WorldWideScience

Sample records for bulk chemical potentials

  1. Scenario projections for future market potentials of biobased bulk chemicals

    NARCIS (Netherlands)

    Dornburg, V.; Hermann, B.G.; Patel, M.K.

    2008-01-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. Thes

  2. Scenario projections for future market potentials of biobased bulk chemicals

    OpenAIRE

    Dornburg, V.; Hermann, B.G.; Patel, M.K.

    2008-01-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotech...

  3. Scenario projections for future market potentials of biobased bulk chemicals.

    Science.gov (United States)

    Dornburg, Veronika; Hermann, Barbara G; Patel, Martin K

    2008-04-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotechnology chemicals, that is, resulting in a share of white biotechnology chemicals relative to all organic chemicals of about 7 (or 5 million tonnes), 17.5 (or 26 million tonnes), or 38% (or 113 million tonnes) in 2050. We conclude that under favorable conditions, white biotechnology enables substantial savings of nonrenewable energy use (NREU) and greenhouse gas (GHG) emissions compared to the energy use of the future production of all organic chemicals from fossil resources. Savings of NREU reach up to 17% for starch crops and up to 31% for lignocellulosic feedstock by 2050, and saving percentages for GHG emissions are in a similar range. Parallel to these environmental benefits, economic advantages of up to 75 billion Euro production cost savings arise.

  4. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  5. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified or

  6. Shear and Bulk Viscosities of a Weakly Coupled Quark Gluon Plasma with Finite Chemical Potential and Temperature---Leading-Log Results

    CERN Document Server

    Chen, Jiunn-Wei; Song, Yu-Kun; Wang, Qun

    2012-01-01

    We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \\geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f.

  7. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    OpenAIRE

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B; Overbeek, van, F.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified organisms. Apart from white biotechnology, also conventional chemistry is involved in all processes. All white biotechnology products are compared to functionally equivalent petrochemical products. T...

  8. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-02-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  9. Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources. The Potential of White Biotechnology. The BREW Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.; Crank, M.; Dornburg, V.; Hermann, B.; Roes, L. [Department of Science, Technology and Society NWS, Utrecht University, Utrecht (Netherlands); Huesing, B. [Fraunhofer Institute for Systems and Innovation Research FhG-ISl, Karlsruhe (Germany); Overbeek, L. [Plant Research International PRI, Wageningen (Netherlands); Terragni, F.; Recchia, E. [CERISS, Centro per I' Educazione, la Ricerca, I' lnformazione su Scienza e Society, Milan (Italy)

    2006-09-15

    This study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. The main purpose of Chapter 2 is to provide an overview of emerging key White Biotechnology products and to explain which chemicals could be produced on their basis. For a selection of these products, detailed environmental and economic assessments are conducted in Chapter 3 (in specific terms, i.e. per tonne of product). Chapter 3 discusses also the so-called Generic Approach which is the methodology we developed and applied to assess future processes and processes, for which very little information is available. In Chapter 4, three scenario projections are developed for Europe (EU-25), thereby assuming benign, moderate and disadvantageous conditions for bio-based chemicals. The purpose of this chapter is hence to understand to which extent restructuring of the chemical sector might occur under which conditions. In Chapter 5, the risks related to the use of White Biotechnology are addressed. The main purpose of this chapter is to give insight into the main risk components influencing the overall risk and of the knowledge gaps. Both conventional risks (e.g., human toxicity and accidents) and risks related to generic modification (e.g., horizontal gene transfer) are analyzed. Since the public perception may play an important role for the implementation of White Biotechnology on a large scale, these issues are discussed in

  10. Gravitational potential wells and the cosmic bulk flow

    CERN Document Server

    Kumar, Abhinav; Feldman, Hume A; Watkins, Richard

    2015-01-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales $>10\\ h^{-1}$Mpc.

  11. Essays on Port, Container, and Bulk Chemical Logistics Optimization

    NARCIS (Netherlands)

    E. van Asperen (Eelco)

    2009-01-01

    textabstractThe essays in this thesis are concerned with two main themes in port logistics. The first theme is the coordination of transport arrivals with the distribution processes and the use of storage facilities. We study this for both containerized and bulk chemical transport. The second theme

  12. Perfect Actions with Chemical Potential

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We show how to include a chemical potential \\mu in perfect lattice actions. It turns out that the standard procedure of multiplying the quark fields \\Psi, an example, the case of free fermions with chemical potential is worked out explicitly. Even after truncation, cut-off effects in the pressure and the baryon density are small. Using a (quasi-)perfect action, numerical QCD simulations for non-zero chemical potential become more powerful, because coarse lattices are sufficient for extracting continuum physics.

  13. Survey of transportation of liquid bulk chemicals in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Posti, A.; Hakkinen, J.

    2012-07-01

    This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals

  14. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    Science.gov (United States)

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.

  15. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    Science.gov (United States)

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  16. Chemical Potential Dependence of Vertices

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu; ZHANG Yan-Bin; SUN Wei-Min; ZONG Hong-Shi

    2008-01-01

    Based on the rainbow-ladder approximation of the Dyson-Schwinger equations and the assumption of the analyticity of the fermion-boson vertex in the neighborhood of zero chemical potential (μ = 0) and neglecting the μ-dependence of the dressed gluon propagator, we apply the method in [Phys. Rev. C 71 (2005) 015205] of studying the dressed quark propagator at finite chemical potential to prove that the general fermion-boson vertex at finite μ can also be obtained from the one at μ=0 by a simple shift of variables. Using this result we extend the results of [Phys. Lett. B 420 (1998) 267] to the situation of finite chemical potential and show that under the approximations we have taken, the Gell-Mann-Oakes-Renner relation also holds at finite chemical potential.

  17. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the bulk organic chemicals subcategory. 414.70 Section 414.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals §...

  18. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change

    NARCIS (Netherlands)

    Hermann, B.G.; Blok, K.; Patel, M.K.

    2007-01-01

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and

  19. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  20. Microalgae for the production of bulk chemicals and biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M.

    2010-01-01

    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the

  1. Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals

    NARCIS (Netherlands)

    Angelici, C.; Weckhuysen, B.M.; Bruijnincx, P.C.A.

    2013-01-01

    The development of new and improved processes for the synthesis of bio-based chemicals is one of the scientific challenges of our time. These new discoveries are not only important from an environmental point of view, but also represent an important economic opportunity, provided that the developed

  2. Chemical potential in the first law for holographic entanglement entropy

    Science.gov (United States)

    Kastor, David; Ray, Sourya; Traschen, Jennie

    2014-11-01

    Entanglement entropy in conformal field theories is known to satisfy a first law. For spherical entangling surfaces, this has been shown to follow via the AdS/CFT correspondence and the holographic prescription for entanglement entropy from the bulk first law for Killing horizons. The bulk first law can be extended to include variations in the cosmological constant Λ, which we established in earlier work. Here we show that this implies an extension of the boundary first law to include varying the number of degrees of freedom of the boundary CFT. The thermodynamic potential conjugate to Λ in the bulk is called the thermodynamic volume and has a simple geometric formula. In the boundary first law it plays the role of a chemical potential. For the bulk minimal surface Σ corresponding to a boundary sphere, the thermodynamic volume is found to be proportional to the area of Σ, in agreement with the variation of the known result for entanglement entropy of spheres. The dependence of the CFT chemical potential on the entanglement entropy and number of degrees of freedom is similar to how the thermodynamic chemical potential of an ideal gas depends on entropy and particle number.

  3. Sustainable Production of Bulk Chemicals by Application of “White Biotechnology”

    NARCIS (Netherlands)

    Patel, M.K.; Dornburg, V.; Hermann, B.G.; Shen, L.; Overbeek, van L.S.

    2008-01-01

    Abstract Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bact

  4. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  5. QCD Phase Diagram with Imaginary Chemical Potential

    Directory of Open Access Journals (Sweden)

    Nakamura Atsushi

    2012-02-01

    Full Text Available We report our recent results on the QCD phase diagram obtained from the lattice QCD simulation. The location of the phase boundary between hadronic and QGP phases in the two-flavor QCD phase diagram is investigated. The imaginary chemical potential approach is employed, which is based on Monte Carlo simulations of the QCD with imaginary chemical potential and analytic continuation to the real chemical potential region.

  6. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  7. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology

    NARCIS (Netherlands)

    Hermann, B.G.; Patel, M.K.

    2007-01-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based

  8. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  9. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  10. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  11. Chemical Potential in the First Law for Holographic Entanglement Entropy

    CERN Document Server

    Kastor, David; Traschen, Jennie

    2014-01-01

    Entanglement entropy in conformal field theories is known to satisfy a first law. For spherical entangling surfaces, this has been shown to follow via the AdS/CFT correspondence and the holographic prescription for entanglement entropy from the bulk first law for Killing horizons. The bulk first law can be extended to include variations in the cosmological constant $\\Lambda$, which we established in earlier work. Here we show that this implies an extension of the boundary first law to include varying the number of degrees of freedom of the boundary CFT. The thermodynamic potential conjugate to $\\Lambda$ in the bulk is called the thermodynamic volume and has a simple geometric formula. In the boundary first law it plays the role of a chemical potential. For the bulk minimal surface $\\Sigma$ corresponding to a boundary sphere, the thermodynamic volume is found to be proportional to the area of $\\Sigma$, in agreement with the variation of the known result for entanglement entropy of spheres. The dependence of th...

  12. Today's and tomorrow's bio-based bulk chemicals from white biotechnology: a techno-economic analysis.

    Science.gov (United States)

    Hermann, B G; Patel, M

    2007-03-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based bulk chemicals produced with WB. Current and future technology routes are evaluated for 15 products assuming prices of fermentable sugar between 70 euro/t and 400 euro/t and crude oil prices of US $25/barrel and US $50/barrel. The results are compared to current technology routes of petrochemical equivalents. For current state-of-the-art WB processes and a crude oil price of US $25/barrel, WB-based ethanol, 1,3-propanediol, polytrimethylene terephthalate and succinic acid are economically viable. Only three WB products are economically not viable for future technology: acetic acid, ethylene and PLA. Future-technology ethylene and PLA become economically viable for a higher crude oil price (US $50/barrel). Production costs plus profits of WB products decrease by 20-50% when changing from current to future technology for a crude oil price of US $25 per barrel and across all sugar prices. Technological progress in WB can thus contribute significantly to improved economic viability of WB products. A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.

  13. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  14. Chemical Potential of Vacancies in Metal Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Jun; W.R.Tyson

    2000-01-01

    In this paper, a concept, the chemical potential of vacancies in metal crystals, has been derived from the partial mole free energy of vacancies based on a model of an atom-vacancy binary solution.For a pure metal crystal containing the mole concentration of vacancies, Cv and it's value in thermal equilibrium,C0, at temperature T the chemical potential can be expressed respectively as: μ v(Cv)=RT[1+1n(C√Co)]and μ v (Co)=RT The second term in μ v(Cv) is the chemical potential of the vacancies referred to the standardstate concentration given by J. P. Hirth [1] and first term is the standard-state one presented in this paper.

  15. QCD phase diagram with isospin chemical potential

    CERN Document Server

    Brandt, Bastian B

    2016-01-01

    In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter.

  16. Improved Lattice Actions with Chemical Potential

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.

  17. Deep and vertical silicon bulk micromachining using metal assisted chemical etching

    Science.gov (United States)

    Zahedinejad, Mohammad; Delaram Farimani, Saeed; Khaje, Mahdi; Mehrara, Hamed; Erfanian, Alireza; Zeinali, Firooz

    2013-05-01

    In this paper, a newfound and simple silicon bulk micromachining process based on metal-assisted chemical etching (MaCE) is proposed which opens a whole new field of research in MEMS technology. This method is anisotropic and by controlling the etching parameters, deep vertical etching, relative to substrate surface, can be achieved in micrometer size for oriented Si wafer. By utilizing gold as a catalyst and a photoresist layer as the single mask layer for etching, 60 µm deep gyroscope micromachined structures have been fabricated for 2 µm features. The results indicate that MaCE could be the only wet etching method comparable to conventional dry etching recipes in terms of achievable etch rate, aspect ratio, verticality and side wall roughness. It also does not need a vacuum chamber and the other costly instruments associated with dry etching techniques.

  18. Aspects of Holographic Entanglement at Finite Temperature and Chemical Potential

    CERN Document Server

    Kundu, Sandipan

    2016-01-01

    We investigate the behavior of entanglement entropy at finite temperature and chemical potential for strongly coupled large-N gauge theories in $d$-dimensions ($d\\ge 3$) that are dual to Anti-de Sitter-Reissner-Nordstrom geometries in $(d+1)-$dimensions, in the context of gauge-gravity duality. We develop systematic expansions based on the Ryu-Takayanagi prescription that enable us to derive analytic expressions for entanglement entropy and mutual information in different regimes of interest. Consequently, we identify the specific regions of the bulk geometry that contribute most significantly to the entanglement entropy of the boundary theory at different limits. We define a scale, dubbed as the effective temperature, which determines the behavior of entanglement in different regimes. At high effective temperature, entanglement entropy is dominated by the thermodynamic entropy, however, mutual information subtracts out this contribution and measures the actual quantum entanglement. Finally, we study the enta...

  19. Chemical and Physical Properties of Bulk Aerosols within Four Sectors Observed during TRACE-P

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.

    2003-01-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from Northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important m this region. "w had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (a km) evenly divided between sea salts, mm-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (a km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates h m Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust Low-altitude Channel exhibits the highest condensation nuclei ((34) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (265%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo m SE Asia reflects enhanced soot

  20. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  1. Bulk Chemical Composition of the Ningqiang Carbonaceous Chondrite:An Issue of Classification

    Institute of Scientific and Technical Information of China (English)

    WANG Guiqin; LIN Yangting

    2007-01-01

    The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and lowtemperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5)ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.

  2. Growth of Bulk Wide Bandgap Semiconductor Crystals and Their Potential Applications

    Science.gov (United States)

    Chen, Kuo-Tong; Shi, Detang; Morgan, S. H.; Collins, W. Eugene; Burger, Arnold

    1997-01-01

    Developments in bulk crystal growth research for electro-optical devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials such as heavy metal halides and II-VI compound semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures. Postgrowth treatments such as passivation, oxidation, chemical etching and metal contacting during the X-ray and gamma-ray device fabrication process have also been investigated and low noise threshold with improved energy resolution has been achieved.

  3. Dual condensates at finite isospin chemical potential

    CERN Document Server

    Zhang, Zhao

    2015-01-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential $\\mu_I$ in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for $\\mu_I>{m_\\pi}/{2}$ under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with $T$ is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with $T$ at low temperatures due to the influence of pion condensate. We thus argue that in QCD the critical temperature extracting from a dual observable may have nothing to do with the quark confinement-deconfinement transition if the quark mass is very small.

  4. Holographic phase transitions at finite chemical potential

    Science.gov (United States)

    Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M.

    2007-11-01

    Recently, holographic techniques have been used to study the thermal properties of Script N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to Nf coupling. Here we consider the phase diagram as a function of temperature and baryon chemical potential μb. For fixed μb transitions separating a region with vanishing baryon density and one with nonzero density. For fixed μb>Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].

  5. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential

    CERN Document Server

    Werth, Stephan; Horsch, Martin; Hasse, Hans

    2016-01-01

    The vapor-liquid equilibrium (VLE) of the Mie potential, where the dispersive exponent is constant (m = 6) while the repulsive exponent n is varied between 9 and 48, is systematically investigated by molecular simulation. For systems with planar vapor-liquid interfaces, long-range correction expressions are derived, so that interfacial and bulk properties can be computed accurately. The present simulation results are found to be consistent with the available body of literature on the Mie fluid which is substantially extended. On the basis of correlations for the considered thermodynamic properties, a multicriteria optimization becomes viable. Thereby, users can adjust the three parameters of the Mie potential to the properties of real fluids, weighting different thermodynamic properties according to their importance for a particular application scenario. In the present work, this is demonstrated for carbon dioxide for which different competing objective functions are studied which describe the accuracy of the...

  6. Maximum work configurations of finite potential capacity reservoir chemical engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An isothermal endoreversible chemical engine operating between the finite potential capacity high-chemical-potential reservoir and the infinite potential capacity low-chemical-potential reservoir has been studied in this work.Optimal control theory was applied to determine the optimal cycle configurations corresponding to the maximum work output per cycle for the fixed total cycle time and a universal mass transfer law.Analyses of special examples showed that the optimal cycle configuration with the mass transfer law g∝△μ,where△μis the chemical potential difference,is an isothermal endoreversible chemical engine cycle,in which the chemical potential(or the concentration) of the key component in the working substance of low-chemical-potential side is a constant,while the chemical potentials(or the concentrations) of the key component in the finite potential capacity high-chemical-potential reservoir and the corresponding side working substance change nonlinearly with time,and the difference of the chemical potentials(or the ratio of the concentrations) of the key component between the high-chemical-potential reservoir and the working substance is a constant.While the optimal cycle configuration with the mass transfer law g∝△μc,where △μc is the concentration difference,is different from that with the mass transfer law g∝△μ significantly.When the high-chemical-potential reservoir is also an infinite potential capacity chemical potential reservoir,the optimal cycle configuration of the isothermal endoreversible chemical engine consists of two constant chemical potential branches and two instantaneous constant mass-flux branches,which is independent of the mass transfer law.The object studied in this paper is general,and the results can provide some guidelines for optimal design and operation of real chemical engines.

  7. Fermion-Boson Vertex at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; FENG Hong-Tao; HOU Feng-Yao; SUN Wei-Min

    2007-01-01

    Based on the Ward-Takahashi identity at finite chemical potential and Lorentz structure analysis, we generalize the Ball-Chiu vertex to the case of nonzero chemical potential and obtain the general form of the fermionboson vertex in QED at finite chemical potential.

  8. Calculation of the chemical potential in the Gibbs ensemble

    NARCIS (Netherlands)

    Smit, B.; Frenkel, D.

    1989-01-01

    An expression for the chemical potential in the Gibbs ensemble is derived. For finite system sizes this expression for the chemical potential differs system-atically from Widom's test particle insertion method for the N, V, T ensemble. In order to compare these two methods for calculating the chemic

  9. Innovations Help Chemical Makers Improve Growing Potential

    Institute of Scientific and Technical Information of China (English)

    Zhong Weike

    2007-01-01

    @@ With overheated construction all over the country, China's GDP continued its fast growth in the first half. After suffering an explosion at a Jilin aniline facility, another explosion at Cangzhou TDI and a big outbreak of water pollution at Wuxi, the chemical raw materials and chemical manufacturing sectors are getting strict supervision from the central government.

  10. Chemical-potential-based Lattice Boltzmann Method for Nonideal Fluids

    CERN Document Server

    Wen, Binghai; He, Bing; Zhang, Chaoying; Fang, Haiping

    2016-01-01

    Chemical potential is an effective way to drive phase transition or express wettability. In this letter, we present a chemical-potential-based lattice Boltzmann model to simulate multiphase flows. The nonideal force is directly evaluated by a chemical potential. The model theoretically satisfies thermodynamics and Galilean invariance. The computational efficiency is improved owing to avoiding the calculation of pressure tensor. We have derived several chemical potentials of the popular equations of state from the free-energy density function. An effective chemical-potential boundary condition is implemented to investigate the wettability of a solid surface. Remarkably, the numerical results show that the contact angle can be linearly tuned by the surface chemical potential.

  11. Linear Chemical Potential Dependence of Two-Quark Condensate

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    By differentiating the inverse dressed quark propagator at finite chemical potential μ with respect to μ, the linear response of the dressed quark propagator to the chemical potential can be obtained. From this we extract a modelindependent formula for the linear chemical potential dependence of the in-medium two-quark condensate and show by two independent methods (explicit calculation and Lorentz covariance arguments) that the first-order contribution in μto the in-medium two-quark condensate vanishes identically. Therefore if one wants to study the in-medium two-quark condensate one should expand to at least the second order in the chemical potential μ.

  12. A Thermal Field Theory with Non-uniform Chemical Potential

    CERN Document Server

    Arai, Masato; Sasaki, Shin

    2013-01-01

    We investigate thermal one-loop effective potentials in multi-flavor models with chemical potentials. We study four-dimensional models in which each flavor have different global U(1) charges. Accordingly they have different chemical potentials. We call these "non-uniform chemical potentials," which are organized into a diagonal matrix \\mu. The mass matrix at a vacuum does not commute with \\mu. We find that the effective potential is divided into three parts. The first part is the Coleman-Weinberg potential. The UV divergence resides only in this part. The second is the correction to the Coleman-Weinberg potential that is independent of temperature, and the third depends on both temperature and \\mu. Our result is a generalization of the thermal potentials in previous studies for models with single and multi-flavors with (uniform) chemical potentials and reproduces all the known results correctly.

  13. Chemical Potential Dependence of Dressed-Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; HOUFeng-Yao; SUNWei-Min; WUXiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed.Of particular interest here is to give a general recipe to find without arbitrariness the solution representing the “Wigner”phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  14. Chemical Potential Dependence of Dressed-Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; HOU Feng-Yao; SUN Wei-Min; WU Xiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed. Of particular interest here is to give a generalrecipe to find without arbitrariness the solution representing the "Wigner" phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  15. Nearest-neighbor coordination and chemical ordering in multi-component bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dong [ORNL; Stoica, Alexandru Dan [ORNL; Yang, Ling [ORNL; Wang, Xun-Li [ORNL; Lu, Zhao Ping [ORNL; Neuefeind, Joerg C [ORNL; Kramer, Matthew J [ORNL; Richardson, James W [Argonne National Laboratory (ANL); Proffen, Thomas E [ORNL

    2007-01-01

    We report complimentary use of high energy x-ray and neutron diffraction to probe the local atomic structure in a Zr-based multi-component bulk metallic glass. By analyzing the partial coordination numbers, we demonstrate the presence of multiple types of solute-centered clusters (or the lack of solute-solute bonding) and efficient packing of the amorphous structure at the atomic scale. Our findings provide a basis for understanding how the local structures change during phase transformation and mechanical deformation.

  16. Initiated-chemical vapor deposition of organosilicon layers: Monomer adsorption, bulk growth, and process window definition

    NARCIS (Netherlands)

    Aresta, G.; Palmans, J.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Organosilicon layers have been deposited from 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) by means of the initiated-chemical vapor deposition (i-CVD) technique in a deposition setup, ad hoc designed for the engineering of multilayer moisture permeation barriers. The application of Fourier

  17. QCD at imaginary chemical potential with Wilson fermions

    CERN Document Server

    Alexandru, Andrei

    2013-01-01

    We investigate the phase diagram in the temperature, imaginary chemical potential plane for QCD with three degenerate quark flavors using Wilson type fermions. While more expensive than the staggered fermions used in past studies in this area, Wilson fermions can be used safely to simulate systems with three quark flavors. In this talk, we focus on the (pseudo)critical line that extends from $\\mu=0$ in the imaginary chemical potential plane, trace it to the Roberge-Weiss line, and determine its location relative to the Roberge-Weiss transition point. In order to smoothly follow the (pseudo)critical line in this plane we perform a multi-histogram reweighting in both temperature and chemical potential. To perform reweighting in the chemical potential we use the compression formula to compute the determinants exactly. Our results are compatible with the standard scenario.

  18. Qualification Standards for Personnel Responsible for Hazardous or Noxious Chemicals in Bulk. Volume I.

    Science.gov (United States)

    1976-05-01

    a systems approach for handling vinyl chloride monomer ; however, their manuals were not made available for proprietary reasons. Chemical distribution... Price UNCLASSIFIED UNCLASSIFIED 82 P.rm DOT F 17N.1 (8 72) R.p,oductlon of completed page author Ized V...Allyl Chloride 3 3 2 3 2 1 2 2 0 1 Fl.ew.able Liquid . Grade B, Class B Poison Minoetbyl Ethano— 1 1 3 1 1 3 3 0 0 Combustible Liquid. l i ne

  19. The chemical potential of magnons in quasi-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L.H. [George Washington University, Washington, DC 20052 (United States)], E-mail: lbennett@gwu.edu; Della Torre, E. [George Washington University, Washington, DC 20052 (United States)

    2008-02-01

    There have been many questions raised as to the existence of a non-zero chemical potential in a system of quasiparticles, such as magnons, which can be created and destroyed in an open system. In this paper, we spell out the reasons that there is, in fact, a non-zero chemical potential for magnons, and that it can be determined from magnetic aftereffect experiments.

  20. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    Science.gov (United States)

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc.

  1. Relationship between Oxygen Chemical Potential and Steel Cleanliness

    Institute of Scientific and Technical Information of China (English)

    Mansour Soltanieh; Yousef Payandeh

    2005-01-01

    To investigate inclusion formation in each step during steel making process, several samples were taken in different steps of the production of steel at Mobarakeh Steel Co of Esfahan to measure the oxygen chemical potential of the molten steel in each stage. The chemical compositions of the inclusions in samples were investigated lby scanning electron microscope. The chemical composition of the slag was analyzed. With the use of thermodynamic calculations and chemical analysis of the melt, at the working temperature, the relationship between dissolved oxygen and other elements were determined. Finally, it was found that there is a close relationship between inclusions formed in each step with the oxygen partial pressure.

  2. Persistence and transport potential of chemicals in a multimedia environment

    Energy Technology Data Exchange (ETDEWEB)

    van de Meent, D.; McKone, T.E.; Parkerton, T.; Matthies, M.; Scheringer, M.; Wania, F.; Purdy, R.; Bennett, D.H.

    2000-02-01

    Persistence in the environment and potential for long-range transport are related since time in the environment is required for transport. A persistent chemical will travel longer distances than a reactive chemical that shares similar chemical properties. Scheringer (1997) has demonstrated the correlation between persistence and transport distance for different organic chemicals. However, this correlation is not sufficiently robust to predict one property from the other. Specific chemicals that are persistent mayor may not exhibit long-range transport potential. Persistence and long-range transport also present different societal concerns. Persistence concerns relate to the undesired possibility that chemicals produced and used now may somehow negatively affect future generations. Long-range transport concerns relate to the undesired presence of chemicals in areas where these compounds have not been used. Environmental policy decisions can be based on either or both considerations depending on the aim of the regulatory program. In this chapter, definitions and methods for quantifying persistence and transport potential of organic chemicals are proposed which will assist in the development of sound regulatory frameworks.

  3. Degradation Potential of Bulk Versus Incrementally Applied and Indirect Composites: Color, Microhardness, and Surface Deterioration.

    Science.gov (United States)

    El Gezawi, M; Kaisarly, D; Al-Saleh, H; ArRejaie, A; Al-Harbi, F; Kunzelmann, K H

    This study investigated the color stability and microhardness of five composites exposed to four beverages with different pH values. Composite discs were produced (n=10); Filtek Z250 (3M ESPE) and Filtek P90 (3M ESPE) were applied in two layers (2 mm, 20 seconds), and Tetric N-Ceram Bulk Fill (TetricBF, Ivoclar Vivadent) and SonicFill (Kerr) were applied in bulk (4 mm) and then light cured (40 seconds, Ortholux-LED, 1600 mW/cm(2)). Indirect composite Sinfony (3M ESPE) was applied in two layers (2 mm) and cured (Visio system, 3M ESPE). The specimens were polished and tested for color stability; ΔE was calculated using spectrophotometer readings. Vickers microhardness (50 g, dwell time=45 seconds) was assessed on the top and bottom surfaces at baseline, 40 days of storage, subsequent repolishing, and 60 days of immersion in distilled water (pH=7.0), Coca-Cola (pH=2.3), orange juice (pH=3.75), or anise (pH=8.5) using scanning electron microscopy (SEM). The materials had similar ΔE values (40 days, p>0.05), but TetricBF had a significantly greater ΔE than P90 or SF (40 days). The ΔE was less for P90 and TetricBF than for Z250, SonicFill, and Sinfony (60 days). Repolishing and further immersion significantly affected the ΔE (pmicrohardnesses. This was insignificant for the Z250/water, P90/orange juice (40 days), and Sinfony groups (40 and 60 days). Immersion produced variable time-dependent deterioration of microhardness in all groups. Multivariate repeated measures analysis of variance with post hoc Bonferroni tests were used to compare the results. ΔE and microhardness changes were significantly inversely correlated at 40 days, but this relationship was insignificant at 60 days (Pearson test). SEM showed degradation (40 days) that worsened (60 days). Bulk-fill composites differ regarding color-stability and top-to-bottom microhardness changes compared with those of other composites. P90 showed better surface degradation resistance. In conclusion, bulk

  4. Assessing the removal potential of soil-aquifer treatment systems for bulk organic matter.

    Science.gov (United States)

    Rauch, T; Drewes, J E

    2004-01-01

    The fate of effluent organic matter (EfOM) during groundwater recharge was investigated by studying the removal behavior of four bulk organic carbon fractions isolated from a secondary effluent: Hydrophilic organic matter (HPI), hydrophobic acids (HPO-A), colloidal organic matter (OM), and soluble microbial products (SMPs). Short-term removal of the bulk organic fractions during soil infiltration was simulated in biologically active soil columns. Results revealed that the four organic fractions showed a significantly different behavior with respect to biological removal. HPI and colloidal OM were prone to biological removal during initial soil infiltration (0-30 cm) and supported soil microbial biomass growth in the infiltrative surface. Additionally, colloidal OM was partly removed by physical adsorption or filtration. HPO-A and SMPs reacted recalcitrant towards biological degradation as indicated by low soil biomass activity responses. Adsorbability assessment of the biologically refractory portions of the fractions onto powered activated carbon (PAC) indicated that physical removal is not likely to play a significantly role in further diminishing recalcitrant HPO-A, HPI and SMPs during longer travel times in the subsurface.

  5. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    Science.gov (United States)

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  6. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  7. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  8. Thermalization with chemical potentials, and higher spin black holes

    CERN Document Server

    Mandal, Gautam; Sorokhaibam, Nilakash

    2015-01-01

    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of {\\it local} observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[\\lambda]) holography, the partition function of the final equilibrium GGE is known to...

  9. QCD in One Dimension at Nonzero Chemical Potential

    CERN Document Server

    Ravagli, L

    2007-01-01

    Using an integration formula recently derived by Conrey, Farmer and Zirnbauer, we calculate the expectation value of the phase factor of the fermion determinant for the staggered lattice QCD action in one dimension. We show that the chemical potential can be absorbed into the quark masses; the theory is in the same chiral symmetry class as QCD in three dimensions at zero chemical potential. In the limit of a large number of colors and fixed number of lattice points, chiral symmetry is broken spontaneously, and our results are in agreement with expressions based on a chiral Lagrangian. In this limit, the eigenvalues of the Dirac operator are correlated according to random matrix theory for QCD in three dimensions. The discontinuity of the chiral condensate is due to an alternative to the Banks-Casher formula recently discovered for QCD in four dimensions at nonzero chemical potential. The effect of temperature on the average phase factor is discussed in a schematic random matrix model.

  10. On matrix model partition functions for QCD with chemical potential

    CERN Document Server

    Akemann, G; Vernizzi, G

    2004-01-01

    Partition functions of two different matrix models for QCD with chemical potential are computed for an arbitrary number of quark and complex conjugate anti-quark flavors. In the large-N limit of weak nonhermiticity complete agreement is found between the two models. This supports the universality of such fermionic partition functions, that is of products of characteristic polynomials in the complex plane. In the strong nonhermiticity limit agreement is found for an equal number of quark and conjugate flavours. For a general flavor content the equality of partition functions holds only for small chemical potential. The chiral phase transition is analyzed for an arbitrary number of quarks, where the free energy presents a discontinuity of first order at a critical chemical potential. In the case of nondegenerate flavors there is first order phase transition for each separate mass scale.

  11. Chemical potential calculations in dense liquids using metadynamics

    Science.gov (United States)

    Perego, C.; Giberti, F.; Parrinello, M.

    2016-10-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  12. Chemical Potential Calculations In Dense Liquids Using Metadynamics

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2016-01-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  13. Injectable biomaterials for the treatment of stress urinary incontinence: their potential and pitfalls as urethral bulking agents.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2013-06-01

    Injectable urethral bulking agents composed of synthetic and biological biomaterials are minimally invasive treatment options for stress urinary incontinence (SUI). The development of an ideal urethral bulking agent remains challenging because of clinical concerns over biocompatibility and durability. Herein, the mechanical and biological features of injectable urethral biomaterials are investigated, with particular emphasis on their future potential as primary and secondary treatment options for SUI. A literature search for English language publications using the two online databases was performed. Keywords included "stress urinary incontinence", "urethral bulking agent" and "injectable biomaterial". A total of 98 articles were analysed, of which 45 were suitable for review based on clinical relevance and importance of content. Injectable biomaterials are associated with a lower cure rate and fewer postoperative complications than open surgery for SUI. They are frequently reserved as secondary treatment options for patients unwilling or medically unfit to undergo surgery. Glutaraldehyde cross-linked bovine collagen remains the most commonly injected biomaterial and has a cure rate of up to 53 %. Important clinical features of an injectable biomaterial are durability, biocompatibility and ease of administration, but achieving these requirements is challenging. In carefully selected patients, injectable biomaterials are feasible alternatives to open surgical procedures as primary and secondary treatment options for SUI. In future, higher cure rates may be feasible as researchers investigate alternative biomaterials and more targeted injection techniques for treating SUI.

  14. Modulation of mechanical resonance by chemical potential oscillation in graphene

    Science.gov (United States)

    Chen, Changyao; Deshpande, Vikram V.; Koshino, Mikito; Lee, Sunwoo; Gondarenko, Alexander; MacDonald, Allan H.; Kim, Philip; Hone, James

    2016-03-01

    The classical picture of the force on a capacitor assumes a large density of electronic states, such that the electrochemical potential of charges added to the capacitor is given by the external electrostatic potential and the capacitance is determined purely by geometry. Here we consider capacitively driven motion of a nano-mechanical resonator with a low density of states, in which these assumptions can break down. We find three leading-order corrections to the classical picture: the first of which is a modulation in the static force due to variation in the internal chemical potential; the second and third are changes in the static force and dynamic spring constant due to the rate of change of chemical potential, expressed as the quantum (density of states) capacitance. As a demonstration, we study capacitively driven graphene mechanical resonators, where the chemical potential is modulated independently of the gate voltage using an applied magnetic field to manipulate the energy of electrons residing in discrete Landau levels. In these devices, we observe large periodic frequency shifts consistent with the three corrections to the classical picture. In devices with extremely low strain and disorder, the first correction term dominates and the resonant frequency closely follows the chemical potential. The theoretical model fits the data with only one adjustable parameter representing disorder-broadening of the Landau levels. The underlying electromechanical coupling mechanism is not limited by the particular choice of material, geometry, or mechanism for variation in the chemical potential, and can thus be extended to other low-dimensional systems.

  15. Can large fermion chemical potentials suppress the electroweak phase transition ?

    CERN Document Server

    Quimbay, C; Hurtado, R; Quimbay, Carlos; Morales, John; Hurtado, Rafael

    2000-01-01

    We calculate the critical temperature $(T_c$) of the electroweak phase transition in the minimal standard model considering simultaneously temperature ($T$) and fermion chemical potential ($\\mu_f$) effects over the effective potential. The calculation is performed in the one-loop approximation to the effective potential at non-zero temperature using the real time formalism of the thermal field theory. We show that it exists a fermion chemical potential critical value ($\\mu_f^c$) for which the Higgs boson condensate vanishes at T=0. If $T$ and $\\mu_f$ effects are considered simultaneously, it is shown that for $\\mu_f \\geq \\mu_f^c$ then $T_c^2 \\leq 0$, implying that the electroweak phase transition might not take place.

  16. Mie Potential and Equation of State of Zr48Nb8Cu14Ni12Be18 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    张勇; 潘明祥; 汪卫华

    2001-01-01

    The linear expansion of Zr48Nb8Cu14Ni12Be18 bulk metallic glass (BMG) with excellent glass forming abilityand high thermal stability is investigated by a dilatometry method. The average expansion coefficient is αTG=1.04×10 -5 K-1 (300-656 K) for the BMG and αTC= 1.11×10 -5 K-1 (356~890 K) for the crystallized alloy.The Mie potential as well as the equation of state of the BMG and its corresponding crystallized state are determined from the thermal expansion and ultrasonic data, and the differences among them are phenomenologicallyexplained.

  17. A comparison between EAM interatomic potentials for Al and Ni: from bulk systems to nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, S.; Serena, P.A. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Garcia-Mochales, P. [Depto. de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2006-05-15

    Two different kinds of interatomic potentials within the Embedded Atom Method (EAM) have been used to study several properties of selected crystalline structures and nanowire configurations (ordered and helical) for Al and Ni based systems. Reliability of these potentials has been explored when describing cohesive energy and geometrical properties of the systems under consideration as the atomic coordination number decreases. Results provide a criteria for establishing the limits of validity of EAM potentials when applied to such systems as metallic ultra-narrow or single atom nanowires. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Molecular Dynamics Simulations of Solutions at Constant Chemical Potential

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2015-01-01

    Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, that range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, that influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the C$\\mu$MD method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$\\mu$MD method to the paradigmatic case of urea crystall...

  19. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    Data.gov (United States)

    U.S. Environmental Protection Agency — The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are...

  20. Jet Quenching and Holographic Thermalization with a Chemical Potential

    CERN Document Server

    Caceres, Elena; Yang, Di-Lun

    2012-01-01

    We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdS$_{d+1}$ background for $d=3$ and $d=4$, which is characterized by the AdS-Reissner-Nordstr\\"om-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with ...

  1. Potts Flux Tube Model at Nonzero Chemical Potential

    CERN Document Server

    Condella, J; Condella, Jac; Tar, Carleton De

    2000-01-01

    We model the deconfinement phase transition in quantum chromodynamics at nonzero baryon number density and large quark mass by extending the flux tube model (three-state, three-dimensional Potts model) to nonzero chemical potential. In a direct numerical simulation we confirm mean-field-theory predictions that the deconfinement transition does not occur in a baryon-rich environment.

  2. Finite-size corrections to the chemical potential

    NARCIS (Netherlands)

    Siepmann, J.I.; McDonald, I.R.; Frenkel, D.

    1992-01-01

    The particle-insertion method of Widom (1963) has been widely used in numerical simulations for the purpose of calculating the excess chemical potential, mu ex. It is known, however, that values of mu ex obtained by Widom's method are strongly dependent on N, the number of particles in the system. T

  3. The shear viscosity of gauge theory plasma with chemical potentials

    CERN Document Server

    Benincasa, P; Naryshkin, R; Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman

    2007-01-01

    We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.

  4. The shear viscosity of gauge theory plasma with chemical potentials

    Science.gov (United States)

    Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman

    2007-02-01

    We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.

  5. Jet quenching and holographic thermalization with a chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima,Bernal Diaz del Castillo 340, Colima (Mexico); Theory Group, Department of Physics,University of Texas at Austin, Austin, TX 78712 (United States); Kundu, Arnab [Theory Group, Department of Physics,University of Texas at Austin, Austin, TX 78712 (United States); Yang, Di-Lun [Department of Physics, Duke University,Durham, North Carolina 27708 (United States)

    2014-03-17

    We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdS{sub d+1} background for d=3 and d=4, which is characterized by the AdS-Reissner-Nordström-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with an energy comparable to the thermalization temperature and chemical potential in the medium travels further in the non-equilibrium plasma. The thermalization time obtained here by tracking a falling charged shell does not exhibit, generically, the same qualitative features as the one obtained studying non-local observables. This indicates that — holographically — the definition of thermalization time is observer dependent and there is no unambiguos definition.

