WorldWideScience

Sample records for bulk chemical potentials

  1. Chemical potential in active systems: predicting phase equilibrium from bulk equations of state?

    Science.gov (United States)

    Paliwal, Siddharth; Rodenburg, Jeroen; van Roij, René; Dijkstra, Marjolein

    2018-01-01

    We derive a microscopic expression for a quantity μ that plays the role of chemical potential of active Brownian particles (ABPs) in a steady state in the absence of vortices. We show that μ consists of (i) an intrinsic chemical potential similar to passive systems, which depends on density and self-propulsion speed, but not on the external potential, (ii) the external potential, and (iii) a newly derived one-body swim potential due to the activity of the particles. Our simulations on ABPs show good agreement with our Fokker–Planck calculations, and confirm that μ (z) is spatially constant for several inhomogeneous active fluids in their steady states in a planar geometry. Finally, we show that phase coexistence of ABPs with a planar interface satisfies not only mechanical but also diffusive equilibrium. The coexistence can be well-described by equating the bulk chemical potential and bulk pressure obtained from bulk simulations for systems with low activity but requires explicit evaluation of the interfacial contributions at high activity.

  2. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  3. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified

  4. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-05-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  5. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  6. Essays on Port, Container, and Bulk Chemical Logistics Optimization

    NARCIS (Netherlands)

    E. van Asperen (Eelco)

    2009-01-01

    textabstractThe essays in this thesis are concerned with two main themes in port logistics. The first theme is the coordination of transport arrivals with the distribution processes and the use of storage facilities. We study this for both containerized and bulk chemical transport. The second theme

  7. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals.

    Science.gov (United States)

    Angelici, Carlo; Weckhuysen, Bert M; Bruijnincx, Pieter C A

    2013-09-01

    The development of new and improved processes for the synthesis of bio-based chemicals is one of the scientific challenges of our time. These new discoveries are not only important from an environmental point of view, but also represent an important economic opportunity, provided that the developed processes are selective and efficient. Bioethanol is currently produced from renewable resources in large amounts and, in addition to its use as biofuel, holds considerable promise as a building block for the chemical industry. Indeed, further improvements in production, both in terms of efficiency and feedstock selection, will guarantee availability at competitive prices. The conversion of bioethanol into commodity chemicals, in particular direct 'drop-in' replacements is, therefore, becoming increasingly attractive, provided that the appropriate (catalytic) technology is in place. The production of green and renewable 1,3-butadiene is a clear example of this approach. The Lebedev process for the one-step catalytic conversion of ethanol to butadiene has been known since the 1930s and has been applied on an industrial scale to produce synthetic rubber. Later, the availability of low-cost oil made it more convenient to obtain butadiene from petrochemical sources. The desire to produce bulk chemicals in a sustainable way and the availability of low-cost bioethanol in large volumes has, however, resulted in a renaissance of this old butadiene production process. This paper reviews the catalytic aspects associated with the synthesis of butadiene via the Lebedev process, as well as the production of other, mechanistically related bulk chemicals that can be obtained from (bio)ethanol. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Survey of transportation of liquid bulk chemicals in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Posti, A.; Hakkinen, J.

    2012-07-01

    This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals

  9. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.

    Science.gov (United States)

    de Vries, Johannes G

    2016-12-01

    Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates. 5-Hydroxymethylfurfural (HMF) can be prepared in good yield from fructose. Two hydrogenation steps convert HMF into 1,6-hexanediol. Oppenauer oxidation converts this product into caprolactone, which in the past, has been converted into caprolactam in a large-scale industrial process by reaction with ammonia. An even more interesting platform chemical is levulinic acid (LA), which can be obtained directly from lignocellulose in good yield by treatment with dilute sulfuric acid at 200°C. Hydrogenation converts LA into gamma-valerolactone, which is ring-opened and esterified in a gas-phase process to a mixture of isomeric methyl pentenoates in excellent selectivity. In a remarkable selective palladium-catalysed isomerising methoxycarbonylation, this mixture is converted in to dimethyl adipate, which is finally hydrolysed to adipic acid. Overall selectivities of both processes are extremely high. The conversion of lignin into chemicals is a much more complicated task in view of the complex nature of lignin. It was discovered that breakage of the most prevalent β-O-4 bond in lignin occurs not only via the well-documented C3 pathway, but also via a C2 pathway, leading to the formation of highly reactive phenylacetaldehydes. These compounds went largely unnoticed as they immediately recondense on lignin. We have now found that it is possible to prevent this by converting these aldehydes in a tandem reaction, as they are formed. For this purpose, we have used

  10. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    Science.gov (United States)

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  11. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change

    NARCIS (Netherlands)

    Hermann, B.G.|info:eu-repo/dai/nl/304837415; Blok, K.|info:eu-repo/dai/nl/07170275X; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2007-01-01

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and

  12. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  13. Microalgae for the production of bulk chemicals and biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M.

    2010-01-01

    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the

  14. Effects of soil management systems on soil microbial activity, bulk density and chemical properties

    Directory of Open Access Journals (Sweden)

    Valpassos Maria Alexandra Reis

    2001-01-01

    Full Text Available The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol. Soil samples were collected from plots under the following management conditions: a natural dense "cerrado" vegetation (savanna; b degraded Brachiaria decumbens pasture, 20 years old; c no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation, 8 years old; d conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.

  15. Mantle Metasomatism in Mars: Evidence from Bulk Chemical Compositions of Martian Basalts

    Science.gov (United States)

    Treiman, A. H.

    2003-01-01

    Bulk compositions of martian meteorite basalts suggest that they formed from a highly depleted mantle that was variably metasomatised and enriched in incompatible elements. These results are consistent with radio-isotope results. Bulk chemical compositions of basaltic rocks retain clues and tracers to their origins and histories. Interpretations of bulk compositions are not so straight-forward as once envisioned, because real-world magmatic processes can be far from theoretical simple models like one-stage partial melting or closed-system fractional crystallization. Yet, bulk chemistry can shed a broad (if dim) light on Martian basalt petrogenesis that complements the sharply focussed illumination of radio-isotope systematics.

  16. Sustainable Production of Bulk Chemicals by Application of “White Biotechnology”

    NARCIS (Netherlands)

    Patel, M.K.; Dornburg, V.; Hermann, B.G.; Shen, L.; Overbeek, van L.S.

    2008-01-01

    Abstract Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of

  17. Tuning chemical potential in the dirac cone by compositional engineering

    Science.gov (United States)

    Gopal, R. K.; Singh, Sourabh; Sarkar, Jit; Mitra, Chiranjib

    2017-10-01

    To realize fully topological transport for any device applications it is essential to tune the chemical potential in the bulk gap of the Dirac cone. Bi2Se3 (BS) and Bi2Te3 (BT) thin films do not show in general topological transport as the chemical potential doesn't lie entirely in the bulk gap. We report the successful formation of bulk insulating ternary topological insulators Bi2Se2Te (BST) by double target pulsed laser deposition technique. The films were deposited with sequential ablation of separate BS and BT targets. From the X-ray diffraction analysis and temperature dependent resistivity, we were able to conclude that the as-grown thin films have ordered chalcogen layers and the chemical potential in these thin films lie in the bulk gap. We have been able to achieve this fully topological transport in our sample grown by this technique. Our Magnetotransport data exhibits pronounced two-dimensional weak-antilocalization behavior (WAL) at low temperatures. It was possible to tune the chemical potential at will in the gap by depositing thin films through pulsed laser deposition technique using this simple and cost effective double target approach to grow quaternary TI thin films.

  18. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  19. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  20. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology

    NARCIS (Netherlands)

    Hermann, B.G.; Patel, M.K.

    2007-01-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based

  1. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  2. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  3. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  4. Grounded or submerged bulk carrier: the potential for leaching of coal trace elements to seawater.

    Science.gov (United States)

    Lucas, Steven Andrew; Planner, John

    2012-05-01

    This study investigates the potential for leaching of coal trace elements to seawater from a grounded bulk carrier. The coal type and ecological scenario was based on the grounding of the "Shen Neng" (April 2010) at Douglas Shoal located within the Great Barrier Reef (Queensland, Australia). The area is of high ecological value and the Queensland Water Quality Guidelines (2009) provided threshold limits to interpret potential impacts. Coal contains many trace elements that are of major and moderate concern to human health and the environment although many of these concerns are only realised when coal is combusted. However, "unburnt" coal contains trace elements that may be leached to natural waterways and few studies have investigated the potential ecological impact of such an occurrence. For example, coal maritime transport has increased by almost 35% over the last five reported years (Jaffrennou et al., 2007) and as a result there is an increased inherent risk of bulk carrier accidents. Upon grounding or becoming submerged, coal within a bulk carrier may become saturated with seawater and potentially leach trace elements to the environment and impact on water quality and ecological resilience. The worst case scenario is the breakup of a bulk carrier and dispersal of cargo to the seafloor. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Etchant wettability in bulk micromachining of Si by metal-assisted chemical etching

    Science.gov (United States)

    Yoon, Sung-Soo; Lee, Yeong Bahl; Khang, Dahl-Young

    2016-05-01

    Wet bulk micromachining of Si by metal-assisted chemical etching (MaCE) has successfully been demonstrated. Based on the mechanism of defective etching results from Ag and Au metal catalyst experiments, the wettability of etchant solution, in addition to metal type, has been found to have profound effect on the etching process. Addition of low surface tension co-solvent, ethanol in this work, into conventional etchant formulation has enabled complete wetting of etchant on surface, which prevents hydrogen bubble attachment on sample surface during the etching. The complete elimination of bubble attachment guarantees very uniform etch rate on all over the sample surface, and thus prevents premature fragmentation/rupture of catalyst metal layer. Under the optimized etching conditions, the MaCE could be done for up to 12 h without any noticeable film rupture and thus etching defects. Thanks to very smooth surface of the etched patterns, conformal contact and direct bonding of elastomer on such surface has been easily accomplished. The method demonstrated here can pave the way for application of simple, low-cost MaCE process in the bulk micromachining of Si for various applications.

  6. Potential of a spectroscopic measurement method using adding-doubling to retrieve the bulk optical properties of dense microalgal media.

    Science.gov (United States)

    Bellini, Sarah; Bendoula, Ryad; Latrille, Eric; Roger, Jean-Michel

    2014-01-01

    In the context of algal mass cultivation, current techniques used for the characterization of algal cells require time-consuming sample preparation and a large amount of costly, standard instrumentation. As the physical and chemical properties of the algal cells strongly affect their optical properties, the optical characterization is seen as a promising method to provide an early diagnosis in the context of mass cultivation monitoring. This article explores the potential of a spectroscopic measurement method coupled with the inversion of the radiative transfer theory for the retrieval of the bulk optical properties of dense algal samples. Total transmittance and total reflectance measurements were performed over the 380-1020 nm range on dense algal samples with a double integrating sphere setup. The bulk absorption and scattering coefficients were thus extracted over the 380-1020 nm range by inverting the radiative transfer theory using inverse-adding-doubling computations. The experimental results are presented and discussed; the configuration of the optical setup remains a critical point. The absorption coefficients obtained for the four samples of this study appear not to be more informative about pigment composition than would be classical methods in analytical spectroscopy; however, there is a real added value in measuring the reduced scattering coefficient, as it appears to be strongly correlated to the size distribution of the algal cells.

  7. Bulk chemical analyses of petrographic thin sections of rocks of the Samli area, western Turkey

    Science.gov (United States)

    Lindsay, James R.; Leo, Gerhard W.

    1976-01-01

    Petrographic thin sections have been analyzed for their major-element composition using a fusion-dilution technique and measuring the intensity of X-rays by means of the electron microprobe. The balsam-mounted thin sections were removed from the glass slides by soaking them in methylene chloride. The freed sections were mixed with twice their weight of Li2B4O7, and fused at 1100° C. A fragment of the resulting glasslike bead was mounted for probe analysis. Both wavelength and energy-dispersive detector systems were used for quantitative determinations of elements sodium through iron. Because the samples and standards are diluted and fused, powdered rock standards may be used as reference materials. The calibration curves obtained by plotting X-ray intensity versus concentration of the analyte are linear over the concentration ranges used in this work and have an overall range of error of 2 to 8 percent. Although some of the analytical values show excessive scatter for petrographically similar rocks, in general the analyses are acceptable given the sample size and analytical uncertainties. Bulk chemical analyses were made of 18 thin sections, including altered diabase, amphibolite, and calc-silicate hornfels produced by progressive contact metamorphism and associated with metasomatic magnetite deposits in the Samli area, western Turkey. Normative plots indicate that (1) diabase and amphibolite are compositionally related and are similar to average compositions of basalts and orthoamphibolites, and (2) calc-silicate hornfels appears to have been derived in part from amphibolite and in part from crystalline limestone that underlies much of the region.

  8. Constant chemical potential approach for quantum chemical calculations in electrocatalysis

    Directory of Open Access Journals (Sweden)

    Wolfgang B. Schneider

    2014-05-01

    Full Text Available In order to simulate electrochemical reactions in the framework of quantum chemical methods, density functional theory, methods can be devised that explicitly include the electrochemical potential. In this work we discuss a Grand Canonical approach in the framework of density functional theory in which fractional numbers of electrons are used to represent an open system in contact with an electrode at a given electrochemical potential. The computational shortcomings and the additional effort in such calculations are discussed. An ansatz for a SCF procedure is presented, which can be applied routinely and only marginally increases the computational effort of standard constant electron number approaches. In combination with the common implicit solvent models this scheme can become a powerful tool, especially for the investigation of omnipresent non-faradaic effects in electrochemistry.

  9. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential

    CERN Document Server

    Werth, Stephan; Horsch, Martin; Hasse, Hans

    2016-01-01

    The vapor-liquid equilibrium (VLE) of the Mie potential, where the dispersive exponent is constant (m = 6) while the repulsive exponent n is varied between 9 and 48, is systematically investigated by molecular simulation. For systems with planar vapor-liquid interfaces, long-range correction expressions are derived, so that interfacial and bulk properties can be computed accurately. The present simulation results are found to be consistent with the available body of literature on the Mie fluid which is substantially extended. On the basis of correlations for the considered thermodynamic properties, a multicriteria optimization becomes viable. Thereby, users can adjust the three parameters of the Mie potential to the properties of real fluids, weighting different thermodynamic properties according to their importance for a particular application scenario. In the present work, this is demonstrated for carbon dioxide for which different competing objective functions are studied which describe the accuracy of the...

  10. Mercury: a prediction for bulk chemical composition and internal structure in readiness for new MESSENGER data

    Science.gov (United States)

    Prentice, A. J.

    2008-12-01

    The MESSENGER spacecraft has confirmed that Mercury's magnetic field is dominantly dipolar and due to an active dynamo in a molten outer core (Solomon et al, 2008 Science 321 59). An energy source is needed to maintain this dynamo. Either liquid iron is freezing at the surface of an inner solid core (as proposed here) or solid iron is precipitating within an outer sulphur-rich core (Chen et al, 2008 GRL 35 L07201). If the outer core does not contain sulphur and consists solely of pure metal (Fe, Ni, Cr,..), then an active dynamo is inconsistent with previous numerical models for the radiogenic thermal evolution of the planet. Those earlier models found that the present temperature at the core/mantle boundary (CMB) is ~ 500 K below the melting temperature of metal ~ 2030 K for a CMB pressure of 70 kbar. The earlier calculations were based on low lunar abundances of U and Th. Here I present a new model for the bulk chemical composition, thermal evolution and current internal structure of Mercury. The model is based on the modern Laplacian theory of solar system origin (Prentice, 1978 Moon Planets 19 341; 2001 Earth Moon & Planets 87 11; 2006 Publ. Astron. Soc. Aust. (PASA) 23 1; 2008 - URL below). A key feature of this theory is that the planets formed from a concentric system of gas rings (n = 0, 1, 2,..) that were shed by the contracting protosolar cloud. The temperatures Tn of the rings scale with mean orbital radius Rn closely as Tn ~ Rn-0.9. Mercury plays a crucial role in calibrating this relationship because of a condensation process of metal/silicate fractionation (Lewis, 1972 EPSL 15 286). Choosing Tn ~ 1630 K for mean orbit gas ring pressure of 0.17 bar, the condensate consists mostly of Fe-Ni-Cr (mass fraction 0.671), gehlenite (0.190) and Mg-silicates (0.081). It has mean density 5.30 g/cm3. Na, K and S are absent. The mass fractions of U and Th, namely 5.66 × 10-8 & 2.08 × 10-7, are a factor of 4.3 times greater than those of the proto-Earth condensate

  11. Born-Oppenheimer surface of triatomic silicon and its relationship to potentials in the bulk

    Science.gov (United States)

    Dallot, P.; Bristowe, P. D.

    1992-07-01

    The Born-Oppenheimer (BO) surface of triatomic silicon is investigated and accurately described using two- and three-body potentials. The topology of the BO surface is found to be unstable with respect to fluctuations in these potentials, indicating that it is nongeneric. Examination of the two- and three-body components shows that the topology of the three-body term is fundamentally different from that of potentials usually used to model crystalline silicon. A study was therefore made to determine under what conditions this topology could successfully reproduce the diamond cubic structure of crystalline silicon. Two limiting methods for applying these potentials in the bulk have been considered and appraised. One of them uses the exact two- and three-body terms, and approximates the effect of the remaining terms in the N-body expansion (the screening effect) with a four-body term. The other method consists of screening the two- and three-body terms directly. Both methods were unsuccessful in reproducing the diamond cubic structure, which indicates the importance of terms of order higher than 4.

  12. Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Deibel, C.; Dyakonov, V.

    2011-10-01

    We investigated poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction (BHJ) solar cells by means of pulsed photocurrent, temperature dependent current-voltage, and capacitance-voltage measurements. We show that a direct transfer of Mott-Schottky (MS) analysis from inorganic devices to organic BHJ solar cells is not generally appropriate to determine the built-in potential, since the resulting potential depends on the active layer thickness. Pulsed photocurrent measurements enabled us to directly study the case of quasi-flat bands (QFB) in the bulk of the solar cell. It is well below the built-in potential and differs by diffusion-induced band-bending at the contacts. In contrast to MS analysis, the corresponding potential is independent on the active layer thickness and therefore a better measure for flat band conditions in the bulk of a BHJ solar cell as compared to MS analysis.

  13. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  14. Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer

    OpenAIRE

    Kuwabara, Takayuki; Sugiyama, Hirokazu; Kuzuba, Mitsuhiro; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-01-01

    Chemical bath deposited titanium oxide (TiOx ) as an electron collection layer is introduced between the organic layer and the indium tin oxide (ITO) electrode for improving the performance of inverted bulk-heterojunction organic thin film solar cells with 1 cm2 active area, where regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were mainly used as the photo-active layer. The uniform and thin TiOx film was easily prepared onto the ITO electrode ...

  15. Chemical-potential-based lattice Boltzmann method for nonideal fluids

    Science.gov (United States)

    Wen, Binghai; Zhou, Xuan; He, Bing; Zhang, Chaoying; Fang, Haiping

    2017-06-01

    Chemical potential, as an important thermodynamic quantity, has been popularly used in thermodynamic modeling for complex systems, especially for those involving the phase transitions and chemical reactions. Here we present a chemical-potential-based multiphase lattice Boltzmann model, in which the nonideal force is directly evaluated by a chemical potential. The numerical computation is more efficient than the pressure-tensor-based model [Wen et al. Europhys. Lett. 112, 44002 (2015), 10.1209/0295-5075/112/44002] because the calculations of the pressure tensor and its divergence are avoided. We have derived several chemical potentials of the popular equations of state from the free-energy density function. The theoretical analyses and numerical results support that the present model satisfies thermodynamics and Galilean invariance. An effective chemical-potential boundary condition is also implemented to investigate the wettability of a solid surface, and the contact angle can be linearly tuned by the surface chemical potential.

  16. Bio-refinery as the bio-inspired process to bulk chemicals

    NARCIS (Netherlands)

    Sanders, J.P.M.; Scott, E.L.; Weusthuis, R.A.; Mooibroek, H.

    2007-01-01

    This paper describes several examples of knowledge-intensive technologies for the production of chemicals from biomass, which take advantage of the biomass structure in a more efficient way than the production of fuels or electricity alone. The depletion in fossil feedstocks, increasing oil prices,

  17. High frequency bulk resonators for bio/chemical diagnostics and monitoring applications

    DEFF Research Database (Denmark)

    Cagliani, Alberto

    In the environmental monitoring eld there is a vast variety of possible applications for microfabricated MEMS sensors. As an example, a network of miniaturized sensors could detect toxic gases, harmful airbornes, explosives in air or, in liquid, monitor the quality of drinking water...... characterized in terms of electrical properties and mass sensing performance. Chemical and biological mass sensing experiments have been performed in order to investigate the behavior of these devices in dierent environments. The microresonators have been used to detect copper ions in drinking water...... and as temperature sensors in humid environment. Moreover, they have been used as tool to investigate the interaction between water molecules and DNA. Finally, nanograss have been etched into the body of the microresonators in order to improve the mass sensitivy of the devices. On the whole, the experimental results...

  18. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    Science.gov (United States)

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  19. Degradation Potential of Bulk Versus Incrementally Applied and Indirect Composites: Color, Microhardness, and Surface Deterioration.

    Science.gov (United States)

    El Gezawi, M; Kaisarly, D; Al-Saleh, H; ArRejaie, A; Al-Harbi, F; Kunzelmann, K H

    This study investigated the color stability and microhardness of five composites exposed to four beverages with different pH values. Composite discs were produced (n=10); Filtek Z250 (3M ESPE) and Filtek P90 (3M ESPE) were applied in two layers (2 mm, 20 seconds), and Tetric N-Ceram Bulk Fill (TetricBF, Ivoclar Vivadent) and SonicFill (Kerr) were applied in bulk (4 mm) and then light cured (40 seconds, Ortholux-LED, 1600 mW/cm2). Indirect composite Sinfony (3M ESPE) was applied in two layers (2 mm) and cured (Visio system, 3M ESPE). The specimens were polished and tested for color stability; ΔE was calculated using spectrophotometer readings. Vickers microhardness (50 g, dwell time=45 seconds) was assessed on the top and bottom surfaces at baseline, 40 days of storage, subsequent repolishing, and 60 days of immersion in distilled water (pH=7.0), Coca-Cola (pH=2.3), orange juice (pH=3.75), or anise (pH=8.5) using scanning electron microscopy (SEM). The materials had similar ΔE values (40 days, p>0.05), but TetricBF had a significantly greater ΔE than P90 or SF (40 days). The ΔE was less for P90 and TetricBF than for Z250, SonicFill, and Sinfony (60 days). Repolishing and further immersion significantly affected the ΔE (p<0.05) except for P90. All composites had significantly different top vs bottom baseline microhardnesses. This was insignificant for the Z250/water, P90/orange juice (40 days), and Sinfony groups (40 and 60 days). Immersion produced variable time-dependent deterioration of microhardness in all groups. Multivariate repeated measures analysis of variance with post hoc Bonferroni tests were used to compare the results. ΔE and microhardness changes were significantly inversely correlated at 40 days, but this relationship was insignificant at 60 days (Pearson test). SEM showed degradation (40 days) that worsened (60 days). Bulk-fill composites differ regarding color-stability and top-to-bottom microhardness changes compared with those of other

  20. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  1. The comparative study of bulk magneto-phonon and magnetic polaritons of lateral antiferromagnetic superlattices for potential THz applications

    Energy Technology Data Exchange (ETDEWEB)

    Ta, Jin-Xing, E-mail: tajinxing@sina.com; Han, Yu, E-mail: hanyu5214@163.com; Lan, Cheng

    2016-02-01

    Bulk magneto-phonon and magnetic polaritons of lateral antiferromagnetic superlattices for potential THz applications have been investigated in the framework of the effective medium theory. The dispersion relations applied for the system are displayed. In contrast with lateral FeF{sub 2}/SiO{sub 2} superlattice, some fascinating polariton modes with negative group velocity signifying photonic band gap scenarios and attractive optical properties are observed from the numerical results presented with the example, lateral FeF{sub 2}/TlBr superlattice. - Highlights: • Bulk magneto-phonon and magnetic polaritons in the THz frequency regime are discussed. • Negative refraction at certain frequencies is predicted in lateral FeF{sub 2}/TlBr superlattice. • This appealing nature can be adjusted by the applied magnetic field and the antiferromagnetic volume fraction.

  2. Efficiency at maximum power for an isothermal chemical engine with particle exchange at varying chemical potential

    Science.gov (United States)

    Koning, Jesper; Koga, Kenichiro; Indekeu, Joseph. O.

    2017-02-01

    We calculate the efficiency at maximum power (EMP) of an isothermal chemical cycle in which particle uptake occurs at a fixed chemical potential but particle release takes place at varying chemical potential. We obtain the EMP as a function of Δμ/ kT, where Δμ is the difference between the highest and lowest reservoir chemical potentials and T is the absolute temperature. In the linear response limit, Δμ ≪ kT, the EMP tends to the expected universal value 1/2.

  3. Temporal variability in Chemical and Stable isotopic characteristics of ambient bulk aerosols over a coastal environment of India

    Science.gov (United States)

    Agnihotri, R.; Karapurkar, S. G.; Sarma, V. V.; Praveen, P.; Kumar, M. D.

    2012-12-01

    Atmospheric carbonaceous aerosols are known to influence regional biogeochemical cycles of carbon (C) and nitrogen (N) in addition to regional radiation budgets. Owing to multiplicity of primary sources of natural and anthropogenic origin, their detailed chemical and isotopic characterization can greatly help in source apportionment and identifying secondary processes. From the roof of NIO-Goa (India) [15.46οN, 73.8oE; at ~55.8 MASL], atmospheric bulk aerosols (n=22) were collected on Quartz filters, from 2009 December to January 2011 covering entire 2010 (except monsoon period) to investigate temporal variability in their chemical and isotopic characteristics of the carbonaceous fraction i.e. TC, TOC and TN mass concentrations and their stable isotopic ratios (δ13CTC, δ13CTOC and δ15NTN). Both δ13CTC and δ13CTOC varied in narrow ranges (-24.9±1.1‰, -25.7±0.9‰ respectively), but significant differences were observed between the two during pre-monsoon months (as high as 2.3‰), possibly due to mixing of inorganic mineral dust. δ15NTN values showed a wide range of variability (average = 13.6±7.2‰), with significantly lower values (~2-5‰; as reported earlier by Agnihotri et al. 2011) during pre-monsoon period compared to those during winter (as high as ~26‰). Using δ13CTC values and two end-member mixing model (assuming δ13C of marine and continental carbon as -21 and -27‰ respectively), the average marine carbon fraction for Goa aerosols was estimated as 36±18.5%, significantly higher than reported for Chennai aerosols (~19%) (Pavuluri et al., 2011), but close to the reported average for marine aerosols at Bermuda (38%) (Turekian et al., 2003). Chemical and isotopic characteristics of ambient aerosols over Goa along with contemporaneous meteorological data indicate that winter aerosols contain significant proportion of carbonaceous fraction originated from biomass burning and other anthropogenic activities carried out in northern parts of

  4. Injectable biomaterials for the treatment of stress urinary incontinence: their potential and pitfalls as urethral bulking agents.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2013-06-01

    Injectable urethral bulking agents composed of synthetic and biological biomaterials are minimally invasive treatment options for stress urinary incontinence (SUI). The development of an ideal urethral bulking agent remains challenging because of clinical concerns over biocompatibility and durability. Herein, the mechanical and biological features of injectable urethral biomaterials are investigated, with particular emphasis on their future potential as primary and secondary treatment options for SUI. A literature search for English language publications using the two online databases was performed. Keywords included "stress urinary incontinence", "urethral bulking agent" and "injectable biomaterial". A total of 98 articles were analysed, of which 45 were suitable for review based on clinical relevance and importance of content. Injectable biomaterials are associated with a lower cure rate and fewer postoperative complications than open surgery for SUI. They are frequently reserved as secondary treatment options for patients unwilling or medically unfit to undergo surgery. Glutaraldehyde cross-linked bovine collagen remains the most commonly injected biomaterial and has a cure rate of up to 53 %. Important clinical features of an injectable biomaterial are durability, biocompatibility and ease of administration, but achieving these requirements is challenging. In carefully selected patients, injectable biomaterials are feasible alternatives to open surgical procedures as primary and secondary treatment options for SUI. In future, higher cure rates may be feasible as researchers investigate alternative biomaterials and more targeted injection techniques for treating SUI.

  5. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  6. Improved properties of chemically modified graphene/poly(methyl methacrylate nanocomposites via a facile in-situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    X. Y. Yuan

    2012-10-01

    Full Text Available The nanosheet of graphene was chemically modified by long alkyl chain for enhanced compatibility with polymer matrix and graphene/poly(methyl methacrylate (PMMA nanocomposites with homogeneous dispersion of the nanosheets and enhanced nanofiller-matrix interfacial interaction were fabricated via a facile in-situ bulk polymerization. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and thermogravimetry. The results showed that the graphene nanosheets were fully exfoliated in PMMA matrix and the thermal and mechanical properties of the nanocomposites were significantly improved at low graphene loadings. Large shifts of 15°C in the glass transition temperature and 27°C improvement of onset thermal degradation temperature were achieved with graphene loading as low as 0.07 wt%. A 67% increase in tensile strength was also observed by the addition of only 0.5 wt% graphene. The method used in this study provided a novel route to other graphene-based polymers.

  7. Evaluation of the physical properties, bulk density and aggregate stability of potential substrates in quarry restoration.

    Science.gov (United States)

    Jordan, M.; Garcia-Orenes, F.; Mataix-Solera, J.; Garcia-Sanchez, E.

    2012-04-01

    Quarrying activity entails significant environmental impact affecting the soil, water, plants, landscape, etc. One of the most important impacts is the loss of the productive layer of the soil and its vegetation cover. However, mining activities are absolutely necessary for human development; keeping them sustainable implicates looking for viable solutions for the restoration of these areas to prevent degradation during and after the exploitation period. The aim of this study was to evaluate different substrates obtained from different mixes of sewage sludge and different mine spoils, to check how they are effective in quarry restoration, and to establish good practises in mining restoration. Also, the study tried to approach two refuses, one deriving from mining activity, as are the mine spoils that need to be reused for their valorisation, and the other, sewage sludge, obtained in the water depuration process to acquire a cheap substrate for soil rehabilitation. This preliminary work, which is included in a larger study, shows the results obtained from two physical properties studied, bulk density and aggregate stability, as key properties in the substrate structure for use in mining area restoration. Two doses of composted sewage sludge (30 and 90 Tm/Ha), both very rich in calcium carbonate, were applied to two different mine spoils under lab conditions. The first material, of poor quality, originated from the acquisition of arid particles in crushed limestone (Z). It is characterized by stable ''coarse elements'' predominance (up to 75% of its weight), and by the presence of elevated percentages of sand. The other waste material tested comes from limestone extraction (basically formed by the levels of interspersed non-limestone materials and the remains of stripped soils (D)). The results show that the high dose of sewage sludge applied to a mix of the two mine spoils significantly increased the percentage of stable aggregates by more than 50% than the control

  8. Persistence and transport potential of chemicals in a multimedia environment

    Energy Technology Data Exchange (ETDEWEB)

    van de Meent, D.; McKone, T.E.; Parkerton, T.; Matthies, M.; Scheringer, M.; Wania, F.; Purdy, R.; Bennett, D.H.

    2000-02-01

    Persistence in the environment and potential for long-range transport are related since time in the environment is required for transport. A persistent chemical will travel longer distances than a reactive chemical that shares similar chemical properties. Scheringer (1997) has demonstrated the correlation between persistence and transport distance for different organic chemicals. However, this correlation is not sufficiently robust to predict one property from the other. Specific chemicals that are persistent mayor may not exhibit long-range transport potential. Persistence and long-range transport also present different societal concerns. Persistence concerns relate to the undesired possibility that chemicals produced and used now may somehow negatively affect future generations. Long-range transport concerns relate to the undesired presence of chemicals in areas where these compounds have not been used. Environmental policy decisions can be based on either or both considerations depending on the aim of the regulatory program. In this chapter, definitions and methods for quantifying persistence and transport potential of organic chemicals are proposed which will assist in the development of sound regulatory frameworks.

  9. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  10. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Science.gov (United States)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2015-10-01

    We extend the definition of the electronic chemical potential (μe) and chemical hardness (ηe) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μe. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (-I), positive (-A), and zero values of the fractional charge (-(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  11. Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses

    Science.gov (United States)

    Lin, T.; Bian, X. F.; Jiang, J.

    2006-05-01

    Two metallic bulk glasses, Cu60Zr30Ti10 and Cu47Ti33Zr11Ni8Si1, with a diameter of 3 mm were prepared by copper mold casting method. Dilatometric measurement was carried out on the two glassy alloys to obtain information about the average nearest-neighbour distance r and the effective depth of pair potential V. By assuming a Lennard-Jones potential, r and V were calculated to be 0.28 nm and 0.16 eV for Cu60Zr30Ti10 and 0.27 nm and 0.13 eV for Cu47Ti33Zr11Ni8Si1, respectively. It was found that the glassy alloy Cu60Zr30Ti10 was more stable than Cu47Ti33Zr11Ni8Si1 against heating from both experiment and calculation.

  12. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    Science.gov (United States)

    Prentice, A. J. R.

    1999-01-01

    Callisto, NH3 ice makes up -5% of the condensate mass next to h-rock (approximately 50%) and H2O ice (approximately 45%). Detailed thermal and structural models for each of Europa, Ganymede and Callisto are constructed on the basis of the above initial bulk chemical compositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912 M (sub E) and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertia coefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass approximately 0.116 M (sub G), and an outer H2O ice mantle of mass approximately 0.502 M (sub G) is needed to explain the gravity data. Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826 M (sub C) containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3 (raised dot) 2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field.

  13. Chemical potential of one-dimensional simple harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Mungan, Carl E [Physics Department, US Naval Academy, Annapolis, MD 21402-5002 (United States)], E-mail: mungan@usna.edu

    2009-09-15

    Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.

  14. Chemical potential and internal energy of the noninteracting Fermi ...

    Indian Academy of Sciences (India)

    S Panda and B K Panda. In the ground state, S vanishes and µ is obtained under the condition that the number of particles in volume V does not depend on temperature [2]. The chemical potential is the energy necessary to add one particle to the system without changing both the entropy and volume. The quantum theory in ...

  15. The chemical composition and potential nutritive value of the foliage ...

    African Journals Online (AJOL)

    The chemical composition and potential nutritive value of the foliage of four subtropical tree species in southern Africa for ruminants. ... The foliage contained relatively low levels of sodium (Na), 0.041 g/kg DM, based on beef cattle standards. The IVOMD ranged from 53% for C. mopane to 64% C. apiculatum and the rumen ...

  16. A density functional theory-based chemical potential equalisation ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the ...

  17. the potential of cultural and chemical control practices

    African Journals Online (AJOL)

    No. 1, pp. 71-81, 2005 ISSN 1021-9730/2005 $ 4.00. Printed in Uganda. All rights reserved @2005, African Crop Science Society. THE POTENTIAL OF CULTURAL AND CHEMICAL CONTROL PRACTICES. FOR ENHANCING PRODUCTIVITY OF BANANA RATOON S. F. KAGODA, PR. RUBAll-IAYO and M.M. TENYWA1.

  18. Response of quark condensate to the chemical potential

    Science.gov (United States)

    Jiang, Yu; Zhang, Yan-Bin; Sun, Wei-Min; Zong, Hong-Shi

    2008-07-01

    In this paper we propose a new method for calculating the response of the quark condensate to the chemical potential. Based on the method of calculating the dressed-quark propagator at finite chemical potential in the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach proposed in [H. S. Zong, L. Chang, F. Y. Hou, W. M. Sun, and Y. X. Liu, Phys. Rev. C 71, 015205 (2005).PRVCAN0556-281310.1103/PhysRevC.71.015205] and adopting the meromorphic form of the quark propagator given in [R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris, Phys. Rev. D 70, 014014 (2004).PRVDAQ0556-282110.1103/PhysRevD.70.014014][M. S. Bhagwat, M. A. Pichowsky, and P. C. Tandy, Phys. Rev. D 67, 054019 (2003).PRVDAQ0556-282110.1103/PhysRevD.67.054019], the quark condensate at finite chemical potential ⟨ qmacr q⟩[μ] is calculated analytically. The obtained expression for ⟨ qmacr q⟩[μ] is real, which is different from the results in the previous literature. In addition, it is found that when the chemical potential μ is less than a critical one ⟨ qmacr q⟩[μ] is kept unchanged from its vacuum value. A comparison is made between this behavior of the quark condensate and those reported in the previous literatures.

  19. A density functional theory-based chemical potential equalisation ...

    Indian Academy of Sciences (India)

    The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole ...

  20. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    Data.gov (United States)

    U.S. Environmental Protection Agency — The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are...

