WorldWideScience

Sample records for bulk chemical potentials

  1. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials

    Science.gov (United States)

    de las Heras, Daniel; Schmidt, Matthias

    2015-05-01

    We give a full account of a recently proposed theory that explicitly relates the bulk phase diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines (sedimentation paths) in the chemical potential representation of the bulk phase diagram. From the analysis of various standard topologies of bulk phase diagrams, we conclude that the corresponding sedimentation stacking diagrams can be very rich, even more so when finite sample height is taken into account. We apply the theory to obtain the stacking diagram of a mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase diagrams in the plane of chemical potentials in order to facilitate the practical application of our concept, which also generalizes to multi-component mixtures.

  2. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  3. Shear viscosity, bulk viscosity, and relaxation times of causal dissipative relativistic fluid-dynamics at finite temperature and chemical potential

    Science.gov (United States)

    Huang, Xu-Guang; Koide, Tomoi

    2012-09-01

    The microscopic formulas for the shear viscosity η, the bulk viscosity ζ, and the corresponding relaxation times τπ and τΠ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potential by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure. We show that, when the operator definition for the bulk viscous pressure Π is appropriately chosen, the leading-order result of the ratio, ζ over τΠ, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al. (2008) [8] by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.

  4. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    OpenAIRE

    M. Patel; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van, L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified organisms. Apart from white biotechnology, also conventional chemistry is involved in all processes. All white biotechnology products are compared to functionally equivalent petrochemical products. T...

  5. Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources. The Potential of White Biotechnology. The BREW Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.; Crank, M.; Dornburg, V.; Hermann, B.; Roes, L. [Department of Science, Technology and Society NWS, Utrecht University, Utrecht (Netherlands); Huesing, B. [Fraunhofer Institute for Systems and Innovation Research FhG-ISl, Karlsruhe (Germany); Overbeek, L. [Plant Research International PRI, Wageningen (Netherlands); Terragni, F.; Recchia, E. [CERISS, Centro per I' Educazione, la Ricerca, I' lnformazione su Scienza e Society, Milan (Italy)

    2006-09-15

    This study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. The main purpose of Chapter 2 is to provide an overview of emerging key White Biotechnology products and to explain which chemicals could be produced on their basis. For a selection of these products, detailed environmental and economic assessments are conducted in Chapter 3 (in specific terms, i.e. per tonne of product). Chapter 3 discusses also the so-called Generic Approach which is the methodology we developed and applied to assess future processes and processes, for which very little information is available. In Chapter 4, three scenario projections are developed for Europe (EU-25), thereby assuming benign, moderate and disadvantageous conditions for bio-based chemicals. The purpose of this chapter is hence to understand to which extent restructuring of the chemical sector might occur under which conditions. In Chapter 5, the risks related to the use of White Biotechnology are addressed. The main purpose of this chapter is to give insight into the main risk components influencing the overall risk and of the knowledge gaps. Both conventional risks (e.g., human toxicity and accidents) and risks related to generic modification (e.g., horizontal gene transfer) are analyzed. Since the public perception may play an important role for the implementation of White Biotechnology on a large scale, these issues are discussed in

  6. Gravitational potential wells and the cosmic bulk flow

    CERN Document Server

    Kumar, Abhinav; Feldman, Hume A; Watkins, Richard

    2015-01-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales $>10\\ h^{-1}$Mpc.

  7. Gravitational potential wells and the cosmic bulk flow

    Science.gov (United States)

    Wang, Yuyu; Kumar, Abhinav; Feldman, Hume; Watkins, Richard

    2016-03-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales > 10h-1 Mpc.

  8. Perfect Actions with Chemical Potential

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We show how to include a chemical potential \\mu in perfect lattice actions. It turns out that the standard procedure of multiplying the quark fields \\Psi, an example, the case of free fermions with chemical potential is worked out explicitly. Even after truncation, cut-off effects in the pressure and the baryon density are small. Using a (quasi-)perfect action, numerical QCD simulations for non-zero chemical potential become more powerful, because coarse lattices are sufficient for extracting continuum physics.

  9. Bulk micromachining of Si by metal-assisted chemical etching.

    Science.gov (United States)

    Kim, Sang-Mi; Khang, Dahl-Young

    2014-09-24

    Bulk micromachining of Si is demonstrated by the well-known metal-assisted chemical etching (MaCE). Si microstructures, having lateral dimension from 5 μm up to millimeters, are successfully sculpted deeply into Si substrate, as deep as >100 μm. The key ingredient of this success is found to be the optimizations of catalyst metal type and its morphology. Combining the respective advantages of Ag and Au in the MaCE as a Ag/Au bilayer configuration leads to quite stable etch reaction upon a prolonged etch duration up to >5 h. Further, the permeable nature of the optimized Ag/Au bilayer metal catalyst enables the etching of pattern features having very large lateral dimension. Problems such as the generation of micro/nanostructures and chemical attacks on the top of pattern surface are successfully overcome by process optimizations such as post-partum sonication treatment and etchant formulation control. The method can also be successful to vertical micromachining of Si substrate having other crystal orientations than Si(100), such as Si(110) and Si(111). The simple, easy, and low-cost nature of present approach may be a great help in bulk micromachining of Si for various applications such as microelectromechanical system (MEMS), micro total analysis system (μTAS), and so forth. PMID:24820931

  10. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change

    NARCIS (Netherlands)

    Hermann, B.G.; Blok, K.; Patel, M.K.

    2007-01-01

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and

  11. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.;

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  12. Microalgae for the production of bulk chemicals and biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M.

    2010-01-01

    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the

  13. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change

    OpenAIRE

    Hermann, B.G.; de Blok, K; Patel, M.K. (Martin)

    2007-01-01

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechno...

  14. Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals

    NARCIS (Netherlands)

    Angelici, C.; Weckhuysen, B.M.; Bruijnincx, P.C.A.

    2013-01-01

    The development of new and improved processes for the synthesis of bio-based chemicals is one of the scientific challenges of our time. These new discoveries are not only important from an environmental point of view, but also represent an important economic opportunity, provided that the developed

  15. Sustainable Production of Bulk Chemicals by Application of “White Biotechnology”

    NARCIS (Netherlands)

    Patel, M.K.; Dornburg, V.; Hermann, B.G.; Shen, L.; Overbeek, van L.S.

    2008-01-01

    Abstract Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bact

  16. A Petrologic and bulk Chemical Characterization of the Unequilibrated Ordinary Chondrite Northwest Africa 5717

    Science.gov (United States)

    Bigolski, J. N.; Friedrich, J. M.; Weisberg, M. K.; O'Keefe, M.-C.

    2014-09-01

    We examine the chemical group affinities of Northwest Africa 5717 (Type 3.05) in terms of its petrologic and bulk chemical characteristics and test its apparent dual lithology. Preliminary data suggest it to be related to L- and LL-chondrites.

  17. Tuning Chemical Potential in the Dirac Cone by Compositional Engineering

    OpenAIRE

    Gopal, R. K.; Singh, Sourabh; Sarkar, Jit; Mitra, Chiranjib

    2016-01-01

    We report the successful formation of bulk insulating ternary topological insulators candidate Bi2Se2Te (BST) by pulsed laser deposition technique. The films were deposited with sequential ablation of separate Bi2Se3 (BS) and Bi2Te3 (BT) targets. From the X-ray diffraction analysis and temperature dependent resistivity we were able to conclude that the as grown thin films have ordered chalcogen layers and the chemical potential in these thin films lie in the bulk gap. To realize entirely topo...

  18. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  19. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation. PMID:18093731

  20. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  1. The potential and problems of bulk irradiation in the Philippines

    International Nuclear Information System (INIS)

    Radiation as a processing tool has been adopted in the U.S. and other developed countries. Radiation processing of products on a commercial scale is feasible in the Philippines. A multi-purpose irradiation facility can provide the following services: 1) sterilization of medical and other products; 2) readily available supply of adequately sterilized disposables; 3) pasteurization of food and disinfestation of grains, tobacco, and lumber; 4) improvement in the quality of plywood, veneer and electric cable products; 5) treatment of effluents of leather, mining and textile industries; and 6) development of packaging materials and new chemicals. The Philippines has approximately 750 government and private hospitals with a total bed capacity of 45,000. Those hospitals require numerous sterile medical supplies for daily use and most of these medical products and devices are made of heat-sensitive thermoplastics which cannot be steam sterilized, thus radiation sterilization could be used instead. Some medical products that can be subjected to radiation sterilization are: 1) plastic administration sets; 2) disposable syringes and needles; 3) plastic containers and packaging materials; 4) talcum powder; 5) absorbent cotton; 6) sutures; and 7) other products such as catheters, gloves, petri dishes, etc. Food irradiation as a technique of food preservation utilizes ionizing radiation from large radiation sources. Irradiation can extend the market life of fresh fruits such as bananas, papayas and mangoes by controlling the rate of ripening. Vegetable crops like onion, ginger and garlic can also be irradiated to extend their shelf life. A dose of 15-50 Kr can control weevil and beetles infestation of grains and other seeds during the post harvest storage. Still there are problems existing, the public acceptance of irradiated food and the non existence of international trade of irradiated food

  2. The potential for chemical evolution on Titan

    Science.gov (United States)

    Beauchamp, P. M.; Lunine, J. I.; Welch, C.

    2002-01-01

    Sampling of organics to determine oxygen content, extent of acetylene polymerization, existence of chiral molecules and enantiomeric excesses, and searches for specific polymer products, would be of interest in assessing how organic chemistry evolves toward biochemistry. Such efforts would require fairly sophisticated chemical analyses from landed missions. This paper examines this chemistry and the potential instruments that could distinguish chemical evolution.

  3. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  4. Breaking phylogenetic barriers for fine and bulk chemical products in engineered Saccharomyces cerevisiae

    OpenAIRE

    Codazzi,

    2011-01-01

    Industrial biotechnologies allow today to obtain both fine and bulk chemicals and yeasts as cell factories can produce many products belonging to both field (Branduardi et al., 2008, Porro and Branduardi, 2009). Among yeasts, Saccharomyces cerevisiae still represents the microorganism of election to develop such cell factories. As regard bioethanol production, yeasts utilization is well established for its natural fermentation ability, but new generation biofuels require ...

  5. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition

    OpenAIRE

    Friel, I.; Clewes, S L; Dhillon, H. K.; Perkins, N.; Twitchen, D. J.; Scarsbrook, G. A.

    2009-01-01

    In order to improve the performance of existing technologies based on single crystal diamond grown by chemical vapour deposition (CVD), and to open up new technologies in fields such as quantum computing or solid state and semiconductor disc lasers, control over surface and bulk crystalline quality is of great importance. Inductively coupled plasma (ICP) etching using an Ar/Cl gas mixture is demonstrated to remove sub-surface damage of mechanically processed surfaces, whilst maintaining macro...

  6. Risk factors affecting chemical and bacteriological quality of bulk tank milk in Kerman, Iran

    OpenAIRE

    Mansouri-Najand, Ladan; Rezaii, Zeinab

    2015-01-01

    Milk is often described as a complete food because it contains protein, sugar, fat, vitamins, and minerals. This study was performed to investigate risk factors affecting chemical and bacteriological quality of bulk tank milk. According to the following conducted experiments, the milk was divided into two standard and non-standard groups. Then, effect of risk factors on making the samples non-standard was studied. Risk factors such as type of milk delivery unit, distance of cattle farm from p...

  7. An Approach to Calculate Mineralś Bulk Moduli KS from Chemical Composition and Density ρ

    Science.gov (United States)

    Breuer, S.; Schilling, F. R.; Mueller, B.; Drüppel, K.

    2015-12-01

    The elastic properties of minerals are fundamental parameters for technical and geotechnical applications and an important research topic towards a better understanding of the Eart&hacute;s interior. Published elastic properties, chemical composition, and density data of 86 minerals (total of 258 data including properties of minerals at various p, T conditions) were collected into a database. It was used to test different hypotheses about relationships between these properties (e.g. water content in minerals and their Poisson's ratio). Furthermore, a scheme to model the average elastic properties, i.e. the bulk modulus KS, based on mineral density and composition was developed. Birc&hacute;s law, a linearity between density ρ and wave velocity (e.g. vp.), is frequently used in seismic and seismology to derive density of the Eart&hacute;s interior from seismic velocities. Applying the compiled mineral data contradicts the use of a simple velocity-density relation (e.g. Gardneŕs relation, 1974). The presented model-approach to estimate the mineralś bulk moduli Ks (as Voigt-Reuss-Hill average) is based on the idea of pressure-temperature (p-T) dependent ionś bulk moduli. Using a multi-exponential regression to ascertain the ionś bulk moduli and by applying an exponential scaling with density ρ, their bulk moduli could be modelled. As a result, > 88 % of the 258 bulk moduli data are predicted with an uncertainty of < 20 % compared to published values. Compared to other models (e.g. Anderson et al. 1970 and Anderson & Nafe 1965), the here presented approach to model the bulk moduli only requires the density ρ and chemical composition of the mineral and is not limited to a specific group of minerals, composition, or structure. In addition to this, by using the pressure and temperature dependent density ρ(p, T), it is possible to predict bulk moduli for varying p-T conditions. References:Gardner, G.H.F, Gardner, L.W. and Gregory, A.R. (1974). Geophysics, 39, No. 6

  8. The equation of state of QCD at finite chemical potential

    CERN Document Server

    Gupta, Sourendu; Majumdar, Pushan

    2014-01-01

    We obtain the baryon number density, n, and the excess contribution to the pressure, Delta P, at finite chemical potential, mu_B, and temperature, T, by resumming the Taylor series expansion in a lattice computation with lattice spacing of 1/(4T) and two flavours of quarks at three different quark masses. The method proceeds by giving a critical mu_B and limits on the critical exponent, and permits reliable estimations of the errors in resummed quantities. We find that n and Delta P are insensitive to the quark mass. We also report the bulk isothermal compressibility, kappa, over a range of T and mu_B.

  9. Chemical-Sensing Cables Detect Potential Threats

    Science.gov (United States)

    2007-01-01

    Intelligent Optical Systems Inc. (IOS) completed Phase I and II Small Business Innovation Research (SBIR) contracts with NASA's Langley Research Center to develop moisture- and pH-sensitive sensors to detect corrosion or pre-corrosive conditions, warning of potentially dangerous conditions before significant structural damage occurs. This new type of sensor uses a specially manufactured optical fiber whose entire length is chemically sensitive, changing color in response to contact with its target, and demonstrated to detect potentially corrosive moisture incursions to within 2 cm. After completing the work with NASA, the company received a Defense Advanced Research Projects Agency (DARPA) Phase III SBIR to develop the sensors further for detecting chemical warfare agents, for which they proved just as successful. The company then worked with the U.S. Department of Defense (DoD) to fine tune the sensors for detecting potential threats, such as toxic industrial compounds and nerve agents. In addition to the work with government agencies, Intelligent Optical Systems has sold the chemically sensitive fiber optic cables to major automotive and aerospace companies, who are finding a variety of uses for the devices. Marketed under the brand name Distributed Intrinsic Chemical Agent Sensing and Transmission (DICAST), these unique continuous-cable fiber optic chemical sensors can serve in a variety of applications: Corrosive-condition monitoring, aiding experimentation with nontraditional power sources, as an economical means of detecting chemical release in large facilities, as an inexpensive "alarm" systems to alert the user to a change in the chemical environment anywhere along the cable, or in distance-resolved optical time domain reflectometry systems to provide detailed profiles of chemical concentration versus length.

  10. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  11. Wilson fermions with imaginary chemical potential

    CERN Document Server

    Nagata, Keitaro; Nakagawa, Yoshiyuki; Motoki, Shinji; Saito, Takuya; Hamada, Masatoshi

    2009-01-01

    We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition for $\\beta = 1.9, \\mu_I = 0.2618, \\kappa=0.1388$ on $8^3\\times 4$ lattice volume We also present a result of the matrix reduction formula for the Wilson fermion.

  12. Improved Lattice Actions with Chemical Potential

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.

  13. Etchant wettability in bulk micromachining of Si by metal-assisted chemical etching

    Science.gov (United States)

    Yoon, Sung-Soo; Lee, Yeong Bahl; Khang, Dahl-Young

    2016-05-01

    Wet bulk micromachining of Si by metal-assisted chemical etching (MaCE) has successfully been demonstrated. Based on the mechanism of defective etching results from Ag and Au metal catalyst experiments, the wettability of etchant solution, in addition to metal type, has been found to have profound effect on the etching process. Addition of low surface tension co-solvent, ethanol in this work, into conventional etchant formulation has enabled complete wetting of etchant on surface, which prevents hydrogen bubble attachment on sample surface during the etching. The complete elimination of bubble attachment guarantees very uniform etch rate on all over the sample surface, and thus prevents premature fragmentation/rupture of catalyst metal layer. Under the optimized etching conditions, the MaCE could be done for up to 12 h without any noticeable film rupture and thus etching defects. Thanks to very smooth surface of the etched patterns, conformal contact and direct bonding of elastomer on such surface has been easily accomplished. The method demonstrated here can pave the way for application of simple, low-cost MaCE process in the bulk micromachining of Si for various applications.

  14. Seeded growth of bulk ZnO by chemical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Skupinski, Pawel; Mycielski, Andrzej; Paszkowicz, Wojciech; Lusakowska, Elzbieta; Jakiela, Rafal; Witkowski, Bartlomiej [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Grasza, Krzysztof [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-991 Warsaw (Poland); Tymicki, Emil [Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-991 Warsaw (Poland)

    2010-06-15

    The results of the seeded growth of bulk zinc oxide by chemical vapor transport (CVT) are presented. Hydrogen is used as the transport agent. Crystals with three different crystallographic directions were obtained, Zn-terminated (0001), O-terminated (000-1), and non-polar (1-100). The tendency to maintain the crystallographic orientation of seed was observed. The investigation shows that the quality of the growing crystal depends on the crystallographic orientation and the polarity of the seed. Three kinds of macroscopic defects, not yet reported for ZnO crystals, were observed, (i) flat voids with transverse size of about 200 {mu}m, (ii) spherical voids or ''bubbles'' about 10 {mu}m in diameter, and (iii) the micropipes. The nature of these defects is discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Steam bubble growth in the bulk of overheated N2O4-NO chemically reacting solution

    International Nuclear Information System (INIS)

    A mathematical model and numerical investigation of the vapour bubble growth that begins from the bubble critical size at the positive radius fluctuation during the initial moment in the bulk of the overheated N2O4-NO liquid solution are presented. The mathematical model has been stated under the following assumptions: the movement of a bubble wall and surrounding liquid is spherically symmetrical; thermal parameters in the bubble are distributed uniformly; the vapour phase follows the ideal gas law; heat transfer is not affected by the compressibility of liquid; if dissolution of light components is determined by Henry's law, then Hertz-Knudsen's equation determines the velocity of phase transition for a N2O4 component. The mathematical model presented can be applied to another fluids, including chemically reacting ones

  16. Deep and vertical silicon bulk micromachining using metal assisted chemical etching

    International Nuclear Information System (INIS)

    In this paper, a newfound and simple silicon bulk micromachining process based on metal-assisted chemical etching (MaCE) is proposed which opens a whole new field of research in MEMS technology. This method is anisotropic and by controlling the etching parameters, deep vertical etching, relative to substrate surface, can be achieved in micrometer size for 〈1 0 0〉 oriented Si wafer. By utilizing gold as a catalyst and a photoresist layer as the single mask layer for etching, 60 µm deep gyroscope micromachined structures have been fabricated for 2 µm features. The results indicate that MaCE could be the only wet etching method comparable to conventional dry etching recipes in terms of achievable etch rate, aspect ratio, verticality and side wall roughness. It also does not need a vacuum chamber and the other costly instruments associated with dry etching techniques. (paper)

  17. Aspects of Holographic Entanglement at Finite Temperature and Chemical Potential

    CERN Document Server

    Kundu, Sandipan

    2016-01-01

    We investigate the behavior of entanglement entropy at finite temperature and chemical potential for strongly coupled large-N gauge theories in $d$-dimensions ($d\\ge 3$) that are dual to Anti-de Sitter-Reissner-Nordstrom geometries in $(d+1)-$dimensions, in the context of gauge-gravity duality. We develop systematic expansions based on the Ryu-Takayanagi prescription that enable us to derive analytic expressions for entanglement entropy and mutual information in different regimes of interest. Consequently, we identify the specific regions of the bulk geometry that contribute most significantly to the entanglement entropy of the boundary theory at different limits. We define a scale, dubbed as the effective temperature, which determines the behavior of entanglement in different regimes. At high effective temperature, entanglement entropy is dominated by the thermodynamic entropy, however, mutual information subtracts out this contribution and measures the actual quantum entanglement. Finally, we study the enta...

  18. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  19. Nonlocal PNJL model and imaginary chemical potential

    International Nuclear Information System (INIS)

    In order to get constraints for the modeling of the QCD phase diagram at real chemical potential (μR), we investigate the phase structure of two-flavor QCD at finite imaginary chemical potential (μI) and temperature (T) using the nonlocal Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model including quark wave function renormalization. We show that this nonlocal PNJL model reproduces characteristic properties of QCD such as the Roberge-Weiss (RW) periodicity and the RW transition at finite θ=μI/T. To reproduce lattice QCD data of crossover lines for the chiral and deconfinement transitions near θ=π/3, we introduce additional local and nonlocal vector-type four-quark interactions in this model. These interactions have strong influences on the thermodynamics at moderate and high μR. Details of wave function renormalization do not affect the crossover lines, but have a significant impact on the determination of the strength of the nonlocal vector-type four-quark interaction.

  20. Chemical and isotopic characterisation of bulk deposition in the Louros basin (Epirus, Greece)

    Science.gov (United States)

    D'Alessandro, W.; Katsanou, K.; Lambrakis, N.; Bellomo, S.; Brusca, L.; Liotta, M.

    2013-10-01

    About 120 rainwater samples were collected through a network of five bulk collectors in the area of the Louros basin (Epirus, Greece) during the wet season from October 2008 to August 2009. They were analysed for their isotopic (δD and δ18O) and chemical (H+, Na+, K+, Mg2 +, Ca2 +, NH4+, F-, Cl-, Br-, NO3-, SO42 -) composition. A local meteoric water line (δD‰ = 5.80 ± 0.02 δ18O‰ + 0.02 ± 0.12) and a local isotopic lapse rate (- 0.18 δ18O‰/100 m) were obtained considering the volume-weighted means of the five sampling sites. These results agree well with those obtained in nearby areas. The chemical composition of the samples allows to identify an almost entirely marine origin for chloride and sodium with decreasing deposition values at increasing distance from the coast. Nitrate and ammonium are almost completely of anthropogenic origin, calcium and potassium are overwhelmingly geogenic, sulphate has a prevailingly anthropogenic origin with a significant marine contribution and magnesium has a mixed marine and soil dust origin. Finally, as for most of the Mediterranean area, rainwater acidity is buffered by the dissolution of the abundant geogenic carbonate aerosol.

  1. Synthesis of Bulk BC8 Silicon Allotrope by Direct Transformation and Reduced-Pressure Chemical Pathways.

    Science.gov (United States)

    Kurakevych, Oleksandr O; Le Godec, Yann; Crichton, Wilson A; Guignard, Jérémy; Strobel, Timothy A; Zhang, Haidong; Liu, Hanyu; Coelho Diogo, Cristina; Polian, Alain; Menguy, Nicolas; Juhl, Stephen J; Gervais, Christel

    2016-09-01

    Phase-pure samples of a metastable allotrope of silicon, Si-III or BC8, were synthesized by direct elemental transformation at 14 GPa and ∼900 K and also at significantly reduced pressure in the Na-Si system at 9.5 GPa by quenching from high temperatures ∼1000 K. Pure sintered polycrystalline ingots with dimensions ranging from 0.5 to 2 mm can be easily recovered at ambient conditions. The chemical route also allowed us to decrease the synthetic pressures to as low as 7 GPa, while pressures required for direct phase transition in elemental silicon are significantly higher. In situ control of the synthetic protocol, using synchrotron radiation, allowed us to observe the underlying mechanism of chemical interactions and phase transformations in the Na-Si system. Detailed characterization of Si-III using X-ray diffraction, Raman spectroscopy, (29)Si NMR spectroscopy, and transmission electron microscopy are discussed. These large-volume syntheses at significantly reduced pressures extend the range of possible future bulk characterization methods and applications. PMID:27532223

  2. Dual condensates at finite isospin chemical potential

    CERN Document Server

    Zhang, Zhao

    2015-01-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential $\\mu_I$ in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for $\\mu_I>{m_\\pi}/{2}$ under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with $T$ is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with $T$ at low temperatures due to the influence of pion condensate. We thus argue that in QCD the critical temperature extracting from a dual observable may have nothing to do with the quark confinement-deconfinement transition if the quark mass is very small.

  3. Finite density QCD via imaginary chemical potential

    CERN Document Server

    D'Elia, M

    2003-01-01

    We study QCD at nonzero temperature and baryon density in the framework of the analytic continuation from imaginary chemical potential. We carry out simulations of QCD with four flavor of staggered fermions, and reconstruct the phase diagram in the temperature-imaginary \\mu plane. We consider ans\\"atze for the analytic continuation of the critical line and other observables motivated both by theoretical considerations and mean field calculations in four fermion models and random matrix theory. We determine the critical line, and the analytic continuation of the chiral condensate, up to \\mu_B approx. 500 MeV. The results are in qualitative agreement with the predictions of model field theories, and consistent with a first order chiral transition. The correlation between the chiral transition and the deconfinement transition observed at \\mu=0 persists at nonzero density.

  4. Potential of advance NDT method for water measurement in a bulk paper-recycling

    International Nuclear Information System (INIS)

    Paper recycling industries usually buy their raw material from suppliers. Bulk used paper supplied to recycling industry may contain water in their internal voids. This is because the price of the used paper is currently based on their weight and has a huge potential of suppliers to add water to increase the price. The aims of our experiment are to establish the neutron calibration curve and to develop a correction factor of weight measurement during purchasing. This study presents an advance non-destructive testing technique for rapid and in-situ measurement of water content in a bulk used paper. A fast neutron source (Am-Be 241) and a portable backscattering neutron detector were used for water measurement. The experiments were conducted by measuring a series of wet paper added with certain amount of water. As a result, a neutron calibration curve for water measurement in bulk used paper was established. A total of six bands for weight correction based on the calibration curve have been proposed. (author)

  5. An interatomic potential for studying CuZr bulk metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Kenoufi, Abdel; Bailey, Nicholas;

    2007-01-01

    The mechanical properties of BMGs are remarkably different from the ones of ordinary metallic alloys due to the atomic level disorder in the glassy state. Unlike crystalline materials plastic deformation in metallic glasses cannot be caused by lattice defects but takes place through atomic......-scale deformation events and may furthermore involve localization through formation of shear bands. In this paper, an Effective Medium Theory (EMT) potential optimized for modeling the mechanical and thermodynamic properties of CuZr bulk metallic glass is studied. The late transition metals crystallizing in close......-packed structures, and their alloys, while still allowing simulations with millions of atoms is discussed....

  6. Maximum work configurations of finite potential capacity reservoir chemical engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An isothermal endoreversible chemical engine operating between the finite potential capacity high-chemical-potential reservoir and the infinite potential capacity low-chemical-potential reservoir has been studied in this work.Optimal control theory was applied to determine the optimal cycle configurations corresponding to the maximum work output per cycle for the fixed total cycle time and a universal mass transfer law.Analyses of special examples showed that the optimal cycle configuration with the mass transfer law g∝△μ,where△μis the chemical potential difference,is an isothermal endoreversible chemical engine cycle,in which the chemical potential(or the concentration) of the key component in the working substance of low-chemical-potential side is a constant,while the chemical potentials(or the concentrations) of the key component in the finite potential capacity high-chemical-potential reservoir and the corresponding side working substance change nonlinearly with time,and the difference of the chemical potentials(or the ratio of the concentrations) of the key component between the high-chemical-potential reservoir and the working substance is a constant.While the optimal cycle configuration with the mass transfer law g∝△μc,where △μc is the concentration difference,is different from that with the mass transfer law g∝△μ significantly.When the high-chemical-potential reservoir is also an infinite potential capacity chemical potential reservoir,the optimal cycle configuration of the isothermal endoreversible chemical engine consists of two constant chemical potential branches and two instantaneous constant mass-flux branches,which is independent of the mass transfer law.The object studied in this paper is general,and the results can provide some guidelines for optimal design and operation of real chemical engines.

  7. Bulk Chemical Composition of the Ningqiang Carbonaceous Chondrite:An Issue of Classification

    Institute of Scientific and Technical Information of China (English)

    WANG Guiqin; LIN Yangting

    2007-01-01

    The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and lowtemperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5)ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.

  8. Dual condensates at finite isospin chemical potential

    Directory of Open Access Journals (Sweden)

    Zhao Zhang

    2016-02-01

    Full Text Available The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI>mπ/2 under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temperatures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always rises most steeply at the chiral transition temperature, which is consistent with the previous results in Nambu–Jona-Lasinio (NJL model and its variants without considering the center symmetry. Since both quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is difficult to clarify the deconfinement transition from the dual condensates in this situation within this model.

  9. Dual condensates at finite isospin chemical potential

    Science.gov (United States)

    Zhang, Zhao; Miao, Qing

    2016-02-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI >mπ / 2 under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temperatures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always rises most steeply at the chiral transition temperature, which is consistent with the previous results in Nambu-Jona-Lasinio (NJL) model and its variants without considering the center symmetry. Since both quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is difficult to clarify the deconfinement transition from the dual condensates in this situation within this model.

  10. Innovations Help Chemical Makers Improve Growing Potential

    Institute of Scientific and Technical Information of China (English)

    Zhong Weike

    2007-01-01

    @@ With overheated construction all over the country, China's GDP continued its fast growth in the first half. After suffering an explosion at a Jilin aniline facility, another explosion at Cangzhou TDI and a big outbreak of water pollution at Wuxi, the chemical raw materials and chemical manufacturing sectors are getting strict supervision from the central government.

  11. Linear Chemical Potential Dependence of Two-Quark Condensate

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    By differentiating the inverse dressed quark propagator at finite chemical potential μ with respect to μ, the linear response of the dressed quark propagator to the chemical potential can be obtained. From this we extract a modelindependent formula for the linear chemical potential dependence of the in-medium two-quark condensate and show by two independent methods (explicit calculation and Lorentz covariance arguments) that the first-order contribution in μto the in-medium two-quark condensate vanishes identically. Therefore if one wants to study the in-medium two-quark condensate one should expand to at least the second order in the chemical potential μ.

  12. A Thermal Field Theory with Non-uniform Chemical Potential

    CERN Document Server

    Arai, Masato; Sasaki, Shin

    2013-01-01

    We investigate thermal one-loop effective potentials in multi-flavor models with chemical potentials. We study four-dimensional models in which each flavor have different global U(1) charges. Accordingly they have different chemical potentials. We call these "non-uniform chemical potentials," which are organized into a diagonal matrix \\mu. The mass matrix at a vacuum does not commute with \\mu. We find that the effective potential is divided into three parts. The first part is the Coleman-Weinberg potential. The UV divergence resides only in this part. The second is the correction to the Coleman-Weinberg potential that is independent of temperature, and the third depends on both temperature and \\mu. Our result is a generalization of the thermal potentials in previous studies for models with single and multi-flavors with (uniform) chemical potentials and reproduces all the known results correctly.

  13. Fitting of accurate interatomic pair potentials for bulk metallic alloys using unrelaxed LDA energies

    International Nuclear Information System (INIS)

    We present a general and simple method for obtaining accurate, local density approximation (LDA-) quality interatomic potentials for a large class of bulk metallic alloys. The method is based on our analysis of atomic relaxation, which reveals that the energy released in the relaxation process can be approximated by calculating the epitaxially constrained energies of the constituents A and B. Therefore, the pair potential is fitted to the LDA-calculated epitaxial energies of the constituents (to capture the relaxation energies), and to the unrelaxed energies of ordered AnBm compounds (to capture the fixed-lattice open-quotes chemicalclose quotes energy). The usefulness of our approach is demonstrated by carrying out this procedure for the Cu1-xAux alloy system. The resulting pair potential reproduces the relaxed LDA formation energies of ordered compounds rather accurately, even though we used only unrelaxed energies as input. We also predict phonon spectra of the elements and ordered compounds in very good agreement with the LDA results. From the calculations for ∼10000 atom supercells representing the random alloy, we obtain the bond lengths and relaxation energies of the random phase that are not accessible to direct LDA calculations. We predict that, while in Cu-rich alloys the Cu-Cu bond is shorter than the Cu-Au bond, at higher Au compositions this order is switched. Furthermore, we find that Au-rich Cu1-xAux alloys have ground states that correspond to (001) superlattices of n monolayers of fcc Au stacked on m monolayers of the L10 CuAu-I structure. The potential developed in this work is available at the site http://www.sst.nrel.gov/data/download.html for interested users. copyright 1999 The American Physical Society

  14. Theory of the Kinetics of Chemical Potentials in Heterogeneous Catalysis

    OpenAIRE

    Cheng, Jun; Hu, P

    2011-01-01

    Simple and powerful: The reaction kinetics at surfaces of heterogeneous catalysts is reformulated in terms of the involved chemical potentials. Based on this formulism, an approach of searching for good catalysts is proposed without recourse to extensive calculations of reaction barriers and detailed kinetic analyses. (see picture; R=reactant, I=surface intermediate, P=product, and =standard chemical potential).

  15. Chemical Potential Dependence of Dressed-Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; HOU Feng-Yao; SUN Wei-Min; WU Xiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed. Of particular interest here is to give a generalrecipe to find without arbitrariness the solution representing the "Wigner" phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  16. Chemical Potential Dependence of Dressed-Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; HOUFeng-Yao; SUNWei-Min; WUXiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed.Of particular interest here is to give a general recipe to find without arbitrariness the solution representing the “Wigner”phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  17. Use of neutron reflection method for chemical analysis of bulk samples

    International Nuclear Information System (INIS)

    The aim of our study carried out during the last 5-6 years was to find the hidden organic materials (for example explosives or drugs) in bulk objects with the neutron reflection and activation methods. The applicability of the concept of the differential σβ and integral Σβ reflection cross sections is also demonstrated. Further investigations are also recommended to improve the neutron reflection method. (author)

  18. Development of Fe-based bulk metallic glasses as potential biomaterials.

    Science.gov (United States)

    Li, Shidan; Wei, Qin; Li, Qiang; Jiang, Bingliang; Chen, You; Sun, Yanfei

    2015-01-01

    A new series of Fe80-x-yCrxMoyP13C7 (x = 10, y = 10; x = 20, y = 5; x = 2 0, y = 10, all in at.%) bulk metallic glasses (BMGs) with the maximum diameter of 6mm have been developed for biomedical implant application by the combination method of fluxing treatment and J-quenching technique. The corrosion performance of the present Fe-based BMGs is investigated in both Hank's solution (pH = 7.4) and artificial saliva solution (pH = 6.3) at 37 °C by electrochemical measurements. The result indicates that the corrosion resistance of the present Fe-based BMGs in the above two simulated body solutions is much better than that of biomedical 316 L stainless steel (316 L SS), and approaching that of Ti6Al4V biomedical alloy (TC4). The concentrations of Fe, Ni and Cr ions released into the Hank's solution and artificial saliva solution from the present Fe-based BMGs after potentiodynamic polarization are significant lower than that released from 316 L SS. The biocompatibility of the present Fe-based BMGs is evaluated through the in vitro test of NIH3T3 cells culture in the present Fe-based BMG extraction media for 1, 3 and 5 days. The result indicates that the present Fe-based BMGs exhibit no cytotoxicity to NIH3T3 cells. And the test result of the cell adhesion and growth on the surface of the samples indicates that the present Fe-based BMGs exhibit the better cell viability compared with 316 L SS and TC4 biomedical alloys. The present Fe-based BMGs, especially Fe55Cr20Mo5P13C7 BMG, exhibit good glass formation ability, the high corrosion resistance and excellent biocompatibility, suggesting their promising potential as biomaterials. PMID:25953563

  19. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Science.gov (United States)

    2010-07-01

    ... *Alkylates *Alpha-Olefins Butane (all forms) *C-4 Hydrocarbons (Unsaturated) Calcium Stearate Caprolactam...-Ethylbutyraldehyde 2,2,4-Trimethyl-1,3-Pentanediol (b) Amine and Amide Organic Chemicals 2,4-Diaminotoluene...

  20. Two-color QCD with chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.

    2016-01-01

    The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.

  1. Relationship between Oxygen Chemical Potential and Steel Cleanliness

    Institute of Scientific and Technical Information of China (English)

    Mansour Soltanieh; Yousef Payandeh

    2005-01-01

    To investigate inclusion formation in each step during steel making process, several samples were taken in different steps of the production of steel at Mobarakeh Steel Co of Esfahan to measure the oxygen chemical potential of the molten steel in each stage. The chemical compositions of the inclusions in samples were investigated lby scanning electron microscope. The chemical composition of the slag was analyzed. With the use of thermodynamic calculations and chemical analysis of the melt, at the working temperature, the relationship between dissolved oxygen and other elements were determined. Finally, it was found that there is a close relationship between inclusions formed in each step with the oxygen partial pressure.

  2. Persistence and transport potential of chemicals in a multimedia environment

    Energy Technology Data Exchange (ETDEWEB)

    van de Meent, D.; McKone, T.E.; Parkerton, T.; Matthies, M.; Scheringer, M.; Wania, F.; Purdy, R.; Bennett, D.H.

    2000-02-01

    Persistence in the environment and potential for long-range transport are related since time in the environment is required for transport. A persistent chemical will travel longer distances than a reactive chemical that shares similar chemical properties. Scheringer (1997) has demonstrated the correlation between persistence and transport distance for different organic chemicals. However, this correlation is not sufficiently robust to predict one property from the other. Specific chemicals that are persistent mayor may not exhibit long-range transport potential. Persistence and long-range transport also present different societal concerns. Persistence concerns relate to the undesired possibility that chemicals produced and used now may somehow negatively affect future generations. Long-range transport concerns relate to the undesired presence of chemicals in areas where these compounds have not been used. Environmental policy decisions can be based on either or both considerations depending on the aim of the regulatory program. In this chapter, definitions and methods for quantifying persistence and transport potential of organic chemicals are proposed which will assist in the development of sound regulatory frameworks.

  3. Initiated-chemical vapor deposition of organosilicon layers: Monomer adsorption, bulk growth, and process window definition

    NARCIS (Netherlands)

    Aresta, G.; Palmans, J.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Organosilicon layers have been deposited from 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) by means of the initiated-chemical vapor deposition (i-CVD) technique in a deposition setup, ad hoc designed for the engineering of multilayer moisture permeation barriers. The application of Fourier

  4. Jet quenching and holographic thermalization with a chemical potential

    International Nuclear Information System (INIS)

    We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdSd+1 background for d=3 and d=4, which is characterized by the AdS-Reissner-Nordström-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with an energy comparable to the thermalization temperature and chemical potential in the medium travels further in the non-equilibrium plasma. The thermalization time obtained here by tracking a falling charged shell does not exhibit, generically, the same qualitative features as the one obtained studying non-local observables. This indicates that — holographically — the definition of thermalization time is observer dependent and there is no unambiguos definition

  5. High frequency bulk resonators for bio/chemical diagnostics and monitoring applications

    DEFF Research Database (Denmark)

    Cagliani, Alberto

    In the environmental monitoring eld there is a vast variety of possible applications for microfabricated MEMS sensors. As an example, a network of miniaturized sensors could detect toxic gases, harmful airbornes, explosives in air or, in liquid, monitor the quality of drinking water. The...... have been characterized in terms of electrical properties and mass sensing performance. Chemical and biological mass sensing experiments have been performed in order to investigate the behavior of these devices in dierent environments. The microresonators have been used to detect copper ions in...

  6. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  7. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Science.gov (United States)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2015-10-01

    We extend the definition of the electronic chemical potential (μe) and chemical hardness (ηe) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μe. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (-I), positive (-A), and zero values of the fractional charge (-(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  8. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    International Nuclear Information System (INIS)

    We extend the definition of the electronic chemical potential (μe) and chemical hardness (ηe) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μe. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness

  9. Cellular-signaling pathways unveil the carcinogenic potential of chemicals.

    Science.gov (United States)

    Hendriks, Giel; van de Water, Bob; Schoonen, Willem; Vrieling, Harry

    2013-06-01

    Most of the current in vitro carcinogenicity assays assess the potential carcinogenic properties of chemicals through the detection of inflicted DNA damage or subsequent chromosome damage and gene mutations. Unfortunately, these assays generally do not provide mechanistic insight into the reactive properties of a chemical. Upon chemical-induced damage of biomolecules, molecular sensors will activate general and damage-specific cellular response pathways that provide protection against the (geno)toxic and potential carcinogenic properties of chemicals. These cellular defense mechanisms include activation of cell-cycle checkpoints, DNA repair systems and induction of apoptosis or necrosis. Visualization of activated cellular-signaling pathways forms a powerful means to readily detect the genotoxic potential of chemical compounds and simultaneously gain insight into their reactive properties. Over the past years, various in vitro reporter assays have been developed that monitor activation of general and more specific cellular-signaling pathways, including the GreenScreen HC and ToxTracker assays. In this review we provide a perspective on how we can exploit activation of cellular signaling pathways to shed light on the mode of action of the chemical exposure and to develop sophisticated mechanism-based in vitro assays for cancer risk assessment. PMID:23339022

  10. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  11. Skyrmions in the presence of isospin chemical potential

    CERN Document Server

    Ponciano, J A

    2008-01-01

    We analyze the existence of localized finite energy topological excitations on top of the perturbative pion vacuum within the Skyrme model at finite isospin chemical potential and finite pion mass. We show that there is a critical isospin chemical potential $\\mu_I^c$ above which such solutions cease to exist. We find that $\\mu_I^c$ is closely related to the value of the pion mass. In particular for vanishing pion mass we obtain $\\mu_I^c=0$ in contradiction with some results recently reported in the literature. We also find that below $\\mui^c$ the skyrmion mass and baryon radius show, at least for the case of the hedgehog ansatz, only a mild dependence on the isospin chemical potential.

  12. QCD in One Dimension at Nonzero Chemical Potential

    CERN Document Server

    Ravagli, L

    2007-01-01

    Using an integration formula recently derived by Conrey, Farmer and Zirnbauer, we calculate the expectation value of the phase factor of the fermion determinant for the staggered lattice QCD action in one dimension. We show that the chemical potential can be absorbed into the quark masses; the theory is in the same chiral symmetry class as QCD in three dimensions at zero chemical potential. In the limit of a large number of colors and fixed number of lattice points, chiral symmetry is broken spontaneously, and our results are in agreement with expressions based on a chiral Lagrangian. In this limit, the eigenvalues of the Dirac operator are correlated according to random matrix theory for QCD in three dimensions. The discontinuity of the chiral condensate is due to an alternative to the Banks-Casher formula recently discovered for QCD in four dimensions at nonzero chemical potential. The effect of temperature on the average phase factor is discussed in a schematic random matrix model.

