01
We estimate the abundance of Compton-thick (CT) active galactic nuclei (AGN) based on our joint model of X-ray and infrared backgrounds. At L_{rest 2-10 keV} > 10^42 erg/s, the CT AGN density predicted by our model is a few 10^-4 Mpc^-3 from z=0 up to z=3. CT AGN with higher luminosity cuts (> 10^43, 10^44 & 10^45 erg/s) peak at higher z and show a rapid increase in the number density from z=0 to z~2-3. The CT to all AGN ratio appears to be low (2-5%) at f_{2-10keV} > 10^-15 erg/s/cm^2 but rises rapidly toward fainter flux levels. The CT AGN account for ~ 38% of the total accreted SMBH mass and contribute ~ 25% of the cosmic X-ray background spectrum at 20 keV. Our model predicts that the majority (90%) of luminous and bright CT AGN (L_{rest 2-10 keV} > 10^44 erg/s or f_{2-10keV} > 10^-15 erg/s/cm^2) have detectable hot dust 5-10 um emission which we associate with a dusty torus. The fraction drops for fainter objects, to around 30% at L_{rest 2-10 keV} > 10^42 erg/s or f_{2-10keV} > 10^-17 erg/s/cm^2. Ou...
A pedagogic model for Deeply Virtual Compton Scattering with quark-hadron duality
Close, Francis Edwin; Close, Frank E; Zhao, Qiang
2002-01-01
We show how quark-hadron duality can emerge for the valence spin averaged structure functions, and for the non-forward distributions of Deeply Virtual Compton Scattering. Novel factorisations of the non-forward amplitudes are proposed. Some implications for large angle scattering and deviations from the quark counting rules are illustrated.
I. Inverse Compton origin of pulsar \\gamma-ray emission. II. Reconnection model of Crab flares
Lyutikov, Maxim
2013-01-01
I. There is growing evidence that pulsars' high energy emission is generated via Inverse Compton mechanism. II. The particles producing Crab flares, and possibly most of the Crab Nebula's high energy emission, are accelerated via reconnection events, and not at shock via Fermi mechanisms.
Classical model for bulk-ensemble NMR quantum computation
Schack, R.; Caves, C. M.
1999-01-01
We present a classical model for bulk-ensemble NMR quantum computation: the quantum state of the NMR sample is described by a probability distribution over the orientations of classical tops, and quantum gates are described by classical transition probabilities. All NMR quantum computing experiments performed so far with three quantum bits can be accounted for in this classical model. After a few entangling gates, the classical model suffers an exponential decrease of the measured signal, whe...
Hierarchical Bulk Synchronous Parallel Model and Performance Optimization
Institute of Scientific and Technical Information of China (English)
HUANG Linpeng; SUNYongqiang; YUAN Wei
1999-01-01
Based on the framework of BSP, aHierarchical Bulk Synchronous Parallel (HBSP) performance model isintroduced in this paper to capture the performance optimizationproblem for various stages in parallel program development and toaccurately predict the performance of a parallel program byconsidering factors causing variance at local computation and globalcommunication. The related methodology has been applied to several realapplications and the results show that HBSP is a suitable model foroptimizing parallel programs.
Hard-body models of bulk liquid crystals.
Mederos, Luis; Velasco, Enrique; Martínez-Ratón, Yuri
2014-11-19
Hard models for particle interactions have played a crucial role in the understanding of the structure of condensed matter. In particular, they help to explain the formation of oriented phases in liquids made of anisotropic molecules or colloidal particles and continue to be of great interest in the formulation of theories for liquids in bulk, near interfaces and in biophysical environments. Hard models of anisotropic particles give rise to complex phase diagrams, including uniaxial and biaxial nematic phases, discotic phases and spatially ordered phases such as smectic, columnar or crystal. Also, their mixtures exhibit additional interesting behaviours where demixing competes with orientational order. Here we review the different models of hard particles used in the theory of bulk anisotropic liquids, leaving aside interfacial properties and discuss the associated theoretical approaches and computer simulations, focusing on applications in equilibrium situations. The latter include one-component bulk fluids, mixtures and polydisperse fluids, both in two and three dimensions, and emphasis is put on liquid-crystal phase transitions and complex phase behaviour in general. PMID:25335432
Relativistic Accretion Mediated by Turbulent Comptonization
Socrates, Aristotle
2008-01-01
Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in t...
Does Bulk Viscosity Create a Viable Unified Dark Matter Model?
Li, Baojiu
2009-01-01
We investigate in detail the possibility that a single imperfect fluid with bulk viscosity can replace the need for separate dark matter and dark energy in cosmological models. With suitable choices of model parameters, we show that the background cosmology in this model can mimic that of a LCDM Universe to high precision. However, as the cosmic expansion goes through the decelerating-accelerating transition, the density perturbations in this fluid are rapidly damped out. We show that,although this does not significantly affect structure formation in baryonic matter, it makes the gravitational potential decay rapidly at late times, leading to modifications in predictions of cosmological observables such as the CMB power spectrum and weak lensing. This model of unified dark matter is thus difficult to reconcile with astronomical observations. We also clarify the differences with respect to other unified dark matter models where the fluid is barotropic, i.e., p=p(rho), such as the (generalized) Chaplygin gas mo...
Comparison of recombination models in organic bulk heterojunction solar cells
International Nuclear Information System (INIS)
Recombination in bulk-heterojunction (BHJ) organic solar cells is the key loss mechanism, and it directly affects characteristic parameters such as power conversion efficiency, short-circuit current, open-circuit voltage, and fill factor. However, which recombination mechanism dominates the loss in organic materials is unclear at present. In this work, we simulate state-of-art BHJ solar cells using five recombination models, including direct recombination, Langevin recombination, charge transfer state recombination, trap-assisted recombination, and recombination via tail. All processes are strongly dependent on charge carrier mobility and exhibit a similar recombination distribution in active layer. For high mobilities, all models present a similar behavior along with the increased mobilities, whereas, there are slight differences in open-circuit voltage between trap/tail model and other ones at lower mobilities, resulting from the interaction between photo-carriers and dark-carriers
Compton scattering on hadronic systems
International Nuclear Information System (INIS)
Compton scattering with real photons is studied for several hadronic systems, where special care is taken of the internal structure of the systems. The scattering on the deuteron is treated in terms of an analytically solvable model in the low energy region as in illustration for the general theory of low energy Compton scattering. For the 208Pb target nucleus a consistent treatment of the retardation leads to an interpretation of scattering data below and above the giant resonances up to energies of 50 MeV. Compton scattering in the Δ-resonance region is studied for the nucleon. The internal structure is described via a constituent quark model resulting in a proper treatment of the polarizabilities of the nucleon. The effect of binding on the polarizabilities is discussed on the basis of kinematical effects and modifictions due to the retardation. (orig.)
International Nuclear Information System (INIS)
As in many other bands of electromagnetic spectrum, the Crab Nebula has become the standard candle for TeV gamma-ray astronomy. It is available as steady source to test and calibrate the telescope and can be seen from both hemispheres. Crab Nebula has an extraordinary broad spectrum, attributed to synchrotron radiation of electrons with energies from GeV to PeV. This continuous spectrum appears to terminate near 108 eV and photons, produced by relativistic electrons and positrons (∼ 1015 eV) via Inverse Compton, form a new component of spectrum in GeV - TeV energy range. Since the first detection with ground based telescope the Crab has been observed by the number of independent groups using different methods of registration of gamma-initiated showers. The SHALON observation results of well-known gamma-source Crab Nebula are consistent with observation data of the best world telescopes. The spectrum of gamma rays from the Crab Nebula has been measured in the energy range 0.8 TeV to 11 TeV at the SHALON Alatoo Observatory by the atmospheric Cherenkov technique. The integral energy spectrum is well described by the single power law I(> Eγ) ∝ Eγ-1.44±0.07. An image of gamma-ray emission from Crab Nebula by SHALON telescope is presented. The VHE spectral energy distribution of the Crab Nebula is compared with the predictions of a synchrotron self- Compton emission model in energy range 0.8 TeV to 11 TeV (Hillas et al. 1998). (authors)
Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling
International Nuclear Information System (INIS)
During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super
Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling
Energy Technology Data Exchange (ETDEWEB)
Kutnjak, Josip
2013-06-27
During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super
Inverse Compton Scattering Model for X-ray Emission of the Gamma-ray Binary LS 5039
Yamaguchi, Masaki S
2012-01-01
We propose a model for the gamma-ray binary LS 5039 in which the X-ray emission is due to the inverse Compton (IC) process instead of the synchrotron radiation. Although the synchrotron model has been discussed in previous studies, it requires a strong magnetic field which leads to a severe suppression of the TeV gamma-ray flux in conflict with H.E.S.S. observations. In this paper, we calculate the IC emission by low energy electrons (\\gamma_e \\lesssim 10^3) in the Thomson regime. We find that IC emission of the low energy electrons can explain the X-ray flux and spectrum observed with Suzaku if the minimum Lorentz factor of injected electrons \\gamma_min is around 10^3. In addition, we show that the Suzaku light curve is well reproduced if \\gamma_min varies in proportion to the Fermi flux when the distribution function of injected electrons at higher energies is fixed. We conclude that the emission from LS 5039 is well explained by the model with the IC emission from electrons whose injection properties are d...
Applications of Compton scattering
Institute of Scientific and Technical Information of China (English)
LUO Guang; ZHOU Shang-qi; HAN Zhong; CHEN Shuang-kou
2006-01-01
Compton scattering is used very widely. In this article, we depict an overall picture for its applications which are based on two basic theories. The first is the electron densitometry theory related to electron density. According to this theory its applications are in two fields: one is Compton scatter densitometry (CSD), the other is Compton scatter imaging (CSI). The second technique involves the electron momentum distribution and Compton profile. Applications of this technique are mainly the Compton profile analysis (CPA) and the Compton profile or the electron momentum distribution in physics and chemistry.Future research fields are suggested according to the current situation and limits of this technique and a promising prospect is unfolded.
Energy Technology Data Exchange (ETDEWEB)
Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz
2016-02-02
A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.
Bulk Density Adjustment of Resin-Based Equivalent Material for Geomechanical Model Test
Pengxian Fan; Haozhe Xing; Linjian Ma; Kaifeng Jiang; Mingyang Wang; Zechen Yan; Xiang Fang
2015-01-01
An equivalent material is of significance to the simulation of prototype rock in geomechanical model test. Researchers attempt to ensure that the bulk density of equivalent material is equal to that of prototype rock. In this work, barite sand was used to increase the bulk density of a resin-based equivalent material. The variation law of the bulk density was revealed in the simulation of a prototype rock of a different bulk density. Over 300 specimens were made for uniaxial compression test....
Magnetic compton of USe single crystal
International Nuclear Information System (INIS)
The magnetic Compton scattering experiment of USe single crystal was performed. The spin moment μs of USe was determined from magnetic Compton profile (MCP) and the orbital moment μL was deduced by combining the μS with the result of magnetization measurement. Furthermore, the spin moments of USe were decomposed into 5f electron component of uranium and conduction-electron-like component by fitting with calculated Compton profiles from relativistic Dirac-Hartree-Fock wave functions. Decomposed components for USe are discussed in terms of Russel-Saunders coupling models. (author)
Polish model of electric energy market-bulk energy tariff
International Nuclear Information System (INIS)
The key problem of electric energy supply industry reform is gradually launching a competitive wholesale generation market since 1994. In process of this transformation the important role plays bulk energy supply tariff in electricity transactions between Polish Power Grid Company and distribution and retail supply companies (distributors). Premises, factors and constrains having influence on shaping of the bulk energy supply tariff are presented. A brief outline of economic foundation for calculation of demand charges and energy rate is given. Particular attention has been paid to description of bulk energy supply tariff structure. The scope and manner of adjustment of this tariff to circumstances and constrains in the initial stage of the wholesale electric energy market have been described as well. (author). 8 refs
International Nuclear Information System (INIS)
The Fermi gamma-ray space telescope has dramatically increased the number of gamma-ray blazars known and means that for the first time, a large sample of blazars selected by the strength of their inverse Compton emission exists. We have cross-identified the blazars listed in the first Fermi-LAT catalog (1FGL) with the CRATES radio catalogue. Using the 8.4 GHz flux density as a proxy for the jet power, we have computed their Compton efficiencies, a measure of the ability of the jet to convert the power in the ultrarelativistic jet electrons into gamma-rays through the inverse Compton process. We have compared the Compton efficiencies of the two blazar subsets, BL Lacs and FSRQs, and find no evidence that they are different. We also do not find an anti-correlation between Compton efficiency and synchrotron peak frequency.
On bulk singularities in the random normal matrix model
Ameur, Yacin; Seo, Seong-Mi
2016-01-01
We extend the method of rescaled Ward identities of Ameur-Kang-Makarov to study the distribution of eigenvalues close to a bulk singularity, i.e. a point in the interior of the droplet where the density of the classical equilibrium measure vanishes. We prove results to the effect that a certain "dominant part" of the Taylor expansion determines the microscopic properties near a bulk singularity. A description of the distribution is given in terms of a special entire function, which depends on...
International Nuclear Information System (INIS)
The model of the build up contribution to the absorbed dose rate in a semi industrial irradiation plant is presented. A static irradiation of a lucite phantom with and without water is modeled. The absorbed dose was measured with silver and potassium dichromate dosemeters. Two approximations are used, the first one is a global adjustment of the attenuation coefficient and the second one consists in a detailed description of the Compton scattering. A specific numerical model is developed for each approximation and the absorbed dose rates calculated are compared with the experimental measurements. The achievements and limitations of both models are discussed. (author)
Bulk viscosity from the Polyakov-Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
The insufficiency of ideal fluid dynamics to reproduce certain expected results threw light on the necessity of dissipative effects. The viscosity coefficients give an estimate of the hydrodynamical evolution of fluid dissipative processes. Not only do they provide information about the deviation of the system from ideal hydrodynamics, they also give us a picture of the fluid dynamics and critical phenomena. In this work we concentrate on the effects of bulk viscosity. Bulk viscosity bears essential significance like in the context of violation of scale invariance. Now, the smallness of sound velocity being directly related to the former, it becomes obvious that bulk viscosity will show a peak-like nature in the critical region. Bulk viscosity manifests itself by an addition of the diagonal term πδij to the stress tensor Tij in the local rest frame. In this work we take resort to the Kubo formalism which relates viscosity coefficients to the correlation functions of the energy-momentum (E-M) tensor
Particle models for discrete element modeling of bulk grain properties of wheat kernels
Recent research has shown the potential of discrete element method (DEM) in simulating grain flow in bulk handling systems. Research has also revealed that simulation of grain flow with DEM requires establishment of appropriate particle models for each grain type. This research completes the three-p...
Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Anjali
2004-09-01
Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.
Energy Technology Data Exchange (ETDEWEB)
ReVelle, D. O. (Douglas O.)
2001-01-01
We compare predictions of bolide behavior using basic meteoroid models, first assuming a uniform bulk density throughout the body and secondly assuming a uniform chondritic composition throughout, but with varying amounts of porosity (assumed to be filled with either water-ice or open space). The second model is based one the uniformity of spectral observations over many years from shower meteors from the extremes of the Geminids to the dustball-like Draconids. The first model utilized is due to ReVelle (1979, 1993) and the second is based upon the porous meteoroid model of ReVelle (1983, 1993). The standard, uniform bulk density model assumes that the drag and heat transfer area are equivalent in the positive, shape change factor limit. For porous meteoroids however, the heat transfer area can exceed the drag area by increasingly larger amounts as the body's porosity increases. ReVelle (1983) used this approach to show that the bulk density and ablation parameter compositional group identifications of Ceplecha and McCrosky (1976) were essentially correct. When these factors are introduced into the relevant model equations, a set of nearly self-consistent predictive relations are developed which readily allows comparisons to be made of the end-height variations and of the normalized luminous output of the two basic meteoroid models.
Applications and modelling of bulk HTSs in brushless ac machines
International Nuclear Information System (INIS)
The use of high temperature superconducting material in its bulk form for engineering applications is attractive due to the large power densities that can be achieved. In brushless electrical machines, there are essentially four properties that can be exploited; their hysteretic nature, their flux shielding properties, their ability to trap large flux densities and their ability to produce levitation. These properties translate to hysteresis machines, reluctance machines, trapped-field synchronous machines and linear motors respectively. Each one of these machines is addressed separately and computer simulations that reveal the current and field distributions within the machines are used to explain their operation. (author)
Watson, Greg
1996-01-01
Neutron Compton scattering measurements have the potential to provide direct information about atomic momentum distributions and adiabatic energy surfaces in condensed matter. First applied to measuring the condensate fraction in superfluid helium, the technique has recently been extended to study a variety of classical and quantum liquids and solids. This article reviews the theoretical background for the interpretation of neutron Compton scattering, with emphasis on studies of solids.
A smooth and differentiable bulk-solvent model for macromolecular diffraction
International Nuclear Information System (INIS)
A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, Rfree and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography
Theory of Compton scattering by anisotropic electrons
Poutanen, Juri; Vurm, Indrek
2010-01-01
Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed so...
Prediction of Filamentous Sludge Bulking using a State-based Gaussian Processes Regression Model
Liu, Yiqi; Guo, Jianhua; Wang, Qilin; Huang, Daoping
2016-01-01
Activated sludge process has been widely adopted to remove pollutants in wastewater treatment plants (WWTPs). However, stable operation of activated sludge process is often compromised by the occurrence of filamentous bulking. The aim of this study is to build a proper model for timely diagnosis and prediction of filamentous sludge bulking in an activated sludge process. This study developed a state-based Gaussian Process Regression (GPR) model to monitor the filamentous sludge bulking related parameter, sludge volume index (SVI), in such a way that the evolution of SVI can be predicted over multi-step ahead. This methodology was validated with SVI data collected from one full-scale WWTP. Online diagnosis and prediction of filamentous bulking sludge with real-time SVI prediction was tested through a simulation study. The results showed that the proposed methodology was capable of predicting future SVIs with good accuracy, thus providing sufficient time for predicting and controlling filamentous sludge bulking. PMID:27498888
Prediction of Filamentous Sludge Bulking using a State-based Gaussian Processes Regression Model.
Liu, Yiqi; Guo, Jianhua; Wang, Qilin; Huang, Daoping
2016-01-01
Activated sludge process has been widely adopted to remove pollutants in wastewater treatment plants (WWTPs). However, stable operation of activated sludge process is often compromised by the occurrence of filamentous bulking. The aim of this study is to build a proper model for timely diagnosis and prediction of filamentous sludge bulking in an activated sludge process. This study developed a state-based Gaussian Process Regression (GPR) model to monitor the filamentous sludge bulking related parameter, sludge volume index (SVI), in such a way that the evolution of SVI can be predicted over multi-step ahead. This methodology was validated with SVI data collected from one full-scale WWTP. Online diagnosis and prediction of filamentous bulking sludge with real-time SVI prediction was tested through a simulation study. The results showed that the proposed methodology was capable of predicting future SVIs with good accuracy, thus providing sufficient time for predicting and controlling filamentous sludge bulking. PMID:27498888
Kumar, Nagendra
2016-01-01
In earlier works, we had shown that the observed soft lags and r.m.s versus energy of the lower kHz QPO of neutron star binaries can be explained in the framework of a thermal Comptonization model. It was also shown that such an interpretation can provide estimates of the size and geometry of the Comptonizing medium. Here we study the dependence of these estimates on the time-averaged spectral model assumed and on the frequency of the QPO. We use the high quality time lag and r.m.s obtained during March 3rd 1996 observation of 4U 1608-52 by RXTE as well as other observations of the source at different QPO frequencies where a single time-lag between two broad energy bands have been reported. We compare the results obtained when assuming that the time-averaged spectra are represented by the spectrally degenerate "hot" and "cold" seed photon spectral models. We find that for the "hot" seed photon model the medium size is in the range of 0.3-2.0 kms and the size decreases with increasing QPO frequency. On the oth...
Randall-Sundrum model with {lambda}<0 and bulk brane viscosity
Energy Technology Data Exchange (ETDEWEB)
Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl
2008-04-17
We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckart's theory, we focus in the Randall-Sundrum model with negative tension on the brane.
HERMES impact for the access of Compton form factors
Kumerički, K.; Müller, D.; Murray, M.
2014-07-01
We utilize the DVCS asymmetry measurements of the HERMES collaboration for access to Compton form factors in the deeply virtual regime and to generalized parton distributions. In particular, the (almost) complete measurement of DVCS observables allows us to map various asymmetries into the space of Compton form factors, where we still rely in this analysis on dominance of twist-two associated Compton form factors. We compare this one-to-one map with local Compton form factor fits and a model dependent global fit.
HERMES impact for the access of Compton form factors
Kumericki, Kresimir; Murray, Morgan
2013-01-01
We utilize the DVCS asymmetry measurements of the HERMES collaboration for access to Compton form factors in the deeply virtual regime and to generalized parton distributions. In particular, the (almost) complete measurement of DVCS observables allows us to map various asymmetries into the space of Compton form factors, where we still rely in this analysis on dominance of twist-two associated Compton form factors. We compare this one-to-one map with local Compton form factor fits and a model dependent global fit.
The Compton generator revisited
International Nuclear Information System (INIS)
The Compton generator, introduced in 1913 by the US physicist A H Compton as a relatively simple device to detect the Earth's rotation with respect to the distant stars, is analyzed and discussed in a general perspective. The paper introduces a generalized definition of the generator, emphasizing the special features of the original apparatus, and provides a suggestive interpretation of the way the device works. To this end, an intriguing electromagnetic analogy is developed, which turns out to be particularly useful in simplifying the calculations. Besides the more extensive description of the Compton generator in itself, the combined use of concepts and methods coming from different fields of physics, such as particle dynamics in moving references frames, continuum mechanics and electromagnetism, may be of interest to both teachers and graduate students. (paper)
Numerical modelling and comparison of MgB2 bulks fabricated by HIP and infiltration growth
Zou, J.; Ainslie, M. D.; Fujishiro, H.; Bhagurkar, A. G.; Naito, T.; Babu, N. Hari; Fagnard, J.-F.; Vanderbemden, P.; Yamamoto, A.
2015-07-01
MgB2 in bulk form shows great promise as trapped field magnets (TFMs) as an alternative to bulk (RE)BCO materials to replace permanent magnets in applications such as rotating machines, magnetic bearings and magnetic separation, and the relative ease of fabrication of MgB2 materials has enabled a number of different processing techniques to be developed. In this paper, a comparison is made between bulk MgB2 samples fabricated by the hot isostatic pressing (HIP), with and without Ti-doping, and infiltration growth (IG) methods and the highest trapped field in an IG-processed bulk MgB2 sample, Bz = 2.12 at 5 K and 1.66 T at 15 K, is reported. Since bulk MgB2 has a more homogeneous Jc distribution than (RE)BCO bulks, studies on such systems are made somewhat easier because simplified assumptions regarding the geometry and Jc distribution can be made, and a numerical simulation technique based on the 2D axisymmetric H-formulation is introduced to model the complete process of field cooling (FC) magnetization. As input data for the model, the measured Jc(B,T) characteristics of a single, small specimen taken from each bulk sample are used, in addition to measured specific heat and thermal conductivity data for the materials. The results of the simulation reproduce the experimental results extremely well: (1) indicating the samples have excellent homogeneity, and (2) validating the numerical model as a fast, accurate and powerful tool to investigate the trapped field profile of bulk MgB2 discs of any size accurately, under any specific operating conditions. Finally, the paper is concluded with a numerical analysis of the influence of the dimensions of the bulk sample on the trapped field.
Bianchi Type-Ⅲ String Cosmological Model with Bulk Viscosity in General Relativity
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2005-01-01
The Bianchi type-Ⅲcosmological model for a cloud string with bulk viscosity are studied. To obtain a determinate solution, it is assumed that the coefficient of bulk viscosity is a power function of the scalar of expansion ζ = kθm and the shear scalar is proportional to scalar of expansion σ∝θ, which leads to the relation between metric potentials B = Cn. The physical features of the model are also discussed. It is found that the power index mhas significant influence on the string model. There is a "big bang" start in the model when m ≤ 1 but there is no the big-bang start when m ＞ 1. In the special case m = 0, the model reduces to the string model of constant coefficient of bulk viscosity that was the result previously given in the literature.
International Nuclear Information System (INIS)
The Crab Nebula has an extraordinary broad spectrum, attributed to synchrotron radiation of electrons with energies from GeV to PeV. This continuous spectrum appears to terminate near 108 eV and photons, produced by relativistic electrons and positrons (∼1015 eV) via the Inverse Compton effect, form a new component of the spectrum in the GeV - TeV energy range. The spectrum of γ-rays from the Crab Nebula has been measured in the energy range 0.8 TeV to 11 TeV at the SHALON Alatoo Observatory by the atmospheric Cerenkov technique. The VHE spectral energy distribution of the Crab Nebula is compared with the predictions of a synchrotron self-Compton emission model in the energy range 0.8 TeV to 11 TeV (Hillas et al. 1998). Tycho's SNR has been observed by SHALON imaging Cherenkov telescope at Tien-Shan. This object, Ia SNR, has long been considered as a candidate for a CR hadron source in the Northern Hemisphere. The expected pion decay γ-flux, Fγ∼Eγ-1, extends up to >30 TeV, whereas the IC γ-ray flux has a cutoff above a few TeV. So, the detection of γ-rays at energies of 10 - 40 TeV by SHALON is evidence for a hadron origin of the γ-rays.
Electro-thermo-mechanical model for bulk acoustic wave resonators.
Rocas, Eduard; Collado, Carlos; Mateu, Jordi; Orloff, Nathan D; Aigner, Robert; Booth, James C
2013-11-01
We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description. Moreover, the terms that are responsible for the second-harmonic generation and the frequency shift with dc voltage are shown to be the same. PMID:24158294
A commuting network model: going to the bulk
Gargiulo, Floriana; Huet, Sylvie; Espinosa, Omar Baqueiro
2011-01-01
The influence of commuting in socio-economic dynamics increases constantly. Analysing and modelling the networks formed by commuters to help decision-making regarding the land-use has become crucial. This paper presents a simple spatial interaction simulated model with only one parameter. The proposed algorithm considers each individual who wants to commute, starting from their living place to all their workplaces. It decides where the location of the workplace following the classical rule inspired from the gravity law consisting in a compromise between the job offers and the distance to the jobs. The further away the job offer is, the more important it must be in order to be considered. Inversely, only the quantity of offers is important for the decision when these offers are close. The paper also presents a comparative analysis of the structure of the commuting networks of the four European regions to which we apply our model. The model is calibrated and validated on these regions. Results from the analysis...
Indian Academy of Sciences (India)
G P Singh; R V Deshpande; T Singh
2004-11-01
We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational limit.
Energy Technology Data Exchange (ETDEWEB)
Helene Fonvieille
2003-05-01
Virtual Compton Scattering off the proton: {gamma}^+p --> {gamma}p is a new field of investigation of nucleon structure. Several dedicated experiments have been performed at low c.m. energy and various momentum transfers, yielding specific information on the proton. This talk reviews the concept of nucleon Generalized Polarizabilities and the present experimental status.
A predictive structural model for bulk metallic glasses
Laws, K. J.; Miracle, D. B.; Ferry, M.
2015-01-01
Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural de...
Bulk viscous cosmological model with interacting dark fluids
Energy Technology Data Exchange (ETDEWEB)
Kremer, Gilberto M.; Sobreiro, Octavio A.S., E-mail: kremer@fisica.ufpr.br [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil)
2012-04-15
We study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field comprising baryons and dark matter. The constituents are assumed to interact with each other, and a non-equilibrium pressure is introduced to account for irreversible processes. We take the nonequilibrium pressure to be proportional to the Hubble parameter within the framework of a first-order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which depend on the ratio between their energy densities. We adjust the free parameters of the model to optimize the fits to the Hubble parameter data. We compare the viscous model with the non-viscous one, and show that the irreversible processes cause the dark-energy and matter-density parameters to become equal and the decelerated-accelerated transition to occur at earlier times. Furthermore, the density and deceleration parameters and the distance modulus have the correct behavior, consistent with a viable scenario of the present status of the Universe . (author)
Theory of Compton scattering by anisotropic electrons
Poutanen, Juri
2010-01-01
Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describin...
Dintwa, Edward
2006-01-01
This thesis is primarily concerned with the development of accurate, simplified and validated contact force models for the discrete element modelling (DEM) of fruit bulk handling systems. The DEM is essentially a numerical technique to model a system of particles interacting with one another and with the system boundaries through collisions. The specific area of application envisaged is in postharvest agriculture, where DEM could be used in simulation of many unit operations with bulk fruit,...
Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model
Ghosh, Sabyasachi; Mohanty, Bedangdas
2016-01-01
We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by Hadron Resonance Gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature is observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in...
Bulk viscosity of strange quark matter in density dependent quark mass model
Indian Academy of Sciences (India)
J D Anand; N Chandrika Devi; V K Gupta; S Singh
2000-05-01
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and ﬁrst order interactions were taken into account. We ﬁnd that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.
Bulk Randall-Sundrum models, electroweak precision tests, and the 125 GeV Higgs
Iyer, Abhishek M.; Sridhar, K.; Vempati, Sudhir K.
2016-04-01
We present up-to-date electroweak fits of various Randall-Sundrum (RS) models. We consider the bulk RS, deformed RS, and the custodial RS models. For the bulk RS case we find the lightest Kaluza-Klein (KK) mode of the gauge boson to be ˜8 TeV , while for the custodial case it is ˜3 TeV . The deformed model is the least fine-tuned of all which can give a good fit for KK masses fine-tuning in each case.
Compton Scattering with a Vortex Light Beam
Nairat, Mazen; Voelz, David
2014-03-01
The Compton effect is applied to a vortex light beam. A photon in a vortex beam possesses spin angular momentum associated with the polarization and orbital angular momentum that consists of two orthogonal components: azimuthal and axial. The azimuthal part is directly proportional to the axial part. This study considers inelastic collision of a photon possessing angular momentum with a free electron. The conservation of angular momentum as well as total energy is applied to the photon-electron system to generalize the Compton scattering model. We describe the momentum exchange and characterize the Compton effect beyond the well-known photon wavelength shift to include other parameters such as the radius of gyration. Our analysis suggests that upon an exchange of angular momentum with an electron, it is possible for the scattered photon to have no wavelength to shift. Air Force Research Laboratory.
Sensitivity of a Cloud-Resolving Model to the Bulk and Explicit Bin Microphysical Schemes
Li, Xiao-Wen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne
2004-01-01
A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the traditional bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-1 1,1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. Furthermore, the observations and the well-proven bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that the bulk and bin simulations have distinct differences, most notably in the stratiform region of the squall line system. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region simulated in the bulk scheme model are remnants of the stronger convections previously at the leading edge of the system, sustained by horizontal vorticity generated by its own cool pool near the surface. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in the convective zone simulated in the bulk microphysical scheme, which is unrealistic because of the assumptions made in raindrop size distribution. Further sensitivity tests that reduce the evaporation rate in bulk scheme artificially produce more upright convective core and less weak cores in stratiform region. However, they produce weaker upper level outflow and consequently less stratiform rain area. The addition of a more realistic raindrop breakup scheme in the bin scheme results more
The effect of dynamic changes in soil bulk density on hydraulic properties: modeling approaches
Assouline, Shmuel
2014-05-01
Natural and artificial processes, like rainfall-induced soil surface sealing or mechanical compaction, disturb the soil structure and enhance dynamic changes of the related pore size distribution. These changes may influence many aspects of the soil-water-plant-atmosphere system. One of the easiest measurable variables is the soil bulk density. Approaches are suggested that could model the effect of the change in soil bulk density on soil permeability, water retention curve (WRC) and unsaturated hydraulic conductivity function (HCF). The resulting expressions were calibrated and validated against experimental data corresponding to different soil types at various levels of compaction, and enable a relatively good prediction of the effect of bulk density on the soil hydraulic properties. These models allow estimating the impact of such changes on flow processes and on transport properties of heterogeneous soil profiles.
Indian Academy of Sciences (India)
Chandel S; Ram Shri
2016-03-01
The paper deals with the study of particle creation and bulk viscosity in the evolution of spatially homogeneous and anisotropic Bianchi type-V cosmological models in the framework of Saez–Ballester theory of gravitation. Particle creation and bulk viscosity are considered as separate irreversible processes. The energy–momentum tensor is modified to accommodate the viscous pressure and creation pressure which is associated with the creation of matter out of gravitational field. A special law of variation of Hubble parameter is applied to obtain exact solutions of field equations in two types of cosmologies, one with power-law expansion and the other with exponential expansion. Cosmological model with power-law expansion has a Big-Bang singularity at time $t = 0$, whereas the model with exponential expansion has no finite singularity. We study bulk viscosity and particle creation in each model in four different cases. The bulk viscosity coefficient is obtained for full causal, Eckart’s and truncated theories. All physical parameters are calculated and thoroughly discussed in both models.
Energy Technology Data Exchange (ETDEWEB)
Sinitsyna, V.G.; Borisov, S.S.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y.; Platonov, G.F. [P.N.Lebedev Physical Institute, Leninsky prospect 53, Moscow, 119991 (Russian Federation)
2009-12-15
The Crab Nebula has an extraordinary broad spectrum, attributed to synchrotron radiation of electrons with energies from GeV to PeV. This continuous spectrum appears to terminate near 10{sup 8} eV and photons, produced by relativistic electrons and positrons (approx10{sup 15} eV) via the Inverse Compton effect, form a new component of the spectrum in the GeV - TeV energy range. The spectrum of gamma-rays from the Crab Nebula has been measured in the energy range 0.8 TeV to 11 TeV at the SHALON Alatoo Observatory by the atmospheric Cerenkov technique. The VHE spectral energy distribution of the Crab Nebula is compared with the predictions of a synchrotron self-Compton emission model in the energy range 0.8 TeV to 11 TeV (Hillas et al. 1998). Tycho's SNR has been observed by SHALON imaging Cherenkov telescope at Tien-Shan. This object, Ia SNR, has long been considered as a candidate for a CR hadron source in the Northern Hemisphere. The expected pion decay gamma-flux, F{sub g}ammaapproxE{sub g}amma{sup -1}, extends up to >30 TeV, whereas the IC gamma-ray flux has a cutoff above a few TeV. So, the detection of gamma-rays at energies of 10 - 40 TeV by SHALON is evidence for a hadron origin of the gamma-rays.
Quark mass density- and temperature- dependent model for bulk strange quark matter
al, Yun Zhang et.
2002-01-01
It is shown that the quark mass density-dependent model can not be used to explain the process of the quark deconfinement phase transition because the quark confinement is permanent in this model. A quark mass density- and temperature-dependent model in which the quark confinement is impermanent has been suggested. We argue that the vacuum energy density B is a function of temperature. The dynamical and thermodynamical properties of bulk strange quark matter for quark mass density- and temper...
Exact solutions of a Flat Full Causal Bulk viscous FRW cosmological model through factorization
Cornejo-Pérez, O.; Belinchón, J. A.
2012-01-01
We study the classical flat full causal bulk viscous FRW cosmological model through the factorization method. The method shows that there exists a relationship between the viscosity parameter $s$ and the parameter $\\gamma$ entering the equations of state of the model. Also, the factorization method allows to find some new exact parametric solutions for different values of the viscous parameter $s$. Special attention is given to the well known case $s=1/2$, for which the cosmological model adm...
DEFF Research Database (Denmark)
Foddai, Alessandro; Enøe, Claes; Krogh, Kaspar;
2014-01-01
A stochastic simulation model was developed to estimate the time from introduction ofBovine Viral Diarrhea Virus (BVDV) in a herd to detection of antibodies in bulk tank milk(BTM) samples using three ELISAs. We assumed that antibodies could be detected, after afixed threshold prevalence of...
Bianchi Type-Ⅲ String Cosmological Model With Bulk Viscosity and Magnetic Field
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2006-01-01
@@ The Bianchi type-Ⅲ cosmological model for a cloud string in the presence of bulk viscosity and magnetic field are presented. To obtain the determinate model it is assumed that there is an equation of state ρ = kλ and the scalar of expansion is proportional to the shear scalar θ∝σ, which leads to a relation between metric potentials B = mCn. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start. In the absence of magnetic field, it reduces to the string model with bulk viscosity that was previously given in the literature.
Bulk viscosity : a study from Polyakov-Nambu-Jona-Lasinio model
Saha, Kinkar
2015-01-01
We present an extensive study of the bulk viscosity, $\\zeta$ using the framework of Kubo formalism within 2+1 flavored Polyakov-Nambu-Jona-Lasinio model. Alongwith, we have discussed the kinetic approaches in order to estimate the bulk viscous effects in the strongly interacting systems analogous to the situation in various high energy heavy-ion collisions. Our work strengthens the motivation for the proper incorporation of $\\zeta$ into the analysis of such systems. We also provide justification for such incorporation becoming more significant when density is substantially high.
An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion
Gou, J.; Ward, M. J.
2016-04-01
A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell-bulk
An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion
Gou, J.; Ward, M. J.
2016-08-01
A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell-bulk
Avelino, Arturo
2008-01-01
We present and constrain a cosmological model where the only component is a pressureless fluid with bulk viscosity as an explanation for the present accelerated expansion of the universe. We study the particular model of a bulk viscosity coefficient proportional to the Hubble parameter. The model is constrained using the SNe Ia Gold 2006 sample, the Cosmic Microwave Background (CMB) shift parameter R, the Baryon Acoustic Oscillation (BAO) peak A and the Second Law of Thermodynamics (SLT). It was found that this model is in agreement with the SLT using only the SNe Ia test. However when the model is constrained using the three cosmological tests together (SNe+CMB+BAO) we found: 1.- The model violates the SLT, 2.- It predicts a value of H_0 \\approx 53 km sec^{-1} Mpc^{-1} for the Hubble constant, and 3.- We obtain a bad fit to data with a \\chi^2_{min} \\approx 532. These results indicate that this model is viable just if the bulk viscosity is triggered in recent times.
Vacuum Expectation Value Profiles of the Bulk Scalar Field in the Generalized Randall-Sundrum Model
Tofighi, A; Farokhtabar, A
2015-01-01
In the generalized Randall-Sundrum warped brane-world model the cosmological constant induced on the visible brane can be positive or negative. In this paper we investigate profiles of vacuum expectation value of the bulk scalar field under general Dirichlet andNeumann boundary conditions in the generalized warped brane-worldmodel.We showthat the VEVprofiles generally depend on the value of the brane cosmological constant. We find that the VEV profiles of the bulk scalar field for a visible brane with negative cosmological constant and positive tension are quite distinct fromthose of Randall-Sundrum model. In addition we show that the VEV profiles for a visible brane with large positive cosmological constant are also different from those of the Randall- Sundrum model.We also verify that Goldberger andWise mechanism can work under nonzero Dirichlet boundary conditions in the generalized Randall-Sundrum model.
Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological Models with Time-Dependent and
Indian Academy of Sciences (India)
Nawsad Ali
2013-09-01
The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter . Consequences of the four cases of phenomenological decay of have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.