  1. The role of physico-chemical and bulk characteristics of co-spray dried L-leucine and polyvinylpyrrolidone on glidant and binder properties in interactive mixtures.

    Science.gov (United States)

    Mangal, Sharad; Meiser, Felix; Lakio, Satu; Morton, David; Larson, Ian

    2015-02-20

    In this study, polyvinylpyrrolidone (PVP) was spray dried with l-leucine (PVP-Leu) to create a prototype multifunctional interactive excipient. The physico-chemical and bulk properties such as particle size, surface composition, surface energy and bulk cohesion of PVP-Leu was measured and compared against pure spray dried PVP (PVP-SD). The mixing behaviour of these excipients and their effect on flow and binder activity of paracetamol was assessed. The mean particle sizes of PVP-Leu PVP-SD and PVP were 2.5, 2.1 and 21.9μm, respectively. Surface composition characterization indicated that l-leucine achieved higher concentrations on the surface compared to the bulk of the PVP-Leu particles. The surface energy of PVP-Leu was significantly lower compared to PVP-SD. In addition, PVP-Leu exhibited a significantly lower bulk cohesion compared PVP-SD. The excipients were blended with paracetamol and qualitative characterization indicated that PVP-Leu blended more homogeneously with paracetamol compared to PVP-SD. Both PVP-Leu and PVP-SD then exhibited a significantly improved binder activity compared to PVP. The flow of the paracetamol was markedly improved with PVP-Leu while PVP-SD and PVP had negligible effect on its flow. This study reveals how physico-chemical and bulk properties of such prototype interactive excipients can play a key role in determining multi-factorial excipient performance. Copyright © 2015. Published by Elsevier B.V.

  2. Jet quenching and holographic thermalization with a chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima,Bernal Diaz del Castillo 340, Colima (Mexico); Theory Group, Department of Physics,University of Texas at Austin, Austin, TX 78712 (United States); Kundu, Arnab [Theory Group, Department of Physics,University of Texas at Austin, Austin, TX 78712 (United States); Yang, Di-Lun [Department of Physics, Duke University,Durham, North Carolina 27708 (United States)

    2014-03-17

    We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdS{sub d+1} background for d=3 and d=4, which is characterized by the AdS-Reissner-Nordström-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with an energy comparable to the thermalization temperature and chemical potential in the medium travels further in the non-equilibrium plasma. The thermalization time obtained here by tracking a falling charged shell does not exhibit, generically, the same qualitative features as the one obtained studying non-local observables. This indicates that — holographically — the definition of thermalization time is observer dependent and there is no unambiguos definition.

  3. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites.

    Science.gov (United States)

    Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick

    2015-02-01

    To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, phardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Screening of potentially hormonally active chemicals using bioluminescent yeast bioreporters.

    Science.gov (United States)

    Sanseverino, John; Eldridge, Melanie L; Layton, Alice C; Easter, James P; Yarbrough, Jason; Schultz, Terry Wayne; Sayler, Gary S

    2009-01-01

    Saccharomyces cerevisiae bioluminescent bioreporter assays were developed previously to assess a chemical's estrogenic or androgenic disrupting potential. S. cerevisiae BLYES, S. cerevisiae BLYAS, S. cerevisiae BLYR, were used to assess their reproducibility and utility in screening 68, 69, and 71 chemicals for estrogenic, androgenic, and toxic effects, respectively. EC(50) values were 6.3 +/- 2.4 x 10(-10)M (n = 18) and 1.1 +/- 0.5 x 10(-8)M (n = 13) for BLYES and BLYAS, using 17beta-estradiol and 5alpha-dihydrotestosterone over concentration ranges of 2.5 x 10(-12) through 1.0 x 10(-6)M, respectively. Based on analysis of replicate standard curves and comparison to background controls, a set of quantitative rules have been formulated to interpret data and determine if a chemical is potentially hormonally active, toxic, both, or neither. The results demonstrated that these assays are applicable for Tier I chemical screening in Environmental Protection Agency's Endocrine Disruptor Screening and Testing Program as well as for monitoring endocrine-disrupting activity of unknown chemicals in water.

  5. Molecular dynamics simulations of solutions at constant chemical potential.

    Science.gov (United States)

    Perego, C; Salvalaglio, M; Parrinello, M

    2015-04-14

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  6. Higher spin entanglement entropy at finite temperature with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871 (China)

    2016-07-11

    It is generally believed that the semiclassical AdS{sub 3} higher spin gravity could be described by a two dimensional conformal field theory with W-algebra symmetry in the large central charge limit. In this paper, we study the single interval entanglement entropy on the torus in the CFT with a W{sub 3} deformation. More generally we develop the monodromy analysis to compute the two-point function of the light operators under a thermal density matrix with a W{sub 3} chemical potential to the leading order. Holographically we compute the probe action of the Wilson line in the background of the spin-3 black hole with a chemical potential. We find exact agreement.

  7. Potential for exothermic chemical reactions in waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyl, H.H.

    1983-02-03

    The potential for exothermic chemical reactions in waste tanks at Hanford is discussed. Organic chemicals have been added to Hanford waste tanks, particularly as ferrocyanides and when processing sludges at B Plant. Recent planned or ongoing activities involving stored wastes have possibly increased the potential for reaction of these wastes with nitrate salts in the waste tanks. Risk evaluations appear to be deficient in assessing the consequences of a deflagration, and in determining the probability of either a deflagration or detonation. The present question is whether current plans and recent safety-related documentation have given proper consideration to the available information about organic compounds in waste tanks. The principal organic additions to Hanford waste tanks are 1200 tonnes of organic carbon'' and 500 tonnes of Ni{sub 2}Fe(CN){sub 6}. 13 refs.

  8. Equation of State at Finite Density from Imaginary Chemical Potential

    CERN Document Server

    Takaishi, Tetsuya; Nakamura, Atsushi

    2010-01-01

    We perform two flavor QCD simulations with an imaginary chemical potential and measure derivatives of the pressure up to 4th order as a function of the imaginary chemical potential and the temperature $T \\in [0.83 T_c, 2 T_c]$. For temperatures $T \\geq T_c$, these derivatives are fitted by a Taylor series in $\\mu/T$ about $\\mu=0$. A fit limited to 4th order describes the data poorly at all temperatures, showing that we are sensitive to 6th order contributions. Similarly, a 6th order fit fails for temperatures $T_c \\leq T \\leq 1.05 T_c$, showing the need for 8th order terms. Thus, our method may offer a computational advantage over the direct measurement of Taylor coefficients at $\\mu=0$. At temperatures $T \\leq T_c$, we fit our data with a hadron resonance gas ansatz. The fit starts to fail at $T \\gtrsim 0.95 T_c$. Using our fits, we also reconstruct the equation of state as a function of real quark and isospin chemical potentials.

  9. Chemical affinities between the solvent extractable and the bulk organic matter of fossil resin associated with an extinct podocarpaceae

    Science.gov (United States)

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.

    1989-01-01

    Analyses by GC-MS and GC-IR of resin associated to Dacridiumites mawsonii deposits, an extinct species of Podocarpaceae occurring on the South Island of New Zealand during the Bortonian (Middle Eocene), have revealed that dehydroabietic acid is the predominant component of the solvent soluble fraction. Accordingly, this diterpenoid has been selected as the principal component material for spectroscopic comparison with the bulk resin using IR and CP/MAS 13C NMR. ?? 1989.

  10. Holographic dual of a boost-invariant plasma with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2010-12-15

    We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)

  11. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts

    Science.gov (United States)

    Lu, Qing‐Yi; Summanen, Paula H.; Lee, Ru‐Po; Huang, Jianjun; Henning, Susanne M.; Heber, David; Finegold, Sydney M.

    2017-01-01

    Abstract The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP‐HPLC‐DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic‐like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice‐specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice‐induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. PMID:28678344

  12. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts.

    Science.gov (United States)

    Lu, Qing-Yi; Summanen, Paula H; Lee, Ru-Po; Huang, Jianjun; Henning, Susanne M; Heber, David; Finegold, Sydney M; Li, Zhaoping

    2017-08-01

    The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP-HPLC-DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic-like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice-specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice-induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of

  13. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    Science.gov (United States)

    Touchette, Brant W.; Marcus, Sarah E.; Adams, Emily C.

    2014-01-01

    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the ‘cell water conservation hypothesis’, may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant–water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below −1.0 MPa and the majority of freshwater plants were above −1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis. PMID:24876296

  14. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  15. Life Cycle Risks for Human Health: A Comparison of Petroleum Versus Bio-Based Production of Five Bulk Organic Chemicals

    NARCIS (Netherlands)

    Roes, A.L.|info:eu-repo/dai/nl/303022388; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2007-01-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses

  16. Random matrix theory and QCD at nonzero chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Verbaarschot, J.J.M. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy

    1998-11-02

    In this lecture we give a brief review of chiral random matrix theory (chRMT) and its applications to QCD at nonzero chemical potential. We present both analytical arguments involving chiral perturbation theory and numerical evidence from lattice QCD simulations showing that correlations of the smallest Dirac eigenvalues are described by chRMT. We discuss the range of validity of chRMT and emphasize the importance of universality. For chRMT`s at {mu}{ne}0 we identify universal properties of the Dirac eigenvalues and study the effect of quenching on the distribution of Yang-Lee zeros. (orig.) 86 refs.

  17. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Turgut, E-mail: yilmaz@phys.uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Hines, William [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Sun, Fu-Chang [Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269 (United States); Pletikosić, Ivo [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Budnick, Joseph [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Valla, Tonica [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Sinkovic, Boris [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2017-06-15

    Highlights: • Cr doping into the bulk of Bi{sub 2}Se{sub 3} opens an energy gap at the Dirac point which is observable in the non-magnetic state. • Cr surface deposition does not lead to open an energy gap at the Dirac point of Bi{sub 2}Se{sub 3}. • Formation of two distinct Bi and Cr core level peaks was observed upon the deposition of Cr on the surface of Bi{sub 2}Se{sub 3}. - Abstract: In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi{sub 2}Se{sub 3} films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  18. Antioxidative potential of two chemically characterized Ocimum (Tulsi species extracts

    Directory of Open Access Journals (Sweden)

    Karishma Agarwal

    2017-09-01

    Full Text Available Background: Ocimum sanctum and Ocimum kilimandscharicum are cultivated in Indian subcontinent both for the religious and medicinal properties. Traditionally, the leaves have been reported for their enormous therapeutic potentials but the roots which are otherwise considered as a waste part have not been explored for their pharmacological activity. Methods: Total phenolic content, free radical scavenging and ferric reducing antioxidant potential of various extracts from Ocimum sanctum and Ocimum kilimandscharicum were assessed and compared. In vitro antioxidant activity was estimated spectrophotometrically and the most potent ethyl acetate extract was chemically characterized by developing the chemical fingerprint and quantifying the probable constituents with the help of HPLC/LC-MS techniques. Results: The ethyl acetate extract of both the species exhibited significant free radical scavenging potential and also reduced the ferric ions. It was observed that ethyl acetate extract have superior ferric reducing potential than other tested extracts, which were evidenced by high ferrous sulphate equivalent value of 77.05 ± 1.54 and 80.98 ± 0.80 at 100 µg/ml for O. sanctum and O. kilimandscharium respectively. The ferric reducing capacity of ethyl acetate extract for both the species was also evidenced by an elevated optical density of 1.64 ± 0.12 and 2.14 ± 0.08. Ocimum sanctum exhibited better antioxidant capacity (11.31 ± 0.20 AScE as compared to Ocimum kilimandscharium (9.08 ± 0.27 AScE. The total phenolic and flavonoid content were estimated by spectrophotometric method and tentatively characterized by HPLC/LC-MS profiling which revealed the presence of rosmarinic acid, caffeic acid along with its derivatives such as caffeoyl-dihydroxyphenyllactoyl-tartaric acid. Conclusion: The ethyl acetate extract of both the species being rich in phenolic and flavonoid contents exhibited potent antioxidant activity. The presence of flavonoid in ethyl

  19. All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers.

    Science.gov (United States)

    Nam, Sungho; Shin, Minjung; Park, Soohyeong; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo

    2012-11-21

    We report the improved performance of all-polymer solar cells with bulk heterojunction nanolayers of an electron-donating polymer (poly(3-hexylthiophene) (P3HT)) and an electron-accepting polymer (poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), which were both doped with 4-ethylbenzenesulfonic acid (EBSA). To choose the doping ratio of P3HT for all-polymer solar cells, various EBSA doping ratios (0, 1, 3, 5, 10, 20 wt%) were tested by employing optical absorption spectroscopy, photoluminescence spectroscopy, photoelectron yield spectroscopy, and space-charge-limited current (SCLC) mobility measurement. The doping reaction of P3HT with EBSA was followed by observing the colour change in solutions. The final doping ratio for P3HT was chosen as 1 wt% from the best hole mobility measured in the thickness direction, while that for F8BT was fixed as 10 wt% (F8BT-EBSA). The polymer:polymer solar cells with bulk heterojunction nanolayers of P3HT-EBSA (EBSA-doped P3HT) and F8BT-EBSA (EBSA-doped F8BT) showed greatly improved short circuit current density (J(SC)) and open circuit voltage (V(OC)), compared to the undoped solar cells. As a result, the power conversion efficiency (PCE) was enhanced by ca. 300% for the 6 : 4 (P3HT-EBSA : F8BT-EBSA) composition and ca. 400% for the 8 : 2 composition. The synchrotron-radiation grazing incidence angle X-ray diffraction (GIXD) measurement revealed that the crystallinity of the doped nanolayers significantly increased by EBSA doping owing to the formation of advanced phase segregation morphology, as supported by the surface morphology change measured by atomic force microscopy. Thus the improved PCE can be attributed to the enhanced charge transport by the formation of permanent charges and better charge percolation paths by EBSA doping.

  20. Chemical potential evaluation in NVT lattice-gas simulations.

    Science.gov (United States)

    Pazzona, Federico G; Demontis, Pierfranco; Suffritti, Giuseppe B

    2012-10-21

    The discrete nature of the partition function of a lattice-gas system can be exploited to build an efficient strategy for the evaluation of the chemical potential of a periodic lattice-gas with arbitrarily ranged interactions during a simulation in the canonical ensemble, with the need of no additional sampling as it were required instead by the Widom insertion/deletion approach. The present method is based on the main concepts of the small system grand ensemble [for details, see G. Soto-Campos, D. S. Corti, and H. Reiss, J. Chem. Phys. 108, 2563 (1998)], whose key idea is to study the properties of a sublattice (called small system) and of its complementary (the reservoir sublattice) as they were two separated subsystems. The accuracy of the measured chemical potential can be further improved by artificially "restoring" the missing connections among the reservoir sublattice sites located at the boundaries with the small system. We first illustrate the theory and then we compare μVT with NVT simulation results on several test systems.

  1. Limiting fragmentation of chemical potentials in heavy ion collisions

    CERN Document Server

    Stiles, L A; Murray, Michael; Stiles, Laura A.

    2006-01-01

    Thermal models have been used to successfully describe the hadron yields from heavy ion collisions at a variety of energies. For root(S)<17 GeV this has usually been done using yields integrated over 4pi but at the higher energies available at RHIC, yields measured at central rapidity have been used. Recent BRAHMS data allows us to test whether thermal models can be generalized to describe the rapidity dependence of particle ratios. We have used the THERMUS package to fit BRAHMS data for the 5% most central Au+Au collisions for several rapidities at root(S) = 62 and 200 GeV. We have found a relationship between the strange and light quark chemical potentials, muS = 0.21 +-0.01muB. Using this relation we are able to describe the energy dependence of Lambda, Xsi and Omega ratios from other experiments. We also find that the chemical potentials are consistent with limiting fragmentation.

  2. The Effect of Preceding Crops on the Chemical Fractions of Copper (Cu in the Rhizosphere and the Bulk Soil and its Relationship with Copper Uptake by Wheat

    Directory of Open Access Journals (Sweden)

    shahrzad kabirinejad

    2017-02-01

    Full Text Available Introduction: Preceding crops as a source of organic matter are an important source of micronutrient and can play an important role in the soil fertility and the micronutrients cycle of soil. In addition to the role of the organic matter in increasing the concentration of micronutrients in soil solution, attention also should be paid to the role of the kind and the quantity of the root’s exudates that are released in response to the incorporation of different plant residues in the rhizosphere. Present research was conducted with the objective of studying the effect of the kind of preceding crops: Trifolium (Trifolium pretense L, Sofflower (Carthamus tinectirus L, Sorghum (Sorghum bicolor L, Sunflower (Heliantus annus L and control (fallow on the chemical forms of copper in the wheat rhizosphere and the bulk soil and Cu uptake by wheat and also investigating the correlation between the fractions of Cu in soil and Cu uptake in wheat. Materials and Methods: The present research was conducted as split plot in a Randomized Complete Block design (RCBD with 3 replications and 5 treatments, in field conditions. In the beginning, the preceding crops were cultivated in the experimental plots and after ending growth, preceding crops were harvested. Then the wheat was cultivated in the experimental plots. Finally, after harvesting the wheat, soil samples were collected from the two parts of the root zone (the wheat rhizosphere and the bulk soil. The soil samples were air dried ground and passed through a 2-mm sieve and stored for chemical analysis. Soil pH (in the soil saturation extract and organic matter (Walkley–Black wet digestion were measured in standard methods (1. The Total Organic Carbon (TOC was measured by Analyzer (Primacs SLC TOC Analyzer (CS22, Netherlands. The available Cu in soil was extracted by DTPA and determined using atomic absorption spectroscopy (2. The fractionation of soil Cu was carried out using the MSEP method (3. Results and

  3. Anionic Extraction for Efficient Recovery of Biobased 2,3-Butanediol-A Platform for Bulk and Fine Chemicals

    DEFF Research Database (Denmark)

    Drabo, Peter; Tiso, Till; Heyman, Benedikt

    2017-01-01

    2,3-Butanediol (BDO) presents a promising platform molecule for the synthesis of basic and fine chemicals. Biotechnological production of BDO from renewable resources with living microbes enables high concentrations in the fermentation broth. The recovery of high-boiling BDO from an aqueous ferme...

  4. Quantification of chemical sulphur species in bulk soil and organic sulphur fractions by S K-edge Xanes spectroscopy

    DEFF Research Database (Denmark)

    Boye, K; Almkvist, G; Nilsson, S I

    2011-01-01

    A new data treatment method for fitting spectra obtained by sulphur (S) K-edge X-ray absorption near-edge structure (XANES) spectroscopy was used to quantify the chemical S speciation at three experimental sites with arable soils receiving the same long-term field treatments. Two treatments, crop...

  5. Origin of soluble chemical species in bulk precipitation collected in Tokyo, Japan: Statistical evaluation of source materials

    Science.gov (United States)

    Tsurumi, Makoto; Takahashi, Akira; Ichikuni, Masami

    An iterative least-squares method with a receptor model was applied to the analytical data of the precipitation samples collected at 23 points in the suburban area of Tokyo, and the number and composition of the source materials were determined. Thirty-nine monthly bulk precipitation samples were collected in the spring and summer of 1987 from the hilly and mountainous area of Tokyo and analyzed for Na +, K +, NH 4+, Mg 2+, Ca 2+, F -, Cl -, Br -, NO 3- and SO 42- by atomic absorption spectrometry and ion chromatography. The pH of the samples was also measured. A multivariate ion balance approach (Tsurumi, 1982, Anal. Chim. Acta138, 177-182) showed that the solutes in the precipitation were derived from just three major sources; sea salt, acid substance (a mixture of 53% HNO 3, 39% H 2SO 4 and 8% HCl in equivalent) and CaSO 4. The contributions of each source to the precipitation were calculated for every sampling site. Variations of the contributions with the distance from the coast were also discussed.

  6. Calculations of potential functions and thermophysical behaviors for La62Al14Ni12Cu12 and Cu46Zr44Al7Y3 bulk metallic glasses

    Science.gov (United States)

    Chen, Xiaohua; Zhang, Yong; Chen, Guoliang; Zhang, Xingchao; Liu, Lei

    2008-06-01

    Bulk metallic glasses La62Al14Ni12Cu12 and Cu46Zr44Al7Y3 were prepared by copper mold suction casting. The thermal-physical behaviors of bulk metallic glasses were investigated by means of x-ray diffraction, differential scanning calorimetry, ultrasonic techniques, and dilatometry. By calculating the Mie potential function from experimental data, the values of potential function powers (m and n) and related physical parameters such as the mean binding energy, etc., are obtained. Thus, unlike what some people have done by assuming values of m -n (7-14), the values of average nearest-neighbor separation r0 and effective depth of pair potential ϕ0 can be obtained from calculated values of m and n from Mie potential functions and they agree very well with the results in the literature. The calculations can be well consistent with the thermophysical behaviors by comparing the two amorphous alloys. In addition, it was enhanced that the effective depth of pair potential correlated with the glass-forming ability of bulk metallic glass.

  7. Determination of Reference Chemical Potential Using Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Krishnadeo Jatkar

    2010-01-01

    Full Text Available A new method implementing molecular dynamics (MD simulations for calculating the reference properties of simple gas hydrates has been proposed. The guest molecules affect interaction between adjacent water molecules distorting the hydrate lattice, which requires diverse values of reference properties for different gas hydrates. We performed simulations to validate the experimental data for determining Δ0, the chemical potential difference between water and theoretical empty cavity at the reference state, for structure II type gas hydrates. Simulations have also been used to observe the variation of the hydrate unit cell volume with temperature. All simulations were performed using TIP4P water molecules at the reference temperature and pressure conditions. The values were close to the experimental values obtained by the Lee-Holder model, considering lattice distortion.

  8. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    Science.gov (United States)

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  9. Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries

    Science.gov (United States)

    R. Kasten Dumroese; Juha Heiskanen; Karl Englund; Arja Tervahauta

    2011-01-01

    We found that peat moss, amended with various ratios of pellets comprised of equal proportions of biochar and wood flour, generally had chemical and physical properties suitable for service as a substrate during nursery production of plants. High ratios of pellets to peat (>50%) may be less desirable because of high C:N, high bulk density, swelling associated with...

  10. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Han Zhangang [Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 (China); Zhao Yulong [Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 (China); Peng Jun [Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 (China)]. E-mail: jpeng@nenu.edu.cn; Liu Qun [Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 (China); Wang Enbo [Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 (China)

    2005-10-10

    An inorganic-organic hybrid polyoxometalate (POM) (Hbpy){sub 4}[SiMo{sub 12}O{sub 40}] (1) (bpy = 2,4-bipyridine), has been prepared and characterized. X-ray diffraction study reveals that compound 1 contains interesting organic double helical chains. The hybrid nanoparticles was used as a solid bulkmodifier to fabricate a three-dimensional chemically modified carbon paste electrode (1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE has been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of nitrite in 1 M H{sub 2}SO{sub 4} aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the interactions existed between POM anions and organic double helical bpy chains, which are very important for practical applications in electrode modification.

  11. Chemical analysis and potential health risks of hookah charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Yehya, E-mail: yelsayed@aus.edu; Dalibalta, Sarah, E-mail: sdalibalta@aus.edu; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  12. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    Science.gov (United States)

    The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are currently over 200 chemicals with high GWP reported by the Intergovernmental Panel on Climate Change, World Meteorological Organization, or Environmental Protection Agency, there may be hundreds of additional chemicals that may also have significant GWP. Evaluation of various approaches to estimate radiative efficiency (RE) and atmospheric lifetime will help to refine GWP estimates for compounds where no measured IR spectrum is available. This study compares values of RE calculated using computational chemistry techniques for 235 chemical compounds against the best available values. It is important to assess the reliability of the underlying computational methods for computing RE to understand the sources of deviations from the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models. The values derived using these models are found to be in reasonable agreement with reported RE values (though significant improvement is obtained through scaling). The effect of varying the computational method and basis set used to calculate the frequency data is also discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed values of RE in this study. Deviations of

  13. Few-Layer Nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with Highly Tunable Chemical Potential

    KAUST Repository

    Kong, Desheng

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi2Se3, Bi2Te3, and Sb2Te3 are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi2Te3 and Bi2Se3 nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO2/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential. © 2010 American Chemical Society.

  14. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers.

    Science.gov (United States)

    James, Jeff; Crean, Barry; Davies, Martyn; Toon, Richard; Jinks, Phil; Roberts, Clive J

    2008-09-01

    This study compares the surface characteristics and surface energetics of two potential bulking excipients, anhydrous sub-micron alpha-lactose and sub-micron sucrose, for use with low-dose, suspension formulations in pressurised metered dose inhalers (pMDIs). Both sub-micron bulking excipients are processed from parent materials (alpha-lactose monohydrate/alpha-lactose monohydrate and silk grade sucrose, respectively) so the surface characteristics of each material were determined and compared. Additionally, the surface energetics and adhesive interactions between each sub-micron bulking excipient and some chosen active pharmaceutical ingredients (APIs) used in pMDI formulations were also determined. From this data, it was possible to predict the potential degree of interaction between the APIs and each sub-micron bulking excipient, thus determining suitable API-excipient combinations for pMDI formulation optimisation. Salmon calcitonin was also investigated as a potential API due to the current interest in, and the potential low-dose requirements for, the pulmonary delivery of proteins. The size and morphology of each sub-micron excipient (and parent materials) were determined using scanning electron microscopy (SEM) and the crystalline nature of each sub-micron excipient and parent material was assessed using X-ray diffraction (XRD). The surface chemistry of each sub-micron excipient was analysed using X-ray photoelectron spectroscopy (XPS). The surface energies of each sub-micron excipient, along with their respective parent materials and any intermediates, were determined using two techniques. The surface energies of these materials were determined via (a) single particle adhesive interactions using atomic force microscopy (AFM) and (b) 'bulk' material surface interactions using contact angle measurements (CA). From the CA data, it was possible to calculate the theoretical work of adhesion values for each API-excipient interaction using the surface component

  15. Crataegus pinnatifida: Chemical Constituents, Pharmacology, and Potential Applications

    Directory of Open Access Journals (Sweden)

    Jiaqi Wu

    2014-01-01

    Full Text Available Crataegus pinnatifida (Hawthorn is widely distributed in China and has a long history of use as a traditional medicine. The fruit of C. pinnatifida has been used for the treatment of cardiodynia, hernia, dyspepsia, postpartum blood stasis, and hemafecia and thus increasing interest in this plant has emerged in recent years. Between 1966 and 2013, numerous articles have been published on the chemical constituents, pharmacology or pharmacologic effects and toxicology of C. pinnatifida. To review the pharmacologic advances and to discuss the potential perspective for future investigation, we have summarized the main literature findings of these publications. So far, over 150 compounds including flavonoids, triterpenoids, steroids, monoterpenoids, sesquiterpenoids, lignans, hydroxycinnamic acids, organic acids and nitrogen-containing compounds have been isolated and identified from C. pinnatifida. It has been found that these constituents and extracts of C. pinnatifida have broad pharmacological effects with low toxicity on, for example, the cardiovascular, digestive, and endocrine systems, and pathogenic microorganisms, supporting the view that C. pinnatifida has favorable therapeutic effects. Thus, although C. pinnatifida has already been widely used as pharmacological therapy, due to its various active compounds, further research is warranted to develop new drugs.

  16. Crataegus pinnatifida: chemical constituents, pharmacology, and potential applications.

    Science.gov (United States)

    Wu, Jiaqi; Peng, Wei; Qin, Rongxin; Zhou, Hong

    2014-01-30

    Crataegus pinnatifida (Hawthorn) is widely distributed in China and has a long history of use as a traditional medicine. The fruit of C. pinnatifida has been used for the treatment of cardiodynia, hernia, dyspepsia, postpartum blood stasis, and hemafecia and thus increasing interest in this plant has emerged in recent years. Between 1966 and 2013, numerous articles have been published on the chemical constituents, pharmacology or pharmacologic effects and toxicology of C. pinnatifida. To review the pharmacologic advances and to discuss the potential perspective for future investigation, we have summarized the main literature findings of these publications. So far, over 150 compounds including flavonoids, triterpenoids, steroids, monoterpenoids, sesquiterpenoids, lignans, hydroxycinnamic acids, organic acids and nitrogen-containing compounds have been isolated and identified from C. pinnatifida. It has been found that these constituents and extracts of C. pinnatifida have broad pharmacological effects with low toxicity on, for example, the cardiovascular, digestive, and endocrine systems, and pathogenic microorganisms, supporting the view that C. pinnatifida has favorable therapeutic effects. Thus, although C. pinnatifida has already been widely used as pharmacological therapy, due to its various active compounds, further research is warranted to develop new drugs.

  17. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene

    Directory of Open Access Journals (Sweden)

    Yue Cheng

    2016-05-01

    Full Text Available Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW waveguides can be excited by a monolayer graphene ribbon. What is more the transverse resonant frequency spectrum of the GNW can be flexibly tuned by adjusting the chemical potential of graphene, and amplitude of the resonance peak varies linearly with the imaginary part of the analyte permittivity. As a consequence, the GNW works as a probe for capturing the molecular spectrum. Broadband sensing of toluene, ethanol and sulfurous anhydride thin layers is demonstrated by calculating the changes in spectral intensity of the propagating mode and the results show that the intensity spectra correspond exactly to the infrared spectra of these molecules. This may open an effective avenue to design sensors for detecting nanometric-size molecules in the terahertz and infrared regimes.

  18. Black hole phase transitions and the chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Reevu, E-mail: reevum@iitk.ac.in; Roy, Pratim, E-mail: proy@iitk.ac.in; Sarkar, Tapobrata, E-mail: tapo@iitk.ac.in

    2017-02-10

    In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ) dual to the number of colours (N) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  19. Black hole phase transitions and the chemical potential

    Directory of Open Access Journals (Sweden)

    Reevu Maity

    2017-02-01

    Full Text Available In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ dual to the number of colours (N of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  20. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  1. Effect of solvents on the bulk growth of 4-aminobenzophenone single crystals: A potential material for blue and green lasers

    Science.gov (United States)

    Natarajan, V.; Usharani, S.; Arivanandhan, M.; Anandan, P.; Hayakawa, Y.

    2015-06-01

    Although 4-aminobenzophenone (4-ABP) is the best derivative of benzophenone with 260 times higher second harmonic generation (SHG) efficiency than potassium dihydrogen phosphate (KDP), growth of high quality bulk crystal still remains a difficult task. In the present work, the effect of solvents on solubility and growth aspects of 4-ABP was investigated to grow inclusion free 4-ABP crystals. The growth processes were discussed based on solute-solvent interaction in two different growth media of ethyl acetate and ethanol. The growth rate and thereby solvent inclusions are relatively higher in ethyl acetate grown crystal than the crystal grown from ethanol. The structural, thermal and optical properties of 4-ABP crystals were studied. The enthalpy of 4-ABP melting process was estimated from differential thermal analysis. The optical transmission study shows that 4-ABP crystals grown from ethanol has high transparency compared to ethyl acetate grown sample due to solvent inclusion in the later crystal.

  2. Molecular Dynamics Simulations of Solutions at Constant Chemical Potential

    OpenAIRE

    Perego, C; Salvalaglio, M; Parrinello, M.

    2015-01-01

    Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Gran...

  3. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  4. Study of QCD Phase Diagram with Non-Zero Chiral Chemical Potential

    CERN Document Server

    Braguta, V V; Kotov, A Yu; Petersson, B; Skinderev, S A

    2015-01-01

    In this paper we report on lattice simulations of SU(3)-QCD with non-zero chiral chemical potential. We focus on the influence of the chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical Wilson fermions. We find that the critical temperature rises as the chiral chemical potential grows.

  5. Evaluation of the Component Chemical Potentials in Analytical Models for Ordered Alloy Phases

    Directory of Open Access Journals (Sweden)

    W. A. Oates

    2011-01-01

    Full Text Available The component chemical potentials in models of solution phases with a fixed number of sites can be evaluated easily when the Helmholtz energy is known as an analytical function of composition. In the case of ordered phases, however, the situation is less straightforward, because the Helmholtz energy is a functional involving internal order parameters. Because of this, the chemical potentials are usually obtained numerically from the calculated integral Helmholtz energy. In this paper, we show how the component chemical potentials can be obtained analytically in ordered phases via the use of virtual cluster chemical potentials. Some examples are given which illustrate the simplicity of the method.

  6. Chemical analysis and biological potential of Valerian root as used ...

    African Journals Online (AJOL)

    Background: Herbal practitioners in the Eastern Cape of South Africa use valerian root (Valeriana capensis, Valerianaceae) to manage pains, arthritis and inflammation. The herb prepared from this plant was studied to determine the chemical composition of its essential oil, carried out phytochemical screening and ...

  7. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  8. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  9. Electronic Chemical Potentials of Porous Metal–Organic Frameworks

    OpenAIRE

    Butler, Keith T.; Hendon, Christopher H.; Aron Walsh

    2014-01-01

    The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal–organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal–organic frameworks and apply it to obtain the first ionization energy for six prototype materials including zeolitic, covalent, and ionic frameworks. This approach for valence band alignment can expla...

  10. Potential for Intermodal Transport of Chemical Goods in Slovakia

    Directory of Open Access Journals (Sweden)

    Jagelčák Juraj

    2017-01-01

    Full Text Available This article deals with intermodal transport of chemical goods in Slovak republic. Analysis is based on information from interviews with companies and logistics service providers. The first part of the article describes importance of Intermodal transport and basic transport routes for intermodal transport. Respondents considered advantages and disadvantages of intermodal transport. Possible improvements inside companies and improvements of external framework conditions to promote modal shift are described in the second part of the paper.

  11. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  12. The chemical composition and potential nutritive value of the foliage ...

    African Journals Online (AJOL)

    UPUSER

    (1998) emphasised that an important objective in the evaluation is also to identify tree species with a potential to be introduced in integrated crop and livestock agroforestry systems. These forages are important for animal production owing to their potentially good nutritive value. Their deep root systems take up minerals and ...

  13. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  14. Potential of milk fatty acid composition to predict diet composition and authenticate feeding systems and altitude origin of European bulk milk.

    Science.gov (United States)

    Coppa, M; Chassaing, C; Ferlay, A; Agabriel, C; Laurent, C; Borreani, G; Barcarolo, R; Baars, T; Kusche, D; Harstad, O M; Verbič, J; Golecký, J; Delavaud, C; Chilliard, Y; Martin, B

    2015-03-01

    The aims of this work were to elucidate the potential of using milk fatty acid (FA) concentration to predict cow diet composition and altitude of bulk milk collected in 10 different European countries and to authenticate cow-feeding systems and altitude of the production area using a data set of 1,248 bulk cow milk samples and associated farm records. The predictions based on FA for cow diet composition were excellent for the proportions of fresh herbage [coefficient of determination (R2)=0.81], good for hay, total herbage-derived forages, and total preserved forages (R2>0.73), intermediate for corn silage and grass silage (R2>0.62), and poor for concentrates (R2diet. Milk samples were assigned to groups according to feeding system, level of concentrate supplementation, and altitude origin. Milk FA composition successfully authenticated cow-feeding systems dominated by a main forage (>93% of samples correctly classified), but the presence of mixed diets reduced the discrimination. Altitude prediction reliability was intermediate (R2composition was not able to authenticate concentrate supplementation level in the diet (composition (composition to authenticate cow feeding was confirmed using a data set representative of the diversity of European production conditions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Potential for portal detection of human chemical and biological contamination

    Science.gov (United States)

    Settles, Gary S.; McGann, William J.

    2001-08-01

    The walk-through metal-detection portal is a paradigm of non-intrusive passenger screening in aviation security. Modern explosive detection portals based on this paradigm will soon appear in airports. This paper suggests that the airborne trace detection technology developed for that purpose can also be adapted to human chemical and biological contamination. The waste heat of the human body produces a rising warm-air sheath of 50-80 liters/sec known as the human thermal plume. Contained within this plume are hundreds of bioeffluents from perspiration and breath, and millions of skin flakes. Since early medicine, the airborne human scent was used in the diagnosis of disease. Recent examples also include toxicity and substance abuse, but this approach has never been quantified. The appearance of new bioeffluents or subtle changes in the steady-state may signal the onset of a chemical/biological attack. Portal sampling of the human thermal plume is suggested, followed by a pre-concentration step and the detection of the attacking agent or the early human response. The ability to detect nanogram levels of explosive trace contamination this way was already demonstrated. Key advantages of the portal approach are its rapidity and non-intrusiveness, and the advantage that it does not require the traditional bodily fluid or tissue sampling.

  16. Quantum chemical analysis of potential anti-Parkinson agents

    Indian Academy of Sciences (India)

    2017-02-04

    Feb 4, 2017 ... line have been applied as potential disease-modifying agents in experimental clinical practice. It is impor- tant to know that selective MAO-B inhibitors may alle- viate some symptoms of the Parkinson's disease such as resting tremor but not have the therapeutic effect at all.9 Considering this limitation, there ...