  13. Chemical potential-a quantity in search of recognition

    International Nuclear Information System (INIS)

    The chemical potential is a quantity for which students hardly have an intuitive feeling in contrast to other intensive quantities like pressure or temperature. Some students may believe that this is not really an insufficiency because the chemical potential seems to be essentially a quantity for chemists. We will try to show that the chemical potential does not merit its reputation as a difficult to understand quantity. Not only is it easy to grasp, it is a particularly intelligible quantity for which even the layman can develop a feeling. Moreover, this quantity is not only important for chemists. It is just as useful for describing physical phenomena and processes, such as phase transitions, the stratification of gases in a gravitational field and electric currents in semi-conductor junctions and nuclear reactions, to mention just a few

  14. Ti doping on the flux pinning and chemical stability against water of MgB2 bulk material

    International Nuclear Information System (INIS)

    Ti-doped MgB2 superconductors with different doping levels were prepared by solid-state reaction at ambient pressure. Jc of the samples changes with the doping level, with the best result achieved at x=0.1. At 5 K, the Jc reaches 2x106 A/cm2 in the self-field. In addition, degradation in water of Jc and irreversibility field (Hirr) of MgB2 bulks is significantly reduced by Ti doping. Microstructural analysis reveals that Ti mainly forms a thin TiB2 layer in the grain boundaries of MgB2. At the same time MgB2 grains are greatly refined, forming a strongly coupled nanoparticle structure. Our results show that the unique microstructure of the MgB2 nanoparticles with TiB2 nanograin boundaries may take the responsibility for the enhancement of the flux pinning and the chemical stability against water

  15. Chemical Potential Calculations In Dense Liquids Using Metadynamics

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2016-01-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  16. A new TiCuHfSi bulk metallic glass with potential for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: • A TiCuHfSi bulk metallic glass was designed based on binary deep eutectics. • The designed alloy exhibits excellent glass forming ability. • The alloy possesses excellent mechanical properties and corrosion resistance. • The BMG is promising in medical applications. - Abstract: A new Ti41.3Cu43.7Hf13.9Si1.1 bulk metallic glass (BMG), free of Ni, Al and Be elements, was designed using the proper mixing of binary deep eutectics. The alloy exhibited excellent glass forming ability (GFA) and could be cast into single glassy rod up to 3 mm in diameter by copper mould casting method. The appropriate atomic-size mismatch, the large negative heat of mixing among constituent elements, and the possible formation of glassy HfSiO4 facilitated its superior GFA. The BMG also showed good mechanical properties with fracture strength of 1685 MPa and Young’s modulus of 95 GPa as well as better corrosion resistance in both NaCl and Hank’s solutions, compared with pure Ti and Ti–6Al–4V alloy. The above results demonstrated that the developed BMG is promising in biomedical applications

  17. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    Data.gov (United States)

    U.S. Environmental Protection Agency — The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are...

  18. Molecular Dynamics Simulations of Solutions at Constant Chemical Potential

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2015-01-01

    Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, that range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, that influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the C$\\mu$MD method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$\\mu$MD method to the paradigmatic case of urea crystall...

  19. Chemical potential and dimensions of chain molecules in athermal environments

    Science.gov (United States)

    Escobedo, Fernando A.

    A recently developed method for the simulation of chemical potentials of chain molecules (EVALENCH) is applied here to obtain the chemical potential, the mean square end-to-end distance (R2n) and the mean square radius of gyration (R2g) of dilute chains in different athermal media. The environments considered in this work are a frozen network structure, a deformable network matrix and a monomeric solvent at various densities. The properties of all chain lengths smaller than a preset maximum are calculated in a single simulation. A novel method is also presented for locating and computing the fraction of sampling space available to append one segment of an existing chain. This method enhances the range of densities where simulations of chemical potential are feasible. Simulated chemical potentials are compared with the predictions of two theories; good agreement is found in both cases. We find that R2n and R2g are reduced as the density of the medium is increased (network or solvent), while they are increased when the network is frozen and as the monomeric solvent size is made larger than that of the chain sites. At the conditions studied here, no direct evidence of chain collapse is observed.

  20. A multivariate chemical map of industrial chemicals--assessment of various protocols for identification of chemicals of potential concern.

    Science.gov (United States)

    Stenberg, Mia; Linusson, Anna; Tysklind, Mats; Andersson, Patrik L

    2009-08-01

    In present study the Industrial chemical map was created, and investigated. Molecular descriptors were calculated for 56072 organic substances from the European inventory of existing commercial chemical substances (EINECS). The resulting multivariate dataset was subjected to principal component analysis (PCA), giving five principal components, mainly reflecting size, hydrophobicity, flexibility, halogenation and electronical properties. It is these five PCs that form the basis of the map of organic, industrial chemicals, the Industrial chemical map. The similarities and diversity in chemical characteristics of the substances in relation to their persistence (P), bioaccumulation (B) and long-range transport potential were then examined, by superimposing five sets of entries obtained from other relevant databases onto the Industrial chemical map. These sets displayed very similar diversity patterns in the map, although with a spread in all five PC vectors. Substances listed by the United Nations Environment Program as persistent organic pollutants (UNEP POPs) were on the other hand clearly grouped with respect to each of the five PCs. Illustrating similarities and differences in chemical properties are one of the strengths of the multivariate data analysis method, and to be able to make predictions of, and investigate new chemicals. Further, the results demonstrate that non-testing methods as read-across, based on molecular similarities, can reduce the requirements to test industrial chemicals, provided that they are applied carefully, in combination with sound chemical knowledge. PMID:19515399

  1. Injectable biomaterials for the treatment of stress urinary incontinence: their potential and pitfalls as urethral bulking agents.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2013-06-01

    Injectable urethral bulking agents composed of synthetic and biological biomaterials are minimally invasive treatment options for stress urinary incontinence (SUI). The development of an ideal urethral bulking agent remains challenging because of clinical concerns over biocompatibility and durability. Herein, the mechanical and biological features of injectable urethral biomaterials are investigated, with particular emphasis on their future potential as primary and secondary treatment options for SUI. A literature search for English language publications using the two online databases was performed. Keywords included "stress urinary incontinence", "urethral bulking agent" and "injectable biomaterial". A total of 98 articles were analysed, of which 45 were suitable for review based on clinical relevance and importance of content. Injectable biomaterials are associated with a lower cure rate and fewer postoperative complications than open surgery for SUI. They are frequently reserved as secondary treatment options for patients unwilling or medically unfit to undergo surgery. Glutaraldehyde cross-linked bovine collagen remains the most commonly injected biomaterial and has a cure rate of up to 53 %. Important clinical features of an injectable biomaterial are durability, biocompatibility and ease of administration, but achieving these requirements is challenging. In carefully selected patients, injectable biomaterials are feasible alternatives to open surgical procedures as primary and secondary treatment options for SUI. In future, higher cure rates may be feasible as researchers investigate alternative biomaterials and more targeted injection techniques for treating SUI.

  2. Structural, chemical, and thermoelectric properties of Bi2Te3 Peltier materials. Bulk, thin films, and superlattices

    International Nuclear Information System (INIS)

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi2Te3 and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi2(Te0.91Se0.09)3 and p-type (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 bulk materials synthesised by the Bridgman technique. (II) Bi2Te3 thin films and Bi2Te3/Bi2(Te0.88Se0.12)3 superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF2 substrates with periods of δ-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to and an amplitude of about 10 pm and (ii) a wave vector parallel to {1,0,10} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  3. Evaluation of the physical properties, bulk density and aggregate stability of potential substrates in quarry restoration.

    Science.gov (United States)

    Jordan, M.; Garcia-Orenes, F.; Mataix-Solera, J.; Garcia-Sanchez, E.

    2012-04-01

    Quarrying activity entails significant environmental impact affecting the soil, water, plants, landscape, etc. One of the most important impacts is the loss of the productive layer of the soil and its vegetation cover. However, mining activities are absolutely necessary for human development; keeping them sustainable implicates looking for viable solutions for the restoration of these areas to prevent degradation during and after the exploitation period. The aim of this study was to evaluate different substrates obtained from different mixes of sewage sludge and different mine spoils, to check how they are effective in quarry restoration, and to establish good practises in mining restoration. Also, the study tried to approach two refuses, one deriving from mining activity, as are the mine spoils that need to be reused for their valorisation, and the other, sewage sludge, obtained in the water depuration process to acquire a cheap substrate for soil rehabilitation. This preliminary work, which is included in a larger study, shows the results obtained from two physical properties studied, bulk density and aggregate stability, as key properties in the substrate structure for use in mining area restoration. Two doses of composted sewage sludge (30 and 90 Tm/Ha), both very rich in calcium carbonate, were applied to two different mine spoils under lab conditions. The first material, of poor quality, originated from the acquisition of arid particles in crushed limestone (Z). It is characterized by stable ''coarse elements'' predominance (up to 75% of its weight), and by the presence of elevated percentages of sand. The other waste material tested comes from limestone extraction (basically formed by the levels of interspersed non-limestone materials and the remains of stripped soils (D)). The results show that the high dose of sewage sludge applied to a mix of the two mine spoils significantly increased the percentage of stable aggregates by more than 50% than the control

  4. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    Science.gov (United States)

    Shao, Guo-yun; Tang, Zhan-duo; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-07-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu-Jona-Lasinio (PNJL) model with an explicit chemical potential dependence of Polyakov loop potential (μ PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the μ -dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of u , d quarks in the hadron-quark coexisting phase, and analyze the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and properties of the mixed phase would bring relevant information on the expected chemical potential dependence of the Polyakov loop contribution.

  5. Chemical and preclinical studies on Hedyotis diffusa with anticancer potential.

    Science.gov (United States)

    Niu, Yu; Meng, Qiu-Xia

    2013-01-01

    This paper presents the chemical and preclinical anticancer research on Hedyotis diffusa Willd. in detail, one of the most renowned herbs often prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicine. Anthraquinones, flavonoids, and terpenoids constitute the majority of the 69 compounds that have been isolated and identified from H. diffusa. The anticancer effects of the methanolic, ethanolic, and aqueous extracts in various preclinical cancer models have been described. This review also summarized the anticancer activity of constituents of the herb and the mechanisms of action. All the studies suggest that H. diffusa has enormous potential in the therapy of cancer and warrants further chemical and pharmacological investigation. PMID:23600735

  6. The comparative study of bulk magneto-phonon and magnetic polaritons of lateral antiferromagnetic superlattices for potential THz applications

    Science.gov (United States)

    Ta, Jin-Xing; Han, Yu; Lan, Cheng

    2016-02-01

    Bulk magneto-phonon and magnetic polaritons of lateral antiferromagnetic superlattices for potential THz applications have been investigated in the framework of the effective medium theory. The dispersion relations applied for the system are displayed. In contrast with lateral FeF2/SiO2 superlattice, some fascinating polariton modes with negative group velocity signifying photonic band gap scenarios and attractive optical properties are observed from the numerical results presented with the example, lateral FeF2/TlBr superlattice.

  7. Mie Potential and Equation of State of Zr48Nb8Cu14Ni12Be18 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    张勇; 潘明祥; 汪卫华

    2001-01-01

    The linear expansion of Zr48Nb8Cu14Ni12Be18 bulk metallic glass (BMG) with excellent glass forming abilityand high thermal stability is investigated by a dilatometry method. The average expansion coefficient is αTG=1.04×10 -5 K-1 (300-656 K) for the BMG and αTC= 1.11×10 -5 K-1 (356~890 K) for the crystallized alloy.The Mie potential as well as the equation of state of the BMG and its corresponding crystallized state are determined from the thermal expansion and ultrasonic data, and the differences among them are phenomenologicallyexplained.

  8. The effect of wetting and drying cycles on soil chemical composition and their impact on bulk density evaluation

    International Nuclear Information System (INIS)

    The gamma-ray attenuation technique has been applied successfully in several areas of knowledge such as medicine, industry, chemistry, biology, agriculture and so on. Before the technique application it is important to know the probability of gamma photons interaction with the matter. The linear attenuation coefficient (k) measures the probability per unit length of a photon to be absorbed or scattered while interacting with a sample. k represents the sum of several individual attenuation coefficients due mainly to the photoelectric absorption, coherent and incoherent scatterings and pair production. Soil is characterized as a three phase system composed by solid, liquid and gaseous phases. It is known that for a given photon energy the mass attenuation coefficient (μ) is directly related to the chemical composition of the soil. As a consequence by using the mixture rule, in which (μ) is calculated by adding the products of mass attenuation coefficients and the contents of the chemical components of the soil, it is possible to obtain a theoretical (μ) value. A possible cause of chemical composition changes in soil is the application of repeated wetting and drying (W-D) cycles. Another consequence of these changes in the chemical composition of the soil can be alterations in its (μ). This result can affect how well the gamma-ray attenuation or computed tomography (CT) techniques can determine soil bulk density (ds) or porosity (φ) when samples are submitted to W-D cycles. In this work the soil elemental (oxides) composition variation of three Brazilian soils submitted to the application of W-D cycles was measured in order to evaluate possible changes in the calculated μ as a function of the cycles. Measurements of μ by using radioactive sources of 241Am and 137Cs were also performed. Gamma-ray CT was used as a tool to evaluate the impact of changes in μ induced by the cycles in determinations of ds. The measured and calculated values of μ presented good

  9. The pressure of QCD at finite temperatures and chemical potentials

    CERN Document Server

    Vuorinen, Aleksi R

    2003-01-01

    The perturbative expansion of the pressure of hot QCD is computed here to order g^6ln(g) in the presence of finite quark chemical potentials. In this process all two- and three-loop one-particle irreducible vacuum diagrams of the theory are evaluated at arbitrary T and mu, and these results are then used to analytically verify the outcome of an old order g^4 calculation of Freedman and McLerran for the zero-temperature pressure. The results for the pressure and the different quark number susceptibilities at high T are compared with recent lattice simulations showing excellent agreement especially for the chemical potential dependent part of the pressure.

  10. Higher spin entanglement entropy at finite temperature with chemical potential

    CERN Document Server

    Chen, Bin

    2016-01-01

    It is generally believed that the semiclassical AdS$_3$ higher spin gravity could be described by a two dimensional conformal field theory with ${\\cal{W}}$-algebra symmetry in the large central charge limit. In this paper, we study the single interval entanglement entropy on the torus in the CFT with a ${\\cW}_3$ deformation. More generally we develop the monodromy analysis to compute the two-point function of the light operators under a thermal density matrix with a ${\\cW}_3$ chemical potential to the leading order. Holographically we compute the probe action of the Wilson line in the background of the spin-3 black hole with a chemical potential. We find exact agreement.

  11. Implications of imaginary chemical potential for model building of QCD

    CERN Document Server

    Kashiwa, Kouji

    2016-01-01

    Properties of QCD at finite imaginary chemical potential are revisited to utilize for the model building of QCD in low energy regimes. For example, the electric holonomy which is closely related to the Polyakov-loop drastically affects thermodynamic quantities beside the Roberge-Weiss transition line. To incorporate several properties at finite imaginary chemical potential, it is important to introduce the holonomy effects to the coupling constant of effective models. This extension is possible by considering the entanglement vertex. We show justifications of the entanglement vertex based on the derivation of the effective four-fermi interaction in the Nambu--Jona-Lasinio model and present its general form with the local approximation. To discuss how to remove model ambiguities in the entanglement vertex, we calculate the chiral condensate with different $\\mathbb{Z}_3$ sectors and the dual quark condensate.

  12. Relativistic second-order dissipative hydrodynamics at finite chemical potential

    Directory of Open Access Journals (Sweden)

    Amaresh Jaiswal

    2015-12-01

    Full Text Available Starting from the Boltzmann equation in the relaxation time approximation and employing a Chapman–Enskog like expansion for the distribution function close to equilibrium, we derive second-order evolution equations for the shear stress tensor and the dissipative charge current for a system of massless quarks and gluons. The transport coefficients are obtained exactly using quantum statistics for the phase space distribution functions at non-zero chemical potential. We show that, within the relaxation time approximation, the second-order evolution equations for the shear stress tensor and the dissipative charge current can be decoupled. We find that, for large values of the ratio of chemical potential to temperature, the charge conductivity is small compared to the coefficient of shear viscosity. Moreover, we show that in the relaxation-time approximation, the limiting behaviour of the ratio of heat conductivity to shear viscosity is qualitatively similar to that obtained for a strongly coupled conformal plasma.

  13. Relativistic second-order dissipative hydrodynamics at finite chemical potential

    Science.gov (United States)

    Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof

    2015-12-01

    Starting from the Boltzmann equation in the relaxation time approximation and employing a Chapman-Enskog like expansion for the distribution function close to equilibrium, we derive second-order evolution equations for the shear stress tensor and the dissipative charge current for a system of massless quarks and gluons. The transport coefficients are obtained exactly using quantum statistics for the phase space distribution functions at non-zero chemical potential. We show that, within the relaxation time approximation, the second-order evolution equations for the shear stress tensor and the dissipative charge current can be decoupled. We find that, for large values of the ratio of chemical potential to temperature, the charge conductivity is small compared to the coefficient of shear viscosity. Moreover, we show that in the relaxation-time approximation, the limiting behaviour of the ratio of heat conductivity to shear viscosity is qualitatively similar to that obtained for a strongly coupled conformal plasma.

  14. Relativistic second-order dissipative hydrodynamics at finite chemical potential

    CERN Document Server

    Jaiswal, Amaresh; Redlich, Krzysztof

    2015-01-01

    Starting from the Boltzmann equation in the relaxation time approximation and employing Chapman-Enskog like expansion for the distribution function close to equilibrium, we derive second-order evolution equations for shear stress tensor and dissipative charge current for a system of massless quarks and gluons. The transport coefficients are obtained exactly using quantum statistics for the phase space distribution functions at non-zero chemical potential. We show that, within the relaxation time approximation, the evolution equations for shear stress tensor and dissipative charge current could be decoupled. We find that, for large values of the ratio of chemical potential to temperature, the charge conductivity is small compared to the coefficient of shear viscosity.

  15. Higher spin entanglement entropy at finite temperature with chemical potential

    Science.gov (United States)

    Chen, Bin; Wu, Jie-qiang

    2016-07-01

    It is generally believed that the semiclassical AdS3 higher spin gravity could be described by a two dimensional conformal field theory with W -algebra symmetry in the large central charge limit. In this paper, we study the single interval entanglement entropy on the torus in the CFT with a W_{3} deformation. More generally we develop the monodromy analysis to compute the two-point function of the light operators under a thermal density matrix with a W_{3} chemical potential to the leading order. Holographically we compute the probe action of the Wilson line in the background of the spin-3 black hole with a chemical potential. We find exact agreement.

  16. Temporal variability in Chemical and Stable isotopic characteristics of ambient bulk aerosols over a coastal environment of India

    Science.gov (United States)

    Agnihotri, R.; Karapurkar, S. G.; Sarma, V. V.; Praveen, P.; Kumar, M. D.

    2012-12-01

    Atmospheric carbonaceous aerosols are known to influence regional biogeochemical cycles of carbon (C) and nitrogen (N) in addition to regional radiation budgets. Owing to multiplicity of primary sources of natural and anthropogenic origin, their detailed chemical and isotopic characterization can greatly help in source apportionment and identifying secondary processes. From the roof of NIO-Goa (India) [15.46οN, 73.8oE; at ~55.8 MASL], atmospheric bulk aerosols (n=22) were collected on Quartz filters, from 2009 December to January 2011 covering entire 2010 (except monsoon period) to investigate temporal variability in their chemical and isotopic characteristics of the carbonaceous fraction i.e. TC, TOC and TN mass concentrations and their stable isotopic ratios (δ13CTC, δ13CTOC and δ15NTN). Both δ13CTC and δ13CTOC varied in narrow ranges (-24.9±1.1‰, -25.7±0.9‰ respectively), but significant differences were observed between the two during pre-monsoon months (as high as 2.3‰), possibly due to mixing of inorganic mineral dust. δ15NTN values showed a wide range of variability (average = 13.6±7.2‰), with significantly lower values (~2-5‰; as reported earlier by Agnihotri et al. 2011) during pre-monsoon period compared to those during winter (as high as ~26‰). Using δ13CTC values and two end-member mixing model (assuming δ13C of marine and continental carbon as -21 and -27‰ respectively), the average marine carbon fraction for Goa aerosols was estimated as 36±18.5%, significantly higher than reported for Chennai aerosols (~19%) (Pavuluri et al., 2011), but close to the reported average for marine aerosols at Bermuda (38%) (Turekian et al., 2003). Chemical and isotopic characteristics of ambient aerosols over Goa along with contemporaneous meteorological data indicate that winter aerosols contain significant proportion of carbonaceous fraction originated from biomass burning and other anthropogenic activities carried out in northern parts of

  17. Chemical transport modeling of potential atmospheric CO2 sinks

    International Nuclear Information System (INIS)

    The potential for carbon dioxide (CO2) sequestration via engineered chemical sinks is investigated using a three dimensional chemical transport model (CTM). Meteorological and chemical constraints for flat or vertical systems that would absorb CO2 from the atmosphere, as well as an example chemical system of calcium hydroxide (Ca(OH)2) proposed by Elliott et al. [Compensation of atmospheric CO2 buildup through engineered chemical sinkage, Geophys. Res. Lett. 28 (2001) 1235] are reviewed. The CTM examines land based deposition sinks, with 4ox5o latitude/longitude resolution at various locations, and deposition velocities (v). A maximum uptake of ∼20 Gton (1015 g) C yr-1 is attainable with v>5 cm s -1 at a mid-latitude site. The atmospheric increase of CO2 (3 Gton yr-1) can be balanced by an engineered sink with an area of no more than 75,000 km2 at v of 1 cm s-1. By building the sink upwards or splitting this area into narrow elements can reduce the active area by more than an order of magnitude as discussed in Dubey at el. [31]. (author)

  18. Revisting the boiling of quark nuggets at nonzero chemical potential

    OpenAIRE

    Li, Ang; Liu, Tong; Gubler, Philipp; Xu, Ren-Xin

    2013-01-01

    The boiling of possible quark nuggets during the quark-hadron phase transition of the Universe at nonzero chemical potential is revisited within the microscopic Brueckner-Hartree-Fock approach employed for the hadron phase, using two kinds of baryon interactions as fundamental inputs. To describe the deconfined phase of quark matter, we use a recently developed quark mass density-dependent model with a fully self-consistent thermodynamic treatment of confinement. We study the baryon number li...

  19. Proof of universality of electrical conductivity at finite chemical potential

    OpenAIRE

    Chakrabarti, Sayan K.; Chakrabortty, Shankhadeep; Jain, Sachin

    2010-01-01

    It was proposed in arXiv:1008.2944 that, for certain gauge theories with gravity duals, electrical conductivity at finite chemical potential is universal. Here we provide a general proof that, when matter stress tensor satisfies a compact constraint, electrical conductivity is universal. We further elaborate our result with several conformal as well as non-conformal gauge theories. We also discuss how boundary conductivity and universal conductivity of stretched horizon are related.

  20. Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Two metallic bulk glasses, Cu60Zr30Ti10 and Cu47Ti33Zr11Ni8Si1, with a diameter of 3 mm were prepared by copper mold casting method. Dilatometric measurement was carried out on the two glassy alloys to obtain information about the average nearest-neighbour distance r0 and the effective depth of pair potential V0. By assuming a Lennard-Jones potential, r0 and V0 were calculated to be 0.28 nm and 0.16 eV for Cu60Zr30Ti10 and 0.27 nm and 0.13 eV for Cu47Ti33Zr11Ni8Si1, respectively. It was found that the glassy alloy Cu60Zr30Ti10 was more stable than Cu47Ti33Zr11Ni8Si1 against heating from both experiment and calculation

  1. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    CERN Document Server

    Shao, Guo-yun; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-01-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu--Jona-Lasinio model with an explicit chemical potential dependence of Polyakov-loop potential ($\\mu$PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the $\\mu$-dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of $u, d$ quarks in the hadron-quark coexisting phase, and analyse the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and proper...

  2. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    International Nuclear Information System (INIS)

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables

  3. Assessment of the extended Koopmans' theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardnesses, and electrophilicity indices.

    Science.gov (United States)

    Yildiz, Dilan; Bozkaya, Uğur

    2016-01-30

    The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials and electron affinities from any level of theory. Although it is widely applied to ionization potentials, the EKT approach has not been applied to evaluation of the chemical reactivity. We present the first benchmarking study to investigate the performance of the EKT methods for predictions of chemical potentials (μ) (hence electronegativities), chemical hardnesses (η), and electrophilicity indices (ω). We assess the performance of the EKT approaches for post-Hartree-Fock methods, such as Møller-Plesset perturbation theory, the coupled-electron pair theory, and their orbital-optimized counterparts for the evaluation of the chemical reactivity. Especially, results of the orbital-optimized coupled-electron pair theory method (with the aug-cc-pVQZ basis set) for predictions of the chemical reactivity are very promising; the corresponding mean absolute errors are 0.16, 0.28, and 0.09 eV for μ, η, and ω, respectively. PMID:26458329

  4. CO2 emissions and reduction potential in China's chemical industry

    International Nuclear Information System (INIS)

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO2 emissions in the processes of chemical production in China through calculating the amounts of CO2 emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO2 emissions by promoting average technology performances in this industry.

  5. Harmonic expansion of the effective potential in Functional Renormalization Group at finite chemical potential

    CERN Document Server

    Barnafoldi, G G; Posfay, P

    2016-01-01

    In this paper we propose a method to study the Functional Renormalization Group at finite chemical potential. The method consists of mapping the FRG equations within the Fermi surface into a differential equation defined on a rectangle with zero boundary conditions. To solve this equation we use an expansion of the potential in a harmonic basis. With this method we determined the phase diagram of a simple Yukawa-type model; as expected, the bosonic fluctuations decrease the strength of the transition.

  6. Critical endpoint in the presence of a chiral chemical potential

    CERN Document Server

    Cui, Zhu-Fang; Lu, Ya; Roberts, Craig D; Schmidt, Sebastian M; Xu, Shu-Sheng; Zong, Hong-Shi

    2016-01-01

    A class of Polyakov-loop-modified Nambu--Jona-Lasinio (PNJL) models have been used to support a conjecture that numerical simulations of lattice-regularized quantum chromodynamics (QCD) defined with a chiral chemical potential can provide information about the existence and location of a critical endpoint in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physically-motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the PNJL models and the four-fermion coupling in those models does not react strongly to changes in the mean-field that is assumed to mock-up Polyakov l...

  7. Hot Quark Matter with an Axial Chemical Potential

    CERN Document Server

    Gatto, Raoul

    2011-01-01

    We analyze the phase diagram of hot quark matter in presence of an axial chemical potential, $\\mu_5$. The latter is introduced to mimic the chirality transitions induced, in hot Quantum Chromodynamics, by the strong sphaleron configurations. In particular, we study the curvature of the critical line at small $\\mu_5$, the effects of a finite quark mass and of a vector interaction. Moreover, we build the mixed phase at the first order phase transition line, and draw the phase diagram in the chiral density and temperature plane. We finally compute the full topological susceptibility in presence of a background of topological charge.

  8. The Instanton-Dyon Liquid Model III: Finite Chemical Potential

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We discuss an extension of the instanton-dyon liquid model that includes light quarks at finite chemical potential in the center symmetric phase. We develop the model in details for the case of SU_c(2)\\times SU_f(2) by mapping the theory on a 3-dimensional quantum effective theory. We analyze the different phases in the mean-field approximation. We extend this analysis to the general case of SU_c(N_c)\\times SU_f(N_f) and note that the chiral and diquark pairings are always comparable.

  9. An effective theory for QCD with an axial chemical potential

    CERN Document Server

    Andrianov, Alexander A; Espriu, Domenec; Planells, Xumeu

    2013-01-01

    We consider the low energy realization of QCD in terms of meson fields when an axial chemical potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate that the presence of an axial charge constitutes an explicit source of parity breaking. The eigenstates of strong interactions do not have a definite parity and interactions that would otherwise be forbidden compete with the familiar ones. In this work, we first focus on scalars and pseudoscalars that are described by a generalized linear sigma model; and next, we give some hints on how the Vector Meson Dominance model describes the vector sector.

  10. Exact non-additive kinetic potentials in realistic chemical systems.

    Science.gov (United States)

    de Silva, Piotr; Wesolowski, Tomasz A

    2012-09-01

    In methods based on frozen-density embedding theory or subsystem formulation of density functional theory, the non-additive kinetic potential (v(t)(nad)(r)) needs to be approximated. Since v(t)(nad)(r) is defined as a bifunctional, the common strategies rely on approximating v(t)(nad)[ρ(A),ρ(B)](r). In this work, the exact potentials (not bifunctionals) are constructed for chemically relevant pairs of electron densities (ρ(A) and ρ(B)) representing: dissociating molecules, two parts of a molecule linked by a covalent bond, or valence and core electrons. The method used is applicable only for particular case, where ρ(A) is a one-electron or spin-compensated two-electron density, for which the analytic relation between the density and potential exists. The sum ρ(A) + ρ(B) is, however, not limited to such restrictions. Kohn-Sham molecular densities are used for this purpose. The constructed potentials are analyzed to identify the properties which must be taken into account when constructing approximations to the corresponding bifunctional. It is comprehensively shown that the full von Weizsäcker component is indispensable in order to approximate adequately the non-additive kinetic potential for such pairs of densities. PMID:22957558

  11. Holographic dual of a boost-invariant plasma with chemical potential

    International Nuclear Information System (INIS)

    We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)

  12. Holographic dual of a boost-invariant plasma with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2010-12-15

    We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)

  13. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  14. Chemical potential and compressibility of quantum Hall bilayer excitons,.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Brian

    2016-02-25

    I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment and an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.

  15. Electric charge catalysis by magnetic fields and isospin chemical potential

    CERN Document Server

    Bruckmann, F; Sulejmanpasic, T

    2013-01-01

    We describe a generic mechanism by which a system of Dirac fermions which carry an additional quantum number (isospin) acquires electric charge when the system is subject to an isospin chemical potential and a superposition of a normal magnetic field and a magnetic field which distinguishes the isospin. A nontrivial feature of fermions in the background of such gauge fields is that the electric charge appears due to nonzero isospin chemical potential and vice versa. The charge is accumulated since the degeneracies of occupied lowest Landau levels for particles of positive isospin and anti-particles of negative isospin are different. We discuss two physical systems where this phenomenon can be realized. One is monolayer graphene where the isospin is associated with two valleys in the Brillouin zone and the strain-induced pseudo-magnetic field acts differently on charge carriers in different valleys. Another is hot QCD, for which the role of isospin is played by the color of quarks. In the latter case the descr...

  16. Potential effects of environmental chemical contamination in congenital heart disease.

    Science.gov (United States)

    Gorini, Francesca; Chiappa, Enrico; Gargani, Luna; Picano, Eugenio

    2014-04-01

    There is compelling evidence that prenatal exposures to environmental xenobiotics adversely affect human development and childhood. Among all birth defects, congenital heart disease (CHD) is the most prevalent of all congenital malformations and remains the leading cause of death. It has been estimated that in most cases the causes of heart defects remain unknown, while a growing number of studies have indicated the potential role of environmental agents as risk factors in CHD occurrence. In particular, maternal exposure to chemicals during the first trimester of pregnancy represents the most critical window of exposure for CHD. Specific classes of xenobiotics (e.g. organochlorine pesticides, organic solvents, air pollutants) have been identified as potential risk factors for CHD. Nonetheless, the knowledge gained is currently still incomplete as a consequence of the frequent heterogeneity of the methods applied and the difficulty in estimating the net effect of environmental pollution on the pregnant mother. The presence of multiple sources of pollution, both indoor and outdoor, together with individual lifestyle factors, may represent a further confounding element for association with the disease. A future new approach for research should probably focus on individual measurements of professional, domestic, and urban exposure to physical and chemical pollutants in order to accurately retrace the environmental exposure of parents of affected offspring during the pre-conceptional and pregnancy periods. PMID:24452958

  17. Deconfinement Transition at High Isospin Chemical Potential and Low Temperature

    CERN Document Server

    Cohen, Thomas D

    2015-01-01

    We consider QCD with two degenerate flavors of light quarks(up and down) at asymptotically high isospin and zero baryon chemical potential. In this regime and sufficiently low temperatures this theory becomes equivalent to a pure Yang-Mills theory and accordingly has a first order phase transition. This paper relates the parameters of this equivalent Yang-Mills theory to those of the underlying theory. Physically, the picture is that in this limit anti-up quarks and down quarks have Fermi surfaces with radii equal to half of the chemical potential. At high temperatures, the gluons are Debye-screened by quark quasi-particles around the Fermi surface. As the temperature is lowered, a Fermi liquid with Cooper pairing of pairs of anti-up and down quarks forms giving rise to U(1)em superconductivity. The condensate is parity odd and color neutral. The gluons do not pick up Meissner mass due to the color neutrality of the condensate. At temperatures much lower than the gap, Debye screening is absent too, as the fer...

  18. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    Science.gov (United States)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  19. The effect of bulking agents on the chemical stability of acid-sensitive compounds in freeze-dried formulations: sucrose inversion study.

    Science.gov (United States)

    Lu, Enxian; Ewing, Susan; Gatlin, Larry; Suryanarayanan, Raj; Shalaev, Evgenyi

    2009-09-01

    The goal of the study was to evaluate the impact of amorphous bulking agents on the chemical stability of freeze-dried materials. Polyvinylpyrrolidone and dextran of different molecular weights and lactose were used as bulking agents, and sucrose was used as an example of an acid-sensitive compound. Lyophiles containing bulking agent and sucrose at 10:1 (w/w) ratio, citrate buffer, and optionally bromophenol blue (pH indicator) were tested by X-ray powder diffractometry, differential scanning calorimetry, and Karl Fischer titrimetry. Diffuse reflectance UV-vis spectroscopy was used to obtain the concentration ratio of the deprotonated (In(2-)) to the protonated (HIn(-)) indicator species, from which the Hammett acidity function (H(2-)) was calculated. The extent of sucrose inversion in lyophiles stored at 60 degrees C was quantified by HPLC. The bulking agent had a major impact on both the apparent solid-state acidity (H(2-)) and the degradation rate, with the degradation rate constants value highest for dextran lyophiles (most "acidic", lower H(2-)) followed by lactose and polyvinylpyrrolidone lyophile (least "acidic", higher H(2-)). The Hammett acidity function can be used as an empirical solid-state acidity scale, to predict the rank-order stability of acid-sensitive compounds in lyophiles prepared with different bulking agents. PMID:19544366

  20. Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method

    Science.gov (United States)

    Thompson, Sarah S.; Kulessa, Bernd; Essery, Richard L. H.; Lüthi, Martin P.

    2016-02-01

    Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. We show here that strong electrical self-potential fields are generated in melting in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. In agreement with theory, the diurnal evolution of self-potential magnitudes ( ˜ 60-250 mV) relates to those of bulk meltwater fluxes (0-1.2 × 10-6 m3 s-1) principally through the permeability and the content, electrical conductivity and pH of liquid water. Previous work revealed that when fresh snow melts, ions are eluted in sequence and electrical conductivity, pH and self-potential data change diagnostically. Our snowpacks had experienced earlier stages of melt, and complementary snow pit measurements revealed that electrical conductivity ( ˜ 1-5 × 10-6 S m-1) and pH ( ˜ 6.5-6.7) as well as permeabilities (respectively ˜ 9.7 × 10-5 and ˜ 4.3 × 10-5 m2 at Rhone Glacier and Jungfraujoch Glacier) were invariant. This implies, first, that preferential elution of ions was complete and, second, that our self-potential measurements reflect daily changes in liquid water contents. These were calculated to increase within the pendular regime from ˜ 1 to 5 and ˜ 3 to 5.5 % respectively at Rhone Glacier and Jungfraujoch Glacier, as confirmed by ground truth measurements. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor owing to its suitability for (1) sensing lateral and vertical liquid water flows directly and minimally invasively, (2) complementing established observational programs through multidimensional spatial mapping of meltwater fluxes or liquid water content and (3) monitoring autonomously at a low cost. Future work should focus on the development of self-potential sensor

  1. Hard-Sphere Fluids with Chemical Self-Potentials

    CERN Document Server

    Kiessling, Michael K -H

    2009-01-01

    Existence, uniqueness and stability of solutions is studied for a set of nonlinear fixed point equations which define self-consistent hydrostatic equilibria of a classical continuum fluid that is confined inside a container and in contact with either a heat and a matter reservoir, or just a heat reservoir. The local thermodynamics is furnished by the statistical mechanics of a system of hard balls, in the approximation of Carnahan-Starling. The fluid's local chemical potential per particle at is the sum of the matter reservoir's contribution and a self contribution which is computed by convoluting the fluid density distribution with a van der Waals, a Yukawa, or a Newton kernel. We prove the existence of a grand canonical phase transition, and a petit canonical phase transition which is embedded in the former.

  2. Determination of Reference Chemical Potential Using Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Krishnadeo Jatkar

    2010-01-01

    Full Text Available A new method implementing molecular dynamics (MD simulations for calculating the reference properties of simple gas hydrates has been proposed. The guest molecules affect interaction between adjacent water molecules distorting the hydrate lattice, which requires diverse values of reference properties for different gas hydrates. We performed simulations to validate the experimental data for determining Δ0, the chemical potential difference between water and theoretical empty cavity at the reference state, for structure II type gas hydrates. Simulations have also been used to observe the variation of the hydrate unit cell volume with temperature. All simulations were performed using TIP4P water molecules at the reference temperature and pressure conditions. The values were close to the experimental values obtained by the Lee-Holder model, considering lattice distortion.

  3. Density versus chemical potential in holographic field theories

    CERN Document Server

    Nogueira, Fernando

    2011-01-01

    We study the relationship between charge density ({\\rho}) and chemical potential ({\\mu}) for an array of Lorentz invariant 3 + 1 dimensional holographic field theories with the minimal structure of a conserved charge. The systems considered include Dp-Dq probe brane constructions and probe and backreacted 'bottom-up' models with gauge and scalar fields. In all cases, at large density, the relationship is well modelled by a power law behaviour of the form {\\rho} $\\propto$ {\\mu}^{\\alpha}. A variety of powers {\\alpha} are found in the brane systems while in most of the bottom-up models {\\alpha} is determined by the underlying conformal symmetry. Further, it is demonstrated that basic thermodynamical and causality constraints demand {\\alpha} \\geq 1, a condition that was realized in each system considered.

  4. $3d$ fermion-boson map with imaginary chemical potential

    CERN Document Server

    Filothodoros, E G; Vlachos, N D

    2016-01-01

    We study the three-dimensional $U(N)$ Gross-Neveu and CP$^{N-1}$ models in the canonical formalism with fixed $U(1)$ charge. For large-$N$ this is closely related to coupling the models to abelian Chern-Simons in a monopole background. We show that the presence of the imaginary chemical potential for the $U(1)$ charge makes the phase structure of the models remarkably similar. We calculate their respective large-$N$ free energy densities and show that they are mapped into each other in a precise way. Intriguingly, the free energy map involves the Bloch-Wigner function and its generalizations introduced by Zagier. We expect that our results are connected to the recently discussed $3d$ bosonization.

  5. Phase diagram of the Dirac spectrum at nonzero chemical potential

    International Nuclear Information System (INIS)

    The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.

  6. Bulk and shear viscosities of hot and dense hadron gas

    CERN Document Server

    Kadam, Guru Prakash

    2014-01-01

    We estimate bulk and shear viscosity at finite temperature and baryon densities of hadronic matter within hadron resonance gas model. For bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons.

  7. Chemical composition, therapeutic potential and perspectives of Foeniculum vulgare

    Directory of Open Access Journals (Sweden)

    Chanchal Garga

    2009-01-01

    Full Text Available Foeniculum vulgare is a widely distributed plant in most tropical and subtropical countries and have long been used in folk medicines to treat obstruction of the liver, spleen and gall bladder and for digestive complaints such as colic, indigestion, nausea and flatulence. In recent years the interest in this plant has increased considerably with substantial progress on its chemical and pharmacological properties. This review discusses the current knowledge of its chemistry, the various compounds isolated and pharamcological studies conducted. These studies carried out with the extracts and volatile oil support most of the reports of using this plant in folk medicines. However, well controlled, double-binding clinical trials are lacking. Several compounds including trans-anethole, estragole, fenchone and polyphenolics were isolated from this plant and some of these interact with potential mechanisms of the body. Together this data strongly supports the view that this plant has potential beneficial therapeutic actions in the management of bacterial and fungal infections, colic pain and lipid peroxidation.

  8. Biogenic methane potential of marine sediments. Application of chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology

    2013-08-01

    Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in

  9. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene

    Directory of Open Access Journals (Sweden)

    Yue Cheng

    2016-05-01

    Full Text Available Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW waveguides can be excited by a monolayer graphene ribbon. What is more the transverse resonant frequency spectrum of the GNW can be flexibly tuned by adjusting the chemical potential of graphene, and amplitude of the resonance peak varies linearly with the imaginary part of the analyte permittivity. As a consequence, the GNW works as a probe for capturing the molecular spectrum. Broadband sensing of toluene, ethanol and sulfurous anhydride thin layers is demonstrated by calculating the changes in spectral intensity of the propagating mode and the results show that the intensity spectra correspond exactly to the infrared spectra of these molecules. This may open an effective avenue to design sensors for detecting nanometric-size molecules in the terahertz and infrared regimes.

  10. Crataegus pinnatifida: Chemical Constituents, Pharmacology, and Potential Applications

    Directory of Open Access Journals (Sweden)

    Jiaqi Wu

    2014-01-01

    Full Text Available Crataegus pinnatifida (Hawthorn is widely distributed in China and has a long history of use as a traditional medicine. The fruit of C. pinnatifida has been used for the treatment of cardiodynia, hernia, dyspepsia, postpartum blood stasis, and hemafecia and thus increasing interest in this plant has emerged in recent years. Between 1966 and 2013, numerous articles have been published on the chemical constituents, pharmacology or pharmacologic effects and toxicology of C. pinnatifida. To review the pharmacologic advances and to discuss the potential perspective for future investigation, we have summarized the main literature findings of these publications. So far, over 150 compounds including flavonoids, triterpenoids, steroids, monoterpenoids, sesquiterpenoids, lignans, hydroxycinnamic acids, organic acids and nitrogen-containing compounds have been isolated and identified from C. pinnatifida. It has been found that these constituents and extracts of C. pinnatifida have broad pharmacological effects with low toxicity on, for example, the cardiovascular, digestive, and endocrine systems, and pathogenic microorganisms, supporting the view that C. pinnatifida has favorable therapeutic effects. Thus, although C. pinnatifida has already been widely used as pharmacological therapy, due to its various active compounds, further research is warranted to develop new drugs.