Inverse Compton X-ray emission from the superluminal quasar 3C 345
Unwin, S. C.; Wehrle, A. E.; Urry, C. M.; Gilmore, D. M.; Barton, E. J.; Kjerulf, B. C.; Zensus, J. A.; Rabaca, C. R.
1994-01-01
In quasars with strong radio cores, the inverse-Compton process is believed to be the dominant source X-ray emission. For objects with parsec-scale radio jets, simple models have predicted that components in the jet emerging from the quasar nucleus generate the observed X-ray emission. We have tested this hypothesis in detail for the quasar 3C 345 using a ROSAT X-ray observation in 1990 July, together with quasi-simultaneous very long base interferometry (VLBI) imaging of the parsec-scale jet at five frequencies. The ROSAT spectrum is well fitted by a power law with index alpha = -0.96 +/- -0.13, consistent with models in which the X-ray emission results from inverse-Compton scattering of radio radiation from high-energy electrons in compact components. We show that the radio properties of brightest `knot' in the jet (`C5') can be fitted with a homogeneous sphere model whose parameters require bulk relativistic motion of the emitting material; otherwise the predicted model whose parameters require bulk relativistic motion of the emitting material; otherwise the predicted inverse-Compton X-ray emission exceeds the observed flux. If C5 is the origin of the X-ray emission, then it has a Doppler factor delta = 7.5((sup +3 sub -2)). If the nucleus or other components contribute to the X-ray emission, then this becomes a firm lower limit to delta. The inhomogeneous jet model of Koenigl is a good fit both to the barely resolved (less than 1 pc) flat-spectrum nucleus in the radio, and also to the ROSAT X-ray spectrum. The synchrotron and inverse-Compton emitting fluid moves down a narrow cone (opening angle 2 phi approximately 5 deg) nucleus relativistically, with delta approximately 4.6. Doppler factors for the nucleus and C5, derived from our ROSAT observation, provide evidence for bulk relativistic motion in the jet. By combining these constraints with well-known superluminal motion of jet components, we can deduce geometry. For epoch 1990.5 we infer the Lorentz factor
Wágner, Dorottya S; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plósz, Benedek Gy
2015-07-01
The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling
Tevatron constraint on the Kaluza-Klein gluon of the Bulk Randall-Sundrum model
Guchait, M; Sridhar, K
2007-01-01
The Bulk Randall-Sundrum model, where all Standard Model particles except the Higgs are free to propagate in the bulk, predicts the existence of Kaluza-Klein (KK) modes of the gluon with a large branching into top-antitop pairs. We study the production of the lowest KK gluon mode at the Tevatron energy and use the data on the top cross-section from the Run II of Tevatron to put a bound on the mass of the KK gluon. The resulting bound of 800 GeV, while being much smaller than the constraints obtained on the KK gluon mass from flavour-changing neutral currents, is the first, direct collider bound which is independent of the specificities of the model.
Compton profile of scandium oxide
International Nuclear Information System (INIS)
In this paper we report the measurement of the Compton profile of polycrystalline scandium oxide using 59.54 keV gamma radiation from a Am241 source. The experimental results are compared with the theoretical Compton profile values calculated based on the linear combination of Gaussian orbital (LCGO) method. The theoretical values from such calculations agree well with the experimental results
Model calculations for evaluation of bulk- and grain boundary diffusion coefficients
International Nuclear Information System (INIS)
Model calculations are developed for evaluation of bulk- and grain boundary diffusion coefficients in polycrystalline media in the case of a semi-infinite diffusion source. The Matrix is assumed to be either quasi-homogeneous or to be composed of grain material and ''grain boundary-material''. Using Whipple's solution of the diffusion equation the flux of material from the grain boundaries into the grain is considered additionally. Examples are given to show the possibility to classify experimentally found diffusion profiles. (author)
Flute-Model Acoustic Metamaterials with Simultaneously Negative Bulk Modulus and Mass Density
Zeng, H. C.; Luo, C. R.; Chen, H. J.; Zhai, S. L.; Zhao, X. P.
2012-01-01
We experimentally constructed a three-dimensional flute-model "molecular" structure acoustic metamaterial(AM)from a periodic array of perforated hollow steel tubes (PHSTs) and investigated its transmission and reflection behaviors in impedance tube system. The AM exhibited a transmission peak and an inverse phase, thus exhibiting the local resonance of the PHSTs. Based on the homogeneous media theory, the effective bulk modulus and mass density of the AM were calculated to be simultaneously n...
Bernard, Denis
2015-01-01
I compute the average polarisation asymmetry from the Klein-Nishina differential cross section on free electrons at rest. As expected from the expression for the asymmetry, the average asymmetry is found to decrease like the inverse of the incident photon energy asymptotically at high energy. I then compute a simple estimator of the polarisation fraction that makes optimal use of all the kinematic information present in an event final state, by the use of "moments" method, and I compare its statistical power to that of a simple fit of the azimuthal distribution. In contrast to polarimetry with pair creation, for which I obtained an improvement by a factor of larger than two in a previous work, here for Compton scattering the improvement is only of 10-20 %.
International Nuclear Information System (INIS)
We compute the average polarisation asymmetry from the Klein–Nishina differential cross-section on free electrons at rest. As expected from the expression for the asymmetry, the average asymmetry is found to decrease like the inverse of the incident photon energy asymptotically at high energy. We then compute a simple estimator of the polarisation fraction that makes optimal use of all the kinematic information present in an event final state, by the use of “moments” method, and we compare its statistical power to that of a simple fit of the azimuthal distribution. In contrast to polarimetry with pair creation, for which we obtained an improvement by a factor of larger than two in a previous work, here for Compton scattering the improvement is only of 10–20%
Energy Technology Data Exchange (ETDEWEB)
Bernard, D.
2015-11-01
We compute the average polarisation asymmetry from the Klein–Nishina differential cross-section on free electrons at rest. As expected from the expression for the asymmetry, the average asymmetry is found to decrease like the inverse of the incident photon energy asymptotically at high energy. We then compute a simple estimator of the polarisation fraction that makes optimal use of all the kinematic information present in an event final state, by the use of “moments” method, and we compare its statistical power to that of a simple fit of the azimuthal distribution. In contrast to polarimetry with pair creation, for which we obtained an improvement by a factor of larger than two in a previous work, here for Compton scattering the improvement is only of 10–20%.
A Forecasting Model of Required Number of Wheat Bulk Carriers for Africa
Institute of Scientific and Technical Information of China (English)
Masayoshi Kubo
2008-01-01
<正>The ocean transportation of grain bulk carriers is promoted by development of ocean economic.With the development of coastal region,the cargo transportation wi11 become more and more important,especially for the resource such as grain,oil and coal.In this study,a model is built to estimate the number of grain bulk carriers needed for wheat based upon analyzing the relationships between Tons and Ton-miles of Africa wheat transportation.We find that the agricultural policies greatly affect the wheat transportation to Africa.Then,using two scenarios, we predict how many ships are necessary for the maritime transportation of wheat from other places to Africa in the future.We believe that this research is extremely useful to maritime transportation of wheat to Africa.
Constraining a bulk viscous matter-dominated cosmological model using SNe Ia, CMB and LSS
Avelino, Arturo; Guzmán, F S
2008-01-01
We present and constrain a cosmological model which component is a pressureless fluid with bulk viscosity as an explanation for the present accelerated expansion of the universe. We study the particular model of a constant bulk viscosity coefficient \\zeta_m. The possible values of \\zeta_m are constrained using the cosmological tests of SNe Ia Gold 2006 sample, the CMB shift parameter R from the three-year WMAP observations, the Baryon Acoustic Oscillation (BAO) peak A from the Sloan Digital Sky Survey (SDSS) and the Second Law of Thermodynamics (SLT). It was found that this model is in agreement with the SLT using only the SNe Ia test. However when the model is submitted to the three cosmological tests together (SNe+CMB+BAO) the results are: 1.- the model violates the SLT, 2.- predicts a value of H_0 \\approx 53 km sec^{-1} Mpc^{-1} for the Hubble constant, and 3.- we obtain a bad fit to data with a \\chi^2_{min} \\approx 400 (\\chi^2_{d.o.f.} \\approx 2.2). These results indicate that this model is ruled out by t...
Bianchi type-VIh string cloud cosmological models with bulk viscosity
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
International Nuclear Information System (INIS)
Brane world models with a nonminimally coupled bulk scalar field have been studied recently. In this paper we consider metric fluctuations around an arbitrary gravity-scalar background solution, and we show that the corresponding spectrum includes a localized zero mode which strongly depends on the profile of the background scalar field. For a special class of solutions, with a warp factor of the RS form, we solve the linearized Einstein equations, for a pointlike mass source on the brane, by using the brane bending formalism. We see that general relativity on the brane is recovered only if we impose restrictions on the parameter space of the models under consideration
Computations of Compton scattering redistribution function in plasma
Madej, J; Majczyna, A; Należyty, M
2016-01-01
Compton scattering is the dominant opacity source in hot neutron stars, accretion disks around black holes and hot coronae. We present here a set of numerical expressions of the Compton scattering redistribution functions for unpolarized radiation, which are more exact than the widely used Kompaneets equation. This paper fulfills three goals: 1. We have organized three existing algorithms into a form ready to use in radiative transfer and model atmosphere codes. 2. We present the correct algorithm derived first by Guilbert (1981). 3. We modify the exact algorithm by Suleimanov et al. (2012) in order to use it for the scattering in a very wide spectral range from hard X- rays to radio waves. We present sample computations of the Compton scattering redistribution functions in thermal plasma at temperatures corresponding to the atmospheres of bursting neutron stars and hot intergalactic medium. Our formulae are also useful to the study Compton scattering of unpolarised microwave background radiation in hot intra...
Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo
2015-12-01
We focus on the dynamics of volumetric liquid water content in seasonal snow covers. This is a key variable describing the fate of snowpacks during the melting season. However, its measurement and/or prediction by means of models at high spatial and temporal resolutions is still difficult due to both practical and theoretical reasons. To overcome these limitations in operational applications, we test the capability of a one-dimensional model to predict the dynamics of bulk volumetric liquid water content during a snow season. Multi-year data collected in three experimental sites in Japan are used as an evaluation. These sites are subjected to different climatic conditions. The model requires the calibration of one or two parameters, according to the degree of detail used. Either a simple temperature-index or a coupled melt-freeze temperature-index approach are considered to predict melting and/or melt-freeze dynamics of liquid water. Results show that, if melt-freeze dynamics are modeled, median absolute differences between data and predictions are consistently lower than 1 vol% at the sites where data of liquid water content are available. In addition, we find also that the model predicts correctly a dry condition in 80% of the observed cases at a site where calibration data are scarce. At the same site, observed isothermal conditions of the snow cover at 0 °C correspond to predictions of bulk volumetric liquid water content that are greater than 0.
Development of DPD coarse-grained models: From bulk to interfacial properties
Solano Canchaya, José G.; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice
2016-08-01
A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.
Compton suppression gamma ray spectrometry
International Nuclear Information System (INIS)
In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)
Flute-Model Acoustic Metamaterials with Simultaneously Negative Bulk Modulus and Mass Density
Zeng, H C; Chen, H J; Zhai, S L; Zhao, X P
2012-01-01
We experimentally constructed a three-dimensional flute-model "molecular" structure acoustic metamaterial(AM)from a periodic array of perforated hollow steel tubes (PHSTs) and investigated its transmission and reflection behaviors in impedance tube system. The AM exhibited a transmission peak and an inverse phase, thus exhibiting the local resonance of the PHSTs. Based on the homogeneous media theory, the effective bulk modulus and mass density of the AM were calculated to be simultaneously negative; the refractive index was also negative. PHST AM slab focusing experiments showed that the medium with a resonant structure exhibited a distinct metamaterial property.
International Nuclear Information System (INIS)
Recently Laboratoire de l'Accelerateur Lineaire (LAL), Orsay, France, has launched an R and D program that involves optical Fabry-Perot resonators and high-power fibre lasers. This program is a part of the global effort aiming at the design of a polarized positron source for the next linear collider (ILC or CLIC). At the same time an important effort is devoted to the possible applications of this technology at lower energy for medical and industrial applications. In this framework, collaboration was started between different French laboratories (RadioThomX project) and industrial partners to study the feasibility of a low-energy machine that should provide a high X-ray flux (∼1012-1013 X s-1 at 50 keV in the 10% energy bandwidth). In both high and low-energy studies, the designs are based on the possibility to increase the average flux by a high collision repetition frequency. Different options are explored at present. In the following, we will give an overview of the LAL activities, the physics contexts and the possible applications of the high average power Fabry-Perot technology applied to Compton scattering experiments.
Compton Scattering by the Proton
Galler, G; Kondratev, R; Massone, A M; Wolf, S; Ahrens, J; Arends, H J; Beck, R; Camen, M; Capitani, G P; Grabmayr, P; Hall, S J; Härter, F; Hehl, T; Jennewein, P; Kossert, K; Lvov, A I; Molinari, C; Ottonello, P; Peise, J; Preobrajenskij, I; Proff, S; Robbiano, A; Sanzone, M; Schumacher, M; Schmitz, M; Wissmann, F
2001-01-01
Compton scattering by the proton has been measured over a wide range covering photon energies 250 MeV < E_\\gamma < 800 MeV and photon scattering angles 30^0 < \\theta^{lab}_\\gamma < 150^0, using the tagged-photon facility at MAMI (Mainz) and the large-acceptance arrangement LARA. The data are in good agreement with the dispersion theory based on the SAID-SM99K parameterization of photo-meson amplitudes. From the subset of data between 280 and 360 MeV the resonance pion-photoproduction amplitudes were evaluated leading to the multipole E2/M1 ratio EMR(340 MeV) =(-1.6 \\pm 0.4(stat+syst) \\pm 0.2(model)%. From all data below 455 MeV the proton's backward spin polarizability was determined to be \\gamma_\\pi=(-37.9 \\pm 0.6(stat+syst) \\pm 3.5(model))x10^{-4}fm^4.
Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method
Qin, Yujie; Lu, Yiyun
2015-09-01
In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.
Demos, Stavros G.; Feit, Michael D.; Duchateau, Guillaume
2014-10-01
A model simulating transient optical properties during laser damage in the bulk of KDP/DKDP crystals is presented. The model was developed and tested using as a benchmark its ability to reproduce the well-documented damage initiation behaviors but most importantly, the salient behavior of the wavelength dependence of the damage threshold. The model involves two phases. During phase I, the model assumes a moderate localized initial absorption that is strongly enhanced during the laser pulse via excited state absorption and thermally driven generation of additional point defects in the surrounding material. The model suggests that during a fraction of the pulse duration, the host material around the defect cluster is transformed into a strong absorber that leads to significant increase of the local temperature. During phase II, the model suggests that the excitation pathway consists mainly of one photon absorption events within a quasicontinuum of short-lived vibronic defect states spanning the band gap that was generated after the initial localized heating of the material due to thermal quenching of the excited state lifetimes. The width of the transition (steps) between different number of photons is governed by the instantaneous temperature, which was estimated using the experimental data. The model also suggests that the critical physical parameter prior to initiation of breakdown is the conduction band electron density. This model, employing very few free parameters, for the first time is able to quantitatively reproduce the wavelength dependence of the damage initiation threshold, and thus provides important insight into the physical processes involved.
Interpretation of the bulk etching process in LR-115 detectors by the many-hit model
International Nuclear Information System (INIS)
The formalism of the many-hit model (MHM) [Fromm, M., Awad, E.M., Ditlov, V.A., 2004. Many-hit model calculation for track etch rate in CR-39 SSNTD using confocal microscope data. Nucl. Instr. Phys. Res. B 26, 565-575; Ditlov, V.A., Awad, E.M., Fromm, M., Hermsdorf, D., 2005. The Bragg-peak studies in CR-39 SSNTD on the basis of many-hit model for track etch rates. Radiat. Meas. 40, 249-254] is applied in order to describe the bulk etching rate VB of non-irradiated polymer detectors. In such a case the etching process should be easier to understand in terms of interactions of physical and chemical processes superimposing material diffusion and reaction kinetics. In a paper [Ditlov, V.A., 2005. Formation model of bulk etching rate for polymer detectors. Radiat. Meas. 40, 240-248] first attempts have been made to develop formulae for the calculation of VB dependence on the concentration C and temperature T of the etchant solution. Therein, it is shown that VB have to be studied in a broad range of C and T including very low and very high values. The formulae of the MHM contain some free adjustable parameters of definite physical meaning, which have to be determined by fitting the experimental data. In the present paper data for VB of LR-115 cellulose nitrate detectors have been analysed to decide on the reliability of the modelling of etching processes and to determine possible physical-based parameters
Kattamis, T. Z.
1984-01-01
Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.
Free volume model: High-temperature deformation of a Zr-based bulk metallic glass
International Nuclear Information System (INIS)
The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition region. Compression tests at different temperatures and strain rates have been conducted. The mechanical behavior is analyzed in the framework of the free volume model, taking into account the dependence of the flow defect concentration on deformation. The activation volume is evaluated and allows one to gather the viscosity data (for the different strain rates and temperatures) on a unique master curve. It is also shown that, due to the relation between flow defect concentration and free volume, it is not possible to deduce the equilibrium flow defect concentration directly from mechanical measurements. However, if this parameter is arbitrarily chosen, mechanical measurements give access to the other parameters of the model, these parameters for the alloy under investigation being of the same order of magnitude as those for other metallic glasses
Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation
Directory of Open Access Journals (Sweden)
D. R. K. Reddy
2013-01-01
Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.
Frank, F.; McArdell, B. W.; Huggel, C.; Vieli, A.
2015-11-01
This study describes an investigation of channel-bed entrainment of sediment by debris flows. An entrainment model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the entrainment model, an empirical relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally, the average rate of erosion, measured at the same field site, is used to constrain the erosion rate. The model predicts plausible erosion values in comparison with field data from highly erosive debris flow events at the Spreitgraben torrent channel, Switzerland in 2010, without any adjustment to the coefficients in the entrainment model. We find that by including bulking due to entrainment (e.g., by channel erosion) in runout models a more realistic flow pattern is produced than in simulations where entrainment is not included. In detail, simulations without entrainment show more lateral outflow from the channel where it has not been observed in the field. Therefore the entrainment model may be especially useful for practical applications such as hazard analysis and mapping, as well as scientific case studies of erosive debris flows.
Auroral signatures of Bursty Bulk Flows from magnetosphere-ionosphere coupling models
Echim, M.; de Keyser, J. M.; Roth, M. A.
2010-12-01
The relationship between bursty bulk flows (BBFs) in the magnetospheric tail and the activation of auroral forms is well established from satellite and ground-based observations. Starting from a self-consistent description of BBFs based on a Vlasov equilibrium we provide a quantitative evaluation of the associated auroral effects by using a quasi-stationary magnetosphere-ionosphere (MI) coupling model. The self-consistent BBF model is based on a kinetic description of a 1-D plasma slab moving in background plasma and electromagnetic field. The model considers two exact constants of motion and one adiabatic invariant (the magnetic moment). It solves the coupled Vlasov-Maxwell system of equations in one spatial dimension (perpendicular to the BBFs plasma bulk velocity and the main magnetic field) assuming the BBF is a 1D structure elongated in the direction of the background magnetic field. The BBF model provides the self-consistent profile of Φm, the electric potential, showing the formation of convergent electric fields at the dawnward flank of the Earth-ward oriented BBFs. It has been shown that magnetospheric convergent electric fields drive field-aligned (FA) potential drops, FA currents and electron precipitation and acceleration. A stationary MI coupling model developed for discontinuity-like magnetospheric generators with convergent electric fields developed earlier is adapted to describe the coupling between the BBFs and the auroral ionosphere. The kernel of the MI coupling model is the condition of current continuity at the topside ionosphere, from which we compute the electric potential in the ionosphere for a given Φm. The MI coupling model is based on a Knight-type current-voltage relationship and a height-integrated conductivity model that depends on the energy deposited in the ionosphere by precipitating electrons. We show that the convergent electric field formed at the flanks of the BBF drive a FA potential drop and downward electron acceleration
Ab-initio determination of X-ray structure factors and the Compton profiles of CdO
International Nuclear Information System (INIS)
X-ray structure factors and Compton profiles of CdO are presented in this work. The theoretical calculations are performed employing the first-principles linear combination of atomic orbitals (LCAO) method using the CRYSTAL code. The computations are made considering the Perdew-Burke-Ernzerhof (PBE) correlation energy functional and Becke's ansatz for the exchange. The computed X-ray structure factors for B1 structure are compared with the available experimental data. To compare the averaged theoretical Compton profile, first ever measurement on polycrystalline CdO is reported using 5Ci 241Am Compton spectrometer. The ionic model calculations have been used to estimate charge transfer in CdO. The agreement is, however, better with the LCAO calculation. The first-principles calculations of equilibrium lattice constants, bulk moduli and its pressure derivative of competing B1 and B2 phases of CdO are also reported and compared with the available results. The computed transition pressure for B1 → B2 structural phase transition is in good agreement with the experimental findings. Moreover, the electronic band structures show that B1 phase has indirect band gap of 0.43 eV in reasonable agreement with the experiments and B2 phase exhibits negative band gap of 0.9 eV.
Change of variables as a method to study general β-models: Bulk universality
International Nuclear Information System (INIS)
We consider β matrix models with real analytic potentials. Assuming that the corresponding equilibrium density ρ has a one-interval support (without loss of generality σ = [−2, 2]), we study the transformation of the correlation functions after the change of variables λi → ζ(λi) with ζ(λ) chosen from the equation ζ′(λ)ρ(ζ(λ)) = ρsc(λ), where ρsc(λ) is the standard semicircle density. This gives us the “deformed” β-model which has an additional “interaction” term. Standard transformation with the Gaussian integral allows us to show that the “deformed” β-model may be reduced to the standard Gaussian β-model with a small perturbation n−1h(λ). This reduces most of the problems of local and global regimes for β-models to the corresponding problems for the Gaussian β-model with a small perturbation. In the present paper, we prove the bulk universality of local eigenvalue statistics for both one-cut and multi-cut cases
Compton Scattering on Light Nuclei
Directory of Open Access Journals (Sweden)
Shukla D.
2010-04-01
Full Text Available Compton scattering on light nuclei (A = 2, 3 has emerged as an eﬀective avenue to search for signatures of neutron polarizabilities, both spin–independent and spin–dependent ones. In this discussion I will focus on the theoretical aspect of Compton scattering on light nuclei; giving ﬁrst a brief overview and therafter concentrating on our Compton scattering calculations based on Chiral eﬀective theory at energies of the order of pion mass. These elastic γd and γHe-3 calculations include nucleons, pions as the basic degrees of freedom. I will also discuss γd results where the ∆-isobar has been included explicitly. Our results on unpolarized and polarization observables suggest that a combination of experiments and further theoretical eﬀorts will provide an extraction of the neutron polarizabilities.
Modeling TiO2's refractive index function from bulk to nanoparticles
Jalava, Juho-Pertti; Taavitsainen, Veli-Matti; Lamminmäki, Ralf-Johan; Lindholm, Minna; Auvinen, Sami; Alatalo, Matti; Vartiainen, Erik; Haario, Heikki
2015-12-01
In recent decades, the use of nanomaterials has become very common. Different nanomaterials are being used in over 1600 consumer products. Nanomaterials have been defined as having at least one dimension in the range of 1-100 nm. Such materials often have unique properties. Despite some warnings of applying bulk optical constants for nano size materials, stated already in 1980s, bulk constants are still commonly used in the light scattering measurements of nano size particles. Titanium dioxide is one of the materials that is manufactured and used as an engineered nanomaterial in increasing quantities. Due to the aforementioned facts, it is quite crucial for successful research and production of nanoparticles to find out the dependence of the refractive index function (RIF) of the material on its crystal size. We have earlier performed several ab initio computations for obtaining the dependence of the RIF of TiO2 on the crystal or on the cluster size, for particles of size up to ca. 2 nm. Extending the calculations to greater sizes has turned out to be infeasible due to the unbearable increase in computational time. However, in this study we show how the crystal-size-dependent-RIF (CS-RIF), for both rutile and anatase can be modeled from measured extinction or turbidity spectra of samples with varying crystal and particle sizes. For computing the turbidity spectrum, we constructed a model including primary crystals whose distributions were parameterized by mean and standard deviation, and also including aggregates consisting of mean sized primary particles, parameterized just by mean aggregate size. Mainly because of the long computing times Mie calculation was used in the computation of extinction spectra. However, in practical process applications, the obtained RIF will be used together with the T-matrix method. We constructed the RIFs used in the model using generalized oscillator model (GOM) as expanded to crystal size dependence. The unknown parameters of the
Devau, Nicolas; Le Cadre, Edith; Hinsinger, Philippe; Gérard, Frédéric
2009-01-01
While most studies have tried to assess phosphorus bioavailability based on phosphorus availability determined in the bulk soil, we question this approach which does not account for changes of P availability that occur in the rhizosphere. In this study, we combined the extraction of soil inorganic phosphorus (P) with CaCl2 or water and geochemical modelling in order to unravel the variations of P availability in the bulk soil and rhizosphere of durum wheat (Triticum turgidum durum L.) over a ...
Modeling the Microstructure Curvature of Boron-Doped Silicon in Bulk Micromachined Accelerometer
Directory of Open Access Journals (Sweden)
Xiaoping He
2013-01-01
Full Text Available Microstructure curvature, or buckling, is observed in the micromachining of silicon sensors because of the doping of impurities for realizing certain electrical and mechanical processes. This behavior can be a key source of error in inertial sensors. Therefore, identifying the factors that influence the buckling value is important in designing MEMS devices. In this study, the curvature in the proof mass of an accelerometer is modeled as a multilayered solid model. Modeling is performed according to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process (BDWP based on the self-stopped etch technique. Moreover, the proposed multilayered solid model is established as an equivalent composite structure formed by a group of thin layers that are glued together. Each layer has a different Young’s modulus value and each undergoes different volume shrinkage strain owing to boron doping in silicon. Observations of five groups of proof mass blocks of accelerometers suggest that the theoretical model is effective in determining the buckling value of a fabricated structure.
A size-dependent constitutive model of bulk metallic glasses in the supercooled liquid region
Yao, Di; Deng, Lei; Zhang, Mao; Wang, Xinyun; Tang, Na; Li, Jianjun
2015-01-01
Size effect is of great importance in micro forming processes. In this paper, micro cylinder compression was conducted to investigate the deformation behavior of bulk metallic glasses (BMGs) in supercooled liquid region with different deformation variables including sample size, temperature and strain rate. It was found that the elastic and plastic behaviors of BMGs have a strong dependence on the sample size. The free volume and defect concentration were introduced to explain the size effect. In order to demonstrate the influence of deformation variables on steady stress, elastic modulus and overshoot phenomenon, four size-dependent factors were proposed to construct a size-dependent constitutive model based on the Maxwell-pulse type model previously presented by the authors according to viscosity theory and free volume model. The proposed constitutive model was then adopted in finite element method simulations, and validated by comparing the micro cylinder compression and micro double cup extrusion experimental data with the numerical results. Furthermore, the model provides a new approach to understanding the size-dependent plastic deformation behavior of BMGs.
Directory of Open Access Journals (Sweden)
Mesbahus Saleheen
2016-05-01
Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.
DEFF Research Database (Denmark)
Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen;
2014-01-01
settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D...... WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of...
Power-law Tails from Dynamical Comptonization in Converging Flows
Turolla, R; Titarchuk, L G; Turolla, Roberto; Zane, Silvia; Titarchuk, Lev
2002-01-01
The effects of bulk motion comptonization on the spectral formation in a converging flow onto a black hole are investigated. The problem is tackled by means of both a fully relativistic, angle-dependent transfer code and a semi-analytical, diffusion-approximation method. We find that a power-law high-energy tail is a ubiquitous feature in converging flows and that the two approaches produce consistent results at large enough accretion rates, when photon diffusion holds. Our semi-analytical approach is based on an expansion in eigenfunctions of the diffusion equation. Contrary to previous investigations based on the same method we find that, although the power-law tail at really large energies is always dominated by the flatter spectral mode, the slope of the hard X-ray portion of the spectrum is dictated by the second mode and it approaches Gamma=3 at large accretion rate, irrespective of the model parameters. The photon index in the tail is found to be largely independent on the spatial distribution of soft ...
Power-Law Tails from Dynamical Comptonization in Converging Flows
Turolla, Roberto; Zane, Silvia; Titarchuk, Lev
2002-09-01
The effects of bulk motion Comptonization on the spectral formation in a converging flow onto a black hole are investigated. The problem is tackled by means of both a fully relativistic, angle-dependent transfer code and a semianalytical, diffusion approximation method. We find that a power-law high-energy tail is a ubiquitous feature in converging flows and that the two approaches produce consistent results at large enough accretion rates when photon diffusion holds. Our semianalytical approach is based on an expansion in eigenfunctions of the diffusion equation. Contrary to previous investigations based on the same method, we find that although the power-law tail at extremely large energies is always dominated by the flatter spectral mode, the slope of the hard X-ray portion of the spectrum is dictated by the second mode and it approaches Γ=3 at large accretion rates, irrespective of the model parameters. The photon index in the tail is found to be largely independent on the spatial distribution of soft seed photons when the accretion rate is either quite low (~10). On the other hand, the spatial distribution of source photons controls the photon index at intermediate accretion rates, when Γ switches from the first to the second mode. Our analysis confirms that a hard tail with photon index Γ<3 is produced by the upscattering of primary photons onto infalling electrons if the central object is a black hole.
A generic tight-binding model for monolayer, bilayer and bulk MoS2
Directory of Open Access Journals (Sweden)
Ferdows Zahid
2013-05-01
Full Text Available Molybdenum disulfide (MoS2 is a layered semiconductor which has become very important recently as an emerging electronic device material. Being an intrinsic semiconductor the two-dimensional MoS2 has major advantages as the channel material in field-effect transistors. In this work we determine the electronic structures of MoS2 with the highly accurate screened hybrid functional within the density functional theory (DFT including the spin-orbit coupling. Using the DFT electronic structures as target, we have developed a single generic tight-binding (TB model that accurately produces the electronic structures for three different forms of MoS2 - bulk, bilayer and monolayer. Our TB model is based on the Slater-Koster method with non-orthogonal sp3d5 orbitals, nearest-neighbor interactions and spin-orbit coupling. The TB model is useful for atomistic modeling of quantum transport in MoS2 based electronic devices.
Shape Models of Asteroids as a Missing Input for Bulk Density Determinations
Hanuš, Josef
2015-07-01
To determine a meaningful bulk density of an asteroid, both accurate volume and mass estimates are necessary. The volume can be computed by scaling the size of the 3D shape model to fit the disk-resolved images or stellar occultation profiles, which are available in the literature or through collaborations. This work provides a list of asteroids, for which (i) there are already mass estimates with reported uncertainties better than 20% or their mass will be most likely determined in the future from Gaia astrometric observations, and (ii) their 3D shape models are currently unknown. Additional optical lightcurves are necessary to determine the convex shape models of these asteroids. The main aim of this article is to motivate the observers to obtain lightcurves of these asteroids, and thus contribute to their shape model determinations. Moreover, a web page https://asteroid-obs.oca.eu, which maintains an up-to-date list of these objects to assure efficiency and to avoid any overlapping efforts, was created.
Jiang, Yunpeng; Shi, Xueping; Qiu, Kun
2015-08-01
A micromechanics model was employed to investigate the mechanical performance of particle-reinforced bulk metallic glass (BMG) composites. The roles of shear banding in the tensile deformation are accounted for in characterizing the strength and ductility of ductile particle-filled BMGs. For the sake of simplicity and convenience, shear band was considered to be a micro-crack in the present model. The strain-based Weibull probability distribution function and percolation theory were applied to describe the equivalent micro-crack evolution, which results in the progressive failure of BMG composites. Based on the developed model, the influences of shear bands on the plastic deformation were discussed for various microstructures. The predictions were in fairly good agreement with the experimental data from the literatures, which confirms that the developed analytical model is able to successfully describe the mechanical properties, such as yield strength, strain hardening, and stress softening elongation of composites. The present results will shed some light on optimizing the microstructures in effectively improving the tensile ductility of BMG composites.
Spin and orbital magnetisation densities determined by Compton scattering of photons
International Nuclear Information System (INIS)
Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)
International Nuclear Information System (INIS)
The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q2 = 0.35 GeV2) to measure the beam asymmetry in the ep → epγ and ep → epπ0 reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for π0) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles (γ*N → πN). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the Δ(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)
Deeply Virtual Compton Scattering off the neutron
Energy Technology Data Exchange (ETDEWEB)
M. Mazouz; A. Camsonne; C. Munoz Camacho; C. Ferdi; G. Gavalian; E. Kuchina; M. Amarian; K. A. Aniol; M. Beaumel; H. Benaoum; P. Bertin; M. Brossard; J.-P. Chen; E. Chudakov; B. Craver; F. Cusanno; C.W. de Jager; A. Deur; R. Feuerbach; J.-M. Fieschi; S. Frullani; M. Garcon; F. Garibaldi; O. Gayou; R. Gilman; J. Gomez; P. Gueye; P.A.M. Guichon; B. Guillon; O. Hansen; D. Hayes; D. Higinbotham; T. Holmstrom; C.E. Hyde; H. Ibrahim; R. Igarashi; X. Jiang; H.S. Jo; L.J. Kaufman; A. Kelleher; A. Kolarkar; G. Kumbartzki; G. Laveissiere; J.J. LeRose; R. Lindgren; N. Liyanage; H.-J. Lu; D.J. Margaziotis; Z.-E. Meziani; K. McCormick; R. Michaels; B. Michel; B. Moffit; P. Monaghan; S. Nanda; V. Nelyubin; M. Potokar; Y. Qiang; R.D. Ransome; J.-S. Real; B. Reitz; Y. Roblin; J. Roche; F. Sabatie; A. Saha; S. Sirca; K. Slifer; P. Solvignon; R. Subedi; V. Sulkosky; P.E. Ulmer; E. Voutier; K. Wang; L.B. Weinstein; B. Wojtsekhowski; X. Zheng; L. Zhu
2007-12-01
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.
Deeply Virtual Compton Scattering off the neutron
International Nuclear Information System (INIS)
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D((rvec e), e'γ)X cross section measured at Q2=1.9 GeV2 and xB=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to Eq, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced
Deeply Virtual Compton Scattering off the neutron
Mazouz, M; Ferdi, C; Gavalian, G; Kuchina, E; Amarian, M; Aniol, K A; Beaumel, M; Benaoum, H; Bertin, P; Brossard, M; Chen, J P; Chudakov, E; Craver, B; Cusanno, F; De Jager, C W; Deur, A; Feuerbach, R; Fieschi, J M; Frullani, S; Garçon, M; Garibaldi, F; Gayou, O; Gilman, R; Gómez, J; Gueye, P; Guichon, P A M; Guillon, B; Hansen, O; Hayes, D; Higinbotham, D; Holmstrom, T; Hyde, C E; Ibrahim, H; Igarashi, R; Jiang, X; Jo, H S; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Laveissière, G; Le Rose, J J; Lindgren, R; Liyanage, N; Lu, H J; Margaziotis, D J; Meziani, Z E; McCormick, K; Michaels, R; Michel, B; Moffit, B; Monaghan, P; Nanda, S; Nelyubin, V; Potokar, M; Qiang, Y; Ransome, R D; Real, J S; Reitz, B; Roblin, Y; Roche, J; Sabatie, F; Saha, A; Sirca, S; Slifer, K; Solvignon, P; Subedi, R; Sulkosky, V; Ulmer, P E; Voutier, E; Wang, K; Weinstein, L B; Wojtsekhowski, B; Zheng, X; Zhu, L
2007-01-01
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.
Institute of Scientific and Technical Information of China (English)
Atul Tyagi; Keerti Sharma
2011-01-01
@@ The locally rotationally symmetric Bianchi type-Ⅱ magnetized string cosmological model with bulk viscous fluid is investigated.The magnetic field is due to an electric current produced along the x-axis.Thus the magnetic field is in the y-z plane and F23 is the only non-vanishing component of electromagnetic field tensor Fib.To obtain the deterministic model in terms of cosmic time t, we have assumed the condition ξθ=const, where ξ is the coefficient of bulk viscosity and θ is the expansion in the model.
Hashemnia, Kamyar
A new laser displacement probe was developed to measure the impact velocities of particles within vibrationally-fluidized beds. The sensor output was also used to measure bulk flow velocity along the probe window and to provide a measure of the media packing. The displacement signals from the laser sensors were analyzed to obtain the probability distribution functions of the impact velocity of the particles. The impact velocity was affected by the orientation of the laser probe relative to the bulk flow velocity, and the density and elastic properties of the granular media. The impact velocities of the particles were largely independent of their bulk flow speed and packing density. Both the local impact and bulk flow velocities within a tub vibratory finisher were predicted using discrete element modelling (DEM) and compared to the measured values for spherical steel media. It was observed that the impact and bulk flow velocities were relatively insensitive to uncertainties in the contact coefficients of friction and restitution. It was concluded that the predicted impact and bulk flow velocities were dependent on the number of layers in the model. Consequently, the final DE model mimicked the key aspects of the experimental setup, including the submerged laser sensor. The DE method predictions of both impact velocity and bulk flow velocity were in reasonable agreement with the experimental measurements, with maximum differences of 20% and 30%, respectively. Discrete element modeling of granular flows is effective, but requires large numerical models. In an effort to reduce computational effort, this work presents a finite element (FE) continuum model of a vibrationally-fluidized granular flow. The constitutive equations governing the continuum model were calibrated using the discrete element method (DEM). The bulk flow behavior of the equivalent continuum media was then studied using both Lagrangian and Eulerian FE formulations. The bulk flow velocities predicted
Polarization Measurements with Compton Telescopes
Akyuz, A.; O'Neill, T. J.; Bhattacharya, D.; Dixon, D. D.; Tumer, T. O.; White, R. S.; Zych, A. D.
1994-12-01
The response of the Tracking and Imaging Gamma-Ray Experiment (TIGRE) instrument to polarized celestial gamma rays above 300 keV is presented. TIGRE uses multilayers of silicon strip detectors both as a gamma-ray converter and to track Compton recoil electrons and positron-electron pairs up to 100 MeV. For Compton events, the direction and energy of the Compton scattered gamma ray are measured with arrays of small CsI(Tl)-photodiode detectors. A small balloon prototype instrument is being constructed that has a high absolute detection efficiency of 10% and a sensitivity of 100 milliCrabs for an exposure of 12 hours. The prototype's sensitivity to polarized gamma radiation has been calculated with the MCNP detector simulation code which was modified to include the polarization dependence of the Klein-Nishina formula. Polarized events and unpolarized source events with background are combined to simulate an observation of the Crab Nebula and pulsar. TIGRE's polarization modulation factor varies from 0.17 to 0.42 depending on the energy and Compton scatter angle cuts that are used. With 12 hours of observation on the Crab, polarized gamma radiation can be detected down to the level of about 10%. Potential celestial sources of polarized gamma-ray emission will be discussed.