  6. Chemical short-range order domain in bulk amorphous alloy and the prediction of glass forming ability

    Institute of Scientific and Technical Information of China (English)

    HUI; Xidong(惠希东); YAO; Kefu(姚可夫); KOU; Hongchao(寇宏超); CHEN; Guoliang(陈国良)

    2003-01-01

    Short-range order domains of face central cubic Zr2Ni (F-Zr2Ni) and tetragonal Zr2Ni (T-Zr2Ni) type structure with a size about 1-3 nanometers were observed in bulk amorphous Zr52.5Cu17.9Ni14.6Al10Ti5 alloy by using HREM and nano-beam electron diffraction technique. A new thermodynamic model was formulated based on the concept of chemical short-range order (SCRO). The molar fractions of CSRO and thermodynamic properties in Ni-Zr, Cu-Zr, Al-Zr, Al-Ni, Zr-Ni-Al and Zr-Ni-Cu were calculated. According to the principle of maximum the optimum glass forming ability (GFA) compositions were predicted in binary and ternary alloys. These results were proved to be valid by the experimental data of crystallizing activation energy, ΔTx and XRD patterns. The TTT curves of Zr-Ni-Cu alloys calculated based on CSRO model shows that the lowest critical cooling rate GFA is in the order of 100 K/s, which is close to the practical cooling rate for the preparation of Zr-based BMG alloys.

  7. Improved properties of chemically modified graphene/poly(methyl methacrylate nanocomposites via a facile in-situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    X. Y. Yuan

    2012-10-01

    Full Text Available The nanosheet of graphene was chemically modified by long alkyl chain for enhanced compatibility with polymer matrix and graphene/poly(methyl methacrylate (PMMA nanocomposites with homogeneous dispersion of the nanosheets and enhanced nanofiller-matrix interfacial interaction were fabricated via a facile in-situ bulk polymerization. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and thermogravimetry. The results showed that the graphene nanosheets were fully exfoliated in PMMA matrix and the thermal and mechanical properties of the nanocomposites were significantly improved at low graphene loadings. Large shifts of 15°C in the glass transition temperature and 27°C improvement of onset thermal degradation temperature were achieved with graphene loading as low as 0.07 wt%. A 67% increase in tensile strength was also observed by the addition of only 0.5 wt% graphene. The method used in this study provided a novel route to other graphene-based polymers.

  8. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Parkhurst, M.A.; Scherpelz, R.I.

    1985-03-01

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables.

  9. Calculation of chemical potentials of chain molecules by the incremental gauge cell method

    Science.gov (United States)

    Rasmussen, Christopher J.; Vishnyakov, Aleksey; Neimark, Alexander V.

    2011-12-01

    The gauge cell Monte Carlo method is extended to calculations of the incremental chemical potentials and free energies of linear chain molecules. The method was applied to chains of Lennard-Jones beads with stiff harmonic bonds up to 500 monomers in length. We show that the suggested method quantitatively reproduces the modified Widom particle insertion method of Kumar et al. [S. K. Kumar, I. Szleifer, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 66(22), 2935 (1991)], 10.1103/PhysRevLett.66.2935, and is by an order of magnitude more efficient for long chains in terms of the computational time required for the same accuracy of chemical potential calculations. The chain increment ansatz, which suggests that the incremental chemical potential is independent of the chain length, was tested at different temperatures. We confirmed that the ansatz holds only for coils above the θ temperature. Special attention is paid to the effects of the magnitude of adsorption potential and temperature on the behavior of single chains in confinements that are comparable in size with the free chain radius of gyration. At sufficiently low temperatures, the dependence of the incremental chemical potential on the chain length in wetting pores is superficially similar to a capillary condensation isotherm, reflecting monolayer formation following by pore volume filling, as the chain length increases. We find that the incremental gauge cell method is an accurate and efficient technique for calculations of the free energies of chain molecules in bulk systems and nanoconfinements alike. The suggested method may find practical applications, such as modeling polymer partitioning on porous substrates and dynamics of chain translocation into nanopores.

  10. Nonlocal Nambu-Jona-Lasinio model and chiral chemical potential

    CERN Document Server

    Frasca, Marco

    2016-01-01

    We derive the critical temperature in a nonlocal Nambu-Jona-Lasinio model with the presence of a chiral chemical potential. The model we consider uses a form factor derived from recent studies of the gluon propagator in Yang-Mills theory and has the property to fit in excellent way the form factor arising from the instanton liquid picture for the vacuum of the theory. Nambu-Jona-Lasinio model is derived form quantum chromodynamics providing all the constants of the theory without any need for fits. We show that the critical temperature in this case always exists and increases as the square of the chiral chemical potential. The expression we obtain for the critical temperature depends on the mass gap that naturally arises from Yang-Mills theory at low-energy as also confirmed by lattice computations.

  11. Higher spin entanglement entropy at finite temperature with chemical potential

    CERN Document Server

    Chen, Bin

    2016-01-01

    It is generally believed that the semiclassical AdS$_3$ higher spin gravity could be described by a two dimensional conformal field theory with ${\\cal{W}}$-algebra symmetry in the large central charge limit. In this paper, we study the single interval entanglement entropy on the torus in the CFT with a ${\\cW}_3$ deformation. More generally we develop the monodromy analysis to compute the two-point function of the light operators under a thermal density matrix with a ${\\cW}_3$ chemical potential to the leading order. Holographically we compute the probe action of the Wilson line in the background of the spin-3 black hole with a chemical potential. We find exact agreement.

  12. QCD Effective action at high temperature and small chemical potential

    CERN Document Server

    Villavicencio, C

    2007-01-01

    We present a construction of an effective Yang-Mills action for QCD, from the expansion of the fermionic determinant in terms of powers of the chemical potential at high temperature, for the case of massless quarks. We analyze this expansion in the perturbative region and find that it gives extra spurious information. We propose for the non-perturbative sector a simplified effective action which, in principle, contains only the relevant information.

  13. Chemically induced electric field: flat band potential engineering

    Science.gov (United States)

    Bak, T.; Guo, Z.; Li, W.; Atanacio, A. J.; Nowotny, J.

    2012-10-01

    The present work considers engineering of the flat band potential, FBP, of metal oxides in a controlled manner. The aim is to minimise the energy losses related to recombination. The related experimental approaches include imposition of a chemically-induced electric field using the phenomena of segregation, diffusion and the formation of multilayer systems. This paper considers several basic phenomena that allow the modification of the surface charge and the space charge at the gas/solid and solid/liquid interfaces.

  14. QCD Critical Point and Complex Chemical Potential Singularities

    CERN Document Server

    Stephanov, M A

    2006-01-01

    The thermodynamic singularities of QCD in the plane of complex baryo-chemical potential mu are studied. Predictions are made using scaling and universality arguments in the vicinity of the massless quark limit. The results are illustrated by a calculation of complex mu singularities in a random matrix model at finite temperature. Implications for lattice QCD simulations aimed at locating the QCD critical point are discussed.

  15. The shear viscosity of gauge theory plasma with chemical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada) and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9 (Canada)]. E-mail: abuchel@perimeterinstitute.ca; Naryshkin, Roman [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Physics Department, Taras Shevchenko Kiev National University, Prosp. Glushkova 6, Kiev 03022 (Ukraine)

    2007-02-08

    We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.

  16. Rapidity-dependent chemical potentials in a statistical approach

    Science.gov (United States)

    Broniowski, Wojciech; Biedroń, Bartłomiej

    2008-04-01

    We present a single-freeze-out model with thermal and geometric parameters dependent on the position within the fireball and use it to describe the rapidity distribution and transverse-momentum spectra of pions, kaons, protons and antiprotons measured at RHIC at \\sqrt{s_NN}=200\\,\\, GeV by BRAHMS. THERMINATOR is used to perform the necessary simulation, which includes all resonance decays. The result of the fit to the data is the expected growth of the baryon and strange chemical potentials with the spatial rapidity αpar. The value of the baryon chemical potential at αpar ~ 3 is about 200 MeV, i.e. it lies in the range of the highest SPS energies. The chosen geometry of the fireball has a decreasing transverse size as the magnitude of αpar is increased, which also corresponds to decreasing transverse flow. The strange chemical potential obtained from the fit to the K+/K- ratio is such that the local strangeness density in the fireball is compatible with zero. The resulting rapidity distribution of net protons are described qualitatively within the statistical approach. As a result of our study, the knowledge of the 'topography' of the fireball is acquired, allowing for other analyses and predictions. Research supported by the Polish Ministry of Education and Science, grants N202 034 32/0918 and 2 P03B 02828.

  17. Calculation of elastic properties in lower part of the Kola borehole from bulk chemical compositions of core samples

    Energy Technology Data Exchange (ETDEWEB)

    Babeyko, A.Yu.; Sobolev, S.V. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)]|[Univ. of Karlsruhe (Germany); Sinelnikov, E.D. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)]|[State Univ. of New York, Stony Brook, NY (United States); Smirnov, Yu.P. [Scientific Center SG-3, Zapoliarniy (Russian Federation); Derevschikova, N.A. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)

    1994-09-01

    In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density and elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.

  18. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    Science.gov (United States)

    Prentice, A. J. R.

    1999-01-01

    Callisto, NH3 ice makes up -5% of the condensate mass next to h-rock (approximately 50%) and H2O ice (approximately 45%). Detailed thermal and structural models for each of Europa, Ganymede and Callisto are constructed on the basis of the above initial bulk chemical compositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912 M (sub E) and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertia coefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass approximately 0.116 M (sub G), and an outer H2O ice mantle of mass approximately 0.502 M (sub G) is needed to explain the gravity data. Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826 M (sub C) containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3 (raised dot) 2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field.

  19. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    CERN Document Server

    Shao, Guo-yun; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-01-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu--Jona-Lasinio model with an explicit chemical potential dependence of Polyakov-loop potential ($\\mu$PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the $\\mu$-dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of $u, d$ quarks in the hadron-quark coexisting phase, and analyse the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and proper...

  20. Holographic dual of a boost-invariant plasma with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2010-12-15

    We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)

  1. Holographic thermalization with a chemical potential from Born-Infeld electrodynamics

    CERN Document Server

    Camilo, Giancarlo; Abdalla, Elcio

    2014-01-01

    The problem of holographic thermalization in the framework of Einstein gravity coupled to Born-Infeld nonlinear electrodynamics is investigated. We use equal time twopoint correlation functions and expectation values of Wilson loop operators in the boundary quantum field theory as probes of thermalization, which have dual gravity descriptions in terms of geodesic lengths and minimal area surfaces in the bulk spacetime. The full range of values of the chemical potential per temperature ratio on the boundary is explored. The numerical results show that the effect of the charge on the thermalization time is similar to the one obtained with Maxwell electrodynamics, namely the larger the charge the later thermalization occurs. The inverse Born-Infeld parameter, on the other hand, has the opposite effect: the more nonlinear the theory is, the sooner it thermalizes. We also study the thermalization velocity and how the parameters affect the phase transition point separating the thermalization process into an acceler...

  2. Harmonic expansion of the effective potential in a functional renormalization group at finite chemical potential

    Science.gov (United States)

    Barnaföldi, G. G.; Jakovác, A.; Pósfay, P.

    2017-01-01

    In this paper we propose a method to study the functional renormalization group (FRG) at finite chemical potential. The method consists of mapping the FRG equations within the Fermi surface into a differential equation defined on a rectangle with zero boundary conditions. To solve this equation we use an expansion of the potential in a harmonic basis. With this method we determined the phase diagram of a simple Yukawa-type model; as expected, the bosonic fluctuations decrease the strength of the transition.

  3. Critical endpoint in the presence of a chiral chemical potential

    CERN Document Server

    Cui, Zhu-Fang; Lu, Ya; Roberts, Craig D; Schmidt, Sebastian M; Xu, Shu-Sheng; Zong, Hong-Shi

    2016-01-01

    A class of Polyakov-loop-modified Nambu--Jona-Lasinio (PNJL) models have been used to support a conjecture that numerical simulations of lattice-regularized quantum chromodynamics (QCD) defined with a chiral chemical potential can provide information about the existence and location of a critical endpoint in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physically-motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the PNJL models and the four-fermion coupling in those models does not react strongly to changes in the mean-field that is assumed to mock-up Polyakov l...

  4. The Instanton-Dyon Liquid Model III: Finite Chemical Potential

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We discuss an extension of the instanton-dyon liquid model that includes light quarks at finite chemical potential in the center symmetric phase. We develop the model in details for the case of SU_c(2)\\times SU_f(2) by mapping the theory on a 3-dimensional quantum effective theory. We analyze the different phases in the mean-field approximation. We extend this analysis to the general case of SU_c(N_c)\\times SU_f(N_f) and note that the chiral and diquark pairings are always comparable.

  5. Bosonic Partition Functions at Nonzero (Imaginary) Chemical Potential

    CERN Document Server

    Kellerstein, M

    2016-01-01

    We consider bosonic random matrix partition functions at nonzero chemical potential and compare the chiral condensate, the baryon number density and the baryon number susceptibility to the result of the corresponding fermionic partition function. We find that as long as results are finite, the phase transition of the fermionic theory persists in the bosonic theory. However, in case that bosonic partition function diverges and has to be regularized, the phase transition of the fermionic theory does not occur in the bosonic theory, and the bosonic theory is always in the broken phase.

  6. An effective theory for QCD with an axial chemical potential

    CERN Document Server

    Andrianov, Alexander A; Espriu, Domenec; Planells, Xumeu

    2013-01-01

    We consider the low energy realization of QCD in terms of meson fields when an axial chemical potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate that the presence of an axial charge constitutes an explicit source of parity breaking. The eigenstates of strong interactions do not have a definite parity and interactions that would otherwise be forbidden compete with the familiar ones. In this work, we first focus on scalars and pseudoscalars that are described by a generalized linear sigma model; and next, we give some hints on how the Vector Meson Dominance model describes the vector sector.

  7. Holographic black hole engineering at finite baryon chemical potential

    CERN Document Server

    Rougemont, Romulo

    2016-01-01

    This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with $2+1$ flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.

  8. Potential of the technological and chemical utilisation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. [Univ. Bari (Italy). Dip. di Chimica e Centro METEA

    1998-10-01

    The carbon dioxide mitigation has been agreed at international level. Besides the efficiency technologies, the recovery of CO{sub 2} from power-plants flue gases is a most innovative approach. This would make available large amounts of CO{sub 2}, either for disposal or for utilisation. The technological and chemical utilisation of carbon dioxide are options whose potential is under evaluation. The Life Cycle Analysis (LCA) study seems to be the most effective tool for their assessment. The two options are considered in this paper and the synthetic methodologies that appear as most likely to be implemented are analysed.

  9. Composite reweighting with Imaginary Chemical Potentials in SU(3)

    CERN Document Server

    Crompton, P R

    2002-01-01

    We review the overlap pathology of the Glasgow reweighting method for finite density QCD, and discuss the sampling bias that effects the determination of the ensemble-averaged fugacity polynomial expansion coefficients that form the Grand Canonical Partition function. The expectation of the difference in free energies between canonical partition functions generated with different measures is presented as an indicator of a systematic quark number dependent biasing in the reweighting approach. The advantages of building up an unbiased polynomial expansion for the Grand Canonical Partition function through a series of parallel ensembles generated by reweighting with imaginary chemical potentials are then contrasted with addressing the overlap pathology through a secondary reweighting.

  10. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  11. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn Alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal

    2011-05-01

    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively-coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.

  12. Chemical potential and compressibility of quantum Hall bilayer excitons,.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Brian

    2016-02-25

    I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment and an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.

  13. Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method

    Science.gov (United States)

    Thompson, Sarah S.; Kulessa, Bernd; Essery, Richard L. H.; Lüthi, Martin P.

    2016-02-01

    Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. We show here that strong electrical self-potential fields are generated in melting in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. In agreement with theory, the diurnal evolution of self-potential magnitudes ( ˜ 60-250 mV) relates to those of bulk meltwater fluxes (0-1.2 × 10-6 m3 s-1) principally through the permeability and the content, electrical conductivity and pH of liquid water. Previous work revealed that when fresh snow melts, ions are eluted in sequence and electrical conductivity, pH and self-potential data change diagnostically. Our snowpacks had experienced earlier stages of melt, and complementary snow pit measurements revealed that electrical conductivity ( ˜ 1-5 × 10-6 S m-1) and pH ( ˜ 6.5-6.7) as well as permeabilities (respectively ˜ 9.7 × 10-5 and ˜ 4.3 × 10-5 m2 at Rhone Glacier and Jungfraujoch Glacier) were invariant. This implies, first, that preferential elution of ions was complete and, second, that our self-potential measurements reflect daily changes in liquid water contents. These were calculated to increase within the pendular regime from ˜ 1 to 5 and ˜ 3 to 5.5 % respectively at Rhone Glacier and Jungfraujoch Glacier, as confirmed by ground truth measurements. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor owing to its suitability for (1) sensing lateral and vertical liquid water flows directly and minimally invasively, (2) complementing established observational programs through multidimensional spatial mapping of meltwater fluxes or liquid water content and (3) monitoring autonomously at a low cost. Future work should focus on the development of self-potential sensor

  14. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    Science.gov (United States)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  15. QCD with Chemical Potential in a Small Hyperspherical Box

    CERN Document Server

    Hands, Simon; Myers, Joyce C

    2010-01-01

    To leading order in perturbation theory, we solve QCD, defined on a small three sphere in the large N and Nf limit, at finite chemical potential and map out the phase diagram in the (mu,T) plane. The action of QCD is complex in the presence of a non-zero quark chemical potential which results in the sign problem for lattice simulations. In the large N theory, which at low temperatures becomes a conventional unitrary matrix model with a complex action, we find that the dominant contribution to the functional integral comes from complexified gauge field configurations. For this reason the eigenvalues of the Polyakov line lie off the unit circle on a contour in the complex plane. We find at low temperatures that as mu passes one of the quark energy levels there is a third-order Gross-Witten transition from a confined to a deconfined phase and back again giving rise to a rich phase structure. We compare a range of physical observables in the large N theory to those calculated numerically in the theory with N=3. I...

  16. Electric charge catalysis by magnetic fields and isospin chemical potential

    CERN Document Server

    Bruckmann, F; Sulejmanpasic, T

    2013-01-01

    We describe a generic mechanism by which a system of Dirac fermions which carry an additional quantum number (isospin) acquires electric charge when the system is subject to an isospin chemical potential and a superposition of a normal magnetic field and a magnetic field which distinguishes the isospin. A nontrivial feature of fermions in the background of such gauge fields is that the electric charge appears due to nonzero isospin chemical potential and vice versa. The charge is accumulated since the degeneracies of occupied lowest Landau levels for particles of positive isospin and anti-particles of negative isospin are different. We discuss two physical systems where this phenomenon can be realized. One is monolayer graphene where the isospin is associated with two valleys in the Brillouin zone and the strain-induced pseudo-magnetic field acts differently on charge carriers in different valleys. Another is hot QCD, for which the role of isospin is played by the color of quarks. In the latter case the descr...

  17. Chemoinformatics and chemical genomics: potential utility of in silico methods.

    Science.gov (United States)

    Valerio, Luis G; Choudhuri, Supratim

    2012-11-01

    Computational life sciences and informatics are inseparably intertwined and they lie at the heart of modern biology, predictive quantitative modeling and high-performance computing. Two of the applied biological disciplines that are poised to benefit from such progress are pharmacology and toxicology. This review will describe in silico chemoinformatics methods such as (quantitative) structure-activity relationship modeling and will overview how chemoinformatic technologies are considered in applied regulatory research. Given the post-genomics era and large-scale repositories of omics data that are available, this review will also address potential applications of in silico techniques in chemical genomics. Chemical genomics utilizes small molecules to explore the complex biological phenomena that may not be not amenable to straightforward genetic approach. The reader will gain the understanding that chemoinformatics stands at the interface of chemistry and biology with enabling systems for mapping, statistical modeling, pattern recognition, imaging and database tools. The great potential of these technologies to help address complex issues in the toxicological sciences is appreciated with the applied goal of the protection of public health.

  18. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    Science.gov (United States)

    Touchette, Brant W; Marcus, Sarah E; Adams, Emily C

    2014-03-28

    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the 'cell water conservation hypothesis', may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant-water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below -1.0 MPa and the majority of freshwater plants were above -1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis.

  19. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    Science.gov (United States)

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  20. Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2013-06-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

  1. Determination of Reference Chemical Potential Using Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Krishnadeo Jatkar

    2010-01-01

    Full Text Available A new method implementing molecular dynamics (MD simulations for calculating the reference properties of simple gas hydrates has been proposed. The guest molecules affect interaction between adjacent water molecules distorting the hydrate lattice, which requires diverse values of reference properties for different gas hydrates. We performed simulations to validate the experimental data for determining Δ0, the chemical potential difference between water and theoretical empty cavity at the reference state, for structure II type gas hydrates. Simulations have also been used to observe the variation of the hydrate unit cell volume with temperature. All simulations were performed using TIP4P water molecules at the reference temperature and pressure conditions. The values were close to the experimental values obtained by the Lee-Holder model, considering lattice distortion.

  2. Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Akemann, G. [Department of Mathematical Sciences, Brunel University West London, Uxbridge UB8 3PH (United Kingdom); Osborn, J.C. [Physics Department, Boston University, Boston, MA 02215 (United States); Splittorff, K. [Nordita, Blegdamsvej 17, DK-2100, Copenhagen O (Denmark)]. E-mail: split@alf.nbi.dk; Verbaarschot, J.J.M. [Department of Physics and Astronomy, SUNY, Stony Brook, NY 11794 (United States)

    2005-04-18

    The microscopic spectral density of the QCD Dirac operator at nonzero baryon chemical potential for an arbitrary number of quark flavors was derived recently from a random matrix model with the global symmetries of QCD. In this paper we show that these results and extensions thereof can be obtained from the replica limit of a Toda lattice equation. This naturally leads to a factorized form into bosonic and fermionic QCD-like partition functions. In the microscopic limit these partition functions are given by the static limit of a chiral Lagrangian that follows from the symmetry breaking pattern. In particular, we elucidate the role of the singularity of the bosonic partition function in the orthogonal polynomials approach. A detailed discussion of the spectral density for one and two flavors is given.

  3. $3d$ fermion-boson map with imaginary chemical potential

    CERN Document Server

    Filothodoros, E G; Vlachos, N D

    2016-01-01

    We study the three-dimensional $U(N)$ Gross-Neveu and CP$^{N-1}$ models in the canonical formalism with fixed $U(1)$ charge. For large-$N$ this is closely related to coupling the models to abelian Chern-Simons in a monopole background. We show that the presence of the imaginary chemical potential for the $U(1)$ charge makes the phase structure of the models remarkably similar. We calculate their respective large-$N$ free energy densities and show that they are mapped into each other in a precise way. Intriguingly, the free energy map involves the Bloch-Wigner function and its generalizations introduced by Zagier. We expect that our results are connected to the recently discussed $3d$ bosonization.

  4. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.

    Science.gov (United States)

    Tong, Yujin; Kampfrath, Tobias; Campen, R Kramer

    2016-07-21

    Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.

  5. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    Science.gov (United States)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities

  6. A Quantum Chemical Study on Polythiophenes Derivatives as Donor Materials in Bulk-heterojunction Polymer Solar Cell

    Directory of Open Access Journals (Sweden)

    Bushra Mohamed Omer

    2012-09-01

    Full Text Available For the optimum design of the donor and acceptor materials in polymer solar cells, it is very important to do a theoretical calculation for the energy levels and energy gaps. In this work we used the semiempirical method Austin Model1 (AM1 to investigate the Higher Occupied Molecular Orbital (HOMO and Lower Unoccupied Molecular Orbital (LUMO of polythiophenes derivatives/fullerenes combination (bulk heterojunction polymer solar cells. The overestimation on the HOMO and LUMO values was corrected by using experimental data from literature as criteria of correctness. Using our correction method, a reasonable linear relationship between the computed energy band gaps of polythiophenes derivatives and the experimental band gaps were found. The corrected HOMO and LUMO energies of polythiophenes derivatives match well with the experimental one. This method can serve as a road map inorder to design and synthesis appropriate combination of polythiophenes derivatives/fullerenes for bulk heterojunction solar cells.

  7. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Science.gov (United States)

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique.

  8. Life Cycle Risks for Human Health: A Comparison of Petroleum Versus Bio-Based Production of Five Bulk Organic Chemicals

    NARCIS (Netherlands)

    Roes, A.L.; Patel, M.K.

    2007-01-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses

  9. Critical Number of Fermion Flavors at Finite Chemical Potential in QED3

    Institute of Scientific and Technical Information of China (English)

    FENG Hong-Tao; HE Xiang; HOU Feng-Yao; SUN Wei-Min; ZONG Hong-Shi

    2005-01-01

    We propose a new method for calculating the dressed fermion propagator at finite chemical potential in QED3 under the rainbow approximation of Dyson-Schwinger equation. In the above approximation, we show that the dressed fermion propagator at finite chemical potentialμ has the form S (p) = iγ. pA (p2) + B (p2) with pμ = (p, p3 + iμ).Using this form of fermion propagator at nonzero chemical potential, we investigate the Dyson-Schwinger equation for the dressed fermion propagator at finite chemical potential and study the effects of the chemical potential on the critical number of the fermion flavors.

  10. Black Hole Phase Transitions and the Chemical Potential

    CERN Document Server

    Maity, Reevu; Sarkar, Tapobrata

    2015-01-01

    In the context of extended phase space thermodynamics and the AdS-CFT correspondence, we consider the chemical potential ($\\mu$) dual to the number of colours ($N$) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining $\\mu$ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking-Page transition for AdS-Schwarzschild and RN-AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr-AdS black holes in four and five dimensions, our analysis points to the fact that $\\mu$ can change sign in the stable black hole region, i.e above the Hawking-Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss-Bonnet gravity, and find similar features for $\\mu$ as in the Kerr-AdS case.

  11. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene

    Directory of Open Access Journals (Sweden)

    Yue Cheng

    2016-05-01

    Full Text Available Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW waveguides can be excited by a monolayer graphene ribbon. What is more the transverse resonant frequency spectrum of the GNW can be flexibly tuned by adjusting the chemical potential of graphene, and amplitude of the resonance peak varies linearly with the imaginary part of the analyte permittivity. As a consequence, the GNW works as a probe for capturing the molecular spectrum. Broadband sensing of toluene, ethanol and sulfurous anhydride thin layers is demonstrated by calculating the changes in spectral intensity of the propagating mode and the results show that the intensity spectra correspond exactly to the infrared spectra of these molecules. This may open an effective avenue to design sensors for detecting nanometric-size molecules in the terahertz and infrared regimes.

  12. Black hole phase transitions and the chemical potential

    Directory of Open Access Journals (Sweden)

    Reevu Maity

    2017-02-01

    Full Text Available In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ dual to the number of colours (N of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  13. Black hole phase transitions and the chemical potential

    Science.gov (United States)

    Maity, Reevu; Roy, Pratim; Sarkar, Tapobrata

    2017-02-01

    In the context of black hole thermodynamics and the AdS-CFT correspondence, we consider the chemical potential (μ) dual to the number of colours (N) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking-Page transition for AdS-Schwarzschild and RN-AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr-AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking-Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss-Bonnet gravity, and find similar features for μ as in the Kerr-AdS case.

  14. Direct observation of bulk and surface chemical morphologies of Ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging.

    Science.gov (United States)

    Chen, Jianbo; Sun, Suqin; Zhou, Qun

    2013-11-01

    Fourier transform infrared microspectroscopy is a powerful tool to obtain knowledge about the spatial and/or temporal distributions of the chemical compositions of plants for better understanding of their biological properties. However, the chemical morphologies of plant leaves in the plane of the blade are barely studied, because sections in this plane for mid-infrared transmission measurements are difficult to obtain. Besides, native compositions may be changed by chemical reagents used when plant samples are microtomed. To improve methods for direct infrared microspectroscopic imaging of plant leaves in the plane of the blade, the bulk and surface chemical morphologies of nonmicrotomed Ginkgo biloba leaves were characterized by near-infrared transmission and mid-infrared attenuated total reflection microspectroscopic imaging. A new self-modeling curve resolution procedure was proposed to extract the spectral and concentration information of pure compounds. Primary and secondary metabolites of secretory cavities, veins, and mesophylls of Ginkgo biloba leaf blades were analyzed, and the distributions of cuticle, protein, calcium oxalate, cellulose, and ginkgolic acids on the adaxial surface were determined. By the integration of multiple infrared microspectroscopic imaging and chemometrics methods, it is possible to analyze nonmicrotomed leaves and other plant samples directly to understand their native chemical morphologies in detail.

  15. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal

    2011-04-01

    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.Defence Science Journal, 2011, 61(3, pp.270-274, DOI:http://dx.doi.org/10.14429/dsj.61.397

  16. Bulking on the activated slugde process applied to the cheese whey effluent treatment: characterization and use of chemical flocullants to improve settling

    Directory of Open Access Journals (Sweden)

    Nelson Duran

    2007-11-01

    Full Text Available In this work was studied the activated sludge process applied to an effluent treatment from a cheese manufacture (cheese whey, which is characterized by the high organic content containing easily biodegradable compounds as lactose. In the diluted whey treatment, it was found that the activated sludge is an adequate system at a diluted condition (100x, 50x, 25x e 10x and treatment (HRT varying between 6-36 h and suspended solid (SS between 2800-19417mgL-1. However, the system is susceptible to bulking occurrence. Chemical flocculants were evaluated in order to monitoring the biological flocs sedimentation present in a continuous activated sludge system under bulking conditions. The treatment was carried out in a continuous reactor at laboratory scale and the coagulants (Al2 (SO43 and FeSO4 .7H2O were added to sludge at 50-200 mg L-1 concentration range. The results showed that Al3+ presented higher settling capacity compared with Fe2+ effect, and the good settling characteristics were observed in terms of SVI (sludge volume index. However, more detailed studies in this direction should be done to evaluate if the characteristic organisms in the activated sludge are not irreversible suppressed with the use of chemical flocculants.

  17. Phenomenological thermodynamic potentials for bulk and thin-film Ba (Zr0.08 Ti 0.92 ) O 3 single crystals

    Science.gov (United States)

    Peng, J. L.; Li, Q.; Shan, D. L.; Pan, K.; Yu, G. S.; Liu, Y. Y.

    2016-05-01

    Phenomenological thermodynamic analysis is an important theoretical investigation method for ferroelectric materials, however, it cannot be implemented for Ba ( Zr x Ti 1 - x ) O 3 due to the lack of thermodynamic potential coefficients. In this paper, we have constructed a phenomenological thermodynamic potential for bulk Ba ( Zr 0.08 Ti 0.92 ) O 3 single crystals, which reproduces the three phase transition temperatures, dielectric and piezoelectric constants of bulk Ba ( Zr 0.08 Ti 0.92 ) O 3 single crystals well, suggesting that the constructed thermodynamic potential is reliable. Then the thermodynamic potential with appropriate modification is applied to predict misfit strain-temperature phase diagram and electromechanical properties of Ba ( Zr 0.08 Ti 0.92 ) O 3 thin films. It is found that compressive strain favors the tetragonal c phase with an out-of-plane polarization component, while tensile misfit strain favors orthorhombic aa phase with an in-plane polarization component. It also reveals that Ba ( Zr 0.08 Ti 0.92 ) O 3 thin films under appropriate compressive strain show higher piezoelectric coefficient d15 than that of their bulk counterpart. The constructed thermodynamic potential opens a new avenue to theoretical analysis on Ba ( Zr 0.08 Ti 0.92 ) O 3 .

  18. Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices.

    Science.gov (United States)

    Wu, Ming-Chung; Wu, Yi-Jen; Yen, Wei-Che; Lo, Hsi-Hsing; Lin, Ching-Fuh; Su, Wei-Fang

    2010-08-01

    This is an in depth study on the surface potential changes of P3HT/TiO(2) nanorod bulk heterojunction thin films. They are affected by interlayer structures, the molecular weight of P3HT, the processing solvents and the surface ligands on the TiO(2). The addition of an electron blocking layer and/or the hole blocking layer to the P3HT/TiO(2) thin film can facilitate charge carrier transport and result in a high surface potential shift. The changes in surface potential of multilayered bulk heterojunction films are closely correlated to their power conversion efficiency of photovoltaic devices. Changing ligand leads to the largest change in surface potential yielding the greatest effect on the power conversion efficiency. Merely changing the P3HT molecular weight is less effective and varying the processing solvents is least effective in increasing power conversion efficiency. The steric effect of the ligand has a large influence on the reduction of charge carrier recombination resulting in a great effect on the power conversion efficiency. By monitoring the changes in the surface potential of bulk heterojunction film of multilayer structures, we have obtained a useful guide for the fabrication of high performance photovoltaic devices.

  19. Few-Layer Nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with Highly Tunable Chemical Potential

    KAUST Repository

    Kong, Desheng

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi2Se3, Bi2Te3, and Sb2Te3 are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi2Te3 and Bi2Se3 nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO2/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential. © 2010 American Chemical Society.

  20. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.

    Science.gov (United States)

    Roes, Alexander L; Patel, Martin K

    2007-10-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.

  1. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW.

  2. Evaluation of the Component Chemical Potentials in Analytical Models for Ordered Alloy Phases

    Directory of Open Access Journals (Sweden)

    W. A. Oates

    2011-01-01

    Full Text Available The component chemical potentials in models of solution phases with a fixed number of sites can be evaluated easily when the Helmholtz energy is known as an analytical function of composition. In the case of ordered phases, however, the situation is less straightforward, because the Helmholtz energy is a functional involving internal order parameters. Because of this, the chemical potentials are usually obtained numerically from the calculated integral Helmholtz energy. In this paper, we show how the component chemical potentials can be obtained analytically in ordered phases via the use of virtual cluster chemical potentials. Some examples are given which illustrate the simplicity of the method.

  3. Bulk asymptotics of skew-orthogonal polynomials for quartic double well potential and universality in the matrix model

    CERN Document Server

    Ghosh, Saugata

    2008-01-01

    We derive bulk asymptotics of skew-orthogonal polynomials (sop) $\\pi^{\\bt}_{m}$, $\\beta=1$, 4, defined w.r.t. the weight $\\exp(-2NV(x))$, $V (x)=gx^4/4+tx^2/2$, $g>0$ and $t 0$, such that $\\epsilon\\leq (m/N)\\leq \\lambda_{\\rm cr}-\\epsilon$, where $\\lambda_{\\rm cr}$ is the critical value which separates sop with two cuts from those with one cut. Simultaneously we derive asymptotics for the recursive coefficients of skew-orthogonal polynomials. The proof is based on obtaining a finite term recursion relation between sop and orthogonal polynomials (op) and using asymptotic results of op derived in \\cite{bleher}. Finally, we apply these asymptotic results of sop and their recursion coefficients in the generalized Christoffel-Darboux formula (GCD) \\cite{ghosh3} to obtain level densities and sine-kernels in the bulk of the spectrum for orthogonal and symplectic ensembles of random matrices.

  4. Growth and chemical analysis of bulk Nd 2- xCe xCuO y single crystals

    Science.gov (United States)

    Zhigunov, D. I.; Shiryaev, S. V.; Kurnevich, L. A.; Kalanda, N. A.; Kurochkin, L. A.; Barilo, S. N.; Vashuk, V. V.; Smakhtin, L. A.

    1999-03-01

    Single crystals of Nd 2- xCe xCuO y (0< x<0.17) from a family of the electron-type superconductors have been grown using platinum crucibles by the top seeded solution growth technique. The structural quality of the crystals was examined by X-ray diffraction. The FWHM of the Bragg reflections for the best samples varies from 8 to 20 angular seconds. Full neutron activation analysis was carried out to determine the chemical composition of the as-grown crystals. Small cation stoichiometry deviations from ideal (NdCe)/Cu ratio are found as well as Pt substitution on the copper sublattice at a level up to 2 at% exists depending on growth conditions. The results of thermogravimetric measurements and further annealing of samples show that the problem of an oxygen reduction of large Nd 2- xCe xCuO y crystals is closely connected with inhomogeneity of anion distribution in the lattice possibly caused by non-optimal parameters for the reduction process and the level of impurities contamination. A three step reduction process which produces superconductivity with Tc˜19 K in single crystals thicker than 1 mm has been developed.

  5. Linear Sigma Model at Finite Temperature and Baryonic Chemical Potential Using the N-Midpoint Technique

    Directory of Open Access Journals (Sweden)

    M. Abu-Shady

    2014-01-01

    Full Text Available A baryonic chemical potential (μb is included in the linear sigma model at finite temperature. The effective mesonic potential is numerically calculated using the N-midpoint rule. The meson masses are investigated as functions of the temperature (T at fixed value of baryonic chemical potential. The pressure and energy density are investigated as functions of temperature at fi…xed value of μb. The obtained results are in good agreement in comparison with other techniques. We conclude that the calculated effective potential successfully predicts the meson properties and thermodynamic properties at finite baryonic chemical potential.

  6. Two-loop thermodynamics of warm and dense (isospin and baryo-chemical potential) perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Thorben [Institut fuer Theoretische Physik, Goethe Universitaet, Frankfurt am Main (Germany); Schaffner-Bielich, Juergen [Institut fuer Theoretische Physik, Goethe Universitaet, Frankfurt am Main (Germany); Fraga, Eduardo S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2014-07-01

    We present a perturbative calculation of the thermodynamical potential of quantum chromodynamics at nonvanishing temperatures for different values of the isospin and baryo-chemical potential. A comparison to recent lattice calculations at nonvanishing isospin is performed and the region of the break-down of the perturbative calculations are delineated. Finally, we study the thermodynamic potential at high chemical potentials and low temperatures where the perturbative scheme should be also applicable.

  7. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  8. Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well fluids: finite size effects.

    Science.gov (United States)

    Vörtler, Horst L; Schäfer, Katja; Smith, William R

    2008-04-17

    We study the simulation cell size dependence of chemical potential isotherms in subcritical square-well fluids by means of series of canonical ensemble Monte Carlo simulations with increasing numbers of particles, for both three-dimensional bulk systems and two-dimensional planar layers, using Widom-like particle insertion methods. By estimating the corresponding vapor/liquid coexistence densities using a Maxwell-like equal area rule for the subcritical chemical potential isotherms, we are able to study the influence of system size not only on chemical potentials but also on the coexistence properties. The chemical potential versus density isotherms show van der Waals-like loops in the subcritical vapor/liquid coexistence range that exhibit distinct finite size effects for both two- and three-dimensional fluids. Generally, in agreement with recent findings for related studies of Lennard-Jones fluids, the loops shrink with increasing number of particles. In contrast to the subcritical isotherms themselves, the equilibrium vapor/liquid densities show only a weak system size dependence and agree quantitatively with the best-known literature values for three-dimensional fluids. This allows our approach to be used to accurately predict the phase coexistence properties. Our resulting phase equilibrium results for two-dimensional square-well fluids are new. Knowledge concerning finite size effects of square-well systems is important not only for the simulation of thermodynamic properties of simple fluids, but also for the simulation of models of more complex fluids (such as aqueous or polymer fluids) involving square-well interactions.

  9. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  10. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  11. An explicit expression for finite-size corrections to the chemical potential

    NARCIS (Netherlands)

    Smit, B.; Frenkel, D.

    1989-01-01

    In this article an expression is derived for the finite-size corrections to the excess chemical potential in an N-particle system with periodic boundary conditions. The leading N-dependence of the chemical potential is predicted to be proportional to 1/N. The authors derive a simple expression relat

  12. Chemical Potential Dependence of the Dressed-Quark Propagator in a Simple Confining QCD Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; HOU Feng-Yao; CHEN Xiang-Song; LIU Yu-Xin

    2004-01-01

    Based on the Dyson-Schwinger approach, a method for obtaining the chemical potential dependence of the dressed quark propagator in the ‘Nambu-Goldstone' and the ‘Wigner' phase is developed. The bag constant in the presence of the non-zero chemical potential is analysed.