  11. Crataegus pinnatifida: chemical constituents, pharmacology, and potential applications.

    Science.gov (United States)

    Wu, Jiaqi; Peng, Wei; Qin, Rongxin; Zhou, Hong

    2014-01-01

    Crataegus pinnatifida (Hawthorn) is widely distributed in China and has a long history of use as a traditional medicine. The fruit of C. pinnatifida has been used for the treatment of cardiodynia, hernia, dyspepsia, postpartum blood stasis, and hemafecia and thus increasing interest in this plant has emerged in recent years. Between 1966 and 2013, numerous articles have been published on the chemical constituents, pharmacology or pharmacologic effects and toxicology of C. pinnatifida. To review the pharmacologic advances and to discuss the potential perspective for future investigation, we have summarized the main literature findings of these publications. So far, over 150 compounds including flavonoids, triterpenoids, steroids, monoterpenoids, sesquiterpenoids, lignans, hydroxycinnamic acids, organic acids and nitrogen-containing compounds have been isolated and identified from C. pinnatifida. It has been found that these constituents and extracts of C. pinnatifida have broad pharmacological effects with low toxicity on, for example, the cardiovascular, digestive, and endocrine systems, and pathogenic microorganisms, supporting the view that C. pinnatifida has favorable therapeutic effects. Thus, although C. pinnatifida has already been widely used as pharmacological therapy, due to its various active compounds, further research is warranted to develop new drugs. PMID:24487567

  12. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene

    Science.gov (United States)

    Cheng, Yue; Yang, Jingjing; Lu, Qiannan; Tang, Hao; Huang, Ming

    2016-01-01

    Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW) waveguides can be excited by a monolayer graphene ribbon. What is more the transverse resonant frequency spectrum of the GNW can be flexibly tuned by adjusting the chemical potential of graphene, and amplitude of the resonance peak varies linearly with the imaginary part of the analyte permittivity. As a consequence, the GNW works as a probe for capturing the molecular spectrum. Broadband sensing of toluene, ethanol and sulfurous anhydride thin layers is demonstrated by calculating the changes in spectral intensity of the propagating mode and the results show that the intensity spectra correspond exactly to the infrared spectra of these molecules. This may open an effective avenue to design sensors for detecting nanometric-size molecules in the terahertz and infrared regimes. PMID:27240372

  13. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Science.gov (United States)

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique. PMID:25113928

  14. Chemical state information of bulk specimens obtained by SEM-based soft-X-ray emission spectrometry.

    Science.gov (United States)

    Terauchi, Masami; Koshiya, Shogo; Satoh, Futami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori; Koike, Masato; Imazono, Takashi; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi

    2014-06-01

    Electron-beam-induced soft-X-ray emission spectroscopy (SXES) that uses a grating spectrometer has been introduced to a conventional scanning electron microscope (SEM) for characterizing desired specimen areas of bulk materials. The spectrometer was designed as a grazing incidence flat-field optics by using aberration corrected (varied line spacing) gratings and a multichannel plate detector combined with a charge-coupled device camera, which has already been applied to a transmission electron microscope. The best resolution was confirmed as 0.13 eV at Mg L-emission (50 eV), which is comparable with that of recent dedicated electron energy-loss spectroscopy instruments. This SXES-SEM instrument presents density of states of simple metals of bulk Mg and Li. Apparent band-structure effects have been observed in Si L-emission of Si wafer, P L-emission of GaP wafer, and Al L-emissions of intermetallic compounds of AlCo, AlPd, Al2Pt, and Al2Au. PMID:24625988

  15. Few-Layer Nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with Highly Tunable Chemical Potential

    KAUST Repository

    Kong, Desheng

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi2Se3, Bi2Te3, and Sb2Te3 are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi2Te3 and Bi2Se3 nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO2/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential. © 2010 American Chemical Society.

  16. Improvement in the chemical separation and determination of uncertainties for bulk analysis of Pu isotopes at ultra-trace levels by using MC-ICP-MS

    International Nuclear Information System (INIS)

    Improved bulk analysis based on extraction chromatography and systematic evaluations of uncertainties of plutonium isotopes at ultra-trace levels in environmental swipe samples are presented. In the modified method based on a single column system using UTEVA resin for MC-ICP-MS, hydrogen peroxide was introduced to obtain pure plutonium isotopes from chemical separation by removing excess organic-based reducing reagents. We confirmed that hydrogen peroxide effectively decomposed the reducing reagents characterized by UV-Vis absorption spectroscopy and the peak fluctuations were significantly reduced. To examine the reliability of analytical performance, we systematically evaluated the combined uncertainties during the overall chemical procedures using simulated samples containing Pu reference materials. (author)

  17. High Bulk Modulus of Nanocrystal γ-Fe2O3 with Chemical Dodecyl Benzene Sulfonic Decoration Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; GUO Lin; LIU Jing; YANG Yang; CHE Rong-Zheng; ZHOU Lei

    2000-01-01

    Structural transformation in γ-Fe2O3 nanocrystals (about 1Onm) with dodecyl benzene sulfonic (DBS) coated is studied by using high-pressure energy dispersive x-ray diffraction of synchrotron radiation and high-resolution transmission electron microscopy (HRTEM). Relative to the bulk crystal, the transition pressure showed a decrease while the compressibility increases significantly up to 375 (±9 GPa). HRTEM picture confirmed that there is surface cladding surrounding nanocrystals due to DBS, which formed new special boundaries between nanocrystals and should be different from the ordinary grain boundaries. The experimental results imply that the surface layers of γ-Fe2O3 nanocrystals have strong effect on the compressibility.

  18. Holographic Schwinger effect in confining D3-brane background with chemical potential

    CERN Document Server

    Zhang, Zi-qiang; Wu, Yan; Chen, Gang

    2016-01-01

    Using the AdS/CFT correspondence, we invetigate the Schwinger effect in confining D3-brane background with chemical potential. We calculate the potential between a quark-antiquark pair in an external electric field. It is shown that the presence of chemical potential tends to suppress the pair production effect.

  19. Bulking on the activated slugde process applied to the cheese whey effluent treatment: characterization and use of chemical flocullants to improve settling

    Directory of Open Access Journals (Sweden)

    Nelson Duran

    2007-11-01

    Full Text Available In this work was studied the activated sludge process applied to an effluent treatment from a cheese manufacture (cheese whey, which is characterized by the high organic content containing easily biodegradable compounds as lactose. In the diluted whey treatment, it was found that the activated sludge is an adequate system at a diluted condition (100x, 50x, 25x e 10x and treatment (HRT varying between 6-36 h and suspended solid (SS between 2800-19417mgL-1. However, the system is susceptible to bulking occurrence. Chemical flocculants were evaluated in order to monitoring the biological flocs sedimentation present in a continuous activated sludge system under bulking conditions. The treatment was carried out in a continuous reactor at laboratory scale and the coagulants (Al2 (SO43 and FeSO4 .7H2O were added to sludge at 50-200 mg L-1 concentration range. The results showed that Al3+ presented higher settling capacity compared with Fe2+ effect, and the good settling characteristics were observed in terms of SVI (sludge volume index. However, more detailed studies in this direction should be done to evaluate if the characteristic organisms in the activated sludge are not irreversible suppressed with the use of chemical flocculants.

  20. Chemical potentials in three-dimensional higher spin anti-de Sitter gravity

    OpenAIRE

    Henneaux, Marc(Université Libre de Bruxelles, ULB-Campus Plaine CP231, 1050, Brussels, Belgium); Pérez, Alfredo; Tempo, David; Troncoso, Ricardo(Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia, Chile)

    2013-01-01

    We indicate how to introduce chemical potentials for higher spin charges in higher spin anti-de Sitter gravity in a manner that manifestly preserves the original asymptotic W-symmetry. This is done by switching on a non-vanishing component of the connection along the temporal (thermal) circles. We first recall the procedure in the pure gravity case (no higher spin) where the only "chemical potentials" are the temperature and the chemical potential associated with the angular momentum. We then...

  1. Topological feature and phase structure of QCD at complex chemical potential

    CERN Document Server

    Kashiwa, Kouji

    2015-01-01

    The pseudo-critical temperature of the confinement-deconfinement transition and the phase transition surface are investigated by using the complex chemical potential. We can interpret the imaginary chemical potential as the Aharonov-Bohm phase, then the analogy of the topological order suggests that the Roberge-Weiss endpoint would define the pseudo-critical temperature. The behavior of the Roberge-Weiss endpoint at small real quark chemical potential is investigated with the perturbative expansion. The expected QCD phase diagram at complex chemical potential is presented.

  2. Topological feature and phase structure of QCD at complex chemical potential

    Directory of Open Access Journals (Sweden)

    Kouji Kashiwa

    2015-11-01

    Full Text Available The pseudo-critical temperature of the confinement–deconfinement transition and the phase transition surface are investigated by using the complex chemical potential. We can interpret the imaginary chemical potential as the Aharonov–Bohm phase, then the analogy of the topological order suggests that the Roberge–Weiss endpoint would define the pseudo-critical temperature. The behavior of the Roberge–Weiss endpoint at small real quark chemical potential is investigated with the perturbative expansion. The expected QCD phase diagram at complex chemical potential is presented.

  3. Topological feature and phase structure of QCD at complex chemical potential

    Science.gov (United States)

    Kashiwa, Kouji; Ohnishi, Akira

    2015-11-01

    The pseudo-critical temperature of the confinement-deconfinement transition and the phase transition surface are investigated by using the complex chemical potential. We can interpret the imaginary chemical potential as the Aharonov-Bohm phase, then the analogy of the topological order suggests that the Roberge-Weiss endpoint would define the pseudo-critical temperature. The behavior of the Roberge-Weiss endpoint at small real quark chemical potential is investigated with the perturbative expansion. The expected QCD phase diagram at complex chemical potential is presented.

  4. Two-Color QCD with Non-zero Chiral Chemical Potential

    CERN Document Server

    Braguta, V V; Ilgenfritz, E -M; Kotov, A Yu; Molochkov, A V; Muller-Preussker, M; Petersson, B

    2015-01-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  5. Two-color QCD with non-zero chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E. M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.

    2015-06-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  6. Evaluation of the Component Chemical Potentials in Analytical Models for Ordered Alloy Phases

    Directory of Open Access Journals (Sweden)

    W. A. Oates

    2011-01-01

    Full Text Available The component chemical potentials in models of solution phases with a fixed number of sites can be evaluated easily when the Helmholtz energy is known as an analytical function of composition. In the case of ordered phases, however, the situation is less straightforward, because the Helmholtz energy is a functional involving internal order parameters. Because of this, the chemical potentials are usually obtained numerically from the calculated integral Helmholtz energy. In this paper, we show how the component chemical potentials can be obtained analytically in ordered phases via the use of virtual cluster chemical potentials. Some examples are given which illustrate the simplicity of the method.

  7. Observation and computer simulation of multicomponent chemical short-range order (MCSRO) for the bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    Guoliang Chen; Xidong Hui; Kefu Yao; Huaiyu Hou; Xiongjun Liu; Meiling Wang; Guang Chen

    2005-01-01

    The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with a beam size of 0.5 nm. It is illustrated that the pattern of atomic configuration of CSRO might have various compound counterparts because of the chemical interaction of bonding atoms. Some atomic configuration of MCSRO is similar to the icosahedral structure with 10-fold symmetry of very weak spots. In deed, the nano-beam technology could clearly detect the evolution of atomic configuration in nanometer scale during the transformation from the metallic melt to the primary crystallization. The local atomic configuration of CSRO is also investigated by molecular dynamics simulation (MD) for the Zr2Ni compound in a wider temperature range. The CSRO in the melt could be pictorially demonstrated as distorted coordination polyhedron of the compound structure and/or the structure similar to cubo-octahedron analogs. The MD simulation illustrates that the atomic packing of long-range order disappears just above the melting point, but the chemical interaction of bonding atoms still exists that leads to form the various CSRO with the atomic configuration similar to stable or metastable unit cell of Zr2Ni compound. The icosahedral polyhedron became more abundance as the overheating temperature was raised.

  8. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. PMID:26644164

  9. Electronic Chemical Potentials of Porous Metal–Organic Frameworks

    OpenAIRE

    Butler, Keith T.; Christopher H. Hendon; Walsh, Aron

    2014-01-01

    The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal–organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal–organic frameworks and apply it to obtain the first ionization energy for six prototype materials including zeolitic, covalent, and ionic frameworks. This approach for valence band alignment can expla...

  10. Crataegus pinnatifida: Chemical Constituents, Pharmacology, and Potential Applications

    OpenAIRE

    Jiaqi Wu; Wei Peng; Rongxin Qin; Hong Zhou

    2014-01-01

    Crataegus pinnatifida (Hawthorn) is widely distributed in China and has a long history of use as a traditional medicine. The fruit of C. pinnatifida has been used for the treatment of cardiodynia, hernia, dyspepsia, postpartum blood stasis, and hemafecia and thus increasing interest in this plant has emerged in recent years. Between 1966 and 2013, numerous articles have been published on the chemical constituents, pharmacology or pharmacologic effects and toxicology of C. pinnatifida. To revi...

  11. Bulk asymptotics of skew-orthogonal polynomials for quartic double well potential and universality in the matrix model

    OpenAIRE

    Ghosh, Saugata

    2008-01-01

    We derive bulk asymptotics of skew-orthogonal polynomials (sop) $\\pi^{\\bt}_{m}$, $\\beta=1$, 4, defined w.r.t. the weight $\\exp(-2NV(x))$, $V (x)=gx^4/4+tx^2/2$, $g>0$ and $t 0$, such that $\\epsilon\\leq (m/N)\\leq \\lambda_{\\rm cr}-\\epsilon$, where $\\lambda_{\\rm cr}$ is the critical value which separates sop with two cuts from those with one cut. Simultaneously we derive asymptotics for the recursive coefficients of skew-orthogonal polynomials. The proof is based on obtaining a finite term recur...

  12. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  13. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  14. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  15. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  16. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  17. Chemical analysis and potential health risks of hookah charcoal.

    Science.gov (United States)

    Elsayed, Yehya; Dalibalta, Sarah; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. PMID:27343945

  18. Saturn's Icy Moon Rhea: a Prediction for Bulk Chemical Composition and Physical Structure at the Time of the Cassini Spacecraft First Flyby

    CERN Document Server

    Prentice, A J R

    2005-01-01

    I report a model for the formation of Saturn's family of mid-sized icy moons to coincide with the first flypast of Rhea by the Cassini Orbiter spacecraft on 26 November 2005. It is proposed that these moons had condensed from a concentric family of orbiting gas rings that were cast off some 4600 Myr ago by the contracting proto-Saturnian cloud. Numerical and structural models for Rhea are constructed on the basis of a computed bulk chemical mix of hydrated rock (mass fraction 0.385), H2O ice (0.395), and NH3 ice (0.220). The large proportion of NH3 in the ice mass inhibits the formation of the dense crystalline phase II of H2O ice at the satellite's centre. This may explain the absence of compressional features on the surface. The favoured model of Rhea has a chemically uniform interior and is very cold. The satellite is nearly isodense and the predicted value of the axial moment-of-inertia factor is C/MR^2 = 0.399 +/- 0.004. NH3 is unstable at Saturn's distance from the Sun, except near the polar regions of ...

  19. Titan at the time of the Cassini spacecraft first flyby: a prediction for its origin, bulk chemical composition and internal physical structure

    CERN Document Server

    Prentice, A J R

    2006-01-01

    I report the results of a new set of calculations for the gravitational contraction of the proto-solar cloud to quantify the idea that Titan may be a captured moon of Saturn (Prentice 1981, 1984). It is proposed that Titan initially condensed as a secondary embryo in the same proto-solar gas ring from which the central solid core and gaseous envelope of Saturn were acquired. At the orbit of Saturn, the bulk chemical constituents of the condensate are rock (mass fraction 0.494), water ice (0.474), and graphite (0.032). The mean density is 1523 kg/m^3. Structural models for a frozen Titan yield a mean density of 2095 kg/m^3 (chemically homogeneous case) and 1904 kg/m^3 (fully differentiated 2-zone case). The agreement to one percent of the latter value with the observed mean density suggests that Titan is indeed a fully differentiated satellite. The value of C/MR^2 for this model is 0.316. It is predicted that Titan has no internal ocean or induced magnetic field but it may possess a small native dipole field o...

  20. Chaotic amplification of neutrino chemical potentials by neutrino oscillations in big bang nucleosynthesis

    International Nuclear Information System (INIS)

    We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of big bang nucleosynthesis. We calculate the magnitude of the amplification and show evidence of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in big bang nucleosynthesis. It is shown that with a ∼1 eV νe, the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at big bang nucleosynthesis to significantly below three. copyright 1996 The American Physical Society

  1. Bulk tungsten in the JET divertor: Potential influence of the exhaustion of ductility and grain growth on the lifetime

    Science.gov (United States)

    Mertens, Ph.; Thompson, V.; Matthews, G. F.; Nicolai, D.; Pintsuk, G.; Riccardo, V.; Devaux, S.; Sieglin, B.; JET-EFDA contributors

    2013-07-01

    The divertor of the ITER-like Wall in JET currently includes a solid tungsten row for the outer strike point. The use of plasma-facing tungsten in fusion devices is limited by its brittleness in the low temperature domain (arbitrarily ˜TW 1200 °C). In the absence of active cooling, an extreme case of thermal cycling is represented by the situation in JET: the plasma-facing surface of the bulk tungsten tile experiences cyclic excursions from 200 °C to about 2000 °C. Thermal fatigue for impact factors of 11-24 MW m-2 s0.5 is investigated with a Manson-Coffin model; tungsten properties come from production samples. Recrystallization is studied in metallographic cuts of tungsten lamellae identical to those installed in the torus which were exposed in the MARION facility to JET relevant heat fluxes for >300 pulses (Pdep ⩽ 9 MW/m2, angle of attack 6°). The calculations suggest that the number of high temperature cycles should be limited with appropriate budgeting, especially if the grain growth degrades material properties. Values for JET range from 150 to thousands of pulses depending on the temperatures reached.

  2. Tribological behavior of a Ni-free Zr-based bulk metallic glass with potential for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Wang, Weiguo; Lu, Haotian; Ye, Xiaoyun; Li, Guanghui; Lin, Chen; Huang, Xufang

    2016-09-01

    In this study, the tribological behavior of a Ni-free Zr53Al16Co23·25Ag7.75 bulk metallic glass (BMG) was investigated in dry-sliding and simulated physiological media using ball-on-disk reciprocating friction. The effects of sliding load, speed, media and counterpart materials on the wear resistance of the Zr-Al-Co-Ag BMG were illustrated. Under dry-sliding in air, wear resistance of the Zr-based BMG decreases with increasing sliding load, and wear deterioration is controlled by oxidation and abrasive wear. With increasing sliding velocity, larger plastic deformation occurs on the surface of BMG due to the frictional heat. The BMG exhibits decreased wear resistance in 0.9% NaCl and phosphate buffer saline (PBS) solutions in comparison with that in air and deionized water, which is probably associated with tribocorrosion controlled by synergistic effects of abrasive and corrosive wear. The wear resistance of the Zr-based BMG against Si3N4 counterpart material is inferior to that against ZrO2, whereas the case is contrary to that against Al2O3. The effect of ceramic counterpart materials on the wear resistance of BMG is discussed based on their Young's modulus and fracture toughness. PMID:27207063

  3. An environment-dependent interatomic potential for silicon carbide: calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures

    International Nuclear Information System (INIS)

    An interatomic potential has been developed to describe interactions in silicon, carbon and silicon carbide, based on the environment-dependent interatomic potential (EDIP) (Bazant et al 1997 Phys. Rev. B 56 8542). The functional form of the original EDIP has been generalized and two sets of parameters have been proposed. Tests with these two potentials have been performed for many properties of SiC, including bulk properties, high-pressure phases, point and extended defects, and amorphous structures. One parameter set allows us to keep the original EDIP formulation for silicon, and is shown to be well suited for modelling irradiation-induced effects in silicon carbide, with a very good description of point defects and of the disordered phase. The other set, including a new parametrization for silicon, has been shown to be efficient for modelling point and extended defects, as well as high-pressure phases.

  4. An environment-dependent interatomic potential for silicon carbide: calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures.

    Science.gov (United States)

    Lucas, G; Bertolus, M; Pizzagalli, L

    2010-01-27

    An interatomic potential has been developed to describe interactions in silicon, carbon and silicon carbide, based on the environment-dependent interatomic potential (EDIP) (Bazant et al 1997 Phys. Rev. B 56 8542). The functional form of the original EDIP has been generalized and two sets of parameters have been proposed. Tests with these two potentials have been performed for many properties of SiC, including bulk properties, high-pressure phases, point and extended defects, and amorphous structures. One parameter set allows us to keep the original EDIP formulation for silicon, and is shown to be well suited for modelling irradiation-induced effects in silicon carbide, with a very good description of point defects and of the disordered phase. The other set, including a new parametrization for silicon, has been shown to be efficient for modelling point and extended defects, as well as high-pressure phases. PMID:21386297

  5. [Recent development in animal testing to predict the skin and respiratory sensitizing potential of chemicals].

    Science.gov (United States)

    Aoyama, Kohji

    2010-01-01

    The identification of chemicals with skin and/or respiratory sensitizing potential is important for the prevention of allergic diseases in both living and work environments. Although a number of animal models for respiratory allergic diseases have been reported, none of these models meets the goals of broad assessments of chemical sensitizing potential. We are attempting to develop a test for predicting the respiratory sensitization of chemicals. In the evaluation of skin sensitization of chemicals, the mostly used predictive tests are the guinea pig maximization test, Buehler test, and mouse local lymph node assay (LLNA). However, only LLNA has been validated formally and independently. Recent studies have revealed that EC3 estimated by LLNA correlates well with human skin sensitizing potency and the threshold for the induction of skin sensitization in the human repeat patch test. Thus, LLNA can predict the potency of skin sensitizing potential of a chemical and its risk in humans. PMID:20134104

  6. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Directory of Open Access Journals (Sweden)

    Speranza, P.

    2016-06-01

    Full Text Available Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6% and the main triacylglycerol classes were tri-unsaturated (50.0% and di-unsaturated-mono-saturated (39.3% triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%. Total phenolic (107.0 mg gallic acid equivalent·g−1 oil and β-carotene (781.6 mg·kg−1 were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH was obtained at an oil concentration of 50 mg·mL−1 (73.15%. The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes.El aceite de Buriti es un ejemplo de aceite de palma amazónica de gran importancia económica. La población local utiliza este aceite para la prevención y el tratamiento de diferentes enfermedades; sin embargo, hay pocos estudios científicos que evalúen sus propiedades. En este estudio, se determinaron las propiedades antioxidantes del aceite de Buriti. El ácido graso predominante fue el oleico (65,6 % y las principales clases de triglicéridos fueron tri-insaturadas (50,0 % y Di-insaturados-mono-saturada (39,3 %. La distribución posicional de las

  7. Evaluating the chemical compatibility of potential substrate materials for Bi-Sr-Ca-Cu-O films

    International Nuclear Information System (INIS)

    Potential substrate and buffer layer materials for Bi2Sr2CaCu2Ox (BSCCO) were surveyed using bulk ceramic processing techniques. Of the materials tested, only Ag was inert with respect to BSCCO. MgO slightly degrades the superconducting onset temperature and volume fraction. LaGaO3 may be a feasible ceramic substrate for BSCCO, although some reaction appears to occur

  8. Holographic realization of large-Nc orbifold equivalence with non-zero chemical potential

    CERN Document Server

    Hanada, Masanori; Karch, Andreas; Yaffe, Laurence G

    2012-01-01

    Recently, it has been suggested that large-Nc orbifold equivalences may be applicable to certain theories with chemical potentials, including QCD, in certain portions of their phase diagram. When valid, such an equivalence offers the possibility of relating large-Nc QCD at non-zero baryon chemical potential, a theory with a complex fermion determinant, to a related theory whose fermion determinant is real and positive. In this paper, we provide a test of this large Nc equivalence using a holographic realization of a supersymmetric theory with baryon chemical potential and a related theory with isospin chemical potential. We show that the two strongly-coupled, large-Nc theories are equivalent in a large region of the phase diagram.

  9. Detailed balance method for chemical potential determination in Monte Carlo and molecular dynamics simulations

    International Nuclear Information System (INIS)

    We present a new, nondestructive, method for determining chemical potentials in Monte Carlo and molecular dynamics simulations. The method estimates a value for the chemical potential such that one has a balance between fictitious successful creation and destruction trials in which the Monte Carlo method is used to determine success or failure of the creation/destruction attempts; we thus call the method a detailed balance method. The method allows one to obtain estimates of the chemical potential for a given species in any closed ensemble simulation; the closed ensemble is paired with a ''natural'' open ensemble for the purpose of obtaining creation and destruction probabilities. We present results for the Lennard-Jones system and also for an embedded atom model of liquid palladium, and compare to previous results in the literature for these two systems. We are able to obtain an accurate estimate of the chemical potential for the Lennard-Jones system at higher densities than reported in the literature

  10. Self-consistent Study on Color Transport in the Quark Gluon Plasma at Finite Chemical Potential

    CERN Document Server

    Defu, H; Jiarong, L; Defu, Hou; Ochs, Stefan; Jiarong, Li

    1996-01-01

    We calculate the relaxation time self-consistently to study the damping of collective color modes and the color conductivity in a QGP by deriving self-consistent equations for the damping rates of gluons and quarks to leading order QCD by TFD including a chemical potential for quarks. We show that the damping rates are not sensitive to the chemical potential whereas color conductivity is enhanced considerably.

  11. Effect of chemical potential on the computer simulation of hydrogen storage in single walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Hong; WANG; Shaoqing; CHENG; Huiming

    2004-01-01

    Grand canonical Monte Carlo molecular simulations were carried out for hydrogen adsorption in single-walled carbon nanotubes. It was found that variations in chemical potential may result in a great change in the hydrogen storage capacity of single-walled carbon nanotubes. Hydrogen adsorption isotherms of single-walled carbon nanotubes at 298.15 K were calculated using a modified chemical potential, and the result obtained is closer to the experimental results. By comparing the experimental and simulation results, it is proposed that chemical adsorption may exist for hydrogen adsorption in single-walled carbon nanotubes.

  12. Petrological and mineralogical data collected from the Mizunami Underground Research Laboratory construction site. Bulk chemical composition, Mineral occurrence and mineral composition

    International Nuclear Information System (INIS)

    Tono Geoscientific Research Unit of Japan Atomic Energy Agency (JAEA) is carrying out the Underground Research Laboratory Project, which is a scientific study revealing the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes. The aim of the project is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock, and to develop a range of engineering techniques for deep underground application. This project has three overlapping phases: Surface-based investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of about 20 years. Nowadays, the project is under the Phase II. Phase I and II conducted the following kinds of analyses for rock samples, which was collected from the Mizunami Underground Research Laboratory Construction Site. Bulk chemical composition analyses (major and minor elements). X-ray diffraction analyses. Mineral composition analyses. Petrological and mineralogical data is a basic information for the planning of mass transfer study in Phase III investigation. Thus, this paper compiled the results of these analyses. (author)

  13. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma

    Science.gov (United States)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak

    2015-09-01

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH3 plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (Rbulk) and the sheath region (Rsheath). Reduction and nitridation of the GO films began as soon as the NH3 plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the Rbulk, NH3 plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the Rsheath, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the Rbulk using capacitively coupled NH3 plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  14. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma

    International Nuclear Information System (INIS)

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH3 plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (Rbulk) and the sheath region (Rsheath). Reduction and nitridation of the GO films began as soon as the NH3 plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the Rbulk, NH3 plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the Rsheath, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the Rbulk using capacitively coupled NH3 plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films

  15. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  16. Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector

    NARCIS (Netherlands)

    Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.

    2011-01-01

    The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country l

  17. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  18. Spray pyrolysed In2S3 thin films: A potential electron selective layer for large area inverted bulk-heterojunction polymer solar cells

    International Nuclear Information System (INIS)

    In this paper, we report the results of investigations on the potential of spray pyrolysis technique in depositing electron selective layer over larger area for the fabrication of inverted bulk-heterojunction polymer solar cells. The electron selective layer (In2S3) was deposited using spray pyrolysis technique and the linear heterojunction device thus fabricated exhibited good uniformity in photovoltaic properties throughout the area of the device. An MEH-PPV:PCBM inverted bulk-heterojunction device with In2S3 electron selective layer (active area of 3.25 x 3.25 cm2) was also fabricated and tested under indoor and outdoor conditions. From the indoor measurements employing a tungsten halogen lamp (50 mW/cm2 illumination), an open-circuit voltage of 0.41 V and a short-circuit current of 5.6 mA were obtained. On the other hand, the outdoor measurements under direct sunlight (74 mW/cm2) yielded an open-circuit voltage of 0.46 V and a short-circuit current of 9.37 mA. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Three-loop HTLpt thermodynamics at finite temperature and isospin chemical potential

    CERN Document Server

    Andersen, Jens O; Mustafa, Munshi G; Strickland, Michael

    2015-01-01

    In a previous paper (JHEP {\\bf 05} (2014) 27), we calculated the three-loop thermodynamic potential of QCD at finite temperature $T$ and quark chemical potentials $\\mu_q$ using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and isospin chemical potential $\\mu_I$. We calculate the pressure, energy density, and entropy density, the trace anomaly, and the speed of sound at zero and nonzero $\\mu_I$. The second, fourth, and sixth-order isospin susceptibilities are calculated at zero $\\mu_I$. Our results can be directly compared to lattice QCD without Taylor expansions around $\\mu_q=0$ since QCD has no sign problem at finite isospin chemical potential.

  20. Bulk undercooling

    Science.gov (United States)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  1. Potential Causes of Significant Inventory Differences at Bulk Handling Facilities and the Importance of Inventory Difference Action Levels

    International Nuclear Information System (INIS)

    Accountancy for nuclear material can be split into two categories. Firstly, where possible, accountancy should be in terms of items that can be transferred as discrete packages and their contents fixed at the time of their creation. All items must remain accounted for at all times, and a single missing item is considered significant. Secondly, where nuclear material is unconstrained, for example in a reprocessing plant where it can change form, there is an uncertainty that relates to the amount of material present in any location. Cumulatively, these uncertainties can be summed and provide a context for any estimate of material in a process. Any apparent loss or gain between what has been physically measured within a facility during its physical inventory take and what is reported within its nuclear material accounts is known as an inventory difference. The cumulative measurement uncertainties can be used to set an action level for the inventory difference so that if an inventory difference is observed outside of such action levels, the difference is classified as significant and an investigation to find the root cause(s) is required. The purpose of this paper is to explore the potential causes of significant inventory differences and to provide a framework within which an inventory difference investigation can be carried out.

  2. Chemically transferable coarse-grained potentials from conditional reversible work calculations.

    Science.gov (United States)

    Brini, E; van der Vegt, N F A

    2012-10-21

    The representability and transferability of effective pair potentials used in multiscale simulations of soft matter systems is ill understood. In this paper, we study liquid state systems composed of n-alkanes, the coarse-grained (CG) potential of which may be assumed pairwise additive and has been obtained using the conditional reversible work (CRW) method. The CRW method is a free-energy-based coarse-graining procedure, which, by means of performing the coarse graining at pair level, rigorously provides a pair potential that describes the interaction free energy between two mapped atom groups (beads) embedded in their respective chemical environments. The pairwise nature of the interactions combined with their dependence on the chemically bonded environment makes CRW potentials ideally suited in studies of chemical transferability. We report CRW potentials for hexane using a mapping scheme that merges two heavy atoms in one CG bead. It is shown that the model is chemically and thermodynamically transferable to alkanes of different chain lengths in the liquid phase at temperatures between the melting and the boiling point under atmospheric (1 atm) pressure conditions. It is further shown that CRW-CG potentials may be readily obtained from a single simulation of the liquid state using the free energy perturbation method, thereby providing a fast and versatile molecular coarse graining method for aliphatic molecules. PMID:23083154

  3. Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves

    Institute of Scientific and Technical Information of China (English)

    R. Priya; A. Prathapan; K.G Raghu; A. Nirmala Menon

    2012-01-01

    Objective: To determine the chemical composition and antioxidant potential of essential oil isolated from the leaves of Curcuma longa (turmeric). Methods: Chemical composition of the oil was analyzed using GC-MS. Antiperoxidative potential was evaluated using linoliec acid emulsion system. Free radical scavenging activity was evaluated using stable DPPH and ABTS free radicals. Results: GC-MS analyses showed that major compound present in the turmeric leaf oil is b-sesquiphellandrene (22.8%) followed by terpinolene (9.5%). Essential oil also exhibited reductive potential and antioxidant potential in linoleic acid emulsion system along with DPPH and ABTS free radical scavenging potential. Conclusions: The overall result suggests that turmeric leaf oil is capable of retarding oxidation reaction and free radical mediated damage and can be developed as a potent natural antioxidant.

  4. The potential role of life cycle assessment in regulation of chemicals in the European Union

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2004-01-01

    . This article focuses on the general chemical legislation, especially issues related to regulatory risk assessment and subsequent decisions on risk reduction measures. Method. Current and upcoming chemical regulation has been reviewed and empirical knowledge has been gained from an ongoing case study...... and from dialogues with various stakeholders. Results and Discussion. LCAs are comparative and more holistic in view as compared to chemical risk assessments for regulatory purposes1. LCAs may therefore potentially improve the basis for decisions between alternatives in cases where a risk assessment...

  5. The potential role of Life Cycle Assessment in regulation of chemicals in the European Union

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2003-01-01

    The regulation of chemicals in EU is undergoing substantial changes these years with implementation of the “REACH” system. Simultaneously, the concepts of LCA and Integrated Product Policy (IPP) are becoming increasingly integrated in European standardisation and regulatory activities. As a logical....... Other potential uses of LCA could be in overall priority setting (including non-chemical products) of environmental product policy and in standardisation work related to products/processes releasing chemicals to the environment. A number of methodological interactions between regulatory risk assessment...

  6. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    Science.gov (United States)

    Cornelissen, L. J.; Peters, K. J. H.; Bauer, G. E. W.; Duine, R. A.; van Wees, B. J.

    2016-07-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation lengths. Proceeding from a linearized Boltzmann equation, we derive expressions for length scales and transport coefficients. For yttrium iron garnet (YIG) at room temperature we find that long-range transport is dominated by the magnon chemical potential. We compare the model's results with recent experiments on YIG with Pt contacts [L. J. Cornelissen et al., Nat. Phys. 11, 1022 (2015), 10.1038/nphys3465] and extract a magnon spin conductivity of σm=5 ×105 S/m. Our results for the spin Seebeck coefficient in YIG agree with published experiments. We conclude that the magnon chemical potential is an essential ingredient for energy and spin transport in magnetic insulators.

  7. Chiral condensate at nonzero chemical potential in the microscopic limit of QCD

    International Nuclear Information System (INIS)

    The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one-third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellations which make this possible also occur on the microscopic scale, where they can be investigated by means of a random matrix model. We show that they can be understood in terms of orthogonality properties of orthogonal polynomials. In the strong non-Hermiticity limit they are related to integrability properties of the spectral density. As a by-product we find exact analytical expressions for the partially quenched chiral condensate in the microscopic domain at nonzero chemical potential.

  8. On Extraction of Chemical Potentials of Quarks from Particle Transverse Momentum Spectra in High Energy Collisions

    International Nuclear Information System (INIS)

    We present two methods to extract the chemical potentials of quarks in high energy collisions. The first method is based on the ratios of negatively/positively charged particles, and the temperatures extracted from the transverse momentum spectra of related hadrons are needed. The second method is based on the chemical potentials of some particles, and we also need the transverse momentum spectra of related hadrons. To extract the quark chemical potentials, we would like to propose experimental collaborations to measure simultaneously not only the transverse momentum spectra of p-, p, K-, K+, π-, and π+, but also those of D-, D+, B-, and B+ (even those of Δ++, Δ-, and Ω-) in high energy nuclear collisions

  9. Measures and potentials of energy-saving in a Chinese fine chemical industrial park

    International Nuclear Information System (INIS)

    This study aims to fill the gap in the literature on energy efficiency and economic analysis of energy-saving measures at the industrial park level by conducting a case study of a typical fine chemical industrial park in China. Based on a five-year intensive data collection, the authors quantitatively examined the energy consumption and energy efficiency of the industrial park in question and evaluated the energy-saving potentials and cost-effectiveness of ten types of energy-saving measures by means of a bottom-up method and scenario analysis. It was found that the energy efficiencies of its two combined heat and power plants in 2007 were 81.5% and 56% respectively. Energy efficiency of the fine chemical industrial park was around 4625.7 GJ per million USD of gross industrial output value, which was only between 20% and 25% of that of the sector of manufacturing raw chemical materials and chemical products in China. The energy-saving potentials of the ten measures amount to about 11% of energy consumption of the industrial park in 2007. A total capital investment of approximately 35 million USD would be needed to realise the potentials. The technical measures explored in the study are generally replicable in other Chinese fine chemical industrial parks. -- Highlights: ► We studied energy-saving potentials and cost on a fine chemical industrial park scale. ► Energy efficiency is 4625.7 GJ/million USD and 97 GJ per tonne-total-organic-carbon-output. ► Bottom-up method and scenario analysis are used to value ten measures' cost-effect. ► Ten measures have 11% energy-saving potential based on energy consumption in 2007. ► Total invest about 35 million USD is needed to realize the potential.

  10. Lattice QCD with chemical potential: Evading the fermion-sign problem

    Indian Academy of Sciences (India)

    Sourendu Gupta

    2004-12-01

    Since the turn of the millennium there has been tremendous progress in understanding QCD at finite chemical potential, . Apart from qualitative results obtained using models, and exact results at very large obtained in weak coupling theory, there has been tremendous progress in getting exact and quantitative results from lattice simulations. I summarize the status of lattice QCD at finite chemical potential – locating the critical end-point in the QCD phase diagram, predicting event-to-event fluctuation rates of conserved quantities, and finding the rate of strangeness production.

  11. Shot noise in superconducting wires with a periodic modulation of the chemical potential

    Science.gov (United States)

    Chen, Qiao; Zhao, Hong-Kang; Xu, H. Q.

    2015-04-01

    We investigate the shot noise in superconducting wires under the periodic modulation of the chemical potential. The nonequilibrium Green's function technique is employed, and the formula for current and shot noise is obtained. The coupling between the Majorana bound states at ends of wire can be tuned by the periodic modulation of chemical potential. It is related with the strength A and the phase δ intimately. The current, shot noise and the corresponding Fano factor display oscillation behavior as the strength A increases. In addition, the coupling between Majorana bound states can be suppressed by strong coupling between leads and superconducting wire.

  12. Chemical potential and internal energy of the noninteracting Fermi gas in fractional-dimensional space

    Indian Academy of Sciences (India)

    S Panda; B K Panda

    2010-09-01

    Chemical potential and internal energy of a noninteracting Fermi gas at low temperature are evaluated using the Sommerfeld method in the fractional-dimensional space. When temperature increases, the chemical potential decreases below the Fermi energy for any dimension equal to 2 and above due to the small entropy, while it increases above the Fermi energy for dimensions below 2 as a result of high entropy. The ranges of validity of the truncated series expansions of these quantities are extended from low to intermediate temperature regime as well as from high to relatively low density regime by using the Pad ́e approximant technique.

  13. Chemical potential landscape in band filling and bandwidth-control of manganites: Photoemission spectroscopy measurements

    OpenAIRE

    Ebata, K.; Takizawa, M.; A. Fujimori; Kuwahara, H; Tomioka, Y.; Y. Tokura

    2008-01-01

    We have studied the effects of band filling and bandwidth control on the chemical potential in perovskite manganites $R_{1-x}A_x$MnO$_3$ ($R$ : rare earth, $A$ : alkaline earth) by measurements of core-level photoemission spectra. A suppression of the doping-dependent chemical potential shift was observed in and around the CE-type charge-ordered composition range, indicating that there is charge self-organization such as stripe formation or its fluctuations. As a function of bandwidth, we obs...

  14. Nucleation rate of the quark-gluon plasma droplet at finite quark chemical potential

    Indian Academy of Sciences (India)

    D S Gosain; S Somorendro Singh; Agam K Jha

    2012-05-01

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark chemical potential and we calculate the nucleation rate of the QGP droplet with this parameter. While calculating the nucleation rate, we find that for low values of quark phenomenological parameter $ q$, nucleation rate is negligible and when increases, nucleation rate increases significantly.

  15. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature

    Institute of Scientific and Technical Information of China (English)

    HE Deng-Ke; JIANG Yu; FENG Hong-Tao; SUN Wei-Min; ZONG Hong-Shi

    2008-01-01

    We give a direct method for calculating the quark-number susceptibility at finite chemical potential and zero temperature.In this approach the quark-number susceptibility is totally determined by G[μ](p)(the dressed quark propagator at finite chemical potential μ).By applying the general result in our previous study[Phys.Rev.C 71(2005)015205,034901,73 (2006) 016004] G[μ](p)is calculated from the model quark propagator proposed by Pagels and Stokar[Phys.Rev.D 20(1979)2947].The full analytic expression of the quark-number susceptibility at finite μ and zero T is obtained.

  16. Topology and chiral random matrix theory at nonzero imaginary chemical potential

    CERN Document Server

    Lehner, C; Verbaarschot, J J M; Wettig, T

    2009-01-01

    We study the effect of topology for a random matrix model of QCD at nonzero imaginary chemical potential or nonzero temperature. Non-universal fluctuations of Dirac eigenvalues lead to normalization factors that contribute to the $\\theta$-dependence of the partition function. These normalization factors have to be canceled in order to reproduce the $\\theta$-dependence of the QCD partition function. The reason for this behavior is that the topological domain of the Dirac spectrum (the region of the Dirac spectrum that is sensitive to the topological charge) extends beyond the microscopic domain at nonzero imaginary chemical potential or temperature. Such behavior could persist in certain lattice formulations of QCD.

  17. QCD thermodynamics with nonzero chemical potential at $N_t=6$ and effects from heavy quarks

    CERN Document Server

    DeTar, C; Gottlieb, Steven; Heller, U M; Hetrick, J E; Sugar, R; Toussaint, D

    2010-01-01

    We extend our work on QCD thermodynamics with 2+1 quark flavors at nonzero chemical potential to finer lattices with $N_t=6$. We study the equation of state and other thermodynamic quantities, such as quark number densities and susceptibilities, and compare them with our previous results at $N_t=4$. We also calculate the effects of the addition of the charm and bottom quarks on the equation of state at zero and nonzero chemical potential. These effects are important for cosmological studies of the early Universe.

  18. Hot QCD equation of state and quark-gluon plasma-- finite quark chemical potential

    CERN Document Server

    Chandra, Vinod

    2008-01-01

    We explore the relevance of a hot QCD equation of state of $O[g^6\\ln(1/g)]$, which has been obtained\\cite{avrn} for non-vanishing quark-chemical potentials to heavy ion collisions. Employing a method proposed in a recent paper \\cite{chandra1}, we use the EOS to determine a host of thermodynamic quantities, the energy density, specific heat, entropy dnesity, and the temperature dependence of screening lengths, with the behaviour of QGP at RHIC and LHC in mind. We also investigate the sensitivity of these observables to the quark chemical potential.