Modeling organic bulk-heterojunction solar cells: Parameter stability and photocurrent transients
Hausermann, Roger; Knapp, Evelyne; Moos, Michael; Reinke, Nils; Flatz, Thomas; Ruhstaller, Beat
2010-03-01
An opto-electronic device model for organic bulk-heterojunction solar cells is presented (setfos by fluxim). First, the optical in-coupling into a multilayer stack is calculated. From the photon absorption profile a charge-transfer (CT) exciton profile is derived. These CT-excitons are then dissociated according to the Onsager-Braun model. The resulting motion of electrons and holes is modeled considering both drift and diffusion. We analyze measurements on P3HT:PCBM based solar cells and derive a set of parameter values, including values for CT-exciton dissociation. The experiments are well described and the stability of the parameters under various conditions is tested. This includes the simulation of current-voltage curves, the dependence of the short-circuit current on the layer thickness, and transient photo-currents. It is shown that simulating the transient photo-current is particularly helpful in determining the values of electron and hole mobility. This highlights the need to measure transient photo-currents to extract device parameters such as mobilities and CT-exciton dissociation constants.[4pt] J. Appl. Phys. 106, 104507 (2009)
DEFF Research Database (Denmark)
Flores Alsina, Xavier; Comas, J.; Rodriquez-Roda, I.;
2009-01-01
are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant...
Blazar Studies with GLAST: Synchro-Compton Analysis of Flat Spectr um Radio Quasars
Dermer, Charles D; Krug, Hannah; Boettcher, Markus
2008-01-01
We extend a method for modeling synchrotron and synchrotron self-Compton radiations in blazar jets to include external Compton processes. The basic model assumption is that the blazar radio through soft X-ray flux is nonthermal synchrotron radiation emitted by isotropically-distributed electrons in the randomly directed magnetic field of outflowing relativistic blazar jet plasma. Thus the electron distribution is given by the synchrotron spectrum, depending only on the Doppler factor and mean magnetic field, given that the comoving emission region size scale. Generalizing the approach of Georganopoulos, Kirk, and Mastichiadis (2001) to arbitrary anisotropic target radiation fields, we use the electron spectrum implied by the synchrotron component to derive accurate Compton-scattered $\\gamma$-ray spectra throughout the Thomson and Klein-Nishina regimes for external Compton scattering (ECS) processes. We derive and calculate accurate $\\gamma$-ray spectra produced by relativistic electrons that Compton-scatter (...
Hezel, Dominik C.
2007-09-01
Certain problems in Geosciences require knowledge of the chemical bulk composition of objects, such as, for example, minerals or lithic clasts. This 3D bulk chemical composition (bcc) is often difficult to obtain, but if the object is prepared as a thin or thick polished section a 2D bcc can be easily determined using, for example, an electron microprobe. The 2D bcc contains an error relative to the true 3D bcc that is unknown. Here I present a computer program that calculates this error, which is represented as the standard deviation of the 2D bcc relative to the real 3D bcc. A requirement for such calculations is an approximate structure of the 3D object. In petrological applications, the known fabrics of rocks facilitate modeling. The size of the standard deviation depends on (1) the modal abundance of the phases, (2) the element concentration differences between phases and (3) the distribution of the phases, i.e. the homogeneity/heterogeneity of the object considered. A newly introduced parameter " τ" is used as a measure of this homogeneity/heterogeneity. Accessory phases, which do not necessarily appear in 2D thin sections, are a second source of error, in particular if they contain high concentrations of specific elements. An abundance of only 1 vol% of an accessory phase may raise the 3D bcc of an element by up to a factor of ˜8. The code can be queried as to whether broad beam, point, line or area analysis technique is best for obtaining 2D bcc. No general conclusion can be deduced, as the error rates of these techniques depend on the specific structure of the object considered. As an example chondrules—rapidly solidified melt droplets of chondritic meteorites—are used. It is demonstrated that 2D bcc may be used to reveal trends in the chemistry of 3D objects.
Inclusive and Exclusive Compton Processes in Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Ales Psaker
2005-12-31
In our work, we describe two types of Compton processes. As an example of an inclusive process, we consider the high-energy photoproduction of massive muon pairs off the nucleon. We analyze the process in the framework of the QCD parton model, in which the usual parton distributions emerge as a tool to describe the nucleon in terms of quark and gluonic degrees of freedom. To study its exclusive version, a new class of phenomenological functions is required, namely, generalized parton distributions. They can be considered as a generalization of the usual parton distributions measured in deeply inelastic lepton-nucleon scattering. Generalized parton distributions (GPDs) may be observed in hard exclusive reactions such as deeply virtual Compton scattering. We develop an extension of this particular process into the weak interaction sector. We also investigate a possible application of the GPD formalism to wide-angle real Compton scattering.
Rosseland and flux mean opacities for Compton scattering
Poutanen, Juri
2016-01-01
Rosseland mean opacity plays an important role in theories of stellar evolution and X-ray burst models. In the high-temperature regime, when most of the gas is completely ionized, the opacity is dominated by Compton scattering. Our aim here is to critically evaluate previous works on this subject and to compute exact Rosseland mean opacity for Compton scattering in a broad range of temperatures and electron degeneracy parameter. We use relativistic kinetic equations for Compton scattering and compute the photon mean free path as a function of photon energy by solving the corresponding integral equation in the diffusion limit. As a byproduct we also demonstrate the way to compute photon redistribution functions in case of degenerate electrons. We then compute the Rosseland mean opacity as a function of temperature and electron degeneracy. We compare our results to the previous calculations and find a significant difference in the low-temperature regime and strong degeneracy. We find useful analytical expressio...
Resonant Compton Upscattering in High Field Neutron Stars
Gonthier, Peter L; Wadiasingh, Zorawar; Baring, Matthew G
2012-01-01
The extremely efficient process of resonant Compton upscattering by relativistic electrons in high magnetic fields is believed to be a leading emission mechanism of high field pulsars and magnetars in the production of intense X-ray radiation. New analytic developments for the Compton scattering cross section using Sokolov & Ternov (S&T) states with spin-dependent resonant widths are presented. These new results display significant numerical departures from both the traditional cross section using spin-averaged widths, and also from the spin-dependent cross section that employs the Johnson & Lippmann (J&L) basis states, thereby motivating the astrophysical deployment of this updated resonant Compton formulation. Useful approximate analytic forms for the cross section in the cyclotron resonance are developed for S&T basis states. These calculations are applied to an inner magnetospheric model of the hard X-ray spectral tails in magnetars, recently detected by RXTE and INTEGRAL. Relativistic...
Compton scattering off the deuteron at low and intermediate energies
International Nuclear Information System (INIS)
Compton scattering off the deuteron is studied for photon energies up to about 100 MeV. This energy limit reflects the fact that only intermediate nucleon-nucleon (NN) states are considered. The NN propagator is constructed in a separable potential model, the parameters of which are fitted to describe the experimental NN scattering phase shifts. The problem of gauge invariance of the Compton amplitude is analyzed and the role of nonlocal currents is discussed. The low-energy theorem is satisfied. Our approach enables a direct calculation of both the real and imaginary part of the Compton scattering amplitude. It turns out that the strongest multipoles are dominated by the Born terms. Numerical results are compared to a previous dispersion theoretical calculation, and we find a strong disagreement between both calculations. We are led to conclude that certain assumptions made in the dispersion theoretical calculation are not justified
GAMMA-RAY POLARIZATION INDUCED BY COLD ELECTRONS VIA COMPTON PROCESSES
Energy Technology Data Exchange (ETDEWEB)
Chang Zhe; Jiang Yunguo; Lin Hainan, E-mail: changz@ihep.ac.cn, E-mail: jiangyg@ihep.ac.cn, E-mail: linhn@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)
2013-05-20
The polarization measurement is an important tool to probe the prompt emission mechanism in gamma-ray bursts (GRBs). The synchrotron photons can be scattered by cold electrons in the outflow via Compton scattering (CS) processes. The observed polarization depends on both the photon energy and the viewing angle. With the typical bulk Lorentz factor {Gamma} {approx} 200, photons with energy E > 10 MeV tend to have smaller polarization than photons with energy E < 1 MeV. At the right viewing angle, i.e., {theta} {approx} {Gamma}{sup -1}, the polarization achieves its maximal value, and the polarization angle changes 90 Degree-Sign relative to the initial polarization direction. Thus, the synchrotron radiation plus CS model can naturally explain the 90 Degree-Sign change of the polarization angle in GRB 100826A.
Energy Technology Data Exchange (ETDEWEB)
Arnab, Salman M.; Kabir, M. Z., E-mail: kabir@encs.concordia.ca [Department of Electrical and Computer Engineering, Concordia University, 1455 Blvd. de Maisonneuve West, Montreal, Quebec H3G 1M8 (Canada)
2014-01-21
An analytical model for analyzing the current-voltage (J-V) characteristics of bulk heterojunction (BHJ) organic solar cells is developed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs), carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun's model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The charge carrier concentrations and hence the photocurrent are calculated by solving the carrier continuity equation for both holes and electrons in the organic layer. The overall load current is calculated considering the actual solar spectrum and voltage dependent forward dark current. The model is verified by published experimental results. The efficiency of the P3HT:PCBM based solar cells critically depends on the dissociation of bound EHPs. On the other hand, cells made of a blend of the conjugated polymer (PCDTBT) with the soluble fullerene derivative (PCBM) show nearly unity dissociation efficiency, and their cell efficiency strongly depends on the charge collection efficiency. The effects of carrier lifetimes on the performance of PCDTBT solar cells have also been studied. The model is also used to investigate the effect of titanium oxide (TiO{sub x}) layer (at the back contact) on the J-V characteristics of PCDTBT solar cells. The results of this paper indicate that improvement of charge carrier transport in PCDTBT:PCBM blend and dissociation of bound EHPs in P3HT:PCBM blend are extremely important to increase the power conversion efficiency of the respective BHJ solar cells.
International Nuclear Information System (INIS)
An analytical model for analyzing the current-voltage (J-V) characteristics of bulk heterojunction (BHJ) organic solar cells is developed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs), carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun's model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The charge carrier concentrations and hence the photocurrent are calculated by solving the carrier continuity equation for both holes and electrons in the organic layer. The overall load current is calculated considering the actual solar spectrum and voltage dependent forward dark current. The model is verified by published experimental results. The efficiency of the P3HT:PCBM based solar cells critically depends on the dissociation of bound EHPs. On the other hand, cells made of a blend of the conjugated polymer (PCDTBT) with the soluble fullerene derivative (PCBM) show nearly unity dissociation efficiency, and their cell efficiency strongly depends on the charge collection efficiency. The effects of carrier lifetimes on the performance of PCDTBT solar cells have also been studied. The model is also used to investigate the effect of titanium oxide (TiOx) layer (at the back contact) on the J-V characteristics of PCDTBT solar cells. The results of this paper indicate that improvement of charge carrier transport in PCDTBT:PCBM blend and dissociation of bound EHPs in P3HT:PCBM blend are extremely important to increase the power conversion efficiency of the respective BHJ solar cells
Generalized Parton Distributions from Deeply Virtual Compton Scattering at HERMES
Guidal, M
2009-01-01
The HERMES collaboration has recently published a set of (correlated) beam charge, beam spin and target spin relative asymmetries for the Deeply Virtual Compton Scattering process. This reaction allows in principle to access the Generalized Parton Distributions of the nucleon. We have fitted, in the QCD leading-order and leading-twist handbag approximation, but in a model independent way, this set of data and we report our results for the extracted Compton Form Factors. In particular, we are able to extract constrains on the $H$ GPD.
Generalized parton distributions from deeply virtual compton scattering at HERMES
Energy Technology Data Exchange (ETDEWEB)
Guidal, M. [Institut de Physique Nucleaire d' Orsay, Orsay (France); Moutarde, H. [Service de Physique Nucleaire, CEA Saclay, Gif-Sur-Yvette (France)
2009-10-15
The HERMES Collaboration has recently published a set of (correlated) beam charge, beam spin and target spin asymmetries for the Deeply Virtual Compton Scattering (DVCS) process. This reaction allows in principle to access the generalized parton distributions (GPDs) of the nucleon. We have fitted, in the QCD leading-order and leading-twist handbag approximation, but in a model-independent way, this set of data and we report our results for the extracted Compton form factors. In particular, we are able to extract constrains on the H GPD. (orig.)
Vyas, V.; Kumar, R.; Sharma, G.; Sharma, B. K.
2013-06-01
In this paper, we investigate the Compton profile of ZrB2. The theoretical Compton profile of ZrB2 is computed within the framework of density functional theory (DFT) based on linear combination of atomic orbitals (LCAO). To compare the spherically averaged theoretical values, the measurement on polycrystalline ZrB2 is performed using 59.54 keV gamma-rays emanating from an 241Am radioisotope. To estimate the charge transfer in ZrB2, ionic model based calculations have also been performed which suggest transfer of electron from Zr to B atoms.
Spectral properties of Compton inverse radiation: Application of Compton beams
Bulyak, Eugene
2013-01-01
Compton inverse radiation emitted due to backscattering of laser pulses off the relativistic electrons possesses high spectral density and high energy of photons - in hard x-ray up to gamma-ray energies - because of short wavelength of laser radiation as compared with the classical electromagnetic devices such as undulators. In this report, the possibility of such radiation to monochromatization by means of collimation is studied. Two approaches have been considered for the description of the spectral-angular density of Compton radiation based on the classical field theory and on the quantum electrodynamics. As is shown, both descriptions produce similar total spectra. On the contrary, angular distribution of the radiation is different: the classical approach predicted a more narrow radiation cone. Also proposed and estimated is a method of the `electronic' monochromatization based on the electronic subtraction of the two images produced by the electron beams with slightly different energies. A `proof-of-prin...
Zacharias, Michael
2014-01-01
Blazars exhibit flares with a doubling time scale on the order of minutes. Such rapid flares are theoretically challenging and several {models} have been put forward to explain the fast variability. In this paper we continue the discussion concerning the effects of non-linear, time-dependent synchrotron self-Compton (SSC) cooling. In previous papers we were able to show that the non-linearity{, introduced by a time-dependent electron injection,} has severe consequences for both the spectral energy distribution (SED) and the monochromatic synchrotron light curve. The non-linear cooling introduces novel breaks in the SED, which are usually explained by complicated underlying electron distributions, while the much faster cooling of the SSC process {causes significant differences in the synchrotron light curves}. In this paper we calculate the inverse Compton light curves, taking into account both the SSC and the external Compton process. The light curves are calculated from the monochromatic intensities by intro...
Optical modeling of bulk-heterojunction organic solar cells based on squarine dye as electron donor
Kitova, S.; Stoyanova, D.; Dikova, J.; Kandinska, M.; Vasilev, A.; Angelova, S.
2014-12-01
The potentiality of a squarine dye (Sq1) for using as electron donor component in bulk heterojunction organic solar cells (BHJ) has been studied from the optical point of view. The soluble n-type fullerene, (6,6)-phenyl C61 butyric acid methyl ester (PC61MB) was chosen as acceptor. Optical modelling based on transfer matrix method was carried out to predict and improve photovoltaic performance of a BHJ device with blended Sq1/PC61MB active layer. The dependence of the absorption and the calculated maximum short circuit photocurrent (Jscmax) on the thickness of the active layer (dact), was investigated for two weight ratios of Sq1 and PC61MB. Thus, the optimal dact was calculated to be about 100 nm, which provides an efficient overlapping of the total absorption with solar spectrum in the range between 580 and 900 nm. Besides, it is found that the insertion of ZnO or C60 spacer layer shifts Jscmax peak to lower dact and significantly enhances Jscmax for active layers with dact < 50 nm, which is mainly due to improved light absorption by a factor of 5 to 10. Simultaneously, for dact <100 nm the optical effect of inserted PEDOT:PSS hole transporting layer is negligible.
Optical modeling of bulk-heterojunction organic solar cells based on squarine dye as electron donor
International Nuclear Information System (INIS)
The potentiality of a squarine dye (Sq1) for using as electron donor component in bulk heterojunction organic solar cells (BHJ) has been studied from the optical point of view. The soluble n-type fullerene, (6,6)-phenyl C61 butyric acid methyl ester (PC61MB) was chosen as acceptor. Optical modelling based on transfer matrix method was carried out to predict and improve photovoltaic performance of a BHJ device with blended Sq1/PC61MB active layer. The dependence of the absorption and the calculated maximum short circuit photocurrent (Jscmax) on the thickness of the active layer (dact), was investigated for two weight ratios of Sq1 and PC61MB. Thus, the optimal dact was calculated to be about 100 nm, which provides an efficient overlapping of the total absorption with solar spectrum in the range between 580 and 900 nm. Besides, it is found that the insertion of ZnO or C60 spacer layer shifts Jscmax peak to lower dact and significantly enhances Jscmax for active layers with dact < 50 nm, which is mainly due to improved light absorption by a factor of 5 to 10. Simultaneously, for dact <100 nm the optical effect of inserted PEDOT:PSS hole transporting layer is negligible
Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent A term
Institute of Scientific and Technical Information of China (English)
R.K.Tiwari; S.Sharma
2011-01-01
Einstein Geld equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe. Solutions of the field equations are obtained by assuming the following conditions: the bulk viscosity is proportional to the expansion scalar ￡ oc 0; the expansion scalar is proportional to shear scalar 6 oc cr; and A is proportional to the Hubble parameter A on H. The corresponding interpretations of the cosmological solutions are also discussed.%@@ Einstein field equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe.Solutions of the field equations are obtained by assuming the following conditions:the bulk viscosity is proportional to the expansion scalar ξ∝θ;the expansion scalar is proportional to shear scalar θ∝σ;and ∧ is proportional to the Hubble parameter ∧∝ H.The corresponding interpretations of the cosmological solutions are also discussed.
Preoteasa, Eugen A.; Apostol, Marian V.
2008-01-01
In the frame of collective dynamics in water, models built on elementary excitations and long-range electromagnetic interactions in the cell and bulk liquid are presented. Making use of the low effective mass of water coherence domains (CDs), we examined the relevance of simple quantum models to cellular characteristics. A hypothesis of CDs Bose-type condensation, and models of CD in spherical wells with impenetrable and semipenetrable walls, and of an isotropic oscillator consisting of two i...
Energy Technology Data Exchange (ETDEWEB)
Juneja, B; Gilland, D; Hintenlang, D; Doxsee, K; Bova, F [University Florida, Gainesville, FL (United States)
2014-06-15
Purpose: In Compton Backscatter Imaging (CBI), the source and detector reside on the same side of the patient. We previously demonstrated the applicability of CBI systems for medical purposes using an industrial system. To assist in post-processing images from a CBI system, a forward model based on radiation absorption and scatter principles has been developed. Methods: The forward model was developed in C++ using raytracing to track particles. The algorithm accepts phantoms of any size and resolution to calculate the fraction of incident photons scattered back to the detector, and can perform these calculations for any detector geometry and source specification. To validate the model, results were compared to MCNP-X, which is a Monte Carlo based simulation software, for various combinations of source specifications, detector geometries, and phantom compositions. Results: The model verified that the backscatter signal to the detector was based on three interaction probabilities: a) attenuation of photons going into the phantom, b) Compton scatter of photons toward the detector, and c) attenuation of photons coming out of the phantom. The results from the MCNP-X simulations and the forward model varied from 1 to 5%. This difference was less than 1% for energies higher than 30 keV, but was up to 4% for lower energies. At 50 keV, the difference was less than 1% for multiple detector widths and for both homogeneous and heterogeneous phantoms. Conclusion: As part of the optimization of a medical CBI system, an efficient and accurate forward model was constructed in C++ to estimate the output of CBI system. The model characterized individual components contributing to CBI output and increased computational efficiency over Monte Carlo simulations. It is now used in the development of novel post-processing algorithms that reduce image blur by reversing undesired contribution from outside the region of interest.
International Nuclear Information System (INIS)
Purpose: In Compton Backscatter Imaging (CBI), the source and detector reside on the same side of the patient. We previously demonstrated the applicability of CBI systems for medical purposes using an industrial system. To assist in post-processing images from a CBI system, a forward model based on radiation absorption and scatter principles has been developed. Methods: The forward model was developed in C++ using raytracing to track particles. The algorithm accepts phantoms of any size and resolution to calculate the fraction of incident photons scattered back to the detector, and can perform these calculations for any detector geometry and source specification. To validate the model, results were compared to MCNP-X, which is a Monte Carlo based simulation software, for various combinations of source specifications, detector geometries, and phantom compositions. Results: The model verified that the backscatter signal to the detector was based on three interaction probabilities: a) attenuation of photons going into the phantom, b) Compton scatter of photons toward the detector, and c) attenuation of photons coming out of the phantom. The results from the MCNP-X simulations and the forward model varied from 1 to 5%. This difference was less than 1% for energies higher than 30 keV, but was up to 4% for lower energies. At 50 keV, the difference was less than 1% for multiple detector widths and for both homogeneous and heterogeneous phantoms. Conclusion: As part of the optimization of a medical CBI system, an efficient and accurate forward model was constructed in C++ to estimate the output of CBI system. The model characterized individual components contributing to CBI output and increased computational efficiency over Monte Carlo simulations. It is now used in the development of novel post-processing algorithms that reduce image blur by reversing undesired contribution from outside the region of interest
The Compton polarimeter at ELSA
International Nuclear Information System (INIS)
In order to measure the degree of transverse polarization of the stored electron beam in the Electron Stretcher Accelerator ELSA a compton polarimeter is built up. The measurement is based on the polarization dependent cross section for the compton scattering of circular polarized photons off polarized electrons. Using a high power laser beam and detecting the scattered photons a measuring time of two minutes with a statistical error of 5% is expected from numerical simulations. The design and the results of a computer controlled feedback system to enhance the laser beam stability at the interaction point in ELSA are presented. The detection of the scattered photons is based on a lead converter and a silicon-microstrip detector. The design and test results of the detector module including readout electronic and computer control are discussed. (orig.)
A Non-Relativistic Look at the Compton Effect
Feller, Steve; Giri, Sandeep; Zakrasek, Nicholas; Affatigato, Mario
2014-01-01
In a usual modern physics class the Compton effect is used as the pedagogical model for introducing relativity into quantum effects. The shift in photon wavelengths is usually introduced and derived using special relativity. Indeed, this works well for explaining the effect. However, in the senior author's class one of the student coauthors…
International Nuclear Information System (INIS)
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhenyu
2007-02-15
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
Compton scattering in strong gravity
Czech Academy of Sciences Publication Activity Database
Bursa, Michal; Adámek, K.
Opava: Silesian University, 2014 - (Stuchlík, Z.), S.31-37. (Publications of the Institute of Physics. 7). ISBN 9788075101266. ISSN 2336-5668. [RAGtime /14.-16./. Opava (CZ), 18.09.2012-22.09.2012] R&D Projects: GA MŠk(CZ) LH14049 Institutional support: RVO:67985815 Keywords : radiation transport * relativity * Compton scattering Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
ORCED: A model to simulate the operations and costs of bulk-power markets
Energy Technology Data Exchange (ETDEWEB)
Hadley, S.; Hirst, E.
1998-06-01
Dramatic changes in the structure and operation of US bulk-power markets require new analytical tools. The authors developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to analyze a variety of public-policy issues related to the many changes underway in the US electricity industry. Such issues include: policy and technology options to reduce carbon emissions from electricity production; the effects of electricity trading between high- and low-cost regions on consumers and producers in both regions; the ability of the owners of certain generating units to exercise market power as functions of the transmission link between two regions and the characteristics of the generating units and loads in each region; and the market penetration of new energy-production and energy-use technologies and the effects of their adoption on fuel use, electricity use and costs, and carbon emissions. ORCED treats two electrical systems connected by a single transmission link ORCED uses two load-duration curves to represent the time-varying electricity consumption in each region. The two curves represent peak and offpeak seasons. User specification of demand elasticities permits ORCED to estimate the effects of changes in electricity price, both overall and hour by hour, on overall electricity use and load shapes. ORCED represents the electricity supply in each region with 26 generating units. The two regions are connected by a single transmission link. This link is characterized by its capacity (MW), cost ({cents}/kWh), and losses (%). This report explains the inputs to, outputs from, and operation of ORCED. It also presents four examples showing applications of the model to various public-policy issues related to restructuring of the US electricity industry.
Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy
2014-10-15
Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. PMID:25003213
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fischer, F. D.; Schillinger, W.
2013-01-01
Roč. 61, č. 1 (2013), s. 32-39. ISSN 1359-6454 R&D Projects: GA ČR GAP204/10/1784 Institutional support: RVO:68081723 Keywords : Bulk diffusion * Thermodynamic modeling * Intermetallic phases * Grain-boundary diffusion Subject RIV: BJ - Thermodynamics Impact factor: 3.940, year: 2013
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2013-06-13
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials. PMID:23631801
Compton Sources of Electromagnetic Radiation
Energy Technology Data Exchange (ETDEWEB)
Geoffrey Krafft,Gerd Priebe
2011-01-01
When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.
Compton scattering measurements from dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Glenzer, S H; Neumayer, P; Doeppner, T; Landen, L; Lee, R W; Wallace, R; Weber, S; Lee, H J; Kritcher, A L; Falcone, R; Regan, S P; Sawada, H; Meyerhofer, D D; Gregori, G; Fortmann, C; Schwarz, V; Redmer, R
2007-10-02
Compton scattering has been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.
Sigalingging, Riswanti; Herák, David; Kabutey, Abraham; Dajbych, Oldřich; Hrabě, Petr; Mizera, Čestmír
2015-10-01
This paper evaluate the use of a tangent curve mathematical model for representation of the mechanical behaviour of sunflower bulk seeds. Compression machine (Tempos Model 50, Czech Republic) and pressing vessel diameter 60 mm were used for the loading experiment. Varying forces between 50 and 130 kN and speeds ranging from 10, 50, and 100 mm min-1 were applied respectively on the bulk seeds with moisture content 12.37±0.38% w.b. The relationship between force and deformation curves of bulk seeds of pressing height 80 mm was described. The oil point strain was also determined from the different deformation values namely 30, 35, 40, and 45 mm at speed 10 mm min-1. Based on the results obtained, model coefficients were determined for fitting the experimental load and deformation curves. The validity of these coefficients were dependent on the bulk seeds of pressing height, vessel diameter, maximum force 110 kN, and speed 10 mm min-1, where optimal oil yield was observed. The oil point was detected at 45 mm deformation giving the strain value of 0.56 with the corresponding force 16.65±3.51 kN and energy 1.06±0.18 MJ m-3. At the force of 130 kN, a serration effect on the curves was indicated; hence, the compression process was ceased.
Institute of Scientific and Technical Information of China (English)
GAO Wenhua; ZHAO Fengsheng; HU Zhijin; FENG Xua
2011-01-01
The Chinese Academy of Meteorological Sciences (CAMS) two-moment bulk microphysics scheme was adopted in this study to investigate the representation of cloud and precipitation processes under different environmental conditions.The scheme predicts the mixing ratio of water vapor as well as the mixing ratios and nnmber concentrations of cloud droplets,rain,ice,snow,and graupel.A new parameterization approach to simulate heterogeneous droplet activation was developed in this scheme.Furthermore,the improved CAMS scheme was coupled with the Weather Research and Forecasting model (WRF v3.1),which made it possible to simulate the microphysics of clouds and precipitation as well as the cloud-aerosol interactions in selected atmospheric condition.The rain event occurring on 27 28 December 2008 in eastern China was simulated using the CAMS scheme and three sophisticated microphysics schemes in the WRF model.Results showed that the simulated 36-h accumulated precipitations were generally agreed with observation data,and the CAMS scheme performed well in the southern area of the nested donain.The radar reflectivity,the averaged precipitation intensity,and the hydrometeor mixing ratios simulated by the CAMS scheme were generally consistent with those from other microphysics schemes.The hydrometeor number concentrations simulated by the CAMS scheme were also close to the experiential values in stratus clouds.The model results suggest that the CAMS scheme performs reasonably well in describing the microphysics of clouds and precipitation in the mesoscale WRF model.
International Nuclear Information System (INIS)
The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of
Ueda, Yoshihiro; Akiyama, Masayuki; Hasinger, Günther; Miyaji, Takamitsu; Watson, Michael G.
2014-05-01
We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ~ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.
International Nuclear Information System (INIS)
We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.
International Nuclear Information System (INIS)
Highlights: • Experiments related to the design of bulk tungsten divertor tiles for JET were performed along with extensive modelling. • Temperatures measured in the torus are in good agreement with the model. Some characteristic times show stronger deviations. • Those deviations have no incidence on the highest temperatures reached. • The experimental behaviour of the bulk W tiles is close to design values in a wide range of operational parameters. • The conclusions apply up to deposited energy densities around 30 MJ/m2. -- Abstract: The design of the tile assemblies of the bulk tungsten divertor row in JET was improved in the course of several experiments as far as the power and energy performances are concerned: many prototypes were exposed to high heat fluxes in several electron and ion beam facilities during the development phase. These experiments were carried out in parallel with extensive modelling of the complete tungsten tile assembly in the so-called Global Thermal Model (GTM). The goal was to understand the heat flow from the plasma-facing surface through the supporting structure down to the base plate of the JET MkII divertor sufficiently to be able to later interpret operational data from the torus. Temperatures measured in the torus are in good agreement (−10/+15%) with the model. Some characteristic times show stronger deviations, with no incidence on the highest temperature at all times
Energy Technology Data Exchange (ETDEWEB)
Bensafa, I.K
2006-05-15
The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q{sup 2} = 0.35 GeV{sup 2}) to measure the beam asymmetry in the ep {yields} ep{gamma} and ep {yields} ep{pi}{sup 0} reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for {pi}{sup 0}) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles ({gamma}{sup *}N {yields} {pi}N). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the {delta}(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)
Spectral properties of Compton inverse radiation: Application of Compton beams
Bulyak, Eugene; Urakawa, Junji
2014-05-01
Compton inverse radiation emitted due to backscattering of laser pulses off the relativistic electrons possesses high spectral density and high energy of photons - in hard x-ray up to gamma-ray energies - because of short wavelength of laser radiation as compared with the classical electromagnetic devices such as undulators. In this report, the possibility of such radiation to monochromatization by means of collimation is studied. Two approaches have been considered for the description of the spectral-angular density of Compton radiation based on the classical field theory and on the quantum electrodynamics. As is shown, both descriptions produce similar total spectra. On the contrary, angular distribution of the radiation is different: the classical approach predicted a more narrow radiation cone. Also proposed and estimated is a method of the 'electronic' monochromatization based on the electronic subtraction of the two images produced by the electron beams with slightly different energies. A 'proof-of-principle' experiment of this method is proposed for the LUXC facility of KEK (Japan).
MIT inverse Compton source concept
Graves, William S.; Brown, W.; Kaertner, Franz X.; Moncton, David E.
2009-01-01
A compact X-ray source based on inverse Compton scattering of a high-power laser on a high-brightness linac beam is described. The facility can operate in two modes: at high (MHz) repetition rate with flux and brilliance similar to that of a beamline at a large 2nd generation synchrotron, but with short ∼1 ps pulses, or as a 10 Hz high flux-per-pulse single-shot machine. It has a small footprint and low cost appropriate for university or industry laboratories. The key enabling technologies ar...
Exclusive compton scattering on the proton
International Nuclear Information System (INIS)
An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)
Cheng, Hongyuan; Friis, Alan; Høeg Hansen, Jonas; Tolderlund Rasmussen, Hanne
2010-01-01
Effects of extrusion parameters and raw materials on extrudate expansion are respectively investigated in a twin-screw extruder and a single-screw extruder extrusion cooking experiments for fish feed, wheat, and oat & wheat mixture processing. A new phenomenological model is proposed to correlated extrudate bulk density, extrusion parameters and raw material changes based on the experimental results. The average absolute deviation (AAD) of the correlation is 2.2% for fish feed extrusion in th...
DFT modelling of bulk-modulated carbon nanotube field-effect transistors
Latessa, L.; Pecchia, A.; Di Carlo, A.
2005-01-01
We report density-functional theory (DFT), atomistic simulations of the non-equilibrium transport properties of carbon nanotube (CNT) field-effect transistors (FETs). Results have been obtained within a self-consistent approach based on the non-equilibrium Green's functions (NEGF) scheme. Our attention has been focused on a new kind of devices, the so called bulk-modulated CNTFETs. Recent experimental realizations \\cite{Chen,Lin_condMat} have shown that such devices can exhibit excellent perf...
Mesoscopic discrete element modelling of cohesive powders for bulk handling applications
Thakur, Subhash Chandra
2014-01-01
Many powders and particulate solids are stored and handled in large quantities across various industries. These solids often encounter handling and storage difficulties that are caused by the material cohesion. The cohesive strength of a bulk material is a function of its past consolidation stress. For example, high material cohesive strength as a result from high storage stresses in a silo can cause ratholing problems during discharge. Therefore, it is essential to consider th...
Calibration of DEM models for granular materials using bulk physical tests
Johnstone, Mical William
2010-01-01
From pharmaceutical powders to agricultural grains, a great proportion of the materials handled in industrial situations are granular or particulate in nature. The variety of stesses that the matierals may experience and the resulting bulk behaviours may be complex. In agricultural engineering, a better understanding into agricultural processes such as seeding, harvesting, transporting and storing will help to improve the handling of agricultural grains with optimised solutions. A detailed un...
International Nuclear Information System (INIS)
A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with 58Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR
Energy Technology Data Exchange (ETDEWEB)
Johnson, J.O.; Miller, L.F.; Kam, F.B.K.
1981-05-01
A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with /sup 58/Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR.
X-ray Compton line scan tomography
Energy Technology Data Exchange (ETDEWEB)
Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)
2015-07-01
The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.
Compton Scattering and Photo-absorption Sum Rules on Nuclei
Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.
2011-01-01
We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new "constituent quark model" sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition we extract the $\\alpha=0$ pole contribution for both proton...
Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.
2007-01-01
The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.
Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping
2016-02-01
Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.
Directory of Open Access Journals (Sweden)
M. Shiraiwa
2010-04-01
Full Text Available We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB. The model is based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007, and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients.
In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds can reach chemical lifetimes of many hours only if they are embedded in a (semi-solid matrix with very low diffusion coefficients (≤10^{−10} cm^{2} s^{−1}. Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol
Directory of Open Access Journals (Sweden)
M. Shiraiwa
2010-01-01
Full Text Available We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB. The model is based on the PRA framework of gas-particle interactions (Pöschl et al., 2007, and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients.
In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds can reach chemical lifetimes of multiple hours only if they are embedded in a (semi-solid matrix with very low diffusion coefficients (≤10^{−10} cm^{2} s^{−1}.
Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of
g-2 of the muon in SUSY Models with Gauge Multiplets in the Bulk of Extra-Dimensions
Enqvist, Kari; Huitu, K; Enqvist, Kari; Gabrielli, Emidio; Huitu, Katri
2001-01-01
We analyze the supersymmetric contributions to the anomalous magnetic moment of the muon (a_\\mu) in the framework of pure and gaugino-assisted anomaly mediation models, and gaugino mediation models. In the last two models the gauge multiplets propagate in the higher dimensional bulk, providing a natural mechanism for solving the problem of negative squared slepton masses present in the pure anomaly mediation models. In the light of the new BNL results for a_\\mu, we found that the pure and gaugino-assisted anomaly mediation models are almost excluded by the BNL constraints at 2\\sigma level when combined with CLEO constraints on b->sg at 90 % of C.L. In contrast, the gaugino mediation models provide extensive regions in the SUSY parameter space where both of these constraints are satisfied.
Hemmati, Reza; Saboori, Hedayat
2016-05-01
Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741
Singularities in large deviation functionals of bulk-driven transport models
International Nuclear Information System (INIS)
The large deviation functional of the density field in the weakly asymmetric simple exclusion process with open boundaries is studied using a combination of numerical and analytical methods. For appropriate boundary conditions and bulk drives the functional becomes non-differentiable. This happens at configurations where instead of a single history, several distinct histories of equal weight dominate their dynamical evolution. As we show, the structure of the singularities can be rather rich. We identify numerically analogues in configuration space of first order phase transition lines ending at a critical point and analogues of tricritical points. First order lines terminating at a critical point appear when there are configurations whose dynamical evolution is controlled by two distinct histories with equal weight. Tricritical point analogues emerge when there are configurations whose dynamical evolution is controlled by three distinct histories with equal weight. A numerical analysis suggests that the structure of the singularities can be described by a Landau like theory. Finally, in the limit of an infinite bulk bias we identify singularities which arise from a competition of s histories, with s arbitrary. In this case we show that all the singularities can be described by a Landau like theory. (paper)
Preoteasa, Eugen A
2008-01-01
In the frame of collective dynamics in water, models built on elementary excitations and long-range electromagnetic interactions in the cell and bulk liquid are presented. Making use of the low effective mass of water coherence domains (CDs), we examined the relevance of simple quantum models to cellular characteristics. A hypothesis of CDs Bose-type condensation, and models of CD in spherical wells with impenetrable and semipenetrable walls, and of an isotropic oscillator consisting of two interacting CDs were investigated. Estimated cellular volumes matched to medium-sized bacteria and small prokaryotes, and to some organelles in eukaryotic cells. Also, the cytotoxic effects of heavy water in eukaryotes were explained. In another approach we proposed a plasmon-like model of hydrogen-oxygen ionic plasma in liquid water. In addition to plasmonic oscillations, the model predicted sound-like non-equilibrium elementary excitations that we called densitons (the sound anomaly of water), the vaporization heat and t...
International Nuclear Information System (INIS)
The geometrical critical behaviour of the two-dimensional Q-state Potts model is usually studied in terms of the Fortuin–Kasteleyn (FK) clusters, or their surrounding loops. In this paper we study a quite different geometrical object: the spin clusters, defined as connected domains where the spin takes a constant value. Unlike the usual loops, the domain walls separating different spin clusters can cross and branch. Moreover, they come in two versions, 'thin' or 'thick', depending on whether they separate spin clusters of different or identical colours. For these reasons their critical behaviour is different from, and richer than, those of FK clusters. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. We study the critical behaviour both in the bulk, and at a boundary with free, fixed, or mixed boundary conditions. This leads to infinite series of fundamental critical exponents, hl1-l2,2l1 in the bulk and h1+2(l1-l2),1+4l1 at the boundary, valid for 0 ≤ Q ≤ 4, that describe the insertion of l1 thin and l2 thick domain walls. We argue that these exponents imply that the domain walls are 'thin' and 'thick' also in the continuum limit. A special case of the bulk exponents is derived analytically from a massless scattering approach
A simple scanner for Compton tomography
Cesareo, R; Brunetti, A; Golosio, B; Castellano, A
2002-01-01
A first generation CT-scanner was designed and constructed to carry out Compton images. This CT-scanner is composed of a 80 kV, 5 mA X-ray tube and a NaI(Tl) X-ray detector; the tube is strongly collimated, generating a X-ray beam of 2 mm diameter, whilst the detector is not collimated to collect Compton photons from the whole irradiated cylinder. The performances of the equipment were tested contemporaneous transmission and Compton images.
On the line-shape analysis of Compton profiles and its application to neutron scattering
Romanelli, G.; Krzystyniak, M.
2016-05-01
Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss-Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures.
Comptonization and QPO Origins in Accreting Neutron Star Systems
Lee, H C; Lee, Hyong C.; Miller, Guy S.