  17. evaluating the impact and potential of the chemical sciences

    African Journals Online (AJOL)

    Temechegn

    human resources and the economic development emanating from science and technology innovation. This paper shares ... consistent and sturdy downward spiral of disposable revenue due to the declining subvention from .... provide a bird's eye view of the potential impact this programme can make towards improving the.

  18. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  19. Measurements of chemical potentials in superconducting tin whiskers

    Science.gov (United States)

    Tidecks, R.

    1985-02-01

    A superconductor / normal conductor potential probe pair was used to measure differences between the time-averaged electrochemical potentials of Cooper pairs and of quasiparticle excitations caused by a phase-slip center in several experimental situations. The results can only be understood by assuming that at a larger distance from the phase-slip center differs from the proposal of Skocpol, Beasley, and Tinkham by showing a “swinging over” or “swinging below” . We propose a modified slope of as a function of site. Possible explanations are discussed. The multiple-contact samples used also allow the study of the influence of phase-slip centers already present on the relaxation of nonequilibrium quasiparticles.

  20. Measurements of chemical potentials in superconducting tin whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Tidecks, R.

    1985-02-01

    A superconductor/normal conductor potential probe pair was used to measure differences between the time-averaged electrochemical potentials <..mu../sub p/> of Cooper pairs and <..mu..> of quasiparticle excitations caused by a phase-slip center in several experimental situations. The results can only be understood by assuming that at a larger distance from the phase-slip center <..mu..> differs from the proposal of Skocpol, Beasley, and Tinkham by showing a ''swinging over'' or ''swinging below'' <..mu..>. We propose a modified slope of <..mu..> as a function of site. Possible explanations are discussed. The multiple-contact samples used also allow the study of the influence of phase-slip centers already present on the relaxation of nonequilibrium quasiparticles.

  1. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, P.; Oliveira Falcao, A. de; Alves Macedo, J.; Silva, L.H.M. da; Rodrigues, A.M. da C.; Alves Macedo, G.

    2016-07-01

    Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6%) and the main triacylglycerol classes were tri-unsaturated (50.0%) and di-unsaturated-mono-saturated(39.3%) triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%). Total phenolic (107.0 mg gallic acid equivalent·g−1 oil) and β-carotene (781.6 mg·kg−1) were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) was obtained at an oil concentration of 50 mg·mL−1 (73.15%). The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC) was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes. (Author)

  2. Evaluation of the teratogenic potential of chemicals in the rat.

    Science.gov (United States)

    Fritz, H; Giese, K

    1990-01-01

    On the basis of the results of a variety of teratogenicity studies in Sprague-Dawley-derived albino rats, carried out over several years in our laboratory, an appraisal of the principal experimental procedures is set forth. Various categories of chemicals were used for the evaluation of dosage-related teratogenic potency. Salicylate, prednisolone, cyclophosphamide, 5-hydroxytryptamine (serotonin), glycinonitrile, and dimethylformamide have proven to be teratogenic under certain of the experimental conditions used. Particular differences in the embryotropic effects of acetylsalicylic acid were caused by qualitative and quantitative changes of the vehicle. Fetal morphological abnormalities, classified either as 'malformations' or as 'anomalies', may occur independently of overt maternal toxicity and/or embryotoxicity. Further, they may be closely correlated with general inhibitory effects on growth. Drugs may affect developing tissues and organs selectively due to their pharmacological activity and/or specific organ toxicity. The limitation of maternal treatment to a very short period of gestation may disclose a specific susceptibility of developmental stages of the embryo or fetus. Finally, the importance of data collected from a historical control population to the interpretation of teratogenicity data is emphasised.

  3. QCD With A Chemical Potential, Topology, And The 't Hooft 1/N Expansion

    CERN Document Server

    Armoni, Adi

    2012-01-01

    We discuss the dependence of observables on the chemical potential in 't Hooft's large-N QCD. To this end we use the worldline formalism to expand the fermionic determinant in powers of 1/N. We consider the hadronic as well as the deconfining phase of the theory. We discuss the origin of the sign problem in the worldline approach and elaborate on the planar equivalence between QCD with a baryon chemical potential and QCD with an isospin chemical potential. We show that for C-even observables the sign problem occurs at a subleading order in the 1/N expansion of the fermionic determinant. Finally, we comment on the finite N theory.

  4. Chemical potential for the Bose gases in a one-dimensional harmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T G; Niu, M Y [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 (China); Liu, Q H, E-mail: quanhuiliu@gmail.co [School for Theoretical Physics and Department of Applied Physics, Hunan University, Changsha, 410082 (China)

    2010-05-15

    A closed expression for the chemical potential of Bose gases in an external one-dimensional harmonic trap, reported recently in this journal (Mungan 2009 Chemical potential of one-dimensional simple harmonic oscillators Eur. J. Phys. 30 1131-6), is approximate and not applicable for temperatures lower than a characteristic value below which the ground state becomes occupied by a macroscopic number of particles. In this letter, the correct behaviour of the chemical potential at low temperature is addressed. (letters and comments)

  5. Identification of Genes Potentially Associated with the Fertility Instability of S-Type Cytoplasmic Male Sterility in Maize via Bulked Segregant RNA-Seq.

    Science.gov (United States)

    Su, Aiguo; Song, Wei; Xing, Jinfeng; Zhao, Yanxin; Zhang, Ruyang; Li, Chunhui; Duan, Minxiao; Luo, Meijie; Shi, Zi; Zhao, Jiuran

    S-type cytoplasmic male sterility (CMS-S) is the largest group among the three major types of CMS in maize. CMS-S exhibits fertility instability as a partial fertility restoration in a specific nuclear genetic background, which impedes its commercial application in hybrid breeding programs. The fertility instability phenomenon of CMS-S is controlled by several minor quantitative trait locus (QTLs), but not the major nuclear fertility restorer (Rf3). However, the gene mapping of these minor QTLs and the molecular mechanism of the genetic modifications are still unclear. Using completely sterile and partially rescued plants of fertility instable line (FIL)-B, we performed bulk segregant RNA-Seq and identified six potential associated genes in minor effect QTLs contributing to fertility instability. Analyses demonstrate that these potential associated genes may be involved in biological processes, such as floral organ differentiation and development regulation, energy metabolism and carbohydrates biosynthesis, which results in a partial anther exsertion and pollen fertility restoration in the partially rescued plants. The single nucleotide polymorphisms (SNPs) identified in two potential associated genes were validated to be related to the fertility restoration phenotype by KASP marker assays. This novel knowledge contributes to the understanding of the molecular mechanism of the partial fertility restoration of CMS-S in maize and thus helps to guide the breeding programs.

  6. Identification of Genes Potentially Associated with the Fertility Instability of S-Type Cytoplasmic Male Sterility in Maize via Bulked Segregant RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Aiguo Su

    Full Text Available S-type cytoplasmic male sterility (CMS-S is the largest group among the three major types of CMS in maize. CMS-S exhibits fertility instability as a partial fertility restoration in a specific nuclear genetic background, which impedes its commercial application in hybrid breeding programs. The fertility instability phenomenon of CMS-S is controlled by several minor quantitative trait locus (QTLs, but not the major nuclear fertility restorer (Rf3. However, the gene mapping of these minor QTLs and the molecular mechanism of the genetic modifications are still unclear. Using completely sterile and partially rescued plants of fertility instable line (FIL-B, we performed bulk segregant RNA-Seq and identified six potential associated genes in minor effect QTLs contributing to fertility instability. Analyses demonstrate that these potential associated genes may be involved in biological processes, such as floral organ differentiation and development regulation, energy metabolism and carbohydrates biosynthesis, which results in a partial anther exsertion and pollen fertility restoration in the partially rescued plants. The single nucleotide polymorphisms (SNPs identified in two potential associated genes were validated to be related to the fertility restoration phenotype by KASP marker assays. This novel knowledge contributes to the understanding of the molecular mechanism of the partial fertility restoration of CMS-S in maize and thus helps to guide the breeding programs.

  7. Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil.

    Science.gov (United States)

    García-Gómez, C; Babin, M; Obrador, A; Álvarez, J M; Fernández, M D

    2015-11-01

    This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1). Additionally, plants were also tested at 250 mg Zn kg(-1). The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.

  8. Holographic realization of large- N c orbifold equivalence with non-zero chemical potential

    Science.gov (United States)

    Hanada, Masanori; Hoyos, Carlos; Karch, Andreas; Yaffe, Laurence G.

    2012-08-01

    Recently, it has been suggested that large- N c orbifold equivalences may be applicable to certain theories with chemical potentials, including QCD, in certain portions of their phase diagram. When valid, such an equivalence offers the possibility of relating large- N c QCD at non-zero baryon chemical potential, a theory with a complex fermion determinant, to a related theory whose fermion determinant is real and positive. In this paper, we provide a test of this large N c equivalence using a holographic realization of a supersymmetric theory with baryon chemical potential and a related theory with isospin chemical potential. We show that the two strongly-coupled, large- N c theories are equivalent in a large region of the phase diagram.

  9. Lepidopteran defence droplets - a composite physical and chemical weapon against potential predators

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Khakimov, Bekzod

    2016-01-01

    Insects often release noxious substances for their defence. Larvae of Zygaena filipendulae (Lepidoptera) secrete viscous and cyanogenic glucoside-containing droplets, whose effectiveness was associated with their physical and chemical properties. The droplets glued mandibles and legs of potential...

  10. Control and local measurement of the spin chemical potential in a magnetic insulator

    National Research Council Canada - National Science Library

    Du, Chunhui; van der Sar, Toeno; Zhou, Tony X; Upadhyaya, Pramey; Casola, Francesco; Zhang, Huiliang; Onbasli, Mehmet C; Ross, Caroline A; Walsworth, Ronald L; Tserkovnyak, Yaroslav; Yacoby, Amir

    2017-01-01

    The spin chemical potential characterizes the tendency of spins to diffuse. Probing this quantity could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices...

  11. Potential of chopped heath biomass and spent growth media to replace wood chips as bulking agent for composting high N-containing residues.

    Science.gov (United States)

    Viaene, J; Reubens, B; Willekens, K; Van Waes, C; De Neve, S; Vandecasteele, B

    2017-07-15

    We investigated the potential of C-rich byproducts to replace wood chips as bulking agent (BA) during composting. The impact of these alternatives on the composting process and on compost stability and characteristics was assessed. Three BA (chopped heath biomass and spent growth media used in strawberry and tomato cultivation) were used for processing leek residues in windrow composting. All BA resulted in stable composts with an organic matter (OM) content suitable for use as soil amendment. Using chopped heath biomass led to high pile temperatures and OM degradation and a nutrient-poor compost with high C/P ratio appropriate for increasing soil organic carbon content in P-rich soils. Spent substrates can replace wood chips, however, due to their dense structure and lower biodegradation potential, adding a more coarse BA is required. Generally, the nutrient content of the composts with growth media was higher than the composts with wood chips and chopped heath biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The potential role of 'Candidatus Microthrix parvicella' in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants.

    Science.gov (United States)

    Wang, Juan; Qi, Rong; Liu, Miaomiao; Li, Qian; Bao, Haipeng; Li, Yaming; Wang, Shen; Tandoi, Valter; Yang, Min

    2014-01-01

    We investigated the bacterial community compositions and phosphorus removal performance under sludge bulking and non-bulking conditions in two biological wastewater treatment systems (conventional A²/O (anaerobic/anoxic/aerobic) and inverted A²/O (anoxic/anaerobic/aerobic) processes) receiving the same raw wastewater. Sludge bulking resulted in significant shift in bacterial compositions from Proteobacteria dominance to Actinobacteria dominance, characterized by the significant presence of filamentous 'Candidatus Microthrix parvicella'. Quantitative real-time polymerase chain reaction (PCR) analysis revealed that the relative abundance of 'Candidatus Accumulibacter phosphatis', a key polyphosphate-accumulating organism responsible for phosphorus removal, with respect to 16s rRNA genes of total bacteria was 0.8 and 0.7%, respectively, for the conventional and inverted A²/O systems when sludge bulking occurred, which increased to 8.2 and 12.3% during the non-bulking period. However, the total phosphorus removal performance during the bulking period (2-week average: 97 ± 1 and 96 ± 1%, respectively) was not adversely affected comparable to that during the non-bulking period (2-week average: 96 ± 1 and 96 ± 1%, respectively). Neisser staining revealed the presence of large polyphosphate granules in 'Candidatus Microthrix parvicella', suggesting that this microbial group might have been responsible for phosphorus removal during the sludge bulking period when 'Candidatus Accumulibacter phosphatis' was excluded from the systems.

  13. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

    Science.gov (United States)

    Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.

    2018-02-01

    Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T water structure at T T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

  14. Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector

    NARCIS (Netherlands)

    Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.

    2011-01-01

    The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country

  15. On the Potential of Bulk Metallic Glasses for Dental Implantology: Case Study on Ti40Zr10Cu36Pd14

    Directory of Open Access Journals (Sweden)

    Alethea Liens

    2018-02-01

    Full Text Available Ti40Zr10Cu36Pd14 Bulk Metallic Glass (BMG appears very attractive for future biomedical applications thanks to its high glass forming ability, the absence of toxic elements such as Ni, Al or Be and its good mechanical properties. For the first time, a complete and exhaustive characterization of a unique batch of this glassy alloy was performed, together with ISO standard mechanical tests on machined implant-abutment assemblies. The results were compared to the benchmark Ti-6Al-4V ELI (Extra-Low-Interstitial to assess its potential in dental implantology. The thermal stability, corrosion and sterilization resistance, cytocompatibility and mechanical properties were measured on samples with a simple geometry, but also on implant-abutment assemblies’ prototypes. Results show that the glassy alloy exhibits a quite high thermal stability, with a temperature range of 38 °C between the glass transition and crystallization, a compressive strength of 2 GPa, a certain plastic deformation (0.7%, a hardness of 5.5 GPa and a toughness of 56 MPa.√m. Moreover, the alloy shows a relatively lower Young’s modulus (96 GPa than the Ti-6Al-4V alloy (110–115 GPa, which is beneficial to limit bone stress shielding. The BMG shows a satisfactory cytocompatibility, a high resistance to sterilization and a good corrosion resistance (corrosion potential of −0.07 V/SCE and corrosion current density of 6.0 nA/cm2, which may ensure its use as a biomaterial. Tests on dental implants reveal a load to failure 1.5-times higher than that of Ti-6Al-4V and a comparable fatigue limit. Moreover, implants could be machined and sandblasted by methods usually conducted for titanium implants, without significant degradation of their amorphous nature. All these properties place this metallic glass among a promising class of materials for mechanically-challenging applications such as dental implants.

  16. Poisoning following exposure to chemicals stored in mislabelled or unlabelled containers: a recipe for potential disaster.

    Science.gov (United States)

    Millard, Yvette C; Slaughter, Robin J; Shieffelbien, Lucy M; Schep, Leo J

    2014-09-26

    To investigate poisoning exposures to chemicals that were unlabelled, mislabelled or not in their original containers in New Zealand over the last 10 years, based on calls to the New Zealand National Poisons Centre (NZNPC). Call data from the NZNPC between 2003 and 2012 were analysed retrospectively. Parameters reviewed included patient age, route and site of exposure, product classification and recommended intervention. Of the 324,411 calls received between 2003 and 2012, 100,465 calls were associated with acute human exposure to chemicals. There were 757 inquiries related to human exposure to mislabelled or unlabelled chemicals consisting of 0.75% of chemical exposures. Adults were involved in 51% of incidents, children, containers is a problem for all age groups. Although it represents a small proportion of total calls to the NZNPC it remains a potential risk for serious poisoning. It is important that chemicals are stored securely, in their original containers, and never stored in drinking vessels.

  17. Condensation phenomena in two-flavor scalar QED at finite chemical potential

    CERN Document Server

    Schmidt, Alexander; Gattringer, Christof

    2014-01-01

    We study condensation in two-flavored, scalar QED with non-degenerate masses at finite chemical potential. The conventional formulation of the theory has a sign problem at finite density which can be solved using an exact reformulation of the theory in terms of dual variables. We perform a Monte Carlo simulation in the dual representation and observe a condensation at a critical chemical potential $\\mu_c$. After determining the low-energy spectrum of the theory we try to establish a connection between $\\mu_c$ and the mass of the lightest excitation of the system, which are naively expected to be equal. It turns out, however, that the relation of the critical chemical potential to the mass spectrum in this case is non-trivial: Taking into account the form of the condensate and making some simplifying assumptions we suggest an adequate explanation which is supported by numerical results.

  18. Control and local measurement of the spin chemical potential in a magnetic insulator.

    Science.gov (United States)

    Du, Chunhui; van der Sar, Toeno; Zhou, Tony X; Upadhyaya, Pramey; Casola, Francesco; Zhang, Huiliang; Onbasli, Mehmet C; Ross, Caroline A; Walsworth, Ronald L; Tserkovnyak, Yaroslav; Yacoby, Amir

    2017-07-14

    The spin chemical potential characterizes the tendency of spins to diffuse. Probing this quantity could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here we introduce single-spin magnetometry as a generic platform for nonperturbative, nanoscale characterization of spin chemical potentials. We experimentally realize this platform using diamond nitrogen-vacancy centers and use it to investigate magnons in a magnetic insulator, finding that the magnon chemical potential can be controlled by driving the system's ferromagnetic resonance. We introduce a symmetry-based two-fluid theory describing the underlying magnon processes, measure the local thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled spin injection. Our results pave the way for nanoscale control and imaging of spin transport in mesoscopic systems. Copyright © 2017, American Association for the Advancement of Science.

  19. Control and local measurement of the spin chemical potential in a magnetic insulator

    Science.gov (United States)

    Du, Chunhui; van der Sar, Toeno; Zhou, Tony X.; Upadhyaya, Pramey; Casola, Francesco; Zhang, Huiliang; Onbasli, Mehmet C.; Ross, Caroline A.; Walsworth, Ronald L.; Tserkovnyak, Yaroslav; Yacoby, Amir

    2017-07-01

    The spin chemical potential characterizes the tendency of spins to diffuse. Probing this quantity could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here we introduce single-spin magnetometry as a generic platform for nonperturbative, nanoscale characterization of spin chemical potentials. We experimentally realize this platform using diamond nitrogen-vacancy centers and use it to investigate magnons in a magnetic insulator, finding that the magnon chemical potential can be controlled by driving the system’s ferromagnetic resonance. We introduce a symmetry-based two-fluid theory describing the underlying magnon processes, measure the local thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled spin injection. Our results pave the way for nanoscale control and imaging of spin transport in mesoscopic systems.

  20. Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys

    DEFF Research Database (Denmark)

    Abrikosov, I. A.; Skriver, Hans Lomholt

    1993-01-01

    We present an efficient technique for calculating surface properties of random alloys based on the coherent-potential approximation within a tight-binding linear-muffin-tin-orbitals basis. The technique has been applied in the calculation of bulk thermodynamic properties as well as (001) surface...

  1. Overview of large N QCD with chemical potential at weak and strong coupling

    DEFF Research Database (Denmark)

    Hollowood, Timothy J.; Myers, Joyce C

    2013-01-01

    that the matrix models in these two limits agree at temperatures and chemical potentials which are not too high, such that observables in the strongly-coupled theory can be obtained from the observables in the weakly-coupled theory, and vice versa, using a simple transformation of variables.......In this note we summarize the results from a longer article on obtaining the QCD phase diagram as a function of the temperature and chemical potential at large Nc and large Nf in the weak coupling limit λ 0, and the strong coupling limit λ. The weak coupling phase diagram is obtained from...

  2. Ion-water clusters, bulk medium effects, and ion hydration

    CERN Document Server

    Merchant, Safir; Dean, Kelsey R; Asthagiri, D

    2011-01-01

    Thermochemistry of gas-phase ion-water clusters together with estimates of the hydration free energy of the clusters and the water ligands are used to calculate the hydration free energy of the ion. Often the hydration calculations use a continuum model of the solvent. The primitive quasichemical approximation to the quasichemical theory provides a transparent framework to anchor such efforts. Here we evaluate the approximations inherent in the primitive quasichemical approach and elucidate the different roles of the bulk medium. We find that the bulk medium can stabilize configurations of the cluster that are usually not observed in the gas phase, while also simultaneously lowering the excess chemical potential of the ion. This effect is more pronounced for soft ions. Since the coordination number that minimizes the excess chemical potential of the ion is identified as the optimal or most probable coordination number, for such soft ions, the optimum cluster size and the hydration thermodynamics obtained with...

  3. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-23

    Production of chemicals from biomass offers a promising opportunity to reduce U.S. dependence on imported oil, as well as to improve the overall economics and sustainability of an integrated biorefinery. Given the increasing momentum toward the deployment and scale-up of bioproducts, this report strives to: (1) summarize near-term potential opportunities for growth in biomass-derived products; (2) identify the production leaders who are actively scaling up these chemical production routes; (3) review the consumers and market champions who are supporting these efforts; (4) understand the key drivers and challenges to move biomass-derived chemicals to market; and (5) evaluate the impact that scale-up of chemical strategies will have on accelerating the production of biofuels.

  4. Chemical potential dependence of particle ratios within a unified thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, I., E-mail: inamhep@gmail.com; Nanda, H.; Uddin, S. [Central University, Department of Physics, Jamia Millia Islamia (India)

    2016-06-15

    A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after the hadronization takes place.

  5. The potential role of Life Cycle Assessment in regulation of chemicals in the European Union

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2003-01-01

    uses of LCA could be in overall priority setting (including non-chemical products) of environmental product policy and in standardisation work related to products/processes releasing chemicals to the environment. A number of methodological interactions between regulatory risk assessment and LCA as well...... for data and assessment procedures on dangerous chemicals. One change is the inclusion of socio-economic assessments as decision support to regulation of substances, which are undesirable from a risk assessment point of view. Comparative LCA’s have similarities with and may serve as good input to socio......-economic analyses, because LCA’s attempt to: 1. cover all emissions (including intermediates), 2. assess all potential environmental impacts, 3. assess the average situation (including uncertainty analyses). Contrary, risk assessments are based on substance approaches and conservative assumptions. Other potential...

  6. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon

    2011-01-01

    and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...

  7. Lattice QCD with chemical potential: Evading the fermion-sign problem

    Indian Academy of Sciences (India)

    Since the turn of the millennium there has been tremendous progress in understanding QCD at finite chemical potential, . Apart from qualitative results obtained using models, and exact results at very large obtained in weak coupling theory, there has been tremendous progress in getting exact and quantitative results ...

  8. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, Ludo J.; Peters, Kevin J. H.; Duine, Rembert A.; Bauer, Gerrit E. W.; Wees, Bart J. van

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  9. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L J; Peters, K J H; Bauer, G. E. W.; Duine, R A; van Wees, B J

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  10. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L.J.; Peters, K. J H; Bauer, G.E.; Duine, R. A.; Van Wees, B. J.

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  11. Note on the chemical potential of decoupled matter in the Universe

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Pombo, C.

    2011-01-01

    Textbooks on cosmology exhibit a thermodynamic inconsistency for free streaming, decoupled matter. It is connected here to the chemical potential, which deviates from its equilibrium value μ = @kBT , where @ is the usual parameter of the Fermi-Dirac or Bose-Einstein distribution function.

  12. Susceptibility based upon Chemical Interaction with Disease Processes: Potential Implications for Risk Assessment

    Science.gov (United States)

    One of the challenges facing toxicology and risk assessment is that numerous host and environmental factors may modulate vulnerability and risk. An area of increasing interest is the potential for chemicals to interact with background aging and disease processes, an interaction...

  13. Local optical control of ferromagnetism and chemical potential in a topological insulator.

    Science.gov (United States)

    Yeats, Andrew L; Mintun, Peter J; Pan, Yu; Richardella, Anthony; Buckley, Bob B; Samarth, Nitin; Awschalom, David D

    2017-09-26

    Many proposed experiments involving topological insulators (TIs) require spatial control over time-reversal symmetry and chemical potential. We demonstrate reconfigurable micron-scale optical control of both magnetization (which breaks time-reversal symmetry) and chemical potential in ferromagnetic thin films of Cr-(Bi,Sb)2Te3 grown on SrTiO3 By optically modulating the coercivity of the films, we write and erase arbitrary patterns in their remanent magnetization, which we then image with Kerr microscopy. Additionally, by optically manipulating a space charge layer in the underlying SrTiO3 substrates, we control the local chemical potential of the films. This optical gating effect allows us to write and erase p-n junctions in the films, which we study with photocurrent microscopy. Both effects are persistent and may be patterned and imaged independently on a few-micron scale. Dynamic optical control over both magnetization and chemical potential of a TI may be useful in efforts to understand and control the edge states predicted at magnetic domain walls in quantum anomalous Hall insulators.

  14. Draft Genome Sequence of Acetobacterium bakii DSM 8239, a Potential Psychrophilic Chemical Producer through Syngas Fermentation.

    Science.gov (United States)

    Hwang, Soonkyu; Song, Yoseb; Cho, Byung-Kwan

    2015-09-24

    Acetobacterium bakii DSM 8239 is an anaerobic, psychrophilic, and chemolithoautotrophic bacterium that is a potential platform for producing commodity chemicals from syngas fermentation. We report here the draft genome sequence of A. bakii DSM 8239 (4.14 Mb) to elucidate its physiological and metabolic properties related to syngas fermentation. Copyright © 2015 Hwang et al.

  15. Iso-chemical potential trajectories in the P-T plane for He II

    Science.gov (United States)

    Maytal, B.; Nissen, J. A.; Van Sciver, S. W.

    1990-01-01

    Trajectories of constant chemical potential in the P-T plane serve as an integral formulation of London's equation. The trajectories are useful for analysis and synthesis of fountain effect pump performance. A family of trajectories is generated from available numerical codes.

  16. Influence of the irradiation temperature on the surface structure and physical/chemical properties of Ar ion-irradiated bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Menéndez, E., E-mail: Enric.MenendezDalmau@fys.kuleuven.be [KU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Hynowska, A.; Fornell, J.; Suriñach, S. [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Montserrat, J. [Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Campus Universitat Autònoma Barcelona, E-08193 Bellaterra (Spain); Temst, K.; Vantomme, A. [KU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Baró, M.D. [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); García-Lecina, E. [Surfaces Division, IK4-CIDETEC, Parque Tecnológico de San Sebastián, E-20009 Donostia (Spain); Pellicer, E., E-mail: Eva.Pellicer@uab.cat [Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Sort, J., E-mail: Jordi.Sort@uab.cat [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain)

    2014-10-15

    Highlights: • Ion irradiation is performed on bulk metallic glasses at 300 K and close to T{sub g}. • Nanocrystallization is observed after high-temperature irradiation. • The mechanical properties are enhanced after the irradiation procedures. • Corrosion resistance is improved after irradiation close to T{sub g}. - Abstract: Surface treatments using multiple Ar ion irradiation processes with a maximum energy and fluence of 200 keV and 1 × 10{sup 16} ions/cm{sup 2}, respectively, have been performed on two different metallic glasses: Zr{sub 55}Cu{sub 28}Al{sub 10}Ni{sub 7} and Ti{sub 40}Zr{sub 10}Cu{sub 38}Pd{sub 12}. Analogous irradiation procedures have been carried out at room temperature (RT) and at T = 620 K (≈0.9 T{sub g}, where T{sub g} denotes the glass transition). The structure, mechanical behavior, wettability and corrosion resistance of the irradiated alloys have been compared with the properties of the as-cast and annealed (T = 620 K) non-irradiated specimens. While ion irradiation at RT does not significantly alter the amorphous structure of the alloys, ion irradiation close to T{sub g} promotes decomposition/nanocrystallization. Consequently, the hardness (H) and reduced Young’s modulus (E{sub r}) decrease after irradiation at RT but they both increase after irradiation at 620 K. While annealing close to T{sub g} increases the hydrophobicity of the samples, irradiation induces virtually no changes in the contact angle when comparing with the as-cast state. Concerning the corrosion resistance, although not much effect is found after irradiation at RT, an improvement is observed after irradiation at 620 K, particularly for the Ti-based alloy. These results are of practical interest in order to engineer appropriate surface treatments based on ion irradiation, aimed at specific functional applications of bulk metallic glasses.

  17. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling

    Science.gov (United States)

    Researchers facilitated evaluation of chemicals that lack chronic oral toxicity values using a QSAR model to develop estimates of potential toxicity for chemicals used in HF fluids or found in flowback or produced water

  18. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces

    Science.gov (United States)

    Pohorille, A.; Wilson, M. A.

    1996-01-01

    The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.

  19. Sonochemistry: what potential for conversion of lignocellulosic biomass into platform chemicals?

    Science.gov (United States)

    Chatel, Gregory; De Oliveira Vigier, Karine; Jérôme, François

    2014-10-01

    This Review focuses on the use of ultrasound to produce chemicals from lignocellulosic biomass. However, the question about the potential of sonochemistry for valorization/conversion of lignocellulosic biomass into added-value chemicals is rather conceptual. Until now, this technology has been mainly used for the production of low-value chemicals such as biodiesel or as simple method for pretreatment or extraction. According to preliminary studies reported in literature, access to added-value chemicals can be easily and sometimes solely obtained by the use of ultrasound. The design of sonochemical parameters offers many opportunities to develop new eco-friendly and efficient processes. The goal of this Review is to understand why the use of ultrasound is focused rather on pretreatment or extraction of lignocellulosic biomass rather than on the production of chemicals and to understand, through the reported examples, which directions need to be followed to favor strategies based on ultrasound-assisted production of chemicals from lignocellulosic biomass. We believe that ultrasound-assisted processes represent an innovative approach and will create a growing interest in academia but also in the industry in the near future. Based on the examples reported in the literature, we critically discuss how sonochemistry could offer new strategies and give rise to new results in lignocellulosic biomass valorization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Determination of physical and chemical stability in pressurised metered dose inhalers: potential new techniques.

    Science.gov (United States)

    Ooi, Jesslynn; Traini, Daniela; Boyd, Ben J; Gaisford, Simon; Young, Paul M

    2015-01-01

    Pressurised metered dose inhalers (pMDIs) are subject to rigorous physical and chemical stability tests during formulation. Due to the time and cost associated with product development studies, there is a need for online techniques to fast screen new formulations in terms of physical and chemical (physico-chemical) stability. The problem with achieving this is that pMDIs are by their definition, pressurised, making the direct observation of physico-chemical properties in situ difficult. This review highlights the characterisation tools that can enhance the product development process for pMDIs. Techniques investigated include: laser diffraction, Raman spectroscopy, isothermal ampoule calorimetry, titration calorimetry and gas perfusion calorimetry. The operational principles behind each technique are discussed and complemented with examples from the literature. Laser diffraction is well placed to analyse real-time physical stability as a function of particle size; however, its use is restricted to suspension pMDIs. Raman spectroscopy can be potentially used to attain both suspension and solution pMDI spectra in real time; however, the majority of experiments are ex-valve chemical composition mapping. Calorimetry is an effective technique in capturing both chemical and physical degradations of APIs in real time but requires redevelopment to withstand pressure for the purposes of pMDI screening.

  1. Estimation of the acute inhalation hazards of chemicals based on route-to-route and local endpoint extrapolation: Experience from Bulk Maritime Transport

    NARCIS (Netherlands)

    Höfer, T.; James, D.; Syversen, T.; Bowmer, T.

    2011-01-01

    Data on acute lethal inhalation toxicity from animal studies are commonly required for assessing the hazards to human health of volatile, gaseous and dusty chemicals or their mixtures. The International Maritime Organisation (IMO) made the provision of acute inhalation toxicity data a mandatory

  2. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  3. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging.

    Directory of Open Access Journals (Sweden)

    Gen Yan

    Full Text Available We developed a novel magnetic resonance imaging (MRI technique based on chemical exchange saturation transfer (CEST for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood-brain barrier (BBB disruption.All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0 and other metabolites (glutamine, myoinositol, creatinine, and choline were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution.The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz. The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection.The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA.

  4. Generation and Stability of Bulk Nanobubbles.

    Science.gov (United States)

    Oh, Seung Hoon; Kim, Jong-Min

    2017-04-18

    Recently, extremely small bubbles, referred to as nanobubbles, have drawn increased attention due to their novel properties and great potential for various applications. In this study, a novel method for the generation of bulk nanobubbles (BNBs) was introduced, and stability of fabricated BNBs was investigated. BNBs were created from CO2 gas with a mixing method; the chemical identity and phase state of these bubbles can be determined via infrared spectroscopy. The presence of BNBs was observed with a nanoparticle tracking analysis (NTA). The ATR-FTIR spectra of BNBs indicate that the BNBs were filled with CO2 gas. Furthermore, the BNB concentration and its ζ-potential were about 2.94 × 108 particles/mL and -20 mV, respectively (24 h after BNB generation with a mixing time of 120 min). This indicates the continued existence and stability of BNBs in water for an extended period of time.

  5. Tuning the electronic structure of bulk FeSe with chemical pressure using quantum oscillations and angle resolved photoemission spectroscopy (ARPES)

    Science.gov (United States)

    Coldea, Amalia

    FeSe is a unique and intriguing superconductor which can be tuned into a high temperature superconducting state using applied pressure, chemical intercalation and surface doping. In the absence of magnetism, the structural transition in FeSe is believed to be electronically driven, with the orbital degrees of freedom playing an important part. This scenario supports the stabilization of a nematic state in FeSe, which manifests as a Fermi surface deformation in the presence of strong interactions, as detected by ARPES. Another manifestation of the nematicity is the enhanced nematic susceptibility determined from elastoresistance measurements under applied strain. Isovalent Sulphur substitution onto the Selenium site constitutes a chemical pressure, which subtly modifies the electronic structure of FeSe, suppressing the structural transition without inducing high temperature superconductivity. I will present the evolution of the electronic structure with chemical pressure in FeSe, as determined from quantum oscillations and ARPES studies and I will discuss the suppression of the nematic electronic state and the role of electronic correlations. Experiments were performed at high magnetic field facilities in Tallahassee, Nijmegen and Toulouse and Diamond Light Source, UK. This work is mainly supported by EPSRC, UK (EP/I004475/1, EP/I017836/1) and I acknowledge my collaborators from Refs. .

  6. Watercress and amphipods Potential chemical defense in a spring stream macrophyte.

    Science.gov (United States)

    Newman, R M; Kerfoot, W C; Hanscom, Z

    1990-01-01

    We investigated the potential role of defensive chemicals in the avoidance of watercress (Nasturtium officinale) by the cooccurring amphipod,Gammarus pseudolimnaeus at two spring brooks: Carp Creek, Michigan and Squabble Brook, Connecticut. We conducted observations and laboratory experiments on the consumption of watercress, the toxicity of damaged (frozen) watercress, and the toxicity of damage-released secondary chemicals. Field-collected yellowed watercress typically lacked the bite and odor characteristic of green watercress and was consumed byG. pseudolimnaeus. G. pseudolimnaeus strongly preferred yellowed watercress to green watercress despite the higher nitrogen content of the latter (2.7 vs 5.4%), and usually consumed five times more yellowed watercress (>50% of yellowed leaf area vs. officinale and may contribute to defense from herbivory by aquatic crustaceans. This system may be just one of many examples of the use of defensive chemicals by stream and lake macrophytes.

  7. 19 CFR 149.4 - Bulk and break bulk cargo.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from the...

  8. Use of genotoxicity tests in a TIE to identify chemicals potentially affecting human health

    Energy Technology Data Exchange (ETDEWEB)

    Goudey, J.S. [HydroQual Labs. Ltd., Calgary, Alberta (Canada); Shaw, R.D.; Swanson, S.M. [Golder Associates Ltd., Calgary, Alberta (Canada); Nadeau, S. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada)

    1995-12-31

    Imperial Oil operates a sour gas processing plant in southern Alberta that has, for the past several years, been the focus of considerable public and regulatory concern over perceived contamination of soils and groundwater on a nearby ranch. Elevated concentrations of DOC ({approximately}140 mg/L) have been received in groundwater underlying the plant site. Two process-related chemicals, sulfolane and diisopropanolamine (DIPA), had been previously identified as the primary components of the DOC plume, although the chemicals associated with 30% of the DOC could not be identified. A risk assessment was initiated in 1994 to determine whether off-site migration of sulfolane and DIPA or of other unidentified contaminants poses a risks to human health and/or ecological receptors. One component of the risk assessment included conducting a TIE to help identify the chemical(s) in contaminated groundwater underlying the gas plant that might adversely affect human health. Three endpoints were utilized in the TIE: MicroTox, SOS-Chromotest and the Ames test. MicroTox was used since it exhibited a response to whole groundwater from the site, while the genotoxicity tests were used because DIPA reportedly causes a response in the Ames test and because of the concern over potential human health affects arising from other unidentified contaminants. Results of the TIE indicated that the chemicals causing the toxicity in the groundwater sample were water soluble compounds, with similar characteristics to the process chemicals used at the gas plant and detected at high concentrations in groundwater from the plant site. These results provided additional evidence to help focus the risk assessment on the chemicals sulfolane and diisopropanolamine.