  19. Intrinsic Clearance of Xenobiotic Chemicals by Liver Microsomes: Assessment of Trophic Magnification Potentials.

    Science.gov (United States)

    Guomao, Zheng; Yi, Wan; Jianying, Hu

    2016-06-21

    The use of trophic magnification factors (TMFs) to characterize the bioaccumulation potentials of chemicals was encouraged; however, the method for the assessment of trophic magnification potentials is still lacking. We optimized the in vitro assays used for the measurement of intrinsic clearance in liver microsomes by incorporating benzo[a]pyrene (B(a)P) as a benchmark compound. The intrinsic clearance of 40 compounds was then measured in microsomes from fish (weevers) and birds (quail); the characteristics of the trophic transfer of these 40 compounds were previously investigated in an aquatic food web in Bohai in northern China. Chemicals that are biotransformed at a rate similar to or higher than that of B[a]P in the microsomes of both weevers and quail (in vitro intrinsic clearance values, CL; CL/CLB[a]P: 0.1 to 2.4) generally exhibited no significant trophic magnification or dilution in the food web (TMF ≈ 1 or 1). The in vitro intrinsic clearance values of the target chemicals were found to be consistent with their respective trophic transfer behavior in the aquatic food web. Significant negative correlations were also found between the TMFs and the intrinsic clearance values of all target chemicals obtained in microsomes from both weevers and quail. Multiple linear regression analysis showed that biotransformation rates (CL/CLB[a]P) are a more important factor compared with the lipophilicity of the chemicals (log Kow) in the assessment of the trophic magnification of chemicals in the aquatic food web. PMID:27152959

  20. Role of band potential roughness on the luminescence properties of InGaN quantum wells grown by MBE on bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zukauskas, A.; Kazlauskas, K.; Tamulaitis, G.; Pobedinskas, P.; Jursenas, S.; Miasojedovas, S. [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9, Building III, 10222 Vilnius (Lithuania); Ivanov, V.Yu. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); College of Science, Department of Mathematics and Natural Sciences, Cardinal S. Wyszynski University, Warsaw (Poland); Skierbiszewski, C.; Siekacz, M.; Franssen, G.; Perlin, P.; Suski, T.; Grzegory, I. [Institute of High Pressure Physics, UNIPRESS, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland)

    2006-06-15

    Role of band potential roughness on luminescence decay time and stimulated emission in InGaN quantum wells (QWs) grown by rf plasma-assisted molecular beam epitaxy (MBE) on bulk GaN substrates was studied. A high-photoexcitation regime used ensured conditions similar to those in operating laser diodes. Standard deviation of the potential fluctuations in different thickness InGaN QWs was found to vary in the range of 13-22 meV as revealed by Monte Carlo simulation of localized exciton hopping. A negligible influence of this variation on the luminescence decay time ({proportional_to}700 ps) and stimulated emission threshold ({proportional_to}30 kW/cm{sup 2}) was observed. We attribute this insensitivity to the low density of localized states ({proportional_to}1 x 10{sup 18} cm{sup -3}) estimated in our high-quality QWs grown by MBE, and therefore, assign extended states to be mainly responsible for the properties of highly-excited luminescence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-23

    Production of chemicals from biomass offers a promising opportunity to reduce U.S. dependence on imported oil, as well as to improve the overall economics and sustainability of an integrated biorefinery. Given the increasing momentum toward the deployment and scale-up of bioproducts, this report strives to: (1) summarize near-term potential opportunities for growth in biomass-derived products; (2) identify the production leaders who are actively scaling up these chemical production routes; (3) review the consumers and market champions who are supporting these efforts; (4) understand the key drivers and challenges to move biomass-derived chemicals to market; and (5) evaluate the impact that scale-up of chemical strategies will have on accelerating the production of biofuels.

  2. An alternative approach to the Boltzmann distribution through the chemical potential

    Science.gov (United States)

    D'Anna, Michele; Job, Georg

    2016-05-01

    The Boltzmann distribution is one of the most significant results of classical physics. Despite its importance and its wide range of application, at high school level it is mostly presented without any derivation or link to some basic ideas. In this contribution we present an approach based on the chemical potential that allows to derive it directly from the basic idea of thermodynamical equilibrium.

  3. Electrical chemical potential and the π- - π+ asymmetry in heavy ion collisions

    International Nuclear Information System (INIS)

    We calculate an electrical chemical potential, μe, for hadronic matter produced in relativistic collisions of nuclei with (extremely) large atomic numbers. We find μe -/π+>1) and a difference between positive and negative pion spectra at low transverse momenta. (author). 10 refs., 6 tab

  4. Draft Genome Sequence of Acetobacterium bakii DSM 8239, a Potential Psychrophilic Chemical Producer through Syngas Fermentation

    OpenAIRE

    Hwang, Soonkyu; Song, Yoseb; Cho, Byung-Kwan

    2015-01-01

    Acetobacterium bakii DSM 8239 is an anaerobic, psychrophilic, and chemolithoautotrophic bacterium that is a potential platform for producing commodity chemicals from syngas fermentation. We report here the draft genome sequence of A. bakii DSM 8239 (4.14 Mb) to elucidate its physiological and metabolic properties related to syngas fermentation.

  5. Iso-chemical potential trajectories in the P-T plane for He II

    Science.gov (United States)

    Maytal, B.; Nissen, J. A.; Van Sciver, S. W.

    1990-01-01

    Trajectories of constant chemical potential in the P-T plane serve as an integral formulation of London's equation. The trajectories are useful for analysis and synthesis of fountain effect pump performance. A family of trajectories is generated from available numerical codes.

  6. Deconfinement transitions of large N QCD with chemical potential at weak and strong coupling

    NARCIS (Netherlands)

    Hollowood, Timothy J.; Myers, Joyce C.

    2012-01-01

    We calculate the deconfinement line of transitions for large N-c QCD at finite temperature and chemical potential in two different regimes: weak coupling in the continuum, and, strong coupling on the lattice, working in the limit where N-f is of order N-c. In the first regime we extend previous weak

  7. Chemical Potential Dependence of the Dressed—Quark Propagator from an Effective Quark—Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; PINGJia-Lun; 等

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagator from the dressed-quark propagator,which provides a means of determining the behavior of the chiral and deconfinement order parameters.A comparison with the results of previous researches is given.

  8. Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry

    International Nuclear Information System (INIS)

    This paper attempts to estimate the technical and economic potential for natural gas-fired cogeneration (NGCHP) in Brazil's chemical industry as well as also analyses the impacts of specific incentive policies on the economic feasibility of this potential. Currently, the NGCHP installed capacity at Brazil's chemical industry is still quite a low figure, although the chemical plants are under heavy pressures to: (1) cut costs; and (2) show a rising awareness of the importance of power service quality, underscored even more heavily by Brazil's recent power crisis. According this study, a natural gas-fired remaining technical potential of 1.4 GW is noted in the Brazilian chemical industry. Financing policies showed to be the stand-alone policy that would be most successful for ensuring the economic feasibility of this technical potential. Nevertheless, this policy proved to be affected by the economic scenario under consideration, which includes world oil prices, electricity tariff and foreign exchange ratio possible paths. Consequently, the key issue is related to the ability to assess which economic scenario is rated as more probable by possible future investors in NGCHP, and then selecting the most appropriate incentive policy

  9. Influence of Finite Chemical Potential on Critical Boson Mass in QED3

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Qiang; LI Zhen; FENG Hong-Tao

    2007-01-01

    Using the coupled Dyson-Schwinger equation for the fermion propagator at finite chemical potential μ,we investigate the fermion chiral condensate when the gauge boson mass is nonzero in QED3. We show that the chiral symmetry restores when the boson mass is large enough, and the critical boson mass depends little on μ.

  10. Cosmology with dark energy decaying through its chemical-potential contribution

    OpenAIRE

    Besprosvany, J.

    2007-01-01

    The consideration of dark energy's quanta, required also by thermodynamics, introduces its chemical potential into the cosmological equations. Isolating its main contribution, we obtain solutions with dark energy decaying to matter or radiation. When dominant, their energy densities tend asymptotically to a constant ratio, explaining today's dark energy-dark matter coincidence, and in agreement with supernova redshift data.

  11. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    International Nuclear Information System (INIS)

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as the main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase

  12. Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector

    International Nuclear Information System (INIS)

    The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended. -- Highlights: → Best Practice Technologies (BPTs) offer energy savings in the chemical industry. → Two approaches are applied based on an improved BPT dataset covering 66 chemicals. → Worldwide, BPTs offer 16% energy saving potentials excluding electricity use. → Process integration, combined heat and power and recycling offer further potential. → Results need to be improved by resolving important methodological and data issues.

  13. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  14. The potential role of 'Candidatus Microthrix parvicella' in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants.

    Science.gov (United States)

    Wang, Juan; Qi, Rong; Liu, Miaomiao; Li, Qian; Bao, Haipeng; Li, Yaming; Wang, Shen; Tandoi, Valter; Yang, Min

    2014-01-01

    We investigated the bacterial community compositions and phosphorus removal performance under sludge bulking and non-bulking conditions in two biological wastewater treatment systems (conventional A²/O (anaerobic/anoxic/aerobic) and inverted A²/O (anoxic/anaerobic/aerobic) processes) receiving the same raw wastewater. Sludge bulking resulted in significant shift in bacterial compositions from Proteobacteria dominance to Actinobacteria dominance, characterized by the significant presence of filamentous 'Candidatus Microthrix parvicella'. Quantitative real-time polymerase chain reaction (PCR) analysis revealed that the relative abundance of 'Candidatus Accumulibacter phosphatis', a key polyphosphate-accumulating organism responsible for phosphorus removal, with respect to 16s rRNA genes of total bacteria was 0.8 and 0.7%, respectively, for the conventional and inverted A²/O systems when sludge bulking occurred, which increased to 8.2 and 12.3% during the non-bulking period. However, the total phosphorus removal performance during the bulking period (2-week average: 97 ± 1 and 96 ± 1%, respectively) was not adversely affected comparable to that during the non-bulking period (2-week average: 96 ± 1 and 96 ± 1%, respectively). Neisser staining revealed the presence of large polyphosphate granules in 'Candidatus Microthrix parvicella', suggesting that this microbial group might have been responsible for phosphorus removal during the sludge bulking period when 'Candidatus Accumulibacter phosphatis' was excluded from the systems. PMID:25051486

  15. Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies.

    Science.gov (United States)

    Chiba, Shuntaro; Furuta, Tadaomi; Shimizu, Seishi

    2016-08-11

    Cosolvents, such as urea, affect protein folding and binding, and the solubility of solutes. The modeling of cosolvents has been facilitated significantly by the rigorous Kirkwood-Buff (KB) theory of solutions, which can describe structural thermodynamics over the entire composition range of aqueous cosolvent mixtures based only on the solution density and the KB integrals (KBIs), i.e., the net excess radial distribution functions from the bulk. Using KBIs to describe solution thermodynamics has given rise to a clear guideline that an accurate prediction of KBIs is equivalent to accurate modeling of cosolvents. Taking urea as an example, here we demonstrate that an improvement in the prediction of KBIs comes from an improved reproduction of high-level quantum chemical (QC) electrostatic potential and molecular pairwise interaction energies. This rational approach to the improvement of the KBI prediction stems from a comparison of existing force fields, AMOEBA, and the generalized AMBER force field, as well as the further optimization of the former to enable better agreement with QC interaction energies. Such improvements would pave the way toward a rational and systematic determination of the transferable force field parameters for a number of important small molecule cosolvents. PMID:27434200

  16. Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model

    CERN Document Server

    Ghosh, Sabyasachi; Mohanty, Bedangdas

    2016-01-01

    We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by Hadron Resonance Gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature is observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in...

  17. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  18. Chemical potentials and parity breaking: the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    We consider the 'two flavour' Nambu-Jona-Lasinio model in the presence of a vector and an axial external chemical potential and study the phase structure of the model at zero temperature. The Nambu-Jona-Lasinio model is often used as a toy replica of QCD and it is therefore interesting to explore the consequences of adding external vector and axial chemical potentials in this model, mostly motivated by claims that such external drivers could trigger a phase where parity could be broken in QCD. We are also motivated by some lattice analysis that attempt to understand the nature of the so-called Aoki phase using this simplified model. Analogies and differences with the expected behaviour in QCD are discussed and the limitations of the model are pointed out. (orig.)

  19. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  20. Overview of large N QCD with chemical potential at weak and strong coupling

    International Nuclear Information System (INIS)

    In this note we summarize the results from a longer article on obtaining the QCD phase diagram as a function of the temperature and chemical potential at large Nc and large Nf in the weak coupling limit λ → 0, and the strong coupling limit λ → ∞. The weak coupling phase diagram is obtained from the Polyakov line order parameter, and the quark number, calculated using 1-loop perturbation theory for QCD formulated on S1 × S3. The strong coupling phase diagram is obtained from the same observables calculated at leading order in the lattice strong coupling and hopping parameter expansions. We show that the matrix models in these two limits agree at temperatures and chemical potentials which are not too high, such that observables in the strongly-coupled theory can be obtained from the observables in the weakly-coupled theory, and vice versa, using a simple transformation of variables.

  1. Chiral Random Matrix Model at Finite Chemical Potential: Characteristic Determinant and Edge Universality

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  2. The $N_f= 2$ chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Philipsen, Owe

    2015-01-01

    The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the two scenarios is realized has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion mass was not conclusive yet. Recently, an alternative approach was proposed, extrapolating the first order phase transition found at imaginary chemical potential to zero chemical potential with known exponents, which are induced by the Roberge-Weiss symmetry. For staggered fermions on $N_t=4$ lattices, this results in a first order transition in the chiral limit. Here we report of $N_t=4$ simulations with Wilson fermions, where the first order region is found to be large.

  3. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Science.gov (United States)

    Liu, Yizhuang; Nowak, Maciej A.; Zahed, Ismail

    2016-08-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  4. Use of genotoxicity tests in a TIE to identify chemicals potentially affecting human health

    International Nuclear Information System (INIS)

    Imperial Oil operates a sour gas processing plant in southern Alberta that has, for the past several years, been the focus of considerable public and regulatory concern over perceived contamination of soils and groundwater on a nearby ranch. Elevated concentrations of DOC (∼140 mg/L) have been received in groundwater underlying the plant site. Two process-related chemicals, sulfolane and diisopropanolamine (DIPA), had been previously identified as the primary components of the DOC plume, although the chemicals associated with 30% of the DOC could not be identified. A risk assessment was initiated in 1994 to determine whether off-site migration of sulfolane and DIPA or of other unidentified contaminants poses a risks to human health and/or ecological receptors. One component of the risk assessment included conducting a TIE to help identify the chemical(s) in contaminated groundwater underlying the gas plant that might adversely affect human health. Three endpoints were utilized in the TIE: MicroTox, SOS-Chromotest and the Ames test. MicroTox was used since it exhibited a response to whole groundwater from the site, while the genotoxicity tests were used because DIPA reportedly causes a response in the Ames test and because of the concern over potential human health affects arising from other unidentified contaminants. Results of the TIE indicated that the chemicals causing the toxicity in the groundwater sample were water soluble compounds, with similar characteristics to the process chemicals used at the gas plant and detected at high concentrations in groundwater from the plant site. These results provided additional evidence to help focus the risk assessment on the chemicals sulfolane and diisopropanolamine

  5. Chiral dynamics and operator relations at non-zero chemical potential

    International Nuclear Information System (INIS)

    We discuss Taylor expansions of operator expectation values in QCD with respect to chemical potentials of quarks. Maxwell's relations between coefficients and Ward identities between series are used to relate the operators which give the Taylor coefficients of the series for the chiral condensate, the pseudoscalar susceptibility and the mass dependence of quark number susceptibilities. Through such relations the physics of chiral dynamics are explored. The renormalized expectation values of the chiral condensate and its Taylor coefficients are extracted from simulation

  6. Determination of substitutional-interstitial interaction from chemical potentials of interstitials in the steel matrix

    Czech Academy of Sciences Publication Activity Database

    Shan, Y. V.; Svoboda, Jiří; Fischer, F. D.; Kozeschnik, E.

    Zurich: Trans Tech Publications, 2014 - (Mishra, B.; Ionescu, M.; Chandra, T.), s. 645-650. ( Advanced Materials Research. 922). ISBN 978-3-03835-074-3. ISSN 1022-6680. [THERMEC 2013 - International Conference on Processing and Manufacturing of Advanced Materials: Processing, Fabrication, Properties, Applications /8/. Las Vegas (US), 02.12.2013-06.12.2013] Institutional support: RVO:68081723 Keywords : interstitial trapping * chemical potential * trapping enthalpy * carbon * nitrogen Subject RIV: BJ - Thermodynamics

  7. On the spectrum of the staggered Dirac operator at finite chemical potential

    International Nuclear Information System (INIS)

    The spectrum of the staggered Dirac operator in two-dimensional QEDF is investigated at finite chemical potential. In the quenced model, it is shown that lattice artefacts cause a spurious scattering of eigenvalues. This scattering disappears when lattice distance is taken to zero. In the unquenced model, a new approach is used to show that similar effects are absent. (author). 17 refs.; 6 figs

  8. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    OpenAIRE

    Cornelissen, Ludo J.; Peters, Kevin J. H.; Duine, Rembert A.; Bauer, Gerrit E. W.; van Wees, Bart J.

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation lengths. Proceeding from a linearized Boltzmann equation, we derive expressions for length scales and transport coefficients. For yttrium iron garnet (YIG) at room temperature we find that long-range...

  9. Topology and chiral random matrix theory at nonzero imaginary chemical potential

    OpenAIRE

    Lehner, C.; Ohtani, M.; Verbaarschot, J. J. M.; Wettig, T.

    2009-01-01

    We study the effect of topology for a random matrix model of QCD at nonzero imaginary chemical potential or nonzero temperature. Non-universal fluctuations of Dirac eigenvalues lead to normalization factors that contribute to the $\\theta$-dependence of the partition function. These normalization factors have to be canceled in order to reproduce the $\\theta$-dependence of the QCD partition function. The reason for this behavior is that the topological domain of the Dirac spectrum (the region o...

  10. Chemicals in textiles : A potential source for human exposure and environmental pollution

    OpenAIRE

    Luongo, Giovanna

    2015-01-01

    The wide use of chemicals in textile production is common knowledge, whilst very little has been done to disclose the potentially harmful compounds hiding in our closet. The initial part of this work focused on explorative screening of textile materials in common clothing. Non-targeted analysis of a set of sixty garments revealed the presence of thousands of compounds, among which over a hundred were tentatively identified. Depending on the frequency of occurrence in textile, skin penetrating...

  11. A new method to study lattice QCD at finite temperature and chemical potential

    CERN Document Server

    Fodor, Z

    2002-01-01

    Due to the sign problem, it is exponentially difficult to study QCD on the lattice at finite chemical potential. In this letter we propose a method --an overlap ensuring multi-parameter reweighting technique-- to solve the problem. We apply this method and give the phase diagram of four-flavor QCD obtained on lattices 4^4 and 4\\cdot6^3. Our results are based on {\\cal{O}}(10^3-10^4) configurations.

  12. Investigation of chemical distribution in the oxide bulk layer in Ti/HfO{sub 2}/Pt memory devices using x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ran; Du, Xianghao; Han, Zuyin; Sun, Weideng [School of Physics, Shandong University, Jinan, Shandong 250100 (China)

    2015-04-27

    Resistive switching (RS) of Ti/HfO{sub 2}/Pt memory devices was studied using X-ray photoelectron spectroscopy. Hf{sup 4+} monotonously decreases with depth increasing towards to HfO{sub 2}/Pt interface in low resistance state, while a fluctuation distribution of Hf{sup 4+} is shown in high resistance state (HRS) and in the pristine Ti/HfO{sub 2}/Pt devices (without any SET or RESET process). It is explained by the existence of locally accumulated oxygen vacancies (clusters) in the oxide bulk layer in HRS and pristine states. A dynamic model of RS processes was proposed that the oxygen vacancy clusters dominantly determines the resistivity by the connecting/rupture between the neighbor cluster sites in the bulk.

  13. Dual lattice representations for O(N) and CP(N-1) models with a chemical potential

    CERN Document Server

    Bruckmann, Falk; Kloiber, Thomas; Sulejmanpasic, Tin

    2015-01-01

    We derive dual representations for O(N) and CP(N-1) models on the lattice. In terms of the dual variables the partition sums have only real and positive contributions also at finite chemical potential. Thus the complex action problem of the conventional formulation is overcome and using the dual variables Monte Carlo simulations are possible at arbitrary chemical potential.

  14. Properties of baryonic, electric and strangeness chemical potentials and some of their consequences in relativistic heavy ion collisions

    CERN Document Server

    Mekjian, Aram Z

    2007-01-01

    Analytic expressions are given for the baryonic, electric and strangeness chemical potentials which explicitly show the importance of various terms. Simple scaling relations connecting these chemical potentials are found. Applications to particle ratios and to fluctuations and related thermal properties such as the isothermal compressibility kappaT are illustrated. A possible divergence of kappaT is discussed.

  15. Benefit of heat acclimation is limited by the evaporative potential when wearing chemical protective clothing.

    Science.gov (United States)

    Chang, S K; Gonzalez, R R

    1999-08-01

    Heat acclimation-induced sweating responses have the potential of reducing heat strain for chemical protective garment wearers. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. Ten subjects were studied exercising on a treadmill while wearing two different chemical protective ensembles. Skin heat flux, skin temperature, core temperature, metabolic heat production and heart rate were measured. It was found that the benefit of heat acclimation is strongly dependent on the ability of the body to dissipate an adequate amount of heat evaporatively. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine, a priori, whether heat acclimation would be helpful when wearing protective clothing system. The data show that when EP is < 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination. PMID:10504888

  16. Development and validation of animal-free test methods to predict the skin sensitizing potential of chemicals

    OpenAIRE

    Bauch, Caroline D.

    2013-01-01

    Skin sensitization is the development of the allergic contact dermatitis caused by chemicals. Regulatory accepted methods to assess skin sensitizing potential of chemicals are animal based tests, but increasing interest in animal welfare presses the development of animal-free methods. The aim of this work was the development, establishment and validation of several alternative methods to animal testing to predict the skin sensitizing potential of chemicals. Therefore several methods reflectin...

  17. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications

    International Nuclear Information System (INIS)

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (at.%, x = 0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr–Ti–Al–Fe–Cu–Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. - Highlights: • Ni-free Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (at.%, x = 0, 2.5, 5) BMGs were fabricated. • Plasticity and notch toughness of BMGs are enhanced by high-Zr-content. • The high-Zr-based BMGs exhibit excellent bio-corrosion resistance in PBS solution. • The biosafety of BMGs is revealed by regular cell adhesion and proliferation. • High-Zr-bearing BMGs are favorable for potential applications as biomaterials

  18. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  19. Potential Challenges Faced by the U.S. Chemicals Industry under a Carbon Policy

    Directory of Open Access Journals (Sweden)

    Andrea Bassi

    2009-09-01

    Full Text Available Chemicals have become the backbone of manufacturing within industrialized economies. Being energy-intensive materials to produce, this sector is threatened by policies aimed at combating and adapting to climate change. This study examines the worst-case scenario for the U.S. chemicals industry when a medium CO2 price policy is employed. After examining possible industry responses, the study goes on to identify and provide a preliminary evaluation of potential opportunities to mitigate these impacts. If climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies to mitigate the impacts of rising energy costs, the examination shows that climate policies that put a price on carbon could have substantial impacts on the competiveness of the U.S. chemicals industry over the next two decades. In the long run, there exist technologies that are available to enable the chemicals sector to achieve sufficient efficiency gains to offset and manage the additional energy costs arising from a climate policy.

  20. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  1. Potential role of redox cycling as a mechanism for chemical teratogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Juchau, M.R.; Fantel, A.G.; Harris, C.; Beyer, B.K.

    1986-12-01

    A survey of the literature indicates that several chemicals whose reduced metabolites are capable of undergoing redox cycling in biological systems also possess significant teratogenic properties when tested in vivo. The authors have initiated investigations to determine whether the embryotoxic effects of such chemicals could result from their redox cycling properties and whether redox cycling could be an important mechanism in chemical teratogenesis. In order to obviate the potentially confounding influences of maternal factors, the initial studies have been performed with a whole embryo culture system with redox cycling agents added directly to the culture medium. Several representative redox cycling agents including doxorubicin, paraquat, a series of nitroheterocycles, nitrosofluorene, and diethylstilbestrol (converted metabolically to redox cycling quinone/semiquinone radicals) have been investigated thus far. The nitroheterocycles which bear nitro groups with comparatively high redox potentials produced a striking, asymmetric defect involving primarily the right half of the prosencephalic and mesencephalic regions. The effect was exacerbated under conditions of low O/sub 2/ tension. Accumulated data to date strongly suggest that reduction of the nitro group is an essential feature in the embryotoxic mechanism. Quinones (doxorubicin, paraquat) and compounds metabolically converted to quinones (diethylstilbestrol) appeared to produce embryotoxic effects via mechanisms not associated with redox cycling. Nitrosofluorene embryotoxicity was markedly exacerbated by changes in both intra- and extracellular glutathione levels, but definitive dependence on a radical-mediated effect or redox cycling was not demonstrated.

  2. Heat and Moisture Transport in Unsaturated Porous Media -- A Coupled Model in Terms of Chemical Potential

    CERN Document Server

    Sullivan, Eric

    2013-01-01

    Transport phenomena in porous media are commonplace in our daily lives. Examples and applications include heat and moisture transport in soils, baking and drying of food stuffs, curing of cement, and evaporation of fuels in wild fires. Of particular interest to this study are heat and moisture transport in unsaturated soils. Historically, mathematical models for these processes are derived by coupling classical Darcy's, Fourier's, and Fick's laws with volume averaged conservation of mass and energy and empirically based source and sink terms. Recent experimental and mathematical research has proposed modifications and suggested limitations in these classical equations. The primary goal of this thesis is to derive a thermodynamically consistent system of equations for heat and moisture transport in terms of the chemical potential that addresses some of these limitations. The physical processes of interest are primarily diffusive in nature and, for that reason, we focus on using the macroscale chemical potentia...

  3. Measuring the Chemical Potential of the Martian Regolith to Generate and Sustain Life

    Science.gov (United States)

    Kounaves, S. P.; Buehler, M. G.; Kuhlman, K. R.

    1999-01-01

    A critical component for identifying chemical biosignatures is the ability to assess in-situ the potential of an aqueous geochemical environment to generate and sustain life. On Mars or other solar bodies, in-situ chemical characterization could provide evidence as to whether the chemical composition of the regolith or evaporites in suspected ancient water bodies have been biologically influenced or possess the chemical parameters within which life may have existed, or may still exist. A variety of analytical techniques have been proposed for use in detecting and identify signatures of past or present life. These techniques fall into two groups; visual observation with instruments such as cameras or optical/atomic-force microscopes; or elemental chemical analysis with such instruments as X-ray fluorescence (XRF) and diffraction (XRD), a-proton backscatter (APX), y-ray, Mossbauer, Raman, IR, UV/VIS spectroscopies, gas chromatography (GC), or mass spectrometry (MS). Direct observation of an identifiable lifeform by the first set of instruments in a single sample is highly unlikely, especially for extinct organisms or on the surface. The later instruments can provide vital data as to the elemental mineralogy and geological history of the planet, but are highly inadequate for understanding the chemistry of the planet in terms of indigenous life or interactions with human explorers. Techniques such as XRD, XRF, and APX, provide elemental composition at high limits of detection. Some of this data can be extrapolated or interpolated to provide chemical parameters such as oxidation state or composition. Gas chromatography (GC) without standards and non-specific detectors, has little chance of identifying a mixture of unknown components. Combined with GC or by itself, mass spectrometry (MS) can provide identification of compounds, but in both cases the sample must be appropriately prepared for accurate and reliable analysis. Life as we know it, and probably identify it as

  4. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  5. Local chemical potentials and pressures in heterogeneous systems: Adsorptive, absorptive, interfaces

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-07-01

    Equations self-consistently describing chemical and mechanical equilibria in heterogeneous systems are derived. The equations are based on the lattice gas model using discrete distributions of molecules in space (on a scale comparable to molecular size) and continuum distributions of molecules (at short distances inside the cells) during their translational and vibrational motions. It is shown that the theory provides a unified description of the equilibrium distributions of molecules in three aggregate states and at their interfaces. Potential functions of intermolecular interactions (such as Mie pair potentials) in several coordination spheres that determine the compressibility of the lattice structure are considered. For simplicity, it is assumed that differences between the sizes of mixture components are small. Expressions for the local components of the pressure tensor inside multicomponent solid phases and heterogeneous systems (adsorptive, absorptive, and interfaces) are obtained. It is established that they can be used to calculate the lattice parameters of deforming phases and the thermodynamic characteristics of interfaces, including surface tension. The tensor nature of the chemical potential in heterogeneous systems is discussed.

  6. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  7. A density functional theory-based chemical potential equalisation approach to molecular polarizability

    Indian Academy of Sciences (India)

    Amita Wadehra; Swapan K Ghosh

    2005-09-01

    The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.

  8. Phase structure of two-flavor QCD at finite chemical potential.

    Science.gov (United States)

    Braun, Jens; Haas, Lisa M; Marhauser, Florian; Pawlowski, Jan M

    2011-01-14

    We study the phase diagram of two-flavor QCD at imaginary chemical potentials in the chiral limit. To this end we compute order parameters for chiral symmetry breaking and quark confinement. The interrelation of quark confinement and chiral symmetry breaking is analyzed with a new order parameter for the confinement phase transition. We show that it is directly related to both the quark density as well as the Polyakov loop expectation value. Our analytical and numerical results suggest a close relation between the chiral and the confinement phase transition. PMID:21405221

  9. The potential of measuring serum amyloid A in individual ewe milk and in farm bulk milk for monitoring udder health on sheep dairy farms.

    Science.gov (United States)

    Winter, Petra; Miny, Martina; Fuchs, Klemens; Baumgartner, Walter

    2006-12-01

    The aim of the study was to determine the diagnostic value of measuring serum amyloid A (SAA) concentrations in milk of individual ewes and in farm bulk milk for monitoring udder health. Udder health was calculated by examining a randomly selected group of seven flocks at each farm visit by means of California mastitis test and bacteriological examination of 5749 milk samples. SAA was determined additionally in 267 randomly selected milk samples from six flocks. Thirty-one bulk milk samples from these farms were tested for SCC and SAA levels. Subclinical infections were detected in 29.5% of samples whereas no clinical infections were observed. Intramammary infected udder halves showed significantly elevated SAA concentrations (121.3+/-25.3 microg/ml) in milk compared to the levels of healthy udder halves (8.0+/-1.9 microg/ml; pCMT scores and positive bacteriological results. Bulk milk SAA levels ranged from 18.6+/-6.7 to 37.4+/-14.1 microg/ml and showed a positive correlation with bSCC (r=0.38, p=0.018) but not with percent infected glands (r=0.022, p=0.453). This study demonstrated that SAA levels in milk can be used to detect subclinical mastitis in individual ewes whereas further investigations are needed to determine the value of measuring SAA in bulk milk for monitoring flock udder health. PMID:16677674

  10. Hard X-ray photoelectron spectra (HXPES) of bulk non-conductor vitreous SiO2: Minimum linewidths and surface chemical shifts

    International Nuclear Information System (INIS)

    Highlights: • Electronic structure of non-conducting glass studied by hard X-ray photoelectron spectroscopy. • A thin film of Cr was deposited on the vitreous SiO2 glass to overcome the sample charging. • Excellent O 1s and Si 1s linewidths were obtained, matching those reported using the laboratory based Kratos Axis Ultra spectrometer equipped with a magnetic compensation system. • The bulk and interface states of non-conducting samples are studied as a function of photon energy. - Abstract: Hard X-ray photoelectron spectra (2200 eV to 5000 eV photon energies) have been obtained for the first time on a bulk non-conductor, vitreous SiO2, on a high resolution (E/ΔE of 10,000) synchrotron beamline at the Canadian Light Source (CLS). To minimize charging and differential charging, the SiO2 was coated with very thin layers (0.5 to 1.5 nm) of Cr metal. The O 1s linewidth obtained at 2500 eV photon energy was 1.26 eV—the minimum linewidth for SiO2—and in good agreement with that obtained at 1486 eV on a Kratos Axis Ultra spectrometer equipped with a magnetic charge compensation system. The Si 1s linewidth of 1.5 eV, somewhat broader than that previously obtained at 1486 eV on the Si 2p3/2 line of 1.16 eV, is mainly due to the much larger inherent Si 1s linewidth (0.5 eV) compared to the inherent Si 2p linewidth (<0.1 eV). Both linewidths are dominated by the large final state vibrational broadening previously described. The Cr coating produces surface monolayers of interfacial Cr “suboxide” (Cr-subox), Cr metal, and a surface Cr oxide (Cr-surfox). Cr-subox (Si−O−Cr) gives rise to the weak near-surface Si 1s peak, while both oxides give rise to both the weak surface O 1s peak and the Cr 2p oxide peak. Both the O 1s and Si 1s surface peaks are shifted by ∼2 eV relative to the large bulk Si 1s and O 1s peaks. The weak Si 1s and O 1s surface peaks along with the Cr 2p oxide peak decrease in intensity greatly as the photon energy increases, due to an

  11. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    Science.gov (United States)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  12. A DNA minor groove electronegative potential genome map based on photo-chemical probing

    DEFF Research Database (Denmark)

    Lindemose, Søren; Nielsen, Peter Eigil; Hansen, Morten;

    2011-01-01

    The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciated......, and it also appears that minor groove electronegative potential may contribute significantly in guiding proteins to their cognate binding sites in the genome. Based on the photo-chemical probing results, we have derived an algorithm that predicts the minor groove electronegative potential in a DNA...... nucleotide resolution of any genome, and it is illustrated how such detailed studies of this sequence dependent, inherent property of the DNA may reflect on genome organization, gene expression and chromosomal condensation....

  13. Kaempferitrin from Uncaria guianensis (Rubiaceae) and its potential as a chemical marker for the species

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Ligia M.M.; Liechocki, Sally; Barboza, Rodolfo S.; Paixao, Djavan da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica], e-mail: valente@iq.ufrj.br; Bizarri, Carlos H.B.; Almeida, M. Beatriz S.; Benevides, Paulo J.C.; Siani, Antonio C. [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Inst. de Tecnologia em Farmacos; Magalhaes, Alvicler [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    Uncaria tomentosa (Willd.) DC. and U. guianensis (Aubl.) Gmel., known as cat's claw, are large woody vines native to the Amazonian and Central American rain forests. The species contain, in different proportions, indole and oxindole alkaloids, triterpenoid glycosides, sterols and proanthocyanidins. U. tomentosa can be chemically identified by its oxindole alkaloid profile and content, whereas U. guianensis has no satisfactorily established chemical markers. This work describes, for the first time, the isolation of kaempferol-3,7-O-(a)-dirhamnoside (kaempferitrin) in Uncaria species. Screening for this compound in leaves, stems or bark of both species through TLC and HPLC-DAD-MS showed the presence of kaempferitrin only in the leaves and stems of U. guianensis, at a ratio almost thirty six times greater in the leaves than in the stems. These results reveal the selectivity of U. guianensis to produce this bioactive flavonoid glycoside, and suggest this compound as a potential chemical marker for the species.(author)

  14. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    Science.gov (United States)

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view. PMID:18205484

  15. EU alerting and reporting systems for potential chemical public health threats and hazards.

    Science.gov (United States)

    Orford, R; Crabbe, H; Hague, C; Schaper, A; Duarte-Davidson, R

    2014-11-01

    A number of European and international IT platforms are used to notify competent authorities of new potential chemical exposures. Recently the European Parliament and the Council of European Union adopted new legislation that aims to improve the co-ordinated response to cross border health threats (Decision 1082/2013/EU). The Decision, inter alia, sets provisions on notification, ad hoc monitoring and coordination of public health measures following serious cross border threats to health from biological, chemical and environmental events as well as events that have an unknown origin. The legal instrument applies to all European Union Member States and is comparable to the International Health Regulations in its content, requirements and adoption of a multiple hazards approach. An inter-sectoral and multidisciplinary response to events with potentially dangerous cross border exposure pathways is often required. For example, European Poisons Centres may be aware of cases of toxic exposure to a product and, in parallel, trading standards may be aware of the same product due to a breach of consumer product standards. Whilst both cases would have been recorded for separate purposes in different alerting systems, they relate to the same exposure pathway; therefore a process for linking these records would allow a more robust approach to risk assessment and risk mitigation. The Decision seeks to reconcile this issue for serious threats by linking relevant platforms into one overarching higher level risk management IT platform called the Early Warning Response System (EWRS). This system will serve to link other sectors within the European Commission (EC) to public health (e.g. medicines), as well as other EU agencies and international bodies via co-notification features. Other European alert systems will be linked to EWRS to facilitate information sharing at both the assessment and management levels. This paper provides a timely overview of the main systems run by the EC

  16. Two-photon absorption in gapped bilayer graphene with a tunable chemical potential.

    Science.gov (United States)

    Brinkley, M K; Abergel, D S L; Clader, B D

    2016-09-14

    Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one- and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential-all at finite temperature. Our analysis is comprehensive, characterizing one- and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices. PMID:27392275

  17. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  18. Baryon chemical potential and in-medium properties of BPS skyrmions

    CERN Document Server

    Adam, C; Naya, C; Sanchez-Guillen, J; Vazquez, R; Wereszczynski, A

    2015-01-01

    We continue the investigation of thermodynamical properties of the BPS Skyrme model. In particular, we analytically compute the baryon chemical potential both in the full field theory and in a mean-field approximation. In the full field theory case, we find that the baryon chemical potential is always exactly proportional to the baryon density, for arbitrary solutions. We further find that, in the mean-field approximation, the BPS Skyrme model approaches the Walecka model in the limit of high density - their thermodynamical functions as well as the equation of state agree in this limit. This fact allows to read off some properties of the $\\omega$-meson from the BPS Skyrme action, even though the latter model is entirely based on the (pionic) $SU(2)$ Skyrme field. On the other hand, at low densities, at the order of the usual nuclear matter density, the equations of state of the two models are no longer universal, such that a comparison depends on some model details. Still, also the BPS Skyrme model gives rise...

  19. Nf=2 QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential

    Science.gov (United States)

    Philipsen, Owe; Pinke, Christopher

    2016-06-01

    The order of the thermal phase transition in the chiral limit of quantum chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical end point at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse Nt=4 lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass mπc≈560 MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavor QCD using improved Wilson fermions and indicate that the systematic error on the two-flavor chiral transition is still of order 100%.

  20. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  1. Characterization of homoionic Fe2+-type montmorillonite: Potential chemical species of iron contaminant

    International Nuclear Information System (INIS)

    Fe2+-montmorillonite with Fe2+ ions occupying cation exchange sites is an ideal transformation product in bentonite buffer material. In our previous study on preparation and characterization of Fe2+-montmorillonite, the montmorillonite sample that adsorbed Fe2+ ions on almost all of the cation exchange sites was prepared using a FeCl2 solution under an inert gas condition [N. Kozai, Y. Adachi, S. Kawamura, K. Inada, T. Kozaki, S. Sato, H. Ohashi, T. Ohnuki, T. Banba, J. Nucl. Sci. Technol. 38 (2001) 1141]. In view of the unstable nature of iron(II) chemical species, this study attempted to determine the potential contaminant iron chemical species in the sample. Nondestructive elemental analysis revealed that a small amount of chloride ions remained dispersed throughout the clay particles. The chloride ion retention may be due to the adsorption of FeCl+ ion pairs in the initial FeCl2 solution and the subsequent containment of the Cl- ions that are dissociated from the FeCl+ ion pairs during excess salt removal treatment. Two explanations are advanced for the second process: the slow release of the remaining Cl- ions from the collapsed interlayer of the montmorillonite, and the transformation of a minor fraction of the remaining FeCl+ ion pairs to iron(III) hydroxide chloride complexes having low solubility. - Graphical abstract: The distribution of Si (left) and Cl (right) in homoionic Fe2+-type montmorillonite prepared under an inert gas atmosphere by a conventional method using a FeCl2 solution. A small fraction of chloride ions remained dispersed throughout the clay. This paper mainly discusses the potential contaminant iron chemical species in this sample other than Fe2+ ions

  2. Ion-water clusters, bulk medium effects, and ion hydration

    CERN Document Server

    Merchant, Safir; Dean, Kelsey R; Asthagiri, D

    2011-01-01

    Thermochemistry of gas-phase ion-water clusters together with estimates of the hydration free energy of the clusters and the water ligands are used to calculate the hydration free energy of the ion. Often the hydration calculations use a continuum model of the solvent. The primitive quasichemical approximation to the quasichemical theory provides a transparent framework to anchor such efforts. Here we evaluate the approximations inherent in the primitive quasichemical approach and elucidate the different roles of the bulk medium. We find that the bulk medium can stabilize configurations of the cluster that are usually not observed in the gas phase, while also simultaneously lowering the excess chemical potential of the ion. This effect is more pronounced for soft ions. Since the coordination number that minimizes the excess chemical potential of the ion is identified as the optimal or most probable coordination number, for such soft ions, the optimum cluster size and the hydration thermodynamics obtained with...

  3. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li Shanghua; Qin Jian; Fornara, Andrea; Toprak, Muhammet; Muhammed, Mamoun [Division of Functional Materials, Royal Institute of Technology (KTH), SE-16440 Kista, Stockholm (Sweden); Kim, Do Kyung [Institute for Science and Technology in Medicine, Keele University Medical School, Stoke-on-Trent ST4 7QB (United Kingdom)], E-mail: shanghua@kth.se

    2009-05-06

    PMMA/Fe-oxide nanocomposites are fabricated by a chemical method. Monodispersed Fe-oxide nanoparticles are well dispersed in the PMMA matrix by in situ polymerization, resulting in a bulk transparent polymeric nanocomposite. The magnetic behavior of the PMMA/Fe-oxide nanocomposites is investigated. The transparent PMMA/Fe-oxide nanocomposite has potentially interesting magneto-optic applications without compromising the advantages of a lightweight, noncorrosive polymeric material with very high transparency even for bulk samples.