1997-01-01
We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft ``seed photons'' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disk. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPO) observed in the X-ray outputs of many accreting neutron star and black hole syste...
Institute of Scientific and Technical Information of China (English)
Anirudh Pradhan
2009-01-01
Some cylindrically symmetric inhomogeneous viscous fluid string cosmological models with magnetic field and cosmological term A varying with time are investigated.To get the deterministic solution, it has been assumed that the expansion (θ) in the model is proportional to the eigen value σ 1/2 of the shear tensor σij.The value of cosmological constant for the model is found to be small and positive, which is supported by the results from recent supernovae Ⅰa observations.The effect of bulk viscosity is to produce a change in perfect fluid and hence exhibits essential influence on the character of the solution.The physical and geometric properties of the models are also discussed in presence and absence of magnetic field.
The isothermal melt-texturing of bulk YBa2Cu3O7-x ceramics: from cooking to modelling
International Nuclear Information System (INIS)
Various techniques for the synthesis of bulk YBa2Cu3O7-x ceramics are reviewed. The microstructure of melt-textured YBa2Cu3O7-x compounds is described. In contrast to the relatively simple processing of such materials, the complexity of the microstructure at a mesoscopic scale is underlined. A model describing the various features of the microstructure of YBa2Cu3O7-x compounds is described. The obtained results are discussed for various initial conditions and are favourably comparable with experimental findings. (author)
Farakos, K.; Koutsoumbas, G.; Pasipoularides, P.
2007-01-01
Brane world models with a non-minimally coupled bulk scalar field have been studied recently. In this paper we consider metric fluctuations around an arbitrary gravity-scalar background solution, and we show that the corresponding spectrum includes a localized zero mode which strongly depends on the profile of the background scalar field. For a special class of solutions, with a warp factor of the RS form, we solve the linearized Einstein equations, for a point-like mass source on the brane, ...
Electron Compton scattering in the electron microscope
International Nuclear Information System (INIS)
Inelastic scattering of electrons or photons on target electrons at rest results in a definite increase of wavelength of the incident wave. The change in wavelength is known as Compton shift. For a moving scatterer, the Compton shift will be different in general, but it will still have a definite value. The resulting Compton profile in the spectrum is a direct image of the momentum distribution of the target electrons in the ground state. Therefore Compton scattering can be used to obtain information on the electronic properties of solids, directly in momentum representation. In 1981 B.G. Williams showed that ECOSS can be done in a transmission electron microscope. The scope of this thesis is the investigation and further development of ECOSS on the example of silicon, a well documented test system. After a short introduction into the theoretical concepts of Compton scattering and the investigation of the influence of coherent scattering effects when using single crystal specimens, the inevitable problem of multiple scattering will be discussed in detail and solutions concerning the plasmon-Compton channel coupling as well as the elastic background will be presented. The count rate of Compton-scattered electrons at the detector is notoriously low. The sensitivity of the electron detection system had to be enhanced as a prerequisite for ECOSS to be useful, which has been achieved by the installation of a parallel detection system. The performance of the parallel electron energy-loss spectrometer was investigated concerning its usefulness in electron Compton scattering. A method to eliminate the intrinsic noise of a parallel detector due to varying detector element properties is presented and discussed. Aiming at the measurement of directional anisotropies in the Compton profile one has to use single crystal specimens. To avoid problems with Bragg-Compton channel coupling a new kind of scattering geometry taking advantage of crystal symmetry was introduced and tested
Nucleon Polarizabilities: from Compton Scattering to Hydrogen Atom
Hagelstein, Franziska; Pascalutsa, Vladimir
2015-01-01
We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polarizabilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the "proton-radius puzzle". We conclude with summary...
Compton effect: interacting particles or interacting waves
Hernández, O F
2005-01-01
Traditional textbook explanations of the Compton effect treat the photon electron interaction as a particle collision. This explanation is a pedagogical disaster, implying that sometimes interactions are particle-like whereas quantum mechanics always demands that they be wave-like; a photon wavefunction evolves according to a wave equation until its collapse at measurement. If this is so why then does the classical radiation wave equation fail to predict the Compton effect? We address these issues and propose a clearer explanation.
Compton shift and de Broglie frequency
Heyrovska, Raji
2004-01-01
Compton scattering is usually explained in terms of the relativistic mass and momentum. Here, a mathematically equivalent and simple non-relativistic interpretation shows that the Compton frequency shift is equal to the de Broglie frequency associated with the moving charged particle (e.g., an electron). In this work, the moving electron is considered as a particle and the electromagnetic energy associated with it is shown to be proportional to the de Broglie frequency. This energy is release...
Colour coherence in deep inelastic Compton scattering
International Nuclear Information System (INIS)
MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on pt and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.)
Colour coherence in deep inelastic Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Lebedev, A.I.; Vazdik, J.A. (Lebedev Physical Inst., Academy of Sciences, Moscow (USSR))
1992-01-01
MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p{sub t} and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.).
CP-violation in Compton scattering
Gorchtein, Mikhail
2008-01-01
I consider Compton scattering off the nucleon in the presence of $CP$ violation. I construct the Compton tensor which possesses these features and consider low energy expansion (LEX) of the corresponding amplitudes. It allows to separate out the Born contribution which only depends on the static properties of the nucleon, such as the electric charge, the mass, the magnetic moment, and the electric dipole moment (EDM). I introduce new structure constants, the $T$-odd nucleon polarizabilities w...
Radiative corrections to pion Compton scattering
Kaiser, N.(Physik Department T39, Technische Universität München, Garching, D-85747, Germany); Friedrich, J. M.
2008-01-01
We calculate the one-photon loop radiative corrections to charged pion Compton scattering, $\\pi^- \\gamma \\to \\pi^- \\gamma $. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Analytical expressions for the ${\\cal O}(\\alpha)$ corrections to the invariant Compton scattering amplitudes, $A(s,u)$ and $B(s,u)$, are presented for 11 classes of contributing one-loop diagrams. Infrared finiteness of the virtual radiative corrections is achieved (in the standard way...
Autovino, Dario; Minacapilli, Mario; Provenzano, Giuseppe
2015-04-01
Estimation of actual evapotraspiration by means of Penman-Monteith (P-M) equation requires the knowledge of the so-called 'bulk surface resistance', rc,act, representing the vapour flow resistance through the transpiring crop and evaporating soil surface. The accurate parameterization of rc,act still represents an unexploited topic, especially in the case of heterogeneous land surface. In agro-hydrological applications, the P-M equation commonly used to evaluate reference evapotranspiration (ET0) of a well-watered 'standardized crop' (grass or alfalfa), generally assumes for the bulk surface resistance a value of 70 s m-1. Moreover, specific crop coefficients have to be used to estimate maximum and/or actual evapotranspiration based on ET0. In this paper, a simple procedure for the indirect estimation of rc,act as function of a vegetation index computed from remote acquisition of Land Surface Temperature (LST), is proposed. An application was carried out in an irrigation district located near Castelvetrano, in South-West of Sicily, mainly cultivated with olive groves, in which actual evapotranspiration fluxes were measured during two years (2010-2011) by an Eddy Covariance flux tower (EC). Evapotranspiration measurements allowed evaluating rc,actbased on the numerical inversion of the P-M equation. In the same study area, a large time series of MODIS LST data, characterized by a spatial resolution of 1x1 km and a time step of 8-days, was also acquired for the period from 2000 to 2014. A simple Vegetation Index Temperatures (VTI), with values ranging from 0 to 1, was computed using normalized LST values. Evapotranspiration fluxes measured in 2010 were used to calibrate the relationship between rc,act and VTI, whereas data from 2011 were used for its validation. The preliminary results evidenced that, for the considered crop, an almost constant value of rc,act, corresponding to about 250 s m-1, can be considered typical of periods in which the crop is well
Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.
2011-12-01
Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (landfill final cover soil.
CONSTRAINING THE BULK LORENTZ FACTOR OF GAMMA-RAY BURST OUTFLOW IN THE MAGNETIC-DOMINATED JET MODEL
Energy Technology Data Exchange (ETDEWEB)
Chang Zhe; Lin Hainan; Jiang Yunguo, E-mail: changz@ihep.ac.cn, E-mail: linhn@ihep.ac.cn, E-mail: jiangyg@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)
2012-11-10
Recent observations by the Fermi-LAT showed that there are delayed arrivals of GeV photons relative to the onset of MeV photons in some gamma-ray bursts (GRBs). In order to avoid a large optical depth, the minimal value of the Lorentz factor has been estimated to be higher than 1000 in some of the brightest bursts. In this paper, we present a detailed calculation of the time delay between the MeV and GeV photons in the framework of the magnetic-dominated jet model. We find that the time delay strongly depends on the saturated bulk Lorentz factor of the jet. Inspired by this fact, we use this model to calculate the Lorentz factors of the four brightest Fermi bursts. The results indicate that the Lorentz factors are much smaller than those obtained from the 'single-zone' scenario. The short burst GRB 090510 has a minimal Lorentz factor of 385, while the three long bursts, GRB 080916c, GRB 090902b, and GRB 090926, have almost the same Lorentz factors with an average value near 260. Another interesting result is that, for long bursts, GeV photons are emitted after the bulk Lorentz factor saturates. For the short GRB, however, MeV and GeV photons are emitted at the same phase, i.e., either in the expansion phase or in the coasting phase.
MIT inverse Compton source concept
Energy Technology Data Exchange (ETDEWEB)
Graves, W.S. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)], E-mail: wsgraves@MIT.EDU; Brown, W. [MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420 (United States); Kaertner, F.X.; Moncton, D.E. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)
2009-09-01
A compact X-ray source based on inverse Compton scattering of a high-power laser on a high-brightness linac beam is described. The facility can operate in two modes: at high (MHz) repetition rate with flux and brilliance similar to that of a beamline at a large 2nd generation synchrotron, but with short {approx}1 ps pulses, or as a 10 Hz high flux-per-pulse single-shot machine. It has a small footprint and low cost appropriate for university or industry laboratories. The key enabling technologies are a high average power laser and a superconducting accelerator. The cryo-cooled Yb:YAG laser amplifier generates {approx}1 kW average power at 1 {mu}m wavelength that pumps a coherent cavity up to 1 MW stored power. The high-brightness electron beam is produced by a superconducting RF photoinjector and linac operating in CW mode with up to 1 mA current. The photocathode laser produces electron pulses at either 100 MHz with 10 pc per bunch, or at 10 Hz with 1 nC per bunch in the two operating modes. The design of the facility is presented, including optimization of the laser and electron beams, major technical choices, and the resulting X-ray performance with a focus on the 100 MHz mode.
MIT inverse Compton source concept
International Nuclear Information System (INIS)
A compact X-ray source based on inverse Compton scattering of a high-power laser on a high-brightness linac beam is described. The facility can operate in two modes: at high (MHz) repetition rate with flux and brilliance similar to that of a beamline at a large 2nd generation synchrotron, but with short ∼1 ps pulses, or as a 10 Hz high flux-per-pulse single-shot machine. It has a small footprint and low cost appropriate for university or industry laboratories. The key enabling technologies are a high average power laser and a superconducting accelerator. The cryo-cooled Yb:YAG laser amplifier generates ∼1 kW average power at 1 μm wavelength that pumps a coherent cavity up to 1 MW stored power. The high-brightness electron beam is produced by a superconducting RF photoinjector and linac operating in CW mode with up to 1 mA current. The photocathode laser produces electron pulses at either 100 MHz with 10 pc per bunch, or at 10 Hz with 1 nC per bunch in the two operating modes. The design of the facility is presented, including optimization of the laser and electron beams, major technical choices, and the resulting X-ray performance with a focus on the 100 MHz mode.
Electronic structure of AlAs: A Compton profile study
International Nuclear Information System (INIS)
The electronic structure of AlAs through a Compton profile study is presented in this paper. Theoretical calculations are performed following the linear combination of atomic orbitals (LCAO) method and the empirical pseudopotential method (EPM). In LCAO method, to treat exchange and correlation two cases are considered. In the first case, the exchange function of Becke and the correlation function of Perdew and Wang on the basis of generalized gradient approximation (PW-GGA) is adopted. In the second case, the hybrid function B3PW is adopted. Measurement of Compton profile on the polycrystalline AlAs is performed using 59.54 keV gamma-rays. The spherically averaged theoretical Compton profiles are in good agreement with the measurement. The best agreement is, however, shown by the EPM. The anisotropies predicted by B3PW and the EPM are smaller than those from the PW-GGA calculation. On the basis of equal-valence-electron-density profiles, it is found that AlAs is more covalent compared to AlN. The charge transfer model suggests transfer of 0.6e- from Al to As on compound formation.
Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model
Allanach, Benjamin C.; Mahmoudi, Farvah; Skittrall, Jordan P.; Sridhar, K.
2010-03-01
In the Bulk Randall-Sundrum model, the Kaluza-Klein excitations of the gauge bosons are the primary signatures. In particular, the search for the Kaluza-Klein (KK) excitation of the gluon at hadron colliders is of great importance in testing this model. At the leading order in QCD, the production of this KK-gluon proceeds only via qbar q -initial states. We study the production of KK-gluons from gluon initial states at next-to-leading order in QCD. We find that, even after including the sub-dominant KK-gluon loops at this order, the next-to-leading order (NLO) cross-section is tiny compared to the leading order cross-section and unlikely to impact the searches for this resonance at hardon colliders.
Gluon-initiated production of a Kaluza-Klein gluon in a Bulk Randall-Sundrum model
Allanach, B C; Skittrall, J P; Sridhar, K
2009-01-01
In the Bulk Randall-Sundrum model, the Kaluza-Klein excitations of the gauge bosons are the primary signatures. In particular, the search for the Kaluza-Klein (KK) excitation of the gluon at hadron colliders is of great importance in testing this model. At the leading order in QCD, the production of this KK-gluon proceeds only via q qbar-initial states. We study the production of KK-gluons from gluon initial states at next-to-leading order in QCD. We find that, even after including the sub-dominant KK-gluon loops at this order, the next-to-leading order (NLO) cross-section is tiny compared to the leading order cross-section and unlikely to impact the searches for this resonance at hardon colliders.
International Nuclear Information System (INIS)
We report the effect of excess electrons on hexagonal close-packed Mg and the model clusters explained by an inflation process using density functional theory-based calculations, in order to understand the role of conduction electron concentration in Mg-based bulk metallic glasses. We find the volume expansion and distortion to a higher c/a ratio in the negative charge state. The increase in the values corresponding to the c/a ratio is also observed in the model clusters. In the density of states at the equilibrium cell parameters expanded by charging, the pseudogap near the Fermi level by s-p mixing becomes small and a spiky structure appears
Ueda, Yoshihiro; Hasinger, Guenther; Miyaji, Takamitsu; Watson, Michael G
2014-01-01
We present the most up-to-date X-ray luminosity function (XLF) and absorption function of Active Galactic Nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5--2 keV) and/or hard ($>2$ keV) band. We utilize a maximum likelihood method to reproduce the count-rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broad band spectra of AGNs including reflection components from tori based on the luminosity and redshift dependent unified scheme. We find that the shape of the XLF at $z \\sim 1-3$ is significantly different from that in the local universe, for which the luminosity dependent density evolution model gives much better description...
Bulk canopy resistance: Modeling for the estimation of actual evapotranspiration of maize
Gharsallah, O.; Corbari, C.; Mancini, M.; Rana, G.
2009-04-01
Due to the scarcity of water resources, the correct evaluation of water losses by the crops as evapotranspiration (ET) is very important in irrigation management. This work presents a model for estimating actual evapotranspiration on hourly and daily scales of maize crop grown in well water condition in the Lombardia Region (North Italy). The maize is a difficult crop to model from the soil-canopy-atmosphere point of view, due to its very complex architecture and big height. The present ET model is based on the Penman-Monteith equation using Katerji and Perrier approach for modelling the variable canopy resistance value (rc). In fact rc is a primary factor in the evapotranspiration process and needs to be accurately estimated. Furthermore, ET also has an aerodynamic component, hence it depends on multiple factors such as meteorological variables and crop water condition. The proposed approach appears through a linear model in which rc depends on climate variables and aerodynamic resistance [rc/ra = f(r*/ra)] where ra is the aerodynamic resistance, function of wind speed and crop height, and r* is called "critical" or "climatic" resistance. Here, under humid climate, the model has been applied with good results at both hourly and daily scales. In this study, the reached good accuracy shows that the model worked well and are clearly more accurate than those obtained by using the more diffuse and known standard FAO 56 method for well watered and stressed crops.
SU(3) Polyakov linear-sigma model: bulk and shear viscosity of QCD matter in finite magnetic field
Tawfik, Abdel Nasser; Hussein, T M
2016-01-01
Due to off-center relativistic motion of the charged spectators and the local momentum-imbalance of the participants, a short-lived huge magnetic field is likely generated, especially in relativistic heavy-ion collisions. In determining the temperature dependence of bulk and shear viscosities of the QCD matter in vanishing and finite magnetic field, we utilize mean field approximation to the SU($3$) Polyakov linear-sigma model (PLSM). We compare between the results from two different approaches; Green-Kubo correlation and Boltzmann master equation with Chapman-Enskog expansion. We find that both approaches have almost identical results, especially in the hadron phase. In the temperature dependence of bulk and shear viscosities relative to thermal entropy at the critical temperature, there is a rapid decrease in the chiral phase-transition and in the critical temperature with increasing magnetic field. As the magnetic field strength increases, a peak appears at the critical temperature ($T_c$). This can be und...
Band-gap shrinkage calculations and analytic model for strained bulk InGaAsP
Connelly, Michael J.
2015-02-01
Band-gap shrinkage is an important effect in semiconductor lasers and optical amplifiers. In the former it leads to an increase in the lasing wavelength and in the latter an increase in the gain peak wavelength as the bias current is increased. The most common model used for carrier-density dependent band-gap shrinkage is a cube root dependency on carrier density, which is strictly only true for high carrier densities and low temperatures. This simple model, involves a material constant which is treated as a fitting parameter. Strained InGaAsP material is commonly used to fabricate polarization insensitive semiconductor optical amplifiers (SOAs). Most mathematical models for SOAs use the cube root bandgap shrinkage model. However, because SOAs are often operated over a wide range of drive currents and input optical powers leading to large variations in carrier density along the amplifier length, for improved model accuracy it is preferable to use band-gap shrinkage calculated from knowledge of the material bandstructure. In this letter the carrier density dependent band-gap shrinkage for strained InGaAsP is calculated by using detailed non-parabolic conduction and valence band models. The shrinkage dependency on temperature and both tensile and compressive strain is investigated and compared to the cube root model, for which it shows significant deviation. A simple power model, showing an almost square-root dependency, is derived for carrier densities in the range usually encountered in InGaAsP laser diodes and SOAs.
Band-gap shrinkage calculations and analytic model for strained bulk InGaAsP
International Nuclear Information System (INIS)
Band-gap shrinkage is an important effect in semiconductor lasers and optical amplifiers. In the former it leads to an increase in the lasing wavelength and in the latter an increase in the gain peak wavelength as the bias current is increased. The most common model used for carrier-density dependent band-gap shrinkage is a cube root dependency on carrier density, which is strictly only true for high carrier densities and low temperatures. This simple model, involves a material constant which is treated as a fitting parameter. Strained InGaAsP material is commonly used to fabricate polarization insensitive semiconductor optical amplifiers (SOAs). Most mathematical models for SOAs use the cube root bandgap shrinkage model. However, because SOAs are often operated over a wide range of drive currents and input optical powers leading to large variations in carrier density along the amplifier length, for improved model accuracy it is preferable to use band-gap shrinkage calculated from knowledge of the material bandstructure. In this letter the carrier density dependent band-gap shrinkage for strained InGaAsP is calculated by using detailed non-parabolic conduction and valence band models. The shrinkage dependency on temperature and both tensile and compressive strain is investigated and compared to the cube root model, for which it shows significant deviation. A simple power model, showing an almost square-root dependency, is derived for carrier densities in the range usually encountered in InGaAsP laser diodes and SOAs. (paper)
Directory of Open Access Journals (Sweden)
C. Pfrang
2010-05-01
Full Text Available We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007. K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations.
From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of ~10^{−11} cm^{2} s^{−1} for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.
Compton Composites Late in the Early Universe
Directory of Open Access Journals (Sweden)
Frederick Mayer
2014-07-01
Full Text Available Beginning roughly two hundred years after the big-bang, a tresino phase transition generated Compton-scale composite particles and converted most of the ordinary plasma baryons into new forms of dark matter. Our model consists of ordinary electrons and protons that have been bound into mostly undetectable forms. This picture provides an explanation of the composition and history of ordinary to dark matter conversion starting with, and maintaining, a critical density Universe. The tresino phase transition started the conversion of ordinary matter plasma into tresino-proton pairs prior to the the recombination era. We derive the appropriate Saha–Boltzmann equilibrium to determine the plasma composition throughout the phase transition and later. The baryon population is shown to be quickly modified from ordinary matter plasma prior to the transition to a small amount of ordinary matter and a much larger amount of dark matter after the transition. We describe the tresino phase transition and the origin, quantity and evolution of the dark matter as it takes place from late in the early Universe until the present.
An analytical model of the mechanical properties of bulk coal under confined stress
Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.
2007-01-01
This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.
Bulk transfer protocols on satellite link - Study within the OSI reference model
Valet, I.
Since satellite systems, such as TELECOM1 in France, are available for data transmission, new protocols need to be designed to fit the requirements of satellite communication systems and to offer specific facilities to the users. The main features of these new transmission protocols, as they have been specified by NADIR studies, are described. Next, the reasons for choosing to study these protocols within the OSI Reference Model are explained. A detailed study about introducing the protocol mechanisms described above in the OSI Reference model layers is then presented. Different approaches are presented, and the solutions studied are appraised in terms of efficiency, and of conformity to the OSI Reference Model. Finally, the experiments planned by NADIR are mentionned.
Directory of Open Access Journals (Sweden)
Xueping Wang
2011-06-01
Full Text Available The configuration of port’s loading-and-unloading equipment is an optimization problem, which endeavors to put limited handling equipment to each operating line to achieve the maximum overall production efficiency. We set up the T-stage decision-making model of loading-and-unloading line equipment configuration by using the method of Multi-stage Decision, and design the algorithm of the mathematical model. Research results in this paper lay the foundation for the development of loading-and-unloading equipment configuration system, and provide scientific basis for the decision of type selection and rational quantity of loading-and-unloading equipment.
DEFF Research Database (Denmark)
Wágner, Dorottya Sarolta; Ramin, Elham; Szabo, Peter;
2015-01-01
The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient...
Directory of Open Access Journals (Sweden)
Yiyun Lu
2012-01-01
Full Text Available Magnetic forces of a cylinder shape bulk high-temperature superconductor (HTS over a permanent magnet guideway (PMG are studied mathematically. One cylindrical bulk HTS with a diameter of 30 mm and 15 mm in height is used. Two types of PMG are employed for external magnetic fields consideration. The relationship of magnetic forces of bulk HTS under different lateral offsets over PMG is studied with 3D-model finite element method (FEM. The calculation results show that the maximum magnetic levitation force of bulk HTS over PMG is tightly related to the applied magnetic field distribution. For the symmetrical PMG, the maximum magnetic levitation force decreases linearly with the increase of lateral offset of the bulk sample. For the Halbach PMG, when lateral offset changes from 0 mm to 25 mm, the maximum magnetic levitation force increases with the increase of lateral offset of the bulk HTS. When the lateral offset exceeds the center of the Halbach by 25 mm, the maximum levitation force decreases rapidly with the increase of the lateral offset of the bulk sample.
Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study
International Nuclear Information System (INIS)
A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model
Inverse Compton production of gamma rays in interstellar space
International Nuclear Information System (INIS)
The longitude distribution of gamma rays of energy >100MeV produced by the inverse Compton interaction in the galaxy is calculated. Cosmic ray electron density is considered either uniform throughout the galactic plane, or varying in accordance with the model of Paul et al. (1974). Stellar photon intensity is estimated using models of mass distribution in the galactic nucleus and the disc. Contribution of the 2.7 deg K black-body radiation is included. The calculated gamma ray flux from the galactic centre direction is lower than that measured by the SAS II satellite by an order of magnitude
The Design of Diamond Compton Telescope
Hibino, Kinya; Okuno, Shoji; Yajima, Kaori; Uchihori, Yukio; Kitamura, Hisashi; Takashima, Takeshi; Yokota, Mamoru; Yoshida, Kenji
2007-01-01
We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of "low/medium" energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.
Compton suppression through rise-time analysis.
Selvi, S; Celiktas, C
2007-11-01
We studied Compton suppression for 60Co and 137Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer. PMID:17703943
Blackwell, William C., Jr.
2004-01-01
In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.
Ridge, Bulk, and Medium Response: How to Kill Models and Learn Something in the Process
International Nuclear Information System (INIS)
In these proceedings, we highlight experimental data (published and preliminary) related to jet quenching and the response of the medium to this deposited energy. Signatures in two- and three-particle hadron correlations indicate interesting structures near the trigger particle in azimuth and over a broad range in pseudo-rapidity, often termed 'the ridge', and conical-like structures separated in azimuth opposite to the trigger particle. We review numerous theoretical interpretations of the ridge in particular with a critical eye for the key properties that allow one to discriminate between, or rule out, certain physical pictures and models (and hopefully learn something in the process).
Ridge, Bulk, and Medium Response: How to Kill Models and Learn Something in the Process
Nagle, J L
2009-01-01
In these proceedings, we highlight experimental data (published and preliminary) related to jet quenching and the response of the medium to this deposited energy. Signatures in two- and three- particle hadron correlations indicate interesting structures near the trigger particle in azimuth and over a broad range in pseudo-rapidity, often termed "the ridge", and conical-like structures separated in azimuth opposite to the trigger particle. We review numerous theoretical interpretations of the ridge in particular with a critical eye for the key properties that allow one to discriminate between, or rule out, certain physical pictures and models (and hopefully learn something in the process).
On the modelling of semi-insulating GaAs including surface tension and bulk stresses
Energy Technology Data Exchange (ETDEWEB)
Dreyer, W.; Duderstadt, F.
2004-07-01
Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)
Jeffrey, Natasha
2011-01-01
This paper aims to study the polarization of hard X-ray (HXR) sources in the solar atmosphere, including Compton backscattering of photons in the photosphere (the albedo effect) and the spatial distribution of polarization across the source. HXR photon polarization and spectra produced via electron-ion bremsstrahlung are calculated from electron distributions typical for solar flares. Compton scattering and photoelectric absorption are then modelled using Monte Carlo simulations of photon transport in the photosphere. Polarization maps across HXR sources (primary and albedo components) for each of the modelled electron distributions are calculated at various source locations from the solar centre to the limb. We show that Compton scattering produces a distinct polarization variation across the albedo patch at peak albedo energies of 20-50 keV for all anisotropies modelled. The results show that there are distinct spatial polarization changes in both the radial and perpendicular to radial directions across the...
Guidal, M
2010-01-01
We have analyzed the longitudinally polarized proton target asymmetry data of the Deep Virtual Compton process recently published by the HERMES collaboration in terms of Generalized Parton Distributions. We have fitted these new data in a largely model-independent fashion and the procedure results in numerical constraints on the $\\tilde{H}_\\mathrm{Im}$ Compton Form Factor. We present its $t-$ and $\\xi-$ dependencies. We also find improvement on the determination of two other Compton Form Factors, $H_\\mathrm{Re}$ and $H_\\mathrm{Im}$.
Energy Technology Data Exchange (ETDEWEB)
Guidal, M., E-mail: guidal@ipno.in2p3.f [Univ. Paris-Sud, Institut de Physique Nucleaire d' Orsay, Orsay, F-91405 (France)
2010-09-20
We have analyzed the longitudinally polarized proton target asymmetry data of the Deep Virtual Compton process recently published by the HERMES Collaboration in terms of Generalized Parton Distributions. We have fitted these new data in a largely model-independent fashion and the procedure results in numerical constraints on the H{sup -tilde} {sub Im} Compton Form Factor. We present its t- and {xi}-dependencies. We also find improvement on the determination of two other Compton Form Factors, H{sub Re} and H{sub Im}.
Symmetry breaking in a bulk-surface reaction-diffusion model for signalling networks
Rätz, Andreas; Röger, Matthias
2014-08-01
Signalling molecules play an important role for many cellular functions. We investigate here a general system of two membrane reaction-diffusion equations coupled to a diffusion equation inside the cell by a Robin-type boundary condition and a flux term in the membrane equations. A specific model of this form was recently proposed by the authors for the GTPase cycle in cells. We investigate here a putative role of diffusive instabilities in cell polarization. By a linearized stability analysis, we identify two different mechanisms. The first resembles a classical Turing instability for the membrane subsystem and requires (unrealistically) large differences in the lateral diffusion of activator and substrate. On the other hand, the second possibility is induced by the difference in cytosolic and lateral diffusion and appears much more realistic. We complement our theoretical analysis by numerical simulations that confirm the new stability mechanism and allow us to investigate the evolution beyond the regime where the linearization applies.
On Thermal Comptonization in e+- Pair Plasmas
Ghisellini, Gabriele; Haardt, Francesco
1994-01-01
We study $e^{\\pm}$ pair plasmas in pair equilibrium, which emit high energy radiation by thermal Comptonization of soft photons. We find that the maximum luminosity to size ratio of the source (i.e. the compactness) depends not only on the hot plasma temperature, but also on the spectral index of the resulting Comptonized spectrum. In the observationally interesting range, sources of same compactness can be hotter if their spectrum is steeper. Instruments observing in the 50--500 keV energy r...
Compton shift and de Broglie frequency
Heyrovska, R
2004-01-01
Compton scattering is usually explained in terms of the relativistic mass and momentum. Here, a mathematically equivalent and simple non-relativistic interpretation shows that the Compton frequency shift is equal to the de Broglie frequency associated with the moving charged particle (e.g., an electron). In this work, the moving electron is considered as a particle and the electromagnetic energy associated with it is shown to be proportional to the de Broglie frequency. This energy is released when its motion is arrested, as for example on a diffraction screen, where it causes the observed interfernce patterns. Thus, electrons transport electromagnetic energy from a source to a sink.
Proton polarizabilities from polarized Compton scattering
International Nuclear Information System (INIS)
We study the low-energy expansion of polarized Compton scattering off the proton. We show that the leading non-Born contribution to the beam asymmetry of low-energy Compton scattering is given by the magnetic polarizability alone, the electric polarizability cancels out. Based on this fact we propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry. Computing the higher-order (recoil) effects of polarizabilities on beam asymmetry, we show that they are suppressed in forward kinematics. We also present the low-energy expansion of doubly-polarized observables, from which the spin polarizabilities can be extracted.
Institute of Scientific and Technical Information of China (English)
R. K. Tiwari; Sonia Sharma
2011-01-01
We study the non existence of shear in locally rotationally symmetric Bianchi type-Ⅲ string cosmological models with bulk viscosity and variable cosmological term Λ. Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ε ∝ θ, expansion scalar is proportional to shear scalar, θ ∝ σ, and Λ is proportional to the Hubble parameter. The coefficient of bulk viscosity is assumed to be a power function of mass density. The corresponding physical interpretations of the cosmological solutions are also discussed.%@@ We study the non existence of shear in locally rotationally symmetric Bianchi type-M string cosmological models with bulk viscosity and variable cosmological term Λ.Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ξ∝θ, expansion scalar is proportional to shear scalar, θ∝σ, and A is proportional to the Hubble parameter.The coefficient of bulk viscosity is assumed to be a power function of mass density.The corresponding physical interpretations of the cosmological solutions are also discussed.
A simple model for calculating the bulk modulus of the mixed ionic crystal: NH4Cl1−xBr
Indian Academy of Sciences (India)
Vassiliki Katsika-Tsigourakou
2011-10-01
The ammonium halides are an interesting systems because of their polymorphism and the possible internal rotation of the ammonium ion. The static properties of the mixed ionic crystal NH4Cl1−Br have been recently investigated, using the three-body potential model (TDPM) by applying Vegard’s law. Here, by using a simple theoretical model, we estimate the bulk modulus of the alloys NH4Cl1−Br, in terms of the bulk modulus of the end members alone. The calculated values are comparable to those deduced from the three-body potential model (TDPM) by applying Vegard’s law.
Study of Compton suppression for use in spent nuclear fuel assay
Bender, Sarah
fuel samples because the spectra was recorded from the source in very close proximity to the detector and surrounded by the guard annulus, so the detection probability is very high. Though this configuration is optimal for a Compton suppression system for the measurement of low count rate samples, measurement of high count rate samples in the enclosed arrangement leads to sum peaks in both the suppressed and unsuppressed spectra and losses to photopeak counts in the suppressed spectra. No additional photopeaks were detected using Compton suppression with this geometry. A detector model was constructed that can accurately simulate a Compton suppressed spectral measurement of radiation from spent nuclear fuel using HPGe or LaBr3 detectors. This is the first detector model capable of such an accomplishment. The model uses the Geant4 toolkit coupled with the RadSrc application and it accepts spent fuel composition data in list form. The model has been validated using dissolved ATM fuel samples in the standard, enclosed geometry of the PSU HPGe-CSS. The model showed generally good agreement with both the unsuppressed and suppressed measured fuel sample spectra, however the simulation is more appropriate for the generation of gamma-ray spectra in the beam source configuration. Photopeak losses due to cascade decay emissions in the Compton suppressed spectra were not appropriately managed by the simulation. Compton suppression would be a beneficial addition to NDA process monitoring systems if oriented such that the gamma-ray photons are collimated to impinge the primary detector face as a beam. The analysis has shown that peak losses through accidental coincidences are minimal and the reduction in the Compton continuum allows additional peaks to be resolved. (Abstract shortened by UMI.).
International Nuclear Information System (INIS)
We have designed an improved algorithm that enables us to simulate the chemistry of cold dense interstellar clouds with a full gas-grain reaction network. The chemistry is treated by a unified microscopic-macroscopic Monte Carlo approach that includes photon penetration and bulk diffusion. To determine the significance of these two processes, we simulate the chemistry with three different models. In Model 1, we use an exponential treatment to follow how photons penetrate and photodissociate ice species throughout the grain mantle. Moreover, the products of photodissociation are allowed to diffuse via bulk diffusion and react within the ice mantle. Model 2 is similar to Model 1 but with a slower bulk diffusion rate. A reference Model 0, which only allows photodissociation reactions to occur on the top two layers, is also simulated. Photodesorption is assumed to occur from the top two layers in all three models. We found that the abundances of major stable species in grain mantles do not differ much among these three models, and the results of our simulation for the abundances of these species agree well with observations. Likewise, the abundances of gas-phase species in the three models do not vary. However, the abundances of radicals in grain mantles can differ by up to two orders of magnitude depending upon the degree of photon penetration and the bulk diffusion of photodissociation products. We also found that complex molecules can be formed at temperatures as low as 10 K in all three models.
A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics.
Masella, Michel; Borgis, Daniel; Cuniasse, Philippe
2013-05-15
A multiscale coarse-grained approach able to handle efficiently the solvation of microscopic solutes in extended chemical environment is described. That approach is able to compute readily and efficiently very long-range solute/solvent electrostatic microscopic interactions, up to the 1-μm scale, by considering a reduced amount of computational resources. All the required parameters are assigned to reproduce available data concerning the solvation of single ions. Such a strategy makes it possible to reproduce with good accuracy the solvation properties concerning simple ion pairs in solution (in particular, the asymptotic behavior of the ion pair potentials of mean force). This new method represents an extension of the polarizable pseudoparticle solvent model, which has been recently improved to account for the main features of hydrophobic effects in liquid water (Masella et al., J. Comput. Chem. 2011, 32, 2664). This multiscale approach is well suited to be used for computing the impact of charge changes in free energy computations, in terms of both accuracy and efficiency. PMID:23382002
The Fermion Mass Hierarchy in Models with Warped Extra Dimensions and a Bulk Higgs
Archer, Paul R
2012-01-01
The phenomenological implications of allowing the Higgs to propagate in both AdS${}_5$ and a class of asymptotically AdS spaces are considered. Without tuning, the vacuum expectation value (VEV) of the Higgs is peaked towards the IR tip of the space and hence such a scenario still offers a potential resolution to the gauge-hierarchy problem. When the exponent of the Higgs VEV is approximately two and one assumes order one Yukawa couplings, then the fermion Dirac mass term is found to range from $\\sim 10^{-5}$ eV to $\\sim 200$ GeV in approximate agreement with the observed fermion masses. However, this result is sensitive to the exponent of the Higgs VEV, which is a free parameter. This paper offers a number of phenomenological and theoretical motivations for considering an exponent of two to be the optimal value. In particular, the exponent is bounded from below by the Breitenlohner-Freedman bound and the requirement that the dual theory resolves the gauge hierarchy problem. While, in the model considered, if...
Modelling of ICRF heating in DEMO with special emphasis on bulk ion heating
Energy Technology Data Exchange (ETDEWEB)
Gallart, Dani, E-mail: daniel.gallart@bsc.es [Barcelona Supercomputing Center, Barcelona (Spain); Mantsinen, Mervi [Barcelona Supercomputing Center, Barcelona (Spain); Catalan Institution for Research and Advanced Studies, Barcelona (Spain); Kazakov, Yevgen [Laboratory for Plasma Physics LPP-ERM/KMS, Brussels (Belgium)
2015-12-10
Ion cyclotron resonance frequency (ICRF) heating is one of the auxiliary heating schemes presently envisaged for ITER and DEMO. In this paper we analyse the potential of ICRF waves to heat the fuel ions in DEMO. Our analysis is carried out for the DEMO1 Reference Scenario from October 2013 (B = 6.8 T, I = 18.6 MA, R = 9.25 m, a = 2.64 m) optimized for a maximum pulse length of 2.3 hrs using the ICRF modelling codes PION and TORIC. We focus on second harmonic heating of tritium and fundamental minority heating of {sup 3}He ions (with a few percent of {sup 3}He) in a 50%:50% D-T plasma. The dependence of the ICRF characteristics and the ICRF-accelerated ions on the ICRF and plasma parameters is investigated, giving special attention to the DEMO design point at a core plasma temperature of 30 keV and an electron density of 1.2·10{sup 20} m{sup −3}.
Modelling of ICRF heating in DEMO with special emphasis on bulk ion heating
International Nuclear Information System (INIS)
Ion cyclotron resonance frequency (ICRF) heating is one of the auxiliary heating schemes presently envisaged for ITER and DEMO. In this paper we analyse the potential of ICRF waves to heat the fuel ions in DEMO. Our analysis is carried out for the DEMO1 Reference Scenario from October 2013 (B = 6.8 T, I = 18.6 MA, R = 9.25 m, a = 2.64 m) optimized for a maximum pulse length of 2.3 hrs using the ICRF modelling codes PION and TORIC. We focus on second harmonic heating of tritium and fundamental minority heating of 3He ions (with a few percent of 3He) in a 50%:50% D-T plasma. The dependence of the ICRF characteristics and the ICRF-accelerated ions on the ICRF and plasma parameters is investigated, giving special attention to the DEMO design point at a core plasma temperature of 30 keV and an electron density of 1.2·1020 m−3
Efficient Execution Methods of Pivoting for Bulk Extraction of Entity-Attribute-Value-Modeled Data.