  9. Bulk viscosity of low-temperature strongly interacting matter

    Energy Technology Data Exchange (ETDEWEB)

    Dobado, Antonio [Departamento de Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid (Spain); Llanes-Estrada, Felipe J., E-mail: fllanes@fis.ucm.es [Departamento de Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid (Spain); Torres-Rincon, Juan M. [Departamento de Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2011-08-03

    We study the bulk viscosity of a pion gas in unitarized Chiral Perturbation Theory at low and moderate temperatures, below any phase transition to a quark-gluon plasma phase. We argue that inelastic processes are irrelevant and exponentially suppressed at low temperatures. Since the system falls out of chemical equilibrium upon expansion, a pion chemical potential must be introduced, so we extend the existing theories that include it. We control the zero modes of the collision operator and Landau's conditions of fit when solving the Boltzmann equation with the elastic collision kernel. The dependence of the bulk viscosity with temperature is reminiscent of the findings of Fernandez-Fraile and Gomez Nicola (2009) , while the numerical value is closer to that of Davesne (1996) . In the zero-temperature limit we correctly recover the vanishing viscosity associated to a non-relativistic monoatomic gas.

  10. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  11. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Directory of Open Access Journals (Sweden)

    Magbubah Essack

    2014-10-01

    Full Text Available In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  12. Synthesis and physico-chemical characterization of a polysialate-hydroxyapatite composite for potential biomedical application

    Science.gov (United States)

    Zoulgami, M.; Lucas-Girot, A.; Michaud, V.; Briard, P.; Gaudé, J.; Oudadesse, H.

    2002-09-01

    New composite materials based on aluminosilicate materials were developed to be used in orthopaedic or maxillo-facial surgery. They are called geopolymers or polysialate-siloxo (PSS) and were studied alone or mixed with hydroxyapatite (HAP). The properties of these materials were investigated for potential use in biological or surgery applications. In this work, the chemistry involved in materials preparation was described. Samples were characterized by some physico-chemical methods like X-ray diffraction (XRD), infrared spectrometry (IR) and electron dispersion X-ray spectrometry (EDX). Results indicate that the mixing hydroxyapatite-geopolymer (PSS) leads to a neutral porous composite material with interesting physico-chemical properties. A preliminary evaluation of its cytotoxicity reveals an harmlessness towards fibroblasts. These properties allow to envisage this association as a potential biomaterial.

  13. Mini-grand canonical ensemble: Chemical potential in the solvation shell

    Science.gov (United States)

    Dixit, Purushottam D.; Bansal, Artee; Chapman, Walter G.; Asthagiri, Dilip

    2017-10-01

    Quantifying the statistics of occupancy of solvent molecules in the vicinity of solutes is central to our understanding of solvation phenomena. Number fluctuations in small solvation shells around solutes cannot be described within the macroscopic grand canonical framework using a single chemical potential that represents the solvent bath. In this communication, we hypothesize that molecular-sized observation volumes such as solvation shells are best described by coupling the solvation shell with a mixture of particle baths each with its own chemical potential. We confirm our hypotheses by studying the enhanced fluctuations in the occupancy statistics of hard sphere solvent particles around a distinguished hard sphere solute particle. Connections with established theories of solvation are also discussed.

  14. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nowak, Maciej A., E-mail: maciej.a.nowak@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2016-08-15

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  15. Integrability and chemical potential in the (3 + 1)-dimensional Skyrme model

    Science.gov (United States)

    Alvarez, P. D.; Canfora, F.; Dimakis, N.; Paliathanasis, A.

    2017-10-01

    Using a remarkable mapping from the original (3 + 1)dimensional Skyrme model to the Sine-Gordon model, we construct the first analytic examples of Skyrmions as well as of Skyrmions-anti-Skyrmions bound states within a finite box in 3 + 1 dimensional flat space-time. An analytic upper bound on the number of these Skyrmions-anti-Skyrmions bound states is derived. We compute the critical isospin chemical potential beyond which these Skyrmions cease to exist. With these tools, we also construct topologically protected time-crystals: time-periodic configurations whose time-dependence is protected by their non-trivial winding number. These are striking realizations of the ideas of Shapere and Wilczek. The critical isospin chemical potential for these time-crystals is determined.

  16. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  17. Integrability and chemical potential in the (3+1-dimensional Skyrme model

    Directory of Open Access Journals (Sweden)

    P.D. Alvarez

    2017-10-01

    Full Text Available Using a remarkable mapping from the original (3+1dimensional Skyrme model to the Sine-Gordon model, we construct the first analytic examples of Skyrmions as well as of Skyrmions–anti-Skyrmions bound states within a finite box in 3+1 dimensional flat space-time. An analytic upper bound on the number of these Skyrmions–anti-Skyrmions bound states is derived. We compute the critical isospin chemical potential beyond which these Skyrmions cease to exist. With these tools, we also construct topologically protected time-crystals: time-periodic configurations whose time-dependence is protected by their non-trivial winding number. These are striking realizations of the ideas of Shapere and Wilczek. The critical isospin chemical potential for these time-crystals is determined.

  18. Electrodynamics at non-zero temperature, chemical potential and Bose condensate

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, Alexander D.; Lepidi, Angela [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Polo Scientifico e Tecnologico, Via Saragat 1 (edificio C), 44100 Ferrara (Italy); Piccinelli, Gabriella, E-mail: dolgov@fe.infn.it, E-mail: lepidi@fe.infn.it, E-mail: gabriela@astroscu.unam.mx [Centro Tecnologico, FES Aragon, Universidad Nacional Autonoma de Mexico, Avenida Rancho Seco S/N, Bosques de Aragon, Nezahualcoyotl, Estado de Mexico 57130 (Mexico)

    2009-02-15

    Electrodynamics of charged scalar bosons and spin 1/2 fermions is studied at non-zero temperature, chemical potentials, and possible Bose condensate of the charged scalars. Debye screening length, plasma frequency, and the photon dispersion relation are calculated. It is found that in presence of the condensate the time-time component of the photon polarization operator in the first order in electric charge squared acquires infrared singular parts proportional to inverse powers of the spatial photon momentum k.

  19. Hydrodynamical Description of the QCD Dirac Spectrum at Finite Chemical Potential

    OpenAIRE

    Liu, Yizhuang; Warchol, Piotr; Zahed, Ismail

    2015-01-01

    We present a hydrodynamical description of the QCD Dirac spectrum at finite chemical potential as an uncompressible droplet in the complex eigenvalue space. For a large droplet, the fluctuation spectrum around the hydrostatic solution is gapped by a longitudinal Coulomb plasmon, and exhibits a frictionless odd viscosity. The stochastic relaxation time for the restoration/breaking of chiral symmetry is set by twice the plasmon frequency. The leading droplet size correction to the relaxation ti...

  20. Variation of the strange-quark chemical potential in the phase diagram of nuclear matter

    CERN Document Server

    Panagiotou, A D; Gerodimou, E

    2002-01-01

    On the basis of lattice calculations, we require the existence of a deconfined quark matter region (0chemical potential is expressed in a functional form of the temperature and light-quark chemical potential and its variation throughout the 3-region phase diagram is studied. We propose the change of the sign of the strange-quark chemical potential, from positive in the hadronic region to negative beyond, to be a unique, concise and well-defined indication of the quark- deconfinement phase transition in nuclear matter. Analysis of the nucleus-nucleus collision data from AGS and SPS is presented giving strong support to our proposal. (23 refs).

  1. Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation

    Science.gov (United States)

    Kofke Peter, David A.; Cummings, T.

    The precision of several methods for computing the chemical potential by molecular simulation is investigated. The study does not apply molecular simulation to the analysis but instead works with models of the simulation process. These models enable the variance of the chemical potential to be computed accurately and very quickly and thereby permits the methods (freeenergy perturbation, expanded ensembles, thermodynamic integration, and histogram-distribution methods) to be optimized and compared over a range of densities. The study focuses exclusively on the hard-sphere model. This model is simple and well characterized; yet it exhibits the essential features that make the chemical potential calculation difficult; arguments are presented to support the broader applicability of the study. The severe asymmetry of particle insertion against particle deletion is highlighted, and it is shown that any staged free-energy perturbation method with a 'deletion' component is highly prone to systematic error. More generally this implies that such methods should always be staged in the direction of decreasing entropy. Other findings show that uniform sampling is not optimal for umbrellasampling and expanded-ensemble applications, although it remains a good rule of thumb for tuning these approaches. Among the techniques we study, optimally staged insertion and the distribution-histogram methods are the most efficient and precise. The latter is effective only when used in an interpolative fashion, and we identify it as the most likely route to further progress in the field.

  2. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  3. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals.

    Science.gov (United States)

    van den Brink, Nico W; Arblaster, Jennifer A; Bowman, Sarah R; Conder, Jason M; Elliott, John E; Johnson, Mark S; Muir, Derek C G; Natal-da-Luz, Tiago; Rattner, Barnett A; Sample, Bradley E; Shore, Richard F

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts. © 2015 SETAC.

  4. Agricultural and Food Processing Wastes as Potential Substrates in Microbial Protein Production: Chemical Analysis

    Directory of Open Access Journals (Sweden)

    R. G. Lorica

    1983-12-01

    Full Text Available A number of agricultural and food processing wastes were analyzed in order to determine their potential as substrates for microbial cell production. Potential was evaluated in terms of the following parameters: % crude protein, % neutral detergent fiber, % cellulose, % crude fat, % lignin, and gross energy value. The high lignin content of a good number of these materials indicates that the lignocellulose complex may have to be broken down in a chemical step before these can effectively function as a carbon source during the fermentation process leading to the production of microbial proteins.

  5. Most Plastic Products Release Estrogenic Chemicals: A Potential Health Problem That Can Be Solved

    Science.gov (United States)

    Yang, Chun Z.; Yaniger, Stuart I.; Jordan, V. Craig; Klein, Daniel J.

    2011-01-01

    Background: Chemicals having estrogenic activity (EA) reportedly cause many adverse health effects, especially at low (picomolar to nanomolar) doses in fetal and juvenile mammals. Objectives: We sought to determine whether commercially available plastic resins and products, including baby bottles and other products advertised as bisphenol A (BPA) free, release chemicals having EA. Methods: We used a roboticized MCF-7 cell proliferation assay, which is very sensitive, accurate, and repeatable, to quantify the EA of chemicals leached into saline or ethanol extracts of many types of commercially available plastic materials, some exposed to common-use stresses (microwaving, ultraviolet radiation, and/or autoclaving). Results: Almost all commercially available plastic products we sampled—independent of the type of resin, product, or retail source—leached chemicals having reliably detectable EA, including those advertised as BPA free. In some cases, BPA-free products released chemicals having more EA than did BPA-containing products. Conclusions: Many plastic products are mischaracterized as being EA free if extracted with only one solvent and not exposed to common-use stresses. However, we can identify existing compounds, or have developed, monomers, additives, or processing agents that have no detectable EA and have similar costs. Hence, our data suggest that EA-free plastic products exposed to common-use stresses and extracted by saline and ethanol solvents could be cost-effectively made on a commercial scale and thereby eliminate a potential health risk posed by most currently available plastic products that leach chemicals having EA into food products. PMID:21367689

  6. Potential Challenges Faced by the U.S. Chemicals Industry under a Carbon Policy

    Directory of Open Access Journals (Sweden)

    Andrea Bassi

    2009-09-01

    Full Text Available Chemicals have become the backbone of manufacturing within industrialized economies. Being energy-intensive materials to produce, this sector is threatened by policies aimed at combating and adapting to climate change. This study examines the worst-case scenario for the U.S. chemicals industry when a medium CO2 price policy is employed. After examining possible industry responses, the study goes on to identify and provide a preliminary evaluation of potential opportunities to mitigate these impacts. If climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies to mitigate the impacts of rising energy costs, the examination shows that climate policies that put a price on carbon could have substantial impacts on the competiveness of the U.S. chemicals industry over the next two decades. In the long run, there exist technologies that are available to enable the chemicals sector to achieve sufficient efficiency gains to offset and manage the additional energy costs arising from a climate policy.

  7. Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential

    Science.gov (United States)

    Vovchenko, Volodymyr; Pásztor, Attila; Fodor, Zoltán; Katz, Sandor D.; Stoecker, Horst

    2017-12-01

    The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG) model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the net-baryon density at imaginary baryochemical potential - corresponding to the fugacity or virial expansion at real chemical potential - are calculated within this model, and compared with the Nt = 12 lattice data. The lattice QCD behavior of the first four Fourier coefficients up to T ≃ 185 MeV is described fairly well by an interacting HRG with a single baryon-baryon eigenvolume interaction parameter b ≃ 1 fm3, while the available lattice data on the difference χ2B - χ4B of baryon number susceptibilities is reproduced up to T ≃ 175 MeV.

  8. A Comprehensive Review on Chemical Profiling of Nelumbo Nucifera: Potential for Drug Development.

    Science.gov (United States)

    Sharma, Bhesh Raj; Gautam, Lekh Nath S; Adhikari, Deepak; Karki, Rajendra

    2017-01-01

    Nelumbo nucifera, also known as sacred lotus, has primarily been used as food throughout the Asian continent, and its medicinal values have been described in Ayurvedic and Traditional Chinese Medicine. The purpose of this study is to systematically characterize the chemical profiling and pharmacological activities of N. nucifera. Herein, we critically reviewed and analysed the phytochemical and pharmacological reports of N. nucifera. Our search for the keyword 'Nelumbo nucifera pharmacology' in all databases reported in Web of Science yielded 373 results excluding reviews and abstracts in document types. Two hundred and forty-three spectrum natural compounds from different parts of N. nucifera belonging to diverse chemical groups, including alkaloids, flavonoids, glycosides, terpenoids, steroids, fatty acids, proteins, minerals, and vitamins have been reported. In addition, distinct pharmacological activities, mainly against cancer, microbial infection, diabetes, inflammation, atherosclerosis, and obesity, have been associated with crude extracts, fractions, and isolated compounds. This review highlights potential use of neferine, liensinine, isoliensinine, and nuciferine in clinical trials. In depth, mechanism of the potential chemical entities from N. nucifera via structure activity relationship needs to be explored to guarantee the stability and safety for the clinical use. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  10. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    Science.gov (United States)

    Benner, R.; Hatcher, P.G.; Hedges, J.I.

    1990-01-01

    Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.

  11. Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface.

    Science.gov (United States)

    Zhou, Xueyao; Nattino, Francesco; Zhang, Yaolong; Chen, Jun; Kroes, Geert-Jan; Guo, Hua; Jiang, Bin

    2017-11-22

    A fifteen-dimensional global potential energy surface for the dissociative chemisorption of methane on the rigid Ni(111) surface is developed by a high fidelity fit of ∼200 000 DFT energy points computed using a specific reaction parameter density functional designed to reproduce experimental data. The permutation symmetry and surface periodicity are rigorously enforced using the permutation invariant polynomial-neural network approach. The fitting accuracy of the potential energy surface is thoroughly investigated by examining both static and dynamical attributes of CHD3 dissociation on the frozen surface. This potential energy surface is expected to be chemically accurate as after correction for surface temperature effects it reproduces the measured initial sticking probabilities of CHD3 on Ni(111) for various incidence conditions.

  12. Adsorption-desorption kinetics and chemical potential of adsorbed and gas-phase particles

    Science.gov (United States)

    Zhdanov, V. P.

    2001-03-01

    In the literature, one can find two alternative ways of using the chemical potential of adsorbed and gas-phase particles, μa and μg, for describing the adsorption-desorption kinetics. According to the first approach, the desorption rate depends only on μa. The second approach, proposed by Ward et al. in a series of papers published in the Journal of Chemical Physics, predicts that the desorption rate is proportional to exp[(μa-μg)/kBT]. Scrutinizing the formalism used by Ward et al., we show that the latter dependence makes no sense because it contradicts the basic principles of the general theory of activated rate processes.

  13. Heat and Moisture Transport in Unsaturated Porous Media -- A Coupled Model in Terms of Chemical Potential

    CERN Document Server

    Sullivan, Eric

    2013-01-01

    Transport phenomena in porous media are commonplace in our daily lives. Examples and applications include heat and moisture transport in soils, baking and drying of food stuffs, curing of cement, and evaporation of fuels in wild fires. Of particular interest to this study are heat and moisture transport in unsaturated soils. Historically, mathematical models for these processes are derived by coupling classical Darcy's, Fourier's, and Fick's laws with volume averaged conservation of mass and energy and empirically based source and sink terms. Recent experimental and mathematical research has proposed modifications and suggested limitations in these classical equations. The primary goal of this thesis is to derive a thermodynamically consistent system of equations for heat and moisture transport in terms of the chemical potential that addresses some of these limitations. The physical processes of interest are primarily diffusive in nature and, for that reason, we focus on using the macroscale chemical potentia...

  14. Measuring the Chemical Potential of the Martian Regolith to Generate and Sustain Life

    Science.gov (United States)

    Kounaves, S. P.; Buehler, M. G.; Kuhlman, K. R.

    1999-01-01

    A critical component for identifying chemical biosignatures is the ability to assess in-situ the potential of an aqueous geochemical environment to generate and sustain life. On Mars or other solar bodies, in-situ chemical characterization could provide evidence as to whether the chemical composition of the regolith or evaporites in suspected ancient water bodies have been biologically influenced or possess the chemical parameters within which life may have existed, or may still exist. A variety of analytical techniques have been proposed for use in detecting and identify signatures of past or present life. These techniques fall into two groups; visual observation with instruments such as cameras or optical/atomic-force microscopes; or elemental chemical analysis with such instruments as X-ray fluorescence (XRF) and diffraction (XRD), a-proton backscatter (APX), y-ray, Mossbauer, Raman, IR, UV/VIS spectroscopies, gas chromatography (GC), or mass spectrometry (MS). Direct observation of an identifiable lifeform by the first set of instruments in a single sample is highly unlikely, especially for extinct organisms or on the surface. The later instruments can provide vital data as to the elemental mineralogy and geological history of the planet, but are highly inadequate for understanding the chemistry of the planet in terms of indigenous life or interactions with human explorers. Techniques such as XRD, XRF, and APX, provide elemental composition at high limits of detection. Some of this data can be extrapolated or interpolated to provide chemical parameters such as oxidation state or composition. Gas chromatography (GC) without standards and non-specific detectors, has little chance of identifying a mixture of unknown components. Combined with GC or by itself, mass spectrometry (MS) can provide identification of compounds, but in both cases the sample must be appropriately prepared for accurate and reliable analysis. Life as we know it, and probably identify it as

  15. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    2011-02-01

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  16. Lateral field excitation (LFE) of thickness shear mode (TSM) acoustic waves in thin film bulk acoustic resonators (FBAR) as a potential biosensor.

    Science.gov (United States)

    Dickherber, Anthony; Corso, Christopher D; Hunt, William

    2006-01-01

    Lateral field excitation (LFE) of a thin film bulk acoustic resonator (FBAR) is an ideal platform for biomedical sensors. A thickness shear mode (TSM) acoustic wave in a piezoelectric thin film is desirable for probing liquid samples because of the poor coupling of shear waves into the liquid. The resonator becomes an effective sensor by coating the surface with a bio- or chemi-specific layer. Perturbations of the surface can be detected by monitoring the resonance condition. Furthermore, FBARs can be easily fabricated to operate at higher frequencies, yielding greater sensitivity. An array of sensors offers the possibility of redundancy, allowing for statistical decision making as well as immediate corroboration of results. Array structures also offer the possibility of signature detection, by monitoring multiple targets in a sample simultaneously. This technology has immediate application to cancer and infectious disease diagnostics and also could serve as a tool for general proteomic research.

  17. Biomarkers in patients admitted to the emergency department after exposure to acrylonitrile in a major railway incident involving bulk chemical material.

    Science.gov (United States)

    Colenbie, Sebastiaan; Buylaert, Walter; Stove, Christophe; Deschepper, Ellen; Vandewoude, Koenraad; De Smedt, Tom; Bader, Michael; Göen, Thomas; Van Nieuwenhuyse, An; De Paepe, Peter

    2017-03-01

    necessary to evaluate the correlation between biomarkers in acute chemical exposures to ACN and these should be carried out prospectively using a preplanned template. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: characterisation and potential applications.

    Science.gov (United States)

    Kim, Suyeon; Fernandes, Margarida M; Matamá, Teresa; Loureiro, Ana; Gomes, Andreia C; Cavaco-Paulo, Artur

    2013-03-01

    Due to their recognised properties of biocompatibility, biodegradability and sustainability, chitosan nanocarriers have been successfully used as new delivery systems. In this work, nanoparticles combining chitosan and lignosulfonates were developed for the first time for cosmetic and biomedical applications. The ability of lignosulfonates to act as a counter polyion for stabilisation of chitosan particles, generated using high intensity ultrasound, was investigated. Several conditions for particles preparation were tested and optimised and the resulting nanoparticles were comprehensively characterised by measuring particle size, zeta potential and polydispersity index. The pH of chitosan solution, sonication time and the presence of an adequate surfactant, poloxamer 407, were determinant factors on the development of smaller particles with low polydispersity index (an average particle size of 230 nm was obtained at pH 5 after 8 min of sonication). The beneficial effects of lignosulfonates complex on chitosan nanoparticles were further characterised. Greater stability to lysozyme degradation, biocompatibility with human cells and antimicrobial activity was found upon lignosulfonates incorporation into chitosan nanoparticles. Furthermore, these particles were able to incorporate a hydrophilic model protein - RNase A. A burst release was observed when nanoparticles were loaded with low amount of protein while with high protein content, a sustained release was found, suggesting that the protein cargo maybe loaded both at the surface as in the bulk of the particle, depending on the concentration of drug incorporated. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Full simulation of chiral random matrix theory at nonzero chemical potential by complex Langevin

    Science.gov (United States)

    Mollgaard, A.; Splittorff, K.

    2015-02-01

    It is demonstrated that the complex Langevin method can simulate chiral random matrix theory at nonzero chemical potential. The successful match with the analytic prediction for the chiral condensate is established through a shift of matrix integration variables and choosing a polar representation for the new matrix elements before complexification. Furthermore, we test the proposal to work with a Langevin-time-dependent quark mass and find that it allows us to control the fluctuations of the phase of the fermion determinant throughout the Langevin trajectory.

  20. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  1. Lepidopteran defence droplets - A composite physical and chemical weapon against potential predators

    DEFF Research Database (Denmark)

    Pentzold, S.; Zagrobelny, Mika; Khakimov, Bekzod

    2016-01-01

    Insects often release noxious substances for their defence. Larvae of Zygaena filipendulae (Lepidoptera) secrete viscous and cyanogenic glucoside-containing droplets, whose effectiveness was associated with their physical and chemical properties. The droplets glued mandibles and legs of potential...... predators together and immobilised them. Droplets were characterised by a matrix of an aqueous solution of glycine-rich peptides (H-WG11 -NH2) with significant amounts of proteins and glucose. Among the proteins, defensive proteins such as protease inhibitors, proteases and oxidases were abundant...

  2. Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization

    Science.gov (United States)

    Álvarez-Valero, A. M.; Pérez-López, R.; Matos, J.; Capitán, M. A.; Nieto, J. M.; Sáez, R.; Delgado, J.; Caraballo, M.

    2008-10-01

    São Domingos like other long-term activity mines of the Iberian Pyrite Belt (IPB) dating back to pre-Roman times, is supposed to produce considerable amounts of mining wastes which cause significant downstream negative environment impact related to the acid mine drainage (AMD) production and high content of potentially toxic metals and metalloids in Chanza and Guadiana Rivers. The AMD production of a given mining waste depends on the ratio of its acid production to neutralizing phases. In this work, a chemical and mineralogical characterization of the sulphide-rich wastes from São Domingos has been developed to discriminate which residues are the main sources of AMD generation. A total of 47 representative samples of the different residue types were collected to estimate their possible contamination hazards through detailed studies of (1) for a mineralogical characterization: reflected-light optical microscope, scanning electron microscope (SEM) and XRD analysis; and (2) for a chemical characterization: bulk-rock analysis. AMD prediction by the standard acid-base accounting method (ABA) was used in order to determine the acidification potential of each residue type. This study also offers an estimation of the contribution of toxic elements to the environment, being thus, a base for future remediation actions at São Domingos and other abandoned massive sulphide mines within the IPB.

  3. A decision analysis framework for estimating the potential hazards for drinking water resources of chemicals used in hydraulic fracturing fluids.

    Science.gov (United States)

    Yost, Erin E; Stanek, John; Burgoon, Lyle D

    2017-01-01

    Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one

  4. Kaempferitrin from Uncaria guianensis (Rubiaceae) and its potential as a chemical marker for the species

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Ligia M.M.; Liechocki, Sally; Barboza, Rodolfo S.; Paixao, Djavan da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica], e-mail: valente@iq.ufrj.br; Bizarri, Carlos H.B.; Almeida, M. Beatriz S.; Benevides, Paulo J.C.; Siani, Antonio C. [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Inst. de Tecnologia em Farmacos; Magalhaes, Alvicler [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    Uncaria tomentosa (Willd.) DC. and U. guianensis (Aubl.) Gmel., known as cat's claw, are large woody vines native to the Amazonian and Central American rain forests. The species contain, in different proportions, indole and oxindole alkaloids, triterpenoid glycosides, sterols and proanthocyanidins. U. tomentosa can be chemically identified by its oxindole alkaloid profile and content, whereas U. guianensis has no satisfactorily established chemical markers. This work describes, for the first time, the isolation of kaempferol-3,7-O-(a)-dirhamnoside (kaempferitrin) in Uncaria species. Screening for this compound in leaves, stems or bark of both species through TLC and HPLC-DAD-MS showed the presence of kaempferitrin only in the leaves and stems of U. guianensis, at a ratio almost thirty six times greater in the leaves than in the stems. These results reveal the selectivity of U. guianensis to produce this bioactive flavonoid glycoside, and suggest this compound as a potential chemical marker for the species.(author)

  5. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?

    Science.gov (United States)

    Gopalakrishnan, Ranganath; Frolov, Andrey I; Knerr, Laurent; Drury, William J; Valeur, Eric

    2016-11-10

    Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.

  6. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-11-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  7. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  8. Chemical Characterization and Antioxidant Potential of Wild Ganoderma Species from Ghana

    Directory of Open Access Journals (Sweden)

    Mary Obodai

    2017-01-01

    Full Text Available The chemical characterization and antioxidant potential of twelve wild strains of Ganoderma sp. from Ghana, nine (LS1–LS9 of which were found growing wild simultaneously on the same dying Delonix regia tree, were evaluated. Parameters evaluated included the nutritional value, composition in sugars, fatty acids, phenolic and other organic compounds and some vitamins and vitamin precursors. Antioxidant potential was evaluated by investigating reducing power, radical scavenging activity and lipid peroxidation inhibition using five in vitro assays. Protein, carbohydrate, fat, ash and energy contents ranged between 15.7–24.5 g/100 g·dw, 73.31–81.90 g/100 g, 0.48–1.40 g/100 g, 0.68–2.12 g/100 g ash and 396.1–402.02 kcal/100 g, respectively. Fatty acids such as linoleic, oleic and palmitic acids were relatively abundant. Free sugars included rhamnose, fructose, mannitol, sucrose and trehalose. Total tocopherols, organic acids and phenolic compounds’ content ranged between 741–3191 µg/100 g, 77–1003 mg/100 g and 7.6–489 µg/100 g, respectively. There were variations in the β-glucans, ergosterol and vitamin D2 contents. The three major minerals in decreasing order were K > P > S. Ganoderma sp. strain AM1 showed the highest antioxidant activity. This study reveals, for the first time, chemical characteristics of Ganoderma spp. which grew simultaneously on the same tree.

  9. A QCD chiral critical point at small chemical potential: is it there or not?

    CERN Document Server

    de Forcrand, Philippe; Philipsen, Owe

    2007-01-01

    For a QCD chiral critical point to exist, the parameter region of small quark masses for which the finite temperature transition is first-order must expand when the chemical potential is turned on. This can be tested by a Taylor expansion of the critical surface (m_{u,d},m_s)_c(mu). We present a new method to perform this Taylor expansion numerically, which we first test on an effective model of QCD with static, dense quarks. We then present the results for QCD with 3 degenerate flavors. For a lattice with N_t=4 time-slices, the first-order region shrinks as the chemical potential is turned on. This implies that, for physical quark masses, the analytic crossover which occurs at mu=0 between the hadronic and the plasma regimes remains crossover in the mu-region where a Taylor expansion is reliable, i.e. mu less than or similar to T. We present preliminary results from finer lattices indicating that this situation persists, as does the discrepancy between the curvature of T_c(mu) and the experimentally observed...

  10. Chemical chaperone and inhibitor discovery: potential treatments for protein conformational diseases.

    Science.gov (United States)

    Zhao, Jian-Hua; Liu, Hsuan-Liang; Lin, Hsin-Yi; Huang, Chih-Hung; Fang, Hsu-Wei; Chen, Shiao-Shing; Ho, Yih; Tsai, Wei-Bor; Chen, Wen-Yih

    2007-12-11

    Protein misfolding and aggregation cause a large number of neurodegenerative diseases in humans due to (i) gain of function as observed in Alzheimer's disease, Huntington's disease, Parkinson's disease, and Prion's disease or (ii) loss of function as observed in cystic fibrosis and alpha1-antitrypsin deficiency. These misfolded proteins could either lead to the formation of harmful amyloids that become toxic for the cells or to be recognized and prematurely degraded by the protein quality control system. An increasing number of studies has indicated that some low-molecular-weight compounds named as chemical chaperones can reverse the mislocalization and/or aggregation of proteins associated with human conformational diseases. These small molecules are thought to non-selectively stabilize proteins and facilitate their folding. In this review, we summarize the probable mechanisms of protein conformational diseases in humans and the use of chemical chaperones and inhibitors as potential therapeutic agents against these diseases. Furthermore, recent advanced experimental and theoretical approaches underlying the detailed mechanisms of protein conformational changes and current structure-based drug designs towards protein conformational diseases are also discussed. It is believed that a better understanding of the mechanisms of conformational changes as well as the biological functions of these proteins will lead to the development and design of potential interfering compounds against amyloid formation associated with protein conformational diseases.

  11. Chemical constituents and anti-ulcerogenic potential of the scales of Cynara scolymus (artichoke) heads.

    Science.gov (United States)

    Nassar, Mahmoud I; Mohamed, Tahia K; Elshamy, Abdelsamed I; El-Toumy, Sayed A; Abdel Lateef, Azza M; Farrag, Abdel-Razik H

    2013-08-15

    Cynara scolymus L. (Asteraseae) (artichoke) is commonly eaten as a vegetable; its leaves are frequently used in folk medicine in the treatment of hepatitis, hyperlipidaemia, obesity and dyspeptic disorders. The purpose of this study is to determine the chemical composition of the volatile oil and alcoholic extract of artichoke head scales. In addition, the role of the methanol extract as an anti-ulcer agent against ethanol-induced gastric ulcer in rats was evaluated. Six flavonoids and one phenolic acid were obtained from the methanol extract. Also, 37 compounds were identified in the volatile oil, the majority including mono- and sesquiterpenes. The artichoke extracts (200 and 400 mg kg(-1)) significantly (P artichoke induced an increase in gastric mucus production, and a reduction of the depth and severity of mucosal lesions. Artichoke dose-dependently reduced the elevated ethanol gastric malonylaldehyde, and reduced glutathione levels and catalase activity. These results suggest that the head scales of artichoke possess potential anti-ulcer activity. The present paper describes the identification of volatile oil for the first time along with the isolation and identification of the constituents of the methanol extract. Moreover, the high anti-ulcerogenic potential of scales of C. scolymus heads was established here for the first time. © 2013 Society of Chemical Industry.

  12. Quark-meson vertices and pion properties at finite chemical potential

    Science.gov (United States)

    Jiang, Yu; Shi, Yuan-Mei; Feng, Hong-Tao; Sun, Wei-Min; Zong, Hong-Shi

    2008-08-01

    Based on the rainbow-ladder approximation of the Dyson-Schwinger equations and the assumption of the analyticity of the quark-meson vertex in the neighborhood of zero chemical potential (μ=0) and neglecting the μ-dependence of the dressed gluon propagator, we use the method of studying the dressed quark propagator at finite chemical potential given in [H. S. Zong, L. Chang, F.Y. Hou, W. M. Sun, and Y. X. Liu, Phys. Rev. C 71, 015205 (2005)] to show that the axial-vector quark-meson vertex at finite μ can be obtained from the corresponding one at μ=0 by a shift of variable: Γ5νj[μ](k,p)=Γ5νj(k~,p), where k and p are the relative and total momentum of the quark-antiquark pair, respectively, and k~=(k→,k4+iμ). Similar relations hold for any other type of quark-meson vertex. This feature would facilitate the numerical calculations of the quark-meson vertex function at finite μ considerably. Based on these results and using the dressed quark propagator at μ=0 proposed in [R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris, Phys. Rev. D 70, 014014 (2004)], we calculate the pion decay constant fπ and the pion mass mπ at finite μ and a comparison of our results with those in the literature is made.

  13. Chemical potential and tunneling in bilayer graphene using double bilayer graphene heterostructures

    Science.gov (United States)

    Tutuc, Emanuel

    2015-03-01

    Vertical heterostructures consisting of atomic layers separated by insulators can open a window to explore the role of electron interaction in these materials, otherwise not accessible in single layer devices. We describe here one such heterostructure, consisting of two bilayer graphene flakes separated by a hexagonal boron-nitride dielectric. Using the top layer as a resistively detected Kelvin probe we map the chemical potential of the bottom bilayer graphene as a function of electron density, perpendicular magnetic field, and transverse electric field. At zero magnetic field the chemical potential reveals a strongly non-linear dependence on density, with an electric field induced energy gap at charge neutrality. The data allow a direct measurement of the electric field-induced bandgap at zero magnetic field, the orbital Landau level energies, and the broken symmetry quantum Hall state gaps in high magnetic fields. In samples where the two layers are rotationally aligned the interlayer tunneling current measured as a function of interlayer bias reveals a gate-tunable negative differential resistance thanks to momentum conserving tunneling. Remarkably, the resonance width has a weak temperature dependence in the range 1.5 K to 300 K. Work done in collaboration with K. Lee, B. Fallahazad, S. Kang, J. Xue, D. C. Dillen, K. Kim, L. F. Register, S. K. Banerjee, T. Taniguchi, and K. Watanabe. This work supported by the Office of Naval Research, the Nanoelectronics Research Initiative SWAN center, and Intel Corp.

  14. Chemical Characterization and Antioxidant Potential of Wild Ganoderma Species from Ghana.

    Science.gov (United States)

    Obodai, Mary; Mensah, Deborah L Narh; Fernandes, Ângela; Kortei, Nii Korley; Dzomeku, Matilda; Teegarden, Matthew; Schwartz, Steven J; Barros, Lillian; Prempeh, Juanita; Takli, Richard K; Ferreira, Isabel C F R

    2017-01-25

    The chemical characterization and antioxidant potential of twelve wild strains of Ganoderma sp. from Ghana, nine (LS1-LS9) of which were found growing wild simultaneously on the same dying Delonix regia tree, were evaluated. Parameters evaluated included the nutritional value, composition in sugars, fatty acids, phenolic and other organic compounds and some vitamins and vitamin precursors. Antioxidant potential was evaluated by investigating reducing power, radical scavenging activity and lipid peroxidation inhibition using five in vitro assays. Protein, carbohydrate, fat, ash and energy contents ranged between 15.7-24.5 g/100 g·dw, 73.31-81.90 g/100 g, 0.48-1.40 g/100 g, 0.68-2.12 g/100 g ash and 396.1-402.02 kcal/100 g, respectively. Fatty acids such as linoleic, oleic and palmitic acids were relatively abundant. Free sugars included rhamnose, fructose, mannitol, sucrose and trehalose. Total tocopherols, organic acids and phenolic compounds' content ranged between 741-3191 µg/100 g, 77-1003 mg/100 g and 7.6-489 µg/100 g, respectively. There were variations in the β-glucans, ergosterol and vitamin D₂ contents. The three major minerals in decreasing order were K > P > S. Ganoderma sp. strain AM1 showed the highest antioxidant activity. This study reveals, for the first time, chemical characteristics of Ganoderma spp. which grew simultaneously on the same tree.

  15. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  16. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  17. Linked reactivity at mineral-water interfaces through bulk crystal conduction.

    Science.gov (United States)

    Yanina, Svetlana V; Rosso, Kevin M

    2008-04-11

    The semiconducting properties of a wide range of minerals are often ignored in the study of their interfacial geochemical behavior. We show that surface-specific charge density accumulation reactions combined with bulk charge carrier diffusivity create conditions under which interfacial electron transfer reactions at one surface couple with those at another via current flow through the crystal bulk. Specifically, we observed that a chemically induced surface potential gradient across hematite (alpha-Fe2O3) crystals is sufficiently high and the bulk electrical resistivity sufficiently low that dissolution of edge surfaces is linked to simultaneous growth of the crystallographically distinct (001) basal plane. The apparent importance of bulk crystal conduction is likely to be generalizable to a host of naturally abundant semiconducting minerals playing varied key roles in soils, sediments, and the atmosphere.