  4. Influence of the irradiation temperature on the surface structure and physical/chemical properties of Ar ion-irradiated bulk metallic glasses

    International Nuclear Information System (INIS)

    Highlights: • Ion irradiation is performed on bulk metallic glasses at 300 K and close to Tg. • Nanocrystallization is observed after high-temperature irradiation. • The mechanical properties are enhanced after the irradiation procedures. • Corrosion resistance is improved after irradiation close to Tg. - Abstract: Surface treatments using multiple Ar ion irradiation processes with a maximum energy and fluence of 200 keV and 1 × 1016 ions/cm2, respectively, have been performed on two different metallic glasses: Zr55Cu28Al10Ni7 and Ti40Zr10Cu38Pd12. Analogous irradiation procedures have been carried out at room temperature (RT) and at T = 620 K (≈0.9 Tg, where Tg denotes the glass transition). The structure, mechanical behavior, wettability and corrosion resistance of the irradiated alloys have been compared with the properties of the as-cast and annealed (T = 620 K) non-irradiated specimens. While ion irradiation at RT does not significantly alter the amorphous structure of the alloys, ion irradiation close to Tg promotes decomposition/nanocrystallization. Consequently, the hardness (H) and reduced Young’s modulus (Er) decrease after irradiation at RT but they both increase after irradiation at 620 K. While annealing close to Tg increases the hydrophobicity of the samples, irradiation induces virtually no changes in the contact angle when comparing with the as-cast state. Concerning the corrosion resistance, although not much effect is found after irradiation at RT, an improvement is observed after irradiation at 620 K, particularly for the Ti-based alloy. These results are of practical interest in order to engineer appropriate surface treatments based on ion irradiation, aimed at specific functional applications of bulk metallic glasses

  5. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    Science.gov (United States)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  6. Physico-chemical characteristics and market potential of sawdust charcoal briquette

    Energy Technology Data Exchange (ETDEWEB)

    Akowuah, Joseph O.; Kemausuor, Francis [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Agricultural Engineering; Mitchual, Stephen J. [Univ. of Education, Winneba, Kumasi (Ghana). Dept. of Design and Technology Education

    2012-11-01

    In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physicochemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm{sup 3}), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal. (orig.)

  7. Dual lattice representations for O(N and CP(N−1 models with a chemical potential

    Directory of Open Access Journals (Sweden)

    Falk Bruckmann

    2015-10-01

    Full Text Available We derive dual representations for O(N and CP(N−1 models on the lattice. In terms of the dual variables the partition sums have only real and positive contributions also at finite chemical potential. Thus the complex action problem of the conventional formulation is overcome and using the dual variables Monte Carlo simulations are possible at arbitrary chemical potential.

  8. Chemical Composition of Artemisia annua L. Leaves and Antioxidant Potential of Extracts as a Function of Extraction Solvents

    OpenAIRE

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Zia-Ul-Haq, Muhammad; Ismail, Maznah

    2012-01-01

    This study was conducted to investigate the chemical and nutritional composition of Artemisia annua leaves in addition to determination of antioxidant potential of their extracts prepared in different solvents. Chemical composition was determined by quantifying fat, protein, carbohydrate, fiber, tocopherol, phytate, and tannin contents. Extraction of A. annua leaves, for antioxidant potential evaluation, was carried out using five solvents of different polarities, i.e., hexane, chloroform, et...

  9. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  10. Endocrine disrupting chemicals as potential risk factor for estrogen-dependent cancers.

    Science.gov (United States)

    Rutkowska, Aleksandra Z; Szybiak, Aleksandra; Serkies, Krystyna; Rachoń, Dominik

    2016-08-01

    Civilization, industrialization, and urbanization create an environment where humans are continuously exposed to endocrine disrupting chemicals (EDCs). Some of breast cancers and endometrial cancer, which are the most common female malignant neoplasms, are estrogen-dependent tumors. Prolonged exposure to estrogens or substances with estrogenic properties may be a risk factor for their development. This paper aimed to discuss the potential adverse effect of EDCs on human health, including the role of EDCs in hormone-dependent carcinogenesis. A review of literature regarding the sources of environmental exposure to EDCs and molecular mechanisms of their action was performed. We analyzed the possible mechanisms of how these substances alter the function of the endocrine system, resulting in adverse health effects. Hundreds of substances with endocrine disrupting potential have been identified in our environment. There is accumulating evidence linking exposure to EDCs with the development of mammary and endometrial cancer. By interacting with steroid receptors, EDCs can impact the cellular processes potentially leading to carcinogenesis. There are also data showing the effect of EDCs on immune dysfunction. During lifespan, people are usually exposed to a mixture of various EDCs, which complicates the assessment of individual substances or compounds implicated in cancer development. As the prevalence of hormone-dependent tumors among women continues to increase, their successful prevention is of human benefit. Institutions representing medicine, science, industry, and governments should develop joint strategies to decrease exposure to EDC, and thus to reduce the risk of hormonedependent tumors in women. PMID:27509913

  11. Two-photon absorption in gapped bilayer graphene with a tunable chemical potential

    Science.gov (United States)

    Brinkley, M. K.; Abergel, D. S. L.; Clader, B. D.

    2016-09-01

    Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one- and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential—all at finite temperature. Our analysis is comprehensive, characterizing one- and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices.

  12. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    CERN Document Server

    Christensen, Anders S; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O and S are presented. The RMSD interaction energy is improved from 6.07 kcal/mol to 1...

  13. Selection of potential cold water marine species for testing of oil dispersants, and chemically dispersed oil

    International Nuclear Information System (INIS)

    A study regarding marine species for toxicity testing for Alaska conditions was presented and the potential adverse impacts of a large marine oil spill in cold water were discussed with the objective to determine if the spill should be treated by the use of oil dispersants. Without dispersion, the oil can pollute marine epifauna and can deposit on beaches. The decision to apply dispersants to a marine oil spill requires knowledge of the toxicity of the undispersed oil to pelagic marine life occurring via natural dispersion as opposed to the toxicity of the oil-dispersant mixture. Most standard toxicity tests apply to warm water species. This paper discussed the need to have a standard test species relevant to Alaska waters for toxicity testing. In this study, toxicity testing was done according to the methods of the Chemical Response to Oil Spills : Ecological Effects Research Forum (CROSERF). The testing included capturing adult species in the winter and holding them until larval hatching. Toxicity testing was completed in a narrow time frame before hatching ceased. Many chemical samples were tested. Topsmelt, urchins, shellfish, mysids, copepods, pink salmon fry, and tidepool sculpin were considered by the author to be the most useful for certain types of toxicity testing. 29 refs

  14. An effective QCD Lagrangian in the presence of an axial chemical potential

    International Nuclear Information System (INIS)

    We consider the low energy realization of QCD in terms of mesons when an axial chemical potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate that the presence of an axial charge has profound consequences on meson physics. The most notorious effect is the appearance of an explicit source of parity breaking. The eigenstates of strong interactions do not have a definite parity and interactions that would otherwise be forbidden compete with the familiar ones. In this work we focus on scalars and pseudoscalars that are described by a generalized linear sigma model. We comment briefly on the screening role of axial vectors in formation of effective axial charge and on the possible experimental relevance of our results, whose consequences may have been already seen at RHIC. (orig.)

  15. Effective Polyakov loop models for QCD-like theories at finite chemical potential

    CERN Document Server

    Scior, Philipp

    2016-01-01

    We study genuine finite density effects in QCD-like theories with three-dimensional Polyakov-loop effective theories for heavy quarks. These are derived from the full QCD-like theories by combined strong-coupling and hopping expansions. In particular, we investigate the cold and dense regimes of phase diagrams where we expect to find Bose-Einstein-condensation of diquark baryons or a fermionic first-order liquid-gas transition, depending on the gauge group of the theory. In two-color QCD, for example, we observe evidence of a continuous zero-temperature transition to finite diquark density when the quark chemical potential $\\mu$ reaches half the diquark mass, i.e. without binding energy. In G$_2$-QCD we observe, in addition to this "Silver Blaze" onset of diquark density, a second transition in the density towards an exponential increase by roughly $3\\mu/T$ corresponding to a finite density of G$_2$-nucleons.

  16. Dimensionally reduced expression for the QCD fermion determinant at finite temperature and chemical potential

    International Nuclear Information System (INIS)

    A dimensionally reduced expression for the QCD fermion determinant at finite temperature and chemical potential is derived which sheds light on the determinant's dependence on these quantities. This is done via a partial zeta regularization, formally applying a general formula for the zeta determinant of a differential operator in one variable with operator-valued coefficients. The resulting expression generalizes the known one for the free fermion determinant, obtained via Matsubara frequency summation, to the case of a general background gauge field; moreover there is no undetermined overall factor. Rigorous versions of the result are obtained in a continuous time-lattice space setting. The determinant expression reduces to a remarkably simple form in the low temperature limit. A program for using this to obtain insight into the QCD phase transition at zero temperature and nonzero density is outlined

  17. Noncommutativity of the zero chemical potential limit and the thermodynamic limit in finite density systems

    Science.gov (United States)

    Ambjørn, J.; Anagnostopoulos, K. N.; Nishimura, J.; Verbaarschot, J. J.

    2004-08-01

    Monte Carlo simulations of finite density systems are often plagued by the complex action problem. We point out that there exists certain noncommutativity in the zero chemical potential limit and the thermodynamic limit when one tries to study such systems by reweighting techniques. This is demonstrated by explicit calculations in a Random Matrix Theory, which is thought to be a simple qualitative model for finite density QCD. The factorization method allows us to understand how the noncommutativity, which appears at the intermediate steps, cancels in the end results for physical observables. In the recent reweighting type of approaches to QCD in the small μ regime, we expect a transition when the volume reaches Vtr≃const./μ2, which however may not be in the range of current lattice calculations.

  18. Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers

    International Nuclear Information System (INIS)

    We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross-sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity and wavelength, these extracted elastic scattering cross-sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions

  19. Hydrodynamics of a quark droplet II: Implications of a non-zero baryon chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Bjerrum-Bohr, Johan J. [Frankfurt Institute for Advanced Studies (FIAS), Goethe-University, Ruth-Moufang Str. 1, 60438 Frankfurt am Main (Germany); Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø (Denmark); Mishustin, Igor N. [Frankfurt Institute for Advanced Studies (FIAS), Goethe-University, Ruth-Moufang Str. 1, 60438 Frankfurt am Main (Germany); Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø (Denmark); Kurchatov Institute, Russian Research Center, Akademika Kurchatova Sqr., Moscow 123182 (Russian Federation); Døssing, Thomas [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø (Denmark)

    2014-03-01

    We present an extended version of the dynamical model for a multi-quark droplet evolution described in our proceeding paper. The model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension, and now a non-zero baryon number. The hadron emission from the droplet is described following Weisskopf's statistical model. We consider evolutions of droplets with different initial temperatures and net baryon number. It is found that the introduction of a non-zero net baryon number does not change the lifetime of the droplets significantly. Only when we consider an initially very baryon-rich, low-temperature droplets is the lifetime is decreased significantly. We have, furthermore, found a convergence of both baryon chemical potential and temperature toward the values μ{sub B}≈450 MeV and T≈150 MeV. This convergence is linked to the competing emission of baryons versus mesons.

  20. Hydrodynamics of a quark droplet II: Implications of a non-zero baryon chemical potential

    CERN Document Server

    Bjerrum-Bohr, Johan J; Døssing, Thomas

    2013-01-01

    We present an extended version of the dynamical model for a multi-quark droplet evolution described in our proceeding paper. The model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension, and now a non-zero baryon number. The hadron emission from the droplet is described following Weisskopf's statistical model. We consider evolutions of droplets with different initial temperatures and net baryon number. It is found that the introduction of a non-zero net baryon number does not change the lifetime of the droplets significantly. Only when we consider an initially very baryon-rich, low-temperature droplets is the lifetime is decreased significantly. We have, furthermore, found a convergence of both baryon chemical potential and temperature toward the values $T \\approx 150$ MeV and $\\mu_{\\rm B} \\approx$ 450 MeV. This convergence seems to be linked to the competing emission of baryons versus mesons.

  1. Solving the sign problem of two flavor scalar electrodynamics at finite chemical potential

    CERN Document Server

    Mercado, Ydalia Delgado; Schmidt, Alexander

    2013-01-01

    We explore two flavor scalar electrodynamics on the lattice, which has a complex phase problem at finite chemical potential. By rewriting the action in terms of dual variables this complex phase problem can be solved exactly. The dual variables are link- and plaquette occupation numbers, subject to local constraints that have to be respected by the Monte Carlo algorithm. For the simulation we use a local update as well as the newly developed "surface worm algorithm", which is a generalization of the Prokof'ev Svistunov worm algorithm concept for simulating the dual representation of abelian Gauge-Higgs models on a lattice. We assess the performance of the two algorithms, present results for the phase diagram and discuss condensation phenomena.

  2. Relativistic second-order dissipative fluid dynamics at finite chemical potential

    Science.gov (United States)

    Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof

    2016-07-01

    We employ a Chapman-Enskog like expansion for the distribution function close to equilibrium to solve the Boltzmann equation in the relaxation time approximation and subsequently derive second-order evolution equations for dissipative charge currentand shear stress tensor for a system of massless quarks and gluons. We use quantum statistics for the phase space distribution functions to calculate the transport coefficients. We show that, the second-order evolution equations for the dissipative charge current and the shear stress tensor can be decoupled. We find that, for large chemical potential, the charge conductivity is small compared to the shear viscosity. Moreover, we demonstrate that the limiting behaviour of the ratio of heat conductivity to shear viscosity is identicalto that obtained for a strongly coupled conformal plasma.

  3. Phase of the Fermion Determinant for QCD at Finite Chemical Potential

    CERN Document Server

    Splittorff, K

    2008-01-01

    In this lecture we discuss various properties of the phase factor of the fermion determinant for QCD at nonzero chemical potential. Its effect on physical observables is elucidated by comparing the phase diagram of QCD and phase quenched QCD and by illustrating the failure of the Banks-Casher formula with the example of one-dimensional QCD. The average phase factor and the distribution of the phase are calculated to one-loop order in chiral perturbation theory. In quantitative agreement with lattice QCD results, we find that the distribution is Gaussian with a width $\\sim \\mu T \\sqrt V$ (for $m_\\pi \\ll T \\ll \\Lambda_{\\rm QCD}$). Finally, we introduce, so-called teflon plated observables which can be calculated accurately by Monte Carlo even though the sign problem is severe.

  4. Top Value Added Chemicals from Biomass - Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  5. Variations in amounts and potential sources of volatile organic chemicals in new cars

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Y.-C. [Department Industrial Safety and Health, Hungkuang University, 34 Chung-chie Road, Shalu 433, Taiwan (China)]. E-mail: yc@sunrise.hk.edu.tw

    2007-09-01

    This study examines inter-brand, intra-brand and intra-model variations in volatile organic chemical (VOC) levels inside new cars. The effect of temperature on interior VOC levels was examined using model automobiles with and without the air-conditioning running. Potential sources of VOC were assessed by comparing VOC levels with two interior trims (leather and fabric) and by analyzing VOC emissions from various interior components. Five brands of new car, both domestic and imported, were tested. Twelve targeted VOCs were collected on solid sorbents and analyzed using thermal desorption and GC/FID. VOCs from interior parts and adhesives were identified using solid phase micro-extraction (SPME) coupled with GC/MS. The VOC concentrations varied markedly among brands and within models, and individual VOC levels ranged from below the detection limit (a few {mu}g per cubic meter) to thousands of {mu}g per cubic meter. The intra-model variability (mean, 47%) in the VOC levels was approximately 50% that within each brand (mean, 95%). Although interior trim levels affected VOC levels, the effects differed among brands. Reduction of the cabin temperature reduced most VOC levels, but the impact was not statistically significant. Screening tests for VOCs from interior parts revealed that butylated hydroxytoluene (BHT), a common anti-oxidant, was the most common chemical. Long-chain aliphatic hydrocarbons, particularly C14-C17, were identified in most grease (lubricant) samples, and toluene and xylenes were ubiquitously present in adhesive samples. Process-related compounds, such as plasticizer, were also identified in interior parts. In-cabin VOC levels varied significantly among makes/models and interior trims. Concerned consumers should purchase older new cars from manufacturers since VOC levels inside car cabins normally declines over time. Improved processes or materials with lower VOC emission potential should be used to minimize in-cabin VOC sources for new cars.

  6. Variations in amounts and potential sources of volatile organic chemicals in new cars

    International Nuclear Information System (INIS)

    This study examines inter-brand, intra-brand and intra-model variations in volatile organic chemical (VOC) levels inside new cars. The effect of temperature on interior VOC levels was examined using model automobiles with and without the air-conditioning running. Potential sources of VOC were assessed by comparing VOC levels with two interior trims (leather and fabric) and by analyzing VOC emissions from various interior components. Five brands of new car, both domestic and imported, were tested. Twelve targeted VOCs were collected on solid sorbents and analyzed using thermal desorption and GC/FID. VOCs from interior parts and adhesives were identified using solid phase micro-extraction (SPME) coupled with GC/MS. The VOC concentrations varied markedly among brands and within models, and individual VOC levels ranged from below the detection limit (a few μg per cubic meter) to thousands of μg per cubic meter. The intra-model variability (mean, 47%) in the VOC levels was approximately 50% that within each brand (mean, 95%). Although interior trim levels affected VOC levels, the effects differed among brands. Reduction of the cabin temperature reduced most VOC levels, but the impact was not statistically significant. Screening tests for VOCs from interior parts revealed that butylated hydroxytoluene (BHT), a common anti-oxidant, was the most common chemical. Long-chain aliphatic hydrocarbons, particularly C14-C17, were identified in most grease (lubricant) samples, and toluene and xylenes were ubiquitously present in adhesive samples. Process-related compounds, such as plasticizer, were also identified in interior parts. In-cabin VOC levels varied significantly among makes/models and interior trims. Concerned consumers should purchase older new cars from manufacturers since VOC levels inside car cabins normally declines over time. Improved processes or materials with lower VOC emission potential should be used to minimize in-cabin VOC sources for new cars

  7. Foundations of modeling in cryobiology-I: concentration, Gibbs energy, and chemical potential relationships.

    Science.gov (United States)

    Anderson, Daniel M; Benson, James D; Kearsley, Anthony J

    2014-12-01

    Mathematical modeling plays an enormously important role in understanding the behavior of cells, tissues, and organs undergoing cryopreservation. Uses of these models range from explanation of phenomena, exploration of potential theories of damage or success, development of equipment, and refinement of optimal cryopreservation/cryoablation strategies. Over the last half century there has been a considerable amount of work in bio-heat and mass-transport, and these models and theories have been readily and repeatedly applied to cryobiology with much success. However, there are significant gaps between experimental and theoretical results that suggest missing links in models. One source for these potential gaps is that cryobiology is at the intersection of several very challenging aspects of transport theory: it couples multi-component, moving boundary, multiphase solutions that interact through a semipermeable elastic membrane with multicomponent solutions in a second time-varying domain, during a two-hundred Kelvin temperature change with multi-molar concentration gradients and multi-atmosphere pressure changes. In order to better identify potential sources of error, and to point to future directions in modeling and experimental research, we present a three part series to build from first principles a theory of coupled heat and mass transport in cryobiological systems accounting for all of these effects. The hope of this series is that by presenting and justifying all steps, conclusions may be made about the importance of key assumptions, perhaps pointing to areas of future research or model development, but importantly, lending weight to standard simplification arguments that are often made in heat and mass transport. In this first part, we review concentration variable relationships, their impact on choices for Gibbs energy models, and their impact on chemical potentials. PMID:25240602

  8. Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition.

    Science.gov (United States)

    Plata, Desirée L; Hart, A John; Reddy, Christopher M; Gschwend, Philip M

    2009-11-01

    The carbon nanotube (CNT) industry is expanding rapidly, yet little is known about the potential environmental impacts of CNT manufacture. Here, we evaluate the effluent composition of a representative multiwalled CNT synthesis by catalytic chemical vapor deposition (CVD) in order to provide data needed to design strategies for mitigating any unacceptable emissions. During thermal pretreatment of the reactant gases (ethene and H(2)), we found over 45 side-products were formed, including methane, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This finding suggests several environmental concerns with the existing process, including potential discharges of the potent greenhouse gas, methane (up to 1.7%), and toxic compounds such as benzene and 1,3-butadiene (up to 36000 ppmv). Extrapolating these laboratory-scale data to future industrial CNT production, we estimate that (1) contributions of atmospheric methane will be negligible compared to other existing sources and (2) VOC and PAH emissions may become important on local scales but will be small when compared to national industrial sources. As a first step toward reducing such unwanted emissions, we used continuous in situ measures of CNT length during growth and sought to identify which thermally generated compounds correlated with CNT growth rate. The results suggested that, in future CNT production approaches, key reaction intermediates could be delivered to the catalyst without thermal treatment. This would eliminate the most energetically expensive component of CVD synthesis (heating reactant gases), while reducing the formation of unintended byproducts. PMID:19924971

  9. In search of the chemical basis of the hemolytic potential of silicas.

    Science.gov (United States)

    Pavan, Cristina; Tomatis, Maura; Ghiazza, Mara; Rabolli, Virginie; Bolis, Vera; Lison, Dominique; Fubini, Bice

    2013-08-19

    The membranolytic activity of silica particles toward red blood cells (RBCs) has been known for a long time and is sometimes associated with silica pathogenicity. However, the molecular mechanism and the reasons why hemolysis differs according to the silica form are still obscure. A panel of 15 crystalline (pure and commercial) and amorphous (pyrogenic, precipitated from aqueous solutions, vitreous) silica samples differing in size, origin, morphology, and surface chemical composition were selected and specifically prepared. Silica particles were grouped into six groups to compare their potential in disrupting RBC membranes so that one single property differed in each group, while other features were constant. Free radical production and crystallinity were not strict determinants of hemolytic activity. Particle curvature and morphology modulated the hemolytic effect, but silanols and siloxane bridges at the surface were the main actors. Hemolysis was unrelated to the overall concentration of silanols as fully rehydrated surfaces (such as those obtained from aqueous solution) were inert, and one pyrogenic silica also lost its membranolytic potential upon progressive dehydration. Overall results are consistent with a model whereby hemolysis is determined by a defined surface distribution of dissociated/undissociated silanols and siloxane groups strongly interacting with specific epitopes on the RBC membrane. PMID:23819533

  10. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence.

    Science.gov (United States)

    Tu, Wenqing; Xu, Chao; Jin, Yuanxiang; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-06-01

    Permethrin (PM), one of the most heavily used synthetic pyrethroids, has the potential to interfere with thyroid hormones in mammals, however, the effect is poorly recognized in aquatic organisms. Herein, embryonic zebrafish were exposed to PM (0, 1, 3 and 10μg/L) until 72h post-fertilization. We demonstrated that PM readily accumulated in larvae with a preference for cis-PM, inhibited development and increased thyroxine and 3,5,3'-triiodothyronine levels accompanying increase in the transcription of most target genes, i.e., thyroid-stimulating hormone β, deiodinases, thyroid receptors, involved in the hypothalamic-pituitary-thyroid axis. Further Western blot analysis indicated that transthyretin (TTR) protein was significantly increased. Molecular docking analysis and molecular dynamics simulations revealed that PM fits into three hydrophobic binding pocket of TTR, one of the molecular targets of thyroid hormone disrupting chemicals (THDCs), and forms strong van der Waals interactions with six resides of TTR, including Leu8, Leu 101, Leu125, Thr214, Leu218 and Val229, thus altering TTR activity. Both in vivo and in silico studies clearly disclosed that PM potentially disrupts the thyroid endocrine system in fish. This study provides a rapid and cost-effective approach for identifying THDCs and the underlying mechanisms. PMID:26994367

  11. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  12. Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods.

    Directory of Open Access Journals (Sweden)

    Tomas de Wouters

    Full Text Available Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial tension as novel approaches to quantify these interactions and evaluated their biological significance via an adhesion assay using intestinal epithelial surface molecules (IESM for a set of model organisms present in the human gastrointestinal tract. Strain pairs of Lactobacillus plantarum WCFS1 with its sortase knockout mutant Lb. plantarum NZ7114 and Lb. rhamnosus GG with Lb. rhamnosus DSM 20021T were used with Enterococcus faecalis JH2-2 as control organism. Intra-species comparison revealed significantly higher abilities for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T to dynamically increase interfacial elasticity (10-2 vs. 10-3 Pa*m and reduce interfacial tension (32 vs. 38 mN/m. This further correlated for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T with the decrease of relative hydrophobicity (80-85% vs. 57-63%, Zeta potential (-2.9 to -4.5 mV vs. -8.0 to -13.8 mV and higher relative adhesion capacity to IESM (3.0-5.0 vs 1.5-2.2. Highest adhesion to the IESM collagen I and fibronectin was found for Lb. plantarum WCFS1 (5.0 and E. faecalis JH2-2 (4.2 whereas Lb. rhamnosus GG showed highest adhesion to type II mucus (3.8. Significantly reduced adhesion (2 fold to the tested IESM was observed for Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T corresponding with lower relative hydrophobicity, Zeta potential and abilities to modify interfacial elasticity

  13. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini;

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical composit......A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  14. Synthesis and characterization of bulk Cu{sub 2}ZnSnX{sub 4} (X: S, Se) via thermodynamically supported mechano-chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Pareek, Devendra, E-mail: devpareek@iitb.ac.in; Balasubramaniam, K.R.; Sharma, Pratibha

    2015-05-15

    Materials with the general formula, Cu{sub 2}ZnSnX{sub 4} (CZTX; X: Group 16 elements), with X being S/Se, have been receiving considerable attention due to their utility as an absorber layer in solar photovoltaics (PV). This paper reports on the synthesis of CZTSe and CZTS nanocrystalline powders at low temperatures, starting from elemental metal and chalcogen powders, via the low cost, scalable technique of ball milling. The prepared samples were well characterized using the different characterization tools. XRD, Raman, SEM and TEM studies confirm the formation of single-phase, stoichiometric, nano-crystalline kesterite CZTS and CZTSe powders. The low temperature phase selection of the complex quaternary compound in this system is seen as a direct consequence of the thermodynamic facilitation, coupled with the capability of mechano-chemical synthesis to aid in overcoming kinetic constraints. The optical bandgap of the various samples of CZTS was observed in the range of 1.4–1.6 eV and corresponding values for CZTSe was observed to be in the range of 1.08–1.18 eV. Our work provides a pathway for developing cheap, scalable, and ink-based techniques for low cost solar PV. - Graphical abstract: Display Omitted - Highlights: • A scalable route for synthesis of near phase pure CZTS/Se nano-crystals has been demonstrated. • Stoichiometric CZTS and CZTSe were synthesized via mechano-chemical synthesis route. • Synthesis at near room temperature is supported by thermodynamic calculations.

  15. Synthesis and characterization of bulk Cu2ZnSnX4 (X: S, Se) via thermodynamically supported mechano-chemical process

    International Nuclear Information System (INIS)

    Materials with the general formula, Cu2ZnSnX4 (CZTX; X: Group 16 elements), with X being S/Se, have been receiving considerable attention due to their utility as an absorber layer in solar photovoltaics (PV). This paper reports on the synthesis of CZTSe and CZTS nanocrystalline powders at low temperatures, starting from elemental metal and chalcogen powders, via the low cost, scalable technique of ball milling. The prepared samples were well characterized using the different characterization tools. XRD, Raman, SEM and TEM studies confirm the formation of single-phase, stoichiometric, nano-crystalline kesterite CZTS and CZTSe powders. The low temperature phase selection of the complex quaternary compound in this system is seen as a direct consequence of the thermodynamic facilitation, coupled with the capability of mechano-chemical synthesis to aid in overcoming kinetic constraints. The optical bandgap of the various samples of CZTS was observed in the range of 1.4–1.6 eV and corresponding values for CZTSe was observed to be in the range of 1.08–1.18 eV. Our work provides a pathway for developing cheap, scalable, and ink-based techniques for low cost solar PV. - Graphical abstract: Display Omitted - Highlights: • A scalable route for synthesis of near phase pure CZTS/Se nano-crystals has been demonstrated. • Stoichiometric CZTS and CZTSe were synthesized via mechano-chemical synthesis route. • Synthesis at near room temperature is supported by thermodynamic calculations

  16. Ab Initio Thermodynamic Modeling of Electrified Metal–Oxide Interfaces: Consistent Treatment of Electronic and Ionic Chemical Potentials

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Hansen, Martin Hangaard; Greeley, Jeffrey Philip; Rossmeisl, Jan; Björketun, Mårten E.

    2014-01-01

    Solid oxide fuel cells are attractive devices in a sustainable energy context because of their fuel flexibility and potentially highly efficient conversion of chemical to electrical energy. The performance of the device is to a large extent determined by the atomic structure of the electrode......–electrolyte interface. Lack of atomic-level information about the interface has limited the fundamental understanding, which further limits the opportunity for optimization. The atomic structure of the interface is affected by electrode potential, chemical potential of oxygen ions, temperature, and gas pressures. In...... this paper we present a scheme to determine the metal–oxide interface structure at a given set of these environmental parameters based on quantum chemical calculations. As an illustration we determine the structure of a Ni-YSZ anode as a function of electrode potential at 0 and 1000 K. We further...

  17. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  18. Chemical variability of zeolites at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    The compositions of clinoptilolites and their host tuffs have been examined by electron microprobe and x-ray fluorescence, respectively, to determine their variability at a potential nuclear waste repository, Yucca Mountain, Nevada. Because of their sorptive properties, these zeolites could provide important geologic barriers to radionuclide migration. Variations in clinoptilolite composition can strongly affect the mineral's thermal and ion-exchange properties, thus influencing its behavior in the repository environment. Clinoptilolites and heulandites closest to the proposed repository have calcium-rich compositions (60 to 90 mol. % Ca) and silica-to-aluminum ratios that concentrate between 4.0 and 4.6. In contrast, clinoptilolites and their host tuffs deeper in the volcanic sequence have highly variable compositions that vary vertically and laterally. Deeper-occurring clinoptilolites in the eastern part of Yucca Mountain are characterized by calcic-potassic compositions and tend to become more calcium-rich with depth. Clinoptilolites at equivalent stratigraphic levels on the western side of Yucca Mountain have sodic-potassic compositions and tend to become more sodium-rich with depth. Despite their differences in exchangeable cation compositions these two deeper-occurring compositional suites have similar silica-to-aluminum ratios, concentrating between 4.4 and 5.0. The chemical variability of clinoptilolites and their host tuffs at Yucca Mountain suggest that their physical and chemical properties will also vary. Compositionally-dependent clinoptilolite properties important for repository performance assessment include expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties

  19. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    International Nuclear Information System (INIS)

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets

  20. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    R.H. Wijffels; O. Kruse; K.J. Hellingwerf

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms fo

  1. ToxAlerts: A Web Server of Structural Alerts for Toxic Chemicals and Compounds with Potential Adverse Reactions

    OpenAIRE

    Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A.; Poda, Gennadiy; Igor V Tetko

    2012-01-01

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, a...

  2. Ab-initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core

    OpenAIRE

    Alfe, D.; Gillan, M. J.; Price, G. D.

    2001-01-01

    A general set of methods is presented for calculating chemical potentials in solid and liquid mixtures using {\\em ab initio} techniques based on density functional theory (DFT). The methods are designed to give an {\\em ab initio} approach to treating chemical equilibrium between coexisting solid and liquid solutions, and particularly the partitioning ratio of solutes between such solutions. For the liquid phase, the methods are based on the general technique of thermodynamic integration, appl...

  3. Secondary metabolites as potential cancer therapeutic leads : : synthesis and chemical biology of Englerin A and Fusarisetin A

    OpenAIRE

    Caro-Diaz, Eduardo J.E.

    2014-01-01

    Secondary metabolites generated from natural sources such as microbes, fungi, marine fauna and other microorganism have proven to represent a microcosm of chemical diversity and therefore a great source of novel phamacophoric structures. It is without question that nature in its long biological and chemical evolution has gifted us with beautiful molecular architectures with equally important biological function to provide leads into new and potentially useful biologically active molecules. As...

  4. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.

  5. Chemical reactivity trends of ergotamine and butenolide from electrostatic potentials and charge sensitivities

    International Nuclear Information System (INIS)

    A set of reactivity indices, including maps of the electrostatic potential and local and condensed Fukui function (FF) indices in the atomic resolution, are reported for two vasoconstricting mycotoxins: butenolide and ergotamine; both the finite difference approach of Parr and Yan as well as charge sensitivity analysis, determining the charge responses via the inversion of the hardness tensor, have been used to generate the FF data. These two routes of arriving at the atomic FF indices provide an opportunity to evaluate the available parametrizations of the semiempirical NDDO-type of methods which have been used to determine the input charge distribution; namely, the best parametrization should generate consistent FF predictions resulting from both approaches. For butenolide, the MNDO parametrization was found to fulfill this consistency requirement. The chemical reactivity information has been used to trace possible similarities in reactivity trends of the butenolide molecule and the related fragment of ergotamine, toward hypothetical nucleophilic, electrophilic, and radical attacks. These predictions have been compared to experimental data available for other unsaturated lactones. 13 refs., 18 figs., 1 tab

  6. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors.

    Science.gov (United States)

    Wang, Fangming; Liu, Wei; Teat, Simon J; Xu, Feng; Wang, Hao; Wang, Xinlong; An, Litao; Li, Jing

    2016-08-11

    An organic chromophore H4tcbpe-F was synthesized and immobilized into metal-organic frameworks along with two bipyridine derivatives as co-ligands to generate two strongly luminescent materials [Zn2(tcbpe-F)(4,4'-bpy)·xDMA] (1) and [Zn2(tcbpe-F)(bpee)·xDMA] (2) [4,4'-bpy = 4,4'-bipyridine, bpee = 4,4'-bipyridyl-ethylene, tcbpe-F = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(3-fluoro-[1,1'-biphenyl]-4-carboxylic acid), DMA = N,N-dimethylacetamide]. Compounds 1 and 2 are isoreticular and feature a 2-fold interpenetrated three-dimensional porous structure. Both compounds give green-yellow emission under blue light excitation. Compound 1 has a high internal quantum yield of ∼51% when excited at 455 nm and shows selective luminescence signal change (e.g. emission energy and/or intensity) towards different solvents, including both aromatic and nonaromatic volatile organic species. These properties make it potentially useful as a lighting phosphor and a chemical sensor. PMID:27465685

  7. Chemical reactivity trends of ergotamine and butenolide from electrostatic potentials and charge sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Mrozek, J.; Michalak, A. [Jagiellonian Univ., Cracow (Poland)

    1995-12-05

    A set of reactivity indices, including maps of the electrostatic potential and local and condensed Fukui function (FF) indices in the atomic resolution, are reported for two vasoconstricting mycotoxins: butenolide and ergotamine; both the finite difference approach of Parr and Yan as well as charge sensitivity analysis, determining the charge responses via the inversion of the hardness tensor, have been used to generate the FF data. These two routes of arriving at the atomic FF indices provide an opportunity to evaluate the available parametrizations of the semiempirical NDDO-type of methods which have been used to determine the input charge distribution; namely, the best parametrization should generate consistent FF predictions resulting from both approaches. For butenolide, the MNDO parametrization was found to fulfill this consistency requirement. The chemical reactivity information has been used to trace possible similarities in reactivity trends of the butenolide molecule and the related fragment of ergotamine, toward hypothetical nucleophilic, electrophilic, and radical attacks. These predictions have been compared to experimental data available for other unsaturated lactones. 13 refs., 18 figs., 1 tab.

  8. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    Directory of Open Access Journals (Sweden)

    M. A. Ashraf

    2012-01-01

    Full Text Available This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES. Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.

  9. Revisiting the boiling of primordial quark nuggets at nonzero chemical potential

    Science.gov (United States)

    Li, Ang; Liu, Tong; Gubler, Philipp; Xu, Ren-Xin

    2015-03-01

    The boiling of possible quark nuggets during the quark-hadron phase transition of the Universe at nonzero chemical potential is revisited within the microscopic Brueckner-Hartree-Fock approach employed for the hadron phase, using two kinds of baryon interactions as fundamental inputs. To describe the deconfined phase of quark matter, we use a recently developed quark mass density-dependent model with a fully self-consistent thermodynamic treatment of confinement. We study the baryon number limit Aboil (above which boiling may be important) with three typical values for the confinement parameter D. It is firstly found that the baryon interaction with a softer equation of state for the hadron phase would only lead to a small increase of Aboil . However, results depend sensitively on the confinement parameter in the quark model. Specifically, boiling might be important during the Universe cooling for a limited parameter range around D 1 / 2 = 170 MeV, a value satisfying recent lattice QCD calculations of the vacuum chiral condensate, while for other choices of this parameter, boiling might not happen and cosmological quark nuggets of 102 < A <1050 could survive.

  10. Chemical composition of the thermomineral waters of Josanicka Banja spa as an origin indicator, balneological valorization and geothermal potential

    Directory of Open Access Journals (Sweden)

    Milenić Dejan R.

    2015-01-01

    Full Text Available The chemical composition of the groundwater is directly dependent on the geological structure, hydrogeological and hydrochemical characteristics and as such it represents an output result of all the factors and processes which take place in the environment within which they were formed. The chemical composition of thermomineral waters often represents a crucial factor in determining the origin, balneological valorization and geothermal potential of the resources. This work presents the analysis of origin, belneological valorization and geothermal potential of Josanicka Banja spa, on the basis of the results gained through making the analyisis of chemical contents of the thermomineral waters which occur in the area. The ratio of concentrations of specific chemical components in the thermomineral waters of Josanicka Banja has served as the basic tool for ascertaining the origin of these waters. On the basis of the analysis of the main anion-cation and gas compositions as well as the contents of specific micro-components, a balneological valorization of these resources has been carried out. Apart from that this work also presents the calculation of the expected temperatures in the primary geothermal reservoir, which was carried out on the basis of the results of chemical analysis of thermomineral waters that occur in the area. Geothermal potential of about 4 MWt and significant contents of balneologically active components of the chemical composition of these waters, open up a possibility for their multi-purpose use, which is also presented in the work. [Projekat Ministarstva nauke Republike Srbije, br. TR 33053

  11. The effect of finite temperature and chemical potential on nucleon properties in the logarithmic quark sigma model

    Science.gov (United States)

    Abu-Shady, M.; Abu-Nab, A.

    2015-12-01

    The logarithmic quark sigma model is applied to study the nucleon properties at finite temperature and chemical potential. The field equations have been solved numerically in the mean-field approximation by using the extended iteration method at finite temperature and baryon chemical potential. Baryon properties are investigated, such as the hedgehog mass, the magnetic moments of the proton and neutron, and the pion-nucleon coupling constant. We find that the hedgehog mass and the magnetic moments of the proton and neutron increase with increasing temperature and chemical potential, while the pion-nucleon coupling constant decreases. A comparison with the original sigma model and QCD sum rules is presented. We conclude that the logarithmic quark sigma model successfully describes baryon properties of a hot and dense medium.

  12. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    Directory of Open Access Journals (Sweden)

    J. Williams

    2012-08-01

    Full Text Available The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m−3 for pinonic acid by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards – pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94 demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  13. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    Directory of Open Access Journals (Sweden)

    J. Williams

    2013-02-01

    Full Text Available The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid by using the miniature versatile aerosol concentration enrichment system (mVACES upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards – pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94 demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a

  14. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement

  15. Assessing effects of environmental chemicals on neuroendocrine systems: potential mechanisms and functional outcomes.

    Science.gov (United States)

    Ottinger, Mary Ann; Carro, Tiffany; Bohannon, Meredith; Baltos, Leah; Marcell, Allegra M; McKernan, Moira; Dean, Karen M; Lavoie, Emma; Abdelnabi, Mahmoud

    2013-09-01

    Environmental pollutants encompass a vast array of compounds. Most studies in birds have focused on toxicological effects, with little attention to non-lethal effects. Consequently, it has proven difficult to assess potential risk associated with exposure to endocrine disrupting chemicals (EDCs). Assessing potential adverse effects due to exposure is further complicated by the great variation that occurs across avian species. These include variations in reproductive strategies, life span, sexual differentiation, and migration. Differences in reproductive strategies, particularly in the developmental patterns and mechanisms for precocial and altricial chicks, predispose birds to wide variations in response to steroids and steroid-like EDCs. We have investigated the effects of EDCs in precocial birds including Japanese quail (Coturnix japonica) and mallard ducks (Anas platyrhynchos) as well as in wild altricial songbirds. Studies in Japanese quail characterized endogenous steroid hormone changes during development and have demonstrated that the developing embryo uses the yolk as a 'steroid hormone depot'. It appears that actual embryonic exposure is quantitatively lower than indicated by the treatment in egg injections and that the true amount of compound necessary for bioactivity may be quite low relative to the actual dosage delivered. Additionally, embryonic exposure to specific EDCs adversely affected sexual differentiation in quail, especially impacting male sexual behavior as well as neural systems, immune response, and thyroid hormones. Many of these studies considered single compounds; however, wild birds are exposed to complex mixtures and multiple compounds. We tested complex mixtures of polychlorinated biphenyls (PCBs) at concentrations that bracketed those found in eggs in contaminated regions. Results indicated that the predictive value of the toxic equivalency (TEQ), based on comparative activation of the aryl hydrocarbon receptor (AhR) relative to

  16. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  17. Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys

    OpenAIRE

    Abrikosov, I. A.; Skriver, Hans Lomholt

    1993-01-01

    We present an efficient technique for calculating surface properties of random alloys based on the coherent-potential approximation within a tight-binding linear-muffin-tin-orbitals basis. The technique has been applied in the calculation of bulk thermodynamic properties as well as (001) surface energies and work functions for three fcc-based alloys (Cu-Ni, Ag-Pd, and Au-Pt) over the complete concentration range. The calculated mixing enthalpies for the Ag-Pd and Au-Pt systems agrees with exp...

  18. Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys

    DEFF Research Database (Denmark)

    Abrikosov, I. A.; Skriver, Hans Lomholt

    1993-01-01

    We present an efficient technique for calculating surface properties of random alloys based on the coherent-potential approximation within a tight-binding linear-muffin-tin-orbitals basis. The technique has been applied in the calculation of bulk thermodynamic properties as well as (001) surface...... energies and work functions for three fcc-based alloys (Cu-Ni, Ag-Pd, and Au-Pt) over the complete concentration range. The calculated mixing enthalpies for the Ag-Pd and Au-Pt systems agrees with experimental values, and the calculated concentration dependence of the lattice parameters agrees with...

  19. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals

    Science.gov (United States)

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-01-01

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold2 software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed. PMID:27023588

  20. The potential of computer-based quantitative structure activity approaches for predicting acute toxicity of chemicals

    OpenAIRE

    Zvinavashe, E.

    2008-01-01

    Within the EU, the management of the risks of chemicals currently falls under a new legislation called Registration, Evaluation, and Authorization of Chemicals (REACH). Within the next 10 years, existing (eco)toxicological data gaps for the more than 100 000 chemicals on the European Inventory of Existing Commercial Substances (EINECS) should be filled. The challenge is to provide this toxicity information in a fast, cost effective manner, avoiding the use of experimental animals as much as p...