Luo, Gang; Frey, Lewis J
2016-03-01
Entity-attribute-value (EAV) tables are widely used to store data in electronic medical records and clinical study data management systems. Before they can be used by various analytical (e.g., data mining and machine learning) programs, EAV-modeled data usually must be transformed into conventional relational table format through pivot operations. This time-consuming and resource-intensive process is often performed repeatedly on a regular basis, e.g., to provide a daily refresh of the content in a clinical data warehouse. Thus, it would be beneficial to make pivot operations as efficient as possible. In this paper, we present three techniques for improving the efficiency of pivot operations: 1) filtering out EAV tuples related to unneeded clinical parameters early on; 2) supporting pivoting across multiple EAV tables; and 3) conducting multi-query optimization. We demonstrate the effectiveness of our techniques through implementation. We show that our optimized execution method of pivoting using these techniques significantly outperforms the current basic execution method of pivoting. Our techniques can be used to build a data extraction tool to simplify the specification of and improve the efficiency of extracting data from the EAV tables in electronic medical records and clinical study data management systems. PMID:25608318
Ghosh, Sabyasachi; Peixoto, Thiago C.; Roy, Victor; Serna, Fernando E.; Krein, Gastão
2016-04-01
We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu-Jona-Lasinio model. We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios η /s and ζ /s , where s is the entropy density (also determined in the Nambu-Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for η /s has a minimum very close to the quantum lower bound, η /s =1 /4 π .
Ghosh, Sabyasachi; Roy, Victor; Serna, Fernando E; Krein, Gastão
2015-01-01
We have calculated the temperature dependence of shear $\\eta$ and bulk $\\zeta$ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-$\\pi$ and quark-$\\sigma$ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses, and quark-meson couplings are obtained in the Nambu--Jona-Lasinio model. We found a non-trivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios $\\eta/s$ and $\\zeta/s$, where $s$ is the entropy density (also determined in the Nambu--Jona-Lasinio model in the quasi-particle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for $\\eta/s$ has a minimum very close to the conjectured AdS/CFT lower bound, $\\eta/s = 1/4\\pi$.
Energy Technology Data Exchange (ETDEWEB)
Tewell, Craig R.
2002-08-19
X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl{sub 4} and a Al(Et){sub 3} co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl{sub 2} and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl{sub 4} in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl{sub 2} by TiCl{sub 4} resulting in a thin film of MgCl{sub 2}/TiCl{sub x}, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl{sub 2}/TiCl{sub x} on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to {approx}1 Torr of Al(Et){sub 3}.
Compton continuum suppression by digital pulse shape analysis
Energy Technology Data Exchange (ETDEWEB)
Aspacher, B. (Univ. of Florida, Inst. for Astrophysics and Planetary Exploration, Alachua, FL (United States)); Coldwell, R.L. (Univ. of Florida, Inst. for Astrophysics and Planetary Exploration, Alachua, FL (United States)); Rester, A.C. (Univ. of Florida, Inst. for Astrophysics and Planetary Exploration, Alachua, FL (United States))
1993-06-10
We present experimental results on a technique for flattening the Compton edges and suppressing the Compton continuum in gamma ray spectra with digital pulse shape analysis. The peak-to-Compton ratio can be improved by more than a factor 2. (orig.)
Compton continuum suppression by digital pulse shape analysis
International Nuclear Information System (INIS)
We present experimental results on a technique for flattening the Compton edges and suppressing the Compton continuum in gamma ray spectra with digital pulse shape analysis. The peak-to-Compton ratio can be improved by more than a factor 2. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gardiner, W.W.; Borde, A.B.; Nieukirk, S.L.; Barrows, E.S.; Gruendell, B.D.; Word, J.Q.
1996-10-01
The objective of the Shoal Harbor/Compton Creek Project was to evaluate proposed dredged material from the Shoal harbor/Compton Creek Project Area in Belford and Monmouth, New Jersey to determine its suitability for unconfined ocean disposal at the Mud Dump Site. This was one of five waterways that the US Army Corps of Engineers- New York District requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Shoal Harbor/Compton Creek Project area consisted of bulk chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests and bioaccumulation studies. Eleven core samples were analyzed or grain size, moisture content, and total organic carbon. Other sediments were evaluated for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congers, polynuclear aromatic hydrocarbons, and 1,4- dichlorobenzene. Dredging site water and elutriate water were analyzed for metals, pesticides, and PCBs.
Electronic structure of hafnium: A Compton profile study
Indian Academy of Sciences (India)
S Khera; S Mathur; B L Ahuja
2007-01-01
In this paper, we report the first-ever isotropic Compton profile of hafnium measured at an intermediate resolution, with 661.65 keV -radiation. To compare our experimental data, the theoretical computations have also been carried out within the framework of pseudopotential using CRYSTAL03 code and the renormalized-free-atom (RFA) model. It is found that the present experimental profile is in better agreement with the RFA calculations if the outer electronic configuration is chosen as 5d3.26s0.8. The cohesive energy of Hf is also deduced from the experimental data and is compared with the available data.
XRF 050406 late-time flattening: an inverse Compton component?
Corsi, A.; Piro, L.
2006-01-01
We investigate for possible evidence of inverse Compton (IC) emission in the X-ray afterglow of XRF 050406. In the framework of the standard fireball model, we show how the late-time flattening observed in the X-ray light curve between \\~10^{4} s and ~10^{6} s can be explained in a synchrotron-plus-IC scenario, when the IC peak frequency crosses the X-ray band. We thus conclude that the appearance of an IC component above the synchrotron one at late times successfully accounts for these X-ray...
Optical inverse Compton emission from clusters of galaxies
Yamazaki, Ryo
2015-01-01
Shocks around clusters of galaxies accelerate electrons which upscatter the Cosmic Microwave Background photons to higher-energies. We use an analytical model to calculate this inverse Compton (IC) emission, taking into account the effects of additional energy losses via synchrotron and Coulomb scattering. We find that the surface brightness of the optical IC emission increases with redshift and halo mass. The IC emission surface brightness, 32--34~mag~arcsec$^{-2}$, for massive clusters is potentially detectable by the newly developed Dragonfly Telephoto Array.
Institute of Scientific and Technical Information of China (English)
SHI Xiangjun; WANG Bin; Xiaohong LIU; Minghuai WANG
2013-01-01
A two-moment bulk stratiform microphysics scheme,including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects.Unlike the previous one-moment cloud microphysics scheme,the new scheme produces a reasonable representation of cloud particle size and number concentration.This scheme captures the observed spatial variations in cloud droplet number concentrations.Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations.The longwave and shortwave cloud forcings are in better agreement with observations.Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar.However,ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations.The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing.Furthermore,ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations.Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.
Proton Tomography Through Deeply Virtual Compton Scattering
Ji, Xiangdong
2016-01-01
In this prize talk, I recall some of the history surrounding the discovery of deeply virtual Compton scattering, and explain why it is an exciting experimental tool to obtain novel tomographic pictures of the nucleons at Jefferson Lab 12 GeV facility and the planned Electron-Ion Collider in the United States.
Compton's Kinematics and Einstein - Ehrenfest's radiation theory
International Nuclear Information System (INIS)
The Compton Kinematic relations are obtained from entirely classical arguments, that is, without the corpuscular concept of the photon. The calculations are nonrelativistic and result from Einstein and Ehrenfest's radiation theory modified in order to introduce the effects of the classical zero-point fileds characteristic of Stochastic Electrodynamics. (author)
On Uncertainty of Compton Backscattering Process
Mo, X H
2013-01-01
The uncertainty of Compton backscattering process is studied by virtue of analytical formulas, and the special effects of variant energy spread and energy drift on the systematic uncertainty estimation are also studied with Monte Carlo sampling technique. These quantitative conclusions are especially important for the understanding the uncertainty of beam energy measurement system.
The compton effect: transition to quantum mechanics
International Nuclear Information System (INIS)
The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics. (orig.)
Real Compton scattering for ELFE at DESY
International Nuclear Information System (INIS)
Real Compton scattering at large s and t is a hard and exclusive reaction which allows to determine the valence quark wave function. An experiment could be carried out at DESY with a Laser backscattering photon beam produced in the internal ring and with a reasonably large acceptance detector for both photons and protons. (authors)
Neutron Compton scattering studies of stretched polyethylene
Gabrys, B J; Mayers, J; Kalhoro, M S
2002-01-01
The mean kinetic energy of hydrogen and carbon atoms in unstretched and stretched polyethylene samples has been measured by neutron Compton scattering. The vibrational frequencies of the ground state and torsional energies have been calculated and compared with the existing data and calculations. The results obtained on deuterated and non-deuterated samples are compared. (orig.)
Compton scattering and the complementarity principle
International Nuclear Information System (INIS)
We explain briefly why Compton scattering from a crystal gives a featureless continuous x-ray background while Bragg scattering from the same crystal produces sharp diffraction peaks. It is shown that the answer lies at the heart of quantum mechanics, namely the uncertainty and the complementarity principles. (author)
Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.
2009-01-01
Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.
Polarization observables in Virtual Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Doria, Luca
2007-10-15
Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p){gamma} was measured at MAMI using the A1 Collaboration three spectrometer setup with Q{sup 2}=0.33 (GeV/c){sup 2}. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)
Polarization observables in Virtual Compton Scattering
International Nuclear Information System (INIS)
Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p)γ was measured at MAMI using the A1 Collaboration three spectrometer setup with Q2=0.33 (GeV/c)2. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)
Eguchi, Satoshi; Awaki, Hisamitsu; Aird, James; Terashima, Yuichi; Mushotzky, Richard
2011-01-01
The broad band spectra of two Swift/BAT AGNs obtained from Suzaku follow-up observations are studied: NGC 612 and NGC 3081. Fitting with standard models, we find that both sources show similar spectra characterized by a heavy absorption with $N_{\\rm{H}} \\simeq 10^{24} \\ \\rm{cm}^{-2}$, the fraction of scattered light is $f_{\\rm{scat}} = 0.5-0.8%$, and the solid angle of the reflection component is $\\Omega/2\\pi = 0.4-1.1$. To investigate the geometry of the torus, we apply numerical spectral models utilizing Monte Carlo simulations by Ikeda et al. (2009) to the Suzaku spectra. We find our data are well explained by this torus model, which has four geometrical parameters. The fit results suggest that NGC 612 has the torus half opening-angle of $\\simeq 60^{\\circ}-70^{\\circ}$ and is observed from a nearly edge-on angle with a small amount of scattering gas, while NGC 3081 has a very small opening angle $\\simeq 15^\\circ$ and is observed on a face-on geometry, more like the deeply buried "new type" AGNs found by Ued...
Influence of Heat-radiating on Multi-photon Compton Scattering High-energy Electron
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; WANG Xin-min
2007-01-01
Using the model of the inverse Compton scattering between high-energy electrons and heat-radiation photons, the influence of heat-radiating photons on multi-photon Compton scattering high-energy electrons is studied . The results show that the energy loss, power loss, light resistance and light pressure of the high-energy electron formed by heat radiating are all proportional to the temperature T4 of the vacuum cavity of the electron,the Lorentz factor γ2 of the high-energy electrons, the scattering section of the electron and the number of photons acting at the same time with high-energy electrons. A good method for lessening the energy loss of the high-energy electron by using the one-photon Compton scattering between high-energy electrons and heat radiation photons is proposed.
Analysis of the electronic structure of ZrO{sub 2} by Compton spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Mahammad, F. M.; Mahammed, S. F. [University of Tikrit 42, Department of Physics (Iraq); Kumar, R.; Vijay, Y. K.; Sharma, B. K. [University of Rajasthan, Department of Physics (India); Sharma, G., E-mail: gsphysics@gmail.com [University of Kota, Department of Pure and Applied Physics (India)
2013-07-15
The electronic structure of ZrO{sub 2} is studied using the Compton scattering technique. The first-ever Compton profile measurement on polycrystalline ZrO{sub 2} was obtained using 59.54 keV gamma-rays emanating from the {sup 241}Am radioisotope. To explain the experimental data, we compute theoretical Compton profile values using the method of linear combination of atomic orbitals in the framework of density functional theory. The correlation scheme proposed by Perdew-Burke-Ernzerhof and the exchange scheme of Becke are considered. The ionic-model-based calculations for a number of configurations, i.e., Zr{sup +x}(O{sup -x/2}){sub 2} (0 {<=} x {<=} 2), are also performed to estimate the charge transfer on compound formation, and the study supports transfer of 1.5 electrons from Zr to O atoms.
A study of electronic structure of CdSe by Compton scattering technique
Energy Technology Data Exchange (ETDEWEB)
Dhaka, M.S. [Department of Physics, Engineering College Bikaner, Bikaner 334004 (India); Sharma, G. [Department of Physics, Banasthali University, Banasthali 304022 (India); Mishra, M.C. [Department of Physics, University of Rajasthan, Jaipur 302004 (India); Joshi, K.B. [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313 002 (India); Kothari, R.K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India); Sharma, B.K., E-mail: bkrish47@yahoo.co.i [Department of Physics, University of Rajasthan, Jaipur 302004 (India)
2010-09-01
The electronic structure of CdSe through a Compton profile study is presented in this paper. Theoretical calculations are performed following the empirical pseudopotential method and the linear combination of atomic orbitals method. The measurement on a polycrystalline sample of CdSe is performed using 59.54 keV gamma-rays from {sup 241}Am radioisotope. The spherically averaged theoretical Compton profiles are in agreement with the measurement. The best agreement is, however, shown by the linear combination of atomic orbitals method based on the Hartree-Fock theory. The electron momentum density is also discussed in terms of theoretical anisotropies in the directional Compton profiles calculated from the linear combination of atomic orbitals method. On the basis of equal valence electron-density profiles, it is found that CdSe is less covalent compared to ZnSe. The superposition model suggests the transfer of 1.6 electrons from Cd to Se on compound formation.
External inverse-Compton emission from jetted tidal disruption events
Lu, Wenbin; Kumar, Pawan
2016-05-01
The recent discoveries of Sw J1644+57 and Sw J2058+05 show that tidal disruption events (TDEs) can launch relativistic jets. Super-Eddington accretion produces a strong radiation field of order Eddington luminosity. In a jetted TDE, electrons in the jet will inverse-Compton scatter the photons from the accretion disc and wind (external radiation field). Motivated by observations of thermal optical-UV spectra in Sw J2058+05 and several other TDEs, we assume the spectrum of the external radiation field intercepted by the relativistic jet to be blackbody. Hot electrons in the jet scatter this thermal radiation and produce luminosities 1045-1048 erg s- 1 in the X/γ-ray band. This model of thermal plus inverse-Compton radiation is applied to Sw J2058+05. First, we show that the blackbody component in the optical-UV spectrum most likely has its origin in the super-Eddington wind from the disc. Then, using the observed blackbody component as the external radiation field, we show that the X-ray luminosity and spectrum are consistent with the inverse-Compton emission, under the following conditions: (1) the jet Lorentz factor is Γ ≃ 5-10; (2) electrons in the jet have a power-law distribution dN_e/dγ _e ∝ γ _e^{-p} with γmin ˜ 1 and p = 2.4; (3) the wind is mildly relativistic (Lorentz factor ≳ 1.5) and has isotropic-equivalent mass-loss rate ˜ 5 M⊙ yr- 1. We describe the implications for jet composition and the radius where jet energy is converted to radiation.
International Nuclear Information System (INIS)
Bulk samples and thin films were fabricated and characterized to determine their suitability for studying the effect of composition and morphology on strain sensitivity. Heat capacity and resistivity data are used to determine the critical temperature distribution. It is found that all bulk samples contain stoichiometric Nb3Sn regardless of their nominal Nb to Sn ratio. Furthermore, in bulk samples with Cu additions, a bi-modal distribution of stoichiometric and off-stoichiometric Nb-Sn is found. Thus the nominally off-stoichiometric bulk samples require additional homogenization steps to yield homogeneous off-stoichiometric samples. A binary magnetron-sputtered thin film has the intended off-stoichiometric Nb-Sn phase with a mid-point critical temperature of 16.3 K. This type of sample is a suitable candidate for investigating the strain sensitivity of A15 Nb1-βSnβ, with 0.18 3Sn wires.
The electronic structure of NaF and CaO studied by Compton scattering
International Nuclear Information System (INIS)
Compton profiles of NaF and CaO single crystals were measured along the [100] and [110] directions using 60 keV gamma rays. A theoretical analysis based on Compton profiles and autocorrelation functions was performed by application of the augmented plane wave (APW) and linear combination of atomic orbitals (LCAO) methods. In the case of NaF both theories agree well with each other but their results differ in a characteristic manner from the experiment. For CaO a good agreement of the APW results and experiment especially for the difference quantities is found whereas the LCAO model yields less satisfying results in this case. (orig.)
Compton Scattering X-Ray Sources Driven by Laser Wakefield Acceleration
Energy Technology Data Exchange (ETDEWEB)
Hartemann, F V; Gibson, D J; Brown, W J; Rousse, A; Phuoc, K T; Pukhov, A
2005-10-19
Recent laser wakefield acceleration experiments have demonstrated the generation of femtosecond, nano-Coulomb, low emittance, nearly monokinetic relativistic electron bunches of sufficient quality to produce bright, tunable, ultrafast x-rays via Compton scattering. Design parameters for a proof-of-concept experiment are presented using a three-dimensional Compton scattering code and a laser-plasma interaction particle-in-cell code modeling the wakefield acceleration process; x-ray fluxes exceeding 10{sup 22} s{sup -1} are predicted, with a peak brightness > 10{sup 20} photons/(mm{sup 2} x mrad{sup 2} x s x 0.1% bandwidth).
Inverse Compton X-ray signature of AGN feedback
Bourne, Martin A.; Nayakshin, Sergei
2013-12-01
Bright AGN frequently show ultrafast outflows (UFOs) with outflow velocities vout ˜ 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one-temperature regime, 1T) or decouple (2T), as has been recently suggested. Here we calculate the inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component. The limits on the 2T emission are far weaker, and in fact it is possible that the observed soft X-ray excess of AGN is partially or fully due to the 2T shock emission. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encourage X-ray observers to look for the inverse Compton components calculated here in order to constrain AGN feedback models further.
Compton reflection in AGN with Simbol-X
Beckmann, V; Gehrels, N; Lubinski, P; Malzac, J; Petrucci, P O; Shrader, C R; Soldi, S
2009-01-01
AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies above 20 keV.
Jacobs, Adam M; Nonaka, Andy; Almgren, Ann S; Bell, John B
2015-01-01
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar mass, double detonation model for Type Ia supernovae, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code Maestro. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes including quasi-equilibrium, localized runaway, and nova-like runaway. Our results suggest the double detonation progenitor model is promising, that 3D, dynamic convection plays a key role, and that these systems warrant further study.
Stochastic Electrodynamics and the Compton effect
International Nuclear Information System (INIS)
Some of the main qualitative features of the Compton effect are tried to be described within the realm of Classical Stochastic Electrodynamics (SED). It is found indications that the combined action of the incident wave (frequency ω), the radiation reaction force and the zero point fluctuating electromagnetic fields of SED, are able to given a high average recoil velocity v/c=α/(1+α) to the charged particle. The estimate of the parameter α gives α ∼ ℎω/mc2 where 2Πℎ is the constant and mc2 is the rest energy of the particle. It is verified that this recoil is just that necessary to explain the frequency shift, observed in the scattered radiation as due to a classical double Doppler shift. The differential cross section for the radiation scattered by the recoiling charge using classical electromagnetism also calculated. The same expression as obtained by Compton in his fundamental work of 1923 is found. (author)
The magnetic Compton profile of UTe
International Nuclear Information System (INIS)
We have performed a magnetic Compton scattering experiment with a ferromagnetic actinide compound of UTe. We have combined the results of the magnetic Compton scattering experiment and the magnetization measurement and have deduced the spin and the orbital magnetic moments. Furthermore, we have decomposed the spin moment into a 5f component and a conduction-electron-like component. We have obtained the spin moment of the 5f electron μ s(5f)=-1.21μB, the orbital moment of the 5f electron μL(5f)=3.48μB and the spin moment of the conduction-electron-like component mu s(s,p,d)=036 μB. (authors). Letter-to-the-editor
CP-violation in Compton scattering
Gorchtein, Mikhail
2008-01-01
I consider Compton scattering off the nucleon in the presence of $CP$ violation. I construct the Compton tensor which possesses these features and consider low energy expansion (LEX) of the corresponding amplitudes. It allows to separate out the Born contribution which only depends on the static properties of the nucleon, such as the electric charge, the mass, the magnetic moment, and the electric dipole moment (EDM). I introduce new structure constants, the $T$-odd nucleon polarizabilities which parametrize the unknown non-Born part. These constants describe the response of the $T$-violating content of the nucleon to the external quasistatic electromagnetic field. As an estimate, I provide a HBChPT calculation for these new polarizabilities and discuss the implications for the experiment.
Compton backscattering of intracavity storage ring free-electron laser radiation
International Nuclear Information System (INIS)
We discuss the γ- ray production by Compton backscattering of intracavity S.R. FEL radiation. We use a semi-analytical model which provides the build up of the signal combined with the storage ring damping mechanism and derive simple relations yielding the connection between backscattered photons brightness and the intercavity laser equilibrium intensity
Electron distributions in nonlinear Compton scattering
Boca, Madalina; Dinu, Victor; Florescu, Viorica
2012-01-01
Based on quantum theory, we investigate the distribution of the electrons scattered in nonlinear Compton effect by an electromagnetic plane wave. Deviations of the final electron momentum from its initial value are solely due to quantum effects. The monochromatic case, examined in detail, reveals features of the electron distribution, useful in the understanding of the pulsed plane wave case for particular intensity and electron energy regimes. The graphs displayed focus on the case of head-o...
Hard photon production by inverse Compton scattering
International Nuclear Information System (INIS)
The controlled production of hard photons (X and γ-rays) is of relevance in many medical, industrial and science applications. In this work an alternative method for producing both X and γ-rays via Inverse Compton Scattering with both electron and proton beams is discussed. We present results for the cross section for this process with non static electron and protons. The results are evaluated for a particular energy interval, and an experimental design is proposed.
Deeply Virtual Compton Scattering Facing Nonforward Distributions
Radyushkin, A V
1997-01-01
Applications of perturbative QCD to deeply virtual Compton scattering process require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements of quark and gluon operators. We discuss two types of functions parametrizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions \\cal F_\\zeta (X;t) and also their relation to usual parton densities f(x).
Helium Compton Form Factor Measurements at CLAS
Voutier, Eric
2013-01-01
The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by th...
Virtual Compton Scattering on the Proton
Hyde-Wright, Charles E.
1997-04-01
Virtual compton scattering (VCS), measured via the reaction e + p arrow e' + p' + γ is a new tool for the study of proton structure. Below pion threshold, the cross section can be described in terms of generalized polarizabilities of the proton (P.A.M. Guichon, G.Q. Liu, and A.W. Thomas, Nucl Phys A591), 606 (1995).. These Q^2-dependent observables generalize the electric and magnetic polarizabilities measured in real compton scattering. At high energies, VCS generalizes the structure functions of deep inelastic scattering, and can be related to the quark spin- and orbital-angular momentum decomposition of the nucleon spin (X. Ji, hep-ph/9603249, 7 Mar 96; X. Ji, hep-ph/9609381, 17 Sep 96) (A.V. Radyushkin, Phys Lett B380) (1996) 417; hep-ph/9604317, 15 Apr 96.. In this talk I will present the physical motivation of virtual compton scattering at low and high energies, the recent experimental results from MAMI, and the measurements planned for TJNAF.
Radiative corrections to pion Compton scattering
International Nuclear Information System (INIS)
We calculate the one-photon loop radiative corrections to charged pion Compton scattering, π-γ→π-γ. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Analytical expressions for the O(α) corrections to the invariant Compton scattering amplitudes, A(s,u) and B(s,u), are presented for 11 classes of contributing one-loop diagrams. Infrared finiteness of the virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off λ, and its relation to the experimental detection threshold is discussed. We find that the radiative corrections are maximal in backward directions, reaching e.g. -2.4% for a center-of-mass energy of √(s)=4mπ and λ=5MeV. Furthermore, we extend our calculation of the radiative corrections by including the leading pion structure effect (at low energies) in form of its electric and magnetic polarizability difference, απ-βπ≅6x10-4fm3. We find that this structure effect does not change the relative size and angular dependence of the radiative corrections to pion Compton scattering. Our results are particularly relevant for analyzing the COMPASS experiment at CERN which aims at measuring the pion electric and magnetic polarizabilities with high statistics using the Primakoff effect
Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation
Energy Technology Data Exchange (ETDEWEB)
Afanasev, Andrei; /Hampton U. /Jefferson Lab; Brodsky, Stanley J.; /SLAC; Carlson, Carl E.; /William-Mary Coll.; Mukherjee, Asmita; /Indian Inst. Tech., Mumbai
2009-03-31
We propose measurements of the deeply virtual Compton amplitude (DVCS) {gamma}* {yields} H{bar H}{gamma} in the timelike t = (p{sub H} + p{sub {bar H}}){sup 2} > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e{sup +}e{sup -} {yields} H{bar H}{gamma}. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H{bar H} hadron pairs such as {pi}{sup +}{pi}{sup -}, K{sup +}K{sup -}, and D{bar D} as well as p{bar p}. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C = - form factors. The interference between the amplitudes measures the phase of the C = + timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e{sup +} {leftrightarrow} e{sup -} asymmetry. The J = 0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.
Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation
Energy Technology Data Exchange (ETDEWEB)
Andrei Afanaciev,Andrei Afanasev, Stanley J. Brodsky, Carl E. Carlson, Asmita Mukherjee
2010-02-01
We propose measurements of the deeply virtual Compton amplitude (DVCS), gamma* to H H-bar gamma, in the timelike t = (p_{H} + p_{H-bar})^2 > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e+ e- to H H-bar gamma. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H H-bar hadron pairs such as pi+ pi-, K+ K-, and D D-bar as well as p p-bar. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C= - form factors. The interference between the amplitudes measures the phase of the C=+ timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e+ \\leftrightarrow e- asymmetry. The J=0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.
External inverse-Compton emission from jetted tidal disruption events
Lu, Wenbin
2016-01-01
The recent discoveries of Swift J1644+57 and J2058+05 show that tidal disruption events (TDEs) can launch relativistic jets. Super-Eddington accretion produces a strong radiation field of order Eddington luminosity. In a jetted TDE, electrons in the jet will inverse-Compton scatter the external radiation field from the accretion disk and wind. Motivated by observations of thermal optical-UV spectra in Swift J2058+05 and several other TDEs, we assume the spectrum of the external radiation field intercepted by the relativistic jet to be blackbody. Hot electrons in the jet scatter this thermal radiation and produce luminosities 10^45-10^48 erg/s in the X/gamma-ray band. This model of thermal plus inverse-Compton radiation is applied to Swift J2058+05. First, we show that the blackbody component in the optical-UV spectrum most likely has its origin in the super-Eddington wind from the disk. Then, using the observed blackbody component as the external radiation field, we show that the X-ray luminosity and spectrum...
Nucleon polarizabilities: From Compton scattering to hydrogen atom
Hagelstein, Franziska; Miskimen, Rory; Pascalutsa, Vladimir
2016-05-01
We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polarizabilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the "proton-radius puzzle". We conclude with summary plots of the recent results and prospects for the near-future work.
A Compton thick AGN in the barred spiral NGC 4785
Gandhi, P; Ricci, C; Asmus, D; Mushotzky, R F; Ueda, Y; Terashima, Y; La Parola, V
2014-01-01
We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66 month Swift/BAT all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width >~1 keV. Fitting the broadband spectra with physical reflection models shows the source to be a bona fide Compton thick AGN with Nh of at least 2x10^{24} cm^{-2} and absorption-corrected 2-10 keV X-ray power L(2-10) ~ few times 10^{42} erg s^{-1}. Realistic uncertainties on L(2-10) computed from the joint confidence interval on the intrinsic power law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton thick AGN population is highly heterogeneous in terms of WISE mid-...
Extraction of Compton Form Factors from DVCS data
International Nuclear Information System (INIS)
Generalized Parton Distributions (GPDs) allow to describe the structure of the nucleon in a very rich and unprecedented way: they contain the correlations between the (transverse) position and (longitudinal) momentum distributions of the partons in the nucleon, they allow to derive the orbital momentum contribution of partons to the nucleon's spin, they provide an access to the nucleon's (q-q-bar) content, etc... GPDs can be accessed experimentally through the exclusive leptoproduction of a photon ('Deep Virtual Compton Scattering', DVCS) -and possibly of a meson-. In this presentation, we will present the result of our fitter code which aims at extracting, in a largely model-independent way, the GPD information (Compton Form Factors -CFF-) from experimental data. We will show the results of this code applied to the JLab and HERMES DVCS data. In particular, we have extracted some first important constraints on the H-tilde CFF, from the HERMES and CLAS DVCS data obtained with a longitudinally polarized proton target. The kinematical dependence (xB,t) of these CFFs provides some new insights on nucleon structure. (author)
A new telescope for wide-band gamma-ray astronomy: The Silicon Compton Recoil Telescope (SCRT)
Tuemer, O. Tuemay; Ait-Ouamer, Farid; Blair, Scott C.; Case, Gary L.; O'Neill, Brendan P.; O'Neill, Terrence J.; White, R. Stephen; Zych, Allen D.
1994-06-01
A new prototype gamma-ray telescope is described which is sensitive from 0.3 to 30 MeV as a Compton telescope and to 100 MeV as a pair detector. The Silicon Compton Recoil Telescope (SCRT) uses multilayers of silicon strip detectors as a Compton gamma-ray converter. Recoil electrons are tracked with the silicon strip detectors, and their energy losses and directions are measured. The direction and energy of the Compton-scattered gamma rays are measured with CsI(Tl)-photodiode detectors. Thus unique directions and energies are found for each incident gamma ray for the first time and without the background of overlapping rings. SCRT is the first Compton telescope to image the gamma-ray sky directly. It can also detect electron-positron pairs from gamma rays above 5 MeV, extending SCRT's sensitivity to above 100 MeV. Typical resolutions are 3% (FWHM) in energy at 2 MeV and 0.5 deg (1 sigma) in angle. The proposed prototype SCRT instrument has a sensitive area of 650 sq cm, a detection efficiency of 3%, a size reduction by about an order of magnitude, and a sensitivity of 15 millicrab for a typical Compton Observatory exposure. SCRT can also measure the polarization of the incident gamma rays, especially at low energies and large scattered angles. Simulation calculations and a discussion of results with a laboratory model are presented.
Bulk Nuclear Properties from Reactions
Danielewicz, P.
2002-01-01
Extraction of bulk nuclear properties by comparing reaction observables to results from semiclassical transport-model simulations is discussed. Specific properties include the nuclear viscosity, incompressibility and constraints on the nuclear pressure at supranormal densities.
Measurement of laser-induced Compton backscattered photons with anti-Compton spectrometer
International Nuclear Information System (INIS)
This paper reports on quasi-monochromatic photons of energies 1.6-8.7 MeV generated by the Compton backscattering of laser light on relativistic electrons in a storage ring TERAS installed at the Electrotechnical Laboratory. Spectra of the backscattered photons have been measured with an anti-Compton spectrometer system. The present system consists of a coaxial type pure Ge detector of 155 cm3 as a central detector and a well type NaI(Tl) scintillator of 8 in. φ x 8 in. as an outer one. With a usual anti-coincidence technique, clear photopeak spectra were obtained with the Compton suppression ration of 2-4. The maximum energy and the energy spread of photons show reasonable agreements with numerical calculations. The divergence and energy spread of the electron beam in the storage ring is estimated from the data
External Compton Scattering in Blazar Jets and the Location of the Gamma-Ray Emitting Region
Finke, Justin D
2016-01-01
I study the location of the $\\gamma$-ray emission in blazar jets by creating a Compton-scattering approximation valid for all anisotropic radiation fields in the Thomson through Klein-Nishina regimes, which is highly accurate and can speed up numerical calculations by up to a factor $\\sim10$. I apply this approximation to synchrotron self-Compton, and external Compton-scattering of photons from the accretion disk, broad-line region (BLR), and dust torus. I use a stratified BLR model and include detailed Compton-scattering calculations of a spherical and flattened BLR. I create two dust torus models, one where the torus is an annulus, and one where it is an extended disk. I present detailed calculations of the photoabsorption optical depth using my detailed BLR and dust torus models, including the full angle dependence. I apply these calculations to the emission from a relativistically moving blob traveling through these radiation fields. The ratio of $\\gamma$-ray to optical flux produces a predictable pattern...
McNamara, A L; Heijnis, H; Fierro, D; Reinhard, M I
2012-04-01
A Compton suppressed high-purity germanium (HPGe) detector is well suited to the analysis of low levels of radioactivity in environmental samples. The difference in geometry, density and composition of environmental calibration standards (e.g. soil) can contribute to excessive experimental uncertainty to the measured efficiency curve. Furthermore multiple detectors, like those used in a Compton suppressed system, can add complexities to the calibration process. Monte Carlo simulations can be a powerful complement in calibrating these types of detector systems, provided enough physical information on the system is known. A full detector model using the Geant4 simulation toolkit is presented and the system is modelled in both the suppressed and unsuppressed mode of operation. The full energy peak efficiencies of radionuclides from a standard source sample is calculated and compared to experimental measurements. The experimental results agree relatively well with the simulated values (within ∼5 - 20%). The simulations show that coincidence losses in the Compton suppression system can cause radionuclide specific effects on the detector efficiency, especially in the Compton suppressed mode of the detector. Additionally since low energy photons are more sensitive to small inaccuracies in the computational detector model than high energy photons, large discrepancies may occur at energies lower than ∼100 keV. PMID:22304994
The role of Compton heating on radiation-regulated accretion on to black holes
Park, KwangHo; Di Matteo, Tiziana; Reynolds, Christopher S
2014-01-01
We investigate the role of Compton heating in radiation-regulated accretion on to black holes from a neutral dense medium using 1D radiation-hydrodynamic simulations. We focus on the relative effects of Compton-heating and photo-heating as a function of the spectral slope {\\alpha}, assuming a power-law spectrum in the energy range of 13.6 eV--100 keV. While Compton heating is dominant only close to the black hole, it can reduce the accretion rate to 0.1 % ($l \\propto \\dot{m}^2$ model)--0.01 % ($l \\propto \\dot{m}$ model) of the Bondi accretion rate when the BH radiation is hard ({\\alpha} ~ 1), where $l$ and $\\dot{m}$ are the luminosity and accretion rate normalised by Eddington rates, respectively. The oscillatory behaviour otherwise typically seen in simulations with {\\alpha} > 1, become suppressed when {\\alpha} ~ 1 only for the $l \\propto \\dot{m}$ model. The relative importance of the Compton heating over photo-heating decreases and the oscillatory behaviour becomes stronger as the spectrum softens. When the...
Calculation of Nuclear Deeply Virtual Compton Scattering in HERMES Experiment
Institute of Scientific and Technical Information of China (English)
YE Hong-Xue; MAO Ya-Jun; WANG Si-Guang; SUN Bo
2009-01-01
We investigate the possibility to acquire information of nuclear generalized parton distribution (GPD) H by studying the deeply virtual Compton scattering (DVCS) off several nuclear targets at the HERMES group (Hadron-Electron Ring Accelerator Measurement of Spin). Two different models are used and developed to demonstrate the leading asymmetry amplitude AsinφLU for coherent-enriched and incoherent-enriched parts with both statistical and systematic uncertainties estimated. It is found that a clear enhancement of ratio of nuclear asymmetry AA,sinφLU to free proton asymmetry AH,sinφLU in the coherent-enriched region is expected by both models, and a decrease of the ratio in incoherent-enriched region; both give the information about nuclear modifications. It is also possible to distinguish between those two models even under the limited statistics.
Calculation of Nuclear Deeply Virtual Compton Scattering in HERMES Experiment
International Nuclear Information System (INIS)
We investigate the possibility to acquire information of nuclear generalized parton distribution (GPD) H by studying the deeply virtual Compton scattering (DVCS) of several nuclear targets at the HERMES group (Hadron–Electron Ring Accelerator Measurement of Spin). Two different models are used and developed to demonstrate the leading asymmetry amplitude ALUsinØ for coherent-enriched and incoherent-enriched parts with both statistical and systematic uncertainties estimated. It is found that a clear enhancement of ratio of nuclear asymmetry ALUA,sinø to free proton asymmetry ALUH,sinø in the coherent-enriched region is expected by both models, and a decrease of the ratio in incoherent-enriched region; both give the information about nuclear modifications. It is also possible to distinguish between those two models even under the limited statistics
Ploetz, Elizabeth A; Rustenburg, Ariën S; Geerke, Daan P; Smith, Paul E
2016-05-10
Simulations of water and methanol mixtures using polarizable force fields (FFs) for methanol (COS/M and CPC) and water (COS/G2) were performed and compared to experiment and also to a nonpolarizable methanol (KBFF) model with SPC/E water in an effort to quantify the importance of explicit electronic polarization effects in bulk liquid mixtures and vapor-liquid interfaces. The bulk liquid mixture properties studied included the center of mass radial distribution functions, Kirkwood-Buff integrals (KBIs), volumetric properties, isothermal compressibility, enthalpy of mixing, dielectric constant, and diffusion coefficients. The vapor-liquid interface properties investigated included the relative surface probability distributions, surface tension, excess surface adsorption, preferred surface molecule orientations, and the surface dipole. None of the three FFs tested here was clearly superior for all of the properties examined. All the force fields typically reproduced the correct trends with composition for both the bulk and interfacial system properties; the differences between the force fields were primarily quantitative. The overall results suggest that the polarizable FFs are not, at the present stage of development, inherently better able to reproduce the studied bulk and interfacial properties-despite the added degree of explicit transferability that is, by definition, built into the polarizable models. Indeed, the specific parametrization of the FF appears to be just as important as the class of FF. PMID:27045390
A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials
Godfrey, Benjamin
2016-03-01
Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.
ILC Beam Energy Measurement by means of Laser Compton Backscattering
Muchnoi, N.; Schreiber, H. J.; Viti, M
2008-01-01
A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitiv...
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
Higher twist effects in deeply virtual Compton scattering
Pirnay, Björn Michael
2016-01-01
We calculate suppressed power corrections to deeply virtual Compton scattering amplitudes using operator product expansion. The numerical impact of these results to present day experiments is investigated.
Induced Compton-scattering effects in radiation-transport approximations
International Nuclear Information System (INIS)
The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
The role of Compton heating in radiation-regulated accretion on to black holes
Park, KwangHo; Ricotti, Massimo; Di Matteo, Tiziana; Reynolds, Christopher S.