  18. Chemical characterization and antioxidant potential of volatile oil from an edible seaweed Porphyra tenera (Kjellman, 1897).

    Science.gov (United States)

    Patra, Jayanta Kumar; Lee, Se-Weon; Kwon, Yong-Suk; Park, Jae Gyu; Baek, Kwang-Hyun

    2017-04-14

    Porphyra tenera (Kjellman, 1897) is the most common eatable red seaweed in Asia. In the present study, P. tenera volatile oil (PTVO) was extracted from dried P. tenera sheets that were used as food by the microwave hydrodistillation procedure, after which the characterization of its chemical constituents was done by gas chromatography and mass spectroscopy and its antioxidant potential was evaluated by a number of in vitro biochemical assays such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, nitric oxide (NO) scavenging, superoxide radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, hydroxyl radical scavenging and reducing power assay and inhibition of lipid peroxidation. A total of 30 volatile compounds comprising about 99.4% of the total volume were identified, of which trans-beta-ionone (20.9%), hexadecanoic acid (9.2%) and 2,6-nonadienal (8.7%) were present in higher quantities. PTVO exhibited strong free radical scavenging activity by DPPH scavenging (44.62%), NO scavenging (28.45%) and superoxide scavenging (54.27%) at 500 µg/mL. Similarly, it displayed strong ABTS radical scavenging (IC50 value of 177.83 µg/mL), hydroxyl radical scavenging (IC50 value of 109.70 µg/mL), and moderate lipid peroxidation inhibition activity (IC50 value of 231.80 µg/mL) and reducing power (IC0.5 value of 126.58 µg/mL). PTVO exhibited strong antioxidant potential in a concentration dependent manner and the results were comparable with the BHT and α-tocopherol, taken as the reference standard compounds (positive controls). Taken together, PTVO with potential bioactive chemical compounds and strong antioxidant activity could be utilized in the cosmetic industries for making antioxidant rich anti-aging and sun-screen lotion and in the food sector industries as food additives and preservatives.

  19. Chemical reactivity and skin sensitization potential for benzaldehydes: can Schiff base formation explain everything?

    Science.gov (United States)

    Natsch, Andreas; Gfeller, Hans; Haupt, Tina; Brunner, Gerhard

    2012-10-15

    Skin sensitizers chemically modify skin proteins rendering them immunogenic. Sensitizing chemicals have been divided into applicability domains according to their suspected reaction mechanism. The widely accepted Schiff base applicability domain covers aldehydes and ketones, and detailed structure-activity-modeling for this chemical group was presented. While Schiff base formation is the obvious reaction pathway for these chemicals, the in silico work was followed up by limited experimental work. It remains unclear whether hydrolytically labile Schiff bases can form sufficiently stable epitopes to trigger an immune response in the living organism with an excess of water being present. Here, we performed experimental studies on benzaldehydes of highly differing skin sensitization potential. Schiff base formation toward butylamine was evaluated in acetonitrile, and a detailed SAR study is presented. o-Hydroxybenzaldehydes such as salicylaldehyde and the oakmoss allergens atranol and chloratranol have a high propensity to form Schiff bases. The reactivity is highly reduced in p-hydroxy benzaldehydes such as the nonsensitizing vanillin with an intermediate reactivity for p-alkyl and p-methoxy-benzaldehydes. The work was followed up under more physiological conditions in the peptide reactivity assay with a lysine-containing heptapeptide. Under these conditions, Schiff base formation was only observable for the strong sensitizers atranol and chloratranol and for salicylaldehyde. Trapping experiments with NaBH₃CN showed that Schiff base formation occurred under these conditions also for some less sensitizing aldehydes, but the reaction is not favored in the absence of in situ reduction. Surprisingly, the Schiff bases of some weaker sensitizers apparently may react further to form stable peptide adducts. These were identified as the amides between the lysine residues and the corresponding acids. Adduct formation was paralleled by oxidative deamination of the parent

  20. Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents

    National Research Council Canada - National Science Library

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Zia-Ul-Haq, Muhammad; Ismail, Maznah

    2012-01-01

    This study was conducted to investigate the chemical and nutritional composition of Artemisia annua leaves in addition to determination of antioxidant potential of their extracts prepared in different solvents...

  1. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    .1)% and output power density of 51.3 (+/- 4.0)W cm. -3 (for output power of80 (+/- 6)mW) at 1M? load, for an input voltage range of 3V-6V (+/- one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm. 3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application.

  2. New agents with potential leishmanicidal activity identified by virtual screening of chemical databases: New agents with potential leishmanicidal activity

    Directory of Open Access Journals (Sweden)

    Juan Rebollo

    2013-04-01

    Full Text Available Introduction and Objectives: Leishmaniosis, a disease caused by a protozoan parasite, remains a serious public health problem threatening about 350 million people around the world, of which 12 million are believed to be currently infected (WHO 2010. To date, there are no vaccines against the species of parasites and the treatment is based only on chemotherapy with toxic-, expensive- and inefficient- drugs. There is an urgent need for better drugs against Leishmania, the etiological agent of the disease. The main anti-leishmanial drug used in Colombia is meglumineantimoniate [chemical name according to the International Union of Pure and Applied Chemistry (IUPAC: Hydroxy-dioxostiborane; (2R,3R,4R,5S- 6-methylaminohexane-1,2,3,4,5-pentol, (C7H17NO5], which is not efficient in the treatment of infections caused by Leishmania braziliensis, the most prevalent specie in the Caribbean coast of Colombia. Methods: We performed an in silico virtual screening of several datasets including ChemBridge and Pubchem. We virtually screened a total of 28.755 compounds against a 3D model of 6-phosphoglucono -lactonase (6-PGL from Leishmania braziliensis to identify novel inhibitors.Molecular docking of databases was performed using the software Sybyl 8.0 and AutoDockVina. Results: The initial virtual screening using a structure-based method identified 10 compounds, which were later tested with AutodockVina and classified according to their docking scores. Conclusions: These novel and potential inhibitors constitute new drug candidates that must be biologically tested to define their value as an alternative chemotherapeutic agent in the treatment of these protozoan infections. Salud UIS 2013; 45 (1: 33-40

  3. Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, T.; Petersen, G.

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  4. Top Value Added Chemicals from Biomass - Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  5. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  6. Potential carcinogenic erionite from Lessini Mounts, NE Italy: Morphological, mineralogical and chemical characterization.

    Science.gov (United States)

    Giordani, Matteo; Mattioli, Michele; Dogan, Meral; Dogan, Ahmet Umran

    2016-01-01

    Exposure of humans to erionite fibers of suitable morphology and dimension has been unambiguously linked to the occurrence of malignant mesothelioma. For this reason, a morphological, morphometrical, mineralogical, and chemical investigation was performed on two representative samples of potential carcinogenic, fibrous erionite from Lessini Mounts, northeastern (NE) Italy, which has not apparently been examined previously. The first sample is erionite-Ca with an extremely fibrous, hair-like and flexible appearance, and growth in intimate association with levyne. The second sample is erionite-Ca with prismatic to acicular crystals and rigid behavior, enriched in K(+) and Ca(2+) extra-framework cations. Although erionite is a nominally Fe-free phase, iron (Fe) was detected in low amounts in all the analyzed crystals. In both the investigated samples, erionite is present as individual fibers of respirable size. Considering that the toxicity and carcinogenic potential of erionite is associated with its size parameters, together with its in vivo durability and high surface area, most of the investigated fibers may also be potentially carcinogenic. The presence of erionite in extensively quarried and largely employed volcanic rocks, suggesting the need for detailed health-based studies in the region.

  7. A comparison of chemical mechanisms using tagged ozone production potential (TOPP) analysis

    Science.gov (United States)

    Coates, J.; Butler, T. M.

    2015-08-01

    Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during volatile organic compound (VOC) degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM) using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP) for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O3 produced on subsequent days due to secondary chemistry.

  8. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae

    Directory of Open Access Journals (Sweden)

    Rønsted Nina

    2012-09-01

    Full Text Available Abstract Background During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. Conclusions Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE and binding to the serotonin reuptake transporter (SERT are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.

  9. Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: potentials and economics.

    Science.gov (United States)

    Miltner, M; Makaruk, A; Krischan, J; Harasek, M

    2012-01-01

    In the present work chemical-oxidative scrubbing as a novel method for the desulphurisation of raw biogas is presented with a special focus on the process potentials and economics. The selective absorption of hydrogen sulphide from gas streams containing high amounts of carbon dioxide using caustic solutions is not trivial but has been treated in literature. However, the application of this method to biogas desulphurisation has not been established so far. Based on rigorous experimental work, an industrial-scale pilot plant has been designed, erected and commissioned at a biogas plant with biogas upgrading and gas grid injection in Austria. Data collected from the 12-month monitored operation has been used to elaborate performance as well as economic parameters for the novel desulphurisation method. The proposed technology offers significant operational advantages regarding the degree of automation and the flexibility towards fluctuations in process boundary conditions. Furthermore, the economic assessment revealed the high competitiveness of the chemical-oxidative scrubbing process compared with other desulphurisation technologies with the named advantageous operational behaviour.

  10. Antioxidant, anti-inflammatory potential and chemical constituents of Origanum dubium Boiss., growing wild in Cyprus.

    Science.gov (United States)

    Karioti, Anastasia; Milošević-Ifantis, Tanja; Pachopos, Nikitas; Niryiannaki, Niki; Hadjipavlou-Litina, Dimitra; Skaltsa, Helen

    2015-02-01

    Origanum dubium Boiss. is a flavouring herb widely used in Cyprus. In this study, both lipophilic and polar extracts of the aerial parts of O. dubium were investigated for their chemical contents and their antioxidant potential. Overall, 20 constituents were isolated and identified, belonging mainly to three significant classes of compounds: terpenes, phenolic derivatives, such as hydroquinone glycosides and flavonoids and alicyclic derivatives. None of them was previously reported as constituent of O. dubium The inhibitory potencies of all total extracts and the isolated compounds on lipid peroxidation and their interaction with 1,1-diphenyl-picrylhydrazyl (DPPH) activity is discussed. The polar extract showed strong interaction with DPPH stable radical and significant inhibition of lipoxygenase and lipid peroxidation.

  11. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species.

    Science.gov (United States)

    Sharma, S K; Gautam, N

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65-70%) over SFA (30-35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities.

  12. Comet assay evaluation of six chemicals of known genotoxic potential in rats.

    Science.gov (United States)

    Hobbs, Cheryl A; Recio, Leslie; Streicker, Michael; Boyle, Molly H; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L

    2015-07-01

    As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. Copyright © 2015

  13. Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange.

    Science.gov (United States)

    Greaney, Matthew J; Das, Saptaparna; Webber, David H; Bradforth, Stephen E; Brutchey, Richard L

    2012-05-22

    Organic ligands have the potential to contribute to the reduction potential, or lowest unoccupied molecular orbital (LUMO) energy, of semiconductor nanocrystals. Rationally introducing small, strongly binding, electron-donating ligands should enable improvement in the open circuit potential of hybrid organic/inorganic solar cells by raising the LUMO energy level of the nanocrystal acceptor phase and thereby increasing the energy offset from the polymer highest occupied molecular orbital (HOMO). Hybrid organic/inorganic solar cells fabricated from blends of tert-butylthiol-treated CdSe nanocrystals and poly(3-hexylthiophene) (P3HT) achieved power conversion efficiencies of 1.9%. Compared to devices made from pyridine-treated and nonligand exchanged CdSe, the thiol-treated CdSe nanocrystals are found to consistently exhibit the highest open circuit potentials with V(OC) = 0.80 V. Electrochemical determination of LUMO levels using cyclic voltammetry and spectroelectrochemistry suggest that the thiol-treated CdSe nanocrystals possess the highest lying LUMO of the three, which translates to the highest open circuit potential. Steady-state and time-resolved photoluminescence quenching experiments on P3HT:CdSe films provide insight into how the thiol-treated CdSe nanocrystals also achieve greater current densities in devices relative to pyridine-treated nanocrystals, which are thought to contain a higher density of surface traps.

  14. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2 Te3.

    Science.gov (United States)

    Singh, Swati; Mun, Hyeona; Lee, Sanghoon; Kim, Sung Wng; Baik, Seunghyun

    2017-09-01

    The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.3 V) and volume-specific power (maximum: 0.11 W mm(-3) ; average: 0.04 W mm(-3) ) using n-type single-crystalline Bi2 Te3 substrates. A mixture of nitrocellulose and sodium azide is used as a fuel, and ultraviolet photoelectron spectroscopy reveals a significant downshift in Fermi energy (≈5.09 eV) of the substrate by p-doping of the fuel. The induced electrical potential by thermopower waves has two distinct sources: the Seebeck effect and the transient chemical potential gradient. Surprisingly, the Seebeck effect contribution is less than 2.5% (≈201 mV) of the maximum peak voltage. The right combination of substrate, fuel doping, and anisotropic substrate geometry results in an order of magnitude greater transient chemical potential gradient (≈5.09 eV) upon rapid removal of fuel by exothermic chemical reaction propagation. The role of fuel doping and chemical potential gradient can be viewed as a key mechanism for enhanced heat to electric conversion performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence.

    Science.gov (United States)

    Tu, Wenqing; Xu, Chao; Jin, Yuanxiang; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-06-01

    Permethrin (PM), one of the most heavily used synthetic pyrethroids, has the potential to interfere with thyroid hormones in mammals, however, the effect is poorly recognized in aquatic organisms. Herein, embryonic zebrafish were exposed to PM (0, 1, 3 and 10μg/L) until 72h post-fertilization. We demonstrated that PM readily accumulated in larvae with a preference for cis-PM, inhibited development and increased thyroxine and 3,5,3'-triiodothyronine levels accompanying increase in the transcription of most target genes, i.e., thyroid-stimulating hormone β, deiodinases, thyroid receptors, involved in the hypothalamic-pituitary-thyroid axis. Further Western blot analysis indicated that transthyretin (TTR) protein was significantly increased. Molecular docking analysis and molecular dynamics simulations revealed that PM fits into three hydrophobic binding pocket of TTR, one of the molecular targets of thyroid hormone disrupting chemicals (THDCs), and forms strong van der Waals interactions with six resides of TTR, including Leu8, Leu 101, Leu125, Thr214, Leu218 and Val229, thus altering TTR activity. Both in vivo and in silico studies clearly disclosed that PM potentially disrupts the thyroid endocrine system in fish. This study provides a rapid and cost-effective approach for identifying THDCs and the underlying mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures.

    Science.gov (United States)

    Dham, Ashok K; McBane, George C; McCourt, Frederick R W; Meath, William J

    2010-01-14

    Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the (20)Ne-(12)C(16)O van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne-CO mixtures at T=296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives

  17. Chemical constituents in clouds and rainwater in the Puerto Rican rainforest: potential sources and seasonal drivers

    Science.gov (United States)

    A. Gioda; O.L. Mayol-Bracero; F. N. Scatena; K. C. Weathers; V. L. Mateus; W. H. McDowell

    2013-01-01

    Cloud- and rain-water samples collected between 1984 and 2007 in the Luquillo Experimental Forest, Puerto Rico, were analyzed in order to understand the main processes and sources that control their chemistry. Three sites were used: El Verde Field Station (380 m asl), Bisley (361 m asl), and East Peak (1051 m asl). Bulk rainwater samples were collected from all sites,...

  18. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  19. Effect of the rotifer Lecane inermis, a potential sludge bulking control agent, on process parameters in a laboratory-scale SBR system.

    Science.gov (United States)

    Kocerba-Soroka, Wioleta; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Sobczyk, Mateusz; Pławecka, Małgorzata; Fyda, Janusz

    2013-01-01

    The influence of a high density of rotifers, which is known to be able to control filamentous bacteria, on the parameters of an activated sludge process was examined in four professional laboratory batch reactors. These reactors allow the imitation of the work of a wastewater treatment plant with enhanced nutrient removal. The parameters, including oxygen concentration, pH and temperature, were constantly controlled. The experiment showed that Lecane rotifers are able to proliferate in cyclically anaerobic/anoxic and aerobic conditions and at dissolved oxygen concentrations as low as 1 mg/L. In 1 week, rotifer density increased fivefold, exceeding the value of 2,200 ind./mL. The grazing activity led to an improvement in settling properties. Extremely high numbers of rotifers did not affect the main parameters, chemical oxygen demand (COD), N-NH(4), N-NO(3), P-PO(4) and pH, during sewage treatment. Therefore, the use of rotifers as a tool to limit the growth of filamentous bacteria appears to be safe for the entire wastewater treatment process.

  20. Biodegradability and denitrification potential of settleable chemical oxygen demand in domestic wastewater.

    Science.gov (United States)

    Tas, Didem Okutman; Karahan, Ozlem; Insel, Güçlü; Ovez, Süleyman; Orhon, Derin; Spanjers, Henri

    2009-07-01

    The effect of settling on mass balance and biodegradation characteristics of domestic wastewater and on denitrification potential was studied primarily using model calibration and evaluation of oxygen uptake rate profiles. Raw domestic wastewater was settled for a period of 30 minutes and a period of 2 hours to assess the effect of primary settling on wastewater characterization and composition. Mass balances in the system were made to evaluate the effect of primary settling on major parameters. Primary settling of the selected raw wastewater for 2 hours resulted in the removal of 32% chemical oxygen demand (COD), 9% total Kjeldahl nitrogen, 9% total phosphorus, and 47% total suspended solids. Respirometric analysis identified COD removed by settling as a new COD fraction, namely settleable slowly biodegradable COD (X(ss)), characterized by a hydrolysis rate of 1.0 day(-1) and a hydrolysis half-saturation coefficient of 0.08. A model simulation to test the fate and availability of suspended (X(s)) and settleable (X(ss)) COD fractions as carbon sources for denitrification showed that both particulate COD components were effectively removed aerobically at sludge ages higher than 1.5 to 2.0 days. Under anoxic conditions, the biodegradation of both COD fractions was reduced, especially below an anoxic sludge retention time of 3.0 days. Consequently, modeling results revealed that the settleable COD removed by primary settling could represent up to approximately 40% of the total denitrification potential of the system, depending on the specific configuration selected for the nitrogen removal process. This way, the results showed the significant effect of primary settling on denitrification, indicating that the settleable COD fraction could contribute an additional carbon source in systems where the denitrification potential associated with the influent becomes rate-limiting for the denitrification efficiency.

  1. Evaluation of the aphrodisiac potential of a chemically characterized aqueous extract of Tamarindus indica pulp.

    Science.gov (United States)

    Rai, Amita; Das, Snehashis; Chamallamudi, Mallikarjuna Rao; Nandakumar, Krishnadas; Shetty, Raghavendra; Gill, Meghna; Sumalatha, Suhani; Devkar, Raviraj; Gourishetti, Karthik; Kumar, Nitesh

    2018-01-10

    Tamarindus indica is an ingredient in the traditional aphrodisiac formulations in Africa and India. It is also a widely used food ingredient in other tropical countries. The present study was aimed to evaluate the aphrodisiac potential and reproductive safety profile of aqueous extract of Tamarindus indica in male Wistar rats. The aqueous extract was prepared by maceration of pulp followed by reduction of volume in rotavapor under heat followed by freeze drying. The prepared extract was characterized for contents of total phenol, flavonoid, and saponin. It was also subjected to phytoconstituent analysis using GCMS. Further, the extract was evaluated for acute toxicity study. The aphrodisiac and reproductive toxicity potential were evaluated in animals after grouping them in four with six animals each namely, normal control, standard (Sildenafil citrate, 4mg/kg p.o.) and extract of Tamarindus indica treated groups at two dose levels, 125 and 250mg/kg p.o. The study was conducted for 54 days with daily once dosing of extract and standard. Equal number of females was grouped without treatment for evaluation of parameters of sexual desire (mount frequency and intromission frequency) and parameters of sexual arousal (mount latency and intromission latency). These parameters were evaluated on day 14, 28, 42 and 54. Animals were sacrificed on day 54, testes were removed and studied for histopathological changes. The extract showed 6.6mg gallic acid equivalent/g of total phenol, 2.3mg catechin equivalent/g of flavonoid and 11.6% saponin. Forty chemical constituents were identified by GCMS analysis. In acute toxicity study, the extract was found to be safe till 2000mg/kg p.o. Efficacy study showed significant (pindica possessed aphrodisiac activity together with spermatogenic potential. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Z. Hossain

    2016-10-01

    Full Text Available Various species of berries have been reported to contain several polyphenolic compounds, such as anthocyanins and flavonols, which are known to possess high antioxidant activity and may be beneficial for human health. To our knowledge, a thorough chemical analysis of polyphenolics in species of these plants native to Newfoundland, Canada has not been conducted. The primary objective of this study was to determine the polyphenolic compounds present in commercial extracts from Newfoundland berries, which included blueberries (V. angustifolium, lingonberries (V. vitis-idaea and black currant (Ribes lacustre. Anthocyanin and flavonol glycosides in powdered extracts from Ribes lacustre and the Vaccinium species were identified using the high performance liquid chromatographic (HPLC separation method with mass spectrometric (MS detection. The identified compounds were extracted from dried berries by various solvents via ultrasonication followed by centrifugation. A reverse-phase analytical column was employed to identify the retention time of each chemical component before submission for LC–MS analysis. A total of 21 phenolic compounds were tentatively identified in the three species. Further, we tested the effects of the lingonberry extract for its ability to protect neurons and glia from trauma utilizing an in vitro model of cell injury. Surprisingly, these extracts provided complete protection from cell death in this model. These findings indicate the presence of a wide variety of anthocyanins and flavonols in berries that grow natively in Newfoundland. These powdered extracts maintain these compounds intact despite being processed from berry fruit, indicating their potential use as dietary supplements. In addition, these recent findings and previous data from our lab demonstrate the ability of compounds in berries to protect the nervous system from traumatic insults.

  3. Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA

    Science.gov (United States)

    Huang, Jiaoyan; Miller, Matthieu B.; Edgerton, Eric; Sexauer Gustin, Mae

    2017-02-01

    The highest mercury (Hg) wet deposition in the United States of America (USA) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to high water solubility and reactivity. Therefore, it is critical to understand concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry-deposition fluxes of GOM were measured and calculated for Naval Air Station Pensacola Outlying Landing Field (OLF) in Florida using data collected by a Tekran® 2537/1130/1135, the University of Nevada Reno Reactive Mercury Active System (UNRRMAS) with cation exchange and nylon membranes, and the Aerohead samplers that use cation-exchange membranes to determine dry deposition. Relationships with Tekran®-derived data must be interpreted with caution, since the GOM concentrations measured are biased low depending on the chemical compounds in air and interferences with water vapor and ozone.Criteria air pollutants were concurrently measured. This allowed for comparison and better understanding of GOM.In addition to other methods previously applied at OLF, use of the UNRRMAS provided a platform for determination of the chemical compounds of GOM in the air. Results from nylon membranes with thermal desorption analyses indicated seven GOM compounds in this area, including HgBr2, HgCl2, HgO, Hg-nitrogen and sulfur compounds, and two unknown compounds. This indicates that the site is influenced by different gaseous phase reactions and sources. Using back-trajectory analysis during a high-GOM event related to high CO, but average SO2, indicated air parcels moved from the free troposphere and across Arkansas, Mississippi, and Alabama at low elevation (Henry's Law constants.

  4. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  5. Anaerobic sediment potential acidification and metal release risk assessment by chemical characterization and batch resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, M.P. di [Univ. de San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Technologia; Curutchet, G. [Univ. de San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Technologia; CONICET, Buenos Aires (Argentina); Ratto, S. [Univ. de Buenos Aires (Argentina). Catedra de Edafologia

    2007-06-15

    Background, Aim and Scope: Sediments act as a sink for toxic substances (heavy metals, organic pollutants) and, consequently, dredged materials often contain pollutants which are above safe limits. In polluted anaerobic sediments, the presence of sulphides and redox potential changes creates a favorable condition for sulphide oxidation to sulphate, resulting in potential toxic metal release. The oxidation reaction is catalyzed by several microorganisms. Some clean up measures, such as dredging, can initiate the process. The aim of the present work is to assess the acidification and metal release risk in the event of sediment dredging and also to compare two different acid base account techniques with the resuspension results. The oxidation mechanism by means of inoculation with an Acidithiobacillus ferrooxidans strain was also evaluated. Materials and Methods: The sediments were chemically characterized (pH; organic oxidizable carbon; acid volatile sulphides; total sulphur; moisture; Cr, Cu and Zn aqua regia contents). A metal sequential extraction procedure (Community Bureau of Reference, BCR technique) was applied to calculate the Acid Producing Potential (APP) and Acid Consuming Capacity (ACC) of the sediment samples through Fe, Ca{sup 2+} and SO{sub 4}{sup 2-} measurements. The acid base account was also performed by the Sobek methodology (Acid producing potential - AP - calculated with total sulphur and neutralization potential - NP - by titration of the remaining acid after a reaction period with the sample). Fresh sediments were placed in agitated shake flasks and samples were taken at different times to evaluate pH, SO{sub 4}{sup 2-} and Cr, Cu, Zn and Fe{sup 2+} concentration. Some of the systems were inoculated with an Acidithiobacillus ferrooxidans strain to assess the biological catalysis on sulphide oxidation. Results: Sediment chemical characterization showed high organic matter content (5.4-10.6%), total sulphur (0.36-0.86%) and equivalent CaCO{sub 3

  6. Physico-chemical properties of late-incubation egg amniotic fluid and a potential feed supplement

    Directory of Open Access Journals (Sweden)

    A. A. Omede

    2017-08-01

    Full Text Available Objective This study explored the physico-chemical properties of late-incubation egg amniotic fluid and a potential in ovo feed (IOF supplement. Methods Amniotic fluid was collected from broiler breeders (Ross 308, 51 weeks and Cobb 500, 35 weeks on day 17 after incubation. A mixture of high-quality soy protein supplement – Hamlet Protein AviStart (HPA was serially diluted in MilliQ water to obtain solutions ranging from 150 to 9.375 mg/mL. The mixtures were heat-treated (0, 30, 60 minutes in a waterbath (80°C and then centrifuged to obtain supernatants. The amniotic fluid and HPA supernatants were analysed for their physico-chemical properties. Results Only viscosity and K+ were significantly (p<0.05 different in both strains. Of all essential amino acids, leucine and lysine were in the highest concentration in both strains. The osmolality, viscosity and pCO2 of the supernatants decreased (p<0.05 with decreasing HPA concentration. Heat treatment significantly (p<0.05 affected osmolality, pH, and pCO2, of the supernatants. The interactions between HPA concentration and heat treatment were significant with regards to osmolality (p<0.01, pH (p<0.01, pCO2 (p<0.05, glucose (p<0.05, lactate (p<0.01 and acid-base status (p<0.01 of HPA solutions. The Ca2+, K+, glucose, and lactate increased with increasing concentration of HPA solution. The protein content of HPA solutions decreased (p<0.05 with reduced HPA solution concentrations. The supernatant from 150 mg/mL HPA solution was richest in glutamic acid, aspartic acid, arginine and lysine. Amino acids concentrations were reduced (p<0.05 with each serial dilution but increased with longer heating. Conclusion The values obtained in the primary solution (highest concentration are close to the profiles of high-protein ingredients. This supplement, as a solution, hence, may be suitable for use as an IOF supplement and should be tested for this potential.

  7. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields.

    Science.gov (United States)

    Kim, Sung Chul; Hong, Young Kyu; Oh, Se Jin; Oh, Seung Min; Lee, Sang Phil; Kim, Do Hyung; Yang, Jae E

    2017-04-01

    Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.

  8. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.

  9. Chemical composition of the thermomineral waters of Josanicka Banja spa as an origin indicator, balneological valorization and geothermal potential

    Directory of Open Access Journals (Sweden)

    Milenić Dejan R.

    2015-01-01

    Full Text Available The chemical composition of the groundwater is directly dependent on the geological structure, hydrogeological and hydrochemical characteristics and as such it represents an output result of all the factors and processes which take place in the environment within which they were formed. The chemical composition of thermomineral waters often represents a crucial factor in determining the origin, balneological valorization and geothermal potential of the resources. This work presents the analysis of origin, belneological valorization and geothermal potential of Josanicka Banja spa, on the basis of the results gained through making the analyisis of chemical contents of the thermomineral waters which occur in the area. The ratio of concentrations of specific chemical components in the thermomineral waters of Josanicka Banja has served as the basic tool for ascertaining the origin of these waters. On the basis of the analysis of the main anion-cation and gas compositions as well as the contents of specific micro-components, a balneological valorization of these resources has been carried out. Apart from that this work also presents the calculation of the expected temperatures in the primary geothermal reservoir, which was carried out on the basis of the results of chemical analysis of thermomineral waters that occur in the area. Geothermal potential of about 4 MWt and significant contents of balneologically active components of the chemical composition of these waters, open up a possibility for their multi-purpose use, which is also presented in the work. [Projekat Ministarstva nauke Republike Srbije, br. TR 33053

  10. Antimicrobial Potential and Chemical Characterization of Serbian Liverwort (Porella arboris-vitae: SEM and TEM Observations

    Directory of Open Access Journals (Sweden)

    Amit Kumar Tyagi

    2013-01-01

    Full Text Available The chemical composition of Porella arboris-vitae extracts was determined by solid phase microextraction, gas chromatography-mass spectrometry (SPME GC-MS, and 66 constituents were identified. The dominant compounds in methanol extract of P. arboris-vitae were β-caryophyllene (14.7%, α-gurjunene (10.9%, α-selinene (10.8%, β-elemene (5.6%, γ-muurolene (4.6%, and allo-aromadendrene (4.3% and in ethanol extract, β-caryophyllene (11.8%, α-selinene (9.6%, α-gurjunene (9.4%, isopentyl alcohol (8.8%, 2-hexanol (3.7%, β-elemene (3.7%, allo-aromadendrene (3.7%, and γ-muurolene (3.3% were the major components. In ethyl acetate extract of P. arboris-vitae, undecane (11.3%, β-caryophyllene (8.4%, dodecane (6.4%, α-gurjunene (6%, 2-methyldecane (5.1%, hemimellitene (4.9%, and D-limonene (3.9% were major components. The antimicrobial activity of different P. arboris-vitae extracts was evaluated against selected food spoilage microorganisms using microbroth dilution method. The Minimal Inhibitory Concentration (MIC varied from 0.5 to 1.5 mg/mL and 1.25 to 2 mg/mL for yeast and bacterial strains, respectively. Significant morphological and ultrastructural alterations due to the effect of methanolic and ethanolic P. arboris-vitae extracts on S. Enteritidis have also been observed by scanning electron microscope and transmission electron microscope, respectively. The results provide the evidence of antimicrobial potential of P. arboris-vitae extracts and suggest its potential as natural antimicrobial agents for food preservation.

  11. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2013-02-04

    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  12. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    Directory of Open Access Journals (Sweden)

    M. A. Ashraf

    2012-01-01

    Full Text Available This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES. Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.

  13. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors.

    Science.gov (United States)

    Wang, Fangming; Liu, Wei; Teat, Simon J; Xu, Feng; Wang, Hao; Wang, Xinlong; An, Litao; Li, Jing

    2016-08-11

    An organic chromophore H4tcbpe-F was synthesized and immobilized into metal-organic frameworks along with two bipyridine derivatives as co-ligands to generate two strongly luminescent materials [Zn2(tcbpe-F)(4,4'-bpy)·xDMA] (1) and [Zn2(tcbpe-F)(bpee)·xDMA] (2) [4,4'-bpy = 4,4'-bipyridine, bpee = 4,4'-bipyridyl-ethylene, tcbpe-F = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(3-fluoro-[1,1'-biphenyl]-4-carboxylic acid), DMA = N,N-dimethylacetamide]. Compounds 1 and 2 are isoreticular and feature a 2-fold interpenetrated three-dimensional porous structure. Both compounds give green-yellow emission under blue light excitation. Compound 1 has a high internal quantum yield of ∼51% when excited at 455 nm and shows selective luminescence signal change (e.g. emission energy and/or intensity) towards different solvents, including both aromatic and nonaromatic volatile organic species. These properties make it potentially useful as a lighting phosphor and a chemical sensor.

  14. CHEMICAL COMPOSITION, DEGRADABILITY AND METHANE EMISSION POTENTIAL OF BANANA CROP RESIDUES FOR RUMINANTS

    Directory of Open Access Journals (Sweden)

    Lincoln Nunes Oliveira

    2014-08-01

    Full Text Available Banana leaf hay (BL, banana pseudostem hay (BP, coast-cross hay (CC, 50% coast-cross hay with 50% banana leaf (BLCC and 50% coast-cross hay with 50% pseudostem hay (BPCC were evaluated for chemical composition, cumulative gas production, dry matter degradability and methane emission potential. Inoculums from sheep and cattle were collected to tests. The experimental design was completely randomized in a factorial arrangement of 5 x 2, being data analysed by variance analysis and the means compared by Tukey test (5%. The crude protein levels for the substrates BL, BP, CC, BLCC and BPCC were respectively 13.8%, 3.5%, 8.6%, 9.7% and 6.1%. Despite its low protein level, the BP substrate had higher content of non-fibrous carbohydrates (28.4%, followed by BL (23.4%, BPCC (23.4%, BLCC (20.0% and CC (13.3%. The highest cumulative gas production was observed for BP (P < 0.05, reflecting their greater effective degradability (76.3%. This substrate showed the largest emissions of methane (34,16 mL/g DMD.

  15. Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics: Potentialities and Drawbacks.

    Science.gov (United States)

    Nunes, Cláudia; Santos, Mickael C; Saraiva, Jorge A; Rocha, Sílvia M; Coimbra, Manuel A

    During last years, scientific research on high hydrostatic pressure (HHP) as a nonthermal processing technology for preservation or aging of wine has increased substantially. HHP between 200 and 500MPa is able to inactivate bacteria and yeasts in red and white wines, suggesting that it may be used for wine preservation. However, these treatments have been shown to promote changes on sensorial and physicochemical characteristics in both red and white wines, not immediately in the first month, but along storage. The changes are observed in wine color, aroma, and taste due mainly to reactions of phenolic compounds, sugars, and proteins. These reactions have been associated with those observed during wine aging, leading to aged-like wine characteristics perceived by sensorial analysis. This chapter will present the influence of HHP technology on wine chemical and sensorial characteristics, criticaly discussing its potentialities and drawbacks. The appropriate use of HHP, based on the scientific knowledge of the reactions occuring in wine promoted by HHP, will allow to exploit this technology for wine production achieving distinct characteristics to address particular market and consumer demands. © 2017 Elsevier Inc. All rights reserved.

  16. Physical-chemical characterization of bovine bone ash for evaluating its potential agricultural use

    Directory of Open Access Journals (Sweden)

    Eduardo Pacca Luna Mattar

    2014-03-01

    Full Text Available The manufacturing of bovine bone ash is a low cost and easy production process which can be adopted for making good use of animal residues, in locations without infrastructure, such as the family production units. This study aimed at describing the manufacturing process of bone ash and characterizing the physical and chemical parameters of the resulting material for organic fertilization. The experiment was performed with three replications, being evaluated the bovine bone ash manufacturing process yield, as well as its density, water retention capacity, pH of the resulting material after burning and contents of total calcium, calcium soluble in water, total phosphorus and phosphorus soluble in citric acid and in ammonium citrate. The process resulted in an average yield of 24.4% and the bovine bone ash presented 33.07% of total calcium, 15.6% of total phosphorus, 10.4% of phosphorus soluble in citric acid, pH of 9.94, density of 0.89 g cm-3 and water retention capacity of 73.3%. The bovine bone ash showed promising characteristics, with potential for being used as source of phosphorus and calcium in the organic fertilization process.

  17. The calculation of chemical potential of organic solutes in dense liquid phases by using expanded ensemble Monte Carlo simulations.

    Science.gov (United States)

    Chang, Jaeeon

    2009-08-21

    In this work, the chemical potentials of organic compounds in dense liquid phases are calculated by using expanded ensemble Monte Carlo simulations. To make insertion of a solute molecule efficiently, Lennard-Jones size parameters and bond lengths are varied with coupling parameter. A robust adaptive scheme is proposed in order to determine biasing weights during the simulation, which enhances the efficiency and applicability of the expanded ensemble method. Using the proposed simulation technique, chemical potentials of organic molecules in dense liquid phases are obtained from a single run of simulation. The excess chemical potentials of several hydrocarbon molecules including n-alkanes, benzene, toluene, and ethanol in aqueous phases at infinite dilution as well as in their pure liquid phases are calculated at 298 K and 1 atm, and simulation results are compared with experimental data.