  13. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  14. Titan at the time of the Cassini spacecraft first flyby: a prediction for its origin, bulk chemical composition and internal physical structure

    CERN Document Server

    Prentice, A J R

    2006-01-01

    I report the results of a new set of calculations for the gravitational contraction of the proto-solar cloud to quantify the idea that Titan may be a captured moon of Saturn (Prentice 1981, 1984). It is proposed that Titan initially condensed as a secondary embryo in the same proto-solar gas ring from which the central solid core and gaseous envelope of Saturn were acquired. At the orbit of Saturn, the bulk chemical constituents of the condensate are rock (mass fraction 0.494), water ice (0.474), and graphite (0.032). The mean density is 1523 kg/m^3. Structural models for a frozen Titan yield a mean density of 2095 kg/m^3 (chemically homogeneous case) and 1904 kg/m^3 (fully differentiated 2-zone case). The agreement to one percent of the latter value with the observed mean density suggests that Titan is indeed a fully differentiated satellite. The value of C/MR^2 for this model is 0.316. It is predicted that Titan has no internal ocean or induced magnetic field but it may possess a small native dipole field o...

  15. Biotechnology for bulk production of organic chemicals. Use of biomass as an option for the future?; Biotechnologie voor bulkproductie van organische chemicalien. Inzet biomassa optie voor de toekomst?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.K.; Crank, M.; Dornburg, V.; Hermann, B.G. [Sectie Natuurwetenschap en Samenleving, Copernicus Instituut, Universiteit Utrecht, Utrecht (Netherlands); Van Overbeek, L. [Plant Research International, Wageningen (Netherlands)

    2007-07-01

    This article summarizes the BREW study (Biotechnological production of bulk chemicals from RenEWable resources), which was carried out for the European Commission by a consortium, coordinated by the Copernicus Institute of the Utrecht University in the Netherlands. The study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. [Dutch] Tegenwoordig worden bijna alle organische chemische stoffen en plastics geproduceerd uit ruwe olie en aardgas. Moet dit zo blijven of zijn er andere, meer duurzame manieren om chemische stoffen te produceren? Het gebruik van biomassa als grondstof en het inzetten van biotechnologie zijn twee mogelijkheden. Maar wanneer we deze methoden gebruiken, Iopen we dan tegen nieuwe, onvoorziene risico's aan? Dit artikel geeft een samenvatting van de uitkomst van een gedetailleerde studie, gefinancierd door de Europese Unie, over deze en andere belangrijke vragen.

  16. Saturn's Icy Moon Rhea: a Prediction for Bulk Chemical Composition and Physical Structure at the Time of the Cassini Spacecraft First Flyby

    CERN Document Server

    Prentice, A J R

    2005-01-01

    I report a model for the formation of Saturn's family of mid-sized icy moons to coincide with the first flypast of Rhea by the Cassini Orbiter spacecraft on 26 November 2005. It is proposed that these moons had condensed from a concentric family of orbiting gas rings that were cast off some 4600 Myr ago by the contracting proto-Saturnian cloud. Numerical and structural models for Rhea are constructed on the basis of a computed bulk chemical mix of hydrated rock (mass fraction 0.385), H2O ice (0.395), and NH3 ice (0.220). The large proportion of NH3 in the ice mass inhibits the formation of the dense crystalline phase II of H2O ice at the satellite's centre. This may explain the absence of compressional features on the surface. The favoured model of Rhea has a chemically uniform interior and is very cold. The satellite is nearly isodense and the predicted value of the axial moment-of-inertia factor is C/MR^2 = 0.399 +/- 0.004. NH3 is unstable at Saturn's distance from the Sun, except near the polar regions of ...

  17. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  18. Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential.

    Science.gov (United States)

    Costanza, Jed; Lynch, David G; Boethling, Robert S; Arnot, Jon A

    2012-10-01

    The fish bioconcentration factor (BCF), as calculated from controlled laboratory tests, is commonly used in chemical management programs to screen chemicals for bioaccumulation potential. The bioaccumulation factor (BAF), as calculated from field-caught fish, is more ecologically relevant because it accounts for dietary, respiratory, and dermal exposures. The BCFBAF™ program in the U.S. Environmental Protection Agency's Estimation Programs Interface Suite (EPI Suite™ Ver 4.10) screening-level tool includes the Arnot-Gobas quantitative structure-activity relationship model to estimate BAFs for organic chemicals in fish. Bioaccumulation factors can be greater than BCFs, suggesting that using the BAF rather than the BCF for screening bioaccumulation potential could have regulatory and resource implications for chemical assessment programs. To evaluate these potential implications, BCFBAF was used to calculate BAFs and BCFs for 6,034 U.S. high- and medium-production volume chemicals. The results indicate no change in the bioaccumulation rating for 86% of these chemicals, with 3% receiving lower and 11% receiving higher bioaccumulation ratings when using the BAF rather than the BCF. All chemicals that received higher bioaccumulation ratings had log K(OW ) values greater than 4.02, in which a chemical's BAF was more representative of field-based bioaccumulation than its BCF. Similar results were obtained for 374 new chemicals. Screening based on BAFs provides ecologically relevant results without a substantial increase in resources needed for assessments or the number of chemicals screened as being of concern for bioaccumulation potential.

  19. Holographic Schwinger Effect in a Confining D3-Brane Background with Chemical Potential

    Directory of Open Access Journals (Sweden)

    Zi-qiang Zhang

    2016-01-01

    Full Text Available Using the AdS/CFT correspondence, we investigate the Schwinger effect in a confining D3-brane background with chemical potential. The potential between a test particle pair on the D3-brane in an external electric field is obtained. The critical field Ec in this case is calculated. Also, we apply numerical method to evaluate the production rate for various cases. The results imply that the presence of chemical potential tends to suppress the pair production effect.

  20. Capacitive technology for energy extraction from chemical potential differences

    OpenAIRE

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.   Chapter 2 introduces the principle and initial tests. The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potent...

  1. Evaluation of the teratogenic potential of chemicals in the rat.

    Science.gov (United States)

    Fritz, H; Giese, K

    1990-01-01

    On the basis of the results of a variety of teratogenicity studies in Sprague-Dawley-derived albino rats, carried out over several years in our laboratory, an appraisal of the principal experimental procedures is set forth. Various categories of chemicals were used for the evaluation of dosage-related teratogenic potency. Salicylate, prednisolone, cyclophosphamide, 5-hydroxytryptamine (serotonin), glycinonitrile, and dimethylformamide have proven to be teratogenic under certain of the experimental conditions used. Particular differences in the embryotropic effects of acetylsalicylic acid were caused by qualitative and quantitative changes of the vehicle. Fetal morphological abnormalities, classified either as 'malformations' or as 'anomalies', may occur independently of overt maternal toxicity and/or embryotoxicity. Further, they may be closely correlated with general inhibitory effects on growth. Drugs may affect developing tissues and organs selectively due to their pharmacological activity and/or specific organ toxicity. The limitation of maternal treatment to a very short period of gestation may disclose a specific susceptibility of developmental stages of the embryo or fetus. Finally, the importance of data collected from a historical control population to the interpretation of teratogenicity data is emphasised.

  2. A Modified Approach for Calculating Dressed Quark Propagator at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 0, it is proved that the dressed From the dressed quark propagator at finite chemical potential μ can be written as (g0-1)[μ]=iγ·(p~)A((p~2))+B((p~2))with (p~)μ=((p),p4+iμ).From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.

  3. Chemical composition and methane potential of commercial food wastes.

    Science.gov (United States)

    Lopez, Victoria M; De la Cruz, Florentino B; Barlaz, Morton A

    2016-10-01

    There is increasing interest in anaerobic digestion in the U.S. However, there is little information on the characterization of commercial food waste sources as well as the effect of waste particle size on methane yield. The objective of this research was to characterize four commercial food waste sources: (1) university dining hall waste, (2) waste resulting from prepared foods and leftover produce at a grocery store, (3) food waste from a hotel and convention center, and (4) food preparation waste from a restaurant. Each sample was tested in triplicate 8L batch anaerobic digesters after shredding and after shredding plus grinding. Average methane yields for the university dining, grocery store, hotel, and restaurant wastes were 363, 427, 492, and 403mL/dry g, respectively. Starch exhibited the most complete consumption and particle size did not significantly affect methane yields for any of the tested substrates. Lipids represented 59-70% of the methane potential of the fresh substrates.

  4. Chemical pressure induced change in multiferroicity of Bi1+2xGd2x/2Fe1-2xO3 bulk ceramics

    Science.gov (United States)

    Pradhan, S. K.; Sahu, D. R.; Rout, P. P.; Das, S. K.; Pradhan, A. K.; Srinivasu, V. V.; Roul, B. K.

    2017-04-01

    We have optimized Gd ion substitution in BiFeO3 (BFO) and observed prominently change in structural, electrical and magnetic behavior of Bi1+2xGd2x/2Fe1-2xO3 ceramics synthesized through slow step sintering schedule. It is observed that with the increase in concentration of Gd (x=0.1), original structure of BFO is transformed from rhombohedral R3c space group to orthorhombic Pn21a space group. Surprisingly, unit cell volume is drastically contracted (35% for x=0.2) and the sintered specimen showed enhanced room temperature ferromagnetic behavior although the original BFO is normally G-type antiferromagnetic in nature at 643 K. It is expected that intrinsic chemical pressure within the bulk body built by the substitution of Gd in presence of excess bismuth greatly supported through unidirectional movement of electrical dipole moment with in each individual domain as a result of which suppression of leakage current with enhanced dielectric and ferroelectric hysteresis is observed.

  5. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Directory of Open Access Journals (Sweden)

    Speranza, P.

    2016-06-01

    Full Text Available Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6% and the main triacylglycerol classes were tri-unsaturated (50.0% and di-unsaturated-mono-saturated (39.3% triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%. Total phenolic (107.0 mg gallic acid equivalent·g−1 oil and β-carotene (781.6 mg·kg−1 were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH was obtained at an oil concentration of 50 mg·mL−1 (73.15%. The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes.El aceite de Buriti es un ejemplo de aceite de palma amazónica de gran importancia económica. La población local utiliza este aceite para la prevención y el tratamiento de diferentes enfermedades; sin embargo, hay pocos estudios científicos que evalúen sus propiedades. En este estudio, se determinaron las propiedades antioxidantes del aceite de Buriti. El ácido graso predominante fue el oleico (65,6 % y las principales clases de triglicéridos fueron tri-insaturadas (50,0 % y Di-insaturados-mono-saturada (39,3 %. La distribución posicional de las

  6. Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: Classification by physical and chemical structures.

    Science.gov (United States)

    Tsuruoka, Shuji; Matsumoto, Hidetoshi; Castranova, Vincent; Porter, Dale W; Yanagisawa, Takashi; Saito, Naoto; Kobayashi, Shinsuke; Endo, Morinobu

    2015-12-01

    The present study systematically examined the kinetics of a hydroxyl radical scavenging reaction of various carbon nanotubes (CNTs) including double-walled and multi-walled carbon nanotubes (DWCNTs and MWCNTs), and carbon nano peapods (AuCl3@DWCNT). The theoretical model that we recently proposed based on the redox potential of CNTs was used to analyze the experimental results. The reaction kinetics for DWCNTs and thin MWCNTs agreed well with the theoretical model and was consistent with each other. On the other hand, thin and thick MWCNTs behaved differently, which was consistent with the theory. Additionally, surface morphology of CNTs substantially influenced the reaction kinetics, while the doped particles in the center hollow parts of CNTs (AuCl3@DWCNT) shifted the redox potential in a different direction. These findings make it possible to predict the chemical and biological reactivity of CNTs based on the structural and chemical nature and their influence on the redox potential.

  7. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    NARCIS (Netherlands)

    Brink, van den N.W.; Arblaster, J.A.; Bowman, S.R.; Conder, J.M.; Elliott, J.E.; Johnson, M.S.; Muir, D.C.G.; Natal-da-Luz, Tiago; Rattner, B.A.; Sample, B.E.; Shore, R.F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To ai

  8. Energy gap in tunneling spectroscopy: effect of the chemical potential shift

    Science.gov (United States)

    Fedotov, N. I.; Zaitsev-Zotov, S. V.

    2016-12-01

    We study the effect of a shift of the chemical potential level on the tunneling conductance spectra. In the systems with gapped energy spectra, significant chemical-potential dependent distortions of the differential tunneling conductance curves, dI/dV, arise in the gap region. An expression is derived for the correction of the dI/dV, which in a number of cases was found to be large. The sign of the correction depends on the chemical potential level position with respect to the gap. The correction of the dI/dV associated with the chemical potential shift has a nearly linear dependence on the tip-sample separation z and vanishes at z → 0.

  9. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  10. Study of lattice QCD at finite chemical potential using canonical ensemble approach

    CERN Document Server

    Bornyakov, V G; Goy, V A; Molochkov, A V; Nakamura, Atsushi; Nikolaev, A A; Zakharov, V I

    2016-01-01

    New approach to computation of canonical partition functions in $N_f=2$ lattice QCD is presented. We compare results obtained by new method with results obtained by known method of hopping parameter expansion. We observe agreement between two methods indicating validity of the new method. We use results for the number density obtained in the confining and deconfining phases at imaginary chemical potential to determine the phase transition line at real chemical potential.

  11. Drag force of Anisotropic plasma at finite U(1) chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Long; Ge, Xian-Hui [Shanghai University, Department of Physics, Shanghai (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Yau Shing Tung Center, Hsinchu (China); National Center for Theoretical Science, Hsinchu (China)

    2016-05-15

    We perform the calculation of the drag force acting on a massive quark moving through an anisotropic N = 4 SU(N) Super Yang-Mills plasma in the presence of a U(1) chemical potential. We present the numerical results for any value of the anisotropy and arbitrary direction of the quark velocity with respect to the direction of the anisotropy. We find the effect of the chemical potential or charge density will enhance the drag force for our charged solution. (orig.)

  12. Effect of chemical potential on the computer simulation of hydrogen storage in single walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Hong; WANG; Shaoqing; CHENG; Huiming

    2004-01-01

    Grand canonical Monte Carlo molecular simulations were carried out for hydrogen adsorption in single-walled carbon nanotubes. It was found that variations in chemical potential may result in a great change in the hydrogen storage capacity of single-walled carbon nanotubes. Hydrogen adsorption isotherms of single-walled carbon nanotubes at 298.15 K were calculated using a modified chemical potential, and the result obtained is closer to the experimental results. By comparing the experimental and simulation results, it is proposed that chemical adsorption may exist for hydrogen adsorption in single-walled carbon nanotubes.

  13. Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector

    NARCIS (Netherlands)

    Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.

    2011-01-01

    The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country l

  14. Probing deconfinement in a chiral effective model with Polyakov loop at imaginary chemical potential

    CERN Document Server

    Morita, Kenji; Friman, Bengt; Redlich, Krzysztof

    2011-01-01

    The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-deconfinement transition. We point out that the confined phase is characterized by a $\\cos3\\mu_I/T$ dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase this dependence is given by $\\cos\\mu_I/T$ and accompanied by a cusp structure induced by the Z(3) transition. We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop potential $\\mathcal{U}$. Furthermore, we find that by changing the four fermion coupling constant $G_s$, the location of the critical endpoint of the deconfinement transition can be moved into the real chemical potential region. We propose a new parameter characterizing the confinement-deconfinement transition.

  15. Three-loop HTLpt thermodynamics at finite temperature and isospin chemical potential

    CERN Document Server

    Andersen, Jens O; Mustafa, Munshi G; Strickland, Michael

    2015-01-01

    In a previous paper (JHEP {\\bf 05} (2014) 27), we calculated the three-loop thermodynamic potential of QCD at finite temperature $T$ and quark chemical potentials $\\mu_q$ using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and isospin chemical potential $\\mu_I$. We calculate the pressure, energy density, and entropy density, the trace anomaly, and the speed of sound at zero and nonzero $\\mu_I$. The second, fourth, and sixth-order isospin susceptibilities are calculated at zero $\\mu_I$. Our results can be directly compared to lattice QCD without Taylor expansions around $\\mu_q=0$ since QCD has no sign problem at finite isospin chemical potential.

  16. Thermodynamics of large N gauge theories with chemical potentials in a 1/ D expansion

    Science.gov (United States)

    Morita, Takeshi

    2010-08-01

    In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1 + D dimensional SU( N) Yang-Mills theory and we use a 1 /D expansion to investigate the phase structure. We find three phases in the μ - T plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D → ∞ limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than 4, there is a critical chemical potential and the condensation happens only if the chemical potentials are below it.

  17. Evaluation of the potential of benchmarking to facilitate the measurement of chemical persistence in lakes.

    Science.gov (United States)

    Zou, Hongyan; MacLeod, Matthew; McLachlan, Michael S

    2014-01-01

    The persistence of chemicals in the environment is rarely measured in the field due to a paucity of suitable methods. Here we explore the potential of chemical benchmarking to facilitate the measurement of persistence in lake systems using a multimedia chemical fate model. The model results show that persistence in a lake can be assessed by quantifying the ratio of test chemical and benchmark chemical at as few as two locations: the point of emission and the outlet of the lake. Appropriate selection of benchmark chemicals also allows pseudo-first-order rate constants for physical removal processes such as volatilization and sediment burial to be quantified. We use the model to explore how the maximum persistence that can be measured in a particular lake depends on the partitioning properties of the test chemical of interest and the characteristics of the lake. Our model experiments demonstrate that combining benchmarking techniques with good experimental design and sensitive environmental analytical chemistry may open new opportunities for quantifying chemical persistence, particularly for relatively slowly degradable chemicals for which current methods do not perform well.

  18. Willow inner bark as a potential source of fibres and chemicals

    OpenAIRE

    Dou, Jinze

    2015-01-01

    The aim of this thesis was to acquire basic information on the physical and chemical structure of willow inner bark in order to assess its potential as a raw material for chemicals and fibres. Inner bark from four cultivated willow species/hybrids was studied and compared with their wood tissue. The cell and cell wall structure was studied by optical microscopy, SEM and TEM. The fibres were separated with an acid chlorite treatment and analyzed for their dimensions and morphology. The chemica...

  19. Field induced gradient simulations: a high throughput method for computing chemical potentials in multicomponent systems.

    Science.gov (United States)

    Mehrotra, Anuja Seth; Puri, Sanjay; Khakhar, D V

    2012-04-07

    We present a simulation method for direct computation of chemical potentials in multicomponent systems. The method involves application of a field to generate spatial gradients in the species number densities at equilibrium, from which the chemical potential of each species is theoretically estimated. A single simulation yields results over a range of thermodynamic states, as in high throughput experiments, and the method remains computationally efficient even at high number densities since it does not involve particle insertion at high densities. We illustrate the method by Monte Carlo simulations of binary hard sphere mixtures of particles with different sizes in a gravitational field. The results of the gradient Monte Carlo method are found to be in good agreement with chemical potentials computed using the classical Widom particle insertion method for spatially uniform systems.

  20. On Extraction of Chemical Potentials of Quarks from Particle Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2015-01-01

    Full Text Available We present two methods to extract the chemical potentials of quarks in high energy collisions. The first method is based on the ratios of negatively/positively charged particles, and the temperatures extracted from the transverse momentum spectra of related hadrons are needed. The second method is based on the chemical potentials of some particles, and we also need the transverse momentum spectra of related hadrons. To extract the quark chemical potentials, we would like to propose experimental collaborations to measure simultaneously not only the transverse momentum spectra of p-, p, K-, K+, π-, and π+, but also those of D-, D+, B-, and B+ (even those of Δ++, Δ-, and Ω- in high energy nuclear collisions.

  1. Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves

    Institute of Scientific and Technical Information of China (English)

    R. Priya; A. Prathapan; K.G Raghu; A. Nirmala Menon

    2012-01-01

    Objective: To determine the chemical composition and antioxidant potential of essential oil isolated from the leaves of Curcuma longa (turmeric). Methods: Chemical composition of the oil was analyzed using GC-MS. Antiperoxidative potential was evaluated using linoliec acid emulsion system. Free radical scavenging activity was evaluated using stable DPPH and ABTS free radicals. Results: GC-MS analyses showed that major compound present in the turmeric leaf oil is b-sesquiphellandrene (22.8%) followed by terpinolene (9.5%). Essential oil also exhibited reductive potential and antioxidant potential in linoleic acid emulsion system along with DPPH and ABTS free radical scavenging potential. Conclusions: The overall result suggests that turmeric leaf oil is capable of retarding oxidation reaction and free radical mediated damage and can be developed as a potent natural antioxidant.

  2. Relation between the equalized molecular chemical potential and the ionization potential of organic homologs

    Institute of Scientific and Technical Information of China (English)

    曹晨忠

    1995-01-01

    The ionization potential of organic homologs can be expressed as I_p=(∑X_i)/(a+bn).Here,X_i is the electronegativity(the average energy of valence electrons in a ground-state free atom)of the ith atomin an organic homologous molecule;n,the number of repeating units in the molecule;and(a+bn),the electronmoving range in the molecule orbit.The results of linear regression analysis show that the correlationcoefficients r are all "excellent"(r>0.990)for the 146 sets of photo electron spectroscopy data of 42 organichomologous series.

  3. Development and validation of a general non-digestive method for the determination of palladium in bulk pharmaceutical chemicals and their synthetic intermediates by graphite furnace atomic absorption spectroscopy.

    Science.gov (United States)

    Wang, T; Walden, S; Egan, R

    1997-02-01

    A simple, selective, sensitive, accurate and relatively inexpensive method for the determination of palladium in bulk pharmaceutical chemicals (BPC) and their synthetic intermediates by graphite furnace atomic absorption spectroscopy has been developed and validated. Sample preparation by direct dissolution of sample in 70% nitric acid is simple and effective without adverse effects. The limit of detection and the limit of quantitation of the method were determined to be 0.7 ppm and 2 ppm respectively in BPC.

  4. The $\\mathbb{C}$P(2) Model at Non-Zero Chemical Potential

    CERN Document Server

    Evans, Wynne; Wiese, Uwe-Jens

    2016-01-01

    Recently the simulation of quantum field theories using man-made physical systems has become realistic. In this publication we present numerical results which support the use of quantum simulation experiments to study quantum field theories at non-zero chemical potential. We have numerically simulated the (1+1)-d $\\mathbb{C}$P(2) model, which shares several interesting features with QCD, namely asymptotic freedom, a dynamically generated mass gap and topological sectors, via dimensional reduction of a (2+1)-d microscopic theory of SU(3) quantum spins. Numerical results for the particle number density as a function of chemical potential are presented.

  5. Hot QCD equation of state and quark-gluon plasma-- finite quark chemical potential

    CERN Document Server

    Chandra, Vinod

    2008-01-01

    We explore the relevance of a hot QCD equation of state of $O[g^6\\ln(1/g)]$, which has been obtained\\cite{avrn} for non-vanishing quark-chemical potentials to heavy ion collisions. Employing a method proposed in a recent paper \\cite{chandra1}, we use the EOS to determine a host of thermodynamic quantities, the energy density, specific heat, entropy dnesity, and the temperature dependence of screening lengths, with the behaviour of QGP at RHIC and LHC in mind. We also investigate the sensitivity of these observables to the quark chemical potential.

  6. Chemical potential and internal energy of the noninteracting Fermi gas in fractional-dimensional space

    Indian Academy of Sciences (India)

    S Panda; B K Panda

    2010-09-01

    Chemical potential and internal energy of a noninteracting Fermi gas at low temperature are evaluated using the Sommerfeld method in the fractional-dimensional space. When temperature increases, the chemical potential decreases below the Fermi energy for any dimension equal to 2 and above due to the small entropy, while it increases above the Fermi energy for dimensions below 2 as a result of high entropy. The ranges of validity of the truncated series expansions of these quantities are extended from low to intermediate temperature regime as well as from high to relatively low density regime by using the Pad ́e approximant technique.

  7. Overlap Dirac operator at nonzero chemical potential and random matrix theory.

    Science.gov (United States)

    Bloch, Jacques; Wettig, Tilo

    2006-07-07

    We show how to introduce a quark chemical potential in the overlap Dirac operator. The resulting operator satisfies a Ginsparg-Wilson relation and has exact zero modes. It is no longer gamma5 Hermitian, but its nonreal eigenvalues still occur in pairs. We compute the spectral density of the operator on the lattice and show that, for small eigenvalues, the data agree with analytical predictions of non-Hermitian chiral random matrix theory for both trivial and nontrivial topology. We also explain an observed change in the number of zero modes as a function of chemical potential.

  8. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature

    Institute of Scientific and Technical Information of China (English)

    HE Deng-Ke; JIANG Yu; FENG Hong-Tao; SUN Wei-Min; ZONG Hong-Shi

    2008-01-01

    We give a direct method for calculating the quark-number susceptibility at finite chemical potential and zero temperature.In this approach the quark-number susceptibility is totally determined by G[μ](p)(the dressed quark propagator at finite chemical potential μ).By applying the general result in our previous study[Phys.Rev.C 71(2005)015205,034901,73 (2006) 016004] G[μ](p)is calculated from the model quark propagator proposed by Pagels and Stokar[Phys.Rev.D 20(1979)2947].The full analytic expression of the quark-number susceptibility at finite μ and zero T is obtained.

  9. Lattice QCD with chemical potential: Evading the fermion-sign problem

    Indian Academy of Sciences (India)

    Sourendu Gupta

    2004-12-01

    Since the turn of the millennium there has been tremendous progress in understanding QCD at finite chemical potential, . Apart from qualitative results obtained using models, and exact results at very large obtained in weak coupling theory, there has been tremendous progress in getting exact and quantitative results from lattice simulations. I summarize the status of lattice QCD at finite chemical potential – locating the critical end-point in the QCD phase diagram, predicting event-to-event fluctuation rates of conserved quantities, and finding the rate of strangeness production.

  10. Nucleation rate of the quark-gluon plasma droplet at finite quark chemical potential

    Indian Academy of Sciences (India)

    D S Gosain; S Somorendro Singh; Agam K Jha

    2012-05-01

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark chemical potential and we calculate the nucleation rate of the QGP droplet with this parameter. While calculating the nucleation rate, we find that for low values of quark phenomenological parameter $ q$, nucleation rate is negligible and when increases, nucleation rate increases significantly.

  11. Three-loop HTLpt thermodynamics at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Najmul; Bandyopadhyay, Aritra [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology,N-7491 Trondheim (Norway); Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Strickland, Michael [Department of Physics, Kent State University,Kent, Ohio 44242 (United States); Su, Nan [Faculty of Physics, University of Bielefeld,D-33615 Bielefeld (Germany)

    2014-05-07

    We calculate the three-loop thermodynamic potential of QCD at finite temperature and chemical potential(s) using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The resulting analytic thermodynamic potential allows us to compute the pressure, energy density, and entropy density of the quark-gluon plasma. Using these we calculate the trace anomaly, speed of sound, and second-, fourth-, and sixth-order quark number susceptibilities. For all observables considered we find good agreement between our three-loop HTLpt calculations and available lattice data for temperatures above approximately 300 MeV.

  12. Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model

    CERN Document Server

    Ghosh, Sabyasachi; Mohanty, Bedangdas

    2016-01-01

    We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by Hadron Resonance Gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature is observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in...

  13. Lattice cut-off effects and their reduction in studies of QCD thermodynamics at non-zero temperature and chemical potential

    CERN Document Server

    Hegde, P; Laermann, E; Shcheredin, S

    2008-01-01

    We clarify the relation between the improvement of dispersion relations in the fermion sector of lattice regularized QCD and the improvement of bulk thermodynamic observables. We show that in the infinite temperature limit the cut-off dependence in dispersion relations can be eliminated up to O(a^n) corrections, if the quark propagator is chosen to be rotationally invariant up to this order. In bulk thermodynamic observables this eliminates cut-off effects up to the same order at vanishing as well as non-vanishing chemical potential. We furthermore show, that in the infinite temperature, ideal gas limit the dependence of finite cut-off corrections on the chemical potential is given by Bernoulli polynomials which are universal as they do not depend on a particular discretization scheme. We explicitly calculate leading and next-to-leading order cut-off corrections for some staggered and Wilson fermion type actions and compare these with exact evaluations of the free fermion partition functions. This also includ...

  14. The response of the polarized Fermi mixture to an artificial vector potential: The interaction strength and imbalance chemical potential effects

    Science.gov (United States)

    Ebrahimian, N.; Safiee, Z.

    2017-03-01

    We consider a polarized Fermi mixture (with normal-superfluid phase separation), subjected to artificial vector potential. We concentrate on the BCS regime with various interaction strengths and numerically obtain the polarisability of the system. We obtain the functional dependence of the polarisability of the system on frequency and the relevant physical parameters, namely the interaction strength, the mass ratio, the average and imbalance chemical potentials. Also, we find the special frequency (ωs), for which the rate of the response of system to the potential is changed and the cut-off frequency (ωcutoff), for which the response starts to become infinity. We investigate the behavior of the curves of polarisability versus proper physical parameters for ω physical parameters. Finally, the system's response can be controlled by relevant physical parameters, such as interaction strength.

  15. Three loop HTL perturbation theory at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael [Department of Physics, Kent State University, Kent, OH 44242 (United States); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Su, Nan [Faculty of Physics, University of Bielefeld, D-33615 Bielefeld (Germany)

    2014-11-15

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  16. Three loop HTL perturbation theory at finite temperature and chemical potential

    CERN Document Server

    Strickland, Michael; Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G; Su, Nan

    2014-01-01

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  17. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-23

    Production of chemicals from biomass offers a promising opportunity to reduce U.S. dependence on imported oil, as well as to improve the overall economics and sustainability of an integrated biorefinery. Given the increasing momentum toward the deployment and scale-up of bioproducts, this report strives to: (1) summarize near-term potential opportunities for growth in biomass-derived products; (2) identify the production leaders who are actively scaling up these chemical production routes; (3) review the consumers and market champions who are supporting these efforts; (4) understand the key drivers and challenges to move biomass-derived chemicals to market; and (5) evaluate the impact that scale-up of chemical strategies will have on accelerating the production of biofuels.

  18. The potential of asteroseismology for probing the core chemical stratification in white dwarf stars

    CERN Document Server

    Giammichele, N; Brassard, P; G.,; Fontaine,

    2016-01-01

    Context. The details of the C/O core structure in white dwarf stars has mostly remained inaccessible to the technique of asteroseismology, despite several attempts carried out in the past. Aims. We re-assess the potential of asteroseismology for probing the chemical stratification in white dwarf cores, in light of new highly efficient tools recently developed for that purpose. Methods. Using the forward modeling approach and a new parameterization for the core chemical stratification in ZZ Ceti stars, we test several situations typical of the usually limited constraints available, such as small numbers of observed independent modes, to carry out asteroseismology of these stars. Results. We find that, even with a limited number of modes, the core chemical stratification (in particular, the location of the steep chemical transitions expected in the oxygen profile) can be determined quite precisely due to the significant sensitivity of some confined modes to partial reflexion (trapping) effects. These effects ar...

  19. Chemical potential dependence of particle ratios within a unified thermal approach

    Science.gov (United States)

    Bashir, I.; Nanda, H.; Uddin, S.

    2016-06-01

    A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after the hadronization takes place.

  20. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential

    Science.gov (United States)

    Mitchell, Jade; Arnot, Jon A.; Jolliet, Olivier; Georgopoulos, Panos G.; Isukapalli, Sastry; Dasgupta, Surajit; Pandian, Muhilan; Wambaugh, John; Egeghy, Peter; Cohen Hubal, Elaine A.; Vallero, Daniel A.

    2014-01-01

    While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA’s need to develop novel approaches and tools for rapidly prioritizing chemicals, a “Challenge” was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA’s effort to develop an approach comparable to other international efforts. A common set of chemicals were prioritized under each current approach. The results are presented herein along with a comparative analysis of the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates. The analysis illustrates the similarities and differences across the domains of information incorporated in each modeling approach. The overall findings indicate a need to reconcile exposures from diffuse, indirect sources (far-field) with exposures from directly, applied chemicals in consumer products or resulting from the presence of a chemical in a microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through air, water or sediment) appears to be an important determinant of the level of agreement between modeling approaches. PMID:23707726

  1. Steady-state properties of a finite system driven by a chemical-potential gradient

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Mouritsen, Ole G.

    1990-01-01

    A two-dimensional lattice-gas model with repulsive interactions periodically infinite in one dimension and finite in the other is driven into a mass-transporting steady state by asymmetric chemical potentials applied at the open edges. By computer-simulation techniques the steady-state current...

  2. Iso-chemical potential trajectories in the P-T plane for He II

    Science.gov (United States)

    Maytal, B.; Nissen, J. A.; Van Sciver, S. W.

    1990-01-01

    Trajectories of constant chemical potential in the P-T plane serve as an integral formulation of London's equation. The trajectories are useful for analysis and synthesis of fountain effect pump performance. A family of trajectories is generated from available numerical codes.

  3. Influence of Finite Chemical Potential on Critical Boson Mass in QED3

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Qiang; LI Zhen; FENG Hong-Tao

    2007-01-01

    Using the coupled Dyson-Schwinger equation for the fermion propagator at finite chemical potential μ,we investigate the fermion chiral condensate when the gauge boson mass is nonzero in QED3. We show that the chiral symmetry restores when the boson mass is large enough, and the critical boson mass depends little on μ.

  4. Magnetic susceptibility at zero and nonzero chemical potential in QCD and QED

    CERN Document Server

    Orlovsky, V D

    2014-01-01

    Magnetic susceptibility of the quark matter in QCD is calculated in a closed form for an arbitrary chemical potential \\mu. For small \\mu, \\mu T^2, the oscillations as functions of eB occur, characteristic of the de Haas-van Alphen effect. Results are compared with available lattice data.

  5. Chemical Potential Dependence of the Dressed—Quark Propagator from an Effective Quark—Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; PINGJia-Lun; 等

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagator from the dressed-quark propagator,which provides a means of determining the behavior of the chiral and deconfinement order parameters.A comparison with the results of previous researches is given.

  6. The statistical shift of the chemical potential causing anomalous conductivity in hydrogenated microcrystalline silicon

    NARCIS (Netherlands)

    Lof, R.W.; Schropp, R.E.I.

    2010-01-01

    The behavior of the electrical conductivity in hydrogenated microcrystalline silicon (μ c-Si:H) that is frequently observed is explained by considering the statistical shift in the chemical potential as a function of the crystalline fraction (Xc), the dangling bond density (N db), and the doping den

  7. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation be-tween the coefficient of performance (COP) and the rate of energy pumping of the generalized irre-versible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the iso-thermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential trans-formers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.

  8. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer

    Institute of Scientific and Technical Information of China (English)

    XIA Dan; CHEN LinGen; SUN FengRui

    2008-01-01

    A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation between the coefficient of performance (COP) and the rate of energy pumping of the generalized irreversible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the isothermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential transformers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.

  9. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces

    Science.gov (United States)

    Pohorille, A.; Wilson, M. A.

    1996-01-01

    The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.

  10. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    Science.gov (United States)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  11. Screening chemicals for the potential to be persistent organic pollutants: a case study of Arctic contaminants.

    Science.gov (United States)

    Brown, Trevor N; Wania, Frank

    2008-07-15

    A large and ever-increasing number of chemicals are used in commerce, and researchers and regulators have struggled to ascertain that these chemicals do not threaten human health or cause environmental or ecological damage. The presence of persistent organic pollutants (POPs) in remote environments such as the Arctic is of special concern and has international regulatory implications. Responding to the need for a way to identify chemicals of high concern, a methodology has been developed which compares experimentally measured properties, or values predicted from chemical structure alone, to a set of screening criteria. These criteria include partitioning properties that allow for accumulation in the physical Arctic environment and in the Arctic human food chain, and resistance to atmospheric oxidation. Atthe same time we quantify the extent of structural resemblance to a group of known Arctic contaminants. Comparison of the substances that are identified by a mechanistic description of the processes that lead to Arctic contamination with those substances that are structurally similar to known Arctic contaminants reveals the strengths and limitations of either approach. Within a data set of more than 100,000 distinct industrial chemicals, the methodology identifies 120 high production volume chemicals which are structurally similarto known Arctic contaminants and/or have partitioning properties that suggest they are potential Arctic contaminants.

  12. Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by the infiltration-capsule method

    Science.gov (United States)

    Naito, Tomoyuki; Ogino, Arata; Fujishiro, Hiroyuki

    2016-11-01

    We successfully synthesized a dense (˜90%-filled) MgB2 bulk with no residual Mg via an infiltration process by overcoming the problems in this process such as the expansion of a B precursor disk under a liquid Mg infiltration and the residuals of unreacted Mg in the bulk using a specially designed capsule. As a result, we have achieved a record-high trapped field to date, {B}{{T}}, of 2.4 T at the center of the bulk surface at the lowest temperature of 15.9 K among the infiltration-processed MgB2 bulks. The trapped-fields simulated for a model with the experimental {J}{{c}}({μ }0H) characteristics well reproduced the experimental {B}{{T}}’s and gave a reliable estimated {B}{{T}} below 15.9 K. The extrapolation of the experimental and simulated {B}{{T}} curve reached 3 T at 4.2 K. The critical current densities, {J}{{c}}({μ }0H)’s, at 20 K were 1.8 × 105 A cm-2 under the self-field and 4.5 × 103 A cm-2 under the magnetic-field of {μ }0H = 3 T. The connectivity, K, of 16% of the present bulk was comparable with that of the ˜50%-filled MgB2 bulk. The high {B}{{T}} with low K and the microstructure of the present bulk suggested that the high- and low-{J}{{c}} regions coexisted because of the wide variation of the MgB2 grain-size.

  13. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Directory of Open Access Journals (Sweden)

    Yizhuang Liu

    2016-08-01

    Full Text Available We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  14. The $N_f= 2$ chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Philipsen, Owe

    2015-01-01

    The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the two scenarios is realized has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion mass was not conclusive yet. Recently, an alternative approach was proposed, extrapolating the first order phase transition found at imaginary chemical potential to zero chemical potential with known exponents, which are induced by the Roberge-Weiss symmetry. For staggered fermions on $N_t=4$ lattices, this results in a first order transition in the chiral limit. Here we report of $N_t=4$ simulations with Wilson fermions, where the first order region is found to be large.

  15. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nowak, Maciej A., E-mail: maciej.a.nowak@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2016-08-15

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  16. Chiral Random Matrix Model at Finite Chemical Potential: Characteristic Determinant and Edge Universality

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  17. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Directory of Open Access Journals (Sweden)

    Magbubah Essack

    2014-10-01

    Full Text Available In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  18. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  19. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging

    Science.gov (United States)

    Yan, Gen; Zhang, Tao; Dai, Zhuozhi; Yi, Meizhi; Jia, Yanlong; Nie, Tingting; Zhang, Handi; Xiao, Gang; Wu, Renhua

    2016-01-01

    Purpose We developed a novel magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer (CEST) for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood—brain barrier (BBB) disruption. Materials and Methods All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0) and other metabolites (glutamine, myoinositol, creatinine, and choline) were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution. Results The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm) downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz). The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection. Conclusion The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA. PMID:27711138

  20. Chemical potential of water from measurements of optic axial angle of zeolites

    Science.gov (United States)

    Donald, Eberlein G.; Christ, C.L.

    1968-01-01

    Values of the uncorrected optic axial angle (2H??) of a crystal of the calcium zeolite stellerite (CaAl2Si7O 18 ?? 7H2O) immersed in calcium chloride solutions of known activity of water (aw) are directly proportional to log aw. A general relationship between the chemical potential of water in the crystal and the optic axial angle is obeyed.

  1. The pressure of deconfined QCD for all temperatures and quark chemical potentials

    CERN Document Server

    Ipp, A

    2007-01-01

    A new method for the evaluation of the perturbative expansion of the QCD pressure is presented which is valid for all temperatures and quark chemical potentials in the deconfined phase, and worked out up to and including order g^4. This new approach unifies several distinct perturbative approaches to the equation of state, and agrees with dimensional reduction, HDL and HTL resummation schemes, and the zero-temperature result in their respective ranges of validity.

  2. Phase Diagram of Wilson and Twisted Mass Fermions at finite isospin chemical potential

    CERN Document Server

    Kieburg, M; Verbaarschot, J J M; Zafeiropoulos, S

    2014-01-01

    Wilson Fermions with untwisted and twisted mass are widely used in lattice simulations. Therefore one important question is whether the twist angle and the lattice spacing affect the phase diagram. We briefly report on the study of the phase diagram of QCD in the parameter space of the degenerate quark masses, isospin chemical potential, lattice spacing, and twist angle by employing chiral perturbation theory. Moreover we calculate the pion masses and their dependence on these four parameters.