2014-12-01
We investigate the role of Compton heating in radiation-regulated accretion on to black holes (BHs) from a neutral dense medium using 1D radiation-hydrodynamic simulations. We focus on the relative effects of Compton-heating and photoheating as a function of the spectral slope α, assuming a power-law spectrum in the energy range of 13.6 eV-100 keV. While Compton heating is dominant only close to the BH, it can reduce the accretion rate to 0.1 (l ∝ dot{m}^2 model)-0.01 per cent (l ∝ dot{m} model) of the Bondi accretion rate when the BH radiation is hard (α ˜ 1), where l and dot{m} are the luminosity and accretion rate normalized by Eddington rates, respectively. The oscillatory behaviour otherwise typically seen in simulations with α > 1, become suppressed when α ˜ 1 only for the l ∝ dot{m} model. The relative importance of the Compton heating over photoheating decreases and the oscillatory behaviour becomes stronger as the spectrum softens. When the spectrum is soft (α > 1.5), photoheating prevails regardless of models making the effect of Compton heating negligible. On the scale of the ionization front, where the gas supply into the Strömgren sphere from large scale is regulated, photoheating dominates. Our simulations show consistent results with the advection-dominated accretion flow (l ∝ dot{m}^2) where the accretion is inefficient and the spectrum is hard (α ˜ 1).
Time-Dependent Synchrotron and Compton Spectra from Jets of Microquasars
Gupta, S; Dermer, C D; Boettcher, Markus; Dermer, Charles D.; Gupta, Swati
2006-01-01
Jet models for the high-energy emission of Galactic X-ray binary sources have regained significant interest with detailed spectral and timing studies of the X-ray emission from microquasars, the recent detection by the HESS collaboration of very-high-energy gamma-rays from the microquasar LS~5039, and the earlier suggestion of jet models for ultraluminous X-ray sources observed in many nearby galaxies. Here we study the synchrotron and Compton signatures of time-dependent electron injection and acceleration, adiabatic and radiative cooling, and different jet geometries in the jets of Galactic microquasars. Synchrotron, synchrotron-self-Compton, and external-Compton radiation processes with soft photons provided by the companion star and the accretion disk are treated. An analytical solution is presented to the electron kinetic equation for general power-law geometries of the jets for Compton scattering in the Thomson regime. We pay particular attention to predictions concerning the rapid flux and spectral var...
Neveu, Marc Francois Laurent
Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the
Momentum densities and Compton profiles of alkali-metal atoms
International Nuclear Information System (INIS)
It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree-Fock-Roothan values only, for want of data from other realistic calculations. (author)
Energy Technology Data Exchange (ETDEWEB)
Maltry, W.; Ziegler, T.; Richter, I.
1997-04-01
The report deals with problems associated with the harnessing of solar energy for drying bulk farm products: technical fundamentals, enthalpy diagrams, models for grain drying, experimental investigations, analysis of drying processes, benefits and applications of drying processes, advances. (HW) [Deutsch] Der Bericht behandelt die Probleme der Solarenergienutzung zur Trockung landwirtschaftlicher Massengueter: - Trocknungstechnische Grundlagen - Enthalpie-Diagramme - Modelle zur Koernertrocknung - experimentelle Untersuchungen - Analyse von Trocknungsprozesse - Nutzen und Verwertbarkeit der Trocknungsprozesse - Fortschritte. (HW)
Yaqoob, M.A.; de, Rooij, R.; Schipper, D.J.
2013-01-01
The adhesion force due to capillary interaction between two hydrophilic surfaces is strongly dependent on the partial pressure of water and is often calculated using the Kelvin equation. The validity of the Kelvin equation is questionable at low relative humidity (RH) of water, like in high vacuum and dry nitrogen environments, where water is only present as layers of several molecules thick at the surfaces. A model from ordered to bulk form of water has been developed using the Brunauer, Emm...
Indian Academy of Sciences (India)
Thomas Varghese; K M Balakrishna; K Siddappa
2003-03-01
The Compton proﬁle of tantalum (Ta) has been measured using IGP type coaxial photon detector. The target atoms were excited by means of 59.54 keV -rays from Am-241. The measurements were carried out on a high purity thin elemental foil. The data were recoreded in a 4 K multichannel analyzer. These data duly corrected for various effects are presented and compared with theoretical and measured values. Best agreement with experiment is found for the 5d36s2 electron conﬁguration.
Nonlinear X-ray Compton Scattering
Fuchs, Matthias; Trigo, Mariano; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P. H.; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack
2015-01-01
X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrash...
Radiative corrections to virtual Compton scattering
International Nuclear Information System (INIS)
Radiative corrections to virtual Compton scattering are calculated for the first time at the first order in α. We use the dimensional regularization scheme to treat both Ultra-Violet and Indra-Red divergences. After the compensation of divergences, the expression of the correction contains analytical terms and a numerical term which has to be computed. For a scattered photon of centre of mass energy q'= 45 MeV, a preliminary result of the comparison between theory and experimental data is presented taking into account only analytical terms. (authors)
Cork quality estimation by using Compton tomography
Brunetti, A; Golosio, B; Luciano, P; Ruggero, A
2002-01-01
The quality control of cork stoppers is mandatory in order to guarantee the perfect conservation of the wine. Several techniques have been developed but until now the quality control was essentially related to the status of the external surface. Thus possible cracks or holes inside the stopper will be hidden. In this paper a new technique based on X-ray Compton tomography is described. It is a non-destructive technique that allows one to reconstruct and visualize the cross-section of the cork stopper analyzed, and so to put in evidence the presence of internal imperfections. Some results are reported and compared with visual classification.
A likely inverse-Compton emission from the Type IIb SN 2013df
Li, K. L.; Kong, A. K. H.
2016-08-01
The inverse-Compton X-ray emission model for supernovae has been well established to explain the X-ray properties of many supernovae for over 30 years. However, no observational case has yet been found to connect the X-rays with the optical lights as they should be. Here, we report the discovery of a hard X-ray source that is associated with a Type II-b supernova. Simultaneous emission enhancements have been found in both the X-ray and optical light curves twenty days after the supernova explosion. While the enhanced X-rays are likely dominated by inverse-Compton scatterings of the supernova’s lights from the Type II-b secondary peak, we propose a scenario of a high-speed supernova ejecta colliding with a low-density pre-supernova stellar wind that produces an optically thin and high-temperature electron gas for the Comptonization. The inferred stellar wind mass-loss rate is consistent with that of the supernova progenitor candidate as a yellow supergiant detected by the Hubble Space Telescope, providing an independent proof for the progenitor. This is also new evidence of the inverse-Compton emission during the early phase of a supernova.
The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare
Institute of Scientific and Technical Information of China (English)
Wei Chen; Wei-Qun Gan
2012-01-01
Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares,as well as the ambient medium with which these energetic particles interact.The neutron capture line (2.223 MeV),the strongest in the solar gamma-ray spectrum,forms in the deep atmosphere.The energy of these photons can be reduced via Compton scattering.With the fully relativistic GEANT4 toolkit,we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares,and applied them to the flare that occurred on 2005 January 20 (X7.1/2B),one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle.By comparing the fitting results of different models with and without Compton scattering of the neutron capture line,we find that when including the Compton scattering for the neutron capture line,the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s≤2.3).The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant,which influences the time evolution of the neutron capture line flux as well.The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.
The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)
International Nuclear Information System (INIS)
The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60–600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0–2.0 keV (FWHM) at 60 keV and 1.6–2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype. - Highlights: • The final prototype of the Si/CdTe Compton camera for the ASTRO-H SGD was completed. • The detailed design of the Compton camera is described. • The unprecedented high efficiency and high
Polarizability sum rule across real and virtual Compton scattering processes
Pascalutsa, Vladimir
2014-01-01
We derive a sum rule relating various electromagnetic properties of a spin-1/2 particle and consider its empirical implications for the proton. Given the measured values of the proton anomalous magnetic moment, electric and magnetic charge radii, the slope of the first moment of the spin structure function $g_1$, and the recently determined proton spin polarizability $\\gamma_{E1M2}$, the sum rule yields a constraint on the low-momentum behavior of a generalized polarizability appearing in virtual Compton scattering. With the help of the presently ongoing measurements of different electromagnetic observables at the MAMI, Jefferson Lab, and HI$\\gamma$S facilities, the sum rule will provide a model-independent test of the low-energy spin structure of the nucleon.
Results on Deeply Virtual Compton Scattering at Jefferson Lab
Energy Technology Data Exchange (ETDEWEB)
Franck Sabatie
2006-10-02
After about 10 years of growing interest for Generalized Parton Distributions come the first results from dedicated experiments, using the golden Deeply Virtual Compton Scattering process. After a short introduction, we will explain the experimental methodology and show results of the Hall A E00-110 experiment, which aimed at measuring helicity-dependent photon electroproduction cross sections. We will emphasize how this experiment provided the first stringent tests of the scaling property of this process, allowing for the first time a model-independent extraction of a linear combination of Generalized Parton Distributions. We will also describe the Hall B E01-113 experiment which measured the photon electroproduction beam spin asymmetry over a wide kinematical range. The summary will include an outlook on the next generation of experiments which are already planned at Jefferson Lab at 6 GeV, but also after the planned 12 GeV upgrade.
Gauge invariance and Compton scattering from relativistic composite systems
International Nuclear Information System (INIS)
Using the Ward-Takahashi (W-T) identity and the Bethe-Salpeter (B-S) wave equation, we investigate the dynamical requirements imposed by electromagnetic gauge invariance on Compton scattering from relativistic composite system. The importance of off-shell rescattering in intermediate states, which is equivalent to final state interactions in inclusive processes, is clarified in the context of current conservation. It is shown that, if the nuclear force is nonlocal, there will be both two-photon interaction currents and rescattering contributions to terms involving one-photon interaction currents. We derive the two-body W-T identity for the two-photon interaction currents, and obtain explicit forms for the interaction current operators for three illustrative models of nuclear forces: (a) two-pion exchange forces with baryon resonances, (b) covariant separable forces, and (c) charged one-pion exchange
Virtual compton scattering on the proton below pion threshold
Energy Technology Data Exchange (ETDEWEB)
Bertin, P.Y.; VCS Collaboration
1995-12-31
This paper presents the preliminary results of an electron-proton interaction experiment carried out with the accelerator of MAMI at Mainz (Germany) for the recording of virtual compton scattering events. More than 2 10{sup 4} events were recorded in a two days run with a liquid hydrogen target. The main limitation for the counting rate comes from the limitation of the acquisition rate (100 Hz) and the single rates (10{sup 5}) in the drift chambers. The aim of this experiment is the understanding of both the low energy expansion and the generalized polarizabilities in order to compare, confirm or exclude the models of Quantum Chromodynamics used for the understanding of the nucleon. (J.S.). 3 refs., 5 figs.
Momentum distribution in vanadium: Compton scattering and positron annihilation
Sundararajan, V.; Kanhere, D. G.; Singru, R. M.
1992-09-01
Self-consistent, linear-combination-of-Gaussian-orbitals band-structure method is used within the independent particle model, to calculate the electron momentum distributions, ρ(p), and two-photon momentum distributions, ρ2γ(p), in metallic vanadium. We present results for ρ(p), Compton profiles, ρ2γ(p), one- and two-dimensional angular correlation of positron annihilation radiation, etc. Results are compared with other calculations and with experiments wherever available. In particular, the present results for ρ2γ(p) are analyzed in terms of contributions from different sheets of Fermi surface of V, and are compared with ρ2γ(p) reconstructed from experimental two-dimensional angular correlation of positron annihilation radiation data sets by Pecora et al.
Results from the Daresbury Compton backscattering X-ray source
Laundy, D.; Priebe, G.; Jamison, S. P.; Graham, D. M.; Phillips, P. J.; Smith, S. L.; Saveliev, Y.; Vassilev, S.; Seddon, E. A.
2012-10-01
The Daresbury Compton Backscattering X-ray Source uses a high power Ti Sapphire laser interacting in head on geometry with electron bunches in the ALICE energy recovery linear accelerator. X-ray photons with peak energy of 21 keV were generated with the accelerator operating at an energy of 29.6 MeV. The spatial profile of the X-rays emitted near the electron beam axis was measured. The characteristics of the X-ray yield measured as a function of relative timing between the laser pulse and the interacting electron bunch was found to be consistent with the modelled intensity behaviour using measured electron and laser beam parameters.
Results from the Daresbury Compton backscattering X-ray source
International Nuclear Information System (INIS)
The Daresbury Compton Backscattering X-ray Source uses a high power Ti Sapphire laser interacting in head on geometry with electron bunches in the ALICE energy recovery linear accelerator. X-ray photons with peak energy of 21 keV were generated with the accelerator operating at an energy of 29.6 MeV. The spatial profile of the X-rays emitted near the electron beam axis was measured. The characteristics of the X-ray yield measured as a function of relative timing between the laser pulse and the interacting electron bunch was found to be consistent with the modelled intensity behaviour using measured electron and laser beam parameters.
Photon Acceleration of Laser-plasma Based on Compton Scattering
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; XIE Hong-jun
2006-01-01
The one-dimensional electron density disturbance is studied by using the inelastic collision model of the relativity electron and photon group, the relativity theory, the momentum equation and the continuity equation, which is generated by a driving laser pulse and scattered laser pulse propagating through a tenuous plasma, and the electron density disturbance is closely associated with the incident laser and scattering laser. The electron plasma wave(EPW)is formed by the propagation of the electron density disturbance. Owing to the action of EPW, the increasing of the frequency of the photons in the incident laser pulses that there is a distance with the driving laser pulses is studied by using optical metric. The results show that it is possible that the photon will gain higher energy from the EPW when photon number is decreased and one-photon Compton scattering enters, the photon will be accelerated.
Measurement of Deeply Virtual Compton Scattering at HERA
Andreev, V; Aplin, S; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baghdasaryan, A; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baudrand, S; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Bizot, J C; Boenig, M O; Boudry, V; Bracinik, J; Brandt, G; Brisson, V; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Cerny, K; Chekelian, V; Contreras, J G; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Demirchyan, R; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dodonov, V; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, W; Essenov, S; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Finke, L; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Frisson, T; Gabathuler, Erwin; Garutti, E; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Glazov, A; Glushkov, I; Görlich, L; Göttlich, M; Gogitidze, N; Gorbounov, S; Goyon, C; Grab, C; Greenshaw, T; Gregori, M; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Haller, J; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Herrera-Corral, G; Herynek, I; Heuer, R D; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, H; Kapichine, M; Karlsson, M; Katzy, J; Keller, N; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Korbel, V; Kostka, P; Koutouev, R; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Krüger, K; Kuckens, J; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; List, B; Lobodzinska, E; Loktionova, N; López-Fernandez, R; Lubimov, V; Lucaci-Timoce, A I; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mohamed, A; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nankov, K; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebuhr, C B; Nikiforov, A; Nikitin, D K; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Perez-Astudillo, D; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Pöschl, R; Portheault, B; Povh, B; Prideaux, P; Raicevic, N; Reimer, P; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rurikova, Z; Rusakov, S V; Salvaire, F; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schmidt, S; Schmitt, S; Schmitz, C; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsakov, I; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Urban, M; Usik, A; Utkin, D; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Van Remortel, N; Vargas-Trevino, A; Vazdik, Ya A; Veelken, C; Vest, A; Vinokurova, S; Volchinski, V; Vujicic, B; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Wigmore, C; Winter, G G; Wissing, C; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zimmermann, J; Zohrabyan, H G; Zomer, F
2005-01-01
A measurement is presented of elastic deeply virtual Compton scattering \\gamma* p \\to \\gamma p made using e^+ p collision data corresponding to a luminosity of 46.5 pb^{-1}, taken with the H1 detector at HERA. The cross section is measured as a function of the photon virtuality, Q^2, the invariant mass of the \\gamma* p system, W, and for the first time, differentially in the squared momentum transfer at the proton vertex, t, in the kinematic range 2 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2. QCD based calculations at next-to-leading order using generalized parton distributions can describe the data, as can colour dipole model predictions.
Simulation of Laser-Compton Cooling of Electron Beams
Ohgaki, T.
2000-01-01
We study a method of laser-Compton cooling of electron beams. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for JLC/NLC at E_0=2 GeV is considered.
Deeply Virtual Compton Scattering off 4He
Joosten, Sylvester; CLAS Collaboration
2015-10-01
The European Muon Collaboration (EMC) observed the first signs of a modification of the partonic structure of the nucleon when present in a nuclear medium. The precise nature of these effects, as well as their underlying cause, is yet to be determined. The generalized parton distribution (GPD) framework provides a powerful tool to study the partonic structure of nucleons inside a nucleus. Hard exclusive leptoproduction of a real photon off a nucleon, deeply virtual Compton scattering (DVCS), is presently considered the cleanest experimental access to the GPDs, through the Compton form factors (CFFs). This is especially the case for scattering off the spin-zero helium nucleus, where only a single CFF contributes to the process. The real and imaginary parts of this CFF can be constrained through the beam-spin asymmetry (BSA). We will present the first measurements of the DVCS process off 4He using the CEBAF 6 GeV polarized electron beam and the CLAS detector at JLab. The CLAS detector was supplemented with an inner electromagnetic calorimeter for photons produced at small angles, as well as a radial time projection chamber (RTPC) to detect low-energy recoil nuclei. This setup allowed for a clean measurement of the BSA in both the coherent and incoherent channels.
Nonlinear X-ray Compton Scattering
Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A
2015-01-01
X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...
Virtual compton scattering at low energy
International Nuclear Information System (INIS)
The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)
Classical theory of nonlinear Compton scattering
International Nuclear Information System (INIS)
The covariant dynamics of a single electron subjected to the electromagnetic field of an intense, ultrashort laser pulse in vacuum is studied theoretically at arbitrary intensities, in the context of the Dirac-Lorentz equation, which has long been suggested as a possible theory including the radiative reaction due to the electron self-interaction. A brief review of the Lorentz-Maxwell electrodynamics including canonical invariants and scattered light spectra will be given, with a special emphasis on frequency modulation effects associated to the nonlinear relativistic Doppler shift induced by radiation pressure on the backscattered radiation. For circular polarization, an exact analytical expression for the full nonlinear spectrum is derived, and is presented. It is found that the scattering of coherent light by an electron describing a well-behaved trajectory can yield chaotic spectra when the laser ponderomotive force strongly modulates the electron's proper time. The Dirac-Lorentz equation is then derived and integrated numerically backward in time to ensure convergence towards the unique acausal solution satisfying the Dirac-Rohrlich asymptotic conditions (no runaway, law of inertia), and its consequences are investigated in terms of nonlinear Compton scattering. The relevance of this work to laser acceleration, as well as ongoing nonlinear Compton scattering experiments at SLAC and to the proposed γ-γ collider will also be discussed
Radiative corrections to pion Compton scattering
Kaiser, N
2008-01-01
We calculate the one-photon loop radiative corrections to charged pion Compton scattering, $\\pi^- \\gamma \\to \\pi^- \\gamma $. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Analytical expressions for the ${\\cal O}(\\alpha)$ corrections to the invariant Compton scattering amplitudes, $A(s,u)$ and $B(s,u)$, are presented for 11 classes of contributing one-loop diagrams. Infrared finiteness of the virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy threshold $\\lambda$, and its relation to the experimental detection threshold is discussed. We find that the radiative corrections are maximal in backward directions, reaching e.g. -2.4% for a center-of-mass energy of $\\sqrt{s}=4m_\\pi$ and $\\lambda=5 $MeV. Furthermore, we extend our calculation of the radiative corrections by including the leading pion structure effect (at low energies) in form of its electric and magnetic polarizability difference, $\\alpha_\\pi - \\beta_...
A dual purpose Compton suppression spectrometer
Parus, J; Raab, W; Donohue, D
2003-01-01
A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.
Noise evaluation of Compton camera imaging for proton therapy
Ortega, P G; Cerutti, F; Ferrari, A; Gillam, J E; Lacasta, C; Llosá, G; Oliver, J F; Sala, P R; Solevi, P; Rafecas, M
2015-01-01
Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming γ energy is considered as a variable in the recons...
Ghosh, Saugata
2008-01-01
We derive bulk asymptotics of skew-orthogonal polynomials (sop) $\\pi^{\\bt}_{m}$, $\\beta=1$, 4, defined w.r.t. the weight $\\exp(-2NV(x))$, $V (x)=gx^4/4+tx^2/2$, $g>0$ and $t 0$, such that $\\epsilon\\leq (m/N)\\leq \\lambda_{\\rm cr}-\\epsilon$, where $\\lambda_{\\rm cr}$ is the critical value which separates sop with two cuts from those with one cut. Simultaneously we derive asymptotics for the recursive coefficients of skew-orthogonal polynomials. The proof is based on obtaining a finite term recur...
DEFF Research Database (Denmark)
Okura, Hisako; Nielsen, Søren Saxmose; Toft, Nils
2013-01-01
in farm bulk tank milk and simulating the effect of direct and indirect contamination with MAP. The effect of discarding milk from test-positive cows at different prevalences was assessed. The concentration of MAP in milk was estimated using a simulation model, while taking direct and indirect...... milk from test positive cows would result in discarding 11% of milk and reduce the MAP level by 80%. Due to poor sensitivity of the diagnostic test, removing test-positive cows would not further reduce the already low concentration of MAP and it would not guarantee the milk as MAP-free. The model was...
Do The Species Of Soft X-Ray Transients Reveal Bulk-Motion Inflow Phenomenon
Borozdin, K N; Trudolyubov, S P; Shrader, C R; Titarchuk, L G; Borozdin, Konstantin; Revnivtsev, Mikhail G; Trudolyubov, Sergey; Shrader, Chris; Titarchuk, Lev
1999-01-01
We present our analysis of the high-energy radiation from black hole (BH) transients, using archival data obtained primarily with RXTE observatory, and a comprehensive test of the bulk motion Comptonization (BMC) model for the high-soft state continuum. The emergent spectra of over 30 separate measurements of GRO J1655-40, GRS 1915+105, GRS 1739-278, 4U 1630-47 XTE J1755-32, and EXO~1846-031 X-ray sources are successfully fitted by the BMC model, which has been derived from basic physical principles in previous work. This in turn provides direct physical insight into the innermost observable regions where matter impinging upon the event horizon can effectively be directly viewed. The BMC model is characterized by three parameters: the disk color temperature, a geometric factor related to the illumination of the black hole (BH) site by the disk and a spectral index related to the efficiency of the bulk motion upscattering. For the case of GRO J1655-40, where there are distance and mass determinations, a self c...
Room temperature Compton proﬁles of conduction electrons in -Ga metal
Indian Academy of Sciences (India)
B P Panda; N C Mohapatra
2003-12-01
Room temperature Compton proﬁles of momentum distribution of conduction electrons in -Ga metal are calculated in band model. For this purpose, the conduction electron wave functions are determined in a temperature-dependent non-local model potential. The proﬁles calculated along the crystallographic directions, (100), (010), and (001) are found to be nearly isotropic. This conclusion is in reasonable agreement with experimental observations.
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiang-yand [Los Alamos National Laboratory; Uberuaga, Blas P [Los Alamos National Laboratory; Nerikar, Pankaj [Los Alamos National Laboratory; Sickafus, Kurt E [Los Alamos National Laboratory; Stanek, Chris R [Los Alamos National Laboratory
2009-01-01
Density functional theory (DFT) calculations of fission product (Xe, Sr, and Cs) incorporation and segregation in alkaline earth metal oxides, HfO{sub 2} and UO{sub 2} oxides, and the MgO/(U, Hf, Ce)O{sub 2} interfaces have been carried out. In the case of UO{sub 2}, the calculations were performed using spin polarization and with a Hubbard U term characterizing the on-sit Coulomb repulsion between the localized 5f electrons. The fission product solution energies in bulk UO{sub 2{+-}x} have been calculated as a function of non-stoichiometry x, and were compared to that in MgO. These calculations demonstrate that the fission product incorporation energies in MgO are higher than in HfO{sub 2}. However, this trend is reversed or reduced for alkaline earth oxides with larger cation sizes. The solution energies of fission products in MgO are substantially higher than in UO{sub 2{+-}x}, except for the case of Sr in the hypostoichiometric case. Due to size effects, the thermodynamic driving force of segregation for Xe and Cs from bulk MgO to the MgO/fluorite interface is strong. However, this driving force is relatively weak for Sr.
Felitsky, Daniel J; Record, M Thomas
2004-07-20
Two thermodynamic models have been developed to interpret the preferential accumulation or exclusion of solutes in the vicinity of biopolymer surface and the effects of these solutes on protein processes. The local-bulk partitioning model treats solute (and water) as partitioning between the region at/or near the protein surface (the local domain) and the bulk solution. The solvent exchange model analyzes a 1:1 competition between water and solute molecules for independent surface sites. Here we apply each of these models to interpret thermodynamic data for the interactions of urea and the osmoprotectant glycine betaine (N,N,N-trimethylglycine; GB) with the surface exposed in unfolding the marginally stable lacI HTH DNA binding domain. The partition coefficient K(P) quantifying accumulation of urea at this protein surface (K(P) approximately equal 1.1) is only weakly dependent on urea concentration up to 6 M urea. However, K(P) quantifying exclusion of GB from the vicinity of this protein surface increases from 0.83 (extrapolated to 0 M GB) to 1.0 (indicating that local and bulk GB concentrations are equal) at 4 M GB (activity > 40 M). We interpret the significant concentration dependence of K(P) for GB, predicted to be general for excluded, nonideal solutes such as GB, as a modest (8%) attenuation of the GB concentration dependence of solute nonideality in the local domain relative to that in the bulk solution. Above 4 M, K(P) for the interaction of GB with the surface exposed in protein unfolding is predicted to exceed unity, which explains the maximum in thermal stability observed for RNase and lysozyme at 4 M GB (Santoro, M. M., Liu, Y. F., Khan, S. M. A., Hou, L. X., and Bolen, D. W. (1992) Biochemistry 31, 5278-5283). Both thermodynamic models provide good two-parameter fits to GB and urea data for lacI HTH unfolding over a wide concentration range. The solute partitioning model allows for a full spectrum of attenuation effects in the local domain
Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro
2014-01-01
Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...
Compton-edge-based energy calibration of double-sided silicon strip detectors in Compton camera
International Nuclear Information System (INIS)
Accurate energy calibration of double-sided silicon strip detectors (DSSDs) is very important, but challenging for high-energy photons. In the present study, the calibration was improved by considering the Compton edge additionally to the existing low-energy calibration points. The result, indeed, was very encouraging. The energy-calibration errors were dramatically reduced, from, on average, 15.5% and 16.9% to 0.47% and 0.31% for the 356 (133Ba) and 662 keV (137Cs) peaks, respectively. The imaging resolution of a double-scattering-type Compton camera using DSSDs as the scatterer detectors, for a 22Na point-like source, also was improved, by ∼9%.
Comptonization signatures in the prompt emission of gamma-ray bursts
International Nuclear Information System (INIS)
We report results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras (WFCs) on board the BeppoSAX satellite and the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory. The main goal of this paper is to test spectral models of the GRB prompt emission that have recently been proposed. In particular, we test a recent photospheric model proposed, i.e., blackbody plus power law, the addition of a blackbody emission to the Band function in the cases in which this function does not fit the data, and a recent Comptonization model. By considering the few spectra for which the simple Band function does not provide a fully acceptable fit to the data, we find a statistically significant better fit by adding a blackbody to this function only in one case. We confirm earlier results found fitting the BATSE spectra alone with a blackbody plus power law. Instead, when the BATSE GRB spectra are joined to those obtained with WFCs (2-28 keV), this model becomes unacceptable in most time intervals in which we subdivide the GRB light curves. We find instead that the Comptonization model is always acceptable, even in the few cases in which the Band function is inconsistent with the data. We discuss the implications of these results.
A New Characterization of the Compton Process in the ULX Spectra
Kobayashi, S.; Nakazawa, K.; Makishima, K.
2015-07-01
Ultra Luminous X-ray sources (ULXs) are unusually luminous point sources located at arms of spiral galaxies, and are candidates for the intermediate mass black holes (Makishima+2000). Their spectra make transition betweens power-law shapes (PL state) and convex shapes (disk-like state). The latter state can be explained with either the multi-color disk (MCD)+thermal Comptonization (THC) model or a Slim disk model (Watari+2000). We adopt the former modeling, because it generally gives physically more reasonable parameters (Miyawaki+2009). To characterize the ULXs spectra with a unified way, we applied the MCD+THC model to several datasets of ULXs obtained by Suzaku, XMM-Newton, and Nu-Star. The model well explains all the spectra, in terms of cool disk (T_{in}˜0.2 keV), and a cool thick (T_{e}˜2 keV, τ ˜10) corona. The derived parameters can be characterized by two new parameters. One is Q≡ T_{e}/T_{in} which describes balance between the Compton cooling and gravitational heating of the corona, while the other is f≡ L_{raw}/L_{tot}, namely, the directly-visible (without Comptonization) MCD luminosity. Then, the PL state spectra have been found to show Q˜10 and f˜0.7, while those of the disk-like state Q˜ 3 and f≤0.01. Thus, the two states are clearly separated in terms of Q and f.
Conde, Enma; Moure, Andrés; Domínguez, Herminia; Gordon, Michael H; Parajó, Juan Carlos
2011-09-14
The phenolic fractions released during hydrothermal treatment of selected feedstocks (corn cobs, eucalypt wood chips, almond shells, chestnut burs, and white grape pomace) were selectively recovered by extraction with ethyl acetate and washed with ethanol/water solutions. The crude extracts were purified by a relatively simple adsorption technique using a commercial polymeric, nonionic resin. Utilization of 96% ethanol as eluting agent resulted in 47.0-72.6% phenolic desorption, yielding refined products containing 49-60% w/w phenolics (corresponding to 30-58% enrichment with respect to the crude extracts). The refined extracts produced from grape pomace and from chestnut burs were suitable for protecting bulk oil and oil-in-water and water-in-oil emulsions. A synergistic action with bovine serum albumin in the emulsions was observed. PMID:21786807
Indian Academy of Sciences (India)
B P Panda; N C Mohapatra
2002-01-01
Compton proﬁles of momentum distribution of conduction electrons in the orthorhombic phase of -Ga metal at low temperature are calculated in the band model for the three crystallographic directions (100), (010), and (001). Unlike the results at room temperature, previously reported by Lengeler, Lasser and Mair, the present results show strong anisotropy in the Compton proﬁles with the momentum distribution along (001) direction being substantially different from the other two directions. While experimental data on Compton proﬁles at low temperatures are not available for comparison with theory, the resistivity data in -Ga at low temperature strongly support this anisotropic behaviour. Besides, the electronic heat capacity constant available from both experiment and present calculation suggests that the conduction electron distribution at low temperature in the orthorhombic phase is markedly different from the free-electron-like-distribution at room temperature, thus lending additional support to anisotropic behaviour of Compton proﬁles. It would be nice to have Compton proﬁles data from experiment at low temperature for direct comparison with theory. It is hoped that the present work would stimulate enough interest in that direction.
The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)
Watanabe, Shin; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji
2015-01-01
The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and ...
Compton Radiation for Nuclear Waste Management and Transmutation
Bulyak, E.; Urakawa, J.
2015-10-01
Compton inverse radiation is emitted in the process of backscattering of the laser pulses off the relativistic electrons. This radiation possesses high spectral density and high energy of photons--in hard x-ray up to gammaray energy range--with moderate electron energies (hundreds of MeV up to 1 GeV) due to short wavelength of the laser radiation. The Compton radiation is well collimated: emitting within a narrow cone along the electron beam. A distinct property of the Compton inverse radiation is a steep high-energy cutoff of the spectrum and the maximal intensity just below the cutoff. The Compton sources can attain: spectral density up to 1014 gammas/(s 0.1%bandwidth) in MeV range of energies, and spectral brightness up to 1020 gammas/(smm2mr2 0.1% bw). Applicability of Compton sources for nuclear waste management and detection of radioisotopes and fissionable nuclides are discussed in the report. Also application limits of Compton gamma sources for transmutation of radioactive isotopes are estimated. A recently proposed subtracting method, in which two sets of data obtained by irradiating the object by the Compton beams with slightly different maximal energies are compared, will enhance resolution of detection radioactive elements at the 'atomic' (hundreds of keV) and the 'nuclear' (a few MeV) photon energies.
Virtual compton scattering at high energy
International Nuclear Information System (INIS)
The virtual Compton scattering (VCS) reaction (ep→e'p' gamma) at high energy will provide new information on the proton structure. The invariant momentum transfer (t=(q-q')2) de pendence of high energy VCS is related to the flavor dependent vector and axial-vector form factors of the the proton. Thus VCS can provide information that is complementary to parity violating electron scattering measurements. For small t and large Q2, VCS generalizes the structure functions of deep inelastic lepton scattering. These generalized structure functions have a sum rule which yields the net contribution of quark spin and orbital angular momentum to the proton spin. A large acceptance detector such as the MEMUS design, capable of running at a luminosity 1035/cm2/sec at incident electron energies from 10 to 30 GeV can measure the VCS process in a broad and exciting kinematic range. (orig.)
The dose from Compton backscatter screening.
Rez, Peter; Metzger, Robert L; Mossman, Kenneth L
2011-04-01
Systems based on the detection of Compton backscattered X rays have been deployed for screening personnel for weapons and explosives. Similar principles are used for screening vehicles at border-crossing points. Based on well-established scattering cross sections and absorption coefficients in conjunction with reasonable estimates of the image contrast and resolution, the entrance skin dose and the dose at a depth of 1 cm can be calculated. The effective dose can be estimated using the same conversion coefficients as used to convert exposure measurements to the effective dose. It is shown that the effective dose is highly dependent on image resolution (i.e. pixel size).The effective doses for personnel screening systems are unlikely to be in compliance with the American National Standards Institute standard NS 43.17 unless the pixel sizes are >4 mm. Nevertheless, calculated effective doses are well below doses associated with health effects. PMID:21068018
Compton detector with flat energy response
International Nuclear Information System (INIS)
The work focuses on the study of vacuum Compton detector (VCD) with flat energy response. The proposed VCD adopts a compensation design of' the emitter, i. e. a superimposition of materials of varied thicknesses, and is optimized with Monte Carlo method. The optimally designed VCD consists of an emitter with the superimposition of 0.01, 1 mm-thick Au, a 3 mm-thick Fe front window and a 3 mm-thick Pb shielding. Its non-flatness of energy response to gamma-ray is less than 10.7% over 0.4-7.0 MeV energy zone. The flatness of energy response to gamma ray of this VCD is more excellent than current gamma detectors'. (authors)
Combining Harmonic Generation and Laser Chirping to Achieve High Spectral Density in Compton Sources
Terzić, Balša; Krafft, Geoffrey A
2015-01-01
Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. As a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results to demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. This combination of chirping and h...
Electronic properties and Compton profiles of silver iodide
Indian Academy of Sciences (India)
Alpa Dashora; Ambica Marwal; K R Soni; B L Ahuja
2010-06-01
We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented plane-wave method to derive the energy bands and the density of states. To compare our theoretical data, isotropic Compton profile measurement on -AgI using 137Cs Compton spectrometer at an intermediate resolution of 0.38 a.u. has been undertaken. The theoretical anisotropies are also interpreted on the basis of energy bands.
Bulk scalar field in DGP braneworld cosmology
Ansari, Rizwan ul Haq
2007-01-01
We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .
Badrinarayanan, Rajagopalan; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria
2014-12-01
As with all redox flow batteries, the Vanadium Redox flow Battery (VRB) can suffer from capacity loss as the vanadium ions diffuse at different rates leading to a build-up on one half-cell and dilution on the other. In this paper an extended dynamic model of the vanadium ion transfer is developed including the effect of temperature and bulk electrolyte transfer. The model is used to simulate capacity decay for a range of different ion exchange membranes that are being used in the VRB. The simulations show that Selemion CMV and Nafion 115 membranes have similar behavior where the impact of temperature on capacity loss is highest within the first 100 cycles. The results for Selemion AMV membrane however are seen to be very different where the capacity loss at different temperatures observed to increase linearly with increasing charging/discharging cycles. The model is made more comprehensive by including the effect of bulk electrolyte transfer. A volume change of 19% is observed in each half-cell for Nafion 115 membrane based on the simulation parameters. The effect of this change in volume directly affects concentration, and the characteristics are analyzed for each vanadium species as well as the overall concentration in the half-cells.
AN INVERSE COMPTON SCATTERING ORIGIN OF X-RAY FLARES FROM Sgr A*
Energy Technology Data Exchange (ETDEWEB)
Yusef-Zadeh, F. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Wardle, M. [Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109 (Australia); Dodds-Eden, K.; Gillessen, S.; Genzel, R. [Max Planck Institut fuer Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Heinke, C. O. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Bushouse, H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Grosso, N.; Porquet, D. [Observatoire astronomique de Strasbourg, Universite de Strasbourg, CNRS, INSU, 11 rue de l' Universite, 67000 Strasbourg (France)
2012-07-15
The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and submillimeter (sub-mm) wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to {approx}5-20 MeV. Here, we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow and on the locations where flares are produced. In the context of this model, the strong X-ray counterparts to near-IR flares arising from the inner disk should show no significant time delay, whereas near-IR flares in the outer disk should show a broadened and delayed X-ray flare.
AN INVERSE COMPTON SCATTERING ORIGIN OF X-RAY FLARES FROM Sgr A*
International Nuclear Information System (INIS)
The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and submillimeter (sub-mm) wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to ∼5-20 MeV. Here, we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow and on the locations where flares are produced. In the context of this model, the strong X-ray counterparts to near-IR flares arising from the inner disk should show no significant time delay, whereas near-IR flares in the outer disk should show a broadened and delayed X-ray flare.
Extend the Kompaneets Equation to Down-Comptonization Process in a Novel Way
Zhang, Xu
2015-01-01
Comptonization is a very important phenomenon in astrophysics. Kompaneets equation describes up-Comptonization process in nonrelativistic astrophysics, while it fails for down-Comptonization Scattering which is the most important radiative transfer process in hard X-rays and $\\gamma$-rays astronomy. In this study, we explore both up-Comptonization and down-Comptonization processes. A new relativistic corrections is introduced to the Kompaneets equation which is valid in both nonrelativistic energy regime with the photon energy $h\
Band structure, cohesive properties, and Compton profile of γ- and α-cerium
Podloucky, R.; Glötzel, D.
1983-03-01
Recent Compton scattering experiments on the high-volume (γ) and low-volume (α) phases of fcc cerium and their interpretation in terms of the renormalized-free-atom model cast severe doubts on the promotional model of Pauling and Zachariasen for the γ-α transition. Stimulated by these results, we have extended a previous self-consistent local-density band-structure investigation to study the Compton profiles of γ- and α-cerium. For the band structure, Bloch functions, and their Fourier transforms we use the linear muffin-tin orbital method in the atomic-sphere approximation. We analyze the calculated Compton profiles in terms of band structure and local angular momentum character of the wave functions. The change in band structure and wave functions under compression (with approximately one electron per atom in the 4f band of both phases) accounts well for the observed change in the Compton profile. This provides further evidence against the promotional model in agreement with the analysis of Kornstädt et al. In addition, we study the cohesive energy of fcc cerium as a function of volume in the local-density approximation. For α-cerium in the 4f1(5d 6s)3 configuration we find a cohesive energy of 5.4 eV/atom in good agreement with experiment, whereas the "promotional" 4f0(5d 6s)4 state yields a binding energy of 0.6 eV/atom only. Therefore the fourth valence electron has to be a 4f electron, and α-cerium has to be regarded as an f-band metal.