  1. Potential of plant growth promoting rhizobacteria and chemical fertilizers on soil enzymes and plant growth

    International Nuclear Information System (INIS)

    The present investigation deals with the role of Plant Growth Promoting Rhizobacteria and chemical fertilizers alone or in combination on urease, invertase and phosphatase activities of rhizospheric soil and also on general impact on growth of safflower cvv. Thori and Saif-32. The PGPR (Azospirillum brasilense and Azotobacter vinelandii) were applied at 10/sup 6/ cells/mL as seed inoculation prior to sowing. Chemical fertilizers were applied at full (Urea 60 Kg ha/sup -1/ and Diammonium phosphate (DAP) 30 Kg ha/sup -1/), half (Urea 30 Kg ha/sup -1/ and DAP 15 Kg ha/sup -1/) and quarter doses (Urea 15 Kg ha-1 and DAP 7.5 Kg ha/sup -1/) during sowing. The chemical fertilizers and PGPR enhanced urease and invertase activities of soil. Presence of PGPR in combination with quarter and half doses of chemical fertilizers further augmented their effect on soil enzymes activities. The soil phosphatase activity was greater in Azospirillum and Azotobacter in combination with half dose of chemical fertilizers. Maximum increase in leaf melondialdehyde content was recorded in full dose of chemical fertilizers whereas coinoculation treatment exhibited significant reduction in cv. Thori. Half and quarter dose of chemical fertilizers increased the shoot length of safflower whereas maximum increase in leaf protein was recorded in Azotobacter in combination with full dose of chemical fertilizers. Root length was improved by Azospirillum and Azotobacter in combination with quarter dose of chemical fertilizers. Leaf area and chlorophyll contents were significantly improved by Azotobacter in combination with half dose of chemical fertilizers. It is inferred that PGPR can supplement 50 % chemical fertilizers for better plant growth and soil health. (author)

  2. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis

    Science.gov (United States)

    Hartwell, Supaporn Kradtap

    2012-01-01

    A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…

  3. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  4. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  5. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  6. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  7. Remedial investigations for quarry bulk wastes

    International Nuclear Information System (INIS)

    The US Department of Energy proposes, as a separate operable unit of the Weldon Spring Site Remedial Action Project, to remove contaminated bulk wastes from the Weldon Spring quarry and transport them approximately four miles to the chemical plant portion of the raffinate pits and chemical plant area. The wastes will be held in temporary storage prior to the record of decision for the overall remedial action. The decision on the ultimate disposal of these bulk wastes will be included as part of the decision for management of the waste materials resulting from remedial action activities at the raffinate pits and chemical plant area. 86 refs., 71 figs., 83 tabs

  8. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Science.gov (United States)

    Nagamura, Naoka; Kitada, Yuta; Tsurumi, Junto; Matsui, Hiroyuki; Horiba, Koji; Honma, Itaru; Takeya, Jun; Oshima, Masaharu

    2015-06-01

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying -30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  9. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    International Nuclear Information System (INIS)

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping

  10. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Horiba, Koji [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Oshima, Masaharu [Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  11. Draft Genome Sequence of Acid-Tolerant Clostridium drakei SL1T, a Potential Chemical Producer through Syngas Fermentation

    OpenAIRE

    Jeong, Yujin; Song, Yoseb; Shin, Hyeon Seok; Cho, Byung-Kwan

    2014-01-01

    Clostridium drakei SL1T is a strictly anaerobic, H2-utilizing, and acid-tolerant acetogen isolated from an acidic sediment that is a potential platform for commodity chemical production from syngas fermentation. The draft genome sequence of this strain will enable determination of the acid resistance and autotrophic pathway of the acetogen.

  12. Metastability of the Two-Dimensional Blume-Capel Model with Zero Chemical Potential and Small Magnetic Field

    Science.gov (United States)

    Landim, C.; Lemire, P.

    2016-07-01

    We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.

  13. Properties of lightest mesons at finite temperature and quark/baryon chemical potential in instanton model of QCD vacuum

    International Nuclear Information System (INIS)

    The paper is focussed on calculating the finite temperature and quark/baryon chemical potential dependence of quark condensate π- and σ-meson masses together with quark mass in precritical region in the instanton model of QCD vacuum. The impact of phonon-like excitations of instanton liquid on the characteristics of σ meson in such an environment is also examined

  14. Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers

    NARCIS (Netherlands)

    Saygin, D.; Gielen, D. J.; Draeck, M.; Worrell, E.; Patel, M. K.

    2014-01-01

    Fossil fuel substitution with biomass is one of the measures to reduce carbon dioxide (CO2) emissions. This paper estimates the cost-effectiveness of raising industrial steam and producing materials (i.e. chemicals, polymers) from biomass. We quantify their long-term global potentials in terms of en

  15. An in vitro screening method to evaluate chemicals as potential chemotherapeutants to control Aeromonas hydrophila infection in channel catfish

    Science.gov (United States)

    Using catfish gill cells G1B and four chemicals (hydrogen peroxide, sodium chloride, potassium permanganate, and D-mannose), the feasibility of using an in vitro screening method to identify potential effective chemotherapeutants was evaluated in this study. In vitro screening results revealed that,...

  16. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals. PMID:24283973

  17. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures.

    Science.gov (United States)

    Dham, Ashok K; McBane, George C; McCourt, Frederick R W; Meath, William J

    2010-01-14

    Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the (20)Ne-(12)C(16)O van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne-CO mixtures at T=296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives

  18. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew RE; Birkholm, Trine;

    2012-01-01

    Background: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer ...

  19. Does chemical aposematic (warning) signaling occur between host plants and their potential parasitic plants?

    OpenAIRE

    Lev-Yadun, Simcha

    2013-01-01

    Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward paras...

  20. Most Plastic Products Release Estrogenic Chemicals: A Potential Health Problem That Can Be Solved

    OpenAIRE

    Yang, Chun Z.; Yaniger, Stuart I.; Jordan, V. Craig; Klein, Daniel J.; Bittner, George D

    2011-01-01

    Background: Chemicals having estrogenic activity (EA) reportedly cause many adverse health effects, especially at low (picomolar to nanomolar) doses in fetal and juvenile mammals. Objectives: We sought to determine whether commercially available plastic resins and products, including baby bottles and other products advertised as bisphenol A (BPA) free, release chemicals having EA. Methods: We used a roboticized MCF-7 cell proliferation assay, which is very sensitive, accurate, and repeatable,...

  1. Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods

    OpenAIRE

    de Wouters, Tomas; Jans, Christoph; Niederberger, Tobias; Fischer, Peter; Rühs, Patrick Alberto

    2015-01-01

    Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial ten...

  2. Data Quality Objectives Workbook for Assessing Chemical Vulnerability Potential in REDOX and U Plants

    International Nuclear Information System (INIS)

    The purpose of this data quality objective workbook is to present the rationale for selecting the sampling and characterization strategy that supports the assessment of the chemical vulnerabilities of the five tanks. Since characterization of the tanks' contents is likely to be expensive, a secondary goal was established to characterize the tank contents for proper waste designation and disposal at the same time the tanks are characterized for chemical vulnerability

  3. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    OpenAIRE

    Centeno, José A.; Duane A. Rogers; Gijsbert B. van der Voet; Elisa Fornero; Lingsu Zhang; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Alexander Stojadinovic; Potter, Benjamin K.

    2014-01-01

    Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions rega...

  4. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  5. Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential

    Science.gov (United States)

    Ishikawa, Atsushi; Nakai, Hiromi

    2016-04-01

    Gibbs free energy of hydration of a proton and standard hydrogen electrode potential were evaluated using high-level quantum chemical calculations. The solvent effect was included using the cluster-continuum model, which treated short-range effects by quantum chemical calculations of proton-water complexes, and the long-range effects by a conductor-like polarizable continuum model. The harmonic solvation model (HSM) was employed to estimate enthalpy and entropy contributions due to nuclear motions of the clusters by including the cavity-cluster interactions. Compared to the commonly used ideal gas model, HSM treatment significantly improved the contribution of entropy, showing a systematic convergence toward the experimental data.

  6. Linked reactivity at mineral-water interfaces through bulk crystal conduction.

    Science.gov (United States)

    Yanina, Svetlana V; Rosso, Kevin M

    2008-04-11

    The semiconducting properties of a wide range of minerals are often ignored in the study of their interfacial geochemical behavior. We show that surface-specific charge density accumulation reactions combined with bulk charge carrier diffusivity create conditions under which interfacial electron transfer reactions at one surface couple with those at another via current flow through the crystal bulk. Specifically, we observed that a chemically induced surface potential gradient across hematite (alpha-Fe2O3) crystals is sufficiently high and the bulk electrical resistivity sufficiently low that dissolution of edge surfaces is linked to simultaneous growth of the crystallographically distinct (001) basal plane. The apparent importance of bulk crystal conduction is likely to be generalizable to a host of naturally abundant semiconducting minerals playing varied key roles in soils, sediments, and the atmosphere. PMID:18323417

  7. Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits

    Science.gov (United States)

    Moore, Tommy S.; Mullaugh, Katherine M.; Holyoke, Rebecca R.; Madison, Andrew S.; Yücel, Mustafa; Luther, George W.

    2009-01-01

    A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O2, nutrients (N and P), micronutrients (metals), pCO2, dissolved inorganic carbon (DIC), pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water mass should be targeted for further development.

  8. Potential of Palm Olein as Green Lubricant Source: Lubrication Analysis and Chemical Characterisation

    International Nuclear Information System (INIS)

    Palm olein (POo) is widely used as edible oil in tropical countries. The lubrication properties and chemical compositions of POo being considered to be used as renewable raw material for bio lubricant synthesis. POo is suitable to be used directly as bio lubricant for medium temperature industrial applications. Palm olein has good viscosity index, oxidative stability, flash and fire point as a lubricant source. POo contains unsaturated triacylglycerols (TAG): Palmitin-Olein-Olein, POO (33.3 %), Palmitin-Olein-Palmitin, POP (29.6 %), which are very important to produce good lubricant properties. This unsaturated bond is preferable in chemical modification to produce bio lubricant. The chemical compositions of POo were tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. (author)

  9. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis.

    Science.gov (United States)

    Ruiz, Pamela; Katsumiti, Alberto; Nieto, Jose A; Bori, Jaume; Jimeno-Romero, Alba; Reip, Paul; Arostegui, Inmaculada; Orbea, Amaia; Cajaraville, Miren P

    2015-10-01

    The aim of this work was to study short-term effects on antioxidant enzyme activities and long-term genotoxic and carcinogenic potential of CuO nanoparticles (NPs) in comparison to bulk CuO and ionic copper in mussels Mytilus galloprovincialis after 21 days exposure to 10 μg Cu L(-1). Then, mussels were kept for up to 122 days in clean water. Cu accumulation depended on the form of the metal and on the exposure time. CuO NPs were localized in lysosomes of digestive cells, as confirmed by TEM and X ray microanalysis. CuO NPs, bulk CuO and ionic copper produced different effects on antioxidant enzyme activities in digestive glands, overall increasing antioxidant activities. CuO NPs significantly induced catalase and superoxide dismutase activities. Fewer effects were observed in gills. Micronuclei frequency increased significantly in mussels exposed to CuO NPs and one organism treated with CuO NPs showed disseminated neoplasia. However, transcription levels of cancer-related genes did not vary significantly. Thus, short-term exposure to CuO NPs provoked oxidative stress and genotoxicity, but further studies are needed to determine whether these early events can lead to cancer development in mussels. PMID:26297043

  10. Competition and duality correspondence between chiral and superconducting channels in (2+1)-dimensional four-fermion models with fermion number and chiral chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G; Zhukovsky, V C

    2016-01-01

    In this paper the duality correspondence between fermion-antifermion and difermion interaction channels is established in two (2+1)-dimensional Gross-Neveu type models with a fermion number chemical potential $\\mu$ and a chiral chemical potential $\\mu_5$. The role and influence of this property on the phase structure of the models are investigated. In particular, it is shown that the chemical potential $\\mu_5$ promotes the appearance of dynamical chiral symmetry breaking, whereas the chemical potential $\\mu$ contributes to the emergence of superconductivity.

  11. INSECTS AND THEIR CHEMICAL WEAPONRY: GREAT POTENTIAL AND NEW DISCOVERIES FROM THE ORDER PHASMATODEA

    Science.gov (United States)

    With over 1,000,000 species of insects known, Class Insecta (Phyllum Arthropoda), the largest and most diverse group of organisms, is one of the least explored in natural product drug discovery (Dossey, A. T., Nat. Prod Rep. 2010, 27, 1737–1757). Over the past five our research stick insect chemical...

  12. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    International Nuclear Information System (INIS)

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the 'holy grail' of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies

  13. Assessment of the atmospheric hazards and risks of new chemicals: procedures to estimate "hazard potentials"

    NARCIS (Netherlands)

    de Leeuw FAAM

    1993-01-01

    In this report a procedure for the assessment of atmospheric hazards and risks of newly introduced chemicals is discussed. However, an assessment of direct effects caused by exposure to expected ambient concentrations or by deposition is not discussed ; here emphasis is on the role which new subst

  14. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  15. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U. A.; Mody, F. K.; Mese, A. I. [Haliburton Energy Services, TX (United States)

    2002-07-01

    In order to develop a real-time wellbore (in)stability modelling capability, experimental work was carried out to investigate the role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations. Time-dependent alterations in the pore pressure, acoustic and rock properties of formations subjected to compressive tri-axial test were recorded during the experiments involving the Pore Pressure Transmission (PPT) test. Based on the transient pore pressure of shale exposed to the test fluid presented here, the 20 per cent calcium chloride showed a very low membrane efficiency of 4.45 per cent. The need for a thorough understanding of the drilling fluid/shale interaction prior to applying any chemical potential wellbore (in)stability model to real-time drilling operations was emphasized. 9 refs., 5 figs.

  16. Chemical Potentials of Quarks Extracted from Particle Transverse Momentum Distributions in Heavy Ion Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2014-01-01

    Full Text Available In the framework of a multisource thermal model, the transverse momentum distributions of charged particles produced in nucleus-nucleus (A-A and deuteron-nucleus (d-A collisions at relativistic heavy ion collider (RHIC energies are investigated by a two-component revised Boltzmann distribution. The calculated results are in agreement with the PHENIX experimental data. It is found that the source temperature increases obviously with increase of the particle mass and incident energy, but it does not show an obvious change with the collision centrality. Then, the values of chemical potentials for up, down, and strange quarks can be obtained from the antiparticle to particle yield ratios in a wide transverse momentum range. The relationship between the chemical potentials of quarks and the transverse momentum with different centralities is investigated, too.

  17. Chemical Potentials of Quarks Extracted from Particle Transverse Momentum Distributions in Heavy Ion Collisions at RHIC Energies

    International Nuclear Information System (INIS)

    In the framework of a multisource thermal model, the transverse momentum distributions of charged particles produced in nucleus-nucleus (A-A) and deuteron-nucleus (d-A) collisions at relativistic heavy ion collider (RHIC) energies are investigated by a two-component revised Boltzmann distribution. The calculated results are in agreement with the PHENIX experimental data. It is found that the source temperature increases obviously with increase of the particle mass and incident energy, but it does not show an obvious change with the collision centrality. Then, the values of chemical potentials for up, down, and strange quarks can be obtained from the antiparticle to particle yield ratios in a wide transverse momentum range. The relationship between the chemical potentials of quarks and the transverse momentum with different centralities is investigated, too

  18. The chemical potential for the inhomogeneous electron liquid in terms of its kinetic and potential parts with special consideration of the surface potential step and BCS-BEC crossover

    International Nuclear Information System (INIS)

    The chemical potential μ of a many-body system is valuable since it carries fingerprints of phase changes. Here, we summarize results for μ for a three-dimensional electron liquid in terms of average kinetic and potential energies per particle. The difference between μ and the energy per particle is found to be exactly the electrostatic potential step at the surface. We also present calculations for an integrable one-dimensional many-body system with delta function interactions, exhibiting a BCS-BEC crossover. It is shown that in the BCS regime the chemical potential can be expressed solely in terms of the ground-state energy per particle. A brief discussion is also included of the strong coupling BEC limit

  19. Big Data in Chemical Toxicity Research: The Use of High-Throughput Screening Assays To Identify Potential Toxicants

    OpenAIRE

    Zhu, Hao; Zhang, Jun; Kim, Marlene T.; Boison, Abena; Sedykh, Alexander; Moran, Kimberlee

    2014-01-01

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way ...

  20. Chemical Potentials, Activity Coefficients and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Smith, W.R.; Nezbeda, Ivo

    Ozarow Mazowiecki: Nobell Compressing sp. z o.o, 2015 - (Kosinsky, K.; Urbanczyk, M.; Žerko, S.), s. 93-94 ISBN N. R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : chemical potentials * molecular simulations * polarizable force fields Subject RIV: CF - Physical ; Theoretical Chemistry http://rua.ua.es/dspace/bitstream/10045/50110/1/Book_of_Abstracts_EQUIFASE_X_2015.pdf

  1. On the velocity and chemical-potential dependence of the heavy-quark interaction in N=4 SYM plasmas

    CERN Document Server

    Avramis, S D; Zoakos, D; Avramis, Spyros D.; Sfetsos, Konstadinos; Zoakos, Dimitrios

    2006-01-01

    We consider the interaction of a heavy quark-antiquark pair moving in N=4 SYM plasma in the presence of non-vanishing chemical potentials. Of particular importance is the maximal length beyond which the interaction is practically turned off. We propose a simple phenomenological law that takes into account the velocity dependence of this screening length beyond the leading order and in addition its dependence on the R-charge. Our proposal is based on studies using rotating D3-branes.

  2. Level spacings for weakly asymmetric real random matrices and application to two-color QCD with chemical potential

    CERN Document Server

    Bloch, Jacques; Meyer, Nils; Schierenberg, Sebastian

    2012-01-01

    We consider antisymmetric perturbations of real symmetric matrices in the context of random matrix theory and two-color quantum chromodynamics. We investigate the level spacing distributions of eigenvalues that remain real or become complex conjugate pairs under the perturbation. We work out analytic surmises from small matrices and show that they describe the level spacings of large random matrices. As expected from symmetry arguments, these level spacings also apply to the overlap Dirac operator for two-color QCD with chemical potential.

  3. Mountain-Scale Coupled Thermal-Hydrological-Chemical Processes Around the Potential Nuclear Waste Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    The objectives of this study were to evaluate the thermal-hydrological-chemical (THC) effects on flow and geochemistry in the unsaturated zone (UZ) at Yucca Mountain at a mountain scale. The major THC processes important in the UZ are (1) mineral precipitation/dissolution affecting flow and transport to and from the potential repository, and (2) changes in the compositions of gas and liquid that may seep into drifts

  4. Chemical composition and evaluation of allelopathic potentials of Adiantum tetraphyllum Humb.and Bonpl. Ex. Willd (Pteridaceae)

    International Nuclear Information System (INIS)

    Chemical studies of green leaves of A. tetraphyllum afforded β-sitosterol, a mixture containing the ethyl esters of long chain carboxylic acids, 30-normethyl-lupan-20-one, hopan-22-ol, phytol, phyten-3(20)-1,2-diol, quercetin and quercetin-3-O-β-D-glucoside. The structures of the compounds were elucidated by spectroscopic and GC analysis. The allelopathic potentials of the crude ethanolic extract and fractions were evaluated against Lactuca sativa (letuce) and Allium cepa (onion) seeds. (author)

  5. Grassmann tensor renormalization group for the one-flavor lattice Gross–Neveu model with finite chemical potential

    International Nuclear Information System (INIS)

    We apply the Grassmann tensor renormalization group (GTRG) to the one-flavor lattice Gross–Neveu model in the presence of a chemical potential. We compute the fermion number density and its susceptibility and confirm the validity of GTRG for the finite-density system. We introduce a method analogous to the reweighting method for the Monte Carlo method and test it for some parameters

  6. Handbook of interatomic potentials

    International Nuclear Information System (INIS)

    This Handbook collects together interatomic potentials for a large number of metals. Most of the potentials describe the interactions of host metal atoms with each other, and these, in some cases, may be applied to solid and liquid metals. In addition, there are potentials (a) for a metallic impurity alloyed with the host, (b) for a small number of chemical impurities in the metal (eg H, O), and (c) for rare-gas impurities, notably He. The Handbook is intended to be a convenient source of potentials for bulk, surface and defect calculations, both static and dynamic. (author)

  7. POTENCIAL DE SECAGEM DO MILHO A GRANEL COM AR NATURAL EM BOTUCATU – SP DRYING POTENTIAL OF MAIZE GRAINS IN BULK WITH NATURAL AIR IN BOTUCATU, SP

    Directory of Open Access Journals (Sweden)

    Vicente A. Gonçalves

    2007-09-01

    Full Text Available

    A secagem de grãos com ar natural é um processo dependente das condições climáticas locais, constantemente oscilantes no tempo. Através do emprego de modelos matemáticos de simulação foi avaliada a possibilidade de realização da secagem do milho a granel com ar natural para as condições climáticas de Botucatu, com base nos registros horários de temperatura de bulbo seco e umidade relativa dos anos de 1971 a 1975 e de 1977 a 1981. O processo contínuo de secagem do milho com ar natural, nas condições analisadas, não permite a redução do teor de umidade final ao nível recomendado ao armazenamento seguro. A simulação da secagem intermitente, realizada nos períodos das 9 às 17 h, 9 às 18 h e 8 às 18 h, indica a possibilidade de redução do teor de umidade do milho, base úmida, a nível entre 12,1 e 17,3%, para o teor de unidade inicial de 22%, entre 12,4 e 15,5%, para o teor de umidade inicial de 20% e entre 13,1 e 14,7% para o de 18%, quando realizada a secagem no período máximo admissível.

    PALAVRAS-CHAVE: Secagem; Ar natural; Milho; Teor de umidade de equilíbrio.

    Grain drying using ambient was simulated under weather conditions in Botucatu. Hourly weather records, fry bulb temperature and relative humidity, from 1971 through 1975 and from 1977 through 1981, were used to calculate adiabatic drying potential of the ambient air. Historical weather records from 1971 were selected to simulate ambient air corn drying. Ambient air corn drying systems operating continuously are not feasible to reduce the moisture content of the grain to the moisture levels recommended for safe storage. Selective fan operation, from 9 a. m. to 5 a. m. , from 9 a. m. to 6 p. m. and from 8 a. m. to 6 p. m. , indicates the possibility to reduce corn moisture contents, wet

  8. NUMERICAL ALGORITHMS AT NON-ZERO CHEMICAL POTENTIAL. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 19

    Energy Technology Data Exchange (ETDEWEB)

    BLUM,T.

    1999-09-14

    The RIKEN BNL Research Center hosted its 19th workshop April 27th through May 1, 1999. The topic was Numerical Algorithms at Non-Zero Chemical Potential. QCD at a non-zero chemical potential (non-zero density) poses a long-standing unsolved challenge for lattice gauge theory. Indeed, it is the primary unresolved issue in the fundamental formulation of lattice gauge theory. The chemical potential renders conventional lattice actions complex, practically excluding the usual Monte Carlo techniques which rely on a positive definite measure for the partition function. This ''sign'' problem appears in a wide range of physical systems, ranging from strongly coupled electronic systems to QCD. The lack of a viable numerical technique at non-zero density is particularly acute since new exotic ''color superconducting'' phases of quark matter have recently been predicted in model calculations. A first principles confirmation of the phase diagram is desirable since experimental verification is not expected soon. At the workshop several proposals for new algorithms were made: cluster algorithms, direct simulation of Grassman variables, and a bosonization of the fermion determinant. All generated considerable discussion and seem worthy of continued investigation. Several interesting results using conventional algorithms were also presented: condensates in four fermion models, SU(2) gauge theory in fundamental and adjoint representations, and lessons learned from strong; coupling, non-zero temperature and heavy quarks applied to non-zero density simulations.

  9. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants.

    Science.gov (United States)

    Zhu, Hao; Zhang, Jun; Kim, Marlene T; Boison, Abena; Sedykh, Alexander; Moran, Kimberlee

    2014-10-20

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound's ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described. PMID:25195622

  10. Assessing the potential hazard of chemical substances for the terrestrial environment. Development of hazard classification criteria and quantitative environmental indicators.

    Science.gov (United States)

    Tarazona, J V; Fresno, A; Aycard, S; Ramos, C; Vega, M M; Carbonell, G

    2000-03-20

    Hazard assessment constitutes an essential tool in order to evaluate the potential effects of chemical substances on organisms and ecosystems. It includes as a first step, hazard identification, which must detect the potential dangers of the substance (i.e. the kind of effects that the substance may produce), and a second step to quantify each danger and to set the expected dose/response relationships. Hazard assessment plays a key role in the regulation of chemical substances, including pollution control and sustainable development. However, the aquatic environment has largely received more attention than terrestrial ecosystems. This paper presents the extrapolation of several basic concepts from the aquatic to the terrestrial compartment, and suggests possibilities for their regulatory use. Two specific proposals are discussed. The first focuses on the scientific basis of the hazard identification-classification criteria included in the EU regulations and their extrapolation to the terrestrial environment. The second focuses on the OECD programme for environmental indicators and the development of a soil pollution pressure indicator to quantify the potential hazards for the soil compartment and its associated terrestrial ecosystem related to the toxic chemicals applied deliberately (i.e. pesticides) or not (i.e. heavy metals in sludge-based fertilisers; industrial spills) to the soil. PMID:10803544

  11. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route

    Science.gov (United States)

    Benavides, A. L.; Aragones, J. L.; Vega, C.

    2016-03-01

    The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.

  12. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route.

    Science.gov (United States)

    Benavides, A L; Aragones, J L; Vega, C

    2016-03-28

    The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution. PMID:27036458

  13. Chemical composition and bioethanol potential of different plant species found in pacific northwest conservation buffers

    Science.gov (United States)

    Increase in energy demand has led towards considering lignocellulosic feedstocks as potential for ethanol production. Aim of this study was to estimate the potential of grass straws from conservation reserve program (CRP) lands as feedstocks for ethanol production. The CRP was initiated to ensure re...

  14. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Directory of Open Access Journals (Sweden)

    José A. Centeno

    2014-01-01

    Full Text Available Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU, tungsten (W, lead (Pb, and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF, scanning electron microscopy (SEM, laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS, and confocal laser Raman

  15. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Science.gov (United States)

    Centeno, José A.; Rogers, Duane A.; van der Voet, Gijsbert B.; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Stojadinovic, Alexander; Potter, Benjamin K.

    2014-01-01

    Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman

  16. Strategies and chemical design approaches to reduce the potential for formation of reactive metabolic species.

    Science.gov (United States)

    Argikar, Upendra A; Mangold, James B; Harriman, Shawn P

    2011-01-01

    Metabolic activation of new chemical entities to reactive intermediates is routinely monitored in drug discovery and development. Reactive intermediates may bind to cellular macromolecules such as proteins, DNA and may eventually lead to cell death via necrosis, apoptosis or oxidative stress. The evidence that the ultimate outcome of metabolic activation is an adverse drug reaction manifested as in vivo toxicity, is at best circumstantial. However, understanding the process of bioactivation of structural alerts by trapping the reactive intermediates is critical to guide medicinal chemistry efforts in quest for safer and potent molecules. This commentary provides a brief introduction to adverse drug reactions and mechanisms of reactive intermediate formation for various functional groups, followed by a review of chemical design approaches, examples of such strategies, possible isosteric replacements for structural alerts and rationalization of laboratory approaches to determine reactive intermediates, as a guide to today's medicinal chemist. PMID:21320068

  17. Molecular Simulation of Polarizable Models of Electrolytes: Concentration Dependence of the Chemical Potentials, Density and Solubility.

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo; Smith, W.R.

    Lyngby : DTU Chemical Engineering, 2015 - (Kontogeorgis, G.), s. 89 ISBN N. [Thermodynamics 2015. Copenhagen (DK), 15.09.2015-18.09.2015] R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : simulation * solutions of electrolytes * electrolytes Subject RIV: CF - Physical ; Theoretical Chemistry http://www.thermodynamics2015.org/wp-content/uploads/2015/09/Thermodynamics2015.pdf

  18. Triboelectric Charge, Electrophysical Properties and Electrical Beneficiation Potential of Chemically Treated Feldspar, Quartz and Wollastonite

    OpenAIRE

    Manouchehri, H. R.; K. Hanumantha Rao; Forssberg, K. S. E.

    2002-01-01

    The triboelectric charge attributes of the pure feldspar, quartz and wollastonite mineral samples, after contact with plate and cyclone type tribochargers made up of different materials were investigated. The main electrical properties of the minerals, i.e., electrical conductivity and dielectric constant, were measured and their energetic work functions were estimated. In addition, the behaviour of mineral samples in the electric field of a free-fall separator before and after chemical treat...

  19. Morphological and physico-chemical properties of British aquatic habitats potentially exposed to pesticides.

    OpenAIRE

    Brown, Colin D.; Turner, Nigel; Hollis, John; Bellamy, Patricia H.; Biggs, Jeremy; Williams, Penny; Arnold, Dave; Pepper, Tim; Maund, Steve

    2006-01-01

    Approaches to describe the exposure of non-target aquatic organisms to agricultural pesticides can be limited by insufficient knowledge of the environmental conditions where the compounds are used. This study analysed information from national and regional datasets gathered in the UK describing the morphological and physico-chemical properties of rivers, streams, ponds and ditches. An aggregation approach was adopted, whereby the landscape was divided into 12 hydrogeological classes for agric...

  20. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  1. Chemically aged and mixed aerosols over the Central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    H. A. C. Denier van der Gon

    2010-02-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, designating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols indicates that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud and entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  2. Holographic thermalization with a chemical potential in Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Holographic thermalization is studied in the framework of Einstein-Maxwell-Gauss-Bonnet gravity. We use the two-point correlation function and expectation value of Wilson loop, which are dual to the renormalized geodesic length and minimal area surface in the bulk, to probe the thermalization. The numeric result shows that larger the Gauss-Bonnet coefficient is, shorter the thermalization time is, and larger the charge is, longer the thermalization time is, which implies that the Gauss-Bonnet coefficient can accelerate the thermalization while the charge has an opposite effect. In addition, we obtain the functions with respect to the thermalization time for both the thermalization probes at a fixed charge and Gauss-Bonnet coefficient, and on the basis of these functions, we obtain the thermalization velocity, which shows that the thermalization process is non-monotonic. At the middle and later periods of the thermalization process, we find that there is a phase transition point, which divides the thermalization into an acceleration phase and a deceleration phase. We also study the effect of the charge and Gauss-Bonnet coefficient on the phase transition point

  3. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    International Nuclear Information System (INIS)

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  4. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs):potential persistent organic pollutants (POPs)

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; YU Gang; YANG Xi; ZHANG Zu-lin

    2004-01-01

    Polychlorinated diphenyl ethers(PCDEs) have received more and more concerns as a category of potentialpersistent organic pollutants( POPs). Modeling its environmental fate and exposure assessment require a number offundamental physico-chemical properties. However, the experimental data are currently limited due to the difficulty inanalysis caused by the complexity of PCDE congeners. As an alternative, the quantitative structure propertyrelationship(QSPR) approach could be used. In this paper, twelve kinds of molecular connectivity indices(MCIs) ofall 209 possible molecular structure patterns of PCDEs were calculated. Based on 106 PCDEs with three observedphysico-chemical properties-vapour pressure(PoL), aqueous solubility(Sw) and n-octanol/water(Kow) and theirMCIs data, a series of QSPR equations were established using multiple linear regression(MLR) method. As aresult, three equations with best performance were selected mainly from the view of high regression coefficient(R)and low standard error( SE). All of them showed significant relationship and high accuracy. With these equationsthe properties of other 103 patterns of PCDEs without the reported observed values were predicted. Furthermore,three partition properties for PCDE congeners-Henry' s Law constants(H), partition coefficients between gas/water(Kgw) and gas/n-octanol ( Kgo ) were calculated according to the internal relationship among these six properties.These observed and predicted values, in contrast with the criteria listed in the Stockholm treaty about POPs whichhas been signed by more than ninety countries in May 2001, illustrated that most of PCDEs congeners are potentialpersistent organic pollutants. As all descriptors/predictors are derived just from the molecular structure itself andwithout the import of any empirical parameters, this method is impersonal and promising for the estimation ofphysico-chemical properties of PCDEs.

  5. Chemical synthesis of a dual branched malto-decaose: A potential substrate for alpha-amylases

    DEFF Research Database (Denmark)

    Damager, Iben; Jensen, Morten; Olsen, Carl Erik; Blennow, Andreas; Møller, Birger Lindberg; Svensson, Birte; Motawia, Saddik

    2005-01-01

    . Using this chemically defined branched oligosaccharide as a substrate, the cleavage pattern of seven different alpha-amylases were investigated. alpha-Amylases from human saliva, porcine pancreas, barley alpha-amylose 2 and recombinant barley alpha-amylase 1 all hydrolysed the decasaccharide selectively....... This resulted in a branched hexasaccharide and a branched tetrasoccharide. alpha-Amylases from Asperagillus oryzae, Bacillus licheniformis and Bacillus sp. cleaved the decasoccharide at two distinct sites, either producing two branched pentasoccharides, or a branched hexasoccharide and a branched...

  6. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    International Nuclear Information System (INIS)

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals

  7. Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks.

    Science.gov (United States)

    Suciu, Nicoleta; Tediosi, Alice; Ciffroy, Philippe; Altenpohl, Annette; Brochot, Céline; Verdonck, Frederik; Ferrari, Federico; Giubilato, Elisa; Capri, Ettore; Fait, Gabriella

    2016-08-15

    MERLIN-Expo merges and integrates advanced exposure assessment methodologies, allowing the building of complex scenarios involving several pollution sources and targets. The assessment of exposure and risks to human health from chemicals is of major concern for policy and ultimately benefits all citizens. The development and operational fusion of the advanced exposure assessment methodologies envisaged in the MERLIN-Expo tool will have a significant impact in the long term on several policies dealing with chemical safety management. There are more than 30 agencies in Europe related to exposure and risk evaluation of chemicals, which have an important role in implementing EU policies, having especially tasks of technical, scientific, operational and/or regulatory nature. The main purpose of the present paper is to introduce MERLIN-Expo and to highlight its potential for being effectively integrated within the group of tools available to assess the risk and exposure of chemicals for EU policy. The main results show that the tool is highly suitable for use in site-specific or local impact assessment, with minor modifications it can also be used for Plant Protection Products (PPPs), biocides and REACH, while major additions would be required for a comprehensive application in the field of consumer and worker exposure assessment. PMID:27107646

  8. Chemical composition and potential health risks of raw Arabian incense (Bakhour

    Directory of Open Access Journals (Sweden)

    Yehya Elsayed

    2016-07-01

    Full Text Available Burning Arabian incense (Bakhour is a common indoor practice in the Middle East and the Arabian Gulf region. However, the chemical composition of this substance has never been studied. Three different Bakhour brands were selected for this study. A complete chemical profile for the raw samples was determined using carbon, hydrogen, and nitrogen elemental analysis, inductively coupled plasma optical emission spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and gas chromatography mass spectrometry techniques. A wide range of elements and compounds were identified, many of which are hazardous to health. Nitrogen was found in all samples which should raise concerns due to the known health implications of amines, nitrogen oxides and nitrites. In addition toxic metals such as cobalt, copper, iron, nickel, lead, and zinc were also determined in all samples. The amounts of these metals are equivalent to those in raw tobacco, where they are known to pose health risks. Three types of solvents (acetone, dichloromethane and toluene were used for the extraction of organic compounds. Carcinogens, toxins and irritants were found along others of different health implications. Isolation of these compounds provides preliminary evidence on the harmful consequences of being exposed to Bakhour.

  9. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon;

    2011-01-01

    Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and...

  10. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  11. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  12. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  13. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    International Nuclear Information System (INIS)

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D 1H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D 1H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of 1H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 μg/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish

  14. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    Science.gov (United States)

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. PMID:26347181

  15. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.

    Science.gov (United States)

    Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V

    2012-08-27

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly

  16. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2016-06-01

    Experimental determination of the eye irritation potential (EIP) of chemicals is not only tedious, time and resource intensive, it involves cruelty to test animals. In this study, we have established a three-tier QSAR modeling strategy for estimating the EIP of chemicals for the use of pharmaceutical industry and regulatory agencies. Accordingly, a qualitative (binary classification: irritating, non-irritating), semi-quantitative (four-category classification), and quantitative (regression) QSAR models employing the SDT, DTF, and DTB methods were developed for predicting the EIP of chemicals in accordance with the OECD guidelines. Structural features of chemicals responsible for eye irritation were extracted and used in QSAR analysis. The external predictive power of the developed QSAR models were evaluated through the internal and external validation procedures recommended in QSAR literature. In test data, the two and four category classification QSAR models (DTF, DTB) rendered accuracy of >93%, while the regression QSAR models (DTF, DTB) yielded correlation (R(2)) of >0.92 between the measured and predicted EIPs. Values of various statistical validation coefficients derived for the test data were above their respective threshold limits (except rm(2) in DTF), thus put a high confidence in this analysis. The applicability domain of the constructed QSAR models were defined using the descriptors range and leverage approaches. The QSAR models in this study performed better than any of the previous studies. The results suggest that the developed QSAR models can reliably predict the EIP of diverse chemicals and can be useful tools for screening of candidate molecules in the drug development process. PMID:27018829

  17. Chemical Composition and Food Potential of Pachymerus nucleorum Larvae Parasitizing Acrocomia aculeata Kernels

    OpenAIRE

    Ariana Vieira Alves; Eliana Janet Sanjinez Argandoña; Adelita Maria Linzmeier; Claudia Andrea Lima Cardoso; Maria Lígia Rodrigues Macedo

    2016-01-01

    Insect consumption as food is culturally practiced in various regions of the world. In Brazil, there are more than 130 species of edible insects registered, from nine orders, among which stands out the Coleoptera. The larva of the beetle Pachymerus nucleorum Fabricius, 1792, grows into the bocaiuva fruit (Acrocomia aculeata (Jacq.) Lodd. Ex Mart., 1845), which has proven nutritional quality. The aim of this work was to evaluate the nutritional potential of P. nucleorum larvae compared to boca...

  18. Temperature-driven and chemical-potential-driven adiabatic pumping in coherent electron transport

    OpenAIRE

    Hasegawa, M.(Graduate School of Science, Kobe University, Kobe, Japan); Kato, T

    2016-01-01

    In this study, we investigate adiabatic pumping induced by the modulation of thermodynamic variables of reservoirs, i.e., temperatures and electrochemical potentials in coherent mesoscopic devices. A simple setup that adopts an impurity Anderson model was used to examine charge pumping under the periodic modulation of the thermodynamic parameters of reservoirs. Consequently, the possibility of charge pumping in the presence of Coulomb interaction is confirmed. Finally, a formula describing ch...

  19. Physical and chemical characterization of the pulp of different varieties of avocado targeting oil extraction potential

    OpenAIRE

    Edinéia Dotti Mooz; Natália Moreno Gaiano; Marilis Yoshie Hayashi Shimano; Rodrigo Dantas Amancio; Marta Helena Fillet Spoto

    2012-01-01

    The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear) and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in t...

  20. Physico-chemical analysis and antimicrobial potential of Apis dorsata, Apis mellifera and Ziziphus jujube honey samples from Pakistan

    Institute of Scientific and Technical Information of China (English)

    Hira Fahim; Javid Iqbal Dasti; Ihsan Ali; Safia Ahmed; Muhammad Nadeem

    2014-01-01

    Objective: To evaluate physico-chemical properties and antimicrobial potential of indigenous honey samples against different reference strains including Escherichia coli ATCC 8739, Enterobacter aerogenes ATCC 13048, Pseudomonas aeroginosa ATCC 9027, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Klebsiella pneumonia ATCC 13883, Aspergillus niger ATCC 16404, Rhizopus oligosporus PCSIR1, Candida albicans ATCC 14053 and Candida utilis ATCC 9950. Methods: By using standard methods samples were evaluated for their antimicrobial properties including additive effect of starch and non-peroxidase activity, antioxidative properties (phenol contents, flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity). Prior to this evaluation, complete physico-chemical properties including pH, color, ash contents, protein contents, moisture contents, hydroxymethyl furfural contents, total sugar contents, reducing sugar and non-reducing sugar contents were analyzed. Results: Relatively higher ash contents were found in the Siddar honey i.e. (0.590 0±0.033 6)%and small honey showed relatively higher protein contents i.e. (777.598±9.880) mg/kg. The moisture contents of tested honey samples ranged between 13.8%-16.6%, total sugar contents from 61.672%-72.420%and non-reducing sugar contents from 1.95%-3.93%. Presences of phenolic contents indicate higher antioxidant potential of these honey samples. All bacteria showed clear inhibition zones in response to tested honey samples whereas fungi and yeast showed inhibition at higher concentrations of these honey samples. For Escherichia coli, Bacillus subtilis, Salmonella typhi, Pseudomonas aeroginosa and Aspergillus niger, overall the small honey showed the higher activity than other honey samples. Conclusion: Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimentarius Commission

  1. Multiconfiguration molecular mechanics algorithm for potential energy surfaces of chemical reactions

    International Nuclear Information System (INIS)

    We present an efficient algorithm for generating semiglobal potential energy surfaces of reactive systems. The method takes as input molecular mechanics force fields for reactants and products and a quadratic expansion of the potential energy surface around a small number of geometries whose locations are determined by an iterative process. These Hessian expansions might come, for example, from ab initio electronic structure calculations, density functional theory, or semiempirical molecular orbital theory. A 2x2 electronic diabatic Hamiltonian matrix is constructed from these data such that, by construction, the lowest eigenvalue of this matrix provides a semiglobal approximation to the lowest electronically adiabatic potential energy surface. The theory is illustrated and tested by applications to rate constant calculations for three gas-phase test reactions, namely, the isomerization of 1,3-cis-pentadiene, OH+CH4→H2O+CH3, and CH2Cl+CH3F→CH3Cl+CH2F. (c) 2000 American Institute of Physics

  2. Chemical and Physical Approaches to Extend the Replicative and Differentiation Potential of Stem Cells.

    Science.gov (United States)

    Hwang, Eun Seong; Ok, Jeong Soo; Song, SeonBeom

    2016-06-01

    Cell therapies using mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are increasing in regenerative medicine, with applications to a growing number of aging-associated dysfunctions and degenerations. For successful therapies, a certain mass of cells is needed, requiring extensive ex vivo expansion of the cells. However, the proliferation of both MSCs and EPCs is limited as a result of telomere shortening-induced senescence. As cells approach senescence, their proliferation slows down and differentiation potential decreases. Therefore, ways to delay senescence and extend the replicative lifespan these cells are needed. Certain proteins and pathways play key roles in determining the replicative lifespan by regulating ROS generation, damage accumulation, or telomere shortening. And, their agonists and gene activators exert positive effects on lifespan. In many of the treatments, importantly, the lifespan is extended with the retention of differentiation potential. Furthermore, certain culture conditions, including the use of specific atmospheric conditions and culture substrates, exert positive effects on not only the proliferation rate, but also the extent of proliferation and differentiation potential as well as lineage determination. These strategies and known underlying mechanisms are introduced in this review, with an evaluation of their pros and cons in order to facilitate safe and effective MSC expansion ex vivo. PMID:27085715

  3. Potential role of p53 mutation in chemical hepatocarcinogenesis of rats

    Institute of Scientific and Technical Information of China (English)

    Wei-Guo Deng; Yan Fu; Yu-Lin Li; Toshihiro Sugiyama

    2004-01-01

    AIM: Inactivation of p53 gene is one of the most frequent genetic alterations in carcinogenesis. The mutation status of p53 gene was analyzed, in order to understand the effect of p53 mutation on chemical hepatocarcinogenesis of rats.METHODS: During hepatocarcinogenesis of rats induced by 3′-methyl-4- dimethylaminoazobenzene (3′-Me-DAB),prehepatocarcinoma and hepatocarcinoma foci were collected by laser capture microdissection (LCMl), and quantitatively analyzed for levels of p53 mRNA by LightCyclerTM real-time RT-PCR and for mutations in p53 gene exons 5-8 by direct sequencing.RESULTS: Samples consisting of 44 precancerous foci and 24 cancerous foci were collected by LCMl. A quantitative analysis of p53 mRNA showed that p53 mRNA peaked at an early stage (week 6) in the prehepatocarcinoma lesion, more than ten times that of adjacent normal tissue, and gradually decreased from week 6 to week 24. The expression of p53 mRNA in adjacent normal tissue was significantly lower than that in prehepatocarcinoma. Similar to prehepatocarcinoma,p53 mRNA in cancer was markedly higher than that in adjacent normal tissue at week 12, and was closer to normal at week 24. Direct p53 gene sequencing showed that 35.3% (24/68) (9 precancer, 15 cancer) LCM samples exhibited point mutations, 20.5% of prehepatocarcinoma LCM samples presented missense mutations at exon 6/7 or/and 8, and was markedly lower than 62.5% of hepatocarcinoma ones (P<0.01). Mlutation of p53 gene formed the mutant hot spots at 5 codons. Positive immunostaining for p53 protein could be seen in prehepatocarcinoma and hepatocarcinoma foci at 24 weeks.CONCLUSION: p53 gene mutation is present in initial chemical hepatocarcinogenesis, and the mutation of p53 gene induced by 3′-Me-DAB is an important factor of hepatocarcinogenesis.