  3. Critical Temperature of Chiral Symmetry Restoration for Quark Matter with a Chiral Chemical Potential

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a quark-meson model with vacuum fluctuations included. Vacuum fluctuations give a divergent contribution to the vacuum energy, so the latter has to be renormalized before computing physical quantities. The vacuum term is important for restoration of chiral symmetry at finite temperature and $\\mu_5\

  4. Quantum origins of the Iczkowski-Margrave model of chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Valone, Steven M [Los Alamos National Laboratory

    2010-01-01

    Charge flow in materials is controlled at the atomistic level through some model of the chemical potential, such as the Iczkowski-Margrave (IM) model. This model is built largely on heuristic arguments. Here a model Hamiltonian is constructed at the atomistic level commensurate with the IM model. Essential properties of the model Hamiltonian are presented, including a possible revision of the charge dependence in the IM model. Transitional properties of the model are shown to be central to regulating charge flow.

  5. A new method to study lattice QCD at finite temperature and chemical potential

    CERN Document Server

    Fodor, Z

    2002-01-01

    Due to the sign problem, it is exponentially difficult to study QCD on the lattice at finite chemical potential. In this letter we propose a method --an overlap ensuring multi-parameter reweighting technique-- to solve the problem. We apply this method and give the phase diagram of four-flavor QCD obtained on lattices 4^4 and 4\\cdot6^3. Our results are based on {\\cal{O}}(10^3-10^4) configurations.

  6. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon;

    2011-01-01

    Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social...... phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest....

  7. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals.

    Science.gov (United States)

    van den Brink, Nico W; Arblaster, Jennifer A; Bowman, Sarah R; Conder, Jason M; Elliott, John E; Johnson, Mark S; Muir, Derek C G; Natal-da-Luz, Tiago; Rattner, Barnett A; Sample, Bradley E; Shore, Richard F

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  8. Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms.

    Science.gov (United States)

    Shitashiro, Maiko; Kato, Junichi; Fukumura, Tsuyoshi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao

    2003-02-27

    Bacterial aerotaxis (the movement of a cell toward oxygen) was evaluated for its potential use in detecting the toxicity of chemicals to microorganisms. The level of toxicity was determined by the concentration of test chemicals resulting in a 50% inhibition of aerotaxis of Pseudomonas aeruginosa PAO1 after 40 min of exposure. The aerotactic responses of P. aeruginosa were measured by using chemotaxis well chambers. Each clear acrylic chamber had a lower and upper well separated by a polycarbonate filter with a uniform pore size of 8.0 microm. To automatically detect bacterial cells that crossed the filter in response to a gradient of oxygen, P. aeruginosa PAO1 was marked with green fluorescent protein (GFP), and the GFP fluorescence intensity in the upper well was continuously monitored by using a fluorescence spectrometer. By using this technique, volatile chlorinated aliphatic compounds, including trichloroethylene (TCE), trichloroethane, and tetrachloroethylene, were found to be inhibitory to bacterial aerotaxis, suggesting their possible toxicity to microorganisms. We also examined more than 20 potential toxicants for their ability to inhibit the aerotaxis of P. aeruginosa. Based on these experimental results, we concluded that bacterial aerotaxis has potential for use as a fast and reliable indicator in assessing the toxicity of chemicals to microorganisms.

  9. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    Science.gov (United States)

    van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  10. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    Science.gov (United States)

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  11. Thermodynamics of Large N Gauge Theories with Chemical Potentials in a 1/D Expansion

    CERN Document Server

    Morita, Takeshi

    2010-01-01

    In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1+D dimensional SU(N) Yang-Mills theory and we use a 1/D expansion to investigate the phase structure. We find three phases in the \\mu-T plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D \\to \\infty limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than...

  12. Chemical composition and antioxidant potential of Ruta montana L. essential oil from Algeria.

    Science.gov (United States)

    Kambouche, N; Merah, B; Bellahouel, S; Bouayed, J; Dicko, A; Derdour, A; Younos, C; Soulimani, R

    2008-09-01

    The essential oil of aerial parts of Ruta montana L. growing in the Oran region in the west of Algeria was obtained by hydrodistillation with a 1.63% yield on a dry weight basis. Gas chromatography (GC) and GC/mass spectrometry (MS) analyses were carried out to identify the chemical composition of R. montana essential oil. Moreover, spectrophotometric analyses were employed to highlight the scavenger capacity of this oil using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. Twenty compounds were identified by GC and CG/MS analyses, and the bulk of the compounds of the oil were undecan-2-one (32.8%), nonan-2-one (29.5%), nonanol-2-acetate (18.2%), and psoralen (3.5%). The results obtained using the DPPH test show that R. montana essential oil possesses antiradical activity in a concentration-dependent manner. Thus, a linear correlation (correlation coefficient R(2) = 0.971, P < .001) was found between the reduction of DPPH stable free radical and the concentration of R. montana essential oil.

  13. The temperature dependent variation of bulk and surface composition of In(x)Ga(1-x)As on GaAs grown by chemical beam epitaxy studied by RHEED, X-ray diffraction and XPS

    Science.gov (United States)

    Hansen, H. S.; Bensaoula, A.; Tougaard, S.; Zborowski, J.; Ignatiev, A.

    1992-01-01

    The paper investigates the bulk as well as near-surface composition of In(x)Ga(1-x)As epilayers on GaAs grown by chemical beam epitaxy (CBE) as a function of triethylindium flow rate and substrate temperature by reflection high energy electron diffraction (RHEED), X-ray diffraction, and XPS. To clarify whether the bulk stoichiometry of CBE-grown ternaries can be extracted from the growth rate change as determined by the change in the period of RHEED oscillations from binary to ternary compound growth, a systematic study of growth rate change as a function of ternary bulk composition determined by X-ray diffraction was performed at various temperatures. It is shown that for low growth temperatures there is a linear relationship between the two methods of determination, whereas no correlation is found for higher growth temperatures, in contrast to the MBE case where the two methods of determination yield identical results. In the near surface region the epilayer composition is determined in situ by XPS.

  14. Hard X-ray photoelectron spectra (HXPES) of bulk non-conductor vitreous SiO{sub 2}: Minimum linewidths and surface chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.F., E-mail: Yongfeng.hu@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Xiao, Q.; Wang, D.; Cui, X. [Canadian Light Source, Saskatoon, SK (Canada); Nesbitt, H.W. [Department of Earth Sciences, University of Western Ontario, London, ONT (Canada); Bancroft, G.M. [Department of Chemistry, University of Western Ontario, London, ONT (Canada)

    2015-07-15

    Highlights: • Electronic structure of non-conducting glass studied by hard X-ray photoelectron spectroscopy. • A thin film of Cr was deposited on the vitreous SiO{sub 2} glass to overcome the sample charging. • Excellent O 1s and Si 1s linewidths were obtained, matching those reported using the laboratory based Kratos Axis Ultra spectrometer equipped with a magnetic compensation system. • The bulk and interface states of non-conducting samples are studied as a function of photon energy. - Abstract: Hard X-ray photoelectron spectra (2200 eV to 5000 eV photon energies) have been obtained for the first time on a bulk non-conductor, vitreous SiO{sub 2}, on a high resolution (E/ΔE of 10,000) synchrotron beamline at the Canadian Light Source (CLS). To minimize charging and differential charging, the SiO{sub 2} was coated with very thin layers (0.5 to 1.5 nm) of Cr metal. The O 1s linewidth obtained at 2500 eV photon energy was 1.26 eV—the minimum linewidth for SiO{sub 2}—and in good agreement with that obtained at 1486 eV on a Kratos Axis Ultra spectrometer equipped with a magnetic charge compensation system. The Si 1s linewidth of 1.5 eV, somewhat broader than that previously obtained at 1486 eV on the Si 2p{sub 3/2} line of 1.16 eV, is mainly due to the much larger inherent Si 1s linewidth (0.5 eV) compared to the inherent Si 2p linewidth (<0.1 eV). Both linewidths are dominated by the large final state vibrational broadening previously described. The Cr coating produces surface monolayers of interfacial Cr “suboxide” (Cr-subox), Cr metal, and a surface Cr oxide (Cr-surfox). Cr-subox (Si−O−Cr) gives rise to the weak near-surface Si 1s peak, while both oxides give rise to both the weak surface O 1s peak and the Cr 2p oxide peak. Both the O 1s and Si 1s surface peaks are shifted by ∼2 eV relative to the large bulk Si 1s and O 1s peaks. The weak Si 1s and O 1s surface peaks along with the Cr 2p oxide peak decrease in intensity greatly as the photon

  15. Potential Challenges Faced by the U.S. Chemicals Industry under a Carbon Policy

    Directory of Open Access Journals (Sweden)

    Andrea Bassi

    2009-09-01

    Full Text Available Chemicals have become the backbone of manufacturing within industrialized economies. Being energy-intensive materials to produce, this sector is threatened by policies aimed at combating and adapting to climate change. This study examines the worst-case scenario for the U.S. chemicals industry when a medium CO2 price policy is employed. After examining possible industry responses, the study goes on to identify and provide a preliminary evaluation of potential opportunities to mitigate these impacts. If climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies to mitigate the impacts of rising energy costs, the examination shows that climate policies that put a price on carbon could have substantial impacts on the competiveness of the U.S. chemicals industry over the next two decades. In the long run, there exist technologies that are available to enable the chemicals sector to achieve sufficient efficiency gains to offset and manage the additional energy costs arising from a climate policy.

  16. Potential role of redox cycling as a mechanism for chemical teratogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Juchau, M.R.; Fantel, A.G.; Harris, C.; Beyer, B.K.

    1986-12-01

    A survey of the literature indicates that several chemicals whose reduced metabolites are capable of undergoing redox cycling in biological systems also possess significant teratogenic properties when tested in vivo. The authors have initiated investigations to determine whether the embryotoxic effects of such chemicals could result from their redox cycling properties and whether redox cycling could be an important mechanism in chemical teratogenesis. In order to obviate the potentially confounding influences of maternal factors, the initial studies have been performed with a whole embryo culture system with redox cycling agents added directly to the culture medium. Several representative redox cycling agents including doxorubicin, paraquat, a series of nitroheterocycles, nitrosofluorene, and diethylstilbestrol (converted metabolically to redox cycling quinone/semiquinone radicals) have been investigated thus far. The nitroheterocycles which bear nitro groups with comparatively high redox potentials produced a striking, asymmetric defect involving primarily the right half of the prosencephalic and mesencephalic regions. The effect was exacerbated under conditions of low O/sub 2/ tension. Accumulated data to date strongly suggest that reduction of the nitro group is an essential feature in the embryotoxic mechanism. Quinones (doxorubicin, paraquat) and compounds metabolically converted to quinones (diethylstilbestrol) appeared to produce embryotoxic effects via mechanisms not associated with redox cycling. Nitrosofluorene embryotoxicity was markedly exacerbated by changes in both intra- and extracellular glutathione levels, but definitive dependence on a radical-mediated effect or redox cycling was not demonstrated.

  17. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  18. CO{sub 2} emissions and reduction potential in China's chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bing [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); Zhou, Wenji; Hu, Shanying; Li, Qiang; Jin, Yong [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Griffy-Brown, Charla [Graziadio School of Business, Pepperdine University, Los Angeles, CA 90045 (United States)

    2010-12-15

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO{sub 2} emissions in the processes of chemical production in China through calculating the amounts of CO{sub 2} emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO{sub 2} emissions by promoting average technology performances in this industry. (author)

  19. Possible Long Term Effects of Chemical Warfare Using Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Abbas Riazi

    2014-09-01

    Full Text Available Some studies have already addressed the effects of occupational organic solvent exposure on the visually evoked potentials (VEPs. Visual system is an important target for Sulphur Mustard (SM toxicity. A number of Iranian victims of Sulphur Mustard (SM agent were apprehensive about the delay effect of SM on their vision and a possible delay effect of SM on their visual cortex. This investigation was performed on 34 individuals with a history of chemical exposure and a control group of 15 normal people. The Toennies electro-diagnosis device was used and its signals were saved as the latencies. The mean of N75, N140 and P100 of victims of chemical warfare (VCWs and control group indicated no significant results (P>0.05. The VCWs did not show any visual symptoms and there was no clear deficit in their VEPs.

  20. Heat and Moisture Transport in Unsaturated Porous Media -- A Coupled Model in Terms of Chemical Potential

    CERN Document Server

    Sullivan, Eric

    2013-01-01

    Transport phenomena in porous media are commonplace in our daily lives. Examples and applications include heat and moisture transport in soils, baking and drying of food stuffs, curing of cement, and evaporation of fuels in wild fires. Of particular interest to this study are heat and moisture transport in unsaturated soils. Historically, mathematical models for these processes are derived by coupling classical Darcy's, Fourier's, and Fick's laws with volume averaged conservation of mass and energy and empirically based source and sink terms. Recent experimental and mathematical research has proposed modifications and suggested limitations in these classical equations. The primary goal of this thesis is to derive a thermodynamically consistent system of equations for heat and moisture transport in terms of the chemical potential that addresses some of these limitations. The physical processes of interest are primarily diffusive in nature and, for that reason, we focus on using the macroscale chemical potentia...

  1. Measuring the Chemical Potential of the Martian Regolith to Generate and Sustain Life

    Science.gov (United States)

    Kounaves, S. P.; Buehler, M. G.; Kuhlman, K. R.

    1999-01-01

    A critical component for identifying chemical biosignatures is the ability to assess in-situ the potential of an aqueous geochemical environment to generate and sustain life. On Mars or other solar bodies, in-situ chemical characterization could provide evidence as to whether the chemical composition of the regolith or evaporites in suspected ancient water bodies have been biologically influenced or possess the chemical parameters within which life may have existed, or may still exist. A variety of analytical techniques have been proposed for use in detecting and identify signatures of past or present life. These techniques fall into two groups; visual observation with instruments such as cameras or optical/atomic-force microscopes; or elemental chemical analysis with such instruments as X-ray fluorescence (XRF) and diffraction (XRD), a-proton backscatter (APX), y-ray, Mossbauer, Raman, IR, UV/VIS spectroscopies, gas chromatography (GC), or mass spectrometry (MS). Direct observation of an identifiable lifeform by the first set of instruments in a single sample is highly unlikely, especially for extinct organisms or on the surface. The later instruments can provide vital data as to the elemental mineralogy and geological history of the planet, but are highly inadequate for understanding the chemistry of the planet in terms of indigenous life or interactions with human explorers. Techniques such as XRD, XRF, and APX, provide elemental composition at high limits of detection. Some of this data can be extrapolated or interpolated to provide chemical parameters such as oxidation state or composition. Gas chromatography (GC) without standards and non-specific detectors, has little chance of identifying a mixture of unknown components. Combined with GC or by itself, mass spectrometry (MS) can provide identification of compounds, but in both cases the sample must be appropriately prepared for accurate and reliable analysis. Life as we know it, and probably identify it as

  2. Influence of the irradiation temperature on the surface structure and physical/chemical properties of Ar ion-irradiated bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Menéndez, E., E-mail: Enric.MenendezDalmau@fys.kuleuven.be [KU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Hynowska, A.; Fornell, J.; Suriñach, S. [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Montserrat, J. [Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Campus Universitat Autònoma Barcelona, E-08193 Bellaterra (Spain); Temst, K.; Vantomme, A. [KU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Baró, M.D. [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); García-Lecina, E. [Surfaces Division, IK4-CIDETEC, Parque Tecnológico de San Sebastián, E-20009 Donostia (Spain); Pellicer, E., E-mail: Eva.Pellicer@uab.cat [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Sort, J., E-mail: Jordi.Sort@uab.cat [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain)

    2014-10-15

    Highlights: • Ion irradiation is performed on bulk metallic glasses at 300 K and close to T{sub g}. • Nanocrystallization is observed after high-temperature irradiation. • The mechanical properties are enhanced after the irradiation procedures. • Corrosion resistance is improved after irradiation close to T{sub g}. - Abstract: Surface treatments using multiple Ar ion irradiation processes with a maximum energy and fluence of 200 keV and 1 × 10{sup 16} ions/cm{sup 2}, respectively, have been performed on two different metallic glasses: Zr{sub 55}Cu{sub 28}Al{sub 10}Ni{sub 7} and Ti{sub 40}Zr{sub 10}Cu{sub 38}Pd{sub 12}. Analogous irradiation procedures have been carried out at room temperature (RT) and at T = 620 K (≈0.9 T{sub g}, where T{sub g} denotes the glass transition). The structure, mechanical behavior, wettability and corrosion resistance of the irradiated alloys have been compared with the properties of the as-cast and annealed (T = 620 K) non-irradiated specimens. While ion irradiation at RT does not significantly alter the amorphous structure of the alloys, ion irradiation close to T{sub g} promotes decomposition/nanocrystallization. Consequently, the hardness (H) and reduced Young’s modulus (E{sub r}) decrease after irradiation at RT but they both increase after irradiation at 620 K. While annealing close to T{sub g} increases the hydrophobicity of the samples, irradiation induces virtually no changes in the contact angle when comparing with the as-cast state. Concerning the corrosion resistance, although not much effect is found after irradiation at RT, an improvement is observed after irradiation at 620 K, particularly for the Ti-based alloy. These results are of practical interest in order to engineer appropriate surface treatments based on ion irradiation, aimed at specific functional applications of bulk metallic glasses.

  3. Critical end point in the presence of a chiral chemical potential

    Science.gov (United States)

    Cui, Z.-F.; Cloët, I. C.; Lu, Y.; Roberts, C. D.; Schmidt, S. M.; Xu, S.-S.; Zong, H.-S.

    2016-10-01

    A class of Polyakov-loop-modified Nambu-Jona-Lasinio models has been used to support a conjecture that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide information about the existence and location of a critical end point in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physically motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the Polyakov-loop-modified Nambu-Jona-Lasinio models and the four-fermion coupling in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with μ5>0 can shed any light on a critical end point in the regular QCD phase diagram.

  4. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  5. Local chemical potentials and pressures in heterogeneous systems: Adsorptive, absorptive, interfaces

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-07-01

    Equations self-consistently describing chemical and mechanical equilibria in heterogeneous systems are derived. The equations are based on the lattice gas model using discrete distributions of molecules in space (on a scale comparable to molecular size) and continuum distributions of molecules (at short distances inside the cells) during their translational and vibrational motions. It is shown that the theory provides a unified description of the equilibrium distributions of molecules in three aggregate states and at their interfaces. Potential functions of intermolecular interactions (such as Mie pair potentials) in several coordination spheres that determine the compressibility of the lattice structure are considered. For simplicity, it is assumed that differences between the sizes of mixture components are small. Expressions for the local components of the pressure tensor inside multicomponent solid phases and heterogeneous systems (adsorptive, absorptive, and interfaces) are obtained. It is established that they can be used to calculate the lattice parameters of deforming phases and the thermodynamic characteristics of interfaces, including surface tension. The tensor nature of the chemical potential in heterogeneous systems is discussed.

  6. Estimation of the acute inhalation hazards of chemicals based on route-to-route and local endpoint extrapolation: Experience from Bulk Maritime Transport

    NARCIS (Netherlands)

    Höfer, T.; James, D.; Syversen, T.; Bowmer, T.

    2011-01-01

    Data on acute lethal inhalation toxicity from animal studies are commonly required for assessing the hazards to human health of volatile, gaseous and dusty chemicals or their mixtures. The International Maritime Organisation (IMO) made the provision of acute inhalation toxicity data a mandatory requ

  7. Hydrodynamical Description of the QCD Dirac Spectrum at Finite Chemical Potential

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2015-01-01

    We present a hydrodynamical description of the QCD Dirac spectrum at finite chemical potential as an uncompressible droplet in the complex eigenvalue space. For a large droplet, the fluctuation spectrum around the hydrostatic solution is gapped by a longitudinal Coulomb plasmon, and exhibits a frictionless odd viscosity. The stochastic relaxation time for the restoration/breaking of chiral symmetry is set by twice the plasmon frequency. The leading droplet size correction to the relaxation time is fixed by a universal odd viscosity to density ratio $\\eta_O/\\rho_0=(\\beta-1)/2$ for the three Dyson ensembles $\\beta=1,2,4$.

  8. Temperature derivative of the chemical potential and its magnetooscillations in two-dimensional system

    OpenAIRE

    Tupikov, Y.; Kuntsevich, A. Yu.; Pudalov, V. M.; Burmistrov, I. S.

    2015-01-01

    We report first thermodynamic measurements of the temperature derivative of chemical potential (d{\\mu}/dT) in two-dimensional (2D) electron systems. In order to test the technique we have chosen Schottky gated GaAs/AlGaAs heterojunctions and detected experimentally in this 2D system quantum magnetooscillations of d{\\mu}/dT. We also present a Lifshits-Kosevitch type theory for the d{\\mu}/dT magnetooscillations in 2D systems and compare the theory with experimental data. The magnetic field depe...

  9. Photon emission in QGP using AdS/QCD at finite chemical potential

    CERN Document Server

    Contreras, Miguel Angel Martin

    2016-01-01

    We calculate the photon emission rate and the electrical conductivity of the QGP at finite temperature and finite chemical potential using AdS/QCD approximations in an AdS Reissner Nordstrom background. To do so, we supposed the medium properties to be encoded in a geometric background. The results obtained in the hard wall and soft wall model are consistent with the observed phenomenology and they also in agree with other holographic results, as the D3/D7 or the Sakai Sugimoto models, suggesting the universality of AdS/CFT conjecture as tool to explore QCD.

  10. A local chemical potential approach within the variable charge method formalism

    Science.gov (United States)

    Elsener, A.; Politano, O.; Derlet, P. M.; Van Swygenhoven, H.

    2008-03-01

    A new and computationally efficient implementation of the variable charge method of Streitz and Mintmire (1994 Phys. Rev. B 50 11996) is presented. In particular a local chemical potential approach that optimizes the charge on only those atoms expected to be ionic is developed. By doing so, the charge fluctuation problem experienced in regions far from any oxygen is solved, leading to a linear minimization problem of the electrostatic energy. In the dilute oxygen limit, such an approach can lead to at least an order of magnitude saving in computation.

  11. Probing the nature of phases across the phase transition at finite isospin chemical potential

    CERN Document Server

    Bali, Gunnar S; Gavai, Rajiv V; Mathur, N

    2016-01-01

    We compare the low eigenvalue spectra of the Overlap Dirac operator on two sets of configurations at $\\mu_I/\\mu_I^c$ = 0.5 and 1.5 generated with dynamical staggered fermions at these isospin chemical potential on $24^3 \\times 6$ lattices. We find very small changes in the number of zero modes and low lying modes which is in stark contrast with those across the corresponding finite temperature phases where one sees a drop across the phase transition. Possible consequences are discussed.

  12. Full simulation of chiral Random Matrix Theory at non-zero chemical potential by Complex Langevin

    CERN Document Server

    Mollgaard, A

    2014-01-01

    It is demonstrated that the complex Langevin method can simulate chiral random matrix theory at non-zero chemical potential. The successful match with the analytic prediction for the chiral condensate is established through a shift of matrix integration variables and choosing a polar representation for the new matrix elements before complexification. Furthermore, we test the proposal to work with a Langevin-time dependent quark mass and find that it allows us to control the fluctuations of the phase of the fermion determinant throughout the Langevin trajectory.

  13. Full simulation of chiral random matrix theory at nonzero chemical potential by complex Langevin

    Science.gov (United States)

    Mollgaard, A.; Splittorff, K.

    2015-02-01

    It is demonstrated that the complex Langevin method can simulate chiral random matrix theory at nonzero chemical potential. The successful match with the analytic prediction for the chiral condensate is established through a shift of matrix integration variables and choosing a polar representation for the new matrix elements before complexification. Furthermore, we test the proposal to work with a Langevin-time-dependent quark mass and find that it allows us to control the fluctuations of the phase of the fermion determinant throughout the Langevin trajectory.

  14. Phase of the complex functional determinant in QCD at small chemical potential

    CERN Document Server

    Fraga, E S

    2008-01-01

    We construct an effective action for QCD by expanding the quark determinant in powers of the chemical potential at finite temperature in the case of massless quarks. To cut the infinite series we adopt the Weinberg power counting criterium. We compute the minimal effective action ($\\sim p^4$), expanding in the external momentum, which implies the use of the Hard Thermal Loop approximation. Our main result is a gauge invariant expression for the phase of the functional determinant in QCD. Implications for lattice simulations are briefly discussed.

  15. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  16. A density functional theory-based chemical potential equalisation approach to molecular polarizability

    Indian Academy of Sciences (India)

    Amita Wadehra; Swapan K Ghosh

    2005-09-01

    The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.

  17. Throughfall and bulk deposition of dissolved organic nitrogen to holm oak forests in the Iberian Peninsula : flux estimation and identification of potential sources

    OpenAIRE

    Izquieta-Rojano, Sheila; García-Gomez, H.; Aguillaume Rodríguez-O'connor, Laura; Santamaría Ulecia, Jesús Miguel; Y. S. Tang; Santamaría, C.; Valiño, F.; Lasheras, E. (Esther); Alonso, R.; Àvila i Castells, Anna; Cape, J. N.; Elustondo, David

    2016-01-01

    Acknowledgments: the research leading to these results has received funding from the COST organism (European cooperation in science and technology), through the COST Action FP0903 “Climate change and forest mitigation and adaptation in the polluted environment” under the grant number COST-STSM-ECOST-STSM-FP0903-291012-019757. Deposition of dissolved organic nitrogen (DON) in both bulk precipitation (BD) and canopy throughfall (TF) has been measured for the first time in the western Mediter...

  18. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  19. A decision analysis framework for estimating the potential hazards for drinking water resources of chemicals used in hydraulic fracturing fluids.

    Science.gov (United States)

    Yost, Erin E; Stanek, John; Burgoon, Lyle D

    2017-01-01

    Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one

  20. Kaempferitrin from Uncaria guianensis (Rubiaceae) and its potential as a chemical marker for the species

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Ligia M.M.; Liechocki, Sally; Barboza, Rodolfo S.; Paixao, Djavan da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica], e-mail: valente@iq.ufrj.br; Bizarri, Carlos H.B.; Almeida, M. Beatriz S.; Benevides, Paulo J.C.; Siani, Antonio C. [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Inst. de Tecnologia em Farmacos; Magalhaes, Alvicler [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    Uncaria tomentosa (Willd.) DC. and U. guianensis (Aubl.) Gmel., known as cat's claw, are large woody vines native to the Amazonian and Central American rain forests. The species contain, in different proportions, indole and oxindole alkaloids, triterpenoid glycosides, sterols and proanthocyanidins. U. tomentosa can be chemically identified by its oxindole alkaloid profile and content, whereas U. guianensis has no satisfactorily established chemical markers. This work describes, for the first time, the isolation of kaempferol-3,7-O-(a)-dirhamnoside (kaempferitrin) in Uncaria species. Screening for this compound in leaves, stems or bark of both species through TLC and HPLC-DAD-MS showed the presence of kaempferitrin only in the leaves and stems of U. guianensis, at a ratio almost thirty six times greater in the leaves than in the stems. These results reveal the selectivity of U. guianensis to produce this bioactive flavonoid glycoside, and suggest this compound as a potential chemical marker for the species.(author)

  1. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: characterisation and potential applications.

    Science.gov (United States)

    Kim, Suyeon; Fernandes, Margarida M; Matamá, Teresa; Loureiro, Ana; Gomes, Andreia C; Cavaco-Paulo, Artur

    2013-03-01

    Due to their recognised properties of biocompatibility, biodegradability and sustainability, chitosan nanocarriers have been successfully used as new delivery systems. In this work, nanoparticles combining chitosan and lignosulfonates were developed for the first time for cosmetic and biomedical applications. The ability of lignosulfonates to act as a counter polyion for stabilisation of chitosan particles, generated using high intensity ultrasound, was investigated. Several conditions for particles preparation were tested and optimised and the resulting nanoparticles were comprehensively characterised by measuring particle size, zeta potential and polydispersity index. The pH of chitosan solution, sonication time and the presence of an adequate surfactant, poloxamer 407, were determinant factors on the development of smaller particles with low polydispersity index (an average particle size of 230 nm was obtained at pH 5 after 8 min of sonication). The beneficial effects of lignosulfonates complex on chitosan nanoparticles were further characterised. Greater stability to lysozyme degradation, biocompatibility with human cells and antimicrobial activity was found upon lignosulfonates incorporation into chitosan nanoparticles. Furthermore, these particles were able to incorporate a hydrophilic model protein - RNase A. A burst release was observed when nanoparticles were loaded with low amount of protein while with high protein content, a sustained release was found, suggesting that the protein cargo maybe loaded both at the surface as in the bulk of the particle, depending on the concentration of drug incorporated.

  2. Dissociative electron transfer in polychlorinated aromatics. Reduction potentials from convolution analysis and quantum chemical calculations.

    Science.gov (United States)

    Romańczyk, Piotr P; Rotko, Grzegorz; Kurek, Stefan S

    2016-08-10

    Formal potentials of the first reduction leading to dechlorination in dimethylformamide were obtained from convolution analysis of voltammetric data and confirmed by quantum chemical calculations for a series of polychlorinated benzenes: hexachlorobenzene (-2.02 V vs. Fc(+)/Fc), pentachloroanisole (-2.14 V), and 2,4-dichlorophenoxy- and 2,4,5-trichlorophenoxyacetic acids (-2.35 V and -2.34 V, respectively). The key parameters required to calculate the reduction potential, electron affinity and/or C-Cl bond dissociation energy, were computed at both DFT-D and CCSD(T)-F12 levels. Comparison of the obtained gas-phase energies and redox potentials with experiment enabled us to verify the relative energetics and the performance of various implicit solvent models. Good agreement with the experiment was achieved for redox potentials computed at the DFT-D level, but only for the stepwise mechanism owing to the error compensation. For the concerted electron transfer/C-Cl bond cleavage process, the application of a high level coupled cluster method is required. Quantum chemical calculations have also demonstrated the significant role of the π*ring and σ*C-Cl orbital mixing. It brings about the stabilisation of the non-planar, C2v-symmetric C6Cl6˙(-) radical anion, explains the experimentally observed low energy barrier and the transfer coefficient close to 0.5 for C6Cl5OCH3 in an electron transfer process followed by immediate C-Cl bond cleavage in solution, and an increase in the probability of dechlorination of di- and trichlorophenoxyacetic acids due to substantial population of the vibrational excited states corresponding to the out-of-plane C-Cl bending at ambient temperatures.

  3. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    Science.gov (United States)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  4. Tuning the electronic structure of bulk FeSe with chemical pressure using quantum oscillations and angle resolved photoemission spectroscopy (ARPES)

    Science.gov (United States)

    Coldea, Amalia

    FeSe is a unique and intriguing superconductor which can be tuned into a high temperature superconducting state using applied pressure, chemical intercalation and surface doping. In the absence of magnetism, the structural transition in FeSe is believed to be electronically driven, with the orbital degrees of freedom playing an important part. This scenario supports the stabilization of a nematic state in FeSe, which manifests as a Fermi surface deformation in the presence of strong interactions, as detected by ARPES. Another manifestation of the nematicity is the enhanced nematic susceptibility determined from elastoresistance measurements under applied strain. Isovalent Sulphur substitution onto the Selenium site constitutes a chemical pressure, which subtly modifies the electronic structure of FeSe, suppressing the structural transition without inducing high temperature superconductivity. I will present the evolution of the electronic structure with chemical pressure in FeSe, as determined from quantum oscillations and ARPES studies and I will discuss the suppression of the nematic electronic state and the role of electronic correlations. Experiments were performed at high magnetic field facilities in Tallahassee, Nijmegen and Toulouse and Diamond Light Source, UK. This work is mainly supported by EPSRC, UK (EP/I004475/1, EP/I017836/1) and I acknowledge my collaborators from Refs. .

  5. Baryon chemical potential and in-medium properties of BPS skyrmions

    CERN Document Server

    Adam, C; Naya, C; Sanchez-Guillen, J; Vazquez, R; Wereszczynski, A

    2015-01-01

    We continue the investigation of thermodynamical properties of the BPS Skyrme model. In particular, we analytically compute the baryon chemical potential both in the full field theory and in a mean-field approximation. In the full field theory case, we find that the baryon chemical potential is always exactly proportional to the baryon density, for arbitrary solutions. We further find that, in the mean-field approximation, the BPS Skyrme model approaches the Walecka model in the limit of high density - their thermodynamical functions as well as the equation of state agree in this limit. This fact allows to read off some properties of the $\\omega$-meson from the BPS Skyrme action, even though the latter model is entirely based on the (pionic) $SU(2)$ Skyrme field. On the other hand, at low densities, at the order of the usual nuclear matter density, the equations of state of the two models are no longer universal, such that a comparison depends on some model details. Still, also the BPS Skyrme model gives rise...

  6. The $N_f=2 chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Cuteri, Francesca; Philipsen, Owe; Pinke, Christopher

    2015-01-01

    The finite temperature chiral and deconfinement phase transitions at zero density for light and heavy quarks, respectively, have analytic continuations to imaginary chemical potential. At some critical imaginary chemical potential, they meet the Roberge-Weiss transition between adjacent $Z3$ sectors. For light and heavy quarks, where the chiral and deconfinement transitions are first order, the transition lines meet in a triple point. For intermediate masses chiral or deconfinement transitions are crossover and the Roberge-Weiss transition ends in a second order point. At the boundary between these regimes the junction is a tricritical point, as shown in studies with $N_f=2,3$ flavors of staggered and Wilson quarks on $N_\\tau=4$ lattices. Employing finite size scaling we investigate the nature of this point as a function of quark mass for $N_f=2$ flavors of Wilson fermions with a temporal lattice extent of $N_\\tau=6$. In particular we are interested in the change of the location of tricritical points compared...

  7. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  8. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  9. Adsorption and capillary condensation in porous media as a function of the chemical potential of water in carbon dioxide

    Science.gov (United States)

    Heath, Jason E.; Bryan, Charles R.; Matteo, Edward N.; Dewers, Thomas A.; Wang, Yifeng; Sallaberry, Cédric J.

    2014-03-01

    The chemical potential of water may play an important role in adsorption and capillary condensation of water under multiphase conditions at geologic CO2 storage sites. Injection of large volumes of anhydrous CO2 will result in changing values of the chemical potential of water in the supercritical CO2 phase. We hypothesize that the chemical potential will at first reflect the low concentration of dissolved water in the dry CO2. As formation water dissolves into and is transported by the CO2 phase, the chemical potential of water will increase. We present a pore-scale model of the CO2-water interface or menisci configuration based on the augmented Young-Laplace equation, which combines adsorption on flat surfaces and capillary condensation in wedge-shaped pores as a function of chemical potential of water. The results suggest that, at a given chemical potential for triangular and square pores, liquid water saturation will be less in the CO2-water system under potential CO2 sequestration conditions relative to the air-water vadose zone system. The difference derives from lower surface tension of the CO2-water system and thinner liquid water films, important at pore sizes capillary effects will likely be minimal in reservoir rocks, but still may be important in finer grained, clayey caprocks, where very small pores may retain water and draw water back into the system via adsorption and capillary condensation, if dry-out and then rewetting were to occur.

  10. Evaluation of in silico tools to predict the skin sensitization potential of chemicals.

    Science.gov (United States)

    Verheyen, G R; Braeken, E; Van Deun, K; Van Miert, S

    2017-01-01

    Public domain and commercial in silico tools were compared for their performance in predicting the skin sensitization potential of chemicals. The packages were either statistical based (Vega, CASE Ultra) or rule based (OECD Toolbox, Toxtree, Derek Nexus). In practice, several of these in silico tools are used in gap filling and read-across, but here their use was limited to make predictions based on presence/absence of structural features associated to sensitization. The top 400 ranking substances of the ATSDR 2011 Priority List of Hazardous Substances were selected as a starting point. Experimental information was identified for 160 chemically diverse substances (82 positive and 78 negative). The prediction for skin sensitization potential was compared with the experimental data. Rule-based tools perform slightly better, with accuracies ranging from 0.6 (OECD Toolbox) to 0.78 (Derek Nexus), compared with statistical tools that had accuracies ranging from 0.48 (Vega) to 0.73 (CASE Ultra - LLNA weak model). Combining models increased the performance, with positive and negative predictive values up to 80% and 84%, respectively. However, the number of substances that were predicted positive or negative for skin sensitization in both models was low. Adding more substances to the dataset will increase the confidence in the conclusions reached. The insights obtained in this evaluation are incorporated in a web database www.asopus.weebly.com that provides a potential end user context for the scope and performance of different in silico tools with respect to a common dataset of curated skin sensitization data.

  11. Physico-chemical characteristics and market potential of sawdust charcoal briquette

    Energy Technology Data Exchange (ETDEWEB)

    Akowuah, Joseph O.; Kemausuor, Francis [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Agricultural Engineering; Mitchual, Stephen J. [Univ. of Education, Winneba, Kumasi (Ghana). Dept. of Design and Technology Education

    2012-11-01

    In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physicochemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm{sup 3}), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal. (orig.)

  12. NMR ANALYSIS OF MALE FATHEAD MINNOW URINARY METABOLITES: A POTENTIAL APPROACH FOR STUDYING IMPACTS OF CHEMICAL EXPOSURES

    Science.gov (United States)

    The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...

  13. Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Town, R.M.

    2003-01-01

    The application of depletive stripping chronopotentiometry at scanned deposition potential (SSCP) to metal ion speciation analysis of chemically heterogeneous complex systems is described. In this electroanalytical stripping technique, metal which is accumulated in the electrode during the depositio

  14. On the convergence of complex Langevin dynamics: the three-dimensional XY model at finite chemical potential

    CERN Document Server

    Aarts, Gert

    2010-01-01

    The three-dimensional XY model is studied at finite chemical potential using complex Langevin dynamics. The validity of the approach is probed at small chemical potential using imaginary chemical potential and continuity arguments, and at larger chemical potential by comparison with the world line method. While complex Langevin works for larger beta, we find that it fails for smaller beta, in the region of the phase diagram corresponding to the disordered phase. Diagnostic tests are developed to identify symptoms correlated with incorrect convergence. We argue that the erroneous behaviour at smaller beta is not due to the sign problem, but rather resembles dynamics observed in complex Langevin simulations of simple models with complex noise.

  15. Chemical reactivity and skin sensitization potential for benzaldehydes: can Schiff base formation explain everything?

    Science.gov (United States)

    Natsch, Andreas; Gfeller, Hans; Haupt, Tina; Brunner, Gerhard

    2012-10-15

    Skin sensitizers chemically modify skin proteins rendering them immunogenic. Sensitizing chemicals have been divided into applicability domains according to their suspected reaction mechanism. The widely accepted Schiff base applicability domain covers aldehydes and ketones, and detailed structure-activity-modeling for this chemical group was presented. While Schiff base formation is the obvious reaction pathway for these chemicals, the in silico work was followed up by limited experimental work. It remains unclear whether hydrolytically labile Schiff bases can form sufficiently stable epitopes to trigger an immune response in the living organism with an excess of water being present. Here, we performed experimental studies on benzaldehydes of highly differing skin sensitization potential. Schiff base formation toward butylamine was evaluated in acetonitrile, and a detailed SAR study is presented. o-Hydroxybenzaldehydes such as salicylaldehyde and the oakmoss allergens atranol and chloratranol have a high propensity to form Schiff bases. The reactivity is highly reduced in p-hydroxy benzaldehydes such as the nonsensitizing vanillin with an intermediate reactivity for p-alkyl and p-methoxy-benzaldehydes. The work was followed up under more physiological conditions in the peptide reactivity assay with a lysine-containing heptapeptide. Under these conditions, Schiff base formation was only observable for the strong sensitizers atranol and chloratranol and for salicylaldehyde. Trapping experiments with NaBH₃CN showed that Schiff base formation occurred under these conditions also for some less sensitizing aldehydes, but the reaction is not favored in the absence of in situ reduction. Surprisingly, the Schiff bases of some weaker sensitizers apparently may react further to form stable peptide adducts. These were identified as the amides between the lysine residues and the corresponding acids. Adduct formation was paralleled by oxidative deamination of the parent

  16. An Informatics Approach to Evaluating Combined Chemical Exposures from Consumer Products: A Case Study of Asthma-Associated Chemicals and Potential Endocrine Disruptors

    Science.gov (United States)

    Gabb, Henry A.; Blake, Catherine

    2016-01-01

    exposures from consumer products: a case study of asthma-associated chemicals and potential endocrine disruptors. Environ Health Perspect 124:1155–1165; http://dx.doi.org/10.1289/ehp.1510529 PMID:26955064

  17. Dual lattice representations for O(N and CP(N−1 models with a chemical potential

    Directory of Open Access Journals (Sweden)

    Falk Bruckmann

    2015-10-01

    Full Text Available We derive dual representations for O(N and CP(N−1 models on the lattice. In terms of the dual variables the partition sums have only real and positive contributions also at finite chemical potential. Thus the complex action problem of the conventional formulation is overcome and using the dual variables Monte Carlo simulations are possible at arbitrary chemical potential.