Experimental aspects of virtual Compton scattering at MAMI
International Nuclear Information System (INIS)
Virtual Compton scattering allows us to measure for the first time the generalized polarizabilities of the proton. The experimental method to extract these new observables is shown as well as some preliminary results obtained at MAMI. (authors)
Data reduction for high gamma-ray compton spectroscopy
International Nuclear Information System (INIS)
General aspects of the Compton Scattering theory are introduced. Data analysis procedure for the γ-ray experiment is outlined. The Background, detector response function, geometrical broadening function and source broadening function corrections are discussed
Polarized positron source with a Compton multiple interaction point line
Chaikovska, I; Dadoun, O; Lepercq, P; Variola, A
2014-01-01
Positron sources are critical components of the future linear collider projects. This is essentially due to the high luminosity required, orders of magnitude higher than existing ones. In addition, polarization of the positron beam rather expands the physics research potential of the machine. In this framework, the Compton sources for polarized positron production are taken into account where the high energy gamma rays are produced by the Compton scattering and subsequently converted into the polarized electron-positron pairs in a target-converter. The Compton multiple Interaction Point (IP) line is proposed as one of the solutions to increase the number of the positrons produced. The gamma ray production with the Compton multiple IP line is simulated and used for polarized positron generation. Later, a capture section based on an adiabatic matching device (AMD) followed by a pre-injector linac is simulated to capture and accelerate the positron beam.
Compton scattering profile for in vivo XRF techniques.
Tartari, A; Baraldi, C; Felsteiner, J; Casnati, E
1991-05-01
The contribution from single Compton scattered photons to the background in in vivo x-ray fluorescence analysis is evaluated by taking into account the energy broadening of the scattered photons which reflects the momentum distribution of the target electrons. A general-purpose Monte Carlo evaluation of multiple scattering components, as well as accurate experimental verifications with 59.54 keV photons impinging on various targets of interest for real-life irradiation, confirm that the single Compton scattering profiles of the elements composing the biological matrix dominate the trend and amplitude of the background in the region of interest with near-backscatter configurations. Step features are likewise explained in terms of single Compton phenomenology. Other probable sources of background, such as photoelectron Bremsstrahlung and pile-up distribution, are studied both theoretically and experimentally in order to compare their amplitude and features with those of single Compton scattered photon profiles. PMID:2068224
Compton scatter imaging: A tool for historical exploration
Energy Technology Data Exchange (ETDEWEB)
Harding, G. [GE Security Germany GmbH, Heselstuecken 3, D-22453 Hamburg (Germany)], E-mail: Geoffrey.Harding@ge.com; Harding, E. [University of Muenster, Interdisciplinary Research Training Group ' Societal symbolism in mediaeval and early modern times' (German Research Foundation, DFG), Pferdegasse 3/D-48143 Muenster (Germany)
2010-06-15
This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.
Virtual Compton scattering γ→γ'p'
International Nuclear Information System (INIS)
The Virtual Compton scattering allows us to measure for the first time the generalized polarizabilities of the proton. The experimental method used to extract these new observables is presented as well as some preliminary results obtained at MAMI. (authors)
Applicability of compton imaging in nuclear decommissioning activities
International Nuclear Information System (INIS)
During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)
High resolution measurements with silicon drift detectors for Compton camera applications
International Nuclear Information System (INIS)
The accurate and rapid location of the radionuclide distribution in radioactively labeled tissue or organs is the goal of nuclear medicine. The Compton camera, in principle, can improve the spatial resolution and efficiency with respect to today's PET and SPECT techniques. Since it is necessary to reconstruct a full scattering event in the Compton camera, the detector technology is very demanding. Useful detectors have not been available in the past. However, a new detector type, the Silicon drift detector (SDD), developed for experiments in X-ray astrophysics show promising features. The test of such a system is the main objective of this thesis. The optimization of a Compton camera system in terms of efficiency and resolution is a complex multiparameter problem which depends on various detector properties. The influence of these parameters on the performance of the Compton camera system is investigated in this work using the analytical system models and Monte Carlo simulations in order to find optimum detector parameters. Compton camera test setup has been constructed using a 19 channel SDD with on-chip JFET as the scatter detector and an Anger camera without a lead collimator as the absorption detector. The equivalent noise charge of the SDD channels at 10 C with a shaping time of 100 ns was measured to be between 30-40 electrons rms. New readout scheme has been implemented for the fast readout of the detector which is crucial for this application. The system is designed such that the measurements can be done in all detector orientations and kinematical conditions. Compton camera coincidence events with high statistics have been acquired by irradiating the SDD cells with a finely-collimated 1 Ci 137Cs source. Time, energy and angular distributions of coincidence events measured with this detector system are presented in this work. It is shown that with the scatter detector having an excellent energy resolution, it is possible to reconstruct the source
Compton suppression naa in the analysis of food and beverages
International Nuclear Information System (INIS)
Applicability and performance of Compton suppression method in the analysis of food and beverages was re-established in this study. Using ''1''3''7Cs and ''6''0Co point sources Compton Suppression Factors (SF), Compton Reduction Factors (RF), Peak-to-Compton ratio (P/C), Compton Plateau (Cpl), and Compton Edge (Ce) were determined for each of the two sources. The natural background reduction factors in the anticoincidence mode compared to the normal mode were evaluated. The reported R.F. values of the various Compton spectrometers for ''6''0Co source at energy 50-210 keV (backscattering region), 600 keV (Compton edge corresponding to 1173.2 keV gamma-ray) and 1110 keV (Compton edge corresponding to 1332.5 keV gamma-ray) were compared with that of the present work. Similarly the S.F. values of the spectrometers for ''1''3''7Cs source were compared at the backscattered energy region (S.F.b = 191-210 keV), Compton Plateau (S.F.pl = 350-370 keV), and Compton Edge (S.F.e = 471-470 keV) and all were found to follow a similar trend. We also compared peak reduction ratios for the two cobalt energies (1173.2 and 1332.5) with the ones reported in literature and two results agree well. Applicability of the method to food and beverages was put to test for twenty one major, minor, and trace elements (Ba, Sr, I, Br, Cu, V, Mg, Na, Cl, Mn, Ca, Sn,K, Cd, Zn, As, Sb, Ni, Cs, Fe, and Co) commonly found in food, milk, tea and tobacco. The elements were assayed using five National Institute for Standards and Technology (NIST) certified reference materials (Non-fat powdered milk, Apple leaves, Tomato leaves, and Citrus leaves). The results obtained shows good agreement with NIST certified values, indicating that the method is suitable for simultaneous determination of micro-nutrients, macro-nutrients and heavy elements in food and beverages without undue interference problems
High energy Compton scattering study of TiC and TiN
International Nuclear Information System (INIS)
We present the experimental Compton profiles of TiC and TiN using 661.65 keV γ-ray from 20 Ci 137Cs source. To explain our experimental data on momentum densities, we have computed the theoretical profiles, energy bands and density of states using linear combination of atomic orbitals scheme within the framework of density functional theory. In addition the energy bands, density of states and Fermi surfaces using full potential linearised augmented plane wave method have also been computed. Energy bands and density of states obtained from both the theoretical models show metallic character of TiC and TiN. The anisotropies in Compton line shapes and the Fermi surface topology are discussed in term of energy bands.
Zope, Rajendra R.; Kshirsagar, Anjali; Pathak, Rajeev K.
1995-09-01
Second-order corrections to the impulse-approximation Compton profiles of some inert atomic species (He, Ne, Ar, and Kr) are obtained by applying the theory due to Gasser, Tavard and others to a density functional model, as demonstrated recently for the first-order effect by Pathak, Kshirsagar, Hoffmeyer and Thakkar. The cumulative (first plus second) correction, for moderate momentum transfers (to the electron in the Compton process) is seen to bring out an appreciable structural change when augmented to the zeroth-order impulse profile. It is observed that the sign of the peak second-order correction is correlated to the orbital angular momentum and magnetic quantum numbers, whereby an empirical rule analogous to that of the behavior of the first-order correction is discovered.
High energy Compton scattering study of TiC and TiN
Energy Technology Data Exchange (ETDEWEB)
Joshi, Ritu; Bhamu, K.C.; Dashora, Alpa [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.co [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)
2011-05-15
We present the experimental Compton profiles of TiC and TiN using 661.65 keV {gamma}-ray from 20 Ci {sup 137}Cs source. To explain our experimental data on momentum densities, we have computed the theoretical profiles, energy bands and density of states using linear combination of atomic orbitals scheme within the framework of density functional theory. In addition the energy bands, density of states and Fermi surfaces using full potential linearised augmented plane wave method have also been computed. Energy bands and density of states obtained from both the theoretical models show metallic character of TiC and TiN. The anisotropies in Compton line shapes and the Fermi surface topology are discussed in term of energy bands.
Is the Lack of Pulsations in Low Mass X-Ray Binaries due to Comptonizing Coronae?
Gogus, E; Gilfanov, M; Gogus, Ersin
2006-01-01
The spin periods of the neutron stars in most Low Mass X-ray Binary (LMXB) systems still remain undetected. One of the models to explain the absence of coherent pulsations has been the suppression of the beamed signal by Compton scattering of X-ray photons by electrons in a surrounding corona. We point out that simultaneously with wiping out the pulsation signal, such a corona will upscatter (pulsating or not) X-ray emission originating at and/or near the surface of the neutron star leading to appearance of a hard tail of Comptonized radiation in the source spectrum. We analyze the hard X-ray spectra of a selected set of LMXBs and demonstrate that the optical depth of the corona is not likely to be large enough to cause the pulsations to disappear.
Comparison between electron and neutron Compton scattering studies
Moreh Raymond; Finkelstein Yacov; Vos Maarten
2015-01-01
We compare two techniques: Electron Compton Scattering (ECS) and neutron Compton scattering (NCS) and show that using certain incident energies, both can measure the atomic kinetic energy of atoms in molecules and solids. The information obtained is related to the Doppler broadening of nuclear levels and is very useful for deducing the widths of excited levels in many nuclei in self absorption measurements. A comparison between the atomic kinetic energies measured by the two methods on the sa...
Bulk viscosity and deflationary universes
Lima, J A S; Waga, I
2007-01-01
We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.
Bulk Viscosity of Interacting Hadrons
Wiranata, A
2009-01-01
We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.
Deeply virtual Compton scattering off unpolarised deuterium at HERMES
International Nuclear Information System (INIS)
The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of ΔΣ in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)
Deeply virtual Compton scattering off unpolarised deuterium at HERMES
Energy Technology Data Exchange (ETDEWEB)
Hill, Gordon D.
2008-10-15
The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of {delta}{sigma} in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)
An Inverse Compton Scattering Origin of X-ray Flares from Sgr A*
Yusef-Zadeh, F; Dodds-Eden, K; Heinke, C O; Gillessen, S; Genzel, R; Bushouse, H; Grosso, N; Porquet, D
2012-01-01
The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and sub-mm wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to $\\sim 5-20$\\,MeV. Here we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our Inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow an...
The CLIC positron source based on compton schemes
Rinolfi, L; Braun, H; Papaphilippou, Y; Schulte, D; Vivoli, A; Zimmermann, F; Dadoun, O; Lepercq, P; Roux, R; Variola, A; Zomer, F; Pogorelski, I; Yakimenko, V; Gai, W; Liu, W; Kamitani, T; Omori, T; Urakawa, J; Kuriki, M; Takahasi, TM; Bulyak, E; Gladkikh, P; Chehab, R; Clarke, J
2010-01-01
The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by a Compton process. In one option, Compton backscattering takes place in a so-called “Compton ring”, where an electron beam of 1 GeV interacts with circularly-polarized photons in an optical resonator. The resulting circularly-polarized gamma photons are sent on to an amorphous target, producing pairs of longitudinally polarized electrons and positrons. The nominal CLIC bunch population is 4.2x109 particles per bunch at the exit of the Pre-Damping Ring (PDR). Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a Compton Energy Recovery Linac (ERL) where a quasicontinual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three option...
Unified ab initio treatment of attosecond photoionization and Compton scattering
International Nuclear Information System (INIS)
We present a new theoretical approach to attosecond laser-assisted photo- and Compton ionization. Attosecond x-ray absorption and scattering are described by S-circumflex(1,2)-matrices, which are coherent superpositions of 'monochromatic' S-circumflex(1,2)-matrices in a laser-modified Furry representation. Besides refining the existing theory of the soft x-ray photoelectron attosecond streak camera and spectral phase interferometry (ASC and ASPI), we formulate a theory of hard x-ray photoelectron and Compton ASC and ASPI. The resulting scheme has a simple structure and leads to closed-form expressions for ionization amplitudes. We investigate Compton electron interference in the separable Coulomb-Volkov continuum with both Coulomb and laser fields treated non-perturbatively. We find that at laser-field intensities below 1013 Wcm-2 normalized Compton lines almost coincide with the lines obtained in the laser-free regime. At higher intensities, attosecond interferences survive integration over electron momenta, and feature prominently in the Compton lines themselves. We define a regime where the electron ground-state density can be measured with controllable accuracy in an attosecond time interval. The new theory provides a firm basis for extracting photo- and Compton electron phases and atomic and molecular wavefunctions from experimental data.
Time-step limits for a Monte Carlo Compton-scattering method
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Lowrie, Robert B [Los Alamos National Laboratory
2008-01-01
Compton scattering is an important aspect of radiative transfer in high energy density applications. In this process, the frequency and direction of a photon are altered by colliding with a free electron. The change in frequency of a scattered photon results in an energy exchange between the photon and target electron and energy coupling between radiation and matter. Canfield, Howard, and Liang have presented a Monte Carlo method for simulating Compton scattering that models the photon-electron collision kinematics exactly. However, implementing their technique in multiphysics problems that include the effects of radiation-matter energy coupling typically requires evaluating the material temperature at its beginning-of-time-step value. This explicit evaluation can lead to unstable and oscillatory solutions. In this paper, we perform a stability analysis of this Monte Carlo method and present time-step limits that avoid instabilities and nonphysical oscillations by considering a spatially independent, purely scattering radiative-transfer problem. Examining a simplified problem is justified because it isolates the effects of Compton scattering, and existing Monte Carlo techniques can robustly model other physics (such as absorption, emission, sources, and photon streaming). Our analysis begins by simplifying the equations that are solved via Monte Carlo within each time step using the Fokker-Planck approximation. Next, we linearize these approximate equations about an equilibrium solution such that the resulting linearized equations describe perturbations about this equilibrium. We then solve these linearized equations over a time step and determine the corresponding eigenvalues, quantities that can predict the behavior of solutions generated by a Monte Carlo simulation as a function of time-step size and other physical parameters. With these results, we develop our time-step limits. This approach is similar to our recent investigation of time discretizations for the
Bamba, Kazuharu
2015-01-01
We explore the perfect fluid description of the inflationary universe. In particular, we investigate a fluid model with the bulk-viscosity term. We find that the three observables of inflationary cosmology: the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be consistent with the recent Planck results. We also reconstruct the explicit equation of state (EoS) of the viscous fluid from the spectral index of the curvature perturbations compatible with the Planck analysis. In the reconstructed models of the viscous fluid, the tensor-to-scalar ratio of the density perturbations can satisfy the constraints obtained from the Planck satellite. The running of the spectral index can explain the Planck data. In addition, it is demonstrated that in the reconstructed models of the viscous fluid, the graceful exit from inflation can be realized. Furthermore, we show that the singular inflation can occur in the viscous fluid ...
International Nuclear Information System (INIS)
In this paper we report on electron momentum densities in ZnSe using Compton scattering technique. For the directional measurements we have employed a newly developed 100 mCi 241Am Compton spectrometer which is based on a small disc source with shortest geometry. For the theoretical calculations we have employed a self-consistent Hartree-Fock linear combination of atomic orbitals (HF-LCAO) approach. It is seen that the anisotropy in the measured Compton profiles is well reproduced by our HF-LCAO calculation and the other available pseudopotential data. The anisotropy in the Compton profiles is explained in terms of energy bands and bond length. - PACS numbers: 13.60.Fz, 78.70. Ck, 78.70.-g (orig.)
Liu, L.; Patey, G. N.
2016-05-01
We investigate pressure driven flow rates of water through a (6,6) carbon nanotube (CNT) for the TIP3P, SPC/E, and TIP4P/2005 water models. The flow rates are shown to be strongly model dependent, differing by factors that range from ˜6 to ˜2 as the temperature varies from 260 to 320 K, with TIP3P showing the fastest flow and TIP4P/2005 the slowest. For the (6,6) CNT, the size constraint allows only single-file conduction for all three water models. Hence, unlike the situation for the larger [(8,8) and (9,9)] CNTs considered in our earlier work [L. Liu and G. N. Patey, J. Chem. Phys. 141, 18C518 (2014)], the different flow rates cannot be attributed to different model-dependent water structures within the nanotubes. By carefully examining activation energies, we trace the origin of the model discrepancies for the (6,6) CNT to differing rates of entry into the nanotube, and these in turn are related to differing bulk mobilities of the water models. Over the temperature range considered, the self-diffusion coefficients of the TIP3P model are much larger than those of TIP4P/2005 and those of real water. Additionally, we show that the entry rates are approximately inversely proportional to the shear viscosity of the bulk liquid, in agreement with the prediction of continuum hydrodynamics. For purposes of comparison, we also consider the larger (9,9) CNT. In the (9,9) case, the flow rates for the TIP3P model still appear to be mainly controlled by the entry rates. However, for the SPC/E and TIP4P/2005 models, entry is no longer the rate determining step for flow. For these models, the activation energies controlling flow are considerably larger than the energetic barriers to entry, due in all likelihood to the ring-like water clusters that form within the larger nanotube.
Compton Scattering by Static and Moving Media; 1, the Transfer Equation and Its Moments
Psaltis, D; Psaltis, Dimitrios; Lamb, Frederick K.
1997-01-01
Compton scattering of photons by nonrelativistic particles is thought to play an important role in forming the radiation spectrum of many astrophysical systems. Here we derive the time-dependent photon kinetic equation that describes spontaneous and induced Compton scattering as well as absorption and emission by static and moving media, the corresponding radiative transfer equation, and their zeroth and first moments, in both the system frame and in the frame comoving with the medium. We show that it is necessary to use the correct relativistic differential scattering cross section in order to obtain a photon kinetic equation that is correct to first order in epsilon/m_e, T_e/m_e, and V, where epsilon is the photon energy, T_e and m_e are the electron temperature and rest mass, and V is the electron bulk velocity in units of the speed of light. We also demonstrate that the terms in the radiative transfer equation that are second-order in V usually should be retained, because if the radiation energy density i...
Statistical simulation of multiple Compton backscattering process
Potylitsyn, A. P.; Kolchuzhkin, A. M.
2014-09-01
A number of laboratories are currently developing monochromatic sources of X-rays and gamma quanta based on the Compton backscattering (CBS) of laser photons by relativistic electrons. Modern technologies are capable of providing a concentration of electrons and photons in the interaction point such that each primary electron can emit several hard photons. In contrast to the well-known nonlinear CBS process, in which an initial electron "absorbs" a few laser photons and emits a single hard one, the above-mentioned process can be called a multiple CBS process and is characterized by a mean number of emitted photons. The present paper is devoted to simulating the parameters of a beam of back scattered quanta based on the Monte Carlo technique. It is shown that, even in the case of strong collimation of a resulting photon beam, the radiation monochromaticity may deteriorate because of the contribution coming from the multiple photon emission, which is something that must be considered while designing new CBS sources.
Deeply virtual Compton scattering at Jefferson Laboratory
Biselli, Angela
2015-01-01
The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \\rightarrow e' N' \\gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\\tilde{H}}$, ${\\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables o...
Anomalous nonlinear X-ray Compton scattering
Fuchs, Matthias; Trigo, Mariano; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, Philip H.; Feng, Yiping; Herrmann, Sven; Carini, Gabriella A.; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Moeller, Stefan; Hastings, Jerome B.; Reis, David A.
2015-11-01
X-ray scattering is typically used as a weak linear atomic-scale probe of matter. At high intensities, such as produced at free-electron lasers, nonlinearities can become important, and the probe may no longer be considered weak. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions: the concerted nonlinear Compton scattering of two identical hard X-ray photons producing a single higher-energy photon. The X-ray intensity reached 4 × 1020 W cm-2, corresponding to an electric field well above the atomic unit of strength and within almost four orders of magnitude of the quantum-electrodynamic critical field. We measure a signal from solid beryllium that scales quadratically in intensity, consistent with simultaneous non-resonant two-photon scattering from nearly-free electrons. The high-energy photons show an anomalously large redshift that is incompatible with a free-electron approximation for the ground-state electron distribution, suggesting an enhanced nonlinearity for scattering at large momentum transfer.
Deeply virtual Compton scattering off longitudinally polarised protons at HERMES
International Nuclear Information System (INIS)
This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep→epγ interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries AUL and ALU which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry ALL dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin φ and cos(0φ) amplitudes are observed for AUL and ALL respectively, with an unexpectedly large sin(2φ) amplitude for AUL. The results for the AUL and ALL asymmetries are broadly compatible with theory predictions, and the extracted ALU amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)
Ahuja, Ushma; Kumar, Kishor; Joshi, Ritu; Bhavsar, D. N.; Heda, N. L.
2016-07-01
We have employed linear combination of atomic orbitals (LCAO) method to compute the Mulliken's population (MP), energy bands, density of states (DOS) and Compton profiles for hexagonal MoTeSe. The density functional theory (DFT) and hybridization of Hartree-Fock with DFT (B3LYP) have been used within the LCAO approximation. Performance of theoretical models has been tested by comparing the theoretical momentum densities with the experimental Compton profile of MoTeSe measured using 137Cs Compton spectrometer. It is seen that the B3LYP prescription gives a better agreement with the experimental data than other DFT based approximations. The energy bands and DOS depict an indirect band gap character in MoTeSe. In addition, a relative nature of bonding in MoTeSe and its isovalent MoTe2 is discussed in terms of equal-valence-electron-density (EVED) profiles. On the basis of EVED profiles it is seen that MoTeSe is more covalent than MoTe2.
A growth-rate indicator for Compton-thick active galactic nuclei
Brightman, M; Ballantyne, D R; Baloković, M; Brandt, W N; Chen, C -T; Comastri, A; Farrah, D; Gandhi, P; Harrison, F A; Ricci, C; Stern, D; Walton, D J
2016-01-01
Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGN) is difficult to measure. A statistically significant correlation between the Eddington ratio, {\\lambda}$_{Edd}$, and the X-ray power-law index, {\\Gamma}, observed in unobscured AGN offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line-of-sight to the central engine is heavily obscured, the recovery of the intrinsic {\\Gamma} is challenging. Here we study a sample of local, predominantly Compton-thick megamaser AGN, where the black hole mass, and thus Eddington luminosity, are well known. We compile results on X-ray spectral fitting of these sources with sensitive high-energy (E> 10 keV) NuSTAR data, where X-ray torus models which take into account the reprocessing effects have been used to recover the intrinsic {\\Gamma} values and X-ray luminosities, L$_...
A likely inverse-Compton emission from the Type IIb SN 2013df
Li, K L
2016-01-01
The inverse-Compton X-ray emission model for supernovae has been well established to explain the X-ray properties of many supernovae for over 30 years. However, no observational case has yet been found to connect the X-rays with the optical lights as they should be. Here, we report the discovery of a hard X-ray source that is associated with a Type II-b supernova. Simultaneous emission enhancements have been found in both the X-ray and optical light curves twenty days after the supernova explosion. While the enhanced X-rays are likely dominated by inverse-Compton scatterings of the supernova's lights from the Type II-b secondary peak, we propose a scenario of a high-speed supernova ejecta colliding with a low-density pre-supernova stellar wind that produces an optically thin and high-temperature electron gas for the Comptonization. The inferred stellar wind mass-loss rate is consistent with that of the supernova progenitor candidate as a yellow supergiant detected by the Hubble Space Telescope, providing an i...
Crater size-frequency distribution measurements and age of the Compton-Belkovich Volcanic Complex
Shirley, K. A.; Zanetti, M.; Jolliff, B.; van der Bogert, C. H.; Hiesinger, H.
2016-07-01
The Compton-Belkovich Volcanic Complex (CBVC) is a 25 × 35 km feature on the lunar farside marked by elevated topography, high albedo, high thorium concentration, and high silica content. Morphologies indicate that the complex is volcanic in origin and compositions indicate that it represents rare silicic volcanism on the Moon. Constraining the timing of silicic volcanism at the complex is necessary to better understand the development of evolved magmas and when they were active on the lunar surface. We employ image analysis and crater size-frequency distribution (CSFD) measurements on several locations within the complex and at surrounding impact craters, Hayn (87 km diameter), and Compton (160 km diameter), to determine relative and absolute model ages of regional events. Using CSFD measurements, we establish a chronology dating regional resurfacing events and the earliest possible onset of CBVC volcanism at ∼3.8 Ga, the formation of Compton Crater at 3.6 Ga, likely resurfacing by volcanism at the CBVC at ∼3.5 Ga, and the formation of Hayn Crater at ∼1 Ga. For the CBVC, we find the most consistent results are obtained using craters larger than 300 m in diameter; the small crater population is affected by their approach to an equilibrium condition and by the physical properties of regolith at the CBVC.
Directory of Open Access Journals (Sweden)
Roberta Rossi
2015-12-01
Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.
Ferreira, Rodrigo M; Batagin-Neto, Augusto; Lavarda, Francisco C
2015-12-01
New materials are currently being sought for use in active layers of bulk-heterojunction organic solar cells, and computational modeling plays an important role in this search. Although open circuit voltage (V(oc)) is one of the fundamental quantities that determine the efficiency of a solar cell, there is no consensus on the best way to estimate this magnitude for new materials from calculations of the electronic structure. In this paper, we compare ways of predicting V(oc) values employing a diverse group of blends and conclude that it is possible to have a good prediction tool for organic solar cells based on phenyl-C61-butyric acid methyl ester (PCBM) acceptor molecules. PMID:26682440
Modeling of Mycobacterium avium subsp. paratuberculosis in farm bulk tank milk
DEFF Research Database (Denmark)
Okura, Hisako; Nielsen, Søren Saxmose; Toft, Nils
2012-01-01
super-shedders. At the prevalence of 15%, discarding milk from test positive cows would result in discarding 11% of milk and reduce the MAP level by 80%. The model was relatively simple yet capable of capturing true infection status and associated contributions from milk and feces. Further knowledge on...... simulating the effect of different control options at different infection prevalences. The concentration of MAP in milk was estimated using a hierarchical simulation model representing individual cows in a herd while taking both direct and indirect contamination with MAP into account. Parameters included...... true within-herd infection prevalences with cows in different infection stages, which were used to estimate prevalences of milk and fecal shedders, and subsequently MAP concentrations in milk and feces. Cows in different infection stages were considered with different risks of excreting MAP testing...
Energy Technology Data Exchange (ETDEWEB)
Antici, P. [Dipartimento SBAI, Università di Roma ‘‘La Sapienza,’’ Via Scarpa 14-16, 00161 Roma (Italy); INRS-EMT, Varennes, Québec (Canada); Istituto Nazionale di Fisica Nucleare, Via E. Fermi, 40-00044 Frascati (Italy); LULI, École Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Gremillet, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Grismayer, T. [GoLP/Instituto de Plasmas e Fusão Nuclear-Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Mora, P. [Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau (France); Audebert, P.; Mančic, A.; Fuchs, J. [LULI, École Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Borghesi, M.; Cecchetti, C. A. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom)
2013-12-15
Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time- and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating.
Modeling of Mycobacterium avium subsp. paratuberculosis in farm bulk tank milk
Okura, Hisako; Nielsen, Søren Saxmose; Toft, Nils
2012-01-01
Mycobacterium avium subsp. paratuberculosis (MAP) in milk of bovine origin is suspected of being implicated Crohn’s disease in humans. Pasteurization is considered to reduce the concentration of MAP by at least 4 to 5 log10. This study aimed at estimating the level of MAP in milk at farm level and simulating the effect of different control options at different infection prevalences. The concentration of MAP in milk was estimated using a hierarchical simulation model representing individual co...
Czech Academy of Sciences Publication Activity Database
Purkrt, Adam; Špringer, Jiří; Poruba, Aleš; Vaněček, Milan; Goris, L.; Haenen, K.; Nesladek, M.; Vandewal, K.; Manca, J.; Vanderzande, D.
Munich: WIP-Renewable Energies, 2005 - (Palz, W.; Ossenbrink, H.; Helm, P.), s. 362-365 ISBN 3-936338-19-1. [European Photovoltaic Solar Energy Conference /20./. Barcelona (ES), 06.06.2005-10.06.2005] R&D Projects: GA MŽP(CZ) SN/320/11/03 Institutional research plan: CEZ:AV0Z10100521 Keywords : organic solar cell * light trapping * modeling Subject RIV: BM - Solid Matter Physics ; Magnetism
Compton-backscattered annihilation radiation from the Galactic Center region
Smith, D. M.; Lin, R. P.; Feffer, P.; Slassi, S.; Hurley, K.; Matteson, J.; Bowman, H. B.; Pelling, R. M.; Briggs, M.; Gruber, D.
1993-01-01
On 1989 May 22, the High Energy X-ray and Gamma-ray Observatory for Nuclear Emissions, a balloon-borne high-resolution germanium spectrometer with an 18-deg FOV, observed the Galactic Center (GC) from 25 to 2500 keV. The GC photon spectrum is obtained from the count spectrum by a model-independent method which accounts for the effects of passive material in the instrument and scattering in the atmosphere. Besides a positron annihilation line with a flux of (10.0 +/- 2.4) x 10 exp -4 photons/sq cm s and a full width at half-maximum (FWHM) of (2.9 + 1.0, -1.1) keV, the spectrum shows a peak centered at (163.7 +/- 3.4) keV with a flux of (1.55 +/- 0.47) x 10 exp -3 photons/sq cm s and a FWHM of (24.4 +/- 9.2) keV. The energy range 450-507 keV shows no positronium continuum associated with the annihilation line, with a 2-sigma upper limit of 0.90 on the positronium fraction. The 164 keV feature is interpreted as Compton backscatter of broadened and redshifted annihilation radiation, possibly from the source 1E 1740.7-2942.
Higher twist effects in deeply virtual Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Pirnay, Bjoern Michael
2016-08-01
In this work we explore the effects of higher twist power corrections on the deeply virtual Compton scattering process. The calculation of the helicity amplitudes for all possible polarization combinations is performed within the framework of QCD operator product expansion. As a result the known accuracy of the amplitudes is improved to include the (kinematic) twist-4 contributions. For the most part the analysis focuses on spin-1/2 targets, the answers for scalar targets conveniently emerge as a byproduct. We investigate the analytical structure of these corrections and prove consistency with QCD factorization. We give an estimation of the numerical impact of the sub-leading twist contributions for proton targets with the help of a phenomenological model for the nonperturbative proton generalized parton distributions. We compare different twist approximations and relate predictions for physical observables to experiments performed by the Hall A, CLAS, HERMES, H1 and ZEUS collaborations. The estimate also includes a numerical study for planned COMPASS-II runs. Throughout the analysis special emphasis is put on the convention dependence induced by finite twist truncation of scattering amplitudes.
Inverse Compton X-ray signature of AGN feedback
Bourne, Martin A
2013-01-01
Bright AGN frequently show ultra-fast outflows (UFOs) with outflow velocities vout ! 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one temperature regime; 1T) or decouple (2T), as has been recently suggested. Here we calculate the Inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component, while the limits on the 2T emission are far weaker. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encoura...
Attosecond dynamics of nuclear wavepackets induced by neutron Compton scattering
International Nuclear Information System (INIS)
For the first time, time-dependent nuclear wavepacket theory is applied to the experimental context of neutron Compton scattering (NCS). The derivation is analogous to the well-known expression of infrared laser absorption spectra (IR-LAS) in terms of autocorrelation functions of nuclear wavepackets moving on molecular potential energy surfaces in the electronic ground state. This analogy allows us to transfer the methods for nuclear wavepacket dynamics from IR-LAS to NCS. Systematic investigations for two model systems, HOD and C6D5H, demonstrate the effects of nuclear dynamics induced by NCS in the as (10-18 s) time domain on the NCS spectra. This is a consequence of the large momentum transfer from the neutron to the scattering atom and consequentially the ultrashort time for the nuclear wavepacket to travel the distance of its narrow width, followed by dissociation. This initial time evolution may be described approximately in terms of normal mode vibrations, together with additional excitations of translations and rotations which support depletion of any recurrences of the vibrational autocorrelation functions, also due to dissociation. In spite of the analogous derivation we predict some surprising, opposite trends in NCS i.e. in contrast to LAS. Thus, increasing the number of excited modes for polyatomic molecules, the resulting dynamics slow down for NCS and therefore, the spectral width narrows
Realistic simulation of the Space-borne Compton Polarimeter POLAR
Xiao, Hualin
2016-07-01
POLAR is a compact wide field space-borne detector dedicated for precise measurements of the linear polarization of hard x-rays emitted by transient sources. Its energy range sensitivity is optimized for the detection of the prompt emission of Gamma-ray bursts (GRBs). POLAR is developed by an international collaboration of China, Switzerland and Poland. It is planned to be launched into space in 2016 onboard the Chinese space laboratory TG2. The energy range of POLAR spans between 50 keV and 500 keV. POLAR detects gamma rays with an array of 1600 plastic scintillator bars read out by 25 muti-anode PMTs (MAPMTs). Polarization measurements use Compton scattering process and are based on detection of energy depositions in the scintillator bars. Reconstruction of the polarization degree and polarization angle of GRBs requires comparison of experimental modulation curves with realistic simulations of the full instrument response. In this paper we present a method to model and parameterize the detector response including efficiency of the light collection, contributions from crosstalk and non-uniformity of MAPMTs as well as dependency on low energy detection thresholds and noise from readout electronics. The performance of POLAR for determination of polarization is predicted with such realistic simulations and carefully cross-checked with dedicated laboratory tests.
Wide Angle Compton Scattering within the SCET factorization Framework
Directory of Open Access Journals (Sweden)
Kivel Nikolay
2016-01-01
Full Text Available Existing data for the electromagnetic proton form factors and for the cross section of the wide angle Compton scattering (WACS show that the hard two-gluon exchange mechanism (collinear factorization is still not applicable in the kinematical region where Mandelstam variables s ~ −t ~ −u are about few GeV2. On the other hand these observables can be described in phenomenological models where spectator quarks are soft which assumes a large contribution due to the soft-overlap mechanism. It turns out that the simple QCD factorization picture is not complete and must also include the soft-overlap contribution which can be described as a certain matrix element in the soft collinear effective theory (SCET. Then the leading power contribution to WACS amplitude is described as a sum of the hard- and soft-spectator contributions. The existing experimental data allows one to check certain conclusions based on the assumption about dominant role of the soft-spectator mechanism.
Compton scatter correction for planner scintigraphic imaging
Energy Technology Data Exchange (ETDEWEB)
Vaan Steelandt, E.; Dobbeleir, A.; Vanregemorter, J. [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy
1995-12-01
A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.
Compton scatter correction for planner scintigraphic imaging
International Nuclear Information System (INIS)
A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction 'k' of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor 'k', which is determined in a mathematical way and confirmed by experiments. To determine 'k', different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom
Mordasini, C
2014-01-01
Context. We investigate the grain opacity k_gr in the atmosphere of protoplanets. This is important for the planetary mass-radius relation since k_gr affects the H/He envelope mass of low-mass planets and the critical core mass of giant planets. Aims. The goal of this study is to derive an analytical model for k_gr. Methods. Our model is based on the comparison of the timescales of microphysical processes like grain settling in the Stokes and Epstein regime, growth by Brownian motion coagulation and differential settling, grain evaporation, and grain advection due to envelope contraction. With these timescales we derive the grain size, abundance, and opacity. Results. We find that the main growth process is differential settling. In this regime, k_gr has a simple functional form and is given as 27 Q/8 H rho in the Epstein regime and as 2 Q/H rho for Stokes drag. Grain dynamics lead to a typical radial structure of k_gr with high ISM-like values in the top layers but a strong decrease in the deeper parts where...
Results of a Si/CdTe Compton Telescope
Oonuki, K; Watanabe, S; Takeda, S; Nakazawa, K; Mitani, T; Takahashi, T; Tajima, H; Fukazawa, Y; Nomachi, M; Oonuki, Kousuke; Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Nakazawa, Kazuhiro; Mitani, Takefumi; Takahashi, Tadayuki; Tajima, Hiroyasu; Fukazawa, Yasushi; Nomachi, Masaharu
2005-01-01
We have been developing a semiconductor Compton telescope to explore the universe in the energy band from several tens of keV to a few MeV. We use a Si strip and CdTe pixel detector for the Compton telescope to cover an energy range from 60 keV. For energies above several hundred keV, the higher efficiency of CdTe semiconductor in comparison with Si is expected to play an important role as an absorber and a scatterer. In order to demonstrate the spectral and imaging capability of a CdTe-based Compton Telescope, we have developed a Compton telescope consisting of a stack of CdTe pixel detectors as a small scale prototype. With this prototype, we succeeded in reconstructing images and spectra by solving the Compton equation from 122 keV to 662 keV. The energy resolution (FWHM) of reconstructed spectra is 7.3 keV at 511 keV and 3.1 keV at 122 keV, respectively. The angular resolution obtained at 511 keV is measured to be 12.2degree (FWHM).
Bulk Viscosity in Holographic Lifshitz Hydrodynamics
Hoyos, Carlos; Oz, Yaron
2013-01-01
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent.
Bulk viscosity in holographic Lifshitz hydrodynamics
Carlos Hoyos; Bom Soo Kim; Yaron Oz
2014-01-01
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical ...
Bulk viscosity in holographic Lifshitz hydrodynamics
International Nuclear Information System (INIS)
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent
Mitchell, Kristen; Mansoor, Sannan Z.; Mason, Paul R. D.; Johnson, Thomas M.; Van Cappellen, Philippe
2016-05-01
Bulk δ82/76Se values of representative marine shales from the Paleoarchean to the present day vary between approximately -3 and + 3 ‰ with only local deviations beyond this range. This muted Se isotope variability in the shale record contrasts with the relatively large fractionations associated with abiotic and microbial Se oxyanion reduction seen in experimental studies. Long-term temporal trends in the bulk shale data do not directly correlate with changes in redox conditions of the global ocean, although a minor but significant shift towards more negative formation-averaged δ82/76Se values appears to track oxygenation of the deep ocean at the end of the Proterozoic. We hypothesize that extensive δ82/76Se variability in the shale data was suppressed due to the early emergence of biological assimilatory uptake and the resulting persistence of low seawater Se concentrations, coupled with small authigenic Se outputs throughout most of geological time. In the modern ocean, Se is an essential micronutrient with a relatively short residence time of about 11,500 yrs. The marine Se cycle is dominated by assimilation into biomass and subsequent recycling in the water column and surface sediments, i.e. processes that result in only minimal isotopic fractionation. We suggest that similar processes dominated back through the geological record to Archean times. Our model shows that paleoceanographic information could in principle be extracted from proxy data on the Se isotopic composition of seawater, once isotopic differences can be readily discerned between individual sedimentary Se pools.