  18. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany

    DEFF Research Database (Denmark)

    Bühler, Fabian; Guminski, Andrej; Gruber, Anna

    2017-01-01

    ), which rank these measures according to specific implementation costs. Existing analyses, however, often do not take uncertainties in costs and potentials into account. The aim of this paper is to create a MCC of energy efficiency measures for the chemical industry in Germany, while quantifying...... to 1990. To achieve this ambitious goal, energy planners and industries alike require an overview of the existing energy efficiency measures, their technical potential as well as the costs for realizing this potential. Energy efficiency opportunities are commonly presented in marginal cost curves (MCCs......In Germany, 19.6 % of the industrial final energy consumption (FEC) can be allocated to the chemical industry. Energy efficiency measures with focus on the chemical industry could thus significantly contribute to reaching the German goal of reducing greenhouse gas emissions by 80 % in 2050 compared...

  19. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals

    Directory of Open Access Journals (Sweden)

    Huixiao Hong

    2016-03-01

    Full Text Available Endocrine disruptors such as polychlorinated biphenyls (PCBs, diethylstilbestrol (DES and dichlorodiphenyltrichloroethane (DDT are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest and the molecular descriptors calculated from two-dimensional structures by Mold2 software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69% and external validations using 22 chemicals (balanced accuracy of 71%. Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  20. "Understanding" cosmological bulk viscosity

    OpenAIRE

    Zimdahl, Winfried

    1996-01-01

    A universe consisting of two interacting perfect fluids with the same 4-velocity is considered. A heuristic mean free time argument is used to show that the system as a whole cannot be perfect as well but neccessarily implies a nonvanishing bulk viscosity. A new formula for the latter is derived and compared with corresponding results of radiative hydrodynamics.

  1. Assessment of bioburden encapsulated in bulk materials

    Science.gov (United States)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  2. Assessing effects of environmental chemicals on neuroendocrine systems: potential mechanisms and functional outcomes.

    Science.gov (United States)

    Ottinger, Mary Ann; Carro, Tiffany; Bohannon, Meredith; Baltos, Leah; Marcell, Allegra M; McKernan, Moira; Dean, Karen M; Lavoie, Emma; Abdelnabi, Mahmoud

    2013-09-01

    Environmental pollutants encompass a vast array of compounds. Most studies in birds have focused on toxicological effects, with little attention to non-lethal effects. Consequently, it has proven difficult to assess potential risk associated with exposure to endocrine disrupting chemicals (EDCs). Assessing potential adverse effects due to exposure is further complicated by the great variation that occurs across avian species. These include variations in reproductive strategies, life span, sexual differentiation, and migration. Differences in reproductive strategies, particularly in the developmental patterns and mechanisms for precocial and altricial chicks, predispose birds to wide variations in response to steroids and steroid-like EDCs. We have investigated the effects of EDCs in precocial birds including Japanese quail (Coturnix japonica) and mallard ducks (Anas platyrhynchos) as well as in wild altricial songbirds. Studies in Japanese quail characterized endogenous steroid hormone changes during development and have demonstrated that the developing embryo uses the yolk as a 'steroid hormone depot'. It appears that actual embryonic exposure is quantitatively lower than indicated by the treatment in egg injections and that the true amount of compound necessary for bioactivity may be quite low relative to the actual dosage delivered. Additionally, embryonic exposure to specific EDCs adversely affected sexual differentiation in quail, especially impacting male sexual behavior as well as neural systems, immune response, and thyroid hormones. Many of these studies considered single compounds; however, wild birds are exposed to complex mixtures and multiple compounds. We tested complex mixtures of polychlorinated biphenyls (PCBs) at concentrations that bracketed those found in eggs in contaminated regions. Results indicated that the predictive value of the toxic equivalency (TEQ), based on comparative activation of the aryl hydrocarbon receptor (AhR) relative to

  3. Finite-size, chemical-potential and magnetic effects on the phase transition in a four-fermion interacting model

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2017-04-15

    We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)

  4. Organization A Comprehensive System Of Insurance Coverage In The Potential Chemical And Biological Contamination Zone In Regions

    Directory of Open Access Journals (Sweden)

    Nina Vladimirovna Zaytseva

    2014-12-01

    Full Text Available The article provides a scientific rationale for an integrated approach to the provision of insurance coverage in the potential chemical and biological contamination zone. The following modern forms of chemical safety in the Russian Federation were considered: state reserve’s system, target program financing, state social insurance. The separate issue tackles the obligatory civil liability insurance for owners of dangerous objects. For improvement of the existing insurance protection system against emergency situations, risks were analyzed (shared on exogenous and endogenous. Among the exogenous risks including natural and climatic conditions of a region, its geographical arrangement, economic specialization, the seismic and terrorist risks were chosen and approaches to its solution were suggested. In endogenous risks’ group, the special focus is on wear and tear and obsolescence of hazardous chemical and biological object’s fixed assets. In case of high risk of an incident, it is suggested to increase in extent of insurance protection through self-insurance, a mutual insurance in the form of the organization of societies of a mutual insurance or the self-regulating organizations, and also development of voluntary insurance of a civil liability, both the owner of hazardous object, and regions of the Russian Federation and municipalities. The model of insurance coverage in the potential chemical and biological contamination zone is based on a differentiated approach to the danger level of the area. A matrix of adequate forms and types of insurance (required for insurance coverage of the population in the potential chemical and biological contamination zone was constructed. Proposed health risk management toolkit in the potential chemical and biological contamination zone will allow to use financial resources for chemical and biological safety in the regions more efficiently.

  5. POTENCIAL DE SECAGEM DO MILHO A GRANEL COM AR NATURAL EM BOTUCATU – SP DRYING POTENTIAL OF MAIZE GRAINS IN BULK WITH NATURAL AIR IN BOTUCATU, SP

    Directory of Open Access Journals (Sweden)

    Vicente A. Gonçalves

    2007-09-01

    Full Text Available

    A secagem de grãos com ar natural é um processo dependente das condições climáticas locais, constantemente oscilantes no tempo. Através do emprego de modelos matemáticos de simulação foi avaliada a possibilidade de realização da secagem do milho a granel com ar natural para as condições climáticas de Botucatu, com base nos registros horários de temperatura de bulbo seco e umidade relativa dos anos de 1971 a 1975 e de 1977 a 1981. O processo contínuo de secagem do milho com ar natural, nas condições analisadas, não permite a redução do teor de umidade final ao nível recomendado ao armazenamento seguro. A simulação da secagem intermitente, realizada nos períodos das 9 às 17 h, 9 às 18 h e 8 às 18 h, indica a possibilidade de redução do teor de umidade do milho, base úmida, a nível entre 12,1 e 17,3%, para o teor de unidade inicial de 22%, entre 12,4 e 15,5%, para o teor de umidade inicial de 20% e entre 13,1 e 14,7% para o de 18%, quando realizada a secagem no período máximo admissível.

    PALAVRAS-CHAVE: Secagem; Ar natural; Milho; Teor de umidade de equilíbrio.

    Grain drying using ambient was simulated under weather conditions in Botucatu. Hourly weather records, fry bulb temperature and relative humidity, from 1971 through 1975 and from 1977 through 1981, were used to calculate adiabatic drying potential of the ambient air. Historical weather records from 1971 were selected to simulate ambient air corn drying. Ambient air corn drying systems operating continuously are not feasible to reduce the moisture content of the grain to the moisture levels recommended for safe storage. Selective fan operation, from 9 a. m. to 5 a. m. , from 9 a. m. to 6 p. m. and from 8 a. m. to 6 p. m. , indicates the possibility to reduce corn moisture contents, wet

  6. COMPARISON OF CHEMICAL SCREENING AND RANKING APPROACHES: THE WASTE MINIMIZATION PRIORITIZATION TOOL VERSUS TOXIC EQUIVALENCY POTENTIALS

    Science.gov (United States)

    Chemical screening in the United States is often conducted using scoring and ranking methodologies. Linked models accounting for chemical fate, exposure, and toxicological effects are generally preferred in Europe and in product Life Cycle Assessment. For the first time, a compar...

  7. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  8. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  9. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  10. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  11. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis

    Science.gov (United States)

    Hartwell, Supaporn Kradtap

    2012-01-01

    A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…

  12. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  13. Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards

    Directory of Open Access Journals (Sweden)

    Ogueri Nwaiwu

    2017-03-01

    Full Text Available Recent analysis of palm wine, a traditional drink fermented mainly by yeasts, revealed the presence of several chemicals that were not products of yeast fermentation. The chemicals included styrene, benzene, trimethyldioxolane, dichloromethane, methylene fluoride, dichloroethanol, benzylisoquinoline and tetraacetyl-d-xylonic nitrile. A review of the concentrations of these compounds in palm wine found that the benzene concentrations in all samples reviewed ranged from 56–343 ppm and were within permissible limits, whereas the styrene values (1505–5614 ppm in all the palm wine samples evaluated were well over the recommended concentration that is immediately dangerous to life or health. Other chemical compounds evaluated varied according to location or sample source. The concentrations obtained are estimates only and a quantitative study needs to be carried out before the impact of these chemicals on health is evaluated. A search on The PubChem Project, the open chemical database, showed the description, properties and uses of these chemicals. Further searches carried out within other databases like PubMed, Scopus and Google Scholar, using each chemical’s name as a search term, showed possible hazards and adverse health conditions caused by these chemicals, especially styrene, benzene and dichloromethane. The point at which the chemicals are introduced into the drink is still not clear and requires further investigation. The chemicals can be hazardous to humans and there is need to establish and maintain a system that can guarantee permissible levels in the drink. This can be carried out using concentrations of the chemicals that are already known to be immediately dangerous to life or health as a reference point.

  14. Potential of an ensemble Kalman smoother for stratospheric chemical-dynamical data assimilation

    Directory of Open Access Journals (Sweden)

    Thomas Milewski

    2013-02-01

    Full Text Available A new stratospheric ensemble Kalman smoother (EnKS system is introduced, and the potential of assimilating posterior stratospheric observations to better constrain the whole model state at analysis time is investigated. A set of idealised perfect-model Observation System Simulation Experiments (OSSE assimilating synthetic limb-sounding temperature or ozone retrievals are performed with a chemistry–climate model. The impact during the analysis step is characterised in terms of the root mean square error reduction between the forecast state and the analysis state. The performances of (1 a fixed-lag EnKS assimilating observations spread over 48 hours and (2 an ensemble Kalman Filter (EnKF assimilating a denser network of observations are compared with a reference EnKF. The ozone assimilation with EnKS shows a significant additional reduction of analysis error of the order of 10% for dynamical and chemical variables in the extratropical upper troposphere lower stratosphere (UTLS and Polar Vortex regions when compared to the reference EnKF. This reduction has similar magnitude to the one achieved by the denser-network EnKF assimilation. Similarly, the temperature assimilation with EnKS significantly decreases the error in the UTLS for the wind variables like the denser-network EnKF assimilation. However, the temperature assimilation with EnKS has little or no significant impact on the temperature and ozone analyses, whereas the denser-network EnKF shows improvement with respect to the reference EnKF. The different analysis impacts from the assimilation of current and posterior ozone observations indicate the capacity of time-lagged background-error covariances to represent temporal interactions up to 48 hours between variables during the ensemble data assimilation analysis step, and the possibility to use posterior observations whenever additional current observations are unavailable. The possible application of the EnKS for reanalyses is

  15. Chemical composition and allelopathic potential of essential oils obtained from Acacia cyanophylla Lindl. Cultivated in Tunisia.

    Science.gov (United States)

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Ben Jannet, Hichem; Harzallah-Skhiri, Fethia

    2015-04-01

    Acacia cyanophylla Lindl. (Fabaceae), synonym Acacia saligna (Labill.) H. L.Wendl., native to West Australia and naturalized in North Africa and South Europe, was introduced in Tunisia for rangeland rehabilitation, particularly in the semiarid zones. In addition, this evergreen tree represents a potential forage resource, particularly during periods of drought. A. cyanophylla is abundant in Tunisia and some other Mediterranean countries. The chemical composition of the essential oils obtained by hydrodistillation from different plant parts, viz., roots, stems, phyllodes, flowers, and pods (fully mature fruits without seeds), was characterized for the first time here. According to GC-FID and GC/MS analyses, the principal compound in the phyllode and flower oils was dodecanoic acid (4), representing 22.8 and 66.5% of the total oil, respectively. Phenylethyl salicylate (8; 34.9%), heptyl valerate (3; 17.3%), and nonadecane (36%) were the main compounds in the root, stem, and pod oils, respectively. The phyllode and flower oils were very similar, containing almost the same compounds. Nevertheless, the phyllode oil differed from the flower oil for its higher contents of hexahydrofarnesyl acetone (6), linalool (1), pentadecanal, α-terpineol, and benzyl benzoate (5) and its lower content of 4. Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by its main constituents. Furthermore, the allelopathic activity of each oil was evaluated using lettuce (Lactuca sativa L.) as a plant model. The phyllode, flower, and pod oils exhibited a strong allelopathic activity against lettuce. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Chemical characterisation and allelopathic potential of essential oils from leaves and rhizomes of white ginger

    Directory of Open Access Journals (Sweden)

    Cíntia Alvarenga Santos Fraga Miranda

    Full Text Available ABSTRACTEssential oils have the potential to be used as bioherbicides, and possess the advantage of their biodegradability, high structural diversity and reduced natural resistance to weeds. The essential oils of the leaves and rhizomes of Hedychium coronarium, an exotic invasive plant adapted to different regions of Brazil, were extracted by hydrodistillation and characterised chemically by Gas-Liquid Chromatography and Gas-Liquid Chromatography/Mass Spectrometry. Allelopathic activity was determined using methodologies that evaluate the effects of volatility and direct contact on seed germination and seedling vigour in the lettuce. The major constituents of the essential oil from the leaves were β-pinene (46.9%, α-pinene (19.2% and β-caryophyllene (13.2% and from the rhizomes, β-pinene (41.5%, 1.8-cineole (23.6% and α-pinene (13.1%. When analysing the volatile effects of the essential oils, it was seen that their concentration did not affect seedling first germination count or total germination. The essential oil from the rhizomes was more effective than the essential oil from the leaves in reducing seedling response for SGI, dry weight, and length of the roots and shoots. When evaluating the effect of direct contact with the essential oils, it was seen that both oils reduced the response of all the variables under evaluation, and that in addition, the oil from the rhizomes caused greater reductions than that from the leaves, again for all variables. These results can be attributed to the higher levels of monoterpenes present in the essential oil from the rhizomes, mainly the presence of 1.8-cineole.

  17. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    Science.gov (United States)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  18. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    Science.gov (United States)

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  19. Boundary-bulk relation in topological orders

    Science.gov (United States)

    Kong, Liang; Wen, Xiao-Gang; Zheng, Hao

    2017-09-01

    In this paper, we study the relation between an anomaly-free n + 1D topological order, which are often called n + 1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n + 1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the "bulk" for a given gapped boundary phase. In this paper, we show that the n + 1D "bulk" phase is given by the "center" of the nD boundary phase. In other words, the geometric notion of the "bulk" corresponds precisely to the algebraic notion of the "center". We achieve this by first introducing the notion of a morphism between two (potentially anomalous) topological orders of the same dimension, then proving that the notion of the "bulk" satisfies the same universal property as that of the "center" of an algebra in mathematics, i.e. "bulk" = center". The entire argument does not require us to know the precise mathematical description of a (potentially anomalous) topological order. This result leads to concrete physical predictions.

  20. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  1. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...

  2. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.

  3. Micromegas in a bulk

    CERN Document Server

    Giomataris, Ioanis; Andriamonje, Samuel A; Aune, S; Charpak, Georges; Colas, P; Giganon, Arnaud; Rebourgeard, P C; Salin, P; Rebourgeard, Ph.

    2006-01-01

    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicine

  4. Micromegas in a bulk

    Energy Technology Data Exchange (ETDEWEB)

    Giomataris, I. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)]. E-mail: ioa@hep.saclay.cea.fr; De Oliveira, R. [CERN, Geneva (Switzerland); Andriamonje, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Aune, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Charpak, G. [CERN, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Fanourakis, G. [Institute of Nuclear Physcis, NCSR Demokritos, Aghia Paraskevi 15310 (Greece); Ferrer, E. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Giganon, A. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Rebourgeard, Ph. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Salin, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)

    2006-05-10

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine.

  5. Ab Initio Thermodynamic Modeling of Electrified Metal–Oxide Interfaces: Consistent Treatment of Electronic and Ionic Chemical Potentials

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Hansen, Martin Hangaard; Greeley, Jeffrey Philip

    2014-01-01

    . In this paper we present a scheme to determine the metal–oxide interface structure at a given set of these environmental parameters based on quantum chemical calculations. As an illustration we determine the structure of a Ni-YSZ anode as a function of electrode potential at 0 and 1000 K. We further describe...

  6. 20161106 - Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    Science.gov (United States)

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  7. Key study on the potential of hydrazine bisborane for solid- and liquid-state chemical hydrogen storage.

    Science.gov (United States)

    Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B

    2015-05-04

    Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

  8. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    Science.gov (United States)

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  9. Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers

    NARCIS (Netherlands)

    Saygin, D.; Gielen, D. J.; Draeck, M.; Worrell, E.|info:eu-repo/dai/nl/106856715; Patel, M. K.

    2014-01-01

    Fossil fuel substitution with biomass is one of the measures to reduce carbon dioxide (CO2) emissions. This paper estimates the cost-effectiveness of raising industrial steam and producing materials (i.e. chemicals, polymers) from biomass. We quantify their long-term global potentials in terms of

  10. Chemical composition, potential toxicity, and quality control procedures of the crude drug of Cyrtopodium macrobulbon.

    Science.gov (United States)

    Morales-Sánchez, Viridiana; Rivero-Cruz, Isabel; Laguna-Hernández, Guillermo; Salazar-Chávez, Gerardo; Mata, Rachel

    2014-07-03

    Cyrtopodium macrobulbon ("cañaveral") has been long used in Mexican traditional medicine for the treatment of painful urinary ailments ("mal de orin") in men. This study was conducted (i) to establish the potential acute toxicity and the antinociceptive activity of some preparations of Cyrtopodium macrobulbon, in order to demonstrate its preclinical efficacy for treating symptoms of "mal de orin"; and (ii) to determine the chemical composition and quality control parameters of this medicinal orchid. The antinociceptive effect was assessed using the acetic acid-induced writhing and the hot-plate tests. Investigation of the acute toxicity was accomplished by the Lorke method. The organic extract (OE) was subjected to conventional phytochemical study using chromatographic conventional procedures. The volatile components profile of the species was accomplished via GC-MS analysis of HS-SPME-adsorbed compounds. Furthermore, an HPLC method to quantify ephemeranthol B (10) was developed and validated according to the International Conference on Harmonization Guidelines. Microscopic anatomy studies were performed using light and scanning electron microscopies. Finally, a potential distribution map was generated using the MaxEnt modeling method. AE and OE were not toxic to mice since the LD50 was higher than 5000 mg/kg. OE was only active in the acetic acid-induced writhing assay at the doses of 100 and 316 mg/kg. Conventional phytochemical analysis of OE led to the isolation and characterization of n-hexacosyl-trans-p-coumarate (1), n-octacosyl-trans-p-coumarate (2), n-triacontyl-trans-p-coumarate (3), 4-methoxy-benzyl alcohol (4), 4-hydroxybenzaldehyde (5), 1,5,7-trimethoxy-9,10-dihydrophenanthrene-2,6-diol (6), confusarin (7), gigantol (8), batatasin III (9), and ephemeranthol B (10). The major volatile components identified by HS-SPME analysis were 6,10,14-trimethyl-2-pentadecanone, eucalyptol (11), and isobornyl formate. An HPLC analytical method for the quantification

  11. Metal-Organic Frameworks as Potential Platforms for Carbon Dioxide Capture and Chemical Transformation

    Science.gov (United States)

    Gao, Wenyang

    The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions. Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO 2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric

  12. Chemical Ecology of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say (Coleoptera: Chrysomelidae, and Potential for Alternative Control Methods

    Directory of Open Access Journals (Sweden)

    François J. Verheggen

    2012-12-01

    Full Text Available The Colorado potato beetle (CPB has been a major insect pest to potato farming for over 150 years and various control methods have been established to reduce its impact on potato fields. Crop rotation and pesticide use are currently the most widely used approaches, although alternative methods are being developed. Here we review the role of various volatile and nonvolatile chemicals involved in behavior changes of CPB that may have potential for their control. First, we describe all volatile and nonvolatile chemicals involved in host plant localization and acceptance by CPB beetles, including glycoalcaloids and host plant volatiles used as kairomones. In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones. Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section. The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications.

  13. Evaluation of a High-Throughput Peptide Reactivity Format Assay for Assessment of the Skin Sensitization Potential of Chemicals.

    Science.gov (United States)

    Wong, Chin Lin; Lam, Ai-Leen; Smith, Maree T; Ghassabian, Sussan

    2016-01-01

    The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight

  14. Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Suciu, Nicoleta, E-mail: nicoleta.suciu@unicatt.it [Università Cattolica del Sacro Cuore, 29122 Piacenza (Italy); Tediosi, Alice [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Ciffroy, Philippe [Electricité de France (EDF) R& D, National Hydraulic and Environment Laboratory, 6 quai Watier, 78400 Chatou (France); Altenpohl, Annette [Österreichisches Normungsinstitut/Austrian Standards Institute, Heinestraße 38, 1020 Wien (Austria); Brochot, Céline [INERIS, Parc ALATA, BP2, 60550 Verneuil en Halatte (France); Verdonck, Frederik [ARCHE cvba, Liefkensstraat 35d, 9032 Gent-Wondelgem (Belgium); Ferrari, Federico [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Giubilato, Elisa [University Ca Foscari Venice, Department of Environmental Sciences, Informatics and Statistics, via Torino 155, 30172 Mestre-Venice (Italy); Capri, Ettore [Università Cattolica del Sacro Cuore, 29122 Piacenza (Italy); Fait, Gabriella [EFSA, via Carlo Magno 1/a, 43126 Parma (Italy)

    2016-08-15

    MERLIN-Expo merges and integrates advanced exposure assessment methodologies, allowing the building of complex scenarios involving several pollution sources and targets. The assessment of exposure and risks to human health from chemicals is of major concern for policy and ultimately benefits all citizens. The development and operational fusion of the advanced exposure assessment methodologies envisaged in the MERLIN-Expo tool will have a significant impact in the long term on several policies dealing with chemical safety management. There are more than 30 agencies in Europe related to exposure and risk evaluation of chemicals, which have an important role in implementing EU policies, having especially tasks of technical, scientific, operational and/or regulatory nature. The main purpose of the present paper is to introduce MERLIN-Expo and to highlight its potential for being effectively integrated within the group of tools available to assess the risk and exposure of chemicals for EU policy. The main results show that the tool is highly suitable for use in site-specific or local impact assessment, with minor modifications it can also be used for Plant Protection Products (PPPs), biocides and REACH, while major additions would be required for a comprehensive application in the field of consumer and worker exposure assessment. - Highlights: • Exposure and risk evaluation of chemicals • Coupling environmental exposure and pharmacokinetic models • MERLIN-expo as a higher tier exposure tool • MERLIN-expo potential application in EU chemical regulations • EU legislations and policies related to risk assessment and management of chemicals.

  15. Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids.

    Science.gov (United States)

    Strajhar, Petra; Tonoli, David; Jeanneret, Fabienne; Imhof, Raphaella M; Malagnino, Vanessa; Patt, Melanie; Kratschmar, Denise V; Boccard, Julien; Rudaz, Serge; Odermatt, Alex

    2017-04-15

    The validated OECD test guideline 456 based on human adrenal H295R cells promotes measurement of testosterone and estradiol production as read-out to identify potential endocrine disrupting chemicals. This study aimed to establish optimal conditions for using H295R cells to detect chemicals interfering with the production of key adrenal steroids. H295R cells' supernatants were characterized by liquid chromatography-mass spectrometry (LC-MS)-based steroid profiling, and the influence of experimental conditions including time and serum content was assessed. Steroid profiles were determined before and after incubation with reference compounds and chemicals to be tested for potential disruption of adrenal steroidogenesis. The H295R cells cultivated according to the OECD test guideline produced progestins, glucocorticoids, mineralocorticoids and adrenal androgens but only very low amounts of testosterone. However, testosterone contained in Nu-serum was metabolized during the 48h incubation. Thus, inclusion of positive and negative controls and a steroid profile of the complete medium prior to the experiment (t=0h) was necessary to characterize H295R cells' steroid production and indicate alterations caused by exposure to chemicals. Among the tested chemicals, octyl methoxycinnamate and acetyl tributylcitrate resembled the corticosteroid induction pattern of the positive control torcetrapib. Gene expression analysis revealed that octyl methoxycinnamate and acetyl tributylcitrate enhanced CYP11B2 expression, although less pronounced than torcetrapib. Further experiments need to assess the toxicological relevance of octyl methoxycinnamate- and acetyl tributylcitrate-induced corticosteroid production. In conclusion, the extended profiling and appropriate controls allow detecting chemicals that act on steroidogenesis and provide initial mechanistic evidence for prioritizing chemicals for further investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures.

    Science.gov (United States)

    Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C

    2016-03-01

    Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  17. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2016-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  18. Non-Chemical Stressors and Cumulative Risk Assessment: An Overview of Current Initiatives and Potential Air Pollutant Interactions

    Science.gov (United States)

    Lewis, Ari S.; Sax, Sonja N.; Wason, Susan C.; Campleman, Sharan L.

    2011-01-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  19. Chemical Reaction CO+OH(•) → CO2+H(•) Autocatalyzed by Carbon Dioxide: Quantum Chemical Study of the Potential Energy Surfaces.

    Science.gov (United States)

    Masunov, Artëm E; Wait, Elizabeth; Vasu, Subith S

    2016-08-04

    The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO2 to OH radical and CO molecule, hydrogen transfer from oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO2 medium. It may open a new venue for controlling reaction rates for chemical manufacturing.

  20. Chemical synthesis of a dual branched malto-decaose: A potential substrate for alpha-amylases

    DEFF Research Database (Denmark)

    Damager, Iben; Jensen, Morten; Olsen, Carl Erik

    2005-01-01

    A convergent block strategy for general use in efficient synthesis of complex alpha-(1 -> 4)- and alpha-(1 -> 6)-malto-oligosaccharides is demonstrated with the first chemical synthesis of a malto-oligosaccharide, the decasoccharide 6,6""-bis(alpha-maltosyl)-maltohexaose, with two branch points....... Using this chemically defined branched oligosaccharide as a substrate, the cleavage pattern of seven different alpha-amylases were investigated. alpha-Amylases from human saliva, porcine pancreas, barley alpha-amylose 2 and recombinant barley alpha-amylase 1 all hydrolysed the decasaccharide selectively...

  1. Controlling the temperature and chemical potential for light with laser-cooled motional modes in an optomechanical system

    Science.gov (United States)

    Wang, Chiao-Hsuan; Taylor, Jacob

    2017-04-01

    Massless gauge bosons, including photons, do not exhibit particle conservation and thus have no chemical potential. However, in parametrically driven systems, near equilibrium dynamics can lead to equilibration of photons into a thermodynamic ensemble with a finite number of photons. This Gibbs-like ensemble then has an effective chemical potential. Here we build upon this general concept with an optomechanical implementation appropriate for a nonlinear photonic or microwave quantum simulator, as well as a parallel neutral atom approach. We consider how laser cooling of a narrow mechanical mode or atomic motion can provide an effective low frequency bath for other photon modes. In the optomechanical approach, the parametric interaction between the optical system and the low frequency bath is mediated through a beam-splitter coupling between the optical system and another laser-driven photonic mode, which can be potentially realized in a Michelson-Sagnac interferometry design. The engineered matter-light interaction enables control of both the chemical potential - by drive frequency - and temperature - by the effective temperature of the motional mode induced after laser cooling - of the resulting photonic grand canonical ensemble. Funding is provided by Physics Frontier Center at the JQI and the NSF-funded MRSEC at Princeton.

  2. Chemical synthesis of a dual branched malto-decaose: A potential substrate for alpha-amylases

    DEFF Research Database (Denmark)

    Damager, Iben; Jensen, Morten; Olsen, Carl Erik

    2005-01-01

    . Using this chemically defined branched oligosaccharide as a substrate, the cleavage pattern of seven different alpha-amylases were investigated. alpha-Amylases from human saliva, porcine pancreas, barley alpha-amylose 2 and recombinant barley alpha-amylase 1 all hydrolysed the decasaccharide selectively...

  3. Prediction of carcinogenic potential of chemicals using repeated-dose (13-week) toxicity data.

    Science.gov (United States)

    Woutersen, Ruud A; Soffers, Ans E M F; Kroese, E Dinant; Krul, Cyrille A M; van der Laan, Jan Willem; van Benthem, Jan; Luijten, Mirjam

    2016-11-01

    Sub-chronic toxicity studies of 163 non-genotoxic chemicals were evaluated in order to predict the tumour outcome of 24-month rat carcinogenicity studies obtained from the EFSA and ToxRef databases. Hundred eleven of the 148 chemicals that did not induce putative preneoplastic lesions in the sub-chronic study also did not induce tumours in the carcinogenicity study (True Negatives). Cellular hypertrophy appeared to be an unreliable predictor of carcinogenicity. The negative predictivity, the measure of the compounds evaluated that did not show any putative preneoplastic lesion in de sub-chronic studies and were negative in the carcinogenicity studies, was 75%, whereas the sensitivity, a measure of the sub-chronic study to predict a positive carcinogenicity outcome was only 5%. The specificity, the accuracy of the sub-chronic study to correctly identify non-carcinogens was 90%. When the chemicals which induced tumours generally considered not relevant for humans (33 out of 37 False Negatives) are classified as True Negatives, the negative predictivity amounts to 97%. Overall, the results of this retrospective study support the concept that chemicals showing no histopathological risk factors for neoplasia in a sub-chronic study in rats may be considered non-carcinogenic and do not require further testing in a carcinogenicity study. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.

    Science.gov (United States)

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O Anatole; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-06-18

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  5. Expanding the test set: Chemicals with potential to disrupt mammalian brain development

    Science.gov (United States)

    High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxcants. As new assays are developed, a "training set' of chemicals i...

  6. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration.

    Science.gov (United States)

    Qiu, Ling; Zhang, Xuehua; Yang, Wenrong; Wang, Yufei; Simon, George P; Li, Dan

    2011-05-28

    A combination of AFM, SEM and permeation experiments suggests that the amplitude of corrugation of chemically converted graphene (CCG) sheets in water can be readily controlled by hydrothermal treatment, leading to a new class of permeation-tuneable nanofiltration membranes. © The Royal Society of Chemistry 2011

  7. Computational Methods to Assess the Production Potential of Bio-Based Chemicals

    DEFF Research Database (Denmark)

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M.

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational...

  8. Assessment of the atmospheric hazards and risks of new chemicals: procedures to estimate "hazard potentials"

    NARCIS (Netherlands)

    de Leeuw FAAM

    1993-01-01

    In this report a procedure for the assessment of atmospheric hazards and risks of newly introduced chemicals is discussed. However, an assessment of direct effects caused by exposure to expected ambient concentrations or by deposition is not discussed ; here emphasis is on the role which new

  9. Occupational vitiligo due to unsuspected presence of phenolic antioxidant byproducts in commercial bulk rubber

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, M.A.; Mathias, C.G.; Priddy, M.; Molina, D.; Grote, A.A.; Halperin, W.E.

    1988-06-01

    We investigated the occurrence of cutaneous depigmentation (vitiligo) among employees of a company that manufactured hydraulic pumps. The interiors of these pumps were injection-molded with rubber. We identified a small but significant cluster of vitiligo cases among a group of employees who frequently handled the rubber used in this injection molding process. Although none of the additives specified in the rubber formulations was a phenolic or catecholic derivative, known to be potential causes of chemically induced vitiligo, gas chromatographic analysis identified a para-substituted phenol (2,4-di-tert-butylphenol, DTBP) in solid samples of the most frequently used rubber. Surface wipe analysis confirmed that workers could be exposed to DTBP from simple handling of the rubber. We subsequently established that the solid bulk rubber used as the base in these stock rubber formulations contained both DTBP and smaller quantities of p-tert-butylphenol. Both had formed as unsuspected byproducts during chemical synthesis of two antioxidants added to the solid bulk rubber by a major rubber supplier. We conclude that the unsuspected presence of potential chemical depigmenting agents in solid bulk rubber, from which industrial rubber products are formulated, may contribute to the occurrence of occupational vitiligo, and that a simple review of ingredients in rubber formulations is inadequate to detect their presence.

  10. Conservation efforts of captive golden takin (Budorcas taxicolor bedfordi) are potentially compromised by the elevated chemical elements exposure.

    Science.gov (United States)

    Liu, Qiang; Chen, Yi-Ping; Maltby, Lorraine; Ma, Qing-Yi

    2017-09-01

    Chemical elements exposure of endangered golden takins (Budorcas taxicolor bedfordi) living in the Qinling Mountains and in a captive breeding center was assessed by analyzing fecal samples. Concentrations of As, Co, Cr, Cu, Ni and Se were significantly higher in the feces of captive golden takins than the wild. There was no significant difference in the fecal concentrations of Cd, Mn, Hg, Pb or Zn for wild and captive animals. The element concentration of fecal samples collected from captive animals varied seasonally, with concentrations being lowest in spring and highest in winter and/or autumn. The food provided to captive animals varied both in the composition and the concentration of element present. Consumptions of feedstuff and additional foods such as D. sanguinalis and A. mangostanus for the captive golden takins were identified as the possible sources of chemical element exposure. The estimations of dietary intake of most elements by captive takins were below the oral reference dose, except for As and Pb, indicating that As and Pb were the key components which contributed to the potential non-carcinogenic risk for captive golden takins. In conclusion, captive golden takins were exposed to higher concentrations of chemical elements compared with the wild, which were likely due to their dietary difference. Conservation efforts of captive golden takin are potentially compromised by the elevated chemical element exposure and effort should focus on providing uncontaminated food for captive animals. Copyright © 2017. Published by Elsevier Inc.

  11. Thermodynamics of the quark-gluon plasma at finite chemical potential: color path integral Monte Carlo results

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V.S.; Fortov, V.E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, bd. 2, 125412 Moscow (Russian Federation); Bonitz, M. [Institute for Theoretical Physics and Astrophysics, Christian Albrechts University Kiel, Leibnizstrasse 15, D-24098 Kiel (Germany); Ivanov, Y.B. [National Research Center ' ' Kurchatov Institute' ' , Kurchatov Sq. 1, 123182 Moscow, Russia, National Research Nuclear University ' ' MEPhI' ' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Reseach, Joliot-Curie str. 6, Dubna, 141980, Moscow Region (Russian Federation)

    2015-02-01

    Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulations to the QGP at finite baryon chemical potential. The results indicate that color PIMC can be applied not only above the QCD critical temperature T{sub c} but also below T{sub c}. Besides reproducing the lattice equation of state our approach yields also valuable additional insight into the internal structure of the QGP, via the pair distribution functions of the various quasiparticles. In particular, the pair distribution function of gluons reflects the existence of gluon-gluon bound states at low temperatures and μ = 175 MeV, i.e. glueballs, while meson-like bound states are not found. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. The multi-flavor Schwinger model with chemical potential. Overcoming the sign problem with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, Hana [AISIN AW Co., Ltd., Aichi (Japan)

    2016-11-15

    During recent years there has been an increasing interest in the application of matrix product states, and more generally tensor networks, to lattice gauge theories. This non-perturbative method is sign problem free and has already been successfully used to compute mass spectra, thermal states and phase diagrams, as well as real-time dynamics for Abelian and non-Abelian gauge models. In previous work we showed the suitability of the method to explore the zero-temperature phase structure of the multi-flavor Schwinger model at non-zero chemical potential, a regime where the conventional Monte Carlo approach suffers from the sign problem. Here we extend our numerical study by looking at the spatially resolved chiral condensate in the massless case. We recover spatial oscillations, similar to the theoretical predictions for the single-flavor case, with a chemical potential dependent frequency and an amplitude approximately given by the homogeneous zero density condensate value.

  13. Chemical Potentials of Quarks Extracted from Particle Transverse Momentum Distributions in Heavy Ion Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2014-01-01

    Full Text Available In the framework of a multisource thermal model, the transverse momentum distributions of charged particles produced in nucleus-nucleus (A-A and deuteron-nucleus (d-A collisions at relativistic heavy ion collider (RHIC energies are investigated by a two-component revised Boltzmann distribution. The calculated results are in agreement with the PHENIX experimental data. It is found that the source temperature increases obviously with increase of the particle mass and incident energy, but it does not show an obvious change with the collision centrality. Then, the values of chemical potentials for up, down, and strange quarks can be obtained from the antiparticle to particle yield ratios in a wide transverse momentum range. The relationship between the chemical potentials of quarks and the transverse momentum with different centralities is investigated, too.

  14. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...

  15. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  16. Nanoconfined water under electric field at constant chemical potential undergoes electrostriction.