  18. Endocrine disrupting chemicals as potential risk factor for estrogen-dependent cancers.

    Science.gov (United States)

    Rutkowska, Aleksandra Z; Szybiak, Aleksandra; Serkies, Krystyna; Rachoń, Dominik

    2016-08-09

    Civilization, industrialization, and urbanization create an environment where humans are continuously exposed to endocrine disrupting chemicals (EDCs). Some of breast cancers and endometrial cancer, which are the most common female malignant neoplasms, are estrogen-dependent tumors. Prolonged exposure to estrogens or substances with estrogenic properties may be a risk factor for their development. This paper aimed to discuss the potential adverse effect of EDCs on human health, including the role of EDCs in hormone-dependent carcinogenesis. A review of literature regarding the sources of environmental exposure to EDCs and molecular mechanisms of their action was performed. We analyzed the possible mechanisms of how these substances alter the function of the endocrine system, resulting in adverse health effects. Hundreds of substances with endocrine disrupting potential have been identified in our environment. There is accumulating evidence linking exposure to EDCs with the development of mammary and endometrial cancer. By interacting with steroid receptors, EDCs can impact the cellular processes potentially leading to carcinogenesis. There are also data showing the effect of EDCs on immune dysfunction. During lifespan, people are usually exposed to a mixture of various EDCs, which complicates the assessment of individual substances or compounds implicated in cancer development. As the prevalence of hormone-dependent tumors among women continues to increase, their successful prevention is of human benefit. Institutions representing medicine, science, industry, and governments should develop joint strategies to decrease exposure to EDC, and thus to reduce the risk of hormonedependent tumors in women.

  19. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  20. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.

    Science.gov (United States)

    Takatsuka, Kazuo

    2007-10-18

    Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of large molecular systems. However, as soon as more than a single potential energy surface is involved due to nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a generalization of classical mechanics that provides a path even in cases where multiple potential energy surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled Hamiltonian [Takatsuka, K. J. Chem. Phys. 2006, 124, 064111]. A manifestation of quantum fluctuation on a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed out that the electronic Hamiltonian to be used in this theory should be slightly modified.

  1. Synthesis and characterization of bulk Cu{sub 2}ZnSnX{sub 4} (X: S, Se) via thermodynamically supported mechano-chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Pareek, Devendra, E-mail: devpareek@iitb.ac.in; Balasubramaniam, K.R.; Sharma, Pratibha

    2015-05-15

    Materials with the general formula, Cu{sub 2}ZnSnX{sub 4} (CZTX; X: Group 16 elements), with X being S/Se, have been receiving considerable attention due to their utility as an absorber layer in solar photovoltaics (PV). This paper reports on the synthesis of CZTSe and CZTS nanocrystalline powders at low temperatures, starting from elemental metal and chalcogen powders, via the low cost, scalable technique of ball milling. The prepared samples were well characterized using the different characterization tools. XRD, Raman, SEM and TEM studies confirm the formation of single-phase, stoichiometric, nano-crystalline kesterite CZTS and CZTSe powders. The low temperature phase selection of the complex quaternary compound in this system is seen as a direct consequence of the thermodynamic facilitation, coupled with the capability of mechano-chemical synthesis to aid in overcoming kinetic constraints. The optical bandgap of the various samples of CZTS was observed in the range of 1.4–1.6 eV and corresponding values for CZTSe was observed to be in the range of 1.08–1.18 eV. Our work provides a pathway for developing cheap, scalable, and ink-based techniques for low cost solar PV. - Graphical abstract: Display Omitted - Highlights: • A scalable route for synthesis of near phase pure CZTS/Se nano-crystals has been demonstrated. • Stoichiometric CZTS and CZTSe were synthesized via mechano-chemical synthesis route. • Synthesis at near room temperature is supported by thermodynamic calculations.

  2. Top Value Added Chemicals from Biomass - Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  3. Selection of potential cold water marine species for testing of oil dispersants, and chemically dispersed oil

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R.A. [Alaska Univ., Fairbanks, AK (United States). Dept. of Civil and Environmental Engineering

    2000-07-01

    A study regarding marine species for toxicity testing for Alaska conditions was presented and the potential adverse impacts of a large marine oil spill in cold water were discussed with the objective to determine if the spill should be treated by the use of oil dispersants. Without dispersion, the oil can pollute marine epifauna and can deposit on beaches. The decision to apply dispersants to a marine oil spill requires knowledge of the toxicity of the undispersed oil to pelagic marine life occurring via natural dispersion as opposed to the toxicity of the oil-dispersant mixture. Most standard toxicity tests apply to warm water species. This paper discussed the need to have a standard test species relevant to Alaska waters for toxicity testing. In this study, toxicity testing was done according to the methods of the Chemical Response to Oil Spills : Ecological Effects Research Forum (CROSERF). The testing included capturing adult species in the winter and holding them until larval hatching. Toxicity testing was completed in a narrow time frame before hatching ceased. Many chemical samples were tested. Topsmelt, urchins, shellfish, mysids, copepods, pink salmon fry, and tidepool sculpin were considered by the author to be the most useful for certain types of toxicity testing. 29 refs.

  4. Two-photon absorption in gapped bilayer graphene with a tunable chemical potential

    Science.gov (United States)

    Brinkley, M. K.; Abergel, D. S. L.; Clader, B. D.

    2016-09-01

    Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one- and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential—all at finite temperature. Our analysis is comprehensive, characterizing one- and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices.

  5. Antioxidant, anti-inflammatory potential and chemical constituents of Origanum dubium Boiss., growing wild in Cyprus.

    Science.gov (United States)

    Karioti, Anastasia; Milošević-Ifantis, Tanja; Pachopos, Nikitas; Niryiannaki, Niki; Hadjipavlou-Litina, Dimitra; Skaltsa, Helen

    2015-02-01

    Origanum dubium Boiss. is a flavouring herb widely used in Cyprus. In this study, both lipophilic and polar extracts of the aerial parts of O. dubium were investigated for their chemical contents and their antioxidant potential. Overall, 20 constituents were isolated and identified, belonging mainly to three significant classes of compounds: terpenes, phenolic derivatives, such as hydroquinone glycosides and flavonoids and alicyclic derivatives. None of them was previously reported as constituent of O. dubium The inhibitory potencies of all total extracts and the isolated compounds on lipid peroxidation and their interaction with 1,1-diphenyl-picrylhydrazyl (DPPH) activity is discussed. The polar extract showed strong interaction with DPPH stable radical and significant inhibition of lipoxygenase and lipid peroxidation.

  6. Potential applications of carbon dioxide in chemical industry; Moegliche Nutzungen von Kohlendioxid in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Arno; Neuberg, Stefan [Technische Univ. Dortmund (Germany)

    2009-10-15

    Up to now, the use of carbon dioxide as a renewable C. carbon source plays in the current public debate on CCS technology only a minor role. Though, the chemical utilization of the generally unreactive classified molecule provides same very interesting synthesis routes, which take place without toxic starting materials like phosgene. In this review a number of syntheses using CO{sub 2}, which are currently in development, will be briefly presented. Although most of them have only been investigated on laboratory or miniplant scale and require further development, they demonstrate the high potential of carbon dioxide in industrial syntheses far beyond the traditional applications such as urea or salicylic acid syntheses. Concepts for the synthesis of formic acid and a {delta}-lactone, as well as developments in photosynthesis will be presented. A crucial role in nearly all these conversions plays the catalytic activation of carbon dioxide. (orig.)

  7. QCD Dirac Spectrum at Finite Chemical Potential: Anomalous Effective Action, Berry Phase and Composite Fermions

    CERN Document Server

    Liu, Yizhuang

    2015-01-01

    We show that the QCD Dirac spectrum at finite chemical potential using a 2-matrix model in the spontaneously broken phase, is amenable to a generic 2-dimensional effective action on a curved eigenvalue manifold. The eigenvalues form a droplet with strong screening and non-linear plasmons. The droplet is threaded by a magnetic vortex which is at the origin of a Berry phase. The adiabatic transport in the droplet maps onto the one in the fractional quantum Hall effect, suggesting that composite fermions at half filling are Dirac particles. We use this observation to argue for two novel anomalous effects in the edge transport of composite fermions, and conversely on a novel contribution to the QCD quark condensate in a rotating frame.

  8. The epsilon expansion at next-to-next-to-leading order with small imaginary chemical potential

    CERN Document Server

    Lehner, Christoph; Wettig, Tilo

    2010-01-01

    We discuss chiral perturbation theory for two and three quark flavors in the epsilon expansion at next-to-next-to-leading order (NNLO) including a small imaginary chemical potential. We calculate finite-volume corrections to the low-energy constants $\\Sigma$ and $F$ and determine the non-universal modifications of the theory, i.e., modifications that cannot be mapped to random matrix theory (RMT). In the special case of two quark flavors in an asymmetric box we discuss how to minimize the finite-volume corrections and non-universal modifications by an optimal choice of the lattice geometry. Furthermore we provide a detailed calculation of a special version of the massless sunset diagram at finite volume.

  9. An iterative method to compute the overlap Dirac operator at nonzero chemical potential

    CERN Document Server

    Bloch, J; Lang, B; Wettig, T

    2007-01-01

    The overlap Dirac operator at nonzero quark chemical potential involves the computation of the sign function of a non-Hermitian matrix. In this talk we present an iterative method, first proposed by us in Ref. [1], which allows for an efficient computation of the operator, even on large lattices. The starting point is a Krylov subspace approximation, based on the Arnoldi algorithm, for the evaluation of a generic matrix function. The efficiency of this method is spoiled when the matrix has eigenvalues close to a function discontinuity. To cure this, a small number of critical eigenvectors are added to the Krylov subspace, and two different deflation schemes are proposed in this augmented subspace. The ensuing method is then applied to the sign function of the overlap Dirac operator, for two different lattice sizes. The sign function has a discontinuity along the imaginary axis, and the numerical results show how deflation dramatically improves the efficiency of the method.

  10. Magnetic susceptibility at zero and nonzero chemical potential in QCD and QED

    Science.gov (United States)

    Orlovsky, V. D.; Simonov, Yu. A.

    2015-04-01

    Magnetic susceptibility of the quark and electron gas is calculated in a closed form for any chemical potential μ summing the whole Matsubara series. For the quark gas and small μ≪T a strong rise with T is found due to Polyakov loop factors L(T), in good agreement with lattice data. For the electron gas the lowest Matsubara term (n = 1) contributes 40% larger than the exact answer. In the case of small T, √ {eB} ≳ T, the oscillations as functions of eB occur, characteristic of the de Haas-van Alphen effect. Results are compared with available lattice data and with the case of relativistic electron gas, which obtains putting L(T)≡1.

  11. S-parameter at Non-Zero Temperature and Chemical Potential

    CERN Document Server

    Søndergaard, Ulrik Ishøj; Sannino, Francesco

    2011-01-01

    We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover a reduction of the S-parameter in the physically relevant region of small external momenta for any non-zero chemical potential and T. In particular, the S-parameter vanishes at small m/T, where m is the mass of the fermions, due to the finite extent of the temporal direction. Our results are directly applicable to the determination of the S-parameter via first principle lattice simulations performed with anti-periodic boundary conditions in the temporal direction.

  12. A new chiral two-matrix theory for Dirac spectra with imaginary chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Akemann, G. [Department of Mathematical Sciences, Brunel University West London, Uxbridge UB8 3PH (United Kingdom); Damgaard, P.H. [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark)]. E-mail: phdamg@nbi.dk; Osborn, J.C. [Physics Department and Center for Computational Science, Boston University, Boston, MA 02215 (United States); Splittorff, K. [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark)

    2007-03-26

    We solve a new chiral random two-matrix theory by means of biorthogonal polynomials for any matrix size N. By deriving the relevant kernels we find explicit formulas for all (n,k)-point spectral (mixed or unmixed) correlation functions. In the microscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results to the ordinary (non-chiral) ensembles, and also there provide explicit solutions for any finite size N, and in the microscopic scaling limit. Our results give the general analytical expressions for the microscopic correlation functions of the Dirac operator eigenvalues in theories with imaginary baryon and isospin chemical potential, and can be used to extract the tree-level pion decay constant from lattice gauge theory configurations. We find exact agreement with previous computations based on the low-energy effective field theory in the two special cases where comparisons are possible.

  13. Symmetry Nonrestoration in a Gross-Neveu Model with Random Chemical Potential

    CERN Document Server

    Hong, S I; Hong, Seok-In; Kogut, John B.

    2001-01-01

    We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with random chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well as Z_2 chiral symmetry. At high temperature the Z_2 chiral symmetry is always restored. In three dimensions the initially broken charge conjugation symmetry is not restored at high temperature, irrespective of the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry undergoes a quantum phase transition from a symmetric state (for weak disorder) to a broken state (for strong disorder) as the disorder strength is varied. For any given value of disorder strength, the high-temperature behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high temperature.

  14. Chemical potential of a hard sphere fluid adsorbed in model disordered polydisperse matrices.

    Science.gov (United States)

    de Leon, Aned; Pizio, O; Sokołowski, S

    2006-06-01

    We consider a model for adsorption of a simple fluid in disordered polydisperse adsorbents. The fluid consists of hard sphere particles. On the other hand, the adsorbents of this study are modeled as a collection of hard spheres with their diameter obeying a certain distribution function. Our focus is in the evaluation of the chemical potential of the fluid immersed in such a polydisperse material. It permits us to obtain porosity and pore size distribution for the adsorbent, as well as a set of adsorption isotherms. The latter have been calculated theoretically and by grand canonical Monte Carlo simulations. We observe that the width of assumed polydispersity distribution affects all the properties of the system. Nevertheless, the effect of matrix packing is dominant in determining adsorption for this class of models. We are convinced that the matrix structures generated via more sophisticated algorithms would exhibit stronger effects of polydispersity on the entire set of properties of adsorbed simple fluids.

  15. Phase of the Fermion Determinant for QCD at Finite Chemical Potential

    CERN Document Server

    Splittorff, K

    2008-01-01

    In this lecture we discuss various properties of the phase factor of the fermion determinant for QCD at nonzero chemical potential. Its effect on physical observables is elucidated by comparing the phase diagram of QCD and phase quenched QCD and by illustrating the failure of the Banks-Casher formula with the example of one-dimensional QCD. The average phase factor and the distribution of the phase are calculated to one-loop order in chiral perturbation theory. In quantitative agreement with lattice QCD results, we find that the distribution is Gaussian with a width $\\sim \\mu T \\sqrt V$ (for $m_\\pi \\ll T \\ll \\Lambda_{\\rm QCD}$). Finally, we introduce, so-called teflon plated observables which can be calculated accurately by Monte Carlo even though the sign problem is severe.

  16. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew RE; Birkholm, Trine;

    2012-01-01

    a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results: We produced a phylogenetic hypothesis...... for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated......Background: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer...

  17. Variations in amounts and potential sources of volatile organic chemicals in new cars.

    Science.gov (United States)

    Chien, Yeh-Chung

    2007-09-01

    This study examines inter-brand, intra-brand and intra-model variations in volatile organic chemical (VOC) levels inside new cars. The effect of temperature on interior VOC levels was examined using model automobiles with and without the air-conditioning running. Potential sources of VOC were assessed by comparing VOC levels with two interior trims (leather and fabric) and by analyzing VOC emissions from various interior components. Five brands of new car, both domestic and imported, were tested. Twelve targeted VOCs were collected on solid sorbents and analyzed using thermal desorption and GC/FID. VOCs from interior parts and adhesives were identified using solid phase micro-extraction (SPME) coupled with GC/MS. The VOC concentrations varied markedly among brands and within models, and individual VOC levels ranged from below the detection limit (a few mug per cubic meter) to thousands of mug per cubic meter. The intra-model variability (mean, 47%) in the VOC levels was approximately 50% that within each brand (mean, 95%). Although interior trim levels affected VOC levels, the effects differed among brands. Reduction of the cabin temperature reduced most VOC levels, but the impact was not statistically significant. Screening tests for VOCs from interior parts revealed that butylated hydroxytoluene (BHT), a common anti-oxidant, was the most common chemical. Long-chain aliphatic hydrocarbons, particularly C14-C17, were identified in most grease (lubricant) samples, and toluene and xylenes were ubiquitously present in adhesive samples. Process-related compounds, such as plasticizer, were also identified in interior parts. In-cabin VOC levels varied significantly among makes/models and interior trims. Concerned consumers should purchase older new cars from manufacturers since VOC levels inside car cabins normally declines over time. Improved processes or materials with lower VOC emission potential should be used to minimize in-cabin VOC sources for new cars.

  18. Comet assay evaluation of six chemicals of known genotoxic potential in rats.

    Science.gov (United States)

    Hobbs, Cheryl A; Recio, Leslie; Streicker, Michael; Boyle, Molly H; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L

    2015-07-01

    As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals.

  19. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    Science.gov (United States)

    Benner, R.; Hatcher, P.G.; Hedges, J.I.

    1990-01-01

    Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.

  20. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  1. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms fo

  2. Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods.

    Directory of Open Access Journals (Sweden)

    Tomas de Wouters

    Full Text Available Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial tension as novel approaches to quantify these interactions and evaluated their biological significance via an adhesion assay using intestinal epithelial surface molecules (IESM for a set of model organisms present in the human gastrointestinal tract. Strain pairs of Lactobacillus plantarum WCFS1 with its sortase knockout mutant Lb. plantarum NZ7114 and Lb. rhamnosus GG with Lb. rhamnosus DSM 20021T were used with Enterococcus faecalis JH2-2 as control organism. Intra-species comparison revealed significantly higher abilities for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T to dynamically increase interfacial elasticity (10-2 vs. 10-3 Pa*m and reduce interfacial tension (32 vs. 38 mN/m. This further correlated for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T with the decrease of relative hydrophobicity (80-85% vs. 57-63%, Zeta potential (-2.9 to -4.5 mV vs. -8.0 to -13.8 mV and higher relative adhesion capacity to IESM (3.0-5.0 vs 1.5-2.2. Highest adhesion to the IESM collagen I and fibronectin was found for Lb. plantarum WCFS1 (5.0 and E. faecalis JH2-2 (4.2 whereas Lb. rhamnosus GG showed highest adhesion to type II mucus (3.8. Significantly reduced adhesion (2 fold to the tested IESM was observed for Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T corresponding with lower relative hydrophobicity, Zeta potential and abilities to modify interfacial elasticity

  3. Ab Initio Thermodynamic Modeling of Electrified Metal–Oxide Interfaces: Consistent Treatment of Electronic and Ionic Chemical Potentials

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Hansen, Martin Hangaard; Greeley, Jeffrey Philip;

    2014-01-01

    –electrolyte interface. Lack of atomic-level information about the interface has limited the fundamental understanding, which further limits the opportunity for optimization. The atomic structure of the interface is affected by electrode potential, chemical potential of oxygen ions, temperature, and gas pressures...

  4. Rocky Mountain Arsenal Chemical Index. Volume 3. Potential Chemical- Specific ARARs for On-Post Operable Unit, RMA

    Science.gov (United States)

    1988-08-01

    38. Aldrin . . . . . . .. . . . . . . .. . . . 3 9. Allyl alchohol ... ... .... .... . . 4 10. Aluminum hydroxide...of the pesticide. An action level is a more appropriate mechanism for situations involving residues which persist in the environment after the once...pursuant to the proposed Consent Decree) as an ARAR screening mechanism for potential ARARs. The Army will not simply apply potential ARARs at the RNA

  5. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  6. Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Z. Hossain

    2016-10-01

    Full Text Available Various species of berries have been reported to contain several polyphenolic compounds, such as anthocyanins and flavonols, which are known to possess high antioxidant activity and may be beneficial for human health. To our knowledge, a thorough chemical analysis of polyphenolics in species of these plants native to Newfoundland, Canada has not been conducted. The primary objective of this study was to determine the polyphenolic compounds present in commercial extracts from Newfoundland berries, which included blueberries (V. angustifolium, lingonberries (V. vitis-idaea and black currant (Ribes lacustre. Anthocyanin and flavonol glycosides in powdered extracts from Ribes lacustre and the Vaccinium species were identified using the high performance liquid chromatographic (HPLC separation method with mass spectrometric (MS detection. The identified compounds were extracted from dried berries by various solvents via ultrasonication followed by centrifugation. A reverse-phase analytical column was employed to identify the retention time of each chemical component before submission for LC–MS analysis. A total of 21 phenolic compounds were tentatively identified in the three species. Further, we tested the effects of the lingonberry extract for its ability to protect neurons and glia from trauma utilizing an in vitro model of cell injury. Surprisingly, these extracts provided complete protection from cell death in this model. These findings indicate the presence of a wide variety of anthocyanins and flavonols in berries that grow natively in Newfoundland. These powdered extracts maintain these compounds intact despite being processed from berry fruit, indicating their potential use as dietary supplements. In addition, these recent findings and previous data from our lab demonstrate the ability of compounds in berries to protect the nervous system from traumatic insults.

  7. Anaerobic sediment potential acidification and metal release risk assessment by chemical characterization and batch resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, M.P. di [Univ. de San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Technologia; Curutchet, G. [Univ. de San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Technologia; CONICET, Buenos Aires (Argentina); Ratto, S. [Univ. de Buenos Aires (Argentina). Catedra de Edafologia

    2007-06-15

    Background, Aim and Scope: Sediments act as a sink for toxic substances (heavy metals, organic pollutants) and, consequently, dredged materials often contain pollutants which are above safe limits. In polluted anaerobic sediments, the presence of sulphides and redox potential changes creates a favorable condition for sulphide oxidation to sulphate, resulting in potential toxic metal release. The oxidation reaction is catalyzed by several microorganisms. Some clean up measures, such as dredging, can initiate the process. The aim of the present work is to assess the acidification and metal release risk in the event of sediment dredging and also to compare two different acid base account techniques with the resuspension results. The oxidation mechanism by means of inoculation with an Acidithiobacillus ferrooxidans strain was also evaluated. Materials and Methods: The sediments were chemically characterized (pH; organic oxidizable carbon; acid volatile sulphides; total sulphur; moisture; Cr, Cu and Zn aqua regia contents). A metal sequential extraction procedure (Community Bureau of Reference, BCR technique) was applied to calculate the Acid Producing Potential (APP) and Acid Consuming Capacity (ACC) of the sediment samples through Fe, Ca{sup 2+} and SO{sub 4}{sup 2-} measurements. The acid base account was also performed by the Sobek methodology (Acid producing potential - AP - calculated with total sulphur and neutralization potential - NP - by titration of the remaining acid after a reaction period with the sample). Fresh sediments were placed in agitated shake flasks and samples were taken at different times to evaluate pH, SO{sub 4}{sup 2-} and Cr, Cu, Zn and Fe{sup 2+} concentration. Some of the systems were inoculated with an Acidithiobacillus ferrooxidans strain to assess the biological catalysis on sulphide oxidation. Results: Sediment chemical characterization showed high organic matter content (5.4-10.6%), total sulphur (0.36-0.86%) and equivalent CaCO{sub 3

  8. The potential of computer-based quantitative structure activity approaches for predicting acute toxicity of chemicals

    NARCIS (Netherlands)

    Zvinavashe, E.

    2008-01-01

    Within the EU, the management of the risks of chemicals currently falls under a new legislation called Registration, Evaluation, and Authorization of Chemicals (REACH). Within the next 10 years, existing (eco)toxicological data gaps for the more than 100 000 chemicals on the European Inventory of E

  9. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    Science.gov (United States)

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies

  10. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.

  11. EFFECTS OF RADIO FREQUENCY / MICROWAVE ON THE CHEMICAL COMPOSITION AND ANTIOXIDANT POTENTIAL OF LYCOPERSICON ESCULENTUM L.

    Directory of Open Access Journals (Sweden)

    Rammal Marwa

    2013-09-01

    Full Text Available In our work, the effects of radio frequency / microwave on the morphology, chemical composition and the antioxidant power of the plant Lycopersicon esculentum Mill. grown in our laboratory have been accomplished. The obtained results showed that after 10 days of exposure of this plant to electromagnetic fields with high frequency (1250 MHz the stems were long with less leaves than the non exposed plant. However, after 20 days of exposure to this same frequency the stems were long and contain more leaves than the non exposed plant. These leaves were larger and thicker in comparison with those of the non exposed plant. On the other side, the phytochemical screening of the ethanolic extract revealed the presence of flavonoids in the exposed and non exposed plant. Alkaloids, phenols and saponins were only present in non exposed plant. The tannins were absent in the exposed and non exposed plant. Therefore, resins were highly expressed in the exposed plant. On the other side, the x-ray fluorescence indicated the presence of various trace elements more particularly niobium and molybdenum. After exposure, the amount of these elements varies. On the other hand, the DPPH and H2O2 tests showed an important decrease in the antioxidant potential after exposure to studied frequency. This decrease was from 42 % to 18 % at the concentration 0.5 mg/ml. All of these results show that the high frequency emitted by the electromagnetic fields exert a strong effect on the plant and by consequence on human health.

  12. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential.

    Science.gov (United States)

    Lai, Hung-Yu

    2015-11-01

    Impatiens (Impatiens walleriana) has been shown to be a potential cadmium (Cd) hyperaccumulator, but its mechanisms in accumulation and detoxification have not been reported. Rooted cuttings of Impatiens were planted in artificially Cd-contaminated soils for 50 days with total target concentrations of 0, 10, 20, 40, 80, and 120 mg/kg. The subcellular distribution and chemical forms of Cd in the different organs were analyzed after the pot experiment. Compared with the control group, various Cd treatments affected the growth exhibitions of Impatiens, but most of them were not statistically significant. The Cd accumulation of different organs increased with an increase in the soil Cd concentrations for most of the treatments, and it was in the decreasing order of root>stem>leaf. In the roots of Impatiens, Cd was mainly compartmentalized in the soluble fraction (Fs), which has a high migration capacity and will further translocate to the shoot. The Cd was mainly compartmentalized in the cell wall fraction (Fcw) in the shoots as a mechanism of tolerance. Most of the Cd in the various organs of Impatiens was mainly in the forms of pectate and protein-integrated (FNaCl), whereas a minor portion was a water soluble fraction (FW). The experimental results show that the Cd in the Fs, FW, and FNaCl in the roots of Impatiens had a high mobility and will further translocate to the shoot. They could be used to estimate the Cd accumulated in the shoots of Impatiens.

  13. Low Energy Effective Theory of QCD at High Isospin Chemical Potential

    CERN Document Server

    Cohen, Thomas D

    2015-01-01

    The goal of this paper is to arrive at a low energy effective theory of QCD with two massless flavors of quarks at very high isospin density and zero baryon density. In a seminal paper by Son and Stephanov in the year 2001, it was conjectured that the low energy dynamics of QCD with two light flavors at asymptotically high isospin density was described by that of a pure Yang-Mills effective Lagrangian. Since the existence of a first order deconfinement phase transition with increasing temperature is a feature of every pure SU(N) Yang-Mills theory with N greater than or equal to 3, the regime considered in this paper is also expected to exhibit a first order deconfinement phase transition with increasing temperature. However, the low energy constants(LEC) of this pure Yang-Mills theory have not been calculated till date. We calculate the LEC s for this effective theory which in turn enables us to calculate the critical temperature of the deconfinement transition as a function of the isospin chemical potential ...

  14. Random matrix theory of unquenched two-colour QCD with nonzero chemical potential

    CERN Document Server

    Akemann, G; Phillips, M J; Wettig, T

    2010-01-01

    We solve a random two-matrix model with two real asymmetric matrices whose primary purpose is to describe certain aspects of quantum chromodynamics with two colours and dynamical fermions at nonzero quark chemical potential mu. In this symmetry class the determinant of the Dirac operator is real but not necessarily positive. Despite this sign problem the unquenched matrix model remains completely solvable and provides detailed predictions for the Dirac operator spectrum in two different physical scenarios/limits: (i) the epsilon-regime of chiral perturbation theory at small mu, where mu^2 multiplied by the volume remains fixed in the infinite-volume limit and (ii) the high-density regime where a BCS gap is formed and mu is unscaled. We give explicit examples for the complex, real, and imaginary eigenvalue densities including Nf=2 non-degenerate flavours. Whilst the limit of two degenerate masses has no sign problem and can be tested with standard lattice techniques, we analyse the severity of the sign problem...

  15. Transport coefficients of heavy quarks around $T_c$ at finite quark chemical potential

    CERN Document Server

    Berrehrah, H; Aichelin, J; Cassing, W; Torres-Rincon, J M; Bratkovskaya, E

    2014-01-01

    The interactions of heavy quarks with the partonic environment at finite temperature $T$ and finite quark chemical potential $\\mu_q$ are investigated in terms of transport coefficients within the Dynamical Quasi-Particle model (DQPM) designed to reproduce the lattice-QCD results (including the partonic equation of state) in thermodynamic equilibrium. These results are confronted with those of nuclear many-body calculations close to the critical temperature $T_c$. The hadronic and partonic spatial diffusion coefficients join smoothly and show a pronounced minimum around $T_c$, at $\\mu_q=0$ as well as at finite $\\mu_q$. Close and above $T_c$ its absolute value matches the lQCD calculations for $\\mu_q=0$. The smooth transition of the heavy quark transport coefficients from the hadronic to the partonic medium corresponds to a cross over in line with lattice calculations, and differs substantially from perturbative QCD (pQCD) calculations which show a large discontinuity at $T_c$. This indicates that in the vicini...

  16. On Skyrmion semiclassical quantization in the presence of an isospin chemical potential

    CERN Document Server

    Cohen, Thomas D; Scoccola, Norberto N

    2008-01-01

    The semiclassical description of Skyrmions at small isospin chemical potential $\\mu_I$ is carefully analyzed. We show that when the calculation of the energy of a nucleon is performed using the straightforward generalization of the vacuum sector techniques ($\\mu_I=0$), together with the "natural" assumption $\\mu_I = {\\cal O} (N_c^0)$, the proton and neutron masses are nonlinear in $\\mu_I$ in the regime $|\\mu_I| < m_\\pi$. Although these nonlinearities turn out to be numerically quite small, such a result fails to strictly agree with the very robust prediction that for those values of $\\mui$ the energy excitations above the vacuum are linear in $\\mu_I$. The resolution of this paradox is achieved by studying the realization of the large $N_c$ limit of $QCD$ in the Skyrme model at finite $\\mui$. This is done in a simplified context devoid of the technical complications present in the Skyrme model but which fully displays the general scaling behavior with $N_c$. The analysis shows that the paradoxical result ap...

  17. Chemical potential of a test hard sphere of variable size in a hard-sphere fluid

    Science.gov (United States)

    Heyes, David M.; Santos, Andrés

    2016-12-01

    The Labík and Smith Monte Carlo simulation technique to implement the Widom particle insertion method is applied using Molecular Dynamics (MD) instead to calculate numerically the insertion probability, P0(η ,σ0) , of tracer hard-sphere (HS) particles of different diameters, σ0, in a host HS fluid of diameter σ and packing fraction, η , up to 0.5. It is shown analytically that the only polynomial representation of -ln ⁡P0 (η ,σ0) consistent with the limits σ0→0 and σ0→∞ has necessarily a cubic form, c0(η ) +c1(η ) σ0 /σ +c2(η ) (σ0/σ ) 2 +c3(η ) (σ0/σ ) 3 . Our MD data for -ln ⁡P0 (η ,σ0) are fitted to such a cubic polynomial and the functions c0(η ) and c1(η ) are found to be statistically indistinguishable from their exact solution forms. Similarly, c2(η ) and c3(η ) agree very well with the Boublík-Mansoori-Carnahan-Starling-Leland and Boublík-Carnahan-Starling-Kolafa formulas. The cubic polynomial is extrapolated (high density) or interpolated (low density) to obtain the chemical potential of the host fluid, or σ0→σ , as β μex =c0+c1+c2+c3 . Excellent agreement between the Carnahan-Starling and Carnahan-Starling-Kolafa theories with our MD data is evident.

  18. A comparison of chemical mechanisms using Tagged Ozone Production Potential (TOPP analysis

    Directory of Open Access Journals (Sweden)

    J. Coates

    2015-04-01

    Full Text Available Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during VOC degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective predictions. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit MCM mechanism using a boxmodel and by "tagging" all organic degradation products over multi-day runs, thus calculating the Tagged Ozone Production Potential (TOPP for a selection of VOC representative of urban airmasses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOC produce comparable amounts of O3 from VOC degradation to the MCM. First day TOPP values are similar across mechanisms for most VOC, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOC have largest inter-mechanisms differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break down VOC into smaller sized degradation products on the first day faster than the MCM impacting the total amount of O3 produced on subsequent days due to secondary chemistry.

  19. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    Directory of Open Access Journals (Sweden)

    M. A. Ashraf

    2012-01-01

    Full Text Available This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES. Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.

  20. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement

  1. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals

    Directory of Open Access Journals (Sweden)

    Huixiao Hong

    2016-03-01

    Full Text Available Endocrine disruptors such as polychlorinated biphenyls (PCBs, diethylstilbestrol (DES and dichlorodiphenyltrichloroethane (DDT are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest and the molecular descriptors calculated from two-dimensional structures by Mold2 software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69% and external validations using 22 chemicals (balanced accuracy of 71%. Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  2. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    Science.gov (United States)

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  3. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical composit......A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...

  4. Fermionic dispersion relations at finite temperature and non-vanishing chemical potentials in the minimal standard model

    CERN Document Server

    Morales, J; Fonseca, F; Morales, John; Quimbay, Carlos; Fonseca, Frank

    1999-01-01

    We calculate the fermionic dispersion relations in the minimal standard model at finite temperature in presence of non-vanishing chemical potentials due to the CP-asymmetric fermionic background. The dispersion relations are calculated for a vacuum expectation value of the Higgs field equal to zero (unbroken electroweak symmetry). The calculation is performed in the real time formalism of the thermal field theory at one-loop order in a general $\\xi$ gauge. The fermionic self-energy is calculated at leading order in temperature and chemical potential and this fact permits us to obtain gauge invariant analytical expressions for the dispersion relations.

  5. Dilepton production as a useful probe of quark gluon plasma with temperature dependent chemical potential quark mass

    Science.gov (United States)

    Kumar, Yogesh; Singh, S. Somorendro

    2016-07-01

    We extend the previous study of dilepton production using [S. Somorendro Singh and Y. Kumar, Can. J. Phys. 92 (2014) 31] based on a simple quasiparticle model of quark-gluon plasma (QGP). In this model, finite value of quark mass uses temperature dependent chemical potential the so-called Temperature Dependent Chemical Potential Quark Mass (TDCPQM). We calculate dilepton production in the relevant range of mass region. It is observed that the production rate is marginally enhanced from the earlier work. This is due to the effect of TDCPQM and its effect is highly significant in the production of dilepton.

  6. Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential.

    Science.gov (United States)

    Akemann, G; Bloch, J; Shifrin, L; Wettig, T

    2008-01-25

    We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.

  7. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  8. Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA

    Science.gov (United States)

    Huang, Jiaoyan; Miller, Matthieu B.; Edgerton, Eric; Sexauer Gustin, Mae

    2017-02-01

    The highest mercury (Hg) wet deposition in the United States of America (USA) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to high water solubility and reactivity. Therefore, it is critical to understand concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry-deposition fluxes of GOM were measured and calculated for Naval Air Station Pensacola Outlying Landing Field (OLF) in Florida using data collected by a Tekran® 2537/1130/1135, the University of Nevada Reno Reactive Mercury Active System (UNRRMAS) with cation exchange and nylon membranes, and the Aerohead samplers that use cation-exchange membranes to determine dry deposition. Relationships with Tekran®-derived data must be interpreted with caution, since the GOM concentrations measured are biased low depending on the chemical compounds in air and interferences with water vapor and ozone.Criteria air pollutants were concurrently measured. This allowed for comparison and better understanding of GOM.In addition to other methods previously applied at OLF, use of the UNRRMAS provided a platform for determination of the chemical compounds of GOM in the air. Results from nylon membranes with thermal desorption analyses indicated seven GOM compounds in this area, including HgBr2, HgCl2, HgO, Hg-nitrogen and sulfur compounds, and two unknown compounds. This indicates that the site is influenced by different gaseous phase reactions and sources. Using back-trajectory analysis during a high-GOM event related to high CO, but average SO2, indicated air parcels moved from the free troposphere and across Arkansas, Mississippi, and Alabama at low elevation (compounds. Overall, GOM chemistry indicates oxidation reactions with local mobile source pollutants and long-range transport.In order to develop methods to measure GOM concentrations and chemistry, and

  9. Calculation of Equation of State of QCD at Finite Chemical Potential and Temperature

    Institute of Scientific and Technical Information of China (English)

    QIAO Qing-Peng; ZONG Hong-Shi; TANG Jian; HOU Feng-Yao; LI Xue-Qian; SUN Wei-Min; L(U) Xiao-Fu

    2008-01-01

    In this paper, using path integral techniques we derive a model-independent formula for the pressure density (μ, T) (or equivalently the partition function) of Quantum Chromodynamics (QCD), which gives the equation of state (EOS) of QCD at finite chemical potential and temperature. In this formula the pressure density (μ, T) consists of two terms: the first term (μ,T) T=0) is a #-independent (but T-dependent) constant; the second term is totally determined by G[μ, T] (p ωn) (the dressed quark propagator at finite μ and finite T), which contains all the nontrivial μ-dependence. Then, in the framework of the rainbow-ladder approximation of the Dyson-Schwinger (DS) approach and under the approximation of neglecting the μ-dependence of the dressed gluon propagator, we show that G[μ, T] (p, ωn) can be obtained from G[T] (p, ωn) (the dressed quark propagator at μ = 0) by the substitution ωn →ωn + iμ. This result facilitates numerical calculations considerably. By this result, once G[T](p, ωn) is known, one can determine the EOS of QCD under the above approximations (up to the additive term (μ, T)[T=0). Finally, a comparison of the present EOS of QCD and the EOS obtained in the previous literatures in the framework of the rainbow-ladder approximation of the DS approach is given. It is found that the EOS given in the previous literatures does not satisfy the thermodynamic relation p(μ, T) = T.