Reynolds, Christopher S; Schekochihin, Alexander A
2015-01-01
Central jetted active galactic nuclei (AGN) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid 3-d hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM which in turn decay to volume-filling turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with shor...
Set, Ying Ting; Birgersson, Erik; Luther, Joachim
2016-05-01
We develop a predictive and mechanistic model for the intensity-modulated photocurrent spectroscopic (IMPS), intensity-modulated photovoltage spectroscopic (IMVS), and electrical impedance spectroscopic (EIS) responses of organic bulk heterojunction (BHJ) solar cells. Unlike the dominant analytical framework—equivalent circuit analysis—the model uses physical parameters that directly reflect the device's fundamental electronic mechanisms, eliminating the ambiguity associated with interpreting phenomenological parameters. Formulated in the frequency domain, the model is a computationally efficient tool for extracting parameters from the measured spectra. With a set of physical parameters representing a device, we predict the device's spectra (a) in techniques employing different methods of perturbing a device and (b) at different bias voltages and illumination intensities. The predicted spectra show good agreement with the measured ones. By quantifying the device's internal electric field and charge carrier concentration and relating them to the spectra, we determine that the IMPS responses at the short-circuit condition and the IMVS responses at the open-circuit condition directly reflect the charge carrier extraction and recombination, respectively. Furthermore, the EIS response indicates the device's recombination time scale at different bias voltages.
Vasyunin, A I
2012-01-01
The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth and first order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on ...
The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"
Ichinohe, Yuto; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin'ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki
2015-01-01
The Soft Gamma-ray Detector (SGD), to be deployed onboard the {\\it ASTRO-H} satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600~keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10\\% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75\\% of the signal...
The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"
Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki
2016-01-01
The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.
International Nuclear Information System (INIS)
The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth- and first-order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on the warm-up chemistry is explored. The use of a multilayer ice structure has a mixed impact on the abundances of organic species formed during the warm-up phase. For example, the abundance of gaseous HCOOCH3 is lower in the multilayer model than in previous grain models that do not distinguish between layers (so-called two phase models). Other gaseous organic species formed in the warm-up phase are affected slightly. Finally, we find that the entrapment of volatile species in water ice can explain the two-jump behavior of H2CO previously found in observations of protostars.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Magnetic Compton scattering from HoFe2
International Nuclear Information System (INIS)
The compound HoFe2 has been used to study both the nature and scope of magnetic Compton scattering investigations with circularly polarised synchrotron radiation. It has a large orbital-dominated moment on the holmium site which is antiferromagnetically coupled to the spin-dominated moment on the iron sites. Studies of the total intensity of the magnetic scattering as well as its spectral distribution at the Daresbury Synchrotron Source and the KEK Accumulation Ring have shown that, in contrast to diffraction studies, Compton scattering is uniquely sensitive to the spin moment. Detailed analysis of the magnetic Compton profile has determined the extent to which the individual moments, both spin and orbital in origin, can be deduced by combining the results with magnetisation data. (orig.)
ILC Beam Energy Measurement by means of Laser Compton Backscattering
Muchnoi, N; Viti, M
2008-01-01
A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of $10^{-4}$ or bette...
Measurement of radiative Bhabha and quasi-real Compton scattering
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G
1998-01-01
We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50~{\\GeV} and 170~{\\GeV} and 20~{\\GeV} and 140~{\\GeV}, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of $232.2 \\,\\pb$. A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling $\\lambda$ for the on-shell production of an excited electron $\\e^{\\star}$ decaying into a $\\gamma\\e$ pair in the mass range $20 \\gev < m_{\\e^{\\star}} < 170 \\gev$.
Nonlinear effects in Compton scattering at photon colliders
Galynskii, M; Levchuk, M I; Telnov, Valery I
2001-01-01
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e-> gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper, a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi sup 2 (first order correction). All this is necessary for optimization of the conversion region at photo...
A nonlinear plasma retroreflector for single pulse Compton backscattering
Palastro, J P; Gordon, D; Hafizi, B; Helle, M; Penano, J; Ting, A
2014-01-01
Compton scattered x-rays can be generated using a configuration consisting of a single, ultra-intense laser pulse, and a shaped gas target. The gas target incorporates a hydrodynamically formed density spike, which nonlinearly scatters the incident pump radiation, to produce a counter-propagating electromagnetic wiggler. This self-generated wiggler field Compton scatters from electrons accelerated in the laser wakefield of the pump radiation. The nonlinear scattering mechanism in the density spike is examined theoretically and numerically in order to optimize the Compton scattered radiation. It is found that narrow-band x-rays are produced by moderate intensity pump radiation incident on the quarter-critical surface of the density spike, while high fluence, broadband x-rays are produced by high intensity pump radiation reflected near the critical surface.
Application of nondiffracting laser beam to laser compton scattering
Li, D; Aoki, M; Miyamoto, S; Amano, S; Mochizuki, T
2003-01-01
Nondiffracting laser beam - J sub 0 Bessel beam, is suggested to take the place of conventional Gaussian laser beam in a laser Compton scattering system, in order to increase the flux of scattered photons through maintaining an efficient interaction of electron beam and laser beam in a long distance. A novel cavity is proposed to produce and store the J sub 0 Bessel beam based on our present laser Compton scattering experimental setup for gamma-ray generation, and the propagation features and intensity distribution of the J sub 0 Bessel beam inside the cavity are analyzed. The flux of Compton scattering gamma-ray is estimated theoretically and the results reveal that a significant growth are accomplished with the use of J sub 0 Bessel laser beam contrasting with the use of Gaussian laser beam. (author)
Electronic structure of lanthanum sesquioxide: A Compton scattering study
Energy Technology Data Exchange (ETDEWEB)
Sharma, Sonu [Department of Physics, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur 303007, Rajasthan (India); Arora, Gunjan [Department of Physics, Geetanjali Institute of Technical Studies, Udaipur 313022, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)
2014-10-01
We present the first-ever experimental and theoretical momentum densities of La{sub 2}O{sub 3}. The Compton line shape is measured using a 20 Ci {sup 137}Cs Compton spectrometer at an intermediate resolution with full width at half maximum of 0.34 a.u. The experimental Compton profile is compared with the theoretical electron momentum densities computed using linear combination of atomic orbitals (LCAO) method with density functional theory (DFT). It is seen that the generalized gradient approximation (GGA) within DFT reconciles better with the experiment than other DFT based approximations, validating the GGA approximation for rare-earth sesquioxides. The energy bands and density of states computed using LCAO calculations show its wide band gap nature which is in tune with the available reflectivity and photo-absorption data. In addition, Mulliken's population and charge density are also computed and discussed.
Electronic structure of lanthanum sesquioxide: A Compton scattering study
International Nuclear Information System (INIS)
We present the first-ever experimental and theoretical momentum densities of La2O3. The Compton line shape is measured using a 20 Ci 137Cs Compton spectrometer at an intermediate resolution with full width at half maximum of 0.34 a.u. The experimental Compton profile is compared with the theoretical electron momentum densities computed using linear combination of atomic orbitals (LCAO) method with density functional theory (DFT). It is seen that the generalized gradient approximation (GGA) within DFT reconciles better with the experiment than other DFT based approximations, validating the GGA approximation for rare-earth sesquioxides. The energy bands and density of states computed using LCAO calculations show its wide band gap nature which is in tune with the available reflectivity and photo-absorption data. In addition, Mulliken's population and charge density are also computed and discussed
Electronic structure of lanthanum sesquioxide: A Compton scattering study
Sharma, Sonu; Sahariya, Jagrati; Arora, Gunjan; Ahuja, B. L.
2014-10-01
We present the first-ever experimental and theoretical momentum densities of La2O3. The Compton line shape is measured using a 20 Ci 137Cs Compton spectrometer at an intermediate resolution with full width at half maximum of 0.34 a.u. The experimental Compton profile is compared with the theoretical electron momentum densities computed using linear combination of atomic orbitals (LCAO) method with density functional theory (DFT). It is seen that the generalized gradient approximation (GGA) within DFT reconciles better with the experiment than other DFT based approximations, validating the GGA approximation for rare-earth sesquioxides. The energy bands and density of states computed using LCAO calculations show its wide band gap nature which is in tune with the available reflectivity and photo-absorption data. In addition, Mulliken's population and charge density are also computed and discussed.
Nonlinear effects in Compton scattering at photon colliders
Galynsky, M V; Levchuk, M I; Telnov, V I
2001-01-01
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma-gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi^2 (first order correction). All this is necessary for optimization of the conversion region at photon coll...
Multiple scattering Compton camera with neutron activation for material inspection
International Nuclear Information System (INIS)
We designed a multiple scattering Compton camera (MSCC) based on a lanthanum bromide (LaBr3:Ce) scintillator to detect neutron-activated prompt gamma-rays for material inspection. The system parameters such as detector thickness and inter-detector distances were optimized on the basis of figure of merit (FOM). The FOM was maximized when the inter-detector distance and detector thickness were 18 cm and 1.5 cm, respectively. Under the optimized conditions, energy spectra and spatial images were obtained to identify various substances, and the results matched well with theoretical data. The probability of multiple Compton scattering was higher than that of conventional Compton scattering at high energies (~MeV), which proved the effectiveness of MSCC to detect prompt gamma-rays. Simulations with realistic conditions showed the feasibility of using the MSCC investigate of materials in field applications
Non-thermal shielding effects on the Compton scattering power in astrophysical plasmas
Shin, Dong-Soo; Jung, Young-Dae
2015-10-01
The non-thermal shielding effects on the inverse Compton scattering are investigated in astrophysical non-thermal Lorentzian plasmas. The inverse Compton power is obtained by the modified Compton scattering cross section in Lorentzian plasmas with the blackbody photon distribution. The total Compton power is also obtained by the Lorentzan distribution of plasmas. It is found that the influence of non-thermal character of the plasma suppresses the inverse Compton power in astrophysical Lorentzian plasmas. It is also found that the non-thermal effect on the inverse Compton power decreases with an increase of the temperature. In addition, the non-thermal effect on the total Compton power with Lorentzan plasmas increases in low-temperature photons and, however, decreases in intermediate-temperature photons with increasing Debye length. The variation of the total Compton power is also discussed.
Geometrical effects determinant of the Compton profile shape
International Nuclear Information System (INIS)
The main purpose of this work is to evaluate the influence of the experimental set up on the shape of the Compton line. In any scattering experiment, the scattering angle is not well defined due to the collimators aperture and thus, a distribution of angles is found for each set up. This, in turn, produces the energies' distribution of the scattered photons around a mean value. This contribution has been evaluated and found it to be significant for several cases. In order to do this evaluation, a response function, that is numerically generated for each experimental set up and convoluted with the Compton profile, was defined. (Author)
Results of a Si/CdTe Compton Telescope
Oonuki, Kousuke; Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Nakazawa, Kazuhiro; Mitani, Takefumi; Takahashi, Tadayuki; Tajima, Hiroyasu; Fukazawa, Yasushi; Nomachi, Masaharu
2005-01-01
We have been developing a semiconductor Compton telescope to explore the universe in the energy band from several tens of keV to a few MeV. We use a Si strip and CdTe pixel detector for the Compton telescope to cover an energy range from 60 keV. For energies above several hundred keV, the higher efficiency of CdTe semiconductor in comparison with Si is expected to play an important role as an absorber and a scatterer. In order to demonstrate the spectral and imaging capability of a CdTe-based...
3D Image Reconstruction from Compton camera data
Kuchment, Peter
2016-01-01
In this paper, we address analytically and numerically the inversion of the integral transform (\\emph{cone} or \\emph{Compton} transform) that maps a function on $\\mathbb{R}^3$ to its integrals over conical surfaces. It arises in a variety of imaging techniques, e.g. in astronomy, optical imaging, and homeland security imaging, especially when the so called Compton cameras are involved. Several inversion formulas are developed and implemented numerically in $3D$ (the much simpler $2D$ case was considered in a previous publication).
Spin and orbital magnetization loops obtained using magnetic Compton scattering
International Nuclear Information System (INIS)
We present an application of magnetic Compton scattering (MCS) to decompose a total magnetization loop into spin and orbital magnetization contributions. A spin magnetization loop of SmAl2 was measured by recording the intensity of magnetic Compton scattering as a function of applied magnetic field. Comparing the spin magnetization loop with the total magnetization one measured by a vibrating sample magnetometer, the orbital magnetization loop was obtained. The data display an anti-coupled behavior between the spin and orbital magnetizations and confirm that the orbital part dominates the magnetization.
A counting silicon microstrip detector for precision compton polarimetry
Doll, D W; Hillert, W; Krüger, H; Stammschroer, K; Wermes, N
2002-01-01
A detector for the detection of laser photons backscattered off an incident high-energy electron beam for precision Compton polarimetry in the 3.5 GeV electron stretcher ring ELSA at Bonn University has been developed using individual photon counting. The photon counting detector is based on a silicon microstrip detector system using dedicated ASIC chips. The produced hits by the pair converted Compton photons are accumulated rather than individually read out. A transverse profile displacement can be measured with mu m accuracy rendering a polarization measurement of the order of 1% on the time scale of 10-15 min possible.
Spin density in Gd studied by magnetic Compton scattering
International Nuclear Information System (INIS)
The spin-dependent momentum density of single-crystal ferromagnetic gadolinium was probed by the magnetic Compton profile technique. Comparison with electronic structure calculations indicate that the local spin-density approximation is adequate for describing the magnetic Compton profiles. Furthermore, the linear combination of muffin-tin orbitals prescription compared favourably with a full-potential method. We find that testing theory against the experimental density of states is problematic. Our calculations also indicate that the spin density is sensitive to the treatment of the 5p electrons. (author)
A simple configuration setup for compton suppression spectroscopy
Hai, N X; Dien, N N; Tan, V H; Hoa, N D
2013-01-01
The fast timing, standard timing and easy timing are popular timing configurations of compton suppression spectroscopy. Such spectroscopes always use a module of coincidence or time-to-amplitude converter (TAC). A compton suppression spectroscopy with semi-timing configuration is presented in this paper. The semi-timing configuration is relatively simple and easy system setup, especially this spectroscopy does not need to use module of coincidence or TAC. The performance of spectroscopy was tested and summarized. The count rate background, full peak efficiency and the ratios of area/background of peaks in suppressed and unsuppressed modes were comparative.
Gianetti, Melisa M; Haji-Akbari, Amir; Paula Longinotti, M; Debenedetti, Pablo G
2016-02-01
In recent years, computer simulations have found increasingly widespread use as powerful tools for studying phase transitions in wide variety of systems. In the particular and very important case of aqueous systems, the commonly used force-fields tend to offer quite different predictions with respect to a wide range of thermodynamic and kinetic properties, including the ease of ice nucleation, the propensity to freeze at a vapor-liquid interface, and the existence of a liquid-liquid phase transition. It is thus of fundamental and practical interest to understand how different features of a given water model affect its thermodynamic and kinetic properties. In this work, we use the forward-flux sampling technique to study the crystallization kinetics of a family of modified Stillinger-Weber (SW) potentials with energy (ε) and length (σ) scales taken from the monoatomic water (mW) model, but with different tetrahedrality parameters (λ). By increasing λ from 21 to 24, we observe the nucleation rate increases by 48 orders of magnitude at a supercooling of ζ = T/Tm = 0.845. Using classical nucleation theory, we are able to demonstrate that this change can largely be accounted for by the increase in |Δμ|, the thermodynamic driving force. We also perform rate calculations in freestanding thin films of the supercooled liquid, and observe a crossover from surface-enhanced crystallization at λ = 21 to bulk-dominated crystallization for λ ≥ 22. PMID:26778494
Guiretti, Deisy; Sempere, Ana; Lopez-Atalaya, Jose P; Ferrer-Montiel, Antonio; Barco, Angel; Valor, Luis M
2016-05-01
Defective epigenetic regulation has been postulated as a possible cause for the extensive and premature transcriptional dysregulation observed in experimental models of Huntington's disease (HD). In this study, we extended our observations in the N171-82Q mouse strain relating to the limited impact of polyQ pathology on the global histone acetylation to other animal and cellular models of HD, namely the R6/1 and YAC128 strains, striatal-electroporated mice, primary neuronal cultures and stably transfected PC12 cells. In the absence of bulk chromatin changes, we nonetheless documented histone deacetylation events at the transcription start sites (TSS) of genes relevant to neuronal functions (e.g., Rin1, Plk5, Igfbp5, Eomes, and Fos). In some instances, these local deficits were associated with an increased susceptibility to transcriptional dysregulation (e.g., Camk1g and Rasl11b) and the defective trimethylation of histone H3 at lysine 4 (H3K4me3), another covalent modification of histone tails that is related to active transcription and is also altered in HD. Overall, this study provides further insight into the nature and extent of epigenetic dysregulation in HD pathology. PMID:26851501
Powell, Joshua; Luh, Jeanne; Coronell, Orlando
2014-01-01
We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures. PMID:24506252
Deeply virtual Compton scattering off longitudinally polarised protons at HERMES
Energy Technology Data Exchange (ETDEWEB)
Mahon, David Francis
2010-06-15
This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep{yields}ep{gamma} interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A{sub UL} and A{sub LU} which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A{sub LL} dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin {phi} and cos(0{phi}) amplitudes are observed for A{sub UL} and A{sub LL} respectively, with an unexpectedly large sin(2{phi}) amplitude for A{sub UL}. The results for the A{sub UL} and A{sub LL} asymmetries are broadly compatible with theory predictions, and the extracted A{sub LU} amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)
International Nuclear Information System (INIS)
Neutron Compton scattering(NCS) measurements of the momentum distribution of light ions using the Vesuvio instrument at ISIS provide a sensitive local probe of the environment of those ions. NCS measurements of the proton momentum distribution in bulk water show only small deviations from the usual picture of water as a collection of molecules, with the protons covalently bonded to an oxygen and interacting weakly, primarily electrostatically, with nearby molecules. However, a series of measurements of the proton momentum distribution in carbon nanotubes, xerogel, and Nafion show that the proton delocalizes over distances of 0.2-0.3Å when water is confined on the scale of 20Å. This delocalization must be the result of changes in the Born-Oppenheimer surface for the protons, which would imply that there are large deviations in the electron distribution from that of a collection of weakly interacting molecules. This has been observed at Spring-8 using x-ray Compton scattering. The observed deviation in the valence electron momentum distribution from that of bulk water is more than an order of magnitude larger than the change observed in bulk water as the water is heated from just above melting to just below boiling. We conclude that the protons and electrons in nano-confined water are in a qualitatively different ground state from that of bulk water. Since the properties of this state persist at room temperature, and the confinement distance necessary to observe it is comparable to the distance between the elements of biological cells, this state presumably plays a role in the functioning of those cells
Jeffrey, N. L. S.; Kontar, E. P.
2011-12-01
Aims: We study the polarization of hard X-ray (HXR) sources in the solar atmosphere, including Compton backscattering of photons in the photosphere (the albedo effect) and the spatial distribution of polarization across the source. Methods: HXR photon polarization and spectra produced via electron-ion bremsstrahlung emission are calculated from various electron distributions typical for solar flares. Compton scattering and photoelectric absorption are then modelled using Monte Carlo simulations of photon transport in the photosphere to study the observed (primary and albedo) sources. Polarization maps across HXR sources (primary and albedo components) for each of the modelled electron distributions are calculated at various source locations from the solar centre to the limb. Results: We show that Compton scattering produces a distinct polarization variation across the albedo patch at peak albedo energies of 20-50 keV for all anisotropies modelled. The results show that there are distinct spatial polarization changes in both the radial and perpendicular to radial directions across the extent of the HXR source at a given disk location. In the radial direction, the polarization magnitude and direction at specific positions along the HXR source will either increase or decrease with increased photon distribution directivity towards the photosphere. We also show how high electron cutoff energies influence the direction of polarization at above ~100 keV. Conclusions: Spatially resolved HXR polarization measurements can provide important information about the directivity and energetics of the electron distribution. Our results indicate the preferred angular resolution of polarization measurements required to distinguish between the scattered and primary components. We also show how spatially resolved polarization measurements could be used to probe the emission pattern of an HXR source, using both the magnitude and the direction of the polarization.
Röken, Christian; Schöneberg, Sebastian; Schuppan, Florian
2016-01-01
A leptonic one-zone model accounting for the radiation emission of blazars is presented. This model describes multiple successive injections of mono-energetic, ultra-relativistic, interacting electron populations, which are subjected to synchrotron and synchrotron-self Compton radiative losses. The electron number density is computed analytically by solving a time-dependent, relativistic transport equation. Moreover, the synchrotron and synchrotron-self Compton intensities as well as the corresponding total fluences are explicitly calculated. The lightcurves and fluences are plotted for realistic parameter values, showing that the model can simultaneously explain both the specific short-time variability in the flaring of blazars and the characteristic broad-band fluence behavior.
Xiao, Hualin; Wu, Bobing; Produit, Nicolas
2015-01-01
POLAR is a space-borne Compton polarimeter desired to measure linear polarization of 50 -- 500 keV gamma rays arriving from prompt emission of of gamma ray bursts (GRBs). Reconstruction of energy deposition produced by gamma rays on scintillator bars is required to determine modulation curves, from which the linear polarization can be revealed. However, crosstalk between neighbor scintillator bars and non-uniformities of multi-anode photomultipliers (MaPMT) make the energy reconstruction complicated. We present a model to describe relation between recorded energy signal and visible energy deposited (real deposited energy) on detector modules and energy response matrix is de- duced from the model. According to the model, crosstalk and non-uniformities can be corrected by performing a linear transformation of recorded energy de- position with inverse matrix of the response matrix, whose elements can be also obtained by measuring Compton edges and analyzing crosstalk between recorded signal produced by gamma ray...
Partially Absorbed Comptonization Spectrum from the Nearly Edge-on Source X 1822-371
Iaria, R.; T. Di Salvo; Burderi, L.; Robba, N.R.
2001-01-01
We report the results of a spectral analysis over the range 0.1-200 keV performed on the dipping source X 1822-371 observed by BeppoSAX. We find the best fit to the continuum using a partially covered Comptonization model, due to scattering off soft seed photons by electrons at a temperature of ~4.8 keV, without the presence of any soft blackbody emission. The equivalent hydrogen column obtained for the absorbed component is ~4.5 10^{22} cm^{-2}, an order of magnitude larger than the Galactic...
Comptonization in the accretion column of the X-ray pulsar GX~1+4
Galloway, D. K.
2000-01-01
X-ray observations of the binary pulsar GX 1+4 made using the Rossi X-ray Timing Explorer (RXTE) satellite between February 1996 and May 1997 were analysed to quantify source spectral variation with luminosity. Mean Proportional Counter Array (PCA) spectra over the range 2-40 keV are best fitted with a Comptonization model, with source spectrum temperature T_0 approx 1-1.3 keV, plasma temperature T_e approx 6-10 keV, and optical depth tau approx 2-6. The range of fitted T_0 was consistent wit...
The prompt GRB high energy emission from internal shocks: synchrotron vs inverse Compton component
International Nuclear Information System (INIS)
We performed a detailed calculation of gamma-ray burst (GRB) prompt emission in the framework of the internal shock scenario, focusing on the high energy (GeV) bands. In order to follow the evolution of the ultrarelativistic inhomogeneous wind, we combined a model for the dynamics of internal shocks with a detailed calculation of the radiative processes occurring in the shocked medium. We present the resulting synthetic GRB light curves and spectra. We show the spectral evolution that can be expected for different sets of microphysics parameters and parameters of the dynamical evolution, and how the relative importance of synchrotron and inverse Compton components is varying during a burst.
Energy Technology Data Exchange (ETDEWEB)
Zeiler, Dietmar [Friedrich-Alexander-Universitaet Erlangen (Germany)
2009-07-01
In this presentation preliminary results on azimuthal asymmetries in leptoproduction of real photons on both unpolarized hydrogen and deuterium targets measured at the HERMES experiment will be discussed. The analysis includes the extraction of asymmetries originating from the interference of Deeply Virtual Compton Scattering (DVCS) and Bethe-Heitler amplitudes by simultaneously fitting data taken with different beam charges and helicities. Sizeable asymmetry amplitudes for the main moments of the beam-charge asymmetry and the beam-spin asymmetry for both targets have been found. The moments related to the squared DVCS amplitude are compatible with zero. All results have been compared to model calculations.
Effective Compton Cross Section in Non-Degenerate High Temperature Media
Shekh-Momeni, F.; Samimi, J.
2004-01-01
The effective compton cross section in a non-degenerate plasma($n\\ll\\{\\frac{(kT/c)^{2}+2mkT}{h^{2}}\\}^{^{3/2}}$) is investigated in a wide range of temperatures. The results show a decreasing behavior with temperature especially for $kT\\gg m_{e}c^{2}$. The $may be important in phenomena like accretion discs or ultra-relativistic blast waves in GRB models, where the emitted radiation has to pass through a medium containing high energy electrons.
International Nuclear Information System (INIS)
In this presentation preliminary results on azimuthal asymmetries in leptoproduction of real photons on both unpolarized hydrogen and deuterium targets measured at the HERMES experiment will be discussed. The analysis includes the extraction of asymmetries originating from the interference of Deeply Virtual Compton Scattering (DVCS) and Bethe-Heitler amplitudes by simultaneously fitting data taken with different beam charges and helicities. Sizeable asymmetry amplitudes for the main moments of the beam-charge asymmetry and the beam-spin asymmetry for both targets have been found. The moments related to the squared DVCS amplitude are compatible with zero. All results have been compared to model calculations.
Extraction of the Compton Form Factor H from DVCS Measurements in the Quark Sector
Moutarde, H
2010-01-01
Working at twist 2 accuracy and assuming the dominance of the Generalized Parton Distribution H we study the helicity-dependent and independent cross sections measured in Hall A, the beam spin asymmetries measured in Hall B at Jefferson Laboratory and beam charge, beam spin and target spin asymmetries measured by Hermes. We extract the real and imaginary parts of the Compton Form Factor H, the latter being obtained with a 20--50% uncertainty. We pay extra attention to the estimation of systematic errors on the extraction of H. We discuss our results and compare to other extractions as well as to the popular VGG model.
Limits on light-speed anisotropies from Compton scattering of high-energy electrons
Bocquet, J. -P.; Moricciani, D.; Bellini, V.; Beretta, M.; Casano, L.; D'Angelo, A.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Giusa, A.; Gurzadyan, V. G.
2010-01-01
The possibility of anisotropies in the speed of light relative to the limiting speed of electrons is considered. The absence of sidereal variations in the energy of Compton-edge photons at the ESRF's GRAAL facility constrains such anisotropies representing the first non-threshold collision-kinematics study of Lorentz violation. When interpreted within the minimal Standard-Model Extension, this result yields the two-sided limit of 1.6 x 10^{-14} at 95% confidence level on a combination of the ...
The Compton-thick AGN in the CDF-N
Georgantopoulos, I; Georgakakis, A; Rowan-Robinson, M
2009-01-01
We present X-ray spectral analysis of the brightest sources (f_{2-10 keV}>10^{-15}$ cgs) in the Chandra Deep Field North. Our sample consists of 222 sources; for the vast majority (171) either a spectroscopic or a photometric redshift is available. Our goal is to discover the Compton-thick AGN in a direct way i.e. through their X-ray spectra. Compton-thick AGN give away their presence in X-rays either directly through the absorption turnover redshifted in the Chandra passband, or through a flat, reflection-dominated, spectrum. The above selection criteria yield 10 Compton-thick AGN candidates of which the nine are reflection dominated. The IR or sub-mm data where available, corroborate the presence of a heavily obscured nucleus in most cases. All the five candidate Compton-thick sources with available 24 micron data present very high values of the f_{24}/f_R flux ratio suggesting that they are dust obscured galaxies. The low f_x/f_{IR} ratio also suggest the presence of obscured nuclei in many cases. Four of ...
New JLab/Hall A Deeply Virtual Compton Scattering results
Energy Technology Data Exchange (ETDEWEB)
Defurne, Maxime [CEA, Centre de Saclay, IRFU/SPhN/LSN, F-91191 Gif-sur-Yvette, France
2015-08-01
New data points for unpolarized Deeply Virtual Compton Scattering cross sections have been extracted from the E00-110 experiment at Q^{2}=1.9 GeV^{2} effectively doubling the statistics available in the valence region. A careful study of systematic uncertainties has been performed.
Compton scatter imaging: A tool for historical exploration.
Harding, G; Harding, E
2010-06-01
This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed. PMID:20138773
Compton scattering as a probe for materials investigation
S. Mohammadi
2009-01-01
This article investigates into the feasibility of using gamma radiation Compton backscatter spectra as a means of material characterization, with the view to developing a portable, hand held probe for investigative purposes such as searching for illicit substances hidden in wall or car door cavities.
Compton scattering as a probe for materials investigation
Directory of Open Access Journals (Sweden)
S Mohammadi
2009-09-01
Full Text Available This article investigates into the feasibility of using gamma radiation Compton backscatter spectra as a means of material characterization, with the view to developing a portable, hand held probe for investigative purposes such as searching for illicit substances hidden in wall or car door cavities.
Analysis of a proposed Compton backscatter imaging technique
Hall, James M.; Jacoby, Barry A.
1994-03-01
One-sided imaging techniques are currently being used in nondestructive evaluation of surfaces and shallow subsurface structures. In this work we present both analytical calculations and detailed Monte Carlo simulations aimed at assessing the capability of a proposed Compton backscattering imaging technique designed to detect and characterize voids located several centimeters below the surface of a solid.
Simulating Compton scattering using Monte Carlo method: COSMOC library
Czech Academy of Sciences Publication Activity Database
Adámek, K.; Bursa, Michal
Opava: Silesian University, 2014 - (Stuchlík, Z.), s. 1-10. (Publications of the Institute of Physics. 7). ISBN 9788075101266. ISSN 2336-5668. [RAGtime /14.-16./. Opava (CZ), 18.09. 2012 -22.09. 2012 ] Institutional support: RVO:67985815 Keywords : Monte Carlo * Compton scattering * C++ Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Recent developments in the search for Compton-thick AGN
Georgantopoulos, I
2012-01-01
I present a review of X-ray and mid-IR surveys for Compton-thick Active Galactic Nuclei (AGN). These are the most highly obscured sources having hydrogen column densities >1.5x10^24 cm-2. Key surveys in the local Universe are presented including the high energy SWIFT/BAT and INTEGRAL surveys, mid-IR and also optical surveys. Recently, deep X-ray surveys with Chandra and XMM-Newton have produced a number of candidate Compton-thick AGN at higher redshift primarily in the Chandra Deep Field South region. In addition, mid-IR surveys with Spitzer have helped to develop novel complementary techniques for the selection of Compton-thick AGN. The mid-IR techniques used to identify Compton-thick AGN include: a) 24 micron excess sources relative to their optical emission b) Spitzer spectroscopy for the detection of high optical depth Si 9.7 micron absorption features c) low X-ray to 6 micron luminosity ratio.
Study of Compton Broadening Due to Electron-Photon Scattering
Directory of Open Access Journals (Sweden)
Srinivasa Rao, M.
2010-06-01
Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radiation field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation.The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons.It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle.We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.
Correction for Compton scattering in glassy-carbon diffraction patterns
International Nuclear Information System (INIS)
In a preliminary investigation reported here, it has been found that the use of Co-Ni balanced filters not only provide better monochromatization of CuKα, but is quite suitable for determining the incoherent (Compton) scattering in two Glassy-Carbon (GC) samples
Pion photoproduction and compton scattering at Saskatoon (SAL)
International Nuclear Information System (INIS)
I focus on three photoproduction problems, namely the behavior of E0+ just above the π0 threshold in the proton and 3He, and near-threshold π+ production from the proton. Finally, I describe part of the Compton scattering program at SAL. (orig.)
Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering
Haeringen, W. van
1960-01-01
The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between
Haveren, van J.; Scott, E.L.; Sanders, J.P.M.
2008-01-01
Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a
Ferromagnetic bulk glassy alloys
International Nuclear Information System (INIS)
This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material
The COMPTON Observatory: Reflections on its origins and history
Kniffen, D. A.; Gehrels, N.
1997-05-01
The Gamma Ray Observatory (GRO) was planned as a mission to make the first comprehensive study of the gamma-ray sky over the full gamma-ray spectrum. It followed on the heels of two successful small astronomy satellites with high energy gamma-ray telescopes, SAS-2 and COS-B, and the High Energy Astronomical Observatory (HEAO) with low-energy gamma-ray detectors. The guideline was to cover the spectrum from the high energy limit of the x-ray domain to the highest energies for which a detectable flux might be reasonably observed. The objective was to include transients as well as persistent sources. The efforts to get such a mission approved stands as a model for developing a consensus of the scientific community for a mission involving a relatively small community of observers. A broad and vigorous guest investigator program was a key element in this effort. The results of the guest investigator program are testimony to the wisdom of this plan. The great success of GRO (now the Compton Observatory) was a result of the dedicated efforts of a few individuals and a project management team that understood how to work with scientists. In spite of increasing budgetary pressure and long delays beyond their control, the project management brought GRO to its successful launch with a minimum of cost growth resulting from the delays. This development period set the stage for what has been one of the most successful scientific programs in NASA's history. The very exciting results presented at this conference by a very broad community of scientists is a testimony to the dedicated efforts of a small group of visionaries with the foresight to see the potential of such a mission.
Coded-aperture Compton camera for gamma-ray imaging
Farber, Aaron M.
This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.
On the inability of Comptonization to produce the broad X-ray iron lines observed in Seyfert nuclei
Reynolds, C S
1999-01-01
It has recently been suggested that Compton downscattering may give rise to the broad iron lines seen in the X-ray spectra of Seyfert 1 galaxies. This challenges the standard model in which these lines originate from the innermost regions of the black hole accretion disk with Doppler shifts and gravitational redshifts giving rise to the broadened line profile. Here, we apply observational constraints to the Compton downscattering model for MCG-6-30-15 and NGC3516, the two best cases to date of Seyfert galaxies with relativistically broad lines. We show that the continuum source in MCG-6-30-15 required by the constrained model violates the black body limit. In the case of NGC3516, only a very small region of parameter space is compatible with the constraints. Hence, we conclude that the Comptonization model is not a viable one for the broad line seen in these two objects. The accretion disk model remains the best interpretation of these data.
Heat transport in bulk/nanoporous/bulk silicon devices
Energy Technology Data Exchange (ETDEWEB)
Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)
2013-02-04
We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.
Partially Absorbed Comptonization Spectrum from the Nearly Edge-on Source X1822-371
Iaria, R.; Di Salvo, T.; Burderi, L.; Robba, N. R.
2001-08-01
We report the results of a spectral analysis over the range 0.1-200 keV performed on the dipping source X1822-371 observed by BeppoSAX. We find the best fit to the continuum using a partially covered Comptonization model, representing scattering of soft seed photons by electrons at a temperature of ~4.8 keV, without the presence of any soft blackbody emission. The equivalent hydrogen column obtained for the absorbed component is ~4.5×1022 cm-2, an order of magnitude larger than the Galactic absorption for this source, and the covering fraction is ~71%. Because the inclination angle of X1822-371 to the line of sight is ~85°, this model gives a reasonable scenario for the source: the Comptonized spectrum could come from an extended accretion disk corona (ADC), probably the only region that can be directly observed as a result of the high inclination. The excess matter producing the partial covering could be close to the equatorial plane of the system, above the outer disk, occulting the emission from the inner disk and the inner part of the ADC. An iron emission line is also present at ~6.5 keV with an equivalent width of ~150 eV. We argue that this strong iron line cannot be explained as reflection of the Comptonized spectrum by the accretion disk. It is probably produced in the ADC. An emission line at ~1.9 keV (with an equivalent width of ~54 eV) and an absorption edge at ~8.7 keV (with an optical depth of ~0.1) are also required to fit this spectrum. These features are probably produced by highly ionized iron (Fe XXIV) present in the outer part of the ADC, where the plasma density is ~1011-1012 cm-3 and ionized plasma is present.
Inverse Compton Gamma Rays from Dark Matter Annihilation in the Dwarf Galaxies
Medhi, Jayashri; Duorah, H. L.; Barua, A. G.; Duorah, K.
2016-09-01
Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino (neutral χ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from e + e - pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the e + e - energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.
The description of compton lines in energy-dispersive x-ray Fluorescence
International Nuclear Information System (INIS)
Energy-Dispersive X-Ray Fluorescence (ED-XRF) is a non-destructive technique for the element analysis in a concentration range ppm - % making use of X rays up to 100 keV. Generally, two photon matter interactions occur, respectively absorption and scattering. The absorption of incident photons gives raise to characteristic lines. Scattering gives an incoherent and a coherent line. A Gaussian peak model is adequate to describe the characteristic and coherent scattered lines. Incoherent lines appear as non-Gaussian, broadened peaks. The profile of a Compton peak is complex. It depends on the geometry and the composition of the sample. Especially, when analyzing a low Z matrix; dominant scattering and multiple scattering may cause large interferences. The absence of an appropriate fitting model makes the Compton profile seen as a limiting factor in the evaluation of spectra. An accurate description of incoherent lines should improve quantitative analysis. Therefore, a suitable fitting model, making use of the expertise of non-linear least squares procedures and Monte-Carlo calculations was systematically investigated. The proposed model, containing a modified Gaussian, is tested on experimental data recorded with a HPGe detector
Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy
International Nuclear Information System (INIS)
A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete
Measuring multimegavolt pulsed voltages using Compton-generated electrons
Swanekamp, S. B.; Weber, B. V.; Pereira, N. R.; Hinshelwood, D. D.; Stephanakis, S. J.; Young, F. C.
2004-01-01
The "Compton-Hall" voltmeter is a radiation-based voltage diagnostic that has been developed to measure voltages on high-power (TW) pulsed generators. The instrument collimates photons generated from bremsstrahlung produced in the diode onto an aluminum target to generate Compton-generated electrons. Permanent magnets bend the Compton electron orbits that escape the target toward a silicon pin diode detector. A GaAs photoconductive detector (PCD) detects photons that pass through the Compton target. The diode voltage is determined from the ratio of the electron dose in the pin detector to the x-ray dose in the PCD. The Integrated Tiger Series of electron-photon transport codes is used to determine the relationship between the measured dose ratio and the diode voltage. Variations in the electron beam's angle of incidence on the bremsstrahlung target produce changes in the shape of the photon spectrum that lead to large variations in the voltage inferred from the voltmeter. The voltage uncertainty is minimized when the voltmeter is fielded at an angle of 45° with respect to the bremsstrahlung target. In this position, the photon spectra for different angles of incidence all converge onto a single spectrum reducing the uncertainty in the voltage to less than 10% for voltages below 4 MV. Higher and lower voltages than the range considered in this article can be measured by adjusting the strength of the applied magnetic field or the position of the electron detector relative to the Compton target. The instrument was fielded on the Gamble II pulsed-power generator configured with a plasma opening switch. Measurements produced a time-dependent voltage with a peak (3.7 MV) that agrees with nuclear activation measurements and a pulse shape that is consistent with the measured radiation pulse shape.