    Science.gov (United States)

    Vanzo, Davide; Bratko, D; Luzar, Alenka

    2014-02-21

    Electric control of nanopore permeation by water and solutions enables gating in membrane ion channels and can be exploited for transient surface tuning of rugged substrates, to regulate capillary permeability in nanofluidics, and to facilitate energy absorption in porous hydrophobic media. Studies of capillary effects, enhanced by miniaturization, present experimental challenges in the nanoscale regime thus making molecular simulations an important complement to direct measurement. In a molecular dynamics (MD) simulation, exchange of water between the pores and environment requires modeling of coexisting confined and bulk phases, with confined water under the field maintaining equilibrium with the unperturbed environment. In the present article, we discuss viable methodologies for MD sampling in the above class of systems, subject to size-constraints and uncertainties of the barostat function under confinement and nonuniform-field effects. Smooth electric field variation is shown to avoid the inconsistencies of MD integration under abruptly varied field and related ambiguities of conventional barostatting in a strongly nonuniform interfacial system. When using a proper representation of the field at the border region of the confined water, we demonstrate a consistent increase in electrostriction as a function of the field strength inside the pore open to a field-free aqueous environment.

  17. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach

    Science.gov (United States)

    Xin, Xian-yin; Qin, Si-xue; Liu, Yu-xin

    2014-10-01

    We investigate the quark number fluctuations up to the fourth order in the matter composed of two light flavor quarks with isospin symmetry and at finite temperature and finite chemical potential using the Dyson-Schwinger equation approach of QCD. In order to solve the quark gap equation, we approximate the dressed quark-gluon vertex with the bare one and adopt both the Maris-Tandy model and the infrared constant (Qin-Chang) model for the dressed gluon propagator. Our results indicate that the second, third, and fourth order fluctuations of net quark number all diverge at the critical endpoint (CEP). Around the CEP, the second order fluctuation possesses obvious pump while the third and fourth order ones exhibit distinct wiggles between positive and negative. For the Maris-Tandy model and the Qin-Chang model, we give the pseudocritical temperature at zero quark chemical potential as Tc=146 MeV and 150 MeV, and locate the CEP at (μEq,TE)=(120,124) MeV and (124,129) MeV, respectively. In addition, our results manifest that the fluctuations are insensitive to the details of the model, but the location of the CEP shifts to low chemical potential and high temperature as the confinement length scale increases.

  18. Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target.

    Science.gov (United States)

    Keum, Young-Sam; Jeong, Yong-Joo

    2012-11-15

    Severe acute respiratory syndrome (SARS) was the first pandemic in the 21st century to claim more than 700 lives worldwide. However, effective anti-SARS vaccines or medications are currently unavailable despite being desperately needed to adequately prepare for a possible SARS outbreak. SARS is caused by a novel coronavirus, and one of its components, a viral helicase, is emerging as a promising target for the development of chemical SARS inhibitors. In the following review, we describe the characterization, family classification, and kinetic movement mechanisms of the SARS coronavirus (SCV) helicase-nsP13. We also discuss the recent progress in the identification of novel chemical inhibitors of nsP13 in the context of our recent discovery of the strong inhibition of the SARS helicase by natural flavonoids, myricetin and scutellarein. These compounds will serve as important resources for the future development of anti-SARS medications. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Directory of Open Access Journals (Sweden)

    José A. Centeno

    2014-01-01

    Full Text Available Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU, tungsten (W, lead (Pb, and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF, scanning electron microscopy (SEM, laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS, and confocal laser Raman

  20. A large-scale biomass bulk terminal

    NARCIS (Netherlands)

    Wu, M.R.

    2012-01-01

    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials

  1. The Potential of Solar Process Heating in the Chemical Sector of Jordan

    OpenAIRE

    Haagen, Martin; Al Najami, Mahmoud; Al-Saqa, Jafar; Willwerth, Lisa

    2017-01-01

    Industry in Jordan accounts for approximately 20% of the final energy demand while around 60% of this industrial energy consumption is used for process heating. Renewable energy, especially solar, can contribute significantly to reduce the energy costs of Jordan industry, also in the chemical sector. With the first solar steam generation plant at RAM Pharma being in operation for more than 2 years also the technological feasibility has been proven in Jordan. To fost...

  2. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  3. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  4. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power.

    Science.gov (United States)

    Wyman, Charles E

    2003-01-01

    Lignocellulosic biomass such as agricultural and forestry residues and dedicated crops provides a low-cost and uniquely sustainable resource for production of many organic fuels and chemicals that can reduce greenhouse gas emissions, enhance energy security, improve the economy, dispose of problematic solid wastes, and improve air quality. A technoeconomic analysis of biologically processing lignocellulosics to ethanol is adapted to project the cost of making sugar intermediates for producing a range of such products, and sugar costs are predicted to drop with plant size as a result of economies of scale that outweigh increased biomass transport costs for facilities processing less than about 10,000 dry tons per day. Criteria are then reviewed for identifying promising chemicals in addition to fuel ethanol to make from these low cost cellulosic sugars. It is found that the large market for ethanol makes it possible to achieve economies of scale that reduce sugar costs, and coproducing chemicals promises greater profit margins or lower production costs for a given return on investment. Additionally, power can be sold at low prices without a significant impact on the selling price of sugars. However, manufacture of multiple products introduces additional technical, marketing, risk, scale-up, and other challenges that must be considered in refining of lignocellulosics.

  5. Potential exposure to endocrine disrupting chemicals and selected adverse pregnancy outcomes

    DEFF Research Database (Denmark)

    Bengtsson, Jessica; Thygesen, Pernille Søgaard; Kaerlev, Linda

    2017-01-01

    of being exposed to occupational reproductive hazards were included in the study. A job exposure matrix enabled estimation of potential occupational exposure to EDC on the basis of job title. Births by women potentially exposed to EDC (n = 582) were compared to births by women referred to an OHC...

  6. An assessment of clinical chemical sensing technology for potential use in space station health maintenance facility

    Science.gov (United States)

    1987-01-01

    A Health Maintenance Facility is currently under development for space station application which will provide capabilities equivalent to those found on Earth. This final report addresses the study of alternate means of diagnosis and evaluation of impaired tissue perfusion in a microgravity environment. Chemical data variables related to the dysfunction and the sensors required to measure these variables are reviewed. A technology survey outlines the ability of existing systems to meet these requirements. How the candidate sensing system was subjected to rigorous testing is explored to determine its suitability. Recommendations for follow-on activities are included that would make the commercial system more appropriate for space station applications.

  7. Evaluation of a high-throughput peptide reactivity format assay for assessment of the skin sensitization potential of chemicals

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2016-03-01

    Full Text Available The direct peptide reactivity assay (DPRA is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium and high concentrations and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme and non-sensitizers with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF, cysteine- (Ac-RFAACAA and lysine- (Ac-RFAAKAA containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7% and glass (47.3% vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2,4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further

  8. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew R. E.; Birkholm, Trine

    2012-01-01

    a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results: We produced a phylogenetic hypothesis...

  9. Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi

    Directory of Open Access Journals (Sweden)

    Ana Lígia Leandrini de Oliveira

    2012-06-01

    Full Text Available Marine natural products have currently been recognized as the most promising source of bioactive substances for drug discovery research. In this review, extraordinary metabolites from marine algae species are illustrated, as well as approaches for their isolation and determination of their biological properties and pharmaceutical potential. Furthermore, marine endophytic microorganisms (from marine algae are presented as a new subject for extensive investigation to find novel natural products, which make them a potentially rich and innovative source for new drug candidates.

  10. Dung as a potential medium for inter-sexual chemical signaling in Asian elephants (Elephas maximus).

    Science.gov (United States)

    Ghosal, Ratna; Seshagiri, P B; Sukumar, R

    2012-09-01

    Chemical signaling is a prominent mode of male-female communication among elephants, especially during their sexually active periods. Studies on the Asian elephant in zoos have shown the significance of a urinary pheromone (Z7-12:Ac) in conveying the reproductive status of a female toward the opposite sex. We investigated the additional possibility of an inter-sexual chemical signal being conveyed through dung. Sixteen semi-captive adult male elephants were presented with dung samples of three female elephants in different reproductive phases. Each male was tested in 3 separate trials, within an interval of 1-3 days. The trials followed a double-blind pattern as the male and female elephants used in the trials were strangers, and the observer was not aware of the reproductive status of females during the period of bioassays. Males responded preferentially (Pelephants were able to distinguish the reproductive phase of the female by possibly detecting a pre-ovulatory pheromone released in dung. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Chemical composition and potential health risks of raw Arabian incense (Bakhour

    Directory of Open Access Journals (Sweden)

    Yehya Elsayed

    2016-07-01

    Full Text Available Burning Arabian incense (Bakhour is a common indoor practice in the Middle East and the Arabian Gulf region. However, the chemical composition of this substance has never been studied. Three different Bakhour brands were selected for this study. A complete chemical profile for the raw samples was determined using carbon, hydrogen, and nitrogen elemental analysis, inductively coupled plasma optical emission spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and gas chromatography mass spectrometry techniques. A wide range of elements and compounds were identified, many of which are hazardous to health. Nitrogen was found in all samples which should raise concerns due to the known health implications of amines, nitrogen oxides and nitrites. In addition toxic metals such as cobalt, copper, iron, nickel, lead, and zinc were also determined in all samples. The amounts of these metals are equivalent to those in raw tobacco, where they are known to pose health risks. Three types of solvents (acetone, dichloromethane and toluene were used for the extraction of organic compounds. Carcinogens, toxins and irritants were found along others of different health implications. Isolation of these compounds provides preliminary evidence on the harmful consequences of being exposed to Bakhour.

  12. Chemical Structure And Glass Transition Temperature Of Ricinodendron Heudelotii Wood For Its Pulp Production Potential

    Directory of Open Access Journals (Sweden)

    Bolade M. Ogunleye

    2017-02-01

    Full Text Available The chemical structure and glass transition temperature of Ricinodendron heudelotii wood were studied using Attenuated total reflectance Fourier transform infrared FTIR spectroscopy and dynamic mechanical analysis DMA respectively. The thermal characteristic of R. heudelotii was conducted on N-methyl-2-pyrolidone saturated specimens while submerged under the same solvent at a temperature range from 130 to 0C at 3Cmin multi-frequencies of 0.1-10 Hz using DMA. Ratios of syringyl to guaiacyl associated bands along the longitudinal and radial positions of the wood differ significantly. Higher syringylguaiacyl ratio of the corewood than middlewood correlate well with lowering softening temperature. The findings in this research reveals that more chemical would be required to pulp R. heudelotii wood obtained from the base 10 of the merchantable height and outerwood because of the presence of high lignin content compared to the other longitudinal and radial positions respectively where wood were collected. Also outerwood favour pulp production compared to middlewood and corewood because of the high holocellulose content.

  13. A large-scale biomass bulk terminal

    OpenAIRE

    Wu, M.R.

    2012-01-01

    This research explores the possibility of a large-scale bulk terminal in West Europe dedicated to handle solid and liquid biomass materials. Various issues regarding the conceptual design of such a terminal have been investigated and demonstrated in this research: the potential biomass materials that will be the major international trade flows in the future, the characteristics of these potential biomass materials, the interaction between the material properties and terminal equipment, the pe...

  14. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review.

    Science.gov (United States)

    Fenech, C; Rock, L; Nolan, K; Tobin, J; Morrissey, A

    2012-05-01

    Nitrate is naturally found within the environment as part of the nitrogen cycle. However, anthropogenic inputs have greatly increased nitrate loads within ground and surface waters. This has had a severe impact on aquatic ecosystems and has given rise to health considerations in humans and livestock. Therefore, the identification of nitrate sources is important in preserving water quality and achieving sustainability of our water resources. Nitrate sources can be determined based on the nitrate nitrogen (N) and oxygen (O) isotopic compositions (δ(15)N, δ(18)O). However, sewage and manure have overlapping δ(15)N and δ(18)O values making their differentiation on this basis problematic. The specific differentiation between sources of faecal contamination is of particular importance, because the risk to humans is usually considered higher from human faecal contamination (sewage) than from animal faecal contamination. This review summarises the current state of knowledge in using isotope tracers to differentiate various nitrate sources and identifies potential chemical tracers for differentiating sewage and manure. In particular, an in depth review of the current state of knowledge regarding the necessary considerations in using chemical markers, such as pharmaceuticals and food additives, to differentiate sewage and manure sources of nitrate contamination will be given, through an understanding of their use, occurrence and fate, in order to identify the most suitable potential chemical markers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  16. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  17. Toxicity tests with crustaceans for detecting sublethal effects of potential endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Wollenberger, Leah

    New and updated test methods to detect and characterise endocrine disrupting chemicals are urgently needed for the purpose of environmental risk assessment. Although endocrine disruption in invertebrates has not been studied as extensive as in vertebrates, in particular in fish, numerous reports...... regulated by hormones such as growth, molting, sexual maturation and reproduction. The primary endpoints were larval development ratio, egg production and sex ratio. Exposure experiments were conducted with naturally occurring and synthetic vertebrate and invertebrate hormones as well as compounds known...... to act as endocrine disrupters in vertebrates. Larval development ratio was identified to be a remarkably sensitive endpoint. The larval development test with A. tonsa is rapid, cost-effective, easily to perform and results in full concentration-response relationships allowing the determination...

  18. Chemical composition and antifungal potential of Brazilian propolis against Candida spp.

    Science.gov (United States)

    Freires, I A; Queiroz, V C P P; Furletti, V F; Ikegaki, M; de Alencar, S M; Duarte, M C T; Rosalen, P L

    2016-06-01

    Propolis is known to have biological properties against numerous microorganisms of clinical interest. This study aimed to determine the chemical composition and antifungal activity of Brazilian propolis (types 3 and 13) against Candida spp. and their effects on the morphology of preformed and mature Candida biofilms. Samples of propolis (3 and 13) collected by Apis mellifera honeybees were obtained from different regions in Brazil. Ethanolic extracts of propolis (EEP) were prepared, fractionated and submitted to chemical analysis by GC/MS. The extracts and their hexane, dichloromethane and ethyl acetate fractions were tested for their ability to inhibit Candida spp. (C. albicans, C. dubliniensis, C. glabrata, C. kruzei, C. tropicalis and C. parapsilosis) by determination of the minimum inhibitory and fungicidal concentrations (MIC/MFC). Additionally, their effects on morphology of preformed and mature biofilms were observed by scanning electron microscopy. The phenolic compounds p-coumaric acid, caffeic acid phenethyl ester (CAPE), kaempferol and quercetin were identified in the EEP-3 and its bioactive dichloromethane fraction; and isoflavonoids such as medicarpin, vestitol and formononetin were found in the EEP-13, and triterpenes in its bioactive hexane fraction. The EEP-3 and EEP-13 and their bioactive fractions showed MIC values ranging from 0.2 to 125μg/mL and MFC values between 125 and 500μg/mL. The EEP and fractions were predominantly fungistatic agents. All extracts and fractions disrupted biofilm structures at 500μg/mL and amorphous areas with cell damage were clearly observed in preformed and mature biofilms. Propolis types 3 and 13 have strong anti-Candida activity and should be considered as promising candidates to treat oral and systemic candidiasis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  20. Carcinogenic potential of endosulfan and its metabolites based on a quantum chemical model

    Energy Technology Data Exchange (ETDEWEB)

    Bedor, C.N.G., E-mail: cheila.bedor@univasf.edu.br [Universidade Federal do Vale do Sao Francisco, Av. Jose de Sa Manicoba, S/N, Centro, 56304-205, Petrolina, PE (Brazil); Morais, R.J.L.; Cavalcanti, L.S. [Universidade Federal do Vale do Sao Francisco, Av. Jose de Sa Manicoba, S/N, Centro, 56304-205, Petrolina, PE (Brazil); Ferreira, J.V. [Instituto Federal de Alagoas, Rua Mizael Domingues, 75, Poco, 57020-600, Maceio, AL (Brazil); Pavao, A.C. [Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitaria, 50670-901, Recife, PE (Brazil)

    2010-11-15

    The aim of the present study was to investigate the carcinogenic potential of endosulfan and its metabolites through electronic parameters that characterize the action of carcinogens, i.e. descriptors such as electron affinity, {Delta} (HOMO-LUMO), dipole moments, electrostatic attraction, formation heat (H{sub f}) and permeability of the cell membrane (c Log P). The results reveal that both endosulfan and its metabolites are electrophilic and have carcinogenic potential. Although there are few data on its carcinogenicity in the literature, the findings of the present study indicate that the use of this pesticide represents a risk to the health of the general population, especially rural workers.

  1. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2016-06-01

    Experimental determination of the eye irritation potential (EIP) of chemicals is not only tedious, time and resource intensive, it involves cruelty to test animals. In this study, we have established a three-tier QSAR modeling strategy for estimating the EIP of chemicals for the use of pharmaceutical industry and regulatory agencies. Accordingly, a qualitative (binary classification: irritating, non-irritating), semi-quantitative (four-category classification), and quantitative (regression) QSAR models employing the SDT, DTF, and DTB methods were developed for predicting the EIP of chemicals in accordance with the OECD guidelines. Structural features of chemicals responsible for eye irritation were extracted and used in QSAR analysis. The external predictive power of the developed QSAR models were evaluated through the internal and external validation procedures recommended in QSAR literature. In test data, the two and four category classification QSAR models (DTF, DTB) rendered accuracy of >93%, while the regression QSAR models (DTF, DTB) yielded correlation (R(2)) of >0.92 between the measured and predicted EIPs. Values of various statistical validation coefficients derived for the test data were above their respective threshold limits (except rm(2) in DTF), thus put a high confidence in this analysis. The applicability domain of the constructed QSAR models were defined using the descriptors range and leverage approaches. The QSAR models in this study performed better than any of the previous studies. The results suggest that the developed QSAR models can reliably predict the EIP of diverse chemicals and can be useful tools for screening of candidate molecules in the drug development process. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential

    DEFF Research Database (Denmark)

    Cybulska, Iwona; Chaturvedi, Tanmay; Brudecki, Grzegorz P.

    2014-01-01

    Salicornia bigelovii straw was characterized and evaluated as a potential lignocellulosic bioethanol feedstock. S. bigelovii used in the study was grown in the United Arab Emirates using saltwater (40. ppt) for irrigation. Salt removal was performed prior to pretreatment to protect the processing...

  3. Chemical and structural indicators for large redox potentials in Fe-based positive electrode materials.

    Science.gov (United States)

    Melot, Brent C; Scanlon, David O; Reynaud, Marine; Rousse, Gwenaëlle; Chotard, Jean-Noël; Henry, Marc; Tarascon, Jean-Marie

    2014-07-23

    Li-ion batteries have enabled a revolution in the way portable consumer-electronics are powered and will play an important role as large-scale electrochemical storage applications like electric vehicles and grid-storage are developed. The ability to identify and design promising new positive insertion electrodes will be vital in continuing to push Li-ion technology to its fullest potential. Utilizing a combination of computational tools and structural analysis, we report new indicators which will facilitate the recognition of phases with the desired redox potential. Most importantly of these, we find there is a strong correlation between the presence of Li ions sitting in close-proximity to the redox center of polyanionic phases and the open circuit voltage in Fe-based cathodes. This common structural feature suggests that the bonding associated with Li may have a secondary inductive effect which increases the ionic character of Fe bonds beyond what is typically expected based purely on arguments of electronegativity associated with the polyanionic group. This correlation is supported by ab initio calculations which show the Bader charge increases (reflecting an increased ionicity) in a nearly linear fashion with the experimental cell potentials. These features are demonstrated to be consistent across a wide variety of compositions and structures and should help to facilitate the design of new, high-potential, and environmentally sustainable insertion electrodes.

  4. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    Science.gov (United States)

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  5. Enhanced bulk polysilicon production using silicon tubes

    Science.gov (United States)

    Jafri, Ijaz; Chandra, Mohan; Zhang, Hui; Prasad, Vish; Reddy, Chandra; Amato-Wierda, Carmela; Landry, Marc; Ciszek, Ted

    2001-05-01

    A novel technique using silicon tubes for the production of bulk polysilicon via chemical vapor deposition is presented. Our experimental studies with a model reactor indicate that the polysilicon growth inside the silicon tube (15.3 g) exceeds that of the calculated polysilicon growth on silicon slim rods (4.3 g) over 55 h of deposition time. A computational model is also being developed to simulate the growth rates of the model reactor. Preliminary computational results from this model show a slightly asymmetric temperature distribution at the reactor center line with a 1000 sccm argon flow at 850°C reactor temperature. Both these experimental and computational modeling studies have identified key criteria for the prototype reactor being designed for bulk polysilicon growth.

  6. Physico-chemical analysis and antimicrobial potential of Apis dorsata, Apis mellifera and Ziziphus jujube honey samples from Pakistan.

    Science.gov (United States)

    Fahim, Hira; Dasti, Javid Iqbal; Ali, Ihsan; Ahmed, Safia; Nadeem, Muhammad

    2014-08-01

    To evaluate physico-chemical properties and antimicrobial potential of indigenous honey samples against different reference strains including Escherichia coli ATCC 8739, Enterobacter aerogenes ATCC 13048, Pseudomonas aeroginosa ATCC 9027, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Klebsiella pneumonia ATCC 13883, Aspergillus niger ATCC 16404, Rhizopus oligosporus PCSIR1, Candida albicans ATCC 14053 and Candida utilis ATCC 9950. By using standard methods samples were evaluated for their antimicrobial properties including additive effect of starch and non-peroxidase activity, antioxidative properties (phenol contents, flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity). Prior to this evaluation, complete physico-chemical properties including pH, color, ash contents, protein contents, moisture contents, hydroxymethyl furfural contents, total sugar contents, reducing sugar and non-reducing sugar contents were analyzed. Relatively higher ash contents were found in the Siddar honey i.e. (0.590 0±0.033 6)% and small honey showed relatively higher protein contents i.e. (777.598±9.880) mg/kg. The moisture contents of tested honey samples ranged between 13.8%-16.6%, total sugar contents from 61.672%-72.420% and non-reducing sugar contents from 1.95%-3.93%. Presences of phenolic contents indicate higher antioxidant potential of these honey samples. All bacteria showed clear inhibition zones in response to tested honey samples whereas fungi and yeast showed inhibition at higher concentrations of these honey samples. For Escherichia coli, Bacillus subtilis, Salmonella typhi, Pseudomonas aeroginosa and Aspergillus niger, overall the small honey showed the higher activity than other honey samples. Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimentarius Commission. Evaluation of these honey samples

  7. Phase diagram of Script N = 4 super-Yang-Mills theory with R-symmetry chemical potentials

    Science.gov (United States)

    Yamada, Daisuke; Yaffe, Laurence G.

    2006-09-01

    The phase diagram of large Nc, weakly-coupled Script N = 4 supersymmetric Yang-Mills theory on a three-sphere with non-zero chemical potentials is examined. In the zero coupling limit, a transition line in the μ-T plane is found, separating a ``confined'' phase in which the Polyakov loop has vanishing expectation value from a ``deconfined'' phase in which this order parameter is non-zero. For non-zero but weak coupling, perturbative methods may be used to construct a dimensionally reduced effective theory valid for sufficiently high temperature. If the maximal chemical potential exceeds a critical value, then the free energy becomes unbounded below and no genuine equilibrium state exists. However, the deconfined plasma phase remains metastable, with a lifetime which grows exponentially with Nc (not Nc2). This metastable phase persists with increasing chemical potential until a phase boundary, analogous to a spinodal decomposition line, is reached. Beyond this point, no long-lived locally stable quasi-equilibrium state exists. The resulting picture for the phase diagram of the weakly coupled theory is compared with results believed to hold in the strongly coupled limit of the theory, based on the AdS/CFT correspondence and the study of charged black hole thermodynamics. The confinement/deconfinement phase transition at weak coupling is in qualitative agreement with the Hawking-Page phase transition in the gravity dual of the strongly coupled theory. The black hole thermodynamic instability line may be the counterpart of the spinodal decomposition phase boundary found at weak coupling, but no black hole tunneling instability, analogous to the instability of the weakly coupled plasma phase is currently known.

  8. Role of spin-orbit interaction in the chemical potential of quantum dots in a magnetic field

    Science.gov (United States)

    Emperador, Agustí; Lipparini, E.; Pederiva, F.

    2004-09-01

    We have studied the relevance of spin-orbit coupling to the chemical potential of semiconductor dots submitted to a perpendicularly applied magnetic field B . The energy of the ground state of the dot is calculated within Hartree-Fock (HF), local spin-density functional theory (LSDA) and fixed phase quantum Monte Carlo (FP-DMC) and the interplay between spin-orbit and exchange-correlation interactions is carefully investigated. The results are compared with the experimental curves obtained by means of conductance spectroscopy.

  9. Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi

    OpenAIRE

    Ana Lígia Leandrini de Oliveira; Rafael de Felício; Hosana Maria Debonsi

    2012-01-01

    Marine natural products have currently been recognized as the most promising source of bioactive substances for drug discovery research. In this review, extraordinary metabolites from marine algae species are illustrated, as well as approaches for their isolation and determination of their biological properties and pharmaceutical potential. Furthermore, marine endophytic microorganisms (from marine algae) are presented as a new subject for extensive investigation to find novel natural product...

  10. Effective Extraction of Heavy Metals from their Effluents Using Some Potential Ionic Liquids as Green Chemicals

    Directory of Open Access Journals (Sweden)

    A. Rajendran

    2011-01-01

    Full Text Available Synthesis of nine Task Specific Ionic liquids (TSILs, their characterization using 1H NMR spectral studies and other physical properties and potential applications in the removal of certain heavy metals such as Nickel, Iron, Zinc, Copper and Lead has been studied. The removal of these heavy metals from the industrial effluents / contaminated water bodies using these ionic liquids has been proved to be more successful than conventional methods such as precipitation, cementation, reverse osmosis, ion exchange and adsorption.

  11. Bioactivity and chemical characterization of Opuntia macrorhiza Engelm. seed oil: potential food and pharmaceutical applications.

    Science.gov (United States)

    Chahdoura, Hassiba; Barreira, João C M; Adouni, Khawla; Mhadhebi, Lamia; Calhelha, Ricardo C; Snoussi, Mejdi; Majdoub, Hatem; Flamini, Guido; Ferreira, Isabel C F R; Achour, Lotfi

    2017-08-01

    In the food industry, there is a continuous search for ingredients that might provide advantageous properties to food products, either considering their nutritional value or bioactivity, as well as flavouring and technological aspects. Crude oils are good examples of this type of ingredient, especially if obtained from nonconventional sources. Accordingly, the Opuntia macrorhiza Engelm. seed oil (OMSO) was chemically characterized and evaluated for different in vitro and in vivo bioactivities. OMSO presented physicochemical characteristics appropriate to be considered as an edible oil, namely low acidity value, stability to oxidation (high peroxide value and low K 232 and K 270 values), and high contents of unsaturated fatty acids (as shown by the iodine value) and saponifiable matter. Furthermore, this natural oil, owing to its rich phytochemical profile, showed relevant antioxidant activity (especially in lipid peroxidation inhibition assays), α-glucosidase inhibitory activity, cytotoxicity against human tumour cell lines, antibacterial (mainly against Gram positive species) and antifungal properties, as well as anti-inflammatory and analgesic activities. Furthermore, OMSO did not show any sign of acute toxicity on animals, highlighting its possible use in different applications, considering that this natural product is not expected to induce the adverse effects typically associated with synthetic bioactive agents (e.g., ampicillin, amphotericin B, or lysine acetylsalicilate).

  12. Investigations of novel unsaturated bile salts of male sea lamprey as potential chemical cues

    Science.gov (United States)

    Johnson, Nicholas S.; Yun, Sang-Seon; Li, Weiming

    2014-01-01

    Sulfated bile salts function as chemical cues that coordinate reproduction in sea lamprey, Petromyzon marinus. 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) is the most abundant known bile salt released by sexually mature male sea lampreys and attracts ovulated females. However, previous studies showed that the male-produced pheromone consists of unidentified components in addition to 3kPZS. Here, analysis of water conditioned with mature male sea lampreys indicated the presence of 4 oxidized, unsaturated compounds with molecular weights of 466 Da, 468 Da, and 2 of 470 Da. These compounds were not detectable in water conditioned with immature male sea lampreys. By using mass spectrometry, 4 A-ring unsaturated sulfated bile salts were tentatively identified from male washings as 2 4-ene, a 1-ene, and a 1,4-diene analogs. These were synthesized to determine if they attracted ovulated female sea lampreys to spawning nests in natural streams. One of the novel synthetic bile salts, 3 keto-1-ene PZS, attracted ovulated females to the point of application at a concentration of 10-12 M. This study reveals the structural diversity of bile salts in sea lamprey, some of which have been demonstrated to be pheromonal cues.

  13. Physical characteristics, chemical composition and water contamination potential from Canadian wildfire ash

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan; Arcenegui, Vicky; Otero, Xose Luis

    2017-04-01

    Wildland fires leave a powdery residue on the ground: wildfire ash, which consists of mineral materials and charred organic components. Its quantities and characteristics depend mainly on the total amount and type of fuel burnt and the fire characteristics. Up to several tens of tons of ash per hectare have been quantified in different post-fire environments. As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the carbon cycle, stimulates microbial activity and helps the recovery of vegetation. Ash incorporated into the soil increases soil pH and nutrient pools temporarily and changes soil physical properties such as albedo, soil texture and hydraulic properties. Ash also modifies soil and landscape-scale hydrological behaviour. Its high porosity makes it very effective at absorbing rainfall, but it can also contribute to catastrophic debris flows when ash is mobilised by large storm events. Its 'fragile' nature makes ash very susceptible to wind and water erosion, facilitating its transfer to the hydrological system. Runoff containing ash from burnt areas carries soluble nutrients and pollutants, which can have detrimental impacts on aquatic ecosystems and the supply of potable water. In this presentation we will report for the first time on the physical characteristics, chemical composition and associated water pollution risk from ash produced in four typical Canadian boreal forest fires: two high-intensity fires in jack pine stands, and one high-intensity and one smouldering fire in black spruce stands.

  14. Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat

    Science.gov (United States)

    Wood, W.W.; Sanford, W.E.; Frape, S.K.

    2005-01-01

    Sabkha deposits in the geologic record are commonly used to interpret the environmental conditions of deposition. Implicit in this use is the assumption that the solute system is chemically closed, that is, the authigenic minerals represent the composition of the fluids in their environment of origin. Thermodynamic and mass-balance calculations based on measurements of water and solute flux of contemporary Abu Dhabi coastal sabkha system, however, demonstrate that the system is open for sodium and chloride, where nearly half of the input is lost, but closed for sulfur, where nearly 100% is retained. Sulfur and chloride isotopes were consistent with this observation. If these sabkha deposits were preserved in the geologic record, they would suggest a solute environment rich in sulfate and poor in chloride; yet the reverse is true. In most coastal-sabkha environments, capillary forces bring solutes and water to the surface, where the water evaporates and halite, carnallite, sylvite, and other soluble minerals are precipitated. Retrograde minerals, such as anhydrite, calcite, dolomite, and gypsum, however, precipitate and accumulate in the capillary zone beneath the surface of the coastal sabkha. Because they possess relatively low solubility and are below the surface, these retrograde minerals are protected from dissolution and physical erosion occurring from infrequent but intense rainfall events. Thus, they are more likely to be preserved in the geological record than highly soluble minerals formed on the surface. ?? 2004 Elsevier B.V. All rights reserved.

  15. The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: Psychodidae): a review.

    Science.gov (United States)

    Dinesh, Diwakar Singh; Kumari, Seema; Kumar, Vijay; Das, Pradeep

    2014-03-01

    Use of chemical pesticides is the current method for controlling sandflies. However, resistance is being developed in sandflies against the insecticide of choice that is DDT (dichlorodiphenyl trichloroethane). Botanicals have potential to act as an alternative to chemical insecticides as the crude extracts and active molecules of some plants show insecticidal effect to sandflies. This will lead to safe, easy and environment friendly method for control of sandflies. Therefore, information regarding botanicals acting as alternative to chemical insecticide against sandflies assumes importance in the context of development of resistance to insecticides as well as to prevent environment from contamination. This review deals with some plants and their products having repellent and insecticidal effect to sandflies in India and abroad. Different methods of extraction and their bioassay on sandflies have been emphasized in the text. Various extracts of some plants like Ricinus communis (Euphorbiaceae), Solanum jasminoides (Solanaceae), Bougainvillea glabra (Nyctaginaceae), Capparis spinosa (Capparidaceae), Acalypha fruticosa (Euphorbiaceae) and Tagetes minuta (Asteraceae) had shown repellent/insecticidal effect on sandflies. This review will be useful in conducting the research work to find out botanicals of Indian context having insecticidal effect on sandflies.

  16. The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni-Co films

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali, E-mail: alikarpuz@bau.edu.tr [Physics Department, Science and Literature Faculty, Balikesir University, Balikesir (Turkey); Kockar, Hakan [Physics Department, Science and Literature Faculty, Balikesir University, Balikesir (Turkey); Alper, Mursel [Physics Department, Science and Literature Faculty, Uludag University, Bursa (Turkey)

    2011-02-01

    The magnetic and microstructural properties of Ni-Co films electrodeposited at different cathode potentials were investigated. The compositional analysis revealed that the Ni content increases from 13 at.% to 44 at.% in the films with increasing deposition potential. Magnetic measurements showed that the saturation magnetization, M{sub s} of the films decreased with increase of Ni content as the deposition potential increased. M{sub s} values changed between 1160 emu/cm{sup 3} and 841 emu/cm{sup 3}. The X-ray diffraction revealed that the crystalline structure of the films is a mixture of the predominant face-centered cubic (fcc) and hexagonal closed packed. However, the mixture phase turns to the fcc because of increasing Ni content up to 44 at.% at the highest (-1.9 V) potential by enhancing the intensity of reflections from the fcc phase. The changes observed in the magnetic and microstructural properties were ascribed to the changes observed in the chemical composition caused by the applied different deposition potentials.

  17. Chemical Composition and Allelopathic Potential of Essential Oils from Tipuana tipu (Benth.) Kuntze Cultivated in Tunisia.

    Science.gov (United States)

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2016-03-01

    In Tunisia, Tipuana tipu (Benth.) Kuntze is an exotic tree, which was introduced many years ago and planted as ornamental street, garden, and park tree. The present work reported, for the first time, the chemical composition and evaluates the allelopathic effect of the hydrodistilled essential oils of the different parts of this tree, viz., roots, stems, leaves, flowers, and pods gathered in the area of Sousse, a coastal region, in the East of Tunisia. In total, 86 compounds representing 89.9 - 94.9% of the whole oil composition, were identified in these oils by GC-FID and GC/MS analyses. The root essential oil was clearly distinguished for its high content in sesquiterpene hydrocarbons (β-caryophyllene, 1 (44); 24.1% and germacrene D, 2 (53); 20.0%), while those obtained from pods, leaves, stems, and flowers were dominated by non-terpene hydrocarbons. The most important ones were n-tetradecane (41, 16.3%, pod oil), 1,7-dimethylnaphthalene (43, 15.6%, leaf oil), and n-octadecane (77, 13.1%, stem oil). The leaf oil was rich in the apocarotene (E)-β-ionone (4 (54); 33.8%), and the oil obtained from flowers was characterized by hexahydrofarnesylacetone (5 (81); 19.9%) and methyl hexadecanoate (83, 10.2%). Principal component and hierarchical cluster analyses separated the five essential oils into three groups and two subgroups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by the root essential oil tested at 1 mg/ml. The inhibitory effect on the shoot and root elongation varied from -1.6% to -32.4%, and from -2.5% to -64.4%, respectively. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Structural determinant of chemical reactivity and potential health effects of quinones from natural products.

    Science.gov (United States)

    Tu, Tingting; Giblin, Daryl; Gross, Michael L

    2011-09-19

    Although many phenols and catechols found as polyphenol natural products are antioxidants and have putative disease-preventive properties, others have deleterious health effects. One possible route to toxicity is the bioactivation of the phenolic function to quinones that are electrophilic, redox-agents capable of modifying DNA and proteins. The structure-property relationships of biologically important quinones and their precursors may help understand the balance between their health benefits and risks. We describe a mass-spectrometry-based study of four quinones produced by oxidizing flavanones and flavones. Those with a C2-C3 double bond on ring C of the flavonoid stabilize by delocalization of an incipient positive charge from protonation and render the protonated quinone particularly susceptible to nucleophilic attack. We hypothesize that the absence of this double bond is one specific structural determinant that is responsible for the ability of quinones to modify biological macromolecules. Those quinones containing a C2-C3 single bond have relatively higher aqueous stability and longer half-lives than those with a double bond at the same position; the latter have short half-lives at or below ∼1 s. Quinones with a C2-C3 double bond show little ability to depurinate DNA because they are rapidly hydrated to unreactive species. Molecular-orbital calculations support that quinone hydration by a highly structure-dependent mechanism accounts for their chemical properties. The evidence taken together support a hypothesis that those flavonoids and related natural products that undergo oxidation to quinones and are then rapidly hydrated are unlikely to damage important biological macromolecules.