  10. Chemical characterisation and allelopathic potential of essential oils from leaves and rhizomes of white ginger

    Directory of Open Access Journals (Sweden)

    Cíntia Alvarenga Santos Fraga Miranda

    Full Text Available ABSTRACTEssential oils have the potential to be used as bioherbicides, and possess the advantage of their biodegradability, high structural diversity and reduced natural resistance to weeds. The essential oils of the leaves and rhizomes of Hedychium coronarium, an exotic invasive plant adapted to different regions of Brazil, were extracted by hydrodistillation and characterised chemically by Gas-Liquid Chromatography and Gas-Liquid Chromatography/Mass Spectrometry. Allelopathic activity was determined using methodologies that evaluate the effects of volatility and direct contact on seed germination and seedling vigour in the lettuce. The major constituents of the essential oil from the leaves were β-pinene (46.9%, α-pinene (19.2% and β-caryophyllene (13.2% and from the rhizomes, β-pinene (41.5%, 1.8-cineole (23.6% and α-pinene (13.1%. When analysing the volatile effects of the essential oils, it was seen that their concentration did not affect seedling first germination count or total germination. The essential oil from the rhizomes was more effective than the essential oil from the leaves in reducing seedling response for SGI, dry weight, and length of the roots and shoots. When evaluating the effect of direct contact with the essential oils, it was seen that both oils reduced the response of all the variables under evaluation, and that in addition, the oil from the rhizomes caused greater reductions than that from the leaves, again for all variables. These results can be attributed to the higher levels of monoterpenes present in the essential oil from the rhizomes, mainly the presence of 1.8-cineole.

  11. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  12. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  13. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  14. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  15. Pyrolysis of oil at high temperatures: Gas potentials, chemical and carbon isotopic signatures

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui; XIAO XianMing; YANG LiGuo; XIAO ZhongYao; GUO LiGuo; SHEN JiaGui; LU YuHong

    2009-01-01

    Although the gas cracked from oil has been believed to be one of the important sources in highly ma-tured marine basins, there are still some debates on its resource potentials and chemical and isotopic compositions. In this study a Cambrian-sourced marine oil sample from the Silurian reservoir of well TZ62 in the central Tarim basin was pyrolyzed using sealed gold tubes with two different pyrolysis schemes: continuous pyrolysis in a closed system and stepwise semi-open pyrolysis. The results show that the maximum weight yield of C1-5 gases occurs at EasyRo=2.3% and the residual gas poten-tial after this maturity is only 43.4 mL/g, about 12% of the yield of 361 mL/g at EasyRo=2.3%. Combined with the results of kinetic modeling, the main stage of gas generation from oil cracking is believed within the EasyRo=1.6%-2.3%. The increase in the volume yield of C1-5 gases at EasyRo2.3% in a closed system is mainly related to the re-cracking of previously formed C2-5 wet gases, not the direct cracking of oil. The stepwise pyrolysis experiments show that the gas from the cracking of residual oil at EasyRo2.3% is characterized by very high dryness index (higher than 92%) and heavy methane carbon isotopes ranging from -28.7‰ to -26.7‰, which is quite different from the gases from the con-tinuous pyrolysis in a closed system. The kinetic modeling of methane carbon isotope fractionation shows that the carbon isotopes of methane within the main stage of gas generation (EasyRo<2.3%) are far lighter than the carbon isotopes of the precursor oils under a geological heating rate of 2℃/Ma. The above observations and results provide some new clues to the accurate recognition and objective re-source evaluation of oil cracking gas in highly mature marine basins.

  16. New Inorganic-organic Hybrid Compound Containing One Dimensional Keggin Polyoxometalate[SiW11O39Co]6- Chains:Preparation,Characterization and Application in Chemically Bulk-modified Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-li; LIN Hong-yan; LIU Guo-cheng; CHEN Bao-kuan; BI Yan-feng

    2008-01-01

    A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiW11O39Co]~2H2O(1)[bpp=1,3-bis(4-pyridyl)propane]was hydrothermally synthesized and structurally characterized by elemental analysis,single-crystal X-ray diffraction,IR,TG,and cyclic voltammetry.Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands.Additionally,the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure.The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE)by direct mixing.The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail.The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1mol/L H2SO4 aqueous solution.1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp,which is very important for practical applications in electrode modification.

  17. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  18. Sol-gels with fiber-optic chemical sensor potential: Effects of preparation, aging, and long-term storage

    Science.gov (United States)

    Badini, G. E.; Grattan, K. T. V.; Tseung, A. C. C.

    1995-08-01

    The features of sol-gels, incorporating pH-sensitive dyes, designed as potential substrates for fiber-optic chemical sensors, have been investigated in terms of a variety of characteristics resulting from the preparation methods used and following the storage of samples for a period of several years. These materials, organically doped sol-gels, have been used as the heart of a number of prototype chemical sensing instruments, and a key issue in their effective use in instrumentation is their long-term durability and stability. In this work, it has been shown that such aged gel substrates can withstand immersion in water, drying, and reimmersion without fragmenting. Such impregnated gels were shown to still exhibit strong fluorescence, although some changes to the gel structure, determined from microhardness measurements, were observed and reported, reflecting their potential for use in chemically sensitive fiber optic-based instruments.

  19. Chemical Potential for the Interacting Classical Gas and the Ideal Quantum Gas Obeying a Generalized Exclusion Principle

    Science.gov (United States)

    Sevilla, F. J.; Olivares-Quiroz, L.

    2012-01-01

    In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…

  20. Metastability of the Two-Dimensional Blume-Capel Model with Zero Chemical Potential and Small Magnetic Field

    Science.gov (United States)

    Landim, C.; Lemire, P.

    2016-07-01

    We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.

  1. DOPING DEPENDENCE OF THE CHEMICAL-POTENTIAL IN BI2SR2CA1-XYXCU2O8+DELTA

    NARCIS (Netherlands)

    VANVEENENDAAL, MA; SCHLATMANN, R; SAWATZKY, GA; GROEN, WA

    1993-01-01

    A detailed study of the doping dependence of valence- and core-level spectra of Bi2Sr2Ca1-xYxCu2O8+delta leads to the conclusion that the chemical potential shifts in a manner consistent with that of a simple doped semiconductor. The spectroscopically observed filling in of the gap upon doping of th

  2. Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers

    NARCIS (Netherlands)

    Saygin, D.; Gielen, D. J.; Draeck, M.; Worrell, E.; Patel, M. K.

    2014-01-01

    Fossil fuel substitution with biomass is one of the measures to reduce carbon dioxide (CO2) emissions. This paper estimates the cost-effectiveness of raising industrial steam and producing materials (i.e. chemicals, polymers) from biomass. We quantify their long-term global potentials in terms of en

  3. Key study on the potential of hydrazine bisborane for solid- and liquid-state chemical hydrogen storage.

    Science.gov (United States)

    Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B

    2015-05-04

    Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

  4. Finite size effects in the presence of a chemical potential: A study in the classical nonlinear O(2) sigma model

    Science.gov (United States)

    Banerjee, Debasish; Chandrasekharan, Shailesh

    2010-06-01

    In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the “worm algorithm.” Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane.

  5. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.

  6. The potential role of Life Cycle Assessment in regulation of chemicals in the European Union

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2003-01-01

    consequence, the European Chemicals Bureau (ECB) has enrolled in the OMNIITOX project with the clear aim of investigating possible applications of LCA in future EU regulation of chemicals. Implementation of REACH will expand and change the activities and services currently delivered by ECB as the focal point......The regulation of chemicals in EU is undergoing substantial changes these years with implementation of the “REACH” system. Simultaneously, the concepts of LCA and Integrated Product Policy (IPP) are becoming increasingly integrated in European standardisation and regulatory activities. As a logical...

  7. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis.

    Science.gov (United States)

    Ruiz, Pamela; Katsumiti, Alberto; Nieto, Jose A; Bori, Jaume; Jimeno-Romero, Alba; Reip, Paul; Arostegui, Inmaculada; Orbea, Amaia; Cajaraville, Miren P

    2015-10-01

    The aim of this work was to study short-term effects on antioxidant enzyme activities and long-term genotoxic and carcinogenic potential of CuO nanoparticles (NPs) in comparison to bulk CuO and ionic copper in mussels Mytilus galloprovincialis after 21 days exposure to 10 μg Cu L(-1). Then, mussels were kept for up to 122 days in clean water. Cu accumulation depended on the form of the metal and on the exposure time. CuO NPs were localized in lysosomes of digestive cells, as confirmed by TEM and X ray microanalysis. CuO NPs, bulk CuO and ionic copper produced different effects on antioxidant enzyme activities in digestive glands, overall increasing antioxidant activities. CuO NPs significantly induced catalase and superoxide dismutase activities. Fewer effects were observed in gills. Micronuclei frequency increased significantly in mussels exposed to CuO NPs and one organism treated with CuO NPs showed disseminated neoplasia. However, transcription levels of cancer-related genes did not vary significantly. Thus, short-term exposure to CuO NPs provoked oxidative stress and genotoxicity, but further studies are needed to determine whether these early events can lead to cancer development in mussels.

  8. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  9. 化肥对黑土不同粒级碳水化合物的影响%Effect of Chemical Fertilizer Application on the Carbohydrates in Bulk Black Soil and Particle-size Fractions

    Institute of Scientific and Technical Information of China (English)

    闫颖; 陈盈; 何红波; 解宏图; 白震; 李晓波; 田秋香; 张旭东

    2012-01-01

    The black soil fertilized with different chemical fertilizers for 21 years was sampled from Gongzhuling long-term located station. Fine clay (〈 0.2 p,m), coarse clay (0.2 - 2 μm), silt (2 - 53 μm), fine sand (53 - 250 μm) and coarse sand (250 - 2000μm) fractions were obtained by ultrasonic dispersion, centrifugation and wet sieving separation. Carbohydrates were detected in bulk soil and particlesize fractions. The results showed that there was a large variation among the size separates in black soil carbohydrate pool. Clay plus silt fractions comprised major carbohydrates pool in the soils studied and contained about 70% of the total carbohydrate. In general the application of chemical fertilizers had no clear effect on either neueral sugar accumulation or distribution in size fractions. The decrease of the (Gal+Man): (Ara+Xyl) ratio in coarse fraction after the application of chemical fertilizers indicated a higher contribution of plant sugars to the polysaccharide pool, suggesting that coarse sand fraction was more sensitive to fertilization than the other fractions.%本文采集公主岭市长期定位监测基地不施肥和施用不同化肥的黑土,通过超声波分散-离心分离得到细黏粒(〈0.2μm)、粗黏粒(0.2~2μm)、粉粒(2~53μm)、细砂粒(53~250μm)、粗砂粒(250~2000μm)5个颗粒级别,分析全土及不同粒级中土壤碳水化合物并进行含量与分布的比较。结果表明,黑土中不同粒级碳水化合物库的性质差异显著,碳水化合物多集中在粉+黏粒中;长期施用化肥后,黑土全土及各粒级碳水化合物库大小和浓度基本上没有变化;粗砂粒级(Gal+Man)(:Ara+Xyl)下降,表明该粒级中植物来源碳水化合物所占比重有所增加,暗示出粗砂粒级对施肥措施更为敏感。

  10. Quantum chemical study of the isomerization of 24-methylenecycloartanol, a potential marker of olive oil refining.

    Science.gov (United States)

    Wedler, Henry B; Pemberton, Ryan P; Lounnas, Valère; Vriend, Gert; Tantillo, Dean J; Wang, Selina C

    2015-05-01

    Quantum chemical calculations on the isomerization of 24-methylenecycloartanol are described. An energetically viable mechanism, with a rate-determining protonation step, is proposed. This rearrangement may find applicability in tests for determining if an olive oil has been refined.

  11. Does chemical aposematic (warning) signaling occur between host plants and their potential parasitic plants?

    Science.gov (United States)

    Lev-Yadun, Simcha

    2013-07-01

    Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward parasitic plants, which reduce the level of, slow the directional parasite growth (attack) toward the signaling hosts, or even cause parasitic plants to grow away from them in response to these chemicals. Chemical host aposematism toward parasitic plants may be a common but overlooked defense from parasitic plants.

  12. Quantum chemical study of the isomerization of 24-methylenecycloartanol, a potential marker of olive oil refining

    NARCIS (Netherlands)

    Wedler, H.B.; Pemberton, R.P.; Lounnas, V.; Vriend, G.; Tantillo, D.J.; Wang, S.C.

    2015-01-01

    Quantum chemical calculations on the isomerization of 24-methylenecycloartanol are described. An energetically viable mechanism, with a rate-determining protonation step, is proposed. This rearrangement may find applicability in tests for determining if an olive oil has been refined.

  13. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew RE; Birkholm, Trine;

    2012-01-01

    Background: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer...... of acetylcholinesterase (AChE) and binding to the serotonin reuptake transporter (SERT) are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations...

  14. Chemical Ecology of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say (Coleoptera: Chrysomelidae, and Potential for Alternative Control Methods

    Directory of Open Access Journals (Sweden)

    François J. Verheggen

    2012-12-01

    Full Text Available The Colorado potato beetle (CPB has been a major insect pest to potato farming for over 150 years and various control methods have been established to reduce its impact on potato fields. Crop rotation and pesticide use are currently the most widely used approaches, although alternative methods are being developed. Here we review the role of various volatile and nonvolatile chemicals involved in behavior changes of CPB that may have potential for their control. First, we describe all volatile and nonvolatile chemicals involved in host plant localization and acceptance by CPB beetles, including glycoalcaloids and host plant volatiles used as kairomones. In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones. Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section. The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications.

  15. The reaction-field effect on the chemical potentials of polar aprotic non-aromatic liquids 1. Vapour pressure

    Science.gov (United States)

    Rosseinsky, D. R.; Stead, K.; Mowforth, C. W.

    1998-10-01

    The reaction field for the interaction of a molecule with its identical neighbours is shown to be a major determinant of the chemical potential of many dipolar liquids. The electrostatic potential w, derived for immersion of the dipolar molecule in its own kind, and notably comprising solely static and hf permittivities, is equated with the difference between the polar-liquid chemical potential and that of an isostructural non-polar hydrocarbon. For all the 26 non-aromatic Onsager liquids for which the requisite data are available, acceptable conformity is established of the vapour pressure calculated from w with that observed, fluorocarbons excepted. If w turns out to be small, vapour pressures of (these 12) dipolars approximate quite closely to those of the isostructural non-polars, as expected. For ketones and nitroalkanes varied-temperature data are available and well reproduced via w: thus calculated vaporization enthalpies equal the observed.

  16. Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents.

    Science.gov (United States)

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Zia-Ul-Haq, Muhammad; Ismail, Maznah

    2012-05-21

    This study was conducted to investigate the chemical and nutritional composition of Artemisia annua leaves in addition to determination of antioxidant potential of their extracts prepared in different solvents. Chemical composition was determined by quantifying fat, protein, carbohydrate, fiber, tocopherol, phytate, and tannin contents. Extraction of A. annua leaves, for antioxidant potential evaluation, was carried out using five solvents of different polarities, i.e., hexane, chloroform, ethyl acetate, methanol and water. Antioxidant potential was evaluated by estimating total phenolic (TPC), flavonoid (TFC) contents, ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging activity and lipid peroxidation. Efficiency of different solvents was compared for the yield of antioxidant extracts from leaf samples and a clear variation was observed. The highest TPC, TFC, TEAC, DPPH radical scavenging and lowest lipid peroxidation were observed in MeOH extracts, whereas aqueous extract exhibited high ferric reducing antioxidant power; suggesting MeOH to be the most favorable extractant.

  17. Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids.

    Science.gov (United States)

    Strajhar, Petra; Tonoli, David; Jeanneret, Fabienne; Imhof, Raphaella M; Malagnino, Vanessa; Patt, Melanie; Kratschmar, Denise V; Boccard, Julien; Rudaz, Serge; Odermatt, Alex

    2017-02-21

    The validated OECD test guideline 456 based on human adrenal H295R cells promotes measurement of testosterone and estradiol production as read-out to identify potential endocrine disrupting chemicals. This study aimed to establish optimal conditions for using H295R cells to detect chemicals interfering with the production of key adrenal steroids. H295R cells' supernatants were characterized by liquid chromatography-mass spectrometry (LC-MS)-based steroid profiling, and the influence of experimental conditions including time and serum content was assessed. Steroid profiles were determined before and after incubation with reference compounds and chemicals to be tested for potential disruption of adrenal steroidogenesis. The H295R cells cultivated according to the OECD test guideline produced progestins, glucocorticoids, mineralocorticoids and adrenal androgens but only very low amounts of testosterone. However, testosterone contained in Nu-serum was metabolized during the 48h incubation. Thus, inclusion of positive and negative controls and a steroid profile of the complete medium prior to the experiment (t=0h) was necessary to characterize H295R cells' steroid production and indicate alterations caused by exposure to chemicals. Among the tested chemicals, octyl methoxycinnamate and acetyl tributylcitrate resembled the corticosteroid induction pattern of the positive control torcetrapib. Gene expression analysis revealed that octyl methoxycinnamate and acetyl tributylcitrate enhanced CYP11B2 expression, although less pronounced than torcetrapib. Further experiments need to assess the toxicological relevance of octyl methoxycinnamate- and acetyl tributylcitrate-induced corticosteroid production. In conclusion, the extended profiling and appropriate controls allow detecting chemicals that act on steroidogenesis and provide initial mechanistic evidence for prioritizing chemicals for further investigations.

  18. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  19. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    Science.gov (United States)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of

  20. Non-chemical stressors and cumulative risk assessment: an overview of current initiatives and potential air pollutant interactions.

    Science.gov (United States)

    Lewis, Ari S; Sax, Sonja N; Wason, Susan C; Campleman, Sharan L

    2011-06-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  1. POTENCIAL DE SECAGEM DO MILHO A GRANEL COM AR NATURAL EM BOTUCATU – SP DRYING POTENTIAL OF MAIZE GRAINS IN BULK WITH NATURAL AIR IN BOTUCATU, SP

    Directory of Open Access Journals (Sweden)

    Vicente A. Gonçalves

    2007-09-01

    Full Text Available

    A secagem de grãos com ar natural é um processo dependente das condições climáticas locais, constantemente oscilantes no tempo. Através do emprego de modelos matemáticos de simulação foi avaliada a possibilidade de realização da secagem do milho a granel com ar natural para as condições climáticas de Botucatu, com base nos registros horários de temperatura de bulbo seco e umidade relativa dos anos de 1971 a 1975 e de 1977 a 1981. O processo contínuo de secagem do milho com ar natural, nas condições analisadas, não permite a redução do teor de umidade final ao nível recomendado ao armazenamento seguro. A simulação da secagem intermitente, realizada nos períodos das 9 às 17 h, 9 às 18 h e 8 às 18 h, indica a possibilidade de redução do teor de umidade do milho, base úmida, a nível entre 12,1 e 17,3%, para o teor de unidade inicial de 22%, entre 12,4 e 15,5%, para o teor de umidade inicial de 20% e entre 13,1 e 14,7% para o de 18%, quando realizada a secagem no período máximo admissível.

    PALAVRAS-CHAVE: Secagem; Ar natural; Milho; Teor de umidade de equilíbrio.

    Grain drying using ambient was simulated under weather conditions in Botucatu. Hourly weather records, fry bulb temperature and relative humidity, from 1971 through 1975 and from 1977 through 1981, were used to calculate adiabatic drying potential of the ambient air. Historical weather records from 1971 were selected to simulate ambient air corn drying. Ambient air corn drying systems operating continuously are not feasible to reduce the moisture content of the grain to the moisture levels recommended for safe storage. Selective fan operation, from 9 a. m. to 5 a. m. , from 9 a. m. to 6 p. m. and from 8 a. m. to 6 p. m. , indicates the possibility to reduce corn moisture contents, wet

  2. Competition and duality correspondence between chiral and superconducting channels in (2+1)-dimensional four-fermion models with fermion number and chiral chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G; Zhukovsky, V C

    2016-01-01

    In this paper the duality correspondence between fermion-antifermion and difermion interaction channels is established in two (2+1)-dimensional Gross-Neveu type models with a fermion number chemical potential $\\mu$ and a chiral chemical potential $\\mu_5$. The role and influence of this property on the phase structure of the models are investigated. In particular, it is shown that the chemical potential $\\mu_5$ promotes the appearance of dynamical chiral symmetry breaking, whereas the chemical potential $\\mu$ contributes to the emergence of superconductivity.

  3. Toxicity tests with crustaceans for detecting sublethal effects of potential endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Wollenberger, Leah

    of effective concentrations (ECx). After having demonstrated that larval development of A. tonsa was a very sensitive endpoint for evaluating effects of chemicals that might interfere with the endocrine system of crustaceans, the larval development test has been applied to two groups of emerging environmental...... of in vitro assays and (sub)chronic copepod tests, as applied in this study, is a valuable tool when screening chemicals suspected to be specifically toxic, in particular, to interfere with the endocrine system. The results of the experimental work as well as the literature survey demonstrated clearly......New and updated test methods to detect and characterise endocrine disrupting chemicals are urgently needed for the purpose of environmental risk assessment. Although endocrine disruption in invertebrates has not been studied as extensive as in vertebrates, in particular in fish, numerous reports...

  4. The past, present and potential for microfluidic reactor technology in chemical synthesis.

    Science.gov (United States)

    Elvira, Katherine S; Casadevall i Solvas, Xavier; Wootton, Robert C R; deMello, Andrew J

    2013-11-01

    The past two decades have seen far-reaching progress in the development of microfluidic systems for use in the chemical and biological sciences. Here we assess the utility of microfluidic reactor technology as a tool in chemical synthesis in both academic research and industrial applications. We highlight the successes and failures of past research in the field and provide a catalogue of chemistries performed in a microfluidic reactor. We then assess the current roadblocks hindering the widespread use of microfluidic reactors from the perspectives of both synthetic chemistry and industrial application. Finally, we set out seven challenges that we hope will inspire future research in this field.

  5. From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes.

    Science.gov (United States)

    Barge, Laura M; Abedian, Yeghegis; Russell, Michael J; Doloboff, Ivria J; Cartwright, Julyan H E; Kidd, Richard D; Kanik, Isik

    2015-07-06

    We examine the electrochemical gradients that form across chemical garden membranes and investigate how self-assembling, out-of-equilibrium inorganic precipitates-mimicking in some ways those generated in far-from-equilibrium natural systems-can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron-sulfide and iron-hydroxide reaction systems. The battery-like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light-emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self-organizing chemical systems.

  6. Chemical Reaction CO+OH(•) → CO2+H(•) Autocatalyzed by Carbon Dioxide: Quantum Chemical Study of the Potential Energy Surfaces.

    Science.gov (United States)

    Masunov, Artëm E; Wait, Elizabeth; Vasu, Subith S

    2016-08-04

    The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO2 to OH radical and CO molecule, hydrogen transfer from oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO2 medium. It may open a new venue for controlling reaction rates for chemical manufacturing.

  7. Ecological Recovery Potential of Freshwater Organisms: Consequences for Environmental Risk Assessment of Chemicals.

    Science.gov (United States)

    Gergs, Andre; Classen, Silke; Strauss, Tido; Ottermanns, Richard; Brock, Theo C M; Ratte, Hans Toni; Hommen, Udo; Preuss, Thomas G

    2016-01-01

    Chemical contaminants released into the in the environment may have adverse effects on (non-target) species, populations and communities. The return of a stressed system to its pre-disturbance or other reference state, i.e. the ecological recovery, may depend on various factors related to the affected taxon, the ecosystem of concern and the type of stressor with consequences for the assessment and management of risks associated with chemical contaminants. Whereas the effects caused by short-term exposure might be acceptable to some extent, the conditions under which ecological recovery can serve as a decision criterion in the environmental risk assessment of chemical stressors remains to be evaluated. For a generic consideration of recovery in the risk assessment of chemicals, we reviewed case studies of natural and artificial aquatic systems and evaluate five aspects that might cause variability in population recovery time: (1) taxonomic differences and life-history variability, (2) factors related to ecosystem type and community processes, (3) type of disturbance, (4) comparison of field and semi-field studies, and (5) effect magnitude, i.e., the decline in population size following disturbance. We discuss our findings with regard to both retrospective assessments and prospective risk assessment.

  8. Chemically modified fatty acid methyl esters: their potential for use as lubrication fluids and surfactants

    Science.gov (United States)

    A review of recent developments in the synthesis and characterization of lubrication fluids and surfactants from methyl oleate. The synthesis of materials made using an epoxidation route is the focus. This versatile method of chemical modification of fatty acid methyl esters improves their oxidati...

  9. INSECTS AND THEIR CHEMICAL WEAPONRY: GREAT POTENTIAL AND NEW DISCOVERIES FROM THE ORDER PHASMATODEA

    Science.gov (United States)

    With over 1,000,000 species of insects known, Class Insecta (Phyllum Arthropoda), the largest and most diverse group of organisms, is one of the least explored in natural product drug discovery (Dossey, A. T., Nat. Prod Rep. 2010, 27, 1737–1757). Over the past five our research stick insect chemical...

  10. A chemical additive to limit potential bacterial contamination in chill tanks

    Science.gov (United States)

    Broiler carcasses with different types and numbers of bacteria are commonly chilled together in an ice water bath which may lead to transfer of unwanted bacteria from carcass to carcass. Historically chill tanks have been chlorinated to help prevent cross contamination and recently other chemical a...

  11. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  12. Thermodynamics of the quark-gluon plasma at finite chemical potential: color path integral Monte Carlo results

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V.S.; Fortov, V.E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, bd. 2, 125412 Moscow (Russian Federation); Bonitz, M. [Institute for Theoretical Physics and Astrophysics, Christian Albrechts University Kiel, Leibnizstrasse 15, D-24098 Kiel (Germany); Ivanov, Y.B. [National Research Center ' ' Kurchatov Institute' ' , Kurchatov Sq. 1, 123182 Moscow, Russia, National Research Nuclear University ' ' MEPhI' ' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Reseach, Joliot-Curie str. 6, Dubna, 141980, Moscow Region (Russian Federation)

    2015-02-01

    Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulations to the QGP at finite baryon chemical potential. The results indicate that color PIMC can be applied not only above the QCD critical temperature T{sub c} but also below T{sub c}. Besides reproducing the lattice equation of state our approach yields also valuable additional insight into the internal structure of the QGP, via the pair distribution functions of the various quasiparticles. In particular, the pair distribution function of gluons reflects the existence of gluon-gluon bound states at low temperatures and μ = 175 MeV, i.e. glueballs, while meson-like bound states are not found. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. The multi-flavor Schwinger model with chemical potential - Overcoming the sign problem with Matrix Product States

    CERN Document Server

    Bañuls, Mari Carmen; Cirac, J Ignacio; Jansen, Karl; Kühn, Stefan; Saito, Hana

    2016-01-01

    During recent years there has been an increasing interest in the application of matrix product states, and more generally tensor networks, to lattice gauge theories. This non-perturbative method is sign problem free and has already been successfully used to compute mass spectra, thermal states and phase diagrams, as well as real-time dynamics for Abelian and non-Abelian gauge models. In previous work we showed the suitability of the method to explore the zero-temperature phase structure of the multi-flavor Schwinger model at non-zero chemical potential, a regime where the conventional Monte Carlo approach suffers from the sign problem. Here we extend our numerical study by looking at the spatially resolved chiral condensate in the massless case. We recover spatial oscillations, similar to the theoretical predictions for the single-flavor case, with a chemical potential dependent frequency and an amplitude approximately given by the homogeneous zero density condensate value.

  14. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U. A.; Mody, F. K.; Mese, A. I. [Haliburton Energy Services, TX (United States)

    2002-07-01

    In order to develop a real-time wellbore (in)stability modelling capability, experimental work was carried out to investigate the role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations. Time-dependent alterations in the pore pressure, acoustic and rock properties of formations subjected to compressive tri-axial test were recorded during the experiments involving the Pore Pressure Transmission (PPT) test. Based on the transient pore pressure of shale exposed to the test fluid presented here, the 20 per cent calcium chloride showed a very low membrane efficiency of 4.45 per cent. The need for a thorough understanding of the drilling fluid/shale interaction prior to applying any chemical potential wellbore (in)stability model to real-time drilling operations was emphasized. 9 refs., 5 figs.

  15. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... of the Fick-Jacobs equation. We thus conclude that for a single, axisymmetric pore, the enhancement factor depends upon relative humidity boundary conditions at the liquid bridge interfaces, distance between liquid bridges, and bridge lengths....

  16. Density profiles of small Dirac operator eigenvalues for two color QCD at nonzero chemical potential compared to matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Akemann, Gernot [Service de Physique Theorique, CEA/DSM/SPhT Saclay, Unite associee CNRS/SPM/URA 2306, F-91191 Gif-sur-Yvette Cedex (France); Department of Mathematical Sciences, Brunel University West London, Uxbridge, UB8 3PH (United Kingdom); Bittner, Elmar [Institut fuer Theoretische Physik, Universitaet Leipzig, Augustplatz 10/11, D-04109 Leipzig (Germany); Lombardo, Maria-Paola [INFN-Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Markum, Harald [Atominstitut, Technische Universitaet Wien, A-1040 Vienna (Austria); Pullirsch, Rainer [Atominstitut, Technische Universitaet Wien, A-1040 Vienna (Austria)

    2005-03-15

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis.

  17. Assessing the potential hazard of chemical substances for the terrestrial environment. Development of hazard classification criteria and quantitative environmental indicators.

    Science.gov (United States)

    Tarazona, J V; Fresno, A; Aycard, S; Ramos, C; Vega, M M; Carbonell, G

    2000-03-20

    Hazard assessment constitutes an essential tool in order to evaluate the potential effects of chemical substances on organisms and ecosystems. It includes as a first step, hazard identification, which must detect the potential dangers of the substance (i.e. the kind of effects that the substance may produce), and a second step to quantify each danger and to set the expected dose/response relationships. Hazard assessment plays a key role in the regulation of chemical substances, including pollution control and sustainable development. However, the aquatic environment has largely received more attention than terrestrial ecosystems. This paper presents the extrapolation of several basic concepts from the aquatic to the terrestrial compartment, and suggests possibilities for their regulatory use. Two specific proposals are discussed. The first focuses on the scientific basis of the hazard identification-classification criteria included in the EU regulations and their extrapolation to the terrestrial environment. The second focuses on the OECD programme for environmental indicators and the development of a soil pollution pressure indicator to quantify the potential hazards for the soil compartment and its associated terrestrial ecosystem related to the toxic chemicals applied deliberately (i.e. pesticides) or not (i.e. heavy metals in sludge-based fertilisers; industrial spills) to the soil.

  18. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route

    Science.gov (United States)

    Benavides, A. L.; Aragones, J. L.; Vega, C.

    2016-03-01

    The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.

  19. The phase boundary for the chiral transition in (2+1)-flavor QCD at small values of the chemical potential

    CERN Document Server

    Karsch, F; Miao, C; Mukherjee, S; Petreczky, P; Schmidt, C; Soeldner, W; Unger, W

    2010-01-01

    We determine the chiral phase transition line in (2+1)-flavor QCD for small values of the light quark chemical potential. We show that for small values of the chemical potential the curvature of the phase transition line can be deduced from an analysis of scaling properties of the chiral condensate and its susceptibilities. To do so we extend earlier studies of the magnetic equation of state in (2+1)-flavor QCD to finer lattice spacings, aT=1/8. We use these universal scaling properties of the chiral order parameter to extract the curvature of the transition line at two values of the cut-off, aT=1/4 and 1/8. We find that cut-off effects are small for the curvature parameter and determine the transition line in the chiral limit to leading order in the light quark chemical potential. We obtain Tc(\\mu_q)/Tc(0) = 1 - 0.059(2)(4) (\\mu_q/T)^2 +O(\\mu_q^4).

  20. The potential role of life cycle assessment in regulation of chemicals in the European Union

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2004-01-01

    reduction. In this process, LCA results might feed into a socio-economic analysis having similar objectives, but some methodological aspects related to system boundaries need to be sorted out. Life cycle impact assessment (LCIA) of toxic effects has traditionally been inspired by the more regulatory......- orientated risk assessment approaches. However, the increasing need for regulatory priority setting and comparative/ cumulative assessments might in the future convey LCIA principles into the regulatory framework. The same underlying databases on inherent properties of chemicals are already applied in both...... types of assessment. Similarly, data on the use and exposure of chemicals are needed within both risk assessments and LCA, and the methodologies might therefore benefit from a joint 'inventory' database. Outlook. The final outcome of the feasibility study will be an implementation plan suggesting...

  1. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Directory of Open Access Journals (Sweden)

    José A. Centeno

    2014-01-01

    Full Text Available Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU, tungsten (W, lead (Pb, and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF, scanning electron microscopy (SEM, laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS, and confocal laser Raman

  2. Vaporous Decontamination Methods: Potential Uses and Research Priorities for Chemical and Biological Contamination Control

    Science.gov (United States)

    2006-06-01

    resistant to commonly used disinfectants and require the use of chemical sterilants† to effectively decontaminate exposed areas. Since anthrax...all micro-organisms present, including B agents. † Sterilants and disinfectants differ only in their potency; disinfectants have relatively low...of H2O2 [10]. Currently there is no reported data on the use of O3-VHP against B or C agents. DSTO-GD-0465 6 The U.K. based BIOQUELL

  3. A Review of the Disruptive Potential of Botulinum Neurotoxins as Chemical Warfare Agents

    Science.gov (United States)

    2011-10-01

    dangerous chemical weapon (persistence in vivo, exceedingly high potency, ease of distribution and ease of production) also make it highly...caused by ingestion of botulinum neurotoxin (BoNT) was first described as “ sausage poisoning” in 1820 and attributed to a bacterium in 1897 [1]. We...intoxication of susceptible hosts invariably results in neuromuscular paralysis. The same characteristics that make the BoNTs the most lethal substances

  4. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  5. Chemically aged and mixed aerosols over the Central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    H. A. C. Denier van der Gon

    2010-02-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, designating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols indicates that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud and entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  6. Chemically aged and mixed aerosols over the Central Atlantic Ocean - potential impacts

    Science.gov (United States)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-02-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, designating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols indicates that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud and entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  7. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean - potential impacts

    Science.gov (United States)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-07-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  8. CHEMICAL MODIFICATION AND CHARACTERIZATION OF PECTIN AS A POTENTIAL DRUG RELEASE RETARDANT

    Directory of Open Access Journals (Sweden)

    Harika Puppala Satya Krishna

    2011-02-01

    Full Text Available The present study deals with the chemical modification of pectin by acetylation of their free hydroxyl groups to yield high ester pectin and to evaluate its solubility and swelling behaviour along with the effect on the release pattern of the drug. Modified pectins were prepared by acetylation process using various strengths of 20%, 40% and 60% v/v acetyl chloride in ethanol. The prepared modified pectins were subjected to various physico-chemical characteristics like solubility, gelling studies, acid value, saponification value and ester value. FTIR studies were carried out to confirm the chemical modification of pectin. Matrix tablets of tramadol were formulated using various strengths of modified pectins in different concentrations and its impact on drug release was studied. All the formulated batches were subjected to weight variation, hardness, friability, drug content and the values obtained were within the acceptable range. The in-vitro drug release characteristics from the formulated tablets were compared with commercial sustained release tablet of tramadol. The optimized tablet formulation F4 sustained the drug release over a period of 8hours as comparable to the marketed product. Thus the synthesized modified pectin proved to be an ideal drug release retarding polymer.

  9. Holographic thermalization with a chemical potential in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong [School of Science, Chongqing Jiaotong University,Chongqing, 400074 (China); Liu, Xian-Ming [Department of Physics, Hubei University for Nationalities,Enshi, 445000, Hubei (China); Liu, Wen-Biao [Department of Physics, Beijing Normal University,Beijing, 100875 (China)

    2014-03-05

    Holographic thermalization is studied in the framework of Einstein-Maxwell-Gauss-Bonnet gravity. We use the two-point correlation function and expectation value of Wilson loop, which are dual to the renormalized geodesic length and minimal area surface in the bulk, to probe the thermalization. The numeric result shows that larger the Gauss-Bonnet coefficient is, shorter the thermalization time is, and larger the charge is, longer the thermalization time is, which implies that the Gauss-Bonnet coefficient can accelerate the thermalization while the charge has an opposite effect. In addition, we obtain the functions with respect to the thermalization time for both the thermalization probes at a fixed charge and Gauss-Bonnet coefficient, and on the basis of these functions, we obtain the thermalization velocity, which shows that the thermalization process is non-monotonic. At the middle and later periods of the thermalization process, we find that there is a phase transition point, which divides the thermalization into an acceleration phase and a deceleration phase. We also study the effect of the charge and Gauss-Bonnet coefficient on the phase transition point.

  10. High potential for chemical weathering and climate effects of early lichens and bryophytes in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2016-04-01

    Non-vascular vegetation in the Late Ordovician may have considerably increased global chemical weathering, thereby reducing atmospheric CO2 concentration and contributing to a decrease in global temperature and the onset of glaciations. Usually, enhancement of weathering by non-vascular vegetation is estimated using field experiments which are limited to small areas and a low number of species. This makes it difficult to extrapolate to the global scale and to climatic conditions of the past, which differ markedly from the recent climate. Here we present a global, spatially explicit modelling approach to estimate chemical weathering by non-vascular vegetation in the Late Ordovician. During this period, vegetation probably consisted of early forms of today's lichens and bryophytes. We simulate these organisms with a process-based model, which takes into account their physiological diversity by representing multiple species. The productivity of lichens and bryophytes is then related to chemical weathering of surface rocks. The rationale is that the organisms dissolve rocks to extract phosphorus for the production of new biomass. To account for the limited supply of unweathered rock material in shallow regions, we cap biotic weathering at the erosion rate. We estimate a potential global weathering flux of 10.2 km3 yr-1 of rock, which is around 12 times larger than today's global chemical weathering. The high weathering potential implies a considerable impact of lichens and bryophytes on atmospheric CO2 concentration in the Ordovician. Moreover, we find that biotic weathering is highly sensitive to atmospheric CO2, which suggests a strong feedback between chemical weathering by lichens and bryophytes and climate.

  11. Assessment of bioburden encapsulated in bulk materials

    Science.gov (United States)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  12. Mineralogical, chemical and physical study of potential buffer and backfill materials from ABM. Test Package 1

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, S.; Kiviranta, L. (B and Tech Oy, Helsinki (Finland))

    2011-07-15

    In the ABM experiment, three test packages with centre steel heaters surrounded by stacks of compacted bentonite rings of various clay materials were placed in boreholes in Aespoe tunnel. The first parcel was saturated with Aespoe groundwater and the heater was turned on simultaneously with the start of saturation. This parcel was excavated 30 months after its installation. Chemical, mineralogical and physical properties of the MX-80, Dep-CaN, Asha and Friedland clay samples from the ABM parcel 1 were analysed and compared to reference samples. Chemical analyses (ICP-AES, C, CO{sub 3}, S, water soluble SO{sub 4}, Fe2+/Fe3+), exchangeable cation analyses, mineralogical analyses (XRD, FTIR) and selective extractions were used to determine changes in the chemistry and mineralogy of ABM materials. Swelling pressure and hydraulic conductivity measurements were performed both for extracted samples and for ground and recompacted samples. Major changes in exchangeable cation composition were observed in all samples originating from equilibration with Aespoe groundwater and interactions with equilibrated waters from neighbouring block materials. Some minor changes in chemical composition were observed as well. Increases in soluble sulphate content in the vicinity of the heater were thought to result from precipitation of sulphate salts. Decreases in sodium content and increases in calcium content were ascribed to changes in exchangeable cations. Interaction with iron was observed to occur only in the close vicinity (first few mm) of the heater. No significantly measureable change in mineralogical composition was seen in any of the studied materials. Extracted Dep-CaN samples showed a slight decrease in swelling pressure. However, when the material was ground, compacted and measured again the swelling pressure was fully recovered. No related change in hydraulic conductivities was observed. (orig.)