  4. Assessment of bioburden encapsulated in bulk materials

    Science.gov (United States)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  5. Dimethylglycine and chemically related amines tested for mutagenicity under potential nitrosation conditions.

    Science.gov (United States)

    Hoorn, A J

    1989-04-01

    Dimethylglycine (DMG) and the chemically related amino acids glycine, sarcosine (monomethylglycine) and betaine (trimethylglycine) were tested in Salmonella typhimurium strain TA100 after treatment with sodium nitrite under acidic conditions using a modified Ames Salmonella/microsome assay as reported by Colman et al. (1980). The increase in the number of revertants observed both with and without metabolic activation was also induced in the control mixtures without adding the amines. From the subsequent testing of the individual components of the mixtures, we concluded that non-consumed nitrite was responsible for the mutagenic responses observed in the different reaction mixtures, and not the amines themselves. There were no consistent indications of mutagenic activity of the DMG test mixture as compared to the control mixture which exhibited both consistent mutagenic activity and a toxic effect which was not increased by the addition of DMG. In fact, DMG seemed to decrease the toxicity of the control reaction solution to the Salmonella which was clearly observed at the higher doses. DMG cannot be considered mutagenic under the test conditions employed. The same can be said of the other amino acids as well. PMID:2468082

  6. Physical and chemical characterization of the pulp of different varieties of avocado targeting oil extraction potential

    Directory of Open Access Journals (Sweden)

    Edinéia Dotti Mooz

    2012-06-01

    Full Text Available The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers’ income.

  7. The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: Psychodidae: A review

    Directory of Open Access Journals (Sweden)

    Diwakar Singh Dinesh

    2014-01-01

    Full Text Available Use of chemical pesticides is the current method for controlling sandflies. However, resistance is being developed in sandflies against the insecticide of choice that is DDT (dichlorodiphenyl trichloroethane. Botanicals have potential to act as an alternative to chemical insecticides as the crude extracts and active molecules of some plants show insecticidal effect to sandflies. This will lead to safe, easy and environment friendly method for control of sandflies. Therefore, information regarding botanicals acting as alternative to chemical insecticide against sandflies assumes importance in the context of development of resistance to insecticides as well as to prevent environment from contamination. This review deals with some plants and their products having repellent and insecticidal effect to sandflies in India and abroad. Different methods of extraction and their bioassay on sandflies have been emphasized in the text. Various extracts of some plants like Ricinus communis (Euphorbiaceae, Solanum jasminoides (Solanaceae, Bougainvillea glabra (Nyctaginaceae, Capparis spinosa (Capparidaceae, Acalypha fruticosa (Euphorbiaceae and Tagetes minuta (Asteraceae had shown repellent/insecticidal effect on sandflies. This review will be useful in conducting the research work to find out botanicals of Indian context having insecticidal effect on sandflies.

  8. Chemical Composition and Allelopathic Potential of Essential Oils from Tipuana tipu (Benth.) Kuntze Cultivated in Tunisia.

    Science.gov (United States)

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2016-03-01

    In Tunisia, Tipuana tipu (Benth.) Kuntze is an exotic tree, which was introduced many years ago and planted as ornamental street, garden, and park tree. The present work reported, for the first time, the chemical composition and evaluates the allelopathic effect of the hydrodistilled essential oils of the different parts of this tree, viz., roots, stems, leaves, flowers, and pods gathered in the area of Sousse, a coastal region, in the East of Tunisia. In total, 86 compounds representing 89.9 - 94.9% of the whole oil composition, were identified in these oils by GC-FID and GC/MS analyses. The root essential oil was clearly distinguished for its high content in sesquiterpene hydrocarbons (β-caryophyllene, 1 (44); 24.1% and germacrene D, 2 (53); 20.0%), while those obtained from pods, leaves, stems, and flowers were dominated by non-terpene hydrocarbons. The most important ones were n-tetradecane (41, 16.3%, pod oil), 1,7-dimethylnaphthalene (43, 15.6%, leaf oil), and n-octadecane (77, 13.1%, stem oil). The leaf oil was rich in the apocarotene (E)-β-ionone (4 (54); 33.8%), and the oil obtained from flowers was characterized by hexahydrofarnesylacetone (5 (81); 19.9%) and methyl hexadecanoate (83, 10.2%). Principal component and hierarchical cluster analyses separated the five essential oils into three groups and two subgroups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by the root essential oil tested at 1 mg/ml. The inhibitory effect on the shoot and root elongation varied from -1.6% to -32.4%, and from -2.5% to -64.4%, respectively. PMID:26916976

  9. Radiotherapeutic potentiation by chemical and physical means in oral squamous cell carcinomas

    International Nuclear Information System (INIS)

    Oral squamous cell cancers have been the commonest male and the second commonest female malignancy on the South Indian Peninsula since time immemorial. Nearly 93% of these cancer cases attend a hospital for the first time at an unimaginably advanced stage of the disease. Improved education, communications and health services have taught them to seek hospital aid but not early enough. While, therefore, prevention and early detection programmes are under way, mainly advanced cases are treated in the hospitals. Radiation is often the only possible treatment that can be offered, but the survival rate is poor - a meager 19% at 5 years. Various combination treatments have been studied since 1958, in carefully designed concurrent randomized controlled clinical trials, in an effort to improve the rate of cure. The combination of radiotherapy and surgery raised the 5 year survival rate to 52%, where it could be practised, but its scope was limited. Chemical sensitization proved, after initial promise, disappointing. The only cytotoxic drug that, as a single agent, distinctly, reliably and consistently improved the radioresponse and survival was bleomycin - a CR (complete response) of 80%, a RFR (recurrence free rate) of 70% and a 5 year NED (no evidence of disease) of 60%. There was, however, a persistent failure rate of 30-40%. Three trials were undertaken to reduce this failure rate: (1) Hbo+BLM as radiopotentiators; (2) BLM+VCR+5-Fu as radiopotentiating agents; (3) BLM+hyperthermia. The triple drug combination effected a CR of 76.3% against BLM+RT of 70.73% - an improvement that was not significant - but this was accompanied by unacceptable toxicities. The third trial is still going on. (author)

  10. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    International Nuclear Information System (INIS)

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  11. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    Energy Technology Data Exchange (ETDEWEB)

    Vedani, Angelo, E-mail: angelo.vedani@unibas.ch [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland); Dobler, Max [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Smieško, Martin [Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  12. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  13. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2013-02-04

    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  14. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis.

    Science.gov (United States)

    Reinhardt, Anika; Yang, You; Claus, Heike; Pereira, Claney L; Cox, Andrew D; Vogel, Ulrich; Anish, Chakkumkal; Seeberger, Peter H

    2015-01-22

    Neisseria meningitidis is a leading cause of bacterial meningitis worldwide. We studied the potential of synthetic lipopolysaccharide (LPS) inner core structures as broadly protective antigens against N. meningitidis. Based on the specific reactivity of human serum antibodies to synthetic LPS cores, we selected a highly conserved LPS core tetrasaccharide as a promising antigen. This LPS inner core tetrasaccharide induced a robust IgG response in mice when formulated as an immunogenic glycoconjugate. Binding of raised mouse serum to a broad collection of N. meningitidis strains demonstrated the accessibility of the LPS core on viable bacteria. The distal trisaccharide was identified as the crucial epitope, whereas the proximal Kdo moiety was immunodominant and induced mainly nonprotective antibodies that are responsible for lack of functional protection in polyclonal serum. Our results identified key antigenic determinants of LPS core glycan and, hence, may aid the design of a broadly protective immunization against N. meningitidis. PMID:25601073

  15. Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Ming-Huang Chen

    Full Text Available Hepatocellular carcinoma (HCC is an aggressive tumor with a poor prognosis. Currently, only sorafenib is approved by the FDA for advanced HCC treatment; therefore, there is an urgent need to discover candidate therapeutic drugs for HCC. We hypothesized that if a drug signature could reverse, at least in part, the gene expression signature of HCC, it might have the potential to inhibit HCC-related pathways and thereby treat HCC. To test this hypothesis, we first built an integrative platform, the "Encyclopedia of Hepatocellular Carcinoma genes Online 2", dubbed EHCO2, to systematically collect, organize and compare the publicly available data from HCC studies. The resulting collection includes a total of 4,020 genes. To systematically query the Connectivity Map (CMap, which includes 6,100 drug-mediated expression profiles, we further designed various gene signature selection and enrichment methods, including a randomization technique, majority vote, and clique analysis. Subsequently, 28 out of 50 prioritized drugs, including tanespimycin, trichostatin A, thioguanosine, and several anti-psychotic drugs with anti-tumor activities, were validated via MTT cell viability assays and clonogenic assays in HCC cell lines. To accelerate their future clinical use, possibly through drug-repurposing, we selected two well-established drugs to test in mice, chlorpromazine and trifluoperazine. Both drugs inhibited orthotopic liver tumor growth. In conclusion, we successfully discovered and validated existing drugs for potential HCC therapeutic use with the pipeline of Connectivity Map analysis and lab verification, thereby suggesting the usefulness of this procedure to accelerate drug repurposing for HCC treatment.

  16. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Deppert, W.R. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Pfeifer, D. [Department of Hematology and Oncology, University Hospital Freiburg (Germany); Stanzel, S.; Weimer, M. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Schaefer, W.R., E-mail: wolfgang.schaefer@uniklinik-freiburg.de [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)

    2012-05-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  17. THP-1 monocytes but not macrophages as a potential alternative for CD34+ dendritic cells to identify chemical skin sensitizers

    International Nuclear Information System (INIS)

    Early detection of the sensitizing potential of chemicals is an emerging issue for chemical, pharmaceutical and cosmetic industries. In our institute, an in vitro classification model for prediction of chemical-induced skin sensitization based on gene expression signatures in human CD34+ progenitor-derived dendritic cells (DC) has been developed. This primary cell model is able to closely mimic the induction phase of sensitization by Langerhans cells in the skin, but it has drawbacks, such as the availability of cord blood. The aim of this study was to investigate whether human in vitro cultured THP-1 monocytes or macrophages display a similar expression profile for 13 predictive gene markers previously identified in DC and whether they also possess a discriminating capacity towards skin sensitizers and non-sensitizers based on these marker genes. To this end, the cell models were exposed to 5 skin sensitizers (ammonium hexachloroplatinate IV, 1-chloro-2,4-dinitrobenzene, eugenol, para-phenylenediamine, and tetramethylthiuram disulfide) and 5 non-sensitizers (L-glutamic acid, methyl salicylate, sodium dodecyl sulfate, tributyltin chloride, and zinc sulfate) for 6, 10, and 24 h, and mRNA expression of the 13 genes was analyzed using real-time RT-PCR. The transcriptional response of 7 out of 13 genes in THP-1 monocytes was significantly correlated with DC, whereas only 2 out of 13 genes in THP-1 macrophages. After a cross-validation of a discriminant analysis of the gene expression profiles in the THP-1 monocytes, this cell model demonstrated to also have a capacity to distinguish skin sensitizers from non-sensitizers. However, the DC model was superior to the monocyte model for discrimination of (non-)sensitizing chemicals.

  18. Chemical composition and potential health effects of prunes: a functional food?

    Science.gov (United States)

    Stacewicz-Sapuntzakis, M; Bowen, P E; Hussain, E A; Damayanti-Wood, B I; Farnsworth, N R

    2001-05-01

    Prunes are dried plums, fruits of Prunus domestica L., cultivated and propagated since ancient times. Most dried prunes are produced from cultivar d'Agen, especially in California and France, where the cultivar originated. After harvest, prune-making plums are dehydrated in hot air at 85 to 90 degrees C for 18 h, then further processed into prune juice, puree, or other prune products. This extensive literature review summarizes the current knowledge of chemical composition of prunes and their biological effects on human health. Because of their sweet flavor and well-known mild laxative effect, prunes are considered to be an epitome of functional foods, but the understanding of their mode of action is still unclear. Dried prunes contain approximately 6.1 g of dietary fiber per 100 g, while prune juice is devoid of fiber due to filtration before bottling. The laxative action of both prune and prune juice could be explained by their high sorbitol content (14.7 and 6.1 g/100 g, respectively). Prunes are good source of energy in the form of simple sugars, but do not mediate a rapid rise in blood sugar concentration, possibly because of high fiber, fructose, and sorbitol content. Prunes contain large amounts of phenolic compounds (184 mg/100 g), mainly as neochlorogenic and chlorogenic acids, which may aid in the laxative action and delay glucose absorption. Phenolic compounds in prunes had been found to inhibit human LDL oxidation in vitro, and thus might serve as preventive agents against chronic diseases, such as heart disease and cancer. Additionally, high potassium content of prunes (745 mg/100 g) might be beneficial for cardiovascular health. Dried prunes are an important source of boron, which is postulated to play a role in prevention of osteoporosis. A serving of prunes (100 g) fulfills the daily requirement for boron (2 to 3 mg). More research is needed to assess the levels of carotenoids and other phytochemicals present in prunes to ensure correct labeling and

  19. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers

    Science.gov (United States)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1987-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.

  20. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  1. Chemical Composition and Food Potential of Pachymerus nucleorum Larvae Parasitizing Acrocomia aculeata Kernels.

    Science.gov (United States)

    Alves, Ariana Vieira; Sanjinez Argandoña, Eliana Janet; Linzmeier, Adelita Maria; Cardoso, Claudia Andrea Lima; Macedo, Maria Lígia Rodrigues

    2016-01-01

    Insect consumption as food is culturally practiced in various regions of the world. In Brazil, there are more than 130 species of edible insects registered, from nine orders, among which stands out the Coleoptera. The larva of the beetle Pachymerus nucleorum Fabricius, 1792, grows into the bocaiuva fruit (Acrocomia aculeata (Jacq.) Lodd. Ex Mart., 1845), which has proven nutritional quality. The aim of this work was to evaluate the nutritional potential of P. nucleorum larvae compared to bocaiuva kernels for human consumption. Proteins were the second largest portion of the larvae nutritional composition (33.13%), with percentage higher than the bocaiuva kernels (14.21%). The larval lipid content (37.87%) was also high, very close to the kernels (44.96%). The fraction corresponding to fatty acids in the oil extracted from the larvae was 40.17% for the saturated and 46.52% for the unsaturated. The antioxidant activity value was 24.3 uM trolox/g of oil extracted from larvae. The larvae tryptic activity was 0.032±0.006 nmol BAPNA/min. Both the larvae and the bocaiuva kernel presented absence of anti-nutritional factors. These results favor the use of P. nucleorum larvae as food, which are a great protein and lipid sources with considerable concentrations of unsaturated fatty acids compared to the bocaiuva kernel. PMID:27031500

  2. Chemical Composition and Food Potential of Pachymerus nucleorum Larvae Parasitizing Acrocomia aculeata Kernels.

    Directory of Open Access Journals (Sweden)

    Ariana Vieira Alves

    Full Text Available Insect consumption as food is culturally practiced in various regions of the world. In Brazil, there are more than 130 species of edible insects registered, from nine orders, among which stands out the Coleoptera. The larva of the beetle Pachymerus nucleorum Fabricius, 1792, grows into the bocaiuva fruit (Acrocomia aculeata (Jacq. Lodd. Ex Mart., 1845, which has proven nutritional quality. The aim of this work was to evaluate the nutritional potential of P. nucleorum larvae compared to bocaiuva kernels for human consumption. Proteins were the second largest portion of the larvae nutritional composition (33.13%, with percentage higher than the bocaiuva kernels (14.21%. The larval lipid content (37.87% was also high, very close to the kernels (44.96%. The fraction corresponding to fatty acids in the oil extracted from the larvae was 40.17% for the saturated and 46.52% for the unsaturated. The antioxidant activity value was 24.3 uM trolox/g of oil extracted from larvae. The larvae tryptic activity was 0.032±0.006 nmol BAPNA/min. Both the larvae and the bocaiuva kernel presented absence of anti-nutritional factors. These results favor the use of P. nucleorum larvae as food, which are a great protein and lipid sources with considerable concentrations of unsaturated fatty acids compared to the bocaiuva kernel.

  3. Physico-chemical properties and cytotoxic potential of Cordyceps sinensis metabolites.

    Science.gov (United States)

    Lee, Eun-Jeong; Jang, Ka-Hee; Im, Seon-Young; Lee, Yoon-Kyung; Farooq, Muhammad; Farhoudi, Rozbeh; Lee, Dong-Jin

    2015-01-01

    This study was conducted to estimate the antioxidant activities, biochemical properties and biological activities of one of the entomopathogenic fungi, Cordyceps sinensis. Analysis of fungal metabolites indicated that the most abundant free sugar was glucose; the highest component of organic acids was citric acid from 10-day culture medium and the glutamate was the predominant amino acid observed from 3-day culture medium. Maximum total polyphenols and flavonoids were detected in the 15-day culture medium. For cytotoxicity test, three cancer cell lines, HepG2 (liver), MCF-7 (breast) and A549 (lung) were used. The IC50 values of the highest toxicity of HepG2 cell lines were observed from 10-day cultured medium, whereas the highest toxicity of MCF-7 and A549 was observed on 5-day cultured medium. This is the first study reporting on the strong antioxidant and cytotoxic potential of C. sinensis. Culture medium of C. sinensis may thus be used as an effective antioxidant and anticancer treatment of natural origin. PMID:25135771

  4. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  5. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    Science.gov (United States)

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present. PMID:27000319

  6. Chemical Composition and Nutraceutical Potential of Indian Borage (Plectranthus amboinicus Stem Extract

    Directory of Open Access Journals (Sweden)

    Praveena Bhatt

    2013-01-01

    Full Text Available The stem of Indian borage (Plectranthus amboinicus was found to be an antioxidant rich fraction as evaluated by in vitro models such as DPPH free radical scavenging, reducing power assay, superoxide anion radical scavenging, and total antioxidant capacity. The extract also exhibited antiplatelet aggregation ability, antibacterial activity, and antiproliferative effect against cancer cell lines: Caco-2, HCT-15, and MCF-7. Phytochemical evaluation of the extract revealed the occurrence of total phenolics (49.91 mg GAE/g extract, total flavonoids (26.6 mg RE/g extract, and condensed tannins (0.7 mg TAE/g extract. Among the major phenolics, rosmarinic acid (6.160 mg/g extract was predominant, followed by caffeic acid (0.770 mg/g extract, rutin (0.324 mg/g extract, gallic acid (0.260 mg/g extract, quercetin (0.15 mg/g extract, and p-coumaric acid (0.104 mg/g extract. The appreciable biological activity and presence of biomolecules in the methanolic extract of stem indicate its potential application as functional food ingredients and nutraceuticals.

  7. Chemical derivatization and biofunctionalization of hydrogel nanomembranes for potential biomedical and biosensor applications.

    Science.gov (United States)

    Khan, Musammir; Schuster, Swen; Zharnikov, Michael

    2016-04-28

    Poly(ethylene glycol) based hydrogel nanomembranes (PHMs) are demonstrated to be able to host protein-specific receptors, providing, at the same time, stable, protein-repelling matrices with a characteristic mesh size up to 7-8 nm. The membranes were prepared by crosslinking of amino- and epoxy-terminated STAR-PEG precursors and maintained their hydrogel and protein-repelling properties even at a deviation of the precursor composition from the equilibrium value (1 : 1). The grafting density of the test avidin protein, specifically attached to the biotin moieties coupled to the free amine groups in the PHMs, varied from 0.45 × 10(12) to 1.3 × 10(12) proteins per cm(2) within the sampling depth of the experiments (∼11.5 nm), depending on the precursor composition, whereas the analogous values for the non-specifically adsorbed proteins were lower by a factor of 4-5. The engineering of PHMs with biomolecule-specific receptors and their loading with biomolecules are of potential interest for sensor fabrication and biomedical applications, including tissue engineering and regenerative therapy. PMID:27067511

  8. Potential of Coproduction of Energy, Fuels and Chemicals from Biobased Renewable Resources. Transition Path 3. Co-production of Energy, Fuels and Chemicals

    International Nuclear Information System (INIS)

    This report shows how in 2030, biobased alternatives can potentially cover up to 30% of the Netherlands' domestic energy and chemicals demand, effectively reducing CO2 emissions. Maximizing the economical potential of biobased alternatives seems the most attractive strategy. The method to compare various routes has been highly simplified and the conclusions of this report are only valid within the limitations of the underlying assumptions. Nevertheless, the Working group WISE BIOMAS of the Platform Biobased Raw Materials feels that the conclusions are valuable for Dutch policy makers and others interested in the use of biobased raw materials. In 2030, biobased alternatives are expected to be sufficiently competitive to fossil-based alternatives, even without subsidies. They are expected to play a significant role in an energy mix comprised of other renewables as well as 'clean' fossil energy sources. Presently, however, the Netherlands needs to step up its stimulation of biobased applications, through substantial investments in R and D programmes, demonstration plants, as well as measures to stimulate implementation. The whole package of tax reductions, local government purchases, etc., as well as direct financial support should amount to approximately 500 million euros per year. The simplified study presented here provides input for more realistic macro-economic scenario analysis taking actual and updated cost-availability relations including second generation biofuels and biochemicals, land use, international trade, etc., into account. Initial discussions with for instance the Netherlands Bureau for Economic Policy Analysis (Centraal Plan Bureau or CPB) have taken place, but are not covered in this report. It is urgently suggested to update macro-economic scenarios for securing the best Netherlands' position among the accelerating global development towards biobased resources

  9. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; de Luca, Antonio; Strangi, Giuseppe

    2013-11-01

    Hyperbolic metamaterials (HMMs) represent a novel class of fascinating anisotropic plasmonic materials, supporting highly confined bulk plasmon polaritons in addition to the surface plasmon polaritons. However, it is very challenging to tailor and excite those modes at optical frequencies using prism coupling technique because of the intrinsic difficulties to engineer non-traditional optical properties using artificial nanostructures and the unavailability of high refractive index prisms for matching the momentum between the incident light and the guided modes. Here, we experimentally demonstrate the excitation of both surface and bulk plasmon polaritons in a HMM through a grating coupling technique of surface plasmon excitation that makes use a hypergrating, which is a combined structure of metallic diffraction grating and HMM. Initially, we propose an optical hyperbolic metamaterial based on Au/TiO2 multilayers and confirm the hyperbolic dispersion, and the presence of high-k modes in the fabricated HMM. Reflection measurements as a function of incident angle and excitation wavelength show the existence of both surface and bulk plasmon polaritons inside the hypergrating. The proposed configuration is expected to find potential applications in bio-chemical sensors, integrated optics and optical sub-wavelength imaging.

  10. A new multimedia contaminant fate model for China:how important are environmental parameters in influencing chemical persistence and long-range transport potential?

    OpenAIRE

    Zhu, Ying; Price, Oliver R.; Tao, Shu; Jones, Kevin C.; Sweetman, Andrew

    2014-01-01

    We present a new multimedia chemical fate model (SESAMe) which was developed to assess chemical fate and behaviour across China. We apply the model to quantify the influence of environmental parameters on chemical overall persistence (POV) and long-range transport potential (LRTP) in China, which has extreme diversity in environmental conditions. Sobol sensitivity analysis was used to identify the relative importance of input parameters. Physicochemical properties were identified as more infl...

  11. Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface

    Science.gov (United States)

    Lorenz, Sönke; Scheffler, Matthias; Gross, Axel

    2006-03-01

    A neural network (NN) approach is proposed for the representation of six-dimensional ab initio potential-energy surfaces (PES) for the dissociation of a diatomic molecule at surfaces. We report tests of NN representations that are fitted to six-dimensional analytical PESs for H2 dissociation on the clean and the sulfur covered Pd(100) surfaces. For the present study we use high-dimensional analytical PESs as the basis for the NN training, as this enables us to investigate the influence of phase space sampling on adsorption rates in great detail. We note, however, that these analytical PESs were obtained from detailed density functional theory calculations. When information about the PES is collected only from a few high-symmetric adsorption sites, we find that the obtained adsorption probabilities are not reliable. Thus, intermediate configurations need to be considered as well. However, it is not necessary to map out complete elbow plots above nonsymmetric sites. Our study suggests that only a few additional energies need to be considered in the region of activated systems where the molecular bond breaks. With this understanding, the required number of NN training energies for obtaining a high-quality PES that provides a reliable description of the dissociation and adsorption dynamics is orders of magnitude smaller than the number of total-energy calculations needed in traditional ab initio on the fly molecular dynamics. Our analysis also demonstrates the importance of a reliable, high-dimensional PES to describe reaction rates for dissociative adsorption of molecules at surfaces.

  12. Potentially beneficial spill-related effects of chemicals routinely added to crude oils

    International Nuclear Information System (INIS)

    Amoco Trinidad Oil Company produces 60,000 bbl/d of oil from the Trinidadian offshore. The oil is pipelined ashore where it is processed and returned offshore to a buoy mooring for transport up Trinidad's east coast. Amoco Trinidad has developed comprehensive oil spill contingency plans, starting from computer models of spill scenarios. The models used initially assumed that the oils would emulsify quickly and the spills would become highly viscous and persistent, reaching the shoreline in 15-24 h. Such behavior would render ineffective the use of dispersants as a spill countermeasure. Studies showed a poor potential capability of physical recovery systems for spills off the Trinidad east coast due to high sea states, strong winds, and other factors. These results led to questioning of the spill model's assumptions, and laboratory tests were conducted to study the actual behavior of the crude oils. It was found that the oil was difficult to emulsify and highly prone to breakup and dispersion. These surprising results were explained by the presence of surfactants added during processing. A revised modelling exercise showed that if the surfactants stay with the oil, spills up to 100,000 bbl will dissipate in 15 h or less at average wind conditions. To guard against the possibility that the surfactants may not stay with the spilled oil, and to help accelerate dispersion of oil spills, Amoco Trinidad has developed a dispersant-use capacity for its spill contingency plan. It is suggested that additives normally added to crude oils during production and processing in other areas may also be providing spill cleanup benefits similar to those found in the Trinidad case. 9 refs., 1 fig., 4 tabs

  13. Dry bulk cargo shipping - An overlooked threat to the marine environment?

    Science.gov (United States)

    Grote, Matthias; Mazurek, Nicole; Gräbsch, Carolin; Zeilinger, Jana; Le Floch, Stéphane; Wahrendorf, Dierk-Steffen; Höfer, Thomas

    2016-09-15

    Approximately 9.5billiontonnes of goods is transported over the world oceans annually with dry bulk representing the largest cargo group. This paper aims to analyse whether the transport and associated inputs of dry bulks into the sea create a risk for the marine environment. For this purpose, we analyse the international regulatory background concerning environmental protection (MARPOL), estimate quantities and identify inputs of such cargoes into the oceans (accidental and operational), and use available information for hazard assessment. Annually, more than 2.15milliontonnes of dry bulk cargoes are likely to enter the oceans, of which 100,000tonnes are potentially harmful to the marine environment according to the definition included in draft maritime regulation. The assessment of the threat to the marine environment is hampered by a lack of available information on chemical composition, bioavailability and toxicity. Perspectives for amendments of the unsatisfying pollution prevention regulations are discussed. PMID:27339744

  14. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    Science.gov (United States)

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  15. Exploring the Reuse Potential of Chemical Sludge from Textile Wastewater Treatment Plants in India-A Hazardous Waste

    Directory of Open Access Journals (Sweden)

    Hema Patel

    2009-01-01

    Full Text Available Problem statement: This study was conducted to explore the reuse potential of the chemical sludge (considered as hazardous waste as per Indian Government Hazardous Waste Management Rules generated from combined effluent treatment in textile clusters. These textile clusters mainly cover the cotton dyeing and printing operations. Approach: Therefore, treatability studies of chemical sludge were conducted using solidification/stabilization treatment to examine the possibility of its reuse in construction materials. The sludge was characterised for its physico-chemical parameters and heavy metals. Standard blocks of dimensions 70.6×70.6×70.6 mm were prepared, in which chemical sludge was used as a partial replacement of cement by mixing 30-70 % of sludge in cement. After the experimental curing, the blocks were evaluated for physical engineering properties such as hardening time, block density, unconfined compressive strength. The chemical properties were determined in terms of concentrations of heavy metals in the TCLP leachate. Results: The hardening time ranged between 30-45 h. The compressive strength in the sludge cement blocks ranged from 2.63-22.54 N mm-2 after 14 days of water curing and 6.48-24.89 N mmm-2 after 28 days of water curing for 30, 40, 50, 60 and 70 % sludge replacement in cement. The block density varied between 1361. 3408-1813.8992 Kg m-3 after 14 days and 1386.3953-1842.3446 Kg m-3 after 28 days of water curing. The concentrations of heavy metals were negligible in the TCLP leachate and thus below USEPA regulatory limits. Conclusion/Recommendations: As far as structural applications is concerned, it is fulfilling the criteria of some of the classes (C to K as per the BIS standards of the bricks upto a strength of 25 N mm2. The use of sludge can definitely be explored for other structural and non-structural applications depending upon strength requirement. Other applications of textile sludge in the construction materials

  16. Bulk materials handling review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    The paper provides details of some of the most important coal handling projects and technologies worldwide. It describes development by Aubema Crushing Technology GmbH, Bedeschi, Cimbria Moduflex, DBT, Dynamic Air Conveying Systems, E & F Services, InBulk Technologies, Nord-Sen Metal Industries Ltd., Pebco Inc, Primasonics International Ltd., R.J.S. Silo Clean (International) Ltd., Takraf GmbH, and The ACT Group. 17 photos.

  17. Chemical Composition of Artemisia annua L. Leaves and Antioxidant Potential of Extracts as a Function of Extraction Solvents

    OpenAIRE

    Maznah Ismail; Shahid Iqbal; Umer Younas; Kim Wei Chan; Muhammad Zia-Ul-Haq

    2012-01-01

    This study was conducted to investigate the chemical and nutritional composition of Artemisia annua leaves in addition to determination of antioxidant potential of their extracts prepared in different solvents. Chemical composition was determined by quantifying fat, protein, carbohydrate, fiber, tocopherol, phytate, and tannin contents. Extraction of A. annua leaves, for antioxidant potential evaluation, was carried out using five solvents of differen...

  18. Physico-chemical analysis and antimicrobial potential of Apis dorsata,Apis mellifera and Ziziphus jujube honey samples from Pakistan

    Institute of Scientific and Technical Information of China (English)

    Hira; Fahim; Javid; Iqbal; Dasti; Ihsan; Ali; Safia; Ahmed; Muhammad; Nadeem

    2014-01-01

    Objective:To evaluale physico-chemical properties and antimicrobial potential of indigenous honey samples against different reference strains including Escherichia coli ATCC 8739.Enterobacter aerogenes ATCC 13048.Pseudomonas aeruginosa ATCC 9027.Bacillus subtilis ATCC6633.Staphylococcus aureus ATCC 25923.Salmonella typhi ATCC 14028,Klebsiella pneumonia ATCC 13883.Aspergillus niger ATCC 16404.Rhizopus oligasparus PCSIR1.Candida albicans ATCC14053 and Candida utilis ATCC 9950.Methods:By using standard methods samples were evaluated for their antimicrobial properties including additive effect of starch and non—peroxidase activity,antioxidative properties(phenol contents,flavonoid contents,1,1-diphenyl-2-pierylhydrazyl radical scavenging activity).Prior to this evaluation,complete physico-chemical properties including pH,color,ash contents,protein contents,moisture contents,hydroxymethyl furfural contents,total sugar contents,reducing sugar and non-reducing sugar contents were analyzed.Results:Relatively higher ash contents were found in the Siddar honey i.e.(0.5900±0.0336)%and small honey showed relatively higher protein contents i.e.(777.598±9.880) mg/kg.The moisture contents of tested honey samples ranged between 13.8%—16,6%,total sugar contents foam 61.672%-72.420%and non-reducing sugar contents from 1.95%—3.93%.Presences of phenolic contents indicate higher antioxidant potential of these honey samples.All bacteria showed clear inhibition zones in response to tested honey samples whereas fungi and yeast showed inhibition at higher concentrations of these honey samples.For Escherichia coli.Bacillus subtilis.Salmonella typhi.Pseudomonas aeruginosa and Aspergillus niger,overall the small honey showed the higher activity than other honey samples.Conclusion:Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimcntarius Commission.Evaluation of these honey samples

  19. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    Science.gov (United States)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  20. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts.

    Science.gov (United States)

    Geh, Stefan; Yücel, Raif; Duffin, Rodger; Albrecht, Catrin; Borm, Paul J A; Armbruster, Lorenz; Raulf-Heimsoth, Monika; Brüning, Thomas; Hoffmann, Eik; Rettenmeier, Albert W; Dopp, Elke

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Øbentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. PMID:16059726

  1. Lasers in chemical processing

    International Nuclear Information System (INIS)

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  2. Chemical potential for the interacting classical gas and the ideal quantum gas obeying a generalized exclusion principle

    International Nuclear Information System (INIS)

    In this work, we address the concept of the chemical potential μ in classical and quantum gases towards the calculation of the equation of state μ = μ(n, T) where n is the particle density and T the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are presented with detailed calculations. The first one refers to the explicit calculation of μ for the interacting classical gas exemplified by van der Waals gas. For this purpose, we used the method described by van Kampen (1961 Physica 27 783). The second one refers to the calculation of μ for ideal quantum gases that obey a generalized Pauli's exclusion principle that leads to statistics that go beyond the Bose-Einstein and Fermi-Dirac cases. The audience targeted in this work corresponds mainly to advanced undergraduates and graduate students in the physical-chemical sciences but it is not restricted to them. In regard of this, we have put a special emphasis on showing some additional details of calculations that usually do not appear explicitly in textbooks. (paper)

  3. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  4. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    Science.gov (United States)

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions. PMID:20402501

  5. Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation.

    Science.gov (United States)

    Liu, Jin-Feng; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed. PMID:25741767

  6. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen

    Science.gov (United States)

    Liu, Chunfang; Ma, Zhan; Xu, Songtao; Hou, Jun; Hu, Yao; Yu, Yinglu; Liu, Ruilai; Chen, Zhihong; Lu, Yuan

    2014-01-01

    Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy. PMID:24998261

  7. Estimating and predicting chemical potentials, distributions, speciation modes and mobilities of radiometals in soil, water and biomass

    International Nuclear Information System (INIS)

    Using a method from coordination chemistry, which is linked to ligand field theory, the interaction of (binding of) metal ions with biomass is described and put to quantitative scales including bioconcentration factors for a given living being. This can be extended to radionuclides and biological exposure to them. Fractionation of radionuclides from fission in biomass is discussed in examples from various taxonomic groups, also touching issues of possible human exposure. -- Highlights: ► 3 empirical parameters link complex formation and BCF, parameter lists given. ► Chemical potentials and BCF values of metal ions can be derived from above parameters. ► Systematic BCF interspecies comparison method used for exposure risk estimates. ► Analysis of data from empirical element partition studies (plants, human milk). ► Analysis of likely Oklo Biogeochemistry and implications for RN waste withholding

  8. Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential biofuel crop

    Energy Technology Data Exchange (ETDEWEB)

    Kesari, Vigya; Das, Archana; Rangan, Latha [Department of Biotechnology, Indian Institute of Technology Guwahati, North Guwahati 781 039, Assam (India)

    2010-01-15

    Oil analysis and antimicrobial activity from seeds of elite genotype of Pongamia pinnata was carried out in the current study. The highest oil yield (33%) from seeds was recovered in n-Hexane. Physico-chemical properties of crude oil established suitability of P. pinnata for its use as a potential biofuel crop. The total mono unsaturated fatty acid (oleic acid 46%) present in seed oil was more in comparison to polyunsaturated fatty acid (33%) as analyzed by GC-MS. Seed oil also showed inhibition against the tested fungal and bacterial cultures. However, the efficacy of antimicrobial activity of the seed oil at four concentration levels (50%, 80%, 90% and 100%) against various pathogenic indicators was found to be concentration-dependent. The obtained results confirmed the use of seed oil from well characterized elite genotype of Pongamia as diesel fuel and in pharmaceuticals. (author)

  9. Physico-chemical properties of the potentially oxidative water and its capability of the instrumentation residual layer remotion

    Directory of Open Access Journals (Sweden)

    Daniel Silva-Herzog FLORES

    2006-11-01

    Full Text Available The purpose of the study was to elaborate the potentially oxidative water (POW and analyze some of the physico-chemical properties: pH density, superficial stress, contact angle, conductivity and REDOX potential; besides comparing its POW organic as well as non-organic matter removal capacity with hypochlorite sodium at 1% plus 17% EDTA. For the methodology the POW elaboration an electrolysis process was used and the physico-chemical properties were determined in 0, 1, 3, 5 and 7 days. For the removal capacity of teeth tartarevaluation, 30 extracted uniradicular premolars were used, divided in three groups:positive control (NaOCl at 1% + EDTA at 17%, negative control(distilled water and experimental (POW. Afterwards, the samples were observed under electronic microscopy with 2500x magnifying at the middle thirds and apical, analyzing them with the Rome scale (amount of open dental tubes. For the statistical analysis the Chi-square and the Fisher Exact Proofwas used. The results showed that the solution was constantly maintained at all times during the evaluation and there was found statistical difference between negative control and positive control and between negative control and the experimental group. With regards to the dental tartar removal it was found that there was no statistical difference between the control group and the experimental group (POW; reason why it is concluded that the POW has the capacity to remove dental tartar. Nevertheless, to be able to propose the use of the POW as an irrigator solution in Endodontics it is necessary to do further studies to evaluate its cytotoxicity and biocompability.

  10. Bulk metallic glass tube casting

    International Nuclear Information System (INIS)

    Research highlights: → Tubular specimens of Zr55Cu30Al10Ni5 cast in custom arc-melting furnace. → Tilt casting supplemented by suction casting. → Bulk metallic glass formed only with optimized processing parameters. → Fully amorphous tubes with 1.8 mm wall thickness and 25 mm diameter. - Abstract: Tubular bulk metallic glass specimens were produced, using a custom-built combined arc-melting tilt-casting furnace. Zr55Cu30Al10Ni5 tubes with outer diameter of 25 mm and 0.8-3 mm wall thicknesses were cast, with both tilt and suction casting to ensure mold filling. Tilt casting was found to fill one side of the tube mold first, with the rest of the tube circumference filled subsequently by suction casting. Optimized casting parameters were required to fully fill the mold and ensure glass formation. Too small melt mass and too low arc power filled the mold only partially. However, too large melt mass and higher arc power which lead to the best mold filling also lead to partial crystallization. Variations in processing parameters were explored, until a glassy ring with 1.8 mm thickness was produced. Different sections of the as-cast ring were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and instrumented indentation to ensure amorphous microstructure. Atomic force microscopy (AFM) was used to compare the surface qualities of the first- and last-filled sections. These measurements confirmed the glassy structure of the cast ring, and that, the tilt cast tube section consistently showed better surface quality than the suction cast section. Optimized casting parameters are required to fully realize the potential of directly manufacturing complex shapes out of high-purity bulk metallic glasses by tilt casting.

  11. Bulk size crystal growth, spectroscopic, dielectric and surface studies of 4-N,N-dimethylamino-4-N'-methylstilbazolium m-nitrobenzenesulfonate (DSMNS): A potential THz crystal of stilbazolium family.

    Science.gov (United States)

    Antony Raj, A; John Sundaram, S; Gunaseelan, R; Sagayaraj, P

    2015-10-01

    The synthesis and growth of a potentially useful and efficient nonlinear optical organic single crystal of 4-N,N-dimethylamino-4-N'-methylstilbazolium m-nitrobenzenesulfonate (DSMNS) is reported. The growth experiment involved the slope nucleation method coupled with slow cooling as well as slow solvent evaporation techniques. Single crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR), FT-Raman and nuclear magnetic resonance (NMR) techniques have been employed to ascertain the structure and composition of the crystal. Second harmonic generation (SHG) efficiency of the sample has been examined by Kurtz and Perry powder test. Thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC) techniques are employed to investigate the thermal behavior of the grown crystal. The frequency/temperature dependent dielectric properties of the organic crystal of DSMNS are studied. The surface features of the grown crystal are investigated by chemical etching study and atomic force microscopy (AFM). PMID:26010563

  12. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration

  13. Too many chemicals, too little time: Rapid in silico methods to characterize and predict ADME properties for chemical toxicity and exposure potential

    Science.gov (United States)

    Evaluating proposed alternative chemical structures to support the design of safer chemicals and products is an important component of EPA's Green Chemistry and Design for the Environment (DfE) Programs. As such, science-based alternatives assessment is essential to support EPA's...

  14. Occupational vitiligo due to unsuspected presence of phenolic antioxidant byproducts in commercial bulk rubber

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, M.A.; Mathias, C.G.; Priddy, M.; Molina, D.; Grote, A.A.; Halperin, W.E.