  13. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs):potential persistent organic pollutants (POPs)

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; YU Gang; YANG Xi; ZHANG Zu-lin

    2004-01-01

    Polychlorinated diphenyl ethers(PCDEs) have received more and more concerns as a category of potentialpersistent organic pollutants( POPs). Modeling its environmental fate and exposure assessment require a number offundamental physico-chemical properties. However, the experimental data are currently limited due to the difficulty inanalysis caused by the complexity of PCDE congeners. As an alternative, the quantitative structure propertyrelationship(QSPR) approach could be used. In this paper, twelve kinds of molecular connectivity indices(MCIs) ofall 209 possible molecular structure patterns of PCDEs were calculated. Based on 106 PCDEs with three observedphysico-chemical properties-vapour pressure(PoL), aqueous solubility(Sw) and n-octanol/water(Kow) and theirMCIs data, a series of QSPR equations were established using multiple linear regression(MLR) method. As aresult, three equations with best performance were selected mainly from the view of high regression coefficient(R)and low standard error( SE). All of them showed significant relationship and high accuracy. With these equationsthe properties of other 103 patterns of PCDEs without the reported observed values were predicted. Furthermore,three partition properties for PCDE congeners-Henry' s Law constants(H), partition coefficients between gas/water(Kgw) and gas/n-octanol ( Kgo ) were calculated according to the internal relationship among these six properties.These observed and predicted values, in contrast with the criteria listed in the Stockholm treaty about POPs whichhas been signed by more than ninety countries in May 2001, illustrated that most of PCDEs congeners are potentialpersistent organic pollutants. As all descriptors/predictors are derived just from the molecular structure itself andwithout the import of any empirical parameters, this method is impersonal and promising for the estimation ofphysico-chemical properties of PCDEs.

  14. Evaluation of a high-throughput peptide reactivity format assay for assessment of the skin sensitization potential of chemicals

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2016-03-01

    Full Text Available The direct peptide reactivity assay (DPRA is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium and high concentrations and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme and non-sensitizers with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF, cysteine- (Ac-RFAACAA and lysine- (Ac-RFAAKAA containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7% and glass (47.3% vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2,4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further

  15. Chemical synthesis of a dual branched malto-decaose: A potential substrate for alpha-amylases

    DEFF Research Database (Denmark)

    Damager, Iben; Jensen, Morten; Olsen, Carl Erik;

    2005-01-01

    . Using this chemically defined branched oligosaccharide as a substrate, the cleavage pattern of seven different alpha-amylases were investigated. alpha-Amylases from human saliva, porcine pancreas, barley alpha-amylose 2 and recombinant barley alpha-amylase 1 all hydrolysed the decasaccharide selectively...... tetrasaccharide. In addition, the enzymes were tested on the single branched octasoccharide 6-alpha-maltosyl-maltohexaose, which was prepared from 6,6""-bis(alpha-maltosyl)-maltohexoose by treatment with malt limit dextrinose. A similar cleavage pattern to that found for the corresponding linear malto...

  16. Biochemical Testing of Potentially Hazardous Chemicals for Toxicity Using Mammalian Liver Cell Cultures.

    Science.gov (United States)

    1992-04-09

    the 1i. a. neeeae ind -nc.-.Dlenrn I rp, 1 •he ŽIP’Ton .)? f.-tm ’ ltn ’pC .Die,, ’t’J P h f, burden " .’.’- !re . j’ t ther 4sIe’ t jf-’s * oIle ,lion I...amines, nitrosamines and aflatoxins , are among the important classes of chemical carcinogens that become bound to tissue macromolecules (e.g...g centrifugation of the cell homogenate. When protein concentration was determined, it rose sharply between 2 and 4h, was essentially unchanged

  17. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    Science.gov (United States)

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work.

  18. Chemical composition and potential health risks of raw Arabian incense (Bakhour

    Directory of Open Access Journals (Sweden)

    Yehya Elsayed

    2016-07-01

    Full Text Available Burning Arabian incense (Bakhour is a common indoor practice in the Middle East and the Arabian Gulf region. However, the chemical composition of this substance has never been studied. Three different Bakhour brands were selected for this study. A complete chemical profile for the raw samples was determined using carbon, hydrogen, and nitrogen elemental analysis, inductively coupled plasma optical emission spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and gas chromatography mass spectrometry techniques. A wide range of elements and compounds were identified, many of which are hazardous to health. Nitrogen was found in all samples which should raise concerns due to the known health implications of amines, nitrogen oxides and nitrites. In addition toxic metals such as cobalt, copper, iron, nickel, lead, and zinc were also determined in all samples. The amounts of these metals are equivalent to those in raw tobacco, where they are known to pose health risks. Three types of solvents (acetone, dichloromethane and toluene were used for the extraction of organic compounds. Carcinogens, toxins and irritants were found along others of different health implications. Isolation of these compounds provides preliminary evidence on the harmful consequences of being exposed to Bakhour.

  19. Dung as a potential medium for inter-sexual chemical signaling in Asian elephants (Elephas maximus).

    Science.gov (United States)

    Ghosal, Ratna; Seshagiri, P B; Sukumar, R

    2012-09-01

    Chemical signaling is a prominent mode of male-female communication among elephants, especially during their sexually active periods. Studies on the Asian elephant in zoos have shown the significance of a urinary pheromone (Z7-12:Ac) in conveying the reproductive status of a female toward the opposite sex. We investigated the additional possibility of an inter-sexual chemical signal being conveyed through dung. Sixteen semi-captive adult male elephants were presented with dung samples of three female elephants in different reproductive phases. Each male was tested in 3 separate trials, within an interval of 1-3 days. The trials followed a double-blind pattern as the male and female elephants used in the trials were strangers, and the observer was not aware of the reproductive status of females during the period of bioassays. Males responded preferentially (Pelephants were able to distinguish the reproductive phase of the female by possibly detecting a pre-ovulatory pheromone released in dung.

  20. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon;

    2011-01-01

    Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social...... of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...

  1. Orbital magnetism of graphene nanostructures: Bulk and confinement effects

    Science.gov (United States)

    Heße, Lisa; Richter, Klaus

    2014-11-01

    We consider the orbital magnetic properties of noninteracting charge carriers in graphene-based nanostructures in the low-energy regime. The magnetic response of such systems results both from bulk contributions and from confinement effects that can be particularly strong in ballistic quantum dots. First we provide a comprehensive study of the magnetic susceptibility χ of bulk graphene in a magnetic field for the different regimes arising from the relative magnitudes of the energy scales involved, i.e., temperature, Landau-level spacing, and chemical potential. We show that for finite temperature or chemical potential, χ is not divergent although the diamagnetic contribution χ0 from the filled valance band exhibits the well-known -B-1 /2 dependence. We further derive oscillatory modulations of χ , corresponding to de Haas-van Alphen oscillations of conventional two-dimensional electron gases. These oscillations can be large in graphene, thereby compensating the diamagnetic contribution χ0 and yielding a net paramagnetic susceptibility for certain energy and magnetic field regimes. Second, we predict and analyze corresponding strong, confinement-induced susceptibility oscillations in graphene-based quantum dots with amplitudes distinctly exceeding the corresponding bulk susceptibility. Within a semiclassical approach we derive generic expressions for orbital magnetism of graphene quantum dots with regular classical dynamics. Graphene-specific features can be traced back to pseudospin interference along the underlying periodic orbits. We demonstrate the quality of the semiclassical approximation by comparison with quantum-mechanical results for two exemplary mesoscopic systems, a graphene disk with infinite mass-type edges, and a rectangular graphene structure with armchair and zigzag edges, using numerical tight-binding calculations in the latter case.

  2. DART MS based chemical profiling for therapeutic potential of Piper betle landraces.

    Science.gov (United States)

    Bajpai, Vikas; Pandey, Renu; Negi, Mahendra Pal Singh; Kumar, Nikhil; Kumar, Brijesh

    2012-12-01

    Piper betle Linn. leaves are traditionally used as a folk medicine in India and other Asiatic countries. Twenty-one P. betle landraces were analyzed using a Direct Analysis in Real Time (DART) mass spectral technique and evaluated on the basis of molecules detected in the leaves. Clustering of landraces based on three well known biologically active phenols (m/z 151,165,193) showed two broad groups with high and low phenol contents suggesting differences in their therapeutic potential. Findings of this study could be useful in rapid screening of the landraces for determining their medicinal potential and optimum utilization of the bioresource.

  3. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials

    Science.gov (United States)

    Dolgirev, Pavel E.; Kruglov, Ivan A.; Oganov, Artem R.

    2016-08-01

    We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.

  4. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials

    Directory of Open Access Journals (Sweden)

    Pavel E. Dolgirev

    2016-08-01

    Full Text Available We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.

  5. Making bulk-conductive glass microchannel plates

    Science.gov (United States)

    Yi, Jay J. L.; Niu, Lihong

    2008-02-01

    The fabrication of microchannel plate (MCP) with bulk-conductive characteristics has been studied. Semiconducting clad glass and leachable core glass were used for drawing fibers and making MCP. Co-axial single fiber was drawn from a platinum double-crucible in an automatic fiberizing system, and the fibers were stacked and redrawn into multifiber by a special gripping mechanism. The multifibers were stacked again and the boule was made and sliced into discs. New MCPs were made after chemically leaching process without the traditional hydrogen firing. It was shown that bulk-conductive glass MCP can operate at higher voltage with lower noise.

  6. A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds.

    Science.gov (United States)

    Gooch, A; Sizochenko, N; Sviatenko, L; Gorb, L; Leszczynski, J

    2017-02-01

    Nitroaromatic compounds and the products of their degradation are toxic to bacteria, cells and animals. Various studies have been carried out to better understand the mechanism of toxicity of aromatic nitrocompounds and their relationship to humans and the environment. Recent data relate cytotoxicity of nitroaromatic compounds to their single- or two-electron enzymatic reduction. However, mechanisms of animal toxicity could be more complex. This work investigates the estimated reduction and oxidation potentials of 34 nitroaromatic compounds using quantum chemical approaches. All geometries were optimized with density functional theory (DFT) using the solvation model based on density (SMD) and polarizable continuum model (PCM) solvent model protocols. Quantitative structure-activity/property (QSAR/QSPR) models were developed using descriptors obtained from quantum chemical optimizations as well as the DRAGON software program. The QSAR/QSPR equations developed consist of two to four descriptors. Correlations have been identified between electron affinity (ELUMO) and hydrophobicity (log P).

  7. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  8. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  9. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces.

    Science.gov (United States)

    Maeda, Satoshi; Harabuchi, Yu; Takagi, Makito; Taketsugu, Tetsuya; Morokuma, Keiji

    2016-10-01

    In this account, a technical overview of the artificial force induced reaction (AFIR) method is presented. The AFIR method is one of the automated reaction-path search methods developed by the authors, and has been applied extensively to a variety of chemical reactions, such as organocatalysis, organometallic catalysis, and photoreactions. There are two modes in the AFIR method, i.e., a multicomponent mode and a single-component mode. The former has been applied to bimolecular and multicomponent reactions and the latter to unimolecular isomerization and dissociation reactions. Five numerical examples are presented for an Aldol reaction, a Claisen rearrangement, a Co-catalyzed hydroformylation, a fullerene structure search, and a nonradiative decay path search in an electronically excited naphthalene molecule. Finally, possible applications of the AFIR method are discussed.

  10. Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Giggenbach, W.F.; Minissale, A.A.; Scandiffio, G.

    The chemical and isotopic compositions of low-temperature mineral waters discharged over the Colli Albani region (south of Rome, Italy) are those of highly immature waters of essentially meteoric origin formed through absorption of gases emanating from greater depth, followed by cation leaching of country rock at shallow levels. The composition of the gases discharged points to the presence, at depth, of a CO/sub 2/-producing high temperature system in its waning stage. Low H/sub 2/ and unsaturated hydrocarbon contents, as well as relative He, Ar and N/sub 2/ contents indicate long residence time for the rising gas phase of the order of 1 Ma. On the basis of these findings, temperatures higher than 120/sup 0/C appear unlikely to exist at shallow depth.

  11. An overview on chemical aspects and potential health benefits of limonoids and their derivatives.

    Science.gov (United States)

    Tundis, Rosa; Loizzo, Monica Rosa; Menichini, Francesco

    2014-01-01

    Limonoids are heavily oxygenated, modified triterpenes dominant in Meliaceae and Rutaceae plant families. The term 'limonoid' is derived from limonin, which was first identified as the bitter constituent of Citrus seeds in 1841. This group of secondary metabolites exhibits a wide range of biological properties, including anticancer, antibacterial, antifungal, antimalarial, and antiviral activities. Significant progress on the role of limonoids as promising candidates for cancer chemoprevention and/or therapy has been achieved in particular in recent years. The aim of this review article is to discuss the recent developments on limonoids chemical aspects and biological activities with the relationship between structure and activity, supporting the new possibilities for the medicinal and/or nutraceutical use of these compounds.

  12. Toxicity tests with crustaceans for detecting sublethal effects of potential endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Wollenberger, Leah

    /antagonistic activity with the ecdysteroid-responsive Drosophila melanogaster BII cell line 6) to draft an OECD guideline proposal for testing of chemicals based on the experimental work performed within this study In preliminary investigations with A. tonsa were studied various parameters related to processes...... regulated by hormones such as growth, molting, sexual maturation and reproduction. The primary endpoints were larval development ratio, egg production and sex ratio. Exposure experiments were conducted with naturally occurring and synthetic vertebrate and invertebrate hormones as well as compounds known...... contribution of the present work with BFRs was to establish data on their (sub)chronic toxicity towards marine copepods. To discriminate between general toxicological and endocrine-mediated toxic effects, the model compounds were assessed in vitro for ecdysteroid agonistic/antagonistic activity using...

  13. Chemical Composition, Antioxidant Potential, and Antibacterial Activity of Essential Oil Cones of Tunisian Cupressus sempervirens

    Directory of Open Access Journals (Sweden)

    Aicha Ben Nouri

    2015-01-01

    Full Text Available The extraction yield of the essential oil (EO extracted by hydrodistillation from the cones of Tunisian Cupressus sempervirens L. was of 0.518%. The chemical composition was analyzed by GC-MS. Results showed that this essential oil was mainly composed of monoterpene hydrocarbons (65% with α-pinene as the major constituent (47.51%. Its antioxidant activity was ascertained by evaluating the total antioxidant capacity and also by evaluating its inhibitory effect against DPPH and ABTS radicals. In addition, it showed a strong antioxidant power against the DPPH (IC50 = 151 µg/mL and ABTS (IC50 = 176.454 µg/mL radicals scavenging. Moreover, its antibacterial activity was tested against different species of pathogenic bacteria (three Gram-positive and eight Gram-negative bacteria. The bacterial strains susceptible to the evaluated oil were Bacillus subtilis, Escherichia coli, Klebsiella oxytoca, Morganella morganii, Shigella, and Vibrio cholerae.

  14. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Science.gov (United States)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  15. Chemical and structural indicators for large redox potentials in Fe-based positive electrode materials.

    Science.gov (United States)

    Melot, Brent C; Scanlon, David O; Reynaud, Marine; Rousse, Gwenaëlle; Chotard, Jean-Noël; Henry, Marc; Tarascon, Jean-Marie

    2014-07-23

    Li-ion batteries have enabled a revolution in the way portable consumer-electronics are powered and will play an important role as large-scale electrochemical storage applications like electric vehicles and grid-storage are developed. The ability to identify and design promising new positive insertion electrodes will be vital in continuing to push Li-ion technology to its fullest potential. Utilizing a combination of computational tools and structural analysis, we report new indicators which will facilitate the recognition of phases with the desired redox potential. Most importantly of these, we find there is a strong correlation between the presence of Li ions sitting in close-proximity to the redox center of polyanionic phases and the open circuit voltage in Fe-based cathodes. This common structural feature suggests that the bonding associated with Li may have a secondary inductive effect which increases the ionic character of Fe bonds beyond what is typically expected based purely on arguments of electronegativity associated with the polyanionic group. This correlation is supported by ab initio calculations which show the Bader charge increases (reflecting an increased ionicity) in a nearly linear fashion with the experimental cell potentials. These features are demonstrated to be consistent across a wide variety of compositions and structures and should help to facilitate the design of new, high-potential, and environmentally sustainable insertion electrodes.

  16. Chemical composition and antifungal potential of Brazilian propolis against Candida spp.

    Science.gov (United States)

    Freires, I A; Queiroz, V C P P; Furletti, V F; Ikegaki, M; de Alencar, S M; Duarte, M C T; Rosalen, P L

    2016-06-01

    Propolis is known to have biological properties against numerous microorganisms of clinical interest. This study aimed to determine the chemical composition and antifungal activity of Brazilian propolis (types 3 and 13) against Candida spp. and their effects on the morphology of preformed and mature Candida biofilms. Samples of propolis (3 and 13) collected by Apis mellifera honeybees were obtained from different regions in Brazil. Ethanolic extracts of propolis (EEP) were prepared, fractionated and submitted to chemical analysis by GC/MS. The extracts and their hexane, dichloromethane and ethyl acetate fractions were tested for their ability to inhibit Candida spp. (C. albicans, C. dubliniensis, C. glabrata, C. kruzei, C. tropicalis and C. parapsilosis) by determination of the minimum inhibitory and fungicidal concentrations (MIC/MFC). Additionally, their effects on morphology of preformed and mature biofilms were observed by scanning electron microscopy. The phenolic compounds p-coumaric acid, caffeic acid phenethyl ester (CAPE), kaempferol and quercetin were identified in the EEP-3 and its bioactive dichloromethane fraction; and isoflavonoids such as medicarpin, vestitol and formononetin were found in the EEP-13, and triterpenes in its bioactive hexane fraction. The EEP-3 and EEP-13 and their bioactive fractions showed MIC values ranging from 0.2 to 125μg/mL and MFC values between 125 and 500μg/mL. The EEP and fractions were predominantly fungistatic agents. All extracts and fractions disrupted biofilm structures at 500μg/mL and amorphous areas with cell damage were clearly observed in preformed and mature biofilms. Propolis types 3 and 13 have strong anti-Candida activity and should be considered as promising candidates to treat oral and systemic candidiasis.

  17. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.

    Science.gov (United States)

    Lakkaraju, Sirish Kaushik; Raman, E Prabhu; Yu, Wenbo; MacKerell, Alexander D

    2014-06-10

    Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (μex) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the μex of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-μex GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average μex of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-μex GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities.

  18. Import and Export of Bulk Pharmaceuticals in 2006

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ According to customs statistics, the total import and export value of bulk pharmaceuticals (excluding chemical raw materials and bulk pesticides) in China was US$10.346 billion in 2006. The export value was US$7.482 billion - an increase of 22% over the 2005.

  19. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.

    Science.gov (United States)

    Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V

    2012-08-27

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly

  20. Dry bulk cargo shipping - An overlooked threat to the marine environment?

    Science.gov (United States)

    Grote, Matthias; Mazurek, Nicole; Gräbsch, Carolin; Zeilinger, Jana; Le Floch, Stéphane; Wahrendorf, Dierk-Steffen; Höfer, Thomas

    2016-09-15

    Approximately 9.5billiontonnes of goods is transported over the world oceans annually with dry bulk representing the largest cargo group. This paper aims to analyse whether the transport and associated inputs of dry bulks into the sea create a risk for the marine environment. For this purpose, we analyse the international regulatory background concerning environmental protection (MARPOL), estimate quantities and identify inputs of such cargoes into the oceans (accidental and operational), and use available information for hazard assessment. Annually, more than 2.15milliontonnes of dry bulk cargoes are likely to enter the oceans, of which 100,000tonnes are potentially harmful to the marine environment according to the definition included in draft maritime regulation. The assessment of the threat to the marine environment is hampered by a lack of available information on chemical composition, bioavailability and toxicity. Perspectives for amendments of the unsatisfying pollution prevention regulations are discussed.

  1. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  2. Radiative Bulk Viscosity

    CERN Document Server

    Chen, X

    2001-01-01

    Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long, we find a nonvanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory and derive an expression for the radiative stress tensor for a gray medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity becomes much larger than either the shear viscosity or the thermal conductivity.

  3. Physico-chemical analysis and antimicrobial potential of Apis dorsata, Apis mellifera and Ziziphus jujube honey samples from Pakistan

    Institute of Scientific and Technical Information of China (English)

    Hira Fahim; Javid Iqbal Dasti; Ihsan Ali; Safia Ahmed; Muhammad Nadeem

    2014-01-01

    Objective: To evaluate physico-chemical properties and antimicrobial potential of indigenous honey samples against different reference strains including Escherichia coli ATCC 8739, Enterobacter aerogenes ATCC 13048, Pseudomonas aeroginosa ATCC 9027, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Klebsiella pneumonia ATCC 13883, Aspergillus niger ATCC 16404, Rhizopus oligosporus PCSIR1, Candida albicans ATCC 14053 and Candida utilis ATCC 9950. Methods: By using standard methods samples were evaluated for their antimicrobial properties including additive effect of starch and non-peroxidase activity, antioxidative properties (phenol contents, flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity). Prior to this evaluation, complete physico-chemical properties including pH, color, ash contents, protein contents, moisture contents, hydroxymethyl furfural contents, total sugar contents, reducing sugar and non-reducing sugar contents were analyzed. Results: Relatively higher ash contents were found in the Siddar honey i.e. (0.590 0±0.033 6)%and small honey showed relatively higher protein contents i.e. (777.598±9.880) mg/kg. The moisture contents of tested honey samples ranged between 13.8%-16.6%, total sugar contents from 61.672%-72.420%and non-reducing sugar contents from 1.95%-3.93%. Presences of phenolic contents indicate higher antioxidant potential of these honey samples. All bacteria showed clear inhibition zones in response to tested honey samples whereas fungi and yeast showed inhibition at higher concentrations of these honey samples. For Escherichia coli, Bacillus subtilis, Salmonella typhi, Pseudomonas aeroginosa and Aspergillus niger, overall the small honey showed the higher activity than other honey samples. Conclusion: Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimentarius Commission

  4. Effective Extraction of Heavy Metals from their Effluents Using Some Potential Ionic Liquids as Green Chemicals

    Directory of Open Access Journals (Sweden)

    A. Rajendran

    2011-01-01

    Full Text Available Synthesis of nine Task Specific Ionic liquids (TSILs, their characterization using 1H NMR spectral studies and other physical properties and potential applications in the removal of certain heavy metals such as Nickel, Iron, Zinc, Copper and Lead has been studied. The removal of these heavy metals from the industrial effluents / contaminated water bodies using these ionic liquids has been proved to be more successful than conventional methods such as precipitation, cementation, reverse osmosis, ion exchange and adsorption.

  5. Complex Langevin dynamics for dynamical QCD at nonzero chemical potential: a comparison with multi-parameter reweighting

    CERN Document Server

    Fodor, Z; Sexty, D; Török, C

    2015-01-01

    We study lattice QCD at non-vanishing chemical potential using the complex Langevin equation. We compare the results with multi-parameter reweighting both from $\\mu=0$ and phase quenched ensembles. We find a good agreement for lattice spacings below $\\approx$0.15 fm. On coarser lattices the complex Langevin approach breaks down. Four flavors of staggered fermions are used on $N_t=4, 6$ and 8 lattices. For one ensemble we also use two flavors to investigate the effects of rooting.

  6. Probing deconfinement in the Polyakov-loop extended Nambu-Jona-Lasinio model at imaginary chemical potential

    CERN Document Server

    Morita, Kenji; Friman, Bengt; Redlich, Krzysztof

    2011-01-01

    The phase structure of Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model is explored at imaginary chemical potential, with particular emphasis on the deconfinement transition. We point out that the statistical confinement nature of the model naturally leads to characteristic dependence of the chiral condensate $$ on $\\theta=\\mu_I/T$. We introduce a dual parameter for the deconfinement transition by making use of this dependence. By changing a four-fermion coupling constant, we tune the location of the critical endpoint of the deconfinement transition.

  7. Internal rotation potential and structure of six fluorine substituted nitrobenzenes studied by microwave spectroscopy supported by quantum chemical calculations

    DEFF Research Database (Denmark)

    Larsen, Niels Wessel; Nielsen, Ole Vesterlund

    2014-01-01

    Microwave spectra of the vibrational ground state and several torsionally excited states were used to investigate the internal rotation potential and the structure of six fluorine substituted nitrobenzenes: 3-fluoro- and 4-fluoronitrobenzene were planar molecules just as nitrobenzene whereas 2....... For the planar molecules and for 2,4,6-trifluoronitrobenzene V 2 and V4 were determined using assumptions about V 6 based on the quantum chemical calculations. For all non-planar molecules tunnelling through the lower of the two barriers was observed as a splitting of the torsional energy levels. © 2014 Elsevier...

  8. Sugar-borate esters--potential chemical agents in prostate cancer chemoprevention.

    Science.gov (United States)

    Scorei, Romulus Ion; Popa, Radu

    2013-07-01

    The potential value of sugar-borate esters (SBEs) in the chemo-preventive therapy of prostate cancer has been reviewed. We propose that SBEs act as boron (B) vehicles, increasing the concentration of borate inside cancer cells relative to normal cells. Increased intracellular concentration of borate activates borate transporters, but also leads to growth inhibition and apoptosis. The effects of SBEs on normal cells are less dramatic because SBEs are naturally-occurring biochemicals, common and abundant in some fruits and vegetables, and also because borate dissociated from SBEs in natural diet doses is easily exported from normal cells. Cancer cell lines that over-express sugar transporters or under-express borate export are potential targets for SBE-based therapy. With regard to efficiency against cancer cells and drug preparation requirements, trigonal cis-diol boric monoesters will be one of the most effective class of SBEs. Because negative correlation exists between borate intake and the incidence of prostate cancer, and because most cancer cells overexpress sugar transporters, SBEs are proposed as a potential chemopreventive avenue in the fight against primary and recurrent prostate cancer.

  9. Potential role of p53 mutation in chemical hepatocarcinogenesis of rats

    Institute of Scientific and Technical Information of China (English)

    Wei-Guo Deng; Yan Fu; Yu-Lin Li; Toshihiro Sugiyama

    2004-01-01

    AIM: Inactivation of p53 gene is one of the most frequent genetic alterations in carcinogenesis. The mutation status of p53 gene was analyzed, in order to understand the effect of p53 mutation on chemical hepatocarcinogenesis of rats.METHODS: During hepatocarcinogenesis of rats induced by 3′-methyl-4- dimethylaminoazobenzene (3′-Me-DAB),prehepatocarcinoma and hepatocarcinoma foci were collected by laser capture microdissection (LCMl), and quantitatively analyzed for levels of p53 mRNA by LightCyclerTM real-time RT-PCR and for mutations in p53 gene exons 5-8 by direct sequencing.RESULTS: Samples consisting of 44 precancerous foci and 24 cancerous foci were collected by LCMl. A quantitative analysis of p53 mRNA showed that p53 mRNA peaked at an early stage (week 6) in the prehepatocarcinoma lesion, more than ten times that of adjacent normal tissue, and gradually decreased from week 6 to week 24. The expression of p53 mRNA in adjacent normal tissue was significantly lower than that in prehepatocarcinoma. Similar to prehepatocarcinoma,p53 mRNA in cancer was markedly higher than that in adjacent normal tissue at week 12, and was closer to normal at week 24. Direct p53 gene sequencing showed that 35.3% (24/68) (9 precancer, 15 cancer) LCM samples exhibited point mutations, 20.5% of prehepatocarcinoma LCM samples presented missense mutations at exon 6/7 or/and 8, and was markedly lower than 62.5% of hepatocarcinoma ones (P<0.01). Mlutation of p53 gene formed the mutant hot spots at 5 codons. Positive immunostaining for p53 protein could be seen in prehepatocarcinoma and hepatocarcinoma foci at 24 weeks.CONCLUSION: p53 gene mutation is present in initial chemical hepatocarcinogenesis, and the mutation of p53 gene induced by 3′-Me-DAB is an important factor of hepatocarcinogenesis.

  10. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential

    DEFF Research Database (Denmark)

    Cybulska, Iwona; Chaturvedi, Tanmay; Brudecki, Grzegorz P.;

    2014-01-01

    Salicornia bigelovii straw was characterized and evaluated as a potential lignocellulosic bioethanol feedstock. S. bigelovii used in the study was grown in the United Arab Emirates using saltwater (40. ppt) for irrigation. Salt removal was performed prior to pretreatment to protect the processing...... equipment and avoid inhibition of enzymes and yeast. Composition of the washed biomass was comparable to traditional lignocellulosic biomasses with relatively high glucan and xylan content (26 and 22. g/100. gDM, respectively) but with lower lignin content (7. g/100. gDM). The washed feedstock was subjected...

  11. The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: Psychodidae: A review

    Directory of Open Access Journals (Sweden)

    Diwakar Singh Dinesh

    2014-01-01

    Full Text Available Use of chemical pesticides is the current method for controlling sandflies. However, resistance is being developed in sandflies against the insecticide of choice that is DDT (dichlorodiphenyl trichloroethane. Botanicals have potential to act as an alternative to chemical insecticides as the crude extracts and active molecules of some plants show insecticidal effect to sandflies. This will lead to safe, easy and environment friendly method for control of sandflies. Therefore, information regarding botanicals acting as alternative to chemical insecticide against sandflies assumes importance in the context of development of resistance to insecticides as well as to prevent environment from contamination. This review deals with some plants and their products having repellent and insecticidal effect to sandflies in India and abroad. Different methods of extraction and their bioassay on sandflies have been emphasized in the text. Various extracts of some plants like Ricinus communis (Euphorbiaceae, Solanum jasminoides (Solanaceae, Bougainvillea glabra (Nyctaginaceae, Capparis spinosa (Capparidaceae, Acalypha fruticosa (Euphorbiaceae and Tagetes minuta (Asteraceae had shown repellent/insecticidal effect on sandflies. This review will be useful in conducting the research work to find out botanicals of Indian context having insecticidal effect on sandflies.

  12. Murine bone marrow-derived dendritic cells as a potential in vitro model for predictive identification of chemical sensitizers.

    Science.gov (United States)

    Pépin, Elsa; Goutet, Michèle; Ban, Masarin

    2007-12-10

    The identification of potential sensitizing chemicals is a key step in the safety assessment process. To this end, predictive tests that require no or few animals and that are reliable, inexpensive and easy to perform are needed. The aim of this study was to evaluate the performance of murine bone marrow-derived dendritic cells (BMDCs) in an in vitro skin sensitization model. BMDCs were exposed to six well-known allergens (dinitrochlorobenzene, DNCB; dinitrofluorobenzene, DNFB; Bandrowski's base, BB; paraphenylenediamine, PPD; nickel sulfate, NiSO(4); cinnamaldehyde, Cinn). Surface expression of MHC class II, CD40, CD54, and CD86 was measured by flow cytometry after 48h exposure to these chemicals. All the allergens tested induced a significant increase in marker expression, with an augmentation in the percentage of mature cells ranging from 2.3- to 10.5-fold change over control. The level of up-regulation was dependent on the concentration and the strength of the allergens. In contrast, the irritants (sodium dodecyl sulfate, SDS and 4-aminobenzoic acid, pABA) and the negative control (zinc sulfate, ZnSO(4)) tested induced either no modification or a down-regulation of membrane marker expression. Taken together, our data suggest that murine BMDCs may represent a new and valuable in vitro model to predict the sensitizing properties of chemicals.

  13. Physical and chemical characterization of the pulp of different varieties of avocado targeting oil extraction potential

    Directory of Open Access Journals (Sweden)

    Edinéia Dotti Mooz

    2012-06-01

    Full Text Available The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers’ income.

  14. Chemical Composition and Allelopathic Potential of Essential Oils from Tipuana tipu (Benth.) Kuntze Cultivated in Tunisia.

    Science.gov (United States)

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2016-03-01

    In Tunisia, Tipuana tipu (Benth.) Kuntze is an exotic tree, which was introduced many years ago and planted as ornamental street, garden, and park tree. The present work reported, for the first time, the chemical composition and evaluates the allelopathic effect of the hydrodistilled essential oils of the different parts of this tree, viz., roots, stems, leaves, flowers, and pods gathered in the area of Sousse, a coastal region, in the East of Tunisia. In total, 86 compounds representing 89.9 - 94.9% of the whole oil composition, were identified in these oils by GC-FID and GC/MS analyses. The root essential oil was clearly distinguished for its high content in sesquiterpene hydrocarbons (β-caryophyllene, 1 (44); 24.1% and germacrene D, 2 (53); 20.0%), while those obtained from pods, leaves, stems, and flowers were dominated by non-terpene hydrocarbons. The most important ones were n-tetradecane (41, 16.3%, pod oil), 1,7-dimethylnaphthalene (43, 15.6%, leaf oil), and n-octadecane (77, 13.1%, stem oil). The leaf oil was rich in the apocarotene (E)-β-ionone (4 (54); 33.8%), and the oil obtained from flowers was characterized by hexahydrofarnesylacetone (5 (81); 19.9%) and methyl hexadecanoate (83, 10.2%). Principal component and hierarchical cluster analyses separated the five essential oils into three groups and two subgroups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by the root essential oil tested at 1 mg/ml. The inhibitory effect on the shoot and root elongation varied from -1.6% to -32.4%, and from -2.5% to -64.4%, respectively.

  15. Cloud Formation Potential of Biomass Burning Aerosol Surrogate-Particles Chemically Aged by OH

    Science.gov (United States)

    Slade, J. H.; Thalman, R. M.; Wang, J.; Li, Z. Q.; Knopf, D. A.

    2014-12-01

    Heterogeneous or multiphase reactions between trace gases such as OH and atmospheric aerosol can influence physicochemical properties of the particles including composition, morphology and lifetime. In this work, the cloud condensation nuclei (CCN) activity of laboratory-generated biomass burning aerosol (BBA) exposed to OH radicals is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type and OH exposure ([OH]×time) using a CCN counter coupled to a custom-built aerosol flow reactor (AFR). The composition of particles collected by a micro-orifice uniform deposit impactor (MOUDI) first subjected to different OH exposures is analyzed by Raman and scanning transmission X-ray microscopy coupled with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative compounds found in BBA that have different hygroscopicity, chemical functionalities, and reactivity with OH radicals. BBA surrogate-particles are generated following atomization of aqueous solutions with mass ratios LEV:MNC:KS of 1:0:0, 0:1:0, 0:0:1, 1:1:0, 0:1:1, 1:0:1, 1:1:1, and 1:0.03:0.3. OH radicals are generated in the AFR following photolysis of O3 in the presence of H2O using a variable intensity ultra-violet (UV) lamp, which allows equivalent atmospheric OH exposures from days to weeks. In addition, we investigate how κ changes i) in response to varying [O3] with and without OH, and ii) at a fixed OH exposure while varying RH. The impact of OH exposure on the CCN activity of BBA will be presented and its atmospheric implications will be discussed.

  16. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    Energy Technology Data Exchange (ETDEWEB)

    Vedani, Angelo, E-mail: angelo.vedani@unibas.ch [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland); Dobler, Max [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Smieško, Martin [Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  17. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Deppert, W.R. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Pfeifer, D. [Department of Hematology and Oncology, University Hospital Freiburg (Germany); Stanzel, S.; Weimer, M. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Schaefer, W.R., E-mail: wolfgang.schaefer@uniklinik-freiburg.de [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)

    2012-05-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  18. Higher order quark number fluctuations via imaginary chemical potentials in $N_f=2+1$ QCD

    CERN Document Server

    D'Elia, Massimo; Sanfilippo, Francesco

    2016-01-01

    We discuss analytic continuation as a tool to extract the cumulants of the quark number fluctuations in the strongly interacting medium from lattice QCD simulations at imaginary chemical potentials. The method is applied to $N_f = 2+1$ QCD, discretized with stout improved staggered fermions, physical quark masses and the tree level Symanzik gauge action, exploring temperatures ranging from 135 up to 350 MeV and adopting mostly lattices with $N_t = 8$ sites in the temporal direction. The method is based on a global fit of various cumulants as a function of the imaginary chemical potentials. We show that it is particularly convenient to consider cumulants up to order two, and that below $T_c$ the method can be advantageous, with respect to a direct Montecarlo sampling at $\\mu = 0$, for the determination of generalized susceptibilities of order four or higher, and especially for mixed susceptibilities, for which the gain is well above one order of magnitude. We provide cumulants up to order eight, which are then...

  19. The $N_f=2$ QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential

    CERN Document Server

    Philipsen, Owe

    2016-01-01

    The order of the thermal phase transition in the chiral limit of Quantum Chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse $N_t=4$ lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass $m_\\pi^c\\approx 560$ MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavour QCD using improved Wilson fermions and indicate that the syste...

  20. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures.

    Science.gov (United States)

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-03-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (-)-linalool, (+)-borneol, (-)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2-5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides > hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol-water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation.

  1. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.

    Science.gov (United States)

    Sohrabi, V; Ross, M S; Martin, J W; Barker, J F

    2013-11-01

    The process of bitumen extraction from oil sands in Alberta, Canada leads to an accumulation of toxic acid-extractable organics (AEOs) in oil sands process water (OSPW). Infiltration of OSPW from tailings ponds and from their retaining sand dykes and subsequent transport towards surface water has occurred. Given the apparent lack of significant natural attenuation of AEOs in groundwater, remediation may be required. This laboratory study evaluates the potential use of unactivated persulfate and permanganate as in situ oxidation agents for remediation of AEOs in groundwater. Naphthenic acids (NAs; CnH2n+zO2), which are a component of the acutely toxic AEOs, were degraded by both oxidants in OSPW samples. Permanganate oxidation yielded some residual dissolved organic carbon (DOC) whereas persulfate mineralized the AEO compounds with less residual DOC. Acid-extractable organics from oxidized OSPW had essentially no Microtox toxicity.

  2. Occupational vitiligo due to unsuspected presence of phenolic antioxidant byproducts in commercial bulk rubber

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, M.A.; Mathias, C.G.; Priddy, M.; Molina, D.; Grote, A.A.; Halperin, W.E.

    1988-06-01

    We investigated the occurrence of cutaneous depigmentation (vitiligo) among employees of a company that manufactured hydraulic pumps. The interiors of these pumps were injection-molded with rubber. We identified a small but significant cluster of vitiligo cases among a group of employees who frequently handled the rubber used in this injection molding process. Although none of the additives specified in the rubber formulations was a phenolic or catecholic derivative, known to be potential causes of chemically induced vitiligo, gas chromatographic analysis identified a para-substituted phenol (2,4-di-tert-butylphenol, DTBP) in solid samples of the most frequently used rubber. Surface wipe analysis confirmed that workers could be exposed to DTBP from simple handling of the rubber. We subsequently established that the solid bulk rubber used as the base in these stock rubber formulations contained both DTBP and smaller quantities of p-tert-butylphenol. Both had formed as unsuspected byproducts during chemical synthesis of two antioxidants added to the solid bulk rubber by a major rubber supplier. We conclude that the unsuspected presence of potential chemical depigmenting agents in solid bulk rubber, from which industrial rubber products are formulated, may contribute to the occurrence of occupational vitiligo, and that a simple review of ingredients in rubber formulations is inadequate to detect their presence.

  3. Wetting of potassium surfaces by superfluid 4He: A study using variational properties of the chemical potential

    Science.gov (United States)

    Szybisz, Leszek

    2000-08-01

    The wetting of planar surfaces of K by superfluid 4He films at T=0 K is theoretically studied. In order to examine the consistency of numerical results, new variational properties of the chemical potential μ are derived. Two substrate-adsorbate interactions are analyzed: (a) the standard ``3-9'' one and (b) the more elaborated potential recently proposed by Chizmeshya, Cole, and Zaremba (CCZ). New results calculated within the framework of two different nonlocal density functionals (namely, those known as the Orsay-Paris and Orsay-Trento formalisms) are reported. It is demonstrated that the numerical solutions obtained from the theoretical equations verify with high accuracy the derived variational conditions. The main output of this investigation is the finding that, for both analyzed adsorption potentials, thick enough helium films exhibit a positive square of the third-sound velocity. The wetting of a potassium substrate by superfluid 4He at T=0 K suggested by experimental data is guaranteed in the case of the recent CCZ potential.

  4. A variational approach to the liquid-vapor phase transition for hardcore ions in the bulk and in nanopores

    CERN Document Server

    Loubet, Bastien; Palmeri, John

    2016-01-01

    We employ a field-theoretical variational approach to study the behavior of ionic solutions in the grand canonical ensemble. To describe properly the hardcore interactions between ions, we use a cutoff in Fourier space for the electrostatic contribution of the grand potential and the Carnahan-Starling equation of state with a modified chemical potential for the pressure one. We first calibrate our method by comparing its predictions at room temperature with Monte Carlo results for excess chemical potential and energy. We then validate our approach in the bulk phase by describing the classical "ionic liquid-vapor" phase transition induced by ionic correlations at low temperature, before applying it to electrolytes at room temperature confined to nanopores embedded in a low dielectric medium and coupled to an external reservoir of ions. The ionic concentration in the nanopore is then correctly described from very low bulk concentrations, where dielectric exclusion shifts the transition up to room temperature fo...

  5. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers

    Science.gov (United States)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1987-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.

  6. Centrifugal microfluidic platform for radiochemistry: potentialities for the chemical analysis of nuclear spent fuels.

    Science.gov (United States)

    Bruchet, Anthony; Taniga, Vélan; Descroix, Stéphanie; Malaquin, Laurent; Goutelard, Florence; Mariet, Clarisse

    2013-11-15

    The use of a centrifugal microfluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the microfluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ≈97%), the use of the centrifugal microfluidic platform allowed to reduce the volume of liquid needed by a factor of ≈250. Thanks to their unique "easy-to-use" features, centrifugal microfluidic platforms are potential successful candidates for the downscaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance).

  7. Chemical Composition and Nutraceutical Potential of Indian Borage (Plectranthus amboinicus Stem Extract

    Directory of Open Access Journals (Sweden)

    Praveena Bhatt

    2013-01-01

    Full Text Available The stem of Indian borage (Plectranthus amboinicus was found to be an antioxidant rich fraction as evaluated by in vitro models such as DPPH free radical scavenging, reducing power assay, superoxide anion radical scavenging, and total antioxidant capacity. The extract also exhibited antiplatelet aggregation ability, antibacterial activity, and antiproliferative effect against cancer cell lines: Caco-2, HCT-15, and MCF-7. Phytochemical evaluation of the extract revealed the occurrence of total phenolics (49.91 mg GAE/g extract, total flavonoids (26.6 mg RE/g extract, and condensed tannins (0.7 mg TAE/g extract. Among the major phenolics, rosmarinic acid (6.160 mg/g extract was predominant, followed by caffeic acid (0.770 mg/g extract, rutin (0.324 mg/g extract, gallic acid (0.260 mg/g extract, quercetin (0.15 mg/g extract, and p-coumaric acid (0.104 mg/g extract. The appreciable biological activity and presence of biomolecules in the methanolic extract of stem indicate its potential application as functional food ingredients and nutraceuticals.

  8. Chemical Composition and Food Potential of Pachymerus nucleorum Larvae Parasitizing Acrocomia aculeata Kernels.

    Directory of Open Access Journals (Sweden)

    Ariana Vieira Alves

    Full Text Available Insect consumption as food is culturally practiced in various regions of the world. In Brazil, there are more than 130 species of edible insects registered, from nine orders, among which stands out the Coleoptera. The larva of the beetle Pachymerus nucleorum Fabricius, 1792, grows into the bocaiuva fruit (Acrocomia aculeata (Jacq. Lodd. Ex Mart., 1845, which has proven nutritional quality. The aim of this work was to evaluate the nutritional potential of P. nucleorum larvae compared to bocaiuva kernels for human consumption. Proteins were the second largest portion of the larvae nutritional composition (33.13%, with percentage higher than the bocaiuva kernels (14.21%. The larval lipid content (37.87% was also high, very close to the kernels (44.96%. The fraction corresponding to fatty acids in the oil extracted from the larvae was 40.17% for the saturated and 46.52% for the unsaturated. The antioxidant activity value was 24.3 uM trolox/g of oil extracted from larvae. The larvae tryptic activity was 0.032±0.006 nmol BAPNA/min. Both the larvae and the bocaiuva kernel presented absence of anti-nutritional factors. These results favor the use of P. nucleorum larvae as food, which are a great protein and lipid sources with considerable concentrations of unsaturated fatty acids compared to the bocaiuva kernel.

  9. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    Science.gov (United States)

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.

  10. Amorphous LiCoO2sbnd Li2SO4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density

    Science.gov (United States)

    Nagao, Kenji; Hayashi, Akitoshi; Deguchi, Minako; Tsukasaki, Hirofumi; Mori, Shigeo; Tatsumisago, Masahiro

    2017-04-01

    Newly amorphous Li2-x/100Cox/100S1-x/100O4-x/50 (xLiCoO2·(100-x)Li2SO4 (mol%)) positive electrode active materials are synthesized using mechanochemical techniques. SEM observation indicates that average radii of the Li1.2Co0.8S0.2O2.4 (80LiCoO2·20Li2SO4 (mol%)) particles are about 3 μm. HR-TEM images indicate that the particles comprise nano-crystalline and amorphous phases. The crystalline phase is attributable to cubic LiCoO2 phase. These active materials exhibit a high electronic conductivity of around 10-5-10-1 S cm-1 and an ionic conductivity of around 10-7-10-6 S cm-1 at room temperature. Bulk-type all-oxide solid-state cells (Lisbnd In alloy/Li3BO3-based glass-ceramic electrolyte/amorphous Li2-x/100Cox/100S1-x/100O4-x/50) are fabricated by pressing at room temperature without high temperature sintering. Although the cell with the milled LiCoO2 shows no capacity, the cell using the Li1.2Co0.8S0.2O2.4 electrode with no conductive components (ca. 150 μm thickness) operates as a secondary battery at 100 °C, with an average discharge potential of 3.3 V (vs. Li+/Li) and discharge capacity of 163 mAh g-1. A positive electrode with large amounts of active materials is suitable for achieving high energy density in all-solid-state batteries. These newly synthesized amorphous Li2-x/100Cox/100S1-x/100O4-x/50 electrodes with ionic and electronic conductivities and good processability meet that demand.

  11. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  12. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    Science.gov (United States)

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  13. Model study of local enhancement of chemical potential gradient after facet formation on growing spherical Cu 2-δSe crystals

    Science.gov (United States)

    Lovrić, Davorin; Vučić, Zlatko; Gladić, Jadranko

    2007-06-01

    The growth of spherical copper selenide single crystals (fed by Cu atoms at constant rate) is driven by the gradient of the chemical potential, which is in the absence of facets isotropic and proportional to inverse square of crystal radius. We investigate the influence of the facets on the local chemical potential gradient on the facet site by a model based on diffusion of Cu atoms with appropriate boundary conditions. The average chemical potential gradient decreases as crystal grows, acquiring values that are, except for the initial growing period, below the threshold value for activation of 2D nucleation. We show that in spite of this fact the local chemical potential gradient, due to the facet presence, may acquire large values, sufficient to activate 2D nucleation and to justify the occurrence of the growing mode consisting of alternation of time intervals of facet vertical growth with those in which facet does not advance, as has been preliminary detected in our experiments.

  14. ANATOMICAL CHARACTERISTICS AND CHEMICAL PROPERTIES OF THE BRANCH-WOOD OF Schizolobium amazonicum DUCKE SPECIES AND ITS POTENTIAL USES

    Directory of Open Access Journals (Sweden)

    Yusup Amin

    2013-10-01

    Full Text Available The scale of forest degradation and deforestation in Indonesia has inspired the use of lesser-known wood species, which are potentially abundant and so far has not much been utilized. Utilization of these woods should be imposed not only of the stem wood but also of the branch-wood portions. Schizolobiumamazonicum Ducke treeis one of those lesser-known species, and growing fast with an MAIof3.68 cm/year.In Indonesia this species is only found in the Purwodadi Botanical Garden. A research was conducted to study the basic characteristics (anatomical aspects and chemical properties of the branch-wood portion of this species. The branch-wood materials were obtained from the Purwodadi Botanical Garden situated in Pasuruan (East Java. The specimens used were the first branch of the trunk (stem of nine-year old S. amazonicum tree (= 29.46 cm. The branch-wood samples were then examined for the anatomical aspects (macroscopic and microscopic characteristics and chemical properties (chemical composition. Results revealed that the anatomical properties of S.amazonicum branch-wood exhibited close similarities to those of sengon wood; it was light in appearance and white in color. Its fiber averaged about 1500 μm, and based on the fiber dimension's derived values the branch- wood fiber of this species was categorized into first-class quality for pulp and paper manufacture. Further, the chemical composition of this branch-wood compared favorably with that of sengon and mangium wood. The composition of extractive content thatsoluble in alcohol-benzene; lignin; holocellulose; and α-cellulose of this branch-wood were 2.46; 28.71; 80.64; and 50.47%, respectively. The overall assessment implied that the branch-wood portion of S.amazonicum tree affords favorable potential to be developed as raw material for pulp and paper manufacture. Also, considering that both sengon and mangium woods were already used in the pulp and paper industries as well as the trees are

  15. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    Science.gov (United States)

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to

  16. Physico-chemical analysis and antimicrobial potential of Apis dorsata,Apis mellifera and Ziziphus jujube honey samples from Pakistan

    Institute of Scientific and Technical Information of China (English)

    Hira; Fahim; Javid; Iqbal; Dasti; Ihsan; Ali; Safia; Ahmed; Muhammad; Nadeem

    2014-01-01

    Objective:To evaluale physico-chemical properties and antimicrobial potential of indigenous honey samples against different reference strains including Escherichia coli ATCC 8739.Enterobacter aerogenes ATCC 13048.Pseudomonas aeruginosa ATCC 9027.Bacillus subtilis ATCC6633.Staphylococcus aureus ATCC 25923.Salmonella typhi ATCC 14028,Klebsiella pneumonia ATCC 13883.Aspergillus niger ATCC 16404.Rhizopus oligasparus PCSIR1.Candida albicans ATCC14053 and Candida utilis ATCC 9950.Methods:By using standard methods samples were evaluated for their antimicrobial properties including additive effect of starch and non—peroxidase activity,antioxidative properties(phenol contents,flavonoid contents,1,1-diphenyl-2-pierylhydrazyl radical scavenging activity).Prior to this evaluation,complete physico-chemical properties including pH,color,ash contents,protein contents,moisture contents,hydroxymethyl furfural contents,total sugar contents,reducing sugar and non-reducing sugar contents were analyzed.Results:Relatively higher ash contents were found in the Siddar honey i.e.(0.5900±0.0336)%and small honey showed relatively higher protein contents i.e.(777.598±9.880) mg/kg.The moisture contents of tested honey samples ranged between 13.8%—16,6%,total sugar contents foam 61.672%-72.420%and non-reducing sugar contents from 1.95%—3.93%.Presences of phenolic contents indicate higher antioxidant potential of these honey samples.All bacteria showed clear inhibition zones in response to tested honey samples whereas fungi and yeast showed inhibition at higher concentrations of these honey samples.For Escherichia coli.Bacillus subtilis.Salmonella typhi.Pseudomonas aeruginosa and Aspergillus niger,overall the small honey showed the higher activity than other honey samples.Conclusion:Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimcntarius Commission.Evaluation of these honey samples

  17. A first-principles DFT study of UN bulk and (001) surface: comparative LCAO and PW calculations.

    Science.gov (United States)

    Evarestov, R A; Bandura, A V; Losev, M V; Kotomin, E A; Zhukovskii, Yu F; Bocharov, D

    2008-10-01

    LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic-covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches.

  18. New fermions in the bulk

    CERN Document Server

    de Brito, K P S

    2016-01-01

    Spinor fields on 5-dimensional Lorentzian manifolds are classified, according to the geometric Fierz identities that involve their bilinear covariants. Based upon this classification that generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are, hence, found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density, through the truncated exterior bundle. In order to accomplish a realisation of these new spinors, a Killing vector field is constructed on the horizon of 5-dimensional Kerr black holes. This Killing vector field is shown to reach the time-like Killing vector field at the spatial infinity, through a current 1-form density, constructed with the derived new spinor fields. The current density is, moreover, expressed as the f\\"unfbein components, assuming a condensed for...

  19. New fermions in the bulk

    Science.gov (United States)

    de Brito, K. P. S.; da Rocha, Roldão

    2016-10-01

    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  20. Nature's chemicals and synthetic chemicals: comparative toxicology.

    OpenAIRE

    Ames, B N; Profet, M; Gold, L S

    1990-01-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in brocco...

  1. Fluctuating brane in a dilatonic bulk

    CERN Document Server

    Brax, P; Rodríguez-Martinez, M; Brax, Philippe; Langlois, David; Rodriguez-Martinez, Maria

    2003-01-01

    We consider a cosmological brane moving in a static five-dimensional bulk spacetime endowed with a scalar field whose potential is exponential. After studying various cosmological behaviours for the homogeneous background, we investigate the fluctuations of the brane that leave spacetime unaffected. A single mode embodies these fluctuations and obeys a wave equation which we study for bouncing and ever-expanding branes.

  2. Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals

    Science.gov (United States)

    Xu, N.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Bisti, F.; Strocov, V. N.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Qian, T.; Yazyev, O. V.; Mesot, J.; Ding, H.; Shi, M.

    2017-03-01

    The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two nontrivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g., NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magnetotransport properties observed in TaAs, TaP, and NbP, where the Fermi arc states are similar.

  3. Molecular Mechanism Underlying Pathogenesis of Lewisite-Induced Cutaneous Blistering and Inflammation: Chemical Chaperones as Potential Novel Antidotes.

    Science.gov (United States)

    Li, Changzhao; Srivastava, Ritesh K; Weng, Zhiping; Croutch, Claire R; Agarwal, Anupam; Elmets, Craig A; Afaq, Farrukh; Athar, Mohammad

    2016-10-01

    Lewisite is a potent arsenic-based chemical warfare agent known to induce painful cutaneous inflammation and blistering. Only a few modestly effective antidotes have so far been described in the literature. However, the discovery of effective antidotes for lewisite was hampered by the paucity of the exact molecular mechanism underlying its cutaneous pathogenesis. We investigated the molecular mechanism underlying lewisite-induced cutaneous blistering and inflammation and describe its novel antidotes. On the basis of our initial screening, we used a highly sensitive murine model that recapitulates the known human pathogenesis of arsenicals-induced cutaneous inflammation and blistering. Topically administered lewisite induced potent acute inflammation and microvesication in the skin of Ptch1(+/-)/SKH-1 mice. Even at a very low dose, lewisite up-regulates unfolded protein response signaling, inflammatory response, and apoptosis. These cutaneous lesions were associated with production of reactive oxygen species and extensive apoptosis of the epidermal keratinocytes. We confirmed that activation of reactive oxygen species-dependent unfolded protein response signaling is the underlying molecular mechanism of skin damage. Similar alterations were noticed in lewisite-treated cultured human skin keratinocytes. We discovered that chemical chaperone 4-phenyl butyric acid and antioxidant N-acetylcysteine, which significantly attenuate lewisite-mediated skin injury, can serve as potent antidotes. These data reveal a novel molecular mechanism underlying the cutaneous pathogenesis of lewisite-induced lesions. We also identified novel potential therapeutic targets for lewisite-mediated cutaneous injury.

  4. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  5. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships.

    Science.gov (United States)

    Satz, Alexander L

    2016-07-11

    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.

  6. The distributions of individual Dirac eigenvalues for QCD at non-zero chemical potential RMT predictions and Lattice results

    CERN Document Server

    Akemann, G; Shifrin, L; Wettig, T

    2007-01-01

    For QCD at non-zero chemical potential $\\mu$, the Dirac eigenvalues are scattered in the complex plane. We define a notion of ordering for individual eigenvalues in this case and derive the distributions of individual eigenvalues from random matrix theory (RMT). We distinguish two cases depending on the parameter $\\alpha=\\mu^2 F^2 V$, where $V$ is the volume and $F$ is the familiar low-energy constant of chiral perturbation theory. For small $\\alpha$, we use a Fredholm determinant expansion and observe that already the first few terms give an excellent approximation. For large $\\alpha$, all spectral correlations are rotationally invariant, and exact results can be derived. We compare the RMT predictions to lattice data and in both cases find excellent agreement in the topological sectors $\

  7. Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics

    CERN Document Server

    Matulich, Javier; Tempo, David; Troncoso, Ricardo

    2014-01-01

    A generalized set of asymptotic conditions for higher spin gravity without cosmological constant in three spacetime dimensions is constructed. They include the most general temporal components of the gauge fields that manifestly preserve the original asymptotic higher spin extension of the BMS$_{3}$ algebra, with the same central charge. By virtue of a suitable permissible gauge choice, it is shown that this set can be directly recovered as a limit of the boundary conditions that have been recently constructed in the case of negative cosmological constant, whose asymptotic symmetries are spanned by two copies of the centrally-extended W$_{3}$ algebra. Since the generalized asymptotic conditions allow to incorporate chemical potentials conjugated to the higher spin charges, a higher spin extension of locally flat cosmological spacetimes becomes naturally included within the set. It is shown that their thermodynamic properties can be successfully obtained exclusively in terms of gauge fields and the topology of...

  8. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  9. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  10. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  11. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  12. Physico-chemical properties of the potentially oxidative water and its capability of the instrumentation residual layer remotion

    Directory of Open Access Journals (Sweden)

    Daniel Silva-Herzog FLORES

    2006-11-01

    Full Text Available The purpose of the study was to elaborate the potentially oxidative water (POW and analyze some of the physico-chemical properties: pH density, superficial stress, contact angle, conductivity and REDOX potential; besides comparing its POW organic as well as non-organic matter removal capacity with hypochlorite sodium at 1% plus 17% EDTA. For the methodology the POW elaboration an electrolysis process was used and the physico-chemical properties were determined in 0, 1, 3, 5 and 7 days. For the removal capacity of teeth tartarevaluation, 30 extracted uniradicular premolars were used, divided in three groups:positive control (NaOCl at 1% + EDTA at 17%, negative control(distilled water and experimental (POW. Afterwards, the samples were observed under electronic microscopy with 2500x magnifying at the middle thirds and apical, analyzing them with the Rome scale (amount of open dental tubes. For the statistical analysis the Chi-square and the Fisher Exact Proofwas used. The results showed that the solution was constantly maintained at all times during the evaluation and there was found statistical difference between negative control and positive control and between negative control and the experimental group. With regards to the dental tartar removal it was found that there was no statistical difference between the control group and the experimental group (POW; reason why it is concluded that the POW has the capacity to remove dental tartar. Nevertheless, to be able to propose the use of the POW as an irrigator solution in Endodontics it is necessary to do further studies to evaluate its cytotoxicity and biocompability.

  13. Too many chemicals, too little time: Rapid in silico methods to characterize and predict ADME properties for chemical toxicity and exposure potential

    Science.gov (United States)

    Evaluating proposed alternative chemical structures to support the design of safer chemicals and products is an important component of EPA's Green Chemistry and Design for the Environment (DfE) Programs. As such, science-based alternatives assessment is essential to support EPA's...

  14. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    Science.gov (United States)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  15. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  16. Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model.

    Science.gov (United States)

    Sellers, Michael S; Lísal, Martin; Brennan, John K

    2016-03-21

    We present an extension of various free-energy methodologies to determine the chemical potential of the solid and liquid phases of a fully-flexible molecule using classical simulation. The methods are applied to the Smith-Bharadwaj atomistic potential representation of cyclotrimethylene trinitramine (RDX), a well-studied energetic material, to accurately determine the solid and liquid phase Gibbs free energies, and the melting point (Tm). We outline an efficient technique to find the absolute chemical potential and melting point of a fully-flexible molecule using one set of simulations to compute the solid absolute chemical potential and one set of simulations to compute the solid-liquid free energy difference. With this combination, only a handful of simulations are needed, whereby the absolute quantities of the chemical potentials are obtained, for use in other property calculations, such as the characterization of crystal polymorphs or the determination of the entropy. Using the LAMMPS molecular simulator, the Frenkel and Ladd and pseudo-supercritical path techniques are adapted to generate 3rd order fits of the solid and liquid chemical potentials. Results yield the thermodynamic melting point Tm = 488.75 K at 1.0 atm. We also validate these calculations and compare this melting point to one obtained from a typical superheated simulation technique.

  17. VirtualToxLab - a platform for estimating the toxic potential of drugs, chemicals and natural products.

    Science.gov (United States)

    Vedani, Angelo; Dobler, Max; Smieško, Martin

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on http://www.virtualtoxlab.org. The free platform - the OpenVirtualToxLab - is accessible (in client-server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations.

  18. Molecular imprinting of bulk, microporous silica

    Science.gov (United States)

    Katz, Alexander; Davis, Mark E.

    2000-01-01

    Molecular imprinting aims to create solid materials containing chemical functionalities that are spatially organized by covalent or non-covalent interactions with imprint (or template) molecules during the synthesis process. Subsequent removal of the imprint molecules leaves behind designed sites for the recognition of small molecules, making the material ideally suited for applications such as separations, chemical sensing and catalysis. Until now, the molecular imprinting of bulk polymers and polymer and silica surfaces has been reported, but the extension of these methods to a wider range of materials remains problematic. For example, the formation of substrate-specific cavities within bulk silica, while conceptually straightforward, has been difficult to accomplish experimentally. Here we describe the imprinting of bulk amorphous silicas with single aromatic rings carrying up to three 3-aminopropyltriethoxysilane side groups; this generates and occupies microporosity and attaches functional organic groups to the pore walls in a controlled fashion. The triethoxysilane part of the molecules' side groups is incorporated into the silica framework during sol-gel synthesis, and subsequent removal of the aromatic core creates a cavity with spatially organized aminopropyl groups covalently anchored to the pore walls. We find that the imprinted silicas act as shape-selective base catalysts. Our strategy can be extended to imprint other functional groups, which should give access to a wide range of functionalized materials.

  19. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production.

    Science.gov (United States)

    Li, Xuan Zhong; Webb, Jeremy S; Kjelleberg, Staffan; Rosche, Bettina

    2006-02-01

    Biotransformation plays an increasingly important role in the industrial production of fine chemicals due to its high product specificity and low energy requirement. One challenge in biotransformation is the toxicity of substrates and/or products to biocatalytic microorganisms and enzymes. Biofilms are known for their enhanced tolerance of hostile environments compared to planktonic free-living cells. Zymomonas mobilis was used in this study as a model organism to examine the potential of surface-associated biofilms for biotransformation of chemicals into value-added products. Z. mobilis formed a biofilm with a complex three-dimensional architecture comprised of microcolonies with an average thickness of 20 microm, interspersed with water channels. Microscopic analysis and metabolic activity studies revealed that Z. mobilis biofilm cells were more tolerant to the toxic substrate benzaldehyde than planktonic cells were. When exposed to 50 mM benzaldehyde for 1 h, biofilm cells exhibited an average of 45% residual metabolic activity, while planktonic cells were completely inactivated. Three hours of exposure to 30 mM benzaldehyde resulted in sixfold-higher residual metabolic activity in biofilm cells than in planktonic cells. Cells inactivated by benzaldehyde were evenly distributed throughout the biofilm, indicating that the resistance mechanism was different from mass transfer limitation. We also found that enhanced tolerance to benzaldehyde was not due to the conversion of benzaldehyde into less toxic compounds. In the presence of glucose, Z. mobilis biofilms in continuous cultures transformed 10 mM benzaldehyde into benzyl alcohol at a steady rate of 8.11 g (g dry weight)(-1) day(-1) with a 90% molar yield over a 45-h production period.

  20. Attachment of Surface "Fermi Arcs" to the Bulk Fermi Surface: "Fermi-Level Plumbing" in Topological Metals

    OpenAIRE

    Haldane, F. D. M.

    2014-01-01

    The role of "Fermi arc" surface-quasiparticle states in "topological metals" (where some Fermi surface sheets have non-zero Chern number) is examined. They act as "Fermi-level plumbing" conduits that transfer quasiparticles among groups of apparently-disconnected Fermi sheets with non-zero Chern numbers to maintain equality of their chemical potentials, which is required by gauge invariance. Fermi arcs have a chiral tangential attachment to the surface projections of sheets of the bulk Fermi ...

  1. Chemical information science coverage in Chemical Abstracts.

    Science.gov (United States)

    Wiggins, G

    1987-02-01

    For many years Chemical Abstracts has included in its coverage publications on chemical documentation or chemical information science. Although the bulk of those publications can be found in section 20 of Chemical Abstracts, many relevant articles were found scattered among 39 other sections of CA in 1984-1985. In addition to the scattering of references in CA, the comprehensiveness of Chemical Abstracts as a secondary source for chemical information science is called into question. Data are provided on the journals that contributed the most references on chemical information science and on the languages of publication of relevant articles.

  2. Macroscopic and direct light propulsion of bulk graphene material

    CERN Document Server

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  3. Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD.

    Science.gov (United States)

    Chen, Huan; Carter, Kimberly E

    2017-05-01

    Various toxic chemicals used in hydraulic fracturing fluids may influence the inherent health risks associated with these operations. This study investigated the possible occupational inhalation exposures and potential risks related to the volatile organic compounds (VOCs) from chemical storage tanks and flowback pits used in hydraulic fracturing. Potential risks were evaluated based on radial distances between 5 m and 180 m from the wells for 23 contaminants with known inhalation reference concentration (RfC) or inhalation unit risks (IUR). Results show that chemicals used in 12.4% of the wells posed a potential acute non-cancer risks for exposure and 0.11% of the wells with may provide chronic non-cancer risks for exposure. Chemicals used in 7.5% of the wells were associated with potential acute cancer risks for exposure. Those chemicals used in 5.8% of the wells may be linked to chronic cancer risks for exposure. While eight organic compounds were associated with acute non-cancer risks for exposure (>1), methanol the major compound in the chemical storage tanks (1.00-45.49) in 7,282 hydraulic fracturing wells. Wells with chemicals additives containing formaldehyde exhibited both acute and chronic cancer risks for exposure with IUR greater than 10(-6), suggesting formaldehyde was the dominant contributor to both types of risks for exposure in hydraulic fracturing. This study also found that due to other existing on-site emission sources of VOCs and the geographically compounded air concentrations from other surrounding wells, chemical emissions data from storage tanks and flowback pits used in this study were lower than reported concentrations from field measurements where higher occupational inhalation risks for exposure may be expected.

  4. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Rana

    2016-07-01

    Full Text Available The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L. enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa extract (CMCE. CMCE (1 or 10 µg/mL; 14 h significantly decreased LPS (50-100 ng/mL induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100 and 300 mg/kg; 10 days p.o. pre-treated and LPS (10 mg/kg challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3 and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  5. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    Science.gov (United States)

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  6. Chemical contaminants in water and sediment near fish nesting sites in the Potomac River basin: determining potential exposures to smallmouth bass (Micropterus dolomieu)

    Science.gov (United States)

    Kolpin, Dana W.; Blazer, Vicki; Gray, James L.; Focazio, Michael J.; Young, John A.; Alvarez, David A.; Iwanowicz, Luke R.; Foreman, William T.; Furlong, Edward T.; Speiran, Gary K.; Zaugg, Steven D.; Hubbard, Laura E.; Meyer, Michael T.; Sandstrom, Mark W.; Barber, Larry B.

    2013-01-01

    The Potomac River basin is an area where a high prevalence of abnormalities such as testicular oocytes (TO), skin lesions, and mortality has been observed in smallmouth bass (SMB, Micropterus dolomieu). Previous research documented a variety of chemicals in regional streams, implicating chemical exposure as one plausible explanation for these biological effects. Six stream sites in the Potomac basin (and one out-of-basin reference site) were sampled to provide an assessment of chemicals in these streams. Potential early life-stage exposure to chemicals detected was assessed by collecting samples in and around SMB nesting areas. Target chemicals included those known to be associated with important agricultural and municipal wastewater sources in the Potomac basin. The prevalence and severity of TO in SMB were also measured to determine potential relations between chemistry and biological effects. A total of 39 chemicals were detected at least once in the discrete-water samples, with atrazine, caffeine, deethylatrazine, simazine, and iso-chlorotetracycline being most frequently detected. Of the most frequently detected chemicals, only caffeine was detected in water from the reference site. No biogenic hormones/sterols were detected in the discrete-water samples. In contrast, 100 chemicals (including six biogenic hormones/sterols) were found in a least one passive-water sample, with 25 being detected at all such samples. In addition, 46 chemicals (including seven biogenic hormones/sterols) were found in the bed-sediment samples, with caffeine, cholesterol, indole, para-cresol, and sitosterol detected in all such samples. The number of herbicides detected in discrete-water samples per site had a significant positive relation to TOrank (a nonparametric indicator of TO), with significant positive relations between TOrank and atrazine concentrations in discrete-water samples and to total hormone/sterol concentration in bed-sediment samples. Such significant correlations

  7. Black holes as gases of punctures with a chemical potential: Bose-Einstein condensation and logarithmic corrections to the entropy

    CERN Document Server

    Asin, Olivier; Geiller, Marc; Noui, Karim; Perez, Alejandro

    2014-01-01

    We study the thermodynamical properties of black holes when described as gases of indistinguishable punctures with a chemical potential. In this picture, which arises from loop quantum gravity, the black hole microstates are defined by finite families of half-integers spins coloring the punctures, and the near-horizon energy measured by quasi-local stationary observers defines the various thermodynamical ensembles. The punctures carry excitations of quantum geometry in the form of quanta of area, and the total horizon area $a_\\text{H}$ is given by the sum of these microscopic contributions. We assume here that the system satisfies the Bose-Einstein statistics, and that each microstate is degenerate with a holographic degeneracy given by $\\exp\\big(\\lambda a_\\text{H}/\\ell_\\text{Pl}^2\\big)$ and $\\lambda>0$. We analyze in detail the thermodynamical properties resulting from these inputs, and in particular compute the grand canonical entropy. We explain why the requirements that the temperature be fixed to the Unr...

  8. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Terriza, Antonia; Vilches-Pérez, Jose I.; de la Orden, Emilio; Yubero, Francisco; Gonzalez-Caballero, Juan L.; González-Elipe, Agustin R.; Vilches, José; Salido, Mercedes

    2014-01-01

    The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes. PMID:24883304

  9. Chiral Symmetry Restoration with a Chiral Chemical Potential: the Role of Momentum Dependent Quark Self-energy

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.

  10. Parametric investigation of a thermally driven QCD Deconfining Phase Transition in a finite volume at zero chemical potential

    Science.gov (United States)

    Bensalem, S.; Ait El Djoudi, A.

    2016-10-01

    This work deals with a statistical description of a thermally driven deconfining phase transition (DPT) from a hadronic gas consisting of massless pions to a color-singlet Quark- Gluon Plasma (QGP), in a finite volume. The thermodynamical approach, within a coexistence model is used to investigate the Quantum Chromo-Dynamics DPT occurring between the two phases, at vanishing chemical potential. Considering the color singletness condition for the QGP phase, with massless up and down quarks, the exact total partition function of the studied system is obtained and then employed to calculate mean values of physical quantities, well characterizing the system near the transition. The finite-size effects on the DPT have been investigated through the study of the thermal behavior of the order parameter, the susceptibility and the second cumulant of the probability density. The similarity between the susceptibility and the second cumulant representing the variance is probed for the studied DPT and a parameterization of the variance is proposed for the first time.

  11. Chiral phase transition of $N_f$=2+1 and 3 QCD at vanishing baryon chemical potential

    CERN Document Server

    Ding, Heng-Tong

    2015-01-01

    We present updated results on chiral phase structure in (2+1)-flavor ($N_f$=2+1) and 3-flavor ($N_f=3$) QCD based on the simulations using Highly Improved Staggered Quarks on lattices with temporal extent $N_\\tau$ =6 at vanishing baryon chemical potential. In $N_f$=2+1 QCD we have performed simulations with a strange quark fixed to its physical value and two degenerate light quarks whose values are adjusted to have 5 values of Goldstone pion masses in the region of 160 - 80 MeV in the continuum limit. The universal scaling behavior of chiral condensates as well as chiral susceptibilities is discussed and the tri-critical point is suggested to be located below the physical point, i.e. at smaller than physical strange quark mass. In $N_f$=3 QCD simulations with 6 different masses of 3 degenerate quarks corresponding to the Goldstone pion masses in the region of 230 - 80 MeV have also been performed. Our results suggest that the QCD transition with these values of quark masses is of crossover type and an upper b...

  12. Physico-chemical Properties and Assessment of Edible Oil Potential of Peanuts Grown in Kurram Agency, Parachinar

    Directory of Open Access Journals (Sweden)

    Rahib Hussain

    2015-06-01

    Full Text Available This study was carried out to investigate the oil potential of peanuts for domestic and commercial uses. Peanut oil yield and the physico-chemical properties of extracted oil were investigated on different temperatures (50, 55, 60 and 65 °C and sun drying. Results showed maximum oil yield of 47.2 % at sun drying and lowest values of 37.0 % at 65 °C. Highest and lowest acid values are 25.52 and 5.89 mg/KOH/g at 60 °C and 50 °C respectively. The Free Fatty Acid (FFA content were obtained 12.76 and 2.94 mg/g at 60 °C and 50 °C, while saponification values were 61.71 and 32.25 mg/KOH/g at 60 °C and 50 °C respectively. The highest Peroxide value of 92 mg/KOH/g was recorded at 55 °C which dropped to 43.4 mg/KOH/g at 65 °C. Refractive index (RI and density were not changed significantly (p≤0.05 on all temperatures, while pH was somewhat higher on 50 °C. The moisture content was found lowest up to 3.0 % on 65 °C while highest was 5 % on 50 °C.

  13. Potential involvement of chemicals in liver cancer progression: an alternative toxicological approach combining biomarkers and innovative technologies.

    Science.gov (United States)

    Peyre, Ludovic; Zucchini-Pascal, Nathalie; de Sousa, Georges; Luzy, Anne-Pascale; Rahmani, Roger

    2014-12-01

    Pesticides as well as many other environmental pollutants are considered as risk factors for the initiation and the progression of cancer. In order to evaluate the in vitro effects of chemicals present in the diet, we began by combining viability, real-time cellular impedance and high throughput screening data to identify a concentration "zone of interest" for the six xenobiotics selected: endosulfan, dioxin, carbaryl, carbendazim, p'p'DDE and hydroquinone. We identified a single concentration of each pollutant allowing a modulation of the impedance in the absence of vital changes (nuclear integrity, mitochondrial membrane potential, cell death). Based on the number of observed modulations known to be involved in hepatic homeostasis dysfunction that may lead to cancer progression such as cell cycle and apoptosis regulators, EMT biomarkers and signal transduction pathways, we then ranked the pollutants in terms of their toxicity. Endosulfan, was able to strongly modulate all the studied cellular processes in HepG2 cells, followed by dioxin, then carbendazim. While p,p'DDE, carbaryl and hydroquinone seemed to affect fewer functions, their effects nevertheless warrant close scrutiny. Our in vitro data indicate that these xenobiotics may contribute to the evolution and worsening of hepatocarcinoma, whether via the induction of the EMT process and/or via the deregulation of liver key processes such as cell cycle and resistance to apoptosis.

  14. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  15. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-01-01

    Full Text Available The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide (PLGA membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD, onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR. HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.

  16. Survey of chemical quality and corrosion and scaling potential of drinking water distribution network of Bushehr city

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2015-05-01

    Full Text Available Background: Determination of water corrosion indexes is one of the affecting approaches on drinking water management. Corrosion can causes economical problems, reduce the useful life of water facilities, and health damages to consumers. The aim of this study was to survey of chemical quality and determination of the corrosion potential of the water distribution system in Bushehr city. Materials and Methods: In this cross sectional study, the sampling was carried out during one year from 7 stations. Values of Langelier, Ryznar, corrosivity and Puckorius indexes were calculated by using such parameters as pH, total dissolved solids, temperature, permanent and temporary hardness, and alkalinity. Results: The average values for pH, total dissolved solids, temperature, and alkalinity was obtained 7.5, 586.82 mg/L, 66.92 mg/L CaCO3. The corrosion indexes were calculated Langelier 0.28, Ryznar 7.24, corrosivity 12.02, and Puckorius 7.81. Conclusion: Bushehr city water is tends to be slightly scaling based on Ryznar index and corrosive based on other studied indexes. Overall, the water quality was tending to corrosive and, therefore, recommended to use corrosion resistance pipes in water transmission and network or lining the inner wall of pipes or correction the water quality.

  17. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A.; Mody, F.K.; Mese, A.I. [Halliburton Energy Services, Cairo (Egypt)

    2000-11-01

    Experimental studies were conducted to explain the concept of a real-time wellbore (in)stability logging methodology. The role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations was examined by providing details about a pore pressure transmission (PPT) test. The PPT experiments exposed formation (shale) cores under simulated downhole conditions to various salt solutions and drilling fluids. The main objective was to translate the results of the PPT tests to actual drilling conditions. A 20 per cent w/w calcium chloride solution was exposed to a Pierre II shale under high pressure in the PPT apparatus. The PPT test was used to estimate the impact of a drilling fluid on shale pore pressure. The efficiency of the salt solution/shale system was also estimated. Estimates of the dynamic rock properties were made based on the obtained acoustic data. It was determined that in order to accurately model time-dependent wellbore (in)stability in the field, it is important to calibrate representative shale core response to drilling fluids under realistic in-situ conditions. The 20 per cent w/w calcium chloride solution showed very low membrane efficiency of 4.45 per cent. It was concluded that changes in the shale dynamic rock properties as a function of test fluid exposure can be obtained from the simultaneous acquisition of sonic compression and shear wave velocity data. 12 refs., 5 figs.

  18. Volume term of work of critical nucleus formation in terms of chemical potential difference relative to equilibrium one

    CERN Document Server

    Mori, Atsushi

    2013-01-01

    The work of formation of a critical nucleus is sometimes written as W=n{\\Delta}{\\mu}+{\\gamma}A. The first term W_{vol}=n{\\Delta}{\\mu} is called the volume term and the second term {\\gamma}A the surface term with {\\gamma} being the interfacial tension and A the area of the nucleus. Nishioka and Kusaka [J. Chem. Phys. 96 (1992) 5370] derived W_{vol}=n{\\Delta}{\\mu} with n=V_{\\beta}/v_{\\beta} and {\\Delta}{\\mu}={\\mu}_{\\beta}(T,p_{\\alpha})-{\\mu}_{\\alpha}(T,p_{\\alpha}) by rewriting W_{vol}=-(p_{\\beta}-p_{\\alpha})V_{\\beta} by integrating the isothermal Gibbs-Duhem relation for an incompressible {\\beta} phase, where {\\alpha} and {\\beta} represent the parent and nucleating phases, V_{\\beta} is the volume of the nucleus, v_{\\beta}, which is constant, the molecular volume of the {\\beta} phase, {\\mu}, T, and p denote the chemical potential, the temperature, and the pressure, respectively. We note here that {\\Delta}{\\mu}={\\mu}_{\\beta}(T,p_{\\alpha})-{\\mu}_{\\alpha}(T,p_{\\alpha}) is, in general, not a directly measurable quan...

  19. Vanishing linear term in chemical potential difference in volume term of work of critical nucleus formation for phase transition without volume change

    CERN Document Server

    Mori, Atsushi

    2013-01-01

    A question is given on the form n({\\mu}_{\\beta}-{\\mu}_{\\alpha}) for the volume term of work of formation of critical nucleus. Here, n is the number of molecule undergone the phase transition, {\\mu} denotes the chemical potential, {\\alpha} and {\\beta} represent the parent and nucleating phases, respectively. In this paper we concentrate phase transition without volume change. We have calculated the volume term in terms of the chemical potential difference {\\mu}_{re}-{\\mu}_{eq}$ for this case. Here, {\\mu}_{re} is the chemical potential of the reservoir and {\\mu}_{eq} that at the phase transition. We have W_{vol} = -[({\\kappa}_{\\beta}-{\\kappa}_{\\alpha})/(2v_{eq}^2)] ({\\mu}_{re}-{\\mu}_{eq})^2 V_{\\beta} with {\\kappa} denoting the isothermal compressibility, v_{eq} being the molecular volume at the phase transition, V_{\\beta} the volume of the nucleus.

  20. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-09-15

    Contrary to other claims, we argue that bulk viscosity associated with the interactions of non- relativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk-viscosity effects of a weakly interacting mixture of relativistic and nonrelativistic particles.