    1988-06-01

    We investigated the occurrence of cutaneous depigmentation (vitiligo) among employees of a company that manufactured hydraulic pumps. The interiors of these pumps were injection-molded with rubber. We identified a small but significant cluster of vitiligo cases among a group of employees who frequently handled the rubber used in this injection molding process. Although none of the additives specified in the rubber formulations was a phenolic or catecholic derivative, known to be potential causes of chemically induced vitiligo, gas chromatographic analysis identified a para-substituted phenol (2,4-di-tert-butylphenol, DTBP) in solid samples of the most frequently used rubber. Surface wipe analysis confirmed that workers could be exposed to DTBP from simple handling of the rubber. We subsequently established that the solid bulk rubber used as the base in these stock rubber formulations contained both DTBP and smaller quantities of p-tert-butylphenol. Both had formed as unsuspected byproducts during chemical synthesis of two antioxidants added to the solid bulk rubber by a major rubber supplier. We conclude that the unsuspected presence of potential chemical depigmenting agents in solid bulk rubber, from which industrial rubber products are formulated, may contribute to the occurrence of occupational vitiligo, and that a simple review of ingredients in rubber formulations is inadequate to detect their presence.

  15. A variational approach to the liquid-vapor phase transition for hardcore ions in the bulk and in nanopores

    CERN Document Server

    Loubet, Bastien; Palmeri, John

    2016-01-01

    We employ a field-theoretical variational approach to study the behavior of ionic solutions in the grand canonical ensemble. To describe properly the hardcore interactions between ions, we use a cutoff in Fourier space for the electrostatic contribution of the grand potential and the Carnahan-Starling equation of state with a modified chemical potential for the pressure one. We first calibrate our method by comparing its predictions at room temperature with Monte Carlo results for excess chemical potential and energy. We then validate our approach in the bulk phase by describing the classical "ionic liquid-vapor" phase transition induced by ionic correlations at low temperature, before applying it to electrolytes at room temperature confined to nanopores embedded in a low dielectric medium and coupled to an external reservoir of ions. The ionic concentration in the nanopore is then correctly described from very low bulk concentrations, where dielectric exclusion shifts the transition up to room temperature fo...

  16. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Environ Toxicol Chem 2016;35:1087-1096. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26588039

  17. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  18. Automated fit of high-dimensional potential energy surfaces using cluster analysis and interpolation over descriptors of chemical environment.

    Science.gov (United States)

    Fournier, René; Orel, Slava

    2013-12-21

    We present a method for fitting high-dimensional potential energy surfaces that is almost fully automated, can be applied to systems with various chemical compositions, and involves no particular choice of function form. We tested it on four systems: Ag20, Sn6Pb6, Si10, and Li8. The cost for energy evaluation is smaller than the cost of a density functional theory (DFT) energy evaluation by a factor of 1500 for Li8, and 60,000 for Ag20. We achieved intermediate accuracy (errors of 0.4 to 0.8 eV on atomization energies, or, 1% to 3% on cohesive energies) with rather small datasets (between 240 and 1400 configurations). We demonstrate that this accuracy is sufficient to correctly screen the configurations with lowest DFT energy, making this function potentially very useful in a hybrid global optimization strategy. We show that, as expected, the accuracy of the function improves with an increase in the size of the fitting dataset. PMID:24359355

  19. Faecal bulking efficacy of Australasian breakfast cereals.

    Science.gov (United States)

    Monro, John A

    2002-01-01

    Faecal bulk may play an important role in preventing a range of disorders of the large bowel, but as yet there is little information available on the relative faecal bulking capacities of various foods. Breakfast cereals are often promoted as a good source of potential bulk for 'inner health' because they provide dietary fibre, but their relative abilities to provide faecal bulk per se have not been described. The faecal bulking efficacy of 28 representative Australasian breakfast cereals was therefore measured. A rat model developed for the purpose, and shown to give similar responses as humans to cereal fibres, was used to measure faecal bulking efficacy as increases in fully hydrated faecal weight/100 g diet, based on precise measurements of food intake, faecal dry matter output and faecal water-holding capacity (g water held without stress/g faecal dry matter). Compared to a baseline diet containing 50% sucrose, increments in hydrated faecal weight due to 50% breakfast cereal ranged from slightly negative (Cornflakes, -2 g/100 g diet) to about 80 g/100 g diet (San Bran). Most breakfast cereals increased hydrated faecal weight by between 10 and 20 g/100 g diet from a baseline of 21 +/- 1.5 g/100 g diet, but four products containing high levels of wheat bran had an exceptionally large impact on hydrated faecal weight (increment > 20 g/100 g diet), and the changes resulted more from relative changes in dry matter output than in faecal water retention/gram. However, as faecal water retention was about 2.5 g water/g faecal dry matter on average, increases in dry matter represented large increases in faecal water load. Faecal bulking indices (FBI) for most of the breakfast cereals were less than 20 (wheat bran = 100). The content of wheat bran equivalents for faecal bulk (WBE(fb)) in the breakfast cereals was calculated from FBI. Most breakfast cereals contributed, per serve, less than 10% of a theoretical daily reference value for faecal bulk (DRV(fb) = 63 WBE

  20. Wormholes in Bulk Viscous Cosmology

    OpenAIRE

    Jamil, Mubasher

    2008-01-01

    We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Morris-Thorne wormhole. We have found that if the bulk viscosity is large then the mass of wormhole increases rapidly as compared to small or zero bulk viscosity.

  1. A first-principles DFT study of UN bulk and (001) surface: comparative LCAO and PW calculations.

    Science.gov (United States)

    Evarestov, R A; Bandura, A V; Losev, M V; Kotomin, E A; Zhukovskii, Yu F; Bocharov, D

    2008-10-01

    LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic-covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches. PMID:18496791

  2. Comparison of the mutagenic potential of 17 physical and chemical agents analyzed by the flow cytometry mutation assay

    Energy Technology Data Exchange (ETDEWEB)

    French, C. Tenley [Cytomation GTX Inc., Fort Collins, CO (United States); Ross, Carley D. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Keysar, Stephen B. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Joshi, Dhanashree D. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Lim, Chang-Uk [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Fox, Michael H. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States) and Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)]. E-mail: mfox@colostate.edu

    2006-12-01

    Several methods to assess genotoxicity of physical and chemical agents have been developed, most of which depend on growing colonies in selective medium. We recently published a new method for detecting mutations in the CD59 gene in a Chinese hamster ovary cell line that contains a single copy of human chromosome 11 (CHO A{sub L}). The assay is based on detecting the surface expression of CD59 with monoclonal antibodies using flow cytometry. The capabilities of this flow cytometry mutation assay (FCMA) to detect mutations from a wide variety of genotoxic agents are described here. There was a 400-fold separation between CD59{sup -} and CD59{sup +} populations based on fluorescence intensity. Small numbers of negative cells mixed in with positive cells were detected in a highly linear fashion. Mutation dose response curves over a dose range yielding 80% to 20% survival are shown for ethyl methane sulfonate (EMS), mitomycin C (MMC) and lead acetate. EMS and lead acetate exhibited a threshold in response while MMC had a linear dose response over the full dose range. The mutant fraction was measured over time periods ranging up to 35 days following treatment. The mutant fraction peaked at different times ranging from 6 to 12 days after treatment. An additional 14 chemical and physical agents including point mutagens, heavy metals, ionizing and UV radiation, and DNA intercalators and cross linkers, were analyzed for mutagenic potential after doses giving 80% to 20% survival. The results presented here demonstrate the sensitivity and broad-ranging capability of the FCMA to detect mutations induced by a variety of genotoxic agents.

  3. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa

    Science.gov (United States)

    McCollom, Thomas M.

    Geochemical models are used to explore the possibility that lithoautotrophic methanogenesis (the conversion of CO2 plus H2 to methane) could be a source of metabolically useful chemical energy for the production of biomass at putative European hydrothermal systems. Two cases are explored: a relatively reduced methane-rich ocean and a relatively oxidized sulfate-and bicarbonate-rich ocean. In the case of a methane-rich ocean, a source of CO2 for methanogenesis is provided by conversion of dissolved methane to CO2 during reaction of ocean water with igneous rocks at high temperatures in the subsurface. Fluid-rock reactions also provide a source of dissolved H2 in the hydrothermal fluid. When this fluid circulates back to the ocean floor and mixes with seawater, conversion of the dissolved CO2 and H2 to methane provides a potential source of chemical energy that can be used to drive metabolic processes. For the case of a sulfate- and carbonate-rich ocean, reaction with reduced igneous rocks at high temperatures will also produce hydrothermal fluids with high H2 concentrations (as occurs in hydrothermal systems on Earth). Mixing of the resulting hydrothermal fluid with seawater in a relatively oxidized ocean could supply energy from either methanogenesis or sulfate reduction. For plausible compositions of a European ocean, methanogenesis can supply similar amounts of energy to that which supports the prolific ecosystems surrounding submarine hydrothermal vents on Earth. Even in the most optimistic case, however, the total amount of biomass that could be supported globally by lithoautotrophic microbes on Europa is extremely small compared to the biomass produced photosynthetically on Earth. Nevertheless, sufficient metabolic energy could apparently be available at hydrothermal systems on Europa to support an origin of life and localized ecosystems.

  4. 密集烘烤关键温度点不同湿度控制烤烟主要化学成分的动态变化%The Dynamic Changes of Major Chemical Components of Flue-curing Tobacco Leaf in Bulk-curing of Different Wet Bulb Temperature of Key Temperatures

    Institute of Scientific and Technical Information of China (English)

    邓小华; 曾中; 谢鹏飞; 刘涛; 向世鹏; 裴晓东; 龙大彬; 毛巍然

    2013-01-01

    针对密集烘烤存在的干物质降解不充分和香气物质不足的问题,以‘K326’品种为材料,在湖南省浏阳市开展了密集烘烤关键温度点不同湿度控制烟叶化学成分动态变化研究.结果表明:(1)在密集烘烤过程中,42℃前淀粉含量迅速下降、总糖和还原糖含量及糖碱比迅速升高;42~47℃,淀粉含量缓慢下降、总糖和还原糖含量缓慢升高;在47℃后,淀粉、总糖、还原糖含量及糖碱比基本保持稳定,变化很小.(2)烟叶烟碱、总氮含量随烘烤进程略呈下降趋势,但变化较小;氮碱比变化不大.(3)在烟叶变黄期和定色期适当增加湿球温度,可使化学成分更加协调.%The experiment was conducted to solve the insufficient degradation of dry matter and inadequate aroma matter in flue-cured tobacco leaf in application of bulk-curing barn. 'K326' was used as the material in experiment, and the dynamic changes of major chemical components of flue-curing tobacco leaf in bulk-curing of different stable time of key temperatures were evaluated in Liuyang City of Hunan Province. The results indicated that: (1)in 0-42℃ during the bulk curing process, the starch decreased fast, while total sugar and reducing sugar content and ratio of total sugar with nicotine increased fast. In 42-47℃ during the bulk curing process, the starch decreased slowly, while total sugar and reducing sugar content and ratio of total sugar with nicotine increased slowly. At later stage of bulk curing process, different chemical composition in leaves had a trend to be stable. (2)The nicotine and total nitrogen content had a trend to be decreased, while changed little. The ratio of total nitrogen with nicotine changed little. (3)The chemical components would more harmonious when wet bulb temperature proper increased in yellowing period and color fixed period.

  5. Almost-standard big-bang nucleosynthesis with ΩBh20 much-gt 0.015: A reexamination of neutrino chemical potentials and ΔG

    International Nuclear Information System (INIS)

    The homogeneous standard big-bang nucleosynthesis (SBBN) yields of D, 3He, 4He, and 7Li are computed allowing independent variations of μ1, the chemical potential for electron neutrinos, and μ2, the chemical potential of μ neutrinos (or equivalently of GgR, the product of Newton's constant and the number of effective relativistic degrees of freedom at the epoch of nucleosynthesis). This follows up previous investigations of chemical-potential variations, which however considered only [7Li]/[H]congruent 10-9. It is found that even with a primordial 7Li abundance of 10-10 the hydrogen abundance ΩBh02∼0.1 is permitted as is ΩBh02∼1; however, the required chemical potential for the νe is μ1∼T. The required chemical potential for νμ and/or ντ is μ2∼(5--25)T (for ΩBh02 congruent 0.1 and 1, respectively), or equivalently (GgR)∼(few--103)(GgR)SBBN. Thus baryonic dark matter may be incorporated into the standard big-bang nucleosynthesis model albeit with dramatic requirements for lepto-genesis and/or the constancy of the gravitational coupling. It is also found that the ''lithium dip'' tracks the primordial deuterium abundance and thus may not be an independent measure of the parameters of the SBBN model

  6. Chemical characterization, the transport pathways and potential sources of PM2.5 in Shanghai: Seasonal variations

    Science.gov (United States)

    Zhao, Mengfei; Huang, Zhongsi; Qiao, Ting; Zhang, Yuankai; Xiu, Guangli; Yu, Jianzhen

    2015-05-01

    The 24-h PM2.5 samples were collected at the site of East China University of Science and Technology (ECUST) in Shanghai from 2011 to 2012, representing winter, spring, summer and autumn, respectively. And PM2.5 and its chemical components including organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), humic-like substance carbon (HULIS-C) and water-soluble ions were analyzed. The results suggested that the average PM2.5 concentrations were (70.35 ± 43.75) μg/m3, (69.76 ± 38.67) μg/m3, (51.26 ± 28.25) μg/m3 and (82.37 ± 48.70) μg/m3 in winter, spring, summer and autumn, respectively. Secondary inorganic ions (sulfate, nitrate and ammonium) were the dominant pollutants of PM2.5 in the four seasons. Total carbon (TC) was an important component explaining above 15% of PM2.5. OC/EC ratios were all above 2 ranging from 4.31 to 6.35; particularly in winter it reached the highest 6.35 which demonstrated that secondary organic carbon (SOC) should be a significant composition of PM2.5. The SOC calculated based on the OC/EC ratio method had stronger correlation with WSOC in summer and autumn (summer: R2 = 0.73 and autumn: R2 = 0.75). The HULIS-C and SOC most significantly correlated in autumn (R2 = 0.83). The data showed that PM2.5 atmospheric aerosols were more acidic in autumn and the concentrations of PM2.5 and its chemical components were much higher. Factor analysis (FA), cluster analysis of air mass back trajectories, potential source contribution function (PSCF) model and concentration weighted trajectory (CWT) model were used to investigate the transport pathways and identify potential source areas of PM2.5 in different seasons. FA identified various sources of PM2.5: secondary aerosol reactions, the aged sea salts and road dusts. The results of cluster analysis, PSCF model and CWT model demonstrated that the local sources in the Yangtze River Delta Region (YRDR) made significant contributions to PM2.5. During winter and autumn long

  7. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  8. Explosive bulk charge

    Science.gov (United States)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  9. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  10. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-01-01

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. PMID:25326558

  11. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    Science.gov (United States)

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia. PMID:27504095

  12. Experimental terrestrial soil-core microcosm test protocol. A method for measuring the potential ecological effects, fate, and transport of chemicals in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; Tolle, D.A.; Arthur, M.F.

    1985-06-01

    In order to protect the environment properly and have a realistic appraisal of how a chemical will act in the environment, tests of ecological effects and chemical fate must be performed on complex assemblages of biotic and abiotic components (i.e., microcosms) as well as single species. This protocol is one which could be added to a series of tests recently developed as guidelines for Section 4 of the Toxic Substances Control Act (P.L. 94-469; U.S.C., Section 2601-2629). The terrestrial soil-core microcosm is designed to supply site-specific and possibly regional information on the probable chemical fate and ecological effects resulting from release of a chemical substance to a terrestrial ecosystem. The EPA will use the data resulting from this test system to compare the potential hazards of a chemical with others that have been previously evaluated.

  13. Changes observed in the surfaces, bulk properties and chemical composition of vanadium and stainless steel specimens irradiated in dense gaseous deuterium by γ-quanta of threshold energy 23 MeV

    International Nuclear Information System (INIS)

    Studies have been carried out into the changes of properties and element composition of vanadium (V) and stainless steel (SS) specimens irradiated in gaseous deuterium under the pressure 2 kbar by γ-quanta of continuous spectrum with the boundary energy 23 MeV. Considerable changes are observed in the surface structure and bulk properties of the irradiated V and SS specimens, as was in the earlier authors studies, and in the element composition. The phenomenological model of nuclear reactions leading to the observed element composition of V and SS is described

  14. Physico-chemical Properties and Assessment of Edible Oil Potential of Peanuts Grown in Kurram Agency, Parachinar

    Directory of Open Access Journals (Sweden)

    Rahib Hussain

    2015-06-01

    Full Text Available This study was carried out to investigate the oil potential of peanuts for domestic and commercial uses. Peanut oil yield and the physico-chemical properties of extracted oil were investigated on different temperatures (50, 55, 60 and 65 °C and sun drying. Results showed maximum oil yield of 47.2 % at sun drying and lowest values of 37.0 % at 65 °C. Highest and lowest acid values are 25.52 and 5.89 mg/KOH/g at 60 °C and 50 °C respectively. The Free Fatty Acid (FFA content were obtained 12.76 and 2.94 mg/g at 60 °C and 50 °C, while saponification values were 61.71 and 32.25 mg/KOH/g at 60 °C and 50 °C respectively. The highest Peroxide value of 92 mg/KOH/g was recorded at 55 °C which dropped to 43.4 mg/KOH/g at 65 °C. Refractive index (RI and density were not changed significantly (p≤0.05 on all temperatures, while pH was somewhat higher on 50 °C. The moisture content was found lowest up to 3.0 % on 65 °C while highest was 5 % on 50 °C.

  15. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE. PMID:27434592

  16. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment.

    Science.gov (United States)

    Tsai, Wen-Tien; Liu, Sii-Chew; Chen, Huei-Ru; Chang, Yuan-Ming; Tsai, Yi-Lin

    2012-09-01

    Biochars have received increasing attention in recent years because of their properties pertaining to soil fertility and contaminant immobilization as well as serving as carbon sinks. In this work, a series of biochars were produced from dried swine manure waste by slow pyrolysis at different temperatures (i.e., 673-1073 K). The characterization of the resulting biochars was examined for its relevance to its potential use as soil amendment. It was found that the pore properties, ash contents and pH values of all swine-manure-derived biochars basically increased as temperature increased, while the yield and nitrogen/oxygen contents decreased with increasing temperature as a result of pyrolytic volatilization during pyrolysis. From the organic and inorganic elements analyses, the manure-derived biochar was rich in soil nutrients such as N, P, Ca, Mg, and K. Furthermore, the pore, surface and chemical properties were also consistent with the observations of the SEM-EDS, XRD and FTIR. This result suggested that the mesoporous manure-derived biochar could be used as an excellent medium to soil environment. PMID:22743180

  17. Phase structure of two-color QCD at real and imaginary chemical potentials: Lattice simulations and model analyses

    Science.gov (United States)

    Makiyama, Takahiro; Sakai, Yuji; Saito, Takuya; Ishii, Masahiro; Takahashi, Junichi; Kashiwa, Kouji; Kouno, Hiroaki; Nakamura, Atsushi; Yahiro, Masanobu

    2016-01-01

    We investigate the phase structure of two-color QCD at both real and imaginary chemical potentials (μ ), performing lattice simulations and analyzing the data with the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. Lattice QCD simulations are done on an 83×4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group-improved Iwasaki gauge action. We test the analytic continuation of physical quantities from imaginary μ to real μ by comparing lattice QCD results calculated at real μ with the results of an analytic function, the coefficients of which are determined from lattice QCD results at imaginary μ . We also test the validity of the PNJL model by comparing model results with lattice QCD ones. The PNJL model is good in the deconfinement region, but less accurate in the transition and confinement regions. This problem is cured by introducing the baryon degree of freedom to the model. It is also found that the vector-type four-quark interaction is necessary to explain lattice data on the quark number density.

  18. Phase structure of two-color QCD at real and imaginary chemical potentials; lattice simulations and model analyses

    CERN Document Server

    Makiyama, Takahiro; Saito, Takuya; Ishii, Masahiro; Takahashi, Junichi; Kashiwa, Kouji; Kouno, Hiroaki; Nakamura, Atsushi; Yahiro, Masanobu

    2015-01-01

    We investigate the phase structure of two-color QCD at both real and imaginary chemical potentials mu, performing lattice simulations and analyzing the data with the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model. Lattice QCD simulations are done on an 8^3 times 4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. We test the analytic continuation of physical quantities from imaginary mu to real mu by comparing lattice QCD results calculated at real mu with the result of analytic function the coefficients of which are determined from lattice QCD results at imaginary mu. We also test the validity of the PNJL model by comparing model results with lattice QCD ones. The PNJL model is good in the deconfinement region, but less accurate in the transition and confinement regions. This problem is improved by introducing the baryon degree of freedom to the model. It is also found that the vector-type four-quark interaction is necessar...

  19. The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling.

    Science.gov (United States)

    Gnavi, Giorgio; Palma Esposito, Fortunato; Festa, Carmen; Poli, Anna; Tedesco, Pietro; Fani, Renato; Monti, Maria Chiara; de Pascale, Donatella; D'Auria, Maria Valeria; Varese, Giovanna Cristina

    2016-01-01

    Marine fungi represent an important but still largely unexplored source of novel and potentially bioactive secondary metabolites. The antimicrobial activity of nine sterile mycelia isolated from the green alga Flabellia petiolata collected from the Mediterranean Sea was tested on four antibiotic-resistant bacterial strains using extracellular and intracellular extracts obtained from each fungal strain. The isolated fungi were identified at the molecular level and assigned to one of the Dothideomycetes, Sordariomycetes or Eurotiomycetes classes. Following assessment of inhibition of bacterial growth (IC50), all crude extracts were subjected to preliminary (1)H NMR and TLC analysis. According to preliminary pharmacologic and spectroscopic/chromatographic results, extracts of fungal strains MUT 4865, classified as Beauveria bassiana, and MUT 4861, classified as Microascacea sp.2, were selected for LC-HRMS analysis. Chemical profiling of antibacterial extracts from MUT 4861 and MUT 4865 by LC HRMS allowed identification of the main components of the crude extracts. Several sphingosine bases were identified, including a compound previously unreported from natural sources, which gave a rationale to the broad spectrum of antibacterial activity exhibited. PMID:27154031

  20. Assessment of the chemical composition and in vitro antimicrobial potential of extracts of the liverwort Scapania aspera.

    Science.gov (United States)

    Bukvicki, Danka R; Tyagi, Amit K; Gottardi, Davide G; Veljic, Milan M; Jankovic, Snezana M; Guerzoni, Maria E; Marin, Petar D

    2013-09-01

    The chemical composition of Scapania aspera extracts was determined by solid phase micro extraction gas chromatography-mass spectrometry (SPME GC-MS) and 96 constituents were identified. The dominant compounds in the methanol extract were beta-barbatene (25.1%), o-cymene (14.0%), alpha-barbatene (5.7%), allo-aromadendrene (4.9%) and beta-bourbonene, while in the ethanol extract, o-cymene (17.8%), beta-barbatene (17.6%), alpha-thujene (6.7%), octen-1-ol acetate (4.9%) and beta-bazzanene (2.4%) were the major components. In the ethyl acetate extract, beta-barbatene (14.3%), undecane (11.8%), 2-methyldecane (11.2%), decane (10.9%) and o-cymene (3.6%) were major components. The antimicrobial activity of the different extracts was evaluated against pathogenic and food spoilage microorganisms using disc diffusion and micro-broth dilution methods. The minimal inhibitory concentration (MIC) of extracts of S. aspera varied from 0.4 to 1.5 mg/mL and 1 to 3 mg/mL for yeast and bacterial strains, respectively. The zone of inhibition of the methanol extract for yeast strains was higher than that for bacterial strains. The results suggest that S. aspera extracts have potential as natural antimicrobial agents. PMID:24273874

  1. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement.

    Science.gov (United States)

    Liu, Jia Nv; Zhou, Qi Xing; Wang, Song; Sun, Ting

    2009-02-01

    The role of ornamental plants has drawn much attention as the urban pollution levels exacerbate. Althaea rosea Cav. had showed its strong tolerance and accumulation ability of Cd in our previous work, thus, the effects of ethylenediamine triacetic acid (EDTA), ethylenegluatarotriacetic acid (EGTA) and sodium dodecyl sulfate (SDS) on its Cd phytoremediation capacity were further investigated in this work. It reconfirmed that the species had strong tolerance and accumulation ability of Cd. Particularly, the species can be regarded as a potential Cd-hyperaccumulator through applying chemical agents. However, different chelators and surfactants had great differences in affecting hyperaccumulating characteristics of the species. EGTA and SDS could not only increase the dry biomass of the plants, but also promote Cd accumulation in shoots and roots. On the contrary, EDTA was toxic to the species by restraining the growth of plants, although it could promote Cd accumulation in shoots and roots of the plants to a certain extent. Thus, EGTA and SDS were effective in enhancing phytoremediation with Althaea rosea Cav. for Cd contaminated soils, while EDTA is ineffective in this regard. PMID:18259884

  2. Physico-chemical properties and assessment of adible oil potential of peanuts grown in kurram agency, parachinar

    International Nuclear Information System (INIS)

    This study was carried out to investigate the oil potential of peanuts for domestic and commercial uses. Peanut oil yield and the physico-chemical properties of extracted oil were investigated on different temperatures (50, 55, 60 and 65 degree C) and sun drying. Results showed maximum oil yield of 47.2 % at sun drying and lowest values of 37.0 % at 65 degree C. Highest and lowest acid values are 25.52 and 5.89 mg/KOH/g at 60 degree C and 50 degree C respectively. The Free Fatty Acid (FFA) content were obtained 12.76 and 2.94 mg/g at 60 degree C and 50 degree C, while saponification values were 61.71 and 32.25 mg/KOH/g at 60 degree C and 50 degree C respectively. The highest Peroxide value of 92 mg/KOH/g was recorded at 55 degree C which dropped to 43.4 mg/KOH/g at 65 degree C. Refractive index (RI) and density were not changed significantly (p<=0.05) on all temperatures, while pH was somewhat higher on 50 degree C. The moisture content was found lowest up to 3.0 % on 65 degree C while highest was 5 % on 50 degree C. (author)

  3. An In Silico Approach for Identification of Potential Anti-Mycobacterial Targets of Vasicine and Related Chemical Compounds.

    Science.gov (United States)

    Chaliha, Amrita Kashyap; Gogoi, Dhrubajyoti; Chetia, Pankaj; Sarma, Diganta; Buragohain, Alak Kumar

    2016-01-01

    Tuberculosis (TB) is known to mankind as one of the most pervasive and persistent of diseases since the early days of civilization. The growing resistance of the causative pathogen Mycobacterium tuberculosis to the standard drug regimen for TB poses further difficulty in its treatment and control. Screening of novel plant-derived compounds with promising anti-tubercular activity has been cited as a prospective route for new anti-tubercular drug discovery and design. Justicia adhatoda L. is a perennial evergreen shrub which is widely mentioned in scientific literature on account of its potent anti-mycobacterial properties. In the present study, we have employed a series of computational methodologies to reveal the probable molecular interactions of vasicine, the principal alkaloid of Justicia adhatoda L., and two of its close natural derivatives- vasicinone and deoxyvasicine, with certain biological targets in M. tuberculosis. Targets were identified from literature and through a reverse Pharmacophore-based approach. Subsequent comparative molecular docking to identify the best ligand-target interactions revealed Antigen 85C of M. tuberculosis as the most potent biological target of vasicine on the basis of optimum molecular docking values. A chemogenomics approach was also employed to validate the molecular interactions between the same class of chemical compounds as vasicine and Antigen 85C. Further, a library of structural analogs of vasicine was created by bioiosterism-based drug design to identify structural analogs with better inhibitory potential against Antigen 85C. PMID:26632438

  4. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions

    Directory of Open Access Journals (Sweden)

    Daljit Singh Arora

    2010-10-01

    Full Text Available The objective of this work was to screen fungi isolated from soil of different areas of Punjab, India for antioxidant activity by dot blot assay and around 45% of fungal isolates demonstrated antioxidant potential. Two selected strains of Aspergillus spp (Aspergillus PR78 and Aspergillus PR66 showing quantitatively best antioxidant activity by DPPH assay were further tested for their reducing power, ferrous ion and nitric oxide ion scavenging activity, FRAP assay and total phenolic content. Different physio-chemical parameters were optimized for enhancement of the activity. This revealed stationary culture grown for 10 days at 25ºC at pH 7 to be the best for antioxidant activity. Sucrose in the medium as carbon source resulted in highest antioxidant activity. Sodium nitrate, yeast extract, and peptone were good sources of nitrogen but sodium nitrate was the best among these. The extraction of the broth culture filtrates with different solvents revealed ethyl acetate extract to possess the best antioxidant activity. The activity as expressed by ethyl acetate extract of Aspergillus PR78 was equally effective as that of commonly used antioxidant standard, ascorbic acid.

  5. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  6. Chemical contaminants in water and sediment near fish nesting sites in the Potomac River basin: determining potential exposures to smallmouth bass (Micropterus dolomieu)

    Science.gov (United States)

    Kolpin, Dana W.; Blazer, Vicki; Gray, James L.; Focazio, Michael J.; Young, John A.; Alvarez, David A.; Iwanowicz, Luke R.; Foreman, William T.; Furlong, Edward T.; Speiran, Gary K.; Zaugg, Steven D.; Hubbard, Laura E.; Meyer, Michael T.; Sandstrom, Mark W.; Barber, Larry B.

    2013-01-01

    The Potomac River basin is an area where a high prevalence of abnormalities such as testicular oocytes (TO), skin lesions, and mortality has been observed in smallmouth bass (SMB, Micropterus dolomieu). Previous research documented a variety of chemicals in regional streams, implicating chemical exposure as one plausible explanation for these biological effects. Six stream sites in the Potomac basin (and one out-of-basin reference site) were sampled to provide an assessment of chemicals in these streams. Potential early life-stage exposure to chemicals detected was assessed by collecting samples in and around SMB nesting areas. Target chemicals included those known to be associated with important agricultural and municipal wastewater sources in the Potomac basin. The prevalence and severity of TO in SMB were also measured to determine potential relations between chemistry and biological effects. A total of 39 chemicals were detected at least once in the discrete-water samples, with atrazine, caffeine, deethylatrazine, simazine, and iso-chlorotetracycline being most frequently detected. Of the most frequently detected chemicals, only caffeine was detected in water from the reference site. No biogenic hormones/sterols were detected in the discrete-water samples. In contrast, 100 chemicals (including six biogenic hormones/sterols) were found in a least one passive-water sample, with 25 being detected at all such samples. In addition, 46 chemicals (including seven biogenic hormones/sterols) were found in the bed-sediment samples, with caffeine, cholesterol, indole, para-cresol, and sitosterol detected in all such samples. The number of herbicides detected in discrete-water samples per site had a significant positive relation to TOrank (a nonparametric indicator of TO), with significant positive relations between TOrank and atrazine concentrations in discrete-water samples and to total hormone/sterol concentration in bed-sediment samples. Such significant correlations

  7. Vanishing linear term in chemical potential difference in volume term of work of critical nucleus formation for phase transition without volume change

    CERN Document Server

    Mori, Atsushi

    2013-01-01

    A question is given on the form n({\\mu}_{\\beta}-{\\mu}_{\\alpha}) for the volume term of work of formation of critical nucleus. Here, n is the number of molecule undergone the phase transition, {\\mu} denotes the chemical potential, {\\alpha} and {\\beta} represent the parent and nucleating phases, respectively. In this paper we concentrate phase transition without volume change. We have calculated the volume term in terms of the chemical potential difference {\\mu}_{re}-{\\mu}_{eq}$ for this case. Here, {\\mu}_{re} is the chemical potential of the reservoir and {\\mu}_{eq} that at the phase transition. We have W_{vol} = -[({\\kappa}_{\\beta}-{\\kappa}_{\\alpha})/(2v_{eq}^2)] ({\\mu}_{re}-{\\mu}_{eq})^2 V_{\\beta} with {\\kappa} denoting the isothermal compressibility, v_{eq} being the molecular volume at the phase transition, V_{\\beta} the volume of the nucleus.

  8. Explanation of a strange bulk-edge equality

    Directory of Open Access Journals (Sweden)

    Vishwanath Ashvin

    2012-03-01

    Full Text Available In the infrared limit the N-particle ground-state wavefunctions of the bulk happen to be exactly equal to the N-point space-time correlation functions for certain topological superconductors. We explain this [1], beginning with the p+ip state in D=2+1. We write Z(J, the generating function for wavefunctions, as a path Euclidean integral. Varying the chemical potential as a function of Euclidean time between weak and strong pairing states is shown to extract the wavefunction. Upon a Euclidean rotation that exchanges time and space, approximate Lorentz invariance converts the system to one with a spatial edge and Z(J to the generator of spacetime correlation functions for the edge fields. We also provide a D=3+1 example, superfluid 3He- B, and a pwave superfluid in D=1+1. Our method works only when particle number is not conserved, as in superconductors.

  9. Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

    2007-10-01

    This report evaluates lignin’s role as a renewable raw material resource. Opportunities that arise from utilizing lignin fit into one of three categories: 1)power, fuel and syngas (generally near-term opportunities) 2) macromolecules (generally medium-term opportunities) 3) aromatics and miscellaneous monomers (long-term opportunities). Biorefineries will receive and process massive amounts of lignin. For this reason, how lignin can be best used to support the economic health of the biorefinery must be defined. An approach that only considers process heat would be shortsighted. Higher value products present economic opportunities and the potential to significantly increase the amount of liquid transportation fuel available from biomass. In this analysis a list of potential uses of lignin was compiled and sorted into “product types” which are broad classifications (listed above as power—fuel—syngas; macromolecules; and aromatics). In the first “product type” (power—fuel—gasification) lignin is used purely as a carbon source and aggressive means are employed to break down its polymeric structure. In the second “product type” (macromolecules) the opposite extreme is considered and advantage of the macromolecular structure imparted by nature is retained in high-molecular weight applications. The third “product type” (aromatics) lies somewhere between the two extremes and employs technologies that would break up lignin’s macromolecular structure but maintain the aromatic nature of the building block molecules. The individual opportunities were evaluated based on their technical difficulty, market, market risk, building block utility, and whether a pure material or a mixture would be produced. Unlike the “Sugars Top 10” report it was difficult to identify the ten best opportunities, however, the potential opportunities fell nicely into near-, medium- and long-term opportunities. Furthermore, the near-, medium- and long-term opportunities

  10. Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer

    Science.gov (United States)

    Chen, Kaifeng; Santhanam, Parthiban; Sandhu, Sunil; Zhu, Linxiao; Fan, Shanhui

    2015-04-01

    We consider near-field heat transfer with nonzero chemical potential for photons, as can occur between two semiconductor bodies, held at different temperatures with at least one of the bodies under external bias. We show that the dependence of radiative heat flux on chemical potential enables electronic control of both the direction and magnitude of near-field heat transfer between the two bodies. Moreover such a configuration can operate as a solid-state cooling device whose efficiency can approach the Carnot limit in the ideal case. Significant cooling can also be achieved in the presence of inherent nonidealities including Auger recombination and parasitic phonon-polariton heat transfer.

  11. Crevice chemistry estimation from bulk water chemistry

    International Nuclear Information System (INIS)

    Since the first PWR plant in Japan started commercial operation in 1970, 22 plants are running in Japan as of the end of 1994. The main purpose of secondary water chemistry control is to minimize the corrosion possibility of the secondary system equipment, especially steam generators (SG). To achieve this objective, much effort has been concentrated on improving secondary water chemistry control. As a result of this effort, the recent secondary water chemistry in Japanese plants is well maintained in every stage of operation. However, to ensure and improve the reliability of SG, it is necessary to control crevice environments, which are located at tube/tube support plate intersections and under the sludge pile on the tube sheet. According to recent crevice monitoring examination results, the concentration behavior impurities in SG bulk water at the crevice is different for each species, and SG bulk water and crevice chemical compositions are not always equal. From these results, to control the crevice chemistry, improving bulk water chemistry control methods and a new type of molar ratio control index is needed. This paper introduces a brief summary of a recent crevice chemistry evaluation technique and bulk water chemistry control method, which is employed for crevice chemistry control, based on crevice monitoring examination results

  12. Inflation from bulk viscosity

    CERN Document Server

    Bamba, Kazuharu

    2015-01-01

    We explore the perfect fluid description of the inflationary universe. In particular, we investigate a fluid model with the bulk-viscosity term. We find that the three observables of inflationary cosmology: the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be consistent with the recent Planck results. We also reconstruct the explicit equation of state (EoS) of the viscous fluid from the spectral index of the curvature perturbations compatible with the Planck analysis. In the reconstructed models of the viscous fluid, the tensor-to-scalar ratio of the density perturbations can satisfy the constraints obtained from the Planck satellite. The running of the spectral index can explain the Planck data. In addition, it is demonstrated that in the reconstructed models of the viscous fluid, the graceful exit from inflation can be realized. Furthermore, we show that the singular inflation can occur in the viscous fluid ...

  13. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and...... three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low...

  14. Bulk and surface sensitivities of surface plasmon waveguides

    International Nuclear Information System (INIS)

    The potential of surface plasmon waveguides for bulk and surface (bio)chemical sensing was assessed theoretically, anticipating their use in an integrated optics sensor such as a Mach-Zehnder interferometer (MZI). The performance of a generic MZI implemented with attenuating waveguides was assessed initially, revealing that attenuating waveguides constrain the sensing length to an optimal length equal to the propagation length of the mode used. The MZI sensitivities for bulk and surface sensing were found to be proportional to the ratio of the waveguide sensitivity to its normalized attenuation: H=(∂neff/∂nc)/keff for bulk sensing and G=(∂neff/∂a)/keff for surface sensing. Maximizing H or G maximizes the corresponding MZI sensitivity and minimizes its detection limit, leading to preferred waveguide designs and operating wavelengths. The propagation constant, the sensitivities, and the H and G parameters were then determined for the surface plasmon in the single interface, the sb mode in the metal-insulator-metal (MIM) waveguide and the sb mode in three variants of the insulator-metal-insulator (IMI) waveguide, as a function of dimensions, for wavelengths spanning 600≤λ0≤1600 nm, assuming Au and H2O as the materials and adlayers representative of biochemical matter. The principal findings are: (i) the surface sensitivity in the thin MIM can be 100x larger than in the single interface, whereas that in the thin IMI is up to 5x smaller; (ii) the bulk sensitivity in the thin MIM can be 3x larger than in the single interface, whereas that in the IMI is slightly smaller; (iii) G in the thin MIM can be 3x larger than in the single interface, whereas G in the IMI is about 10x larger; and (iv) H in the thin MIM can be 10x smaller than in the single interface, whereas H in the thin IMI is about 10x larger. The IMI and the MIM both offer an improvement in sensitivity and detection limit for surface sensing over the single interface in an integrated MZI (or

  15. Experimental and Quantum chemical studies on the inhibition potential of some Quinoxaline derivatives for mild steel in acid media

    Directory of Open Access Journals (Sweden)

    Saranya.J

    2014-12-01

    Full Text Available The inhibition potential of four Quinoxaline derivatives namely 1,4-dihydroquinoxaline-2,3-dione, (3E-3-hydrazinylidene-3,4-dihydroquinoxalin-2(1H-one, 1-[(2E-3-oxo-3,4-dihydroquinoxalin-2(1H-ylidene]urea and 1-[(2E-3-oxo-3,4-dihydroquinoxalin-2(1H-ylidene]thiourea have been investigated against mild steel in 1M H2SO4 solution using conventional weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization and atomic absorption spectroscopy. The percentage inhibition efficiency was found to increase with increase in the inhibitor concentration due to the adsorption of the inhibitor molecules on the metal surface. In addition, it was established that the adsorption follows Langmuir adsorption isotherm. Moreover, some thermodynamic data were calculated and discussed. The density functional theory at the B3LYP/6-311G (d,p basis set level was performed for two inhibitors namely 1,4-dihydroquinoxaline-2,3-dione and (3E-3-hydrazinylidene-3,4-dihydroquinoxalin-2(1H-one. The quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO, lowest unoccupied molecular orbital energy (ELUMO, energy gap (∆E, dipole moment (µ, softness (σ, hardness (η, electronegativity (χ, Mulliken atomic charges, the fraction of electrons transferred from the inhibitor to the metal surface (∆N and the total energy (TE have been calculated for these compounds. It was found that theoretical data support the experimental results.

  16. Chemical characterization and genotoxic potential related to boiling point for fractionally distilled SRC-I coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Pelroy, R.A.; Mahlum, D.D.

    1982-07-01

    This report summarizes selected research efforts oriented toward ameliorating the genotoxic potential of direct coal liquefaction materials through modification or optimization of process conditions. The studies described were conducted to evaluate the utility of optimized distillation for coal liquids from the SRC-I process. SRC-I process solvent was distilled into 50/sup 0/F-range boiling point (bp) cuts. Analysis of amino-PAH (APAH) showed that mutagenic APAHs containing 3 or more rings were found primarily in fractions boiling above 750/sup 0/F. Three microbial tester strains were used to screen for genetically active agents in the SRC-I distillate bp cuts. Reverse mutation with the Ames tester strain TA98 demonstrated that mutagens were concentrated in the bp cuts boiling above 700/sup 0/F. For this tester strain most of the genetic activity in these distillates was attributable to chemical fractions enriched in APAH having 3 or more rings. Mutagenicity data obtained with TA98 was in good agreement with sk in carcinogenesis results from the mouse-skin initiation/promotion (in vivo) test system. The strongest response in the forward mutation assay did not occur in the most carcinogenically active fractions. Results of initiation/promotion experiments used to measure the relative potency of bp cuts as initiators of mouse skin carcinogenesis again showed that fractions boiling above 750/sup 0/F. Compounds reaching their highest concentrations in the highest boiling and most carcinogenically active cut included known carcinogens such as benzo(a)pyrene and dimethyl benzanthracene. Thus, all biomedical test results indicate that consideration should be given to conducting distillation so as to minimize, in the distillate product, the concentrations of those biologically active compounds found in cuts boiling above 700/sup 0/C.

  17. Evaluation of a chemical proxy for fire intensity: A potential tool for studying fire-climate feedbacks

    Science.gov (United States)

    Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.

    2015-12-01

    The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.

  18. Enhancing the Benefit of the Chemical Mixture Methodology: A Report on Methodology Testing and Potential Approaches for Improving Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Ying; Yao, Juan; He, Hua; Glantz, Clifford S.; Booth, Alexander E.

    2012-01-01

    Extensive testing shows that the current version of the Chemical Mixture Methodology (CMM) is meeting its intended mission to provide conservative estimates of the health effects from exposure to airborne chemical mixtures. However, the current version of the CMM could benefit from several enhancements that are designed to improve its application of Health Code Numbers (HCNs) and employ weighting factors to reduce over conservatism.

  19. Macroscopic and direct light propulsion of bulk graphene material

    CERN Document Server

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  20. APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FRYE JM; KUNKEL JM

    2009-03-05

    Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.