  19. A Structural Determinant of Chemical Reactivity and Potential Health Effects of Quinones from Natural Products

    Science.gov (United States)

    Tu, Tingting; Giblin, Daryl; Gross, Michael L.

    2011-01-01

    Although many phenols and catechols found as polyphenol natural products are antioxidants and have putative disease-preventive properties, others have deleterious health effects. One possible route to toxicity is the bioactivation of the phenolic function to quinones that are electrophilic, redox-agents capable of modifying DNA and proteins. The structure-property relationships of biologically important quinones and their precursors may help understand the balance between their health benefits and risks. We describe a mass-spectrometry-based study of four quinones produced by oxidizing flavanones and flavones. Those with a C2-C3 double bond on ring C of the flavonoid stabilize by delocalization an incipient positive charge from protonation and render the protonated quinone particularly susceptible to nucleophilic attack. We hypothesize that the absence of this double bond is one specific structural determinant that is responsible for the ability of quinones to modify biological macromolecules. Those quinones containing a C2-C3 single bond have relative higher aqueous stability and longer half-lives than those with a double bond at the same position; the latter have short half-lives at or below ~ 1 s. Quinones with a C2-C3 double bond show little ability to depurinate DNA because they are rapidly hydrated to unreactive species. Molecular-orbital calculations support that quinone hydration by a highly structure-dependent mechanism accounts for their chemical properties. The evidence taken together support a hypothesis that those flavonoids and related natural products that undergo oxidation to quinones and are then rapidly hydrated are unlikely to damage important biological macromolecules. PMID:21721570

  20. Responses by amphisbaenianBlanus cinereus to chemicals from prey or potentially harmful ant species.

    Science.gov (United States)

    López, P; Martín, J

    1994-05-01

    We tested the ability of amphisbaenians (Blanus cinereus) to discriminate between odors of ant species selected as prey (Pheidole pallidula) and odors of potentially harmful ant species (Messor barbarus) that are avoided. Tongue-flick rate to swabs impregnated with ant odors, cologne, or deionized water differed among treatments, showing that amphisbaenians were able to discriminate ant species odors. Amphisbaenians showed an aggressive response and bit applicators bearing the odor of harmful ants, while the odor of prey ants did not elicit bites to swabs. The possible evolutionary advantage of identifying and avoiding harmful ants is discussed in relation to the fossoriality of amphisbaenians.

  1. Applying a potential difference to minimise damage to carbon fibres during carbon nanotube grafting by chemical vapour deposition

    Science.gov (United States)

    Anthony, David B.; Qian, Hui; Clancy, Adam J.; Greenhalgh, Emile S.; Bismarck, Alexander; Shaffer, Milo S. P.

    2017-07-01

    The application of an in situ potential difference between carbon fibres and a graphite foil counter electrode (300 V, generating an electric field ca 0.3-0.7 V μm-1), during the chemical vapour deposition synthesis of carbon nanotube (CNT) grafted carbon fibres, significantly improves the uniformity of growth without reducing the tensile properties of the underlying carbon fibres. Grafted CNTs with diameters 55 nm ± 36 nm and lengths around 10 μm were well attached to the carbon fibre surface, and were grown without the requirement for protective barrier coatings. The grafted CNTs increased the surface area to 185 m2 g-1 compared to the as-received sized carbon fibre 0.24 m2 g-1. The approach is not restricted to batch systems and has the potential to improve CNT grafted carbon fibre production for continuous processing.

  2. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Deppert, W.R. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Pfeifer, D. [Department of Hematology and Oncology, University Hospital Freiburg (Germany); Stanzel, S.; Weimer, M. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Schaefer, W.R., E-mail: wolfgang.schaefer@uniklinik-freiburg.de [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)

    2012-05-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  3. Physical and chemical characterization of the pulp of different varieties of avocado targeting oil extraction potential

    Directory of Open Access Journals (Sweden)

    Edinéia Dotti Mooz

    2012-06-01

    Full Text Available The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers’ income.

  4. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    Energy Technology Data Exchange (ETDEWEB)

    Vedani, Angelo, E-mail: angelo.vedani@unibas.ch [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland); Dobler, Max [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Smieško, Martin [Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  5. Generation and characterization of phage-GnRH chemical conjugates for potential use in cat and dog immunocontraception.

    Science.gov (United States)

    Samoylov, A; Cox, N; Cochran, A; Wolfe, K; Donovan, C; Kutzler, M; Petrenko, V; Baker, H; Samoylova, T

    2012-12-01

    Overpopulation of cats and dogs is a serious worldwide problem that demands novel, safe and cost-effective solutions. The objective of this study was to generate and characterize phage-peptide conjugates with gonadotropin-releasing hormone (GnRH) for potential use as an immunocontraceptive. A filamentous phage vector f5-8 with wild-type phage coat proteins was used as a carrier for construction of chemical conjugates with GnRH, a peptide that acts as a master reproductive hormone. In such conjugates, the phage body plays the role of a carrier protein, while multiple copies of GnRH peptide stimulate production of neutralizing anti-GnRH antibodies potentially leading to contraceptive effects. To generate the constructs, four different GnRH-based peptides were synthesized and conjugated to phage particles in a two-step procedure: (i) peptides were reacted with phage to form a conjugate using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride chemistry (EDC) and (ii) the conjugates were separated from remaining free peptides by dialysis. Formation and specificity of phage-GnRH conjugates were confirmed by three independent methods: spectrophotometry, electron microscopy and ELISA. When the conjugates were tested for interaction with sera collected from cats and dogs immunized with GnRH-based vaccines in independent studies, strong specific ELISA signals were obtained, suggesting the potential use of the conjugates for cat and dog immunosterilization. The ability of the conjugates to stimulate production of anti-GnRH antibodies in vivo was evaluated in mice. While optimization of dose, immunization route and adjuvant still requires investigation, our preliminary results demonstrated the presence of anti-GnRH antibodies in sera of mice immunized with such conjugates. Fertility trials in cats and dogs will be needed to evaluate contraceptive potentials of the phage-GnRH peptide chemical conjugates. © 2012 Blackwell Verlag GmbH.

  6. Conductivity of graphene in the framework of Dirac model: Interplay between nonzero mass gap and chemical potential

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.; Petrov, V. M.

    2017-12-01

    The complete theory of electrical conductivity of graphene at arbitrary temperature is developed with taking into account mass-gap parameter and chemical potential. Both the in-plane and out-of-plane conductivities of graphene are expressed via the components of the polarization tensor in (2+1)-dimensional space-time analytically continued to the real frequency axis. Simple analytic expressions for both the real and imaginary parts of the conductivity of graphene are obtained at zero and nonzero temperature. They demonstrate an interesting interplay depending on the values of mass gap and chemical potential. In the local limit, several results obtained earlier using various approximate and phenomenological approaches are reproduced, refined, and generalized. The numerical computations of both the real and imaginary parts of the conductivity of graphene are performed to illustrate the obtained results. The analytic expressions for the conductivity of graphene obtained in this paper can serve as a guide in the comparison between different theoretical approaches and between experiment and theory.

  7. Nonideal Solute Chemical Potential Equation and the Validity of the Grouped Solute Approach for Intracellular Solution Thermodynamics.

    Science.gov (United States)

    Zielinski, Michal W; McGann, Locksley E; Nychka, John A; Elliott, Janet A W

    2017-11-22

    The prediction of nonideal chemical potentials in aqueous solutions is important in fields such as cryobiology, where models of water and solute transport-that is, osmotic transport-are used to help develop cryopreservation protocols and where solutions contain many varied solutes and are generally highly concentrated and thus thermodynamically nonideal. In this work, we further the development of a nonideal multisolute solution theory that has found application across a broad range of aqueous systems. This theory is based on the osmotic virial equation and does not depend on multisolute data. Specifically, we derive herein a novel solute chemical potential equation that is thermodynamically consistent with the existing model, and we establish the validity of a grouped solute model for the intracellular space. With this updated solution theory, it is now possible to model cellular osmotic behavior in nonideal solutions containing multiple permeating solutes, such as those commonly encountered by cells during cryopreservation. In addition, because we show here that for the osmotic virial equation the grouped solute approach is mathematically equivalent to treating each solute separately, multisolute solutions in other applications with fixed solute mass ratios can now be treated rigorously with such a model, even when all of the solutes cannot be enumerated.

  8. Chemical composition and antioxidant-prooxidant potential of a polyphenolic extract and a proanthocyanidin-rich fraction of apple skin

    Directory of Open Access Journals (Sweden)

    Ana María Mendoza-Wilson

    2016-02-01

    Full Text Available The apple is a food rich in diverse classes of polyphenols (PP, among which the proanthocyanidins (PCs, which are primarily concentrated in the skin, are one of the most abundant. These compounds are of considerable interest for their possible positive health effects because of their antioxidant properties. However, depending on the classes of PP present (chemical composition and their relative concentrations in the apple skin, their antioxidant effects vary and some of their components can even generate prooxidant effects. This work determined the chemical composition and antioxidant-prooxidant potential of a polyphenolic extract (PPE and a proanthocyanidin-rich fraction (PRF of apple skin, along with the contribution of their most abundant individual compounds, based on their copper chelating ability, ease in reducing peroxidase-generated free radicals and TEAC (Trolox-Equivalent Antioxidant Capacity assay. For this purpose, chromatographic and colorimetric methods were used. The majority compounds identified in PPE were flavan-3-ols (44.58%, flavonols (42.89% and dihydrochalcones (11.60%. In PRF, we detected monomers and oligomers from dimers to heptamers, which were composed of 97% (−-epicatechin and 3% (+-catechin. The antioxidant potential was notably higher in PRF than in PPE. The (−-epicatechin monomer and the procyanidin B2 dimer showed more ease in reducing peroxidase-generated free radicals compared to other compounds of the apple skin, whereas phloridzin dihydrochalcone produced prooxidant effects.

  9. Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic.

    Science.gov (United States)

    Pitzalis, Emanuela; Onor, Massimo; Mascherpa, Marco Carlo; Pacchi, Giacomo; Mester, Zoltan; D'Ulivo, Alessandro

    2014-02-04

    The efficiency of chemical generation of arsanes from inorganic arsenic, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to arsane, AsH3, monomethylarsane, CH3AsH2 (MMA), and dimethylarsane, (CH3)2AsH (DMA), has been investigated in different reaction media with the aim to better elucidate the mechanisms controlling their generation process and to find the experimental conditions to implement a nonchromatographic arsenic speciation analytical method, which is based on the selective determination of some arsenic species. Studies were performed by continuous flow hydride generation coupled with atomic spectrometry (CF-HG-AS), using different reductants such as borane-ammonia (AB), borane-tert-butylamine (TBAB), and sodium tetrahydridoborate (THB) in HCl and HClO4 media, in the presence or absence of L-cysteine (Cys). The efficiency of HG processes for MMA and DMA is mainly controlled by the reactivity of the substrates with the borane, which could be strongly influenced by the formation of ion couples. The protonation of arsane did not play a significant role in the employed reaction system. By taking advantage of the different reactivity pattern of As species in selected generation conditions, DMAA and MMAA could be selectively determined in 0.5 and 10 M HClO4 solutions, respectively, in the presence of Cys, with AB as the reducing agent. The presence of Cys as a masking agent and the peculiar reducing properties of AB ensured a good control of interferences, as far as it has been observed for Co(II), Ni(II), Cu(II), Fe(II), Fe(III). The overall time needed to complete the prereduction step has been verified for MMAA and DMAA at different acidities in order to achieve the best selectivity. The selective determination of DMAA with AB/Cys in HClO4 has been optimized and applied to certified reference materials (CRMs) of natural waters CASS-4, SLRS-4, and NASS-4 (NRCC). The estimation of DMAA concentration allows us to correct the concentration of As

  10. Chemical Characterization of Potentially Prebiotic Oligosaccharides in Brewed Coffee and Spent Coffee Grounds.

    Science.gov (United States)

    Tian, Tian; Freeman, Samara; Corey, Mark; German, J Bruce; Barile, Daniela

    2017-04-05

    Oligosaccharides are indigestible carbohydrates widely present in mammalian milk and in some plants. Milk oligosaccharides are associated with positive health outcomes; however, oligosaccharides in coffee have not been extensively studied. We investigated the oligosaccharides and their monomeric composition in dark roasted coffee beans, brewed coffee, and spent coffee grounds. Oligosaccharides with a degree of polymerization ranging from 3 to 15, and their constituent monosaccharides, were characterized and quantified. The oligosaccharides identified were mainly hexoses (potentially galacto-oligosaccharides and manno-oligosaccharides) containing a heterogeneous mixture of glucose, arabinose, xylose, and rhamnose. The diversity of oligosaccharides composition found in these coffee samples suggests that they could have selective prebiotic activity toward specific bacterial strains able to deconstruct the glycosidic bonds and utilize them as a carbon source.

  11. Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.

    Science.gov (United States)

    Thennadil, Suresh N; Chen, Yi-Chieh

    2017-02-01

    The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (Tc), total transmittance (Td), and total diffuse reflectance (Rd), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of Tc becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of Tc and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing Tc with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (Tc) and total transmittance (Td) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing Tc with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.

  12. Chemical characterization by GC-MS and phytotoxic potential of non-polar and polar fractions of seeds of Dioteryx odorata (Aubl.) Willd. from Venezuelan regions

    OpenAIRE

    Oliveros-Bastidas,Alberto de J.; Demuner, Antonio J.; Luiz Claudio Almeida Barbosa

    2013-01-01

    Dipteryx odorata (Aubl.) Willd. is a tall arboreal species native to Central and Northern South America. This paper describes the chemical characterization and phytotoxic potential of polar and non-polar extracts from D. odorata seeds. Structural determinations were accomplished by chemical derivatization and analyzed by GC/MS. The chemical composition of the non-polar fraction (hexane and dichloromethane) presented fatty acids as major constituent. Medium polar and polar fractions (ethyl ace...

  13. Polonium bulk and surface vibrational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tigrine, Rachid; Bourahla, Boualem [Laboratoire de Physique PEC UMR 6087, Universite du Maine, Le Mans (France); Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou (Algeria); Khater, Antoine

    2009-07-15

    Calculations are presented for the bulk phonons and for surface Rayleigh phonons and resonances for Polonium, the only element known to form in the simple cubic lattice. The static stability of this lattice has been confirmed recently by ab initio simulations which yield two bulk elastic constants, c{sub 11} and c{sub 12}. Constitutive equations are derived for the isotropic cubic lattice based upon the Fuchs's method. This permits effectively a numerical evaluation of central potential force constants for Polonium from the ab initio results. Numerical calculations are then made for the material vibration dynamics in the force constant model with the use of the matching method. The numerical applications yield for Polonium the bulk phonon branches along[100],[110], and [111], and the Rayleigh phonons and surface resonances along the[010] direction in an unreconstructed (001) surface. The local vibration densities of states are calculated for bulk and surface sites for this element. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers

    Science.gov (United States)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1987-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.

  15. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential.

    Science.gov (United States)

    Cybulska, Iwona; Chaturvedi, Tanmay; Brudecki, Grzegorz P; Kádár, Zsófia; Meyer, Anne S; Baldwin, Robert M; Thomsen, Mette Hedegaard

    2014-02-01

    Salicornia bigelovii straw was characterized and evaluated as a potential lignocellulosic bioethanol feedstock. S. bigelovii used in the study was grown in the United Arab Emirates using saltwater (40ppt) for irrigation. Salt removal was performed prior to pretreatment to protect the processing equipment and avoid inhibition of enzymes and yeast. Composition of the washed biomass was comparable to traditional lignocellulosic biomasses with relatively high glucan and xylan content (26 and 22g/100gDM, respectively) but with lower lignin content (7g/100gDM). The washed feedstock was subjected to hydrothermal pretreatment, producing highly digestible (up to 92% glucan-to-glucose conversion) and fermentable (up to 100% glucose-to-ethanol conversion) fiber fractions. Liquid fractions obtained in the pretreatment did not show inhibition towards Saccharomyces cerevisiae. No significant differences among the enzymatic convertibility and microbial fermentability of the fibers as well as low xylose recoveries suggest that lower severity pretreatment conditions could be exploited for S. bigelovii. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    Science.gov (United States)

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.

  17. Radiation effects in bulk silicon

    Science.gov (United States)

    Claeys, Cor; Vanhellemont, Jan

    1994-01-01

    This paper highlights important aspects related to irradiation effects in bulk silicon. Some basic principles related to the interaction of radiation with material, i.e. ionization and atomic displacement, are briefly reviewed. A physical understanding of radiation effects strongly depends on the availability of appropriate analytical tools. These tools are critically accessed from a silicon bulk viewpoint. More detailed information, related to the properties of the bulk damage and some dedicated application aspects, is given for both electron and proton irradiations. Emphasis is placed on radiation environments encountered during space missions and on their influence on the electrical performance of devices such as memories and image sensors.

  18. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  19. ANATOMICAL CHARACTERISTICS AND CHEMICAL PROPERTIES OF THE BRANCH-WOOD OF Schizolobium amazonicum DUCKE SPECIES AND ITS POTENTIAL USES

    Directory of Open Access Journals (Sweden)

    Yusup Amin

    2013-10-01

    Full Text Available The scale of forest degradation and deforestation in Indonesia has inspired the use of lesser-known wood species, which are potentially abundant and so far has not much been utilized. Utilization of these woods should be imposed not only of the stem wood but also of the branch-wood portions. Schizolobiumamazonicum Ducke treeis one of those lesser-known species, and growing fast with an MAIof3.68 cm/year.In Indonesia this species is only found in the Purwodadi Botanical Garden. A research was conducted to study the basic characteristics (anatomical aspects and chemical properties of the branch-wood portion of this species. The branch-wood materials were obtained from the Purwodadi Botanical Garden situated in Pasuruan (East Java. The specimens used were the first branch of the trunk (stem of nine-year old S. amazonicum tree (= 29.46 cm. The branch-wood samples were then examined for the anatomical aspects (macroscopic and microscopic characteristics and chemical properties (chemical composition. Results revealed that the anatomical properties of S.amazonicum branch-wood exhibited close similarities to those of sengon wood; it was light in appearance and white in color. Its fiber averaged about 1500 μm, and based on the fiber dimension's derived values the branch- wood fiber of this species was categorized into first-class quality for pulp and paper manufacture. Further, the chemical composition of this branch-wood compared favorably with that of sengon and mangium wood. The composition of extractive content thatsoluble in alcohol-benzene; lignin; holocellulose; and α-cellulose of this branch-wood were 2.46; 28.71; 80.64; and 50.47%, respectively. The overall assessment implied that the branch-wood portion of S.amazonicum tree affords favorable potential to be developed as raw material for pulp and paper manufacture. Also, considering that both sengon and mangium woods were already used in the pulp and paper industries as well as the trees are

  20. Chemical Composition and Allelopathic Potential of Essential Oils from Citharexylum spinosum L. Grown in Tunisia.

    Science.gov (United States)

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Flamini, Guido; Ben Jannet, Hichem; Harzallah-Skhiri, Fethia

    2017-04-01

    Citharexylum spinosum L. (Verbenaceae) also known as Citharexylum quadrangulare Jacq. or Citharexylum fruticosum L. is an exotic tree introduced many years ago in Tunisia, specially used as a street and park ornamental tree. Essential oils (EOs) were obtained by hydrodistillation of the different parts (roots, stems, leaves, flowers and fruits; drupes) collected from trees grown in the area of Monastir (Tunisia). In total, 84 compounds, representing 90.1 - 98.4% of the whole oil composition, were identified by GC-FID and GC/MS analyses. The root EO was distinguished by its high content in monoterpene hydrocarbons (α-phellandrene; 30.8%) whereas that obtained from stems was dominated by sesquiterpene hydrocarbons (cuparene; 16.4%). The leaf oil was rich in an apocarotenoid derivative (hexahydrofarnesylacetone; 26%) and an aliphatic hydrocarbon (nonadecane; 14.5%). Flowers oil was rich in esters (2-phenylethyl benzoate; 33.5%). Finally, drupes oil was rich in oxygenated sesquiterpenes (β-eudesmol; 33.1%). Flowers oil showed a significant phytotoxic effect against lettuce seeds germination, it induces a total inhibition when tested at 1 mg/ml. Root and shoot elongation seemed to be more affected than germination. The inhibition of the shoot length varied from 3.6% to 100% and that of the root from 16.1% to 100%. The highest inhibition of 100% was detected for flower oil tested at 1 mg/ml. Our in vitro studies suggest a possible and new alternative use of C. spinosum EOs in herbicidal formulations, further experiments involving field conditions are necessary to confirm its herbicidal potential. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.

    Science.gov (United States)

    Lai, Wei; Haile, Sossina M

    2008-02-14

    The AC impedance response of mixed ionic and electronic conductors (MIECs) exposed to a chemical potential gradient is derived from first principles. In such a system, the chemical potential gradient induces a gradient in the carrier concentration. For the particular system considered, 15% samarium doped ceria (SDC15) with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (BSCF) and Pt electrodes, the oxygen vacancy concentration is a constant under the experimental conditions and it is the electron concentration that varies. The resulting equations are mapped to an equivalent circuit that bears some resemblance to recently discussed equivalent circuit models for MIECs under uniform chemical potential conditions, but differs in that active elements, specifically, voltage-controlled current sources, occur. It is shown that from a combination of open circuit voltage measurements and AC impedance spectroscopy, it is possible to use this model to determine the oxygen partial pressure drop that occurs between the gas phase in the electrode chambers and the electrode|electrolyte interface, as well as the interfacial polarization resistance. As discussed in detail, this resistance corresponds to the slope of the interfacial polarization curve. Measurements were carried out at temperatures between 550 and 650 degrees C and oxygen partial pressure at the Pt anode ranging from 10(-29) to 10(-24) atm (attained using H(2)/H(2)O/Ar mixtures), while the cathode was exposed to either synthetic air or neat oxygen. The oxygen partial pressure drop at the anode was typically about five orders of magnitude, whereas that at the cathode was about 0.1 atm for measurements using air. Accordingly, the poor activity of the anode is responsible for a loss in open circuit voltage of about 0.22 V, whereas the cathode is responsible for only about 0.01 V, reflecting the high activity of BSCF for oxygen electro-reduction. The interfacial polarization resistance at the anode displayed dependences on oxygen

  2. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    Science.gov (United States)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  3. Silicon Bulk Micromachined Vibratory Gyroscope

    Science.gov (United States)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.

    1996-01-01

    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  4. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    Science.gov (United States)

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to

  5. Novel salicylic acid-based chemically crosslinked pH-sensitive hydrogels as potential drug delivery systems.

    Science.gov (United States)

    Demirdirek, Bahar; Uhrich, Kathryn E

    2017-08-07

    In this work, salicylic acid (SA), a non-steroidal anti-inflammatory, was chemically incorporated into hydrogel systems to achieve sustained SA release profiles. With its anti-inflammatory properties, sustained release of SA would be relevant for treating diseases such as diabetes and cancer. In this work, SA was chemically incorporated into hydrogel systems via covalent attachment to an itaconate moiety followed by UV-initiated crosslinking using acrylic acid and poly(ethylene glycol) diacrylate. The chemical composition of the hydrogel system was confirmed using FT-IR spectroscopy. The SA-based hydrogels were designed as pH-responsive hydrogels, collapsing at acidic pH (1.2) values and swelling at higher pH (7.4) values for gastrointestinal-specific delivery. The hydrogel systems exhibited a pH-dependent SA release profile: SA release was much slower at pH 1.2 compared to pH 7.4. Under acidic pH conditions, 30wt% SA was released after 24h, whereas 100wt% SA was released in a sustained manner within 24h in pH 7.4 PBS buffer. The pore structure of the gel networks were studied using SEM and exhibit appropriate pore sizes (15-60μm) for physically encapsulating drugs. In addition, rheological studies of the hydrogels proved that these systems are mechanically strong and robust. Mucoadhesive behaviors were confirmed using a Texture Analyzer, the work of adhesion for the hydrogels was around 290 g·mm and the maximum detachment force was around 135g. The SA-based hydrogels demonstrate great potential for oral delivery of bioactives in combination with SA to treat serious diseases such as cancer and diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes.

    Science.gov (United States)

    Kohno, Keigo; Sokabe, Takaaki; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2010-09-15

    Insects are relatively small heterothermic animals, thus they are highly susceptible to changes in ambient temperature. However, a group of honey bees is able to maintain the brood nest temperature between 32°C and 36°C by either cooling or heating the nest. Nevertheless, how honey bees sense the ambient temperature is not known. We identified a honey bee Hymenoptera-specific transient receptor potential A (HsTRPA) channel (AmHsTRPA), which is activated by heat with an apparent threshold temperature of 34°C and insect antifeedants such as camphor in vitro. AmHsTRPA is expressed in the antennal flagellum, and ablation of the antennal flagella and injection of AmHsTRPA inhibitors impair warmth avoidance of honey bees. Gustatory responses of honey bees to sucrose are suppressed by noxious heat and insect antifeedants, but are relieved in the presence of AmHsTRPA inhibitors. These results suggest that AmHsTRPA may function as a thermal/chemical sensor in vivo. As shown previously, Hymenoptera has lost the ancient chemical sensor TRPA1; however, AmHsTRPA is able to complement the function of Drosophila melanogaster TRPA1. These results demonstrate that HsTRPA, originally arisen by the duplication of Water witch, has acquired thermal- and chemical-responsive properties, which has resulted in the loss of ancient TRPA1. Thus, this is an example of neofunctionalization of the duplicated ion channel gene followed by the loss of the functionally equivalent ancient gene.

  7. An overview of chemical straightening of human hair: technical aspects, potential risks to hair fibre and health and legal issues.

    Science.gov (United States)

    Miranda-Vilela, A L; Botelho, A J; Muehlmann, L A

    2014-02-01

    Personal image, as it relates to external beauty, has attracted much attention from the cosmetic industry, and capillary aesthetics is a leader in consumption in this area. There is a great diversity of products targeting both the treatment and beautification of hair. Among them, hair straighteners stand out with a high demand by costumers aiming at beauty, social acceptance and ease of daily hair maintenance. However, this kind of treatment affects the chemical structure of keratin and of the hair fibre, bringing up some safety concerns. Moreover, the development of hair is a dynamic and cyclic process, where the duration of growth cycles depends not only on where hair grows, but also on issues such as the individual's age, dietary habits and hormonal factors. Thus, although hair fibres are composed of dead epidermal cells, when they emerge from the scalp, there is a huge variation in natural wave and the response to hair cosmetics. Although it is possible to give the hair a cosmetically favourable appearance through the use of cosmetic products, for good results in any hair treatment, it is essential to understand the mechanisms of the process. Important information, such as the composition and structure of the hair fibres, and the composition of products and techniques available for hair straightening, must be taken into account so that the straightening process can be designed appropriately, avoiding undesirable side effects for hair fibre and for health. This review aims to address the morphology, chemical composition and molecular structure of hair fibres, as well as the products and techniques used for chemical hair relaxing, their potential risk to hair fibre and to health and the legal aspects of their use. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Numerical simulation of ozone concentration profile and flow characteristics in paddy bulks.

    Science.gov (United States)

    Pandiselvam, Ravi; Chandrasekar, Veerapandian; Thirupathi, Venkatachalam

    2017-08-01

    Ozone has shown the potential to control stored product insect pests. The high reactivity of ozone leads to special problems when it passes though an organic medium such as stored grains. Thus, there is a need for a simulation study to understand the concentration profile and flow characteristics of ozone in stored paddy bulks as a function of time. Simulation of ozone concentration through the paddy grain bulks was explained by applying the principle of the law of conservation along with a continuity equation. A higher ozone concentration value was observed at regions near the ozone diffuser whereas a lower concentration value was observed at regions away from the ozone diffuser. The relative error between the experimental and predicted ozone concentration values for the entire bin geometry was less than 42.8%. The simulation model described a non-linear change of ozone concentration in stored paddy bulks. Results of this study provide a valuable source for estimating the parameters needed for effectively designing a storage bin for fumigation of paddy grains in a commercial scale continuous-flow ozone fumigation system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Chemical composition and potential ethanol yield of Jerusalem artichoke in a semi-arid region of China

    Directory of Open Access Journals (Sweden)

    Zu Xin Liu

    2015-03-01

    Full Text Available The study was aimed to evaluate the potential of existing genotypes of Jerusalem artichoke (Helianthus tuberosus L. as biomass feedstock for ethanol production. We investigated the biomass productivity and chemical composition of twenty-six Jerusalem artichoke clones grown in a semi-arid region of China. Jerusalem artichoke was demonstrated to be a sustainable feedstock for bioethanol production. All structural and non-structural carbohydrates in whole plant of Jerusalem artichoke could be 5000 L/ha. The above-ground biomass of Jerusalem artichoke could be a promising feedstock for cellulosic ethanol. The ethanol potential yield from cellulose and hemicellulose in aboveground biomass were 1821 to 5930 L/ha, contributing 29.8-66.4% of the total ethanol yield, which could be as high as that from switchgrass and sweet sorghum stem. Large variation among the investigated genotypes for carbohydrates makes it possible to select suitable clones to be used in bioethanol production in semiarid regions. Clones HB-3, HEN-3, IM-1, SC-1, SHX-3, SX-2 and ZJ-2 yielded tuber total soluble sugar higher than 4.0 t/ha. Clones BJ-4, HUB-2, HUN-2, QH-1, SD-2 and SHH-1 produced more than 5.0 t/ha cellulose and hemicellulose in above-ground biomass. Clones BJ-4 and HUB-2 have the highest ethanol potential based on structural carbohydrates. These clones were promising material if used as biofuel feedstock in this growth condition.

  10. Proceedings of BulkTrans '89

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Papers were presented on bulk commodity demand; steel industry bulk trades; grains and the world food economy; steam coal and cement demand; shipping profitability; bulk carrier design and economics; bulk ports and terminals; ship unloading; computers in bulk terminals; and conveyors and stockyard equipment.

  11. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  12. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    Science.gov (United States)

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  13. Cytotoxic and Enzyme Inhibitory Potential of Two Potentilla species (P. speciosa L. and P. reptans Willd. and Their Chemical Composition

    Directory of Open Access Journals (Sweden)

    Sengul Uysal

    2017-05-01

    Full Text Available In this work, the biological and chemical fingerprints of three extracts (ethyl acetate, methanol, and water from two Potentilla species (Potentilla reptans and P. speciosa were investigated. Antioxidant, enzyme inhibitory, and cytotoxic activities were performed for the biological fingerprint. For the chemical characterization, total bioactive components, and individual phenolic components were determined using photometric and HPLC methods, respectively. The main identified phenolic compounds in these extracts were rutin and catechin. Methanol and water extracts contained the highest total phenolic and flavonoid content. The results of antioxidant assays showed that methanol and water extracts displayed higher antioxidant activity compared to the ethyl acetate extract. Generally, methanol and water extracts exhibited higher biological activities correlated with higher levels the bioactive components. For P. speciosa, the methanol extract exhibited the highest enzyme inhibitory activity (except BChE inhibitory activity. P. reptans exhibited also high antiproliferative activity against MCF-7 cells whilst P. speciosa had weak to moderate activity against both of A549 and MCF-7 cell lines. The results suggest that Potentilla species could be potential candidates for developing new phyto-pharmaceuticals and functional ingredients.

  14. Combatting bulking sludge with ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Wuensch, B.; Heine, W.; Neis, U. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Sanitary and Environmental Engineering

    2002-07-01

    Bulking and floating sludge cause great problems in many waste water treatment plants with biological nutrient removal. The purification as well as the sludge digestion process can be affected. These problems are due to the interlaced structure of filamentous microorganisms, which have an impact on the sludge's settling behaviour. Foam is able to build up a stable layer, which does not settle in the secondary clarifier. Foam in digestion causes a reduction of the degree of stabilisation and of the biogas production. We use low-frequency ultrasound to combat filamentous organisms in bulking sludge. Low-frequency ultrasound is suitable to create high local shear stresses, which are capable of breaking the filamentous structures of the sludge. After preliminary lab-scale tests now a full-scale new ultrasound equipment is operating at Reinfeld sewage treatment plant, Germany. The objective of this study is to explore the best ultrasound configuration to destroy the filamentous structure of bulking and foaming sludge in a substainable way. Later this study will also look into the effects of ultrasound treated bulking sludge on the anaerobic digestion process. Up to now results show that the settling behaviour of bulking sludge is improved. The minimal ultrasound energy input for destruction of bulking structure was determined. (orig.)

  15. The geometric field (gravity) as an electro-chemical potential in a Ginzburg-Landau theory of superconductivity

    Science.gov (United States)

    Atanasov, Victor

    2017-07-01

    We extend the superconductor's free energy to include an interaction of the order parameter with the curvature of space-time. This interaction leads to geometry dependent coherence length and Ginzburg-Landau parameter which suggests that the curvature of space-time can change the superconductor's type. The curvature of space-time doesn't affect the ideal diamagnetism of the superconductor but acts as chemical potential. In a particular circumstance, the geometric field becomes order-parameter dependent, therefore the superconductor's order parameter dynamics affects the curvature of space-time and electrical or internal quantum mechanical energy can be channelled into the curvature of space-time. Experimental consequences are discussed.

  16. Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals.

    Science.gov (United States)

    Bauch, Caroline; Kolle, Susanne N; Fabian, Eric; Pachel, Christina; Ramirez, Tzutzuy; Wiench, Benjamin; Wruck, Christoph J; van Ravenzwaay, Bennard; Landsiedel, Robert

    2011-09-01

    Allergic contact dermatitis is induced by repeated skin contact with an allergen. Assessment of the skin sensitizing potential of chemicals, agrochemicals, and especially cosmetic ingredients is currently performed with the use of animals. Animal welfare and EU legislation demand animal-free alternatives reflected in a testing and marketing ban for cosmetic ingredients beginning in 2013. The underlying mechanisms of induction and elicitation of skin sensitization are complex and a chemical needs to comply several properties being skin sensitizing. To account for the multitude of events in the induction of skin sensitization an in vitro test system will consist of a battery of various tests. Currently, we performed intralaboratory validations of four assays addressing three different events during induction of skin sensitization. (1) The Direct Peptide Reactivity Assay (DPRA) according to Gerberick and co-workers (Gerberick et al., 2004) using synthetic peptides and HPLC analysis. (2) Two dendritic cell activation assays based on the dendritic cell like cell lines U-937 and THP-1 and flow cytometric detection of the maturation markers CD54 and/or CD86 (Ashikaga et al., 2006; Python et al., 2007; Sakaguchi et al., 2006). (3) Antioxidant response element (ARE)-dependent gene activity in a HaCaT reporter gene cell line (Emter et al., 2010). We present the results of our intralaboratory validation of these assays with 23 substances of known sensitizing potential. The sensitivity, specificity, and accuracy of the individual tests were obtained by comparison to human epidemiological data as well as to data from animal tests such as the local lymph node assay. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Prevalidation study of the BALB/c 3T3 cell transformation assay for assessment of carcinogenic potential of chemicals.

    Science.gov (United States)

    Tanaka, Noriho; Bohnenberger, Susanne; Kunkelmann, Thorsten; Munaro, Barbara; Ponti, Jessica; Poth, Albrecht; Sabbioni, Enrico; Sakai, Ayako; Salovaara, Susan; Sasaki, Kiyoshi; Thomas, B Claire; Umeda, Makoto

    2012-04-11

    The cell transformation assays (CTAs) have attracted attention within the field of alternative methods due to their potential to reduce the number of animal experiments in the field of carcinogenicity. The CTA using BALB/c 3T3 cells has proved to be able to respond to chemical carcinogens by inducing morphologically transformed foci. Although a considerable amount of data on the performance of the assay has been collected, a formal evaluation focusing particularly on reproducibility, and a standardised protocol were considered important. Therefore the European Centre for the Validation of Alternative Methods (ECVAM) decided to coordinate a prevalidation study of the BALB/c 3T3 CTA. Three different laboratories from Japan and Europe participated. In the study the following modules were assessed stepwise: test definition (Module 1) consisted of the standardisation of the protocol, the selection of the cell lineage, and the preparation of a photo catalogue on the transformed foci. The within-laboratory reproducibility (Module 2) and the transferability (Module 3) were assessed using non-coded and coded 3-methylcholanthrene. Then, five coded chemicals were tested for the assessment of between-laboratory reproducibility (Module 4). All three laboratories obtained positive results with benzo[a]pyrene, phenanthrene and o-toluidine HCl. 2-Acetylaminofluorene was positive in two laboratories and equivocal in one laboratory. Anthracene was negative in all three laboratories. The chemicals except phenanthrene, which is classified by IARC (http://monographs.iarc.fr) as group 3 "not classifiable as to its carcinogenicity to human", were correctly predicted as carcinogens. Further studies on phenanthrene will clarify this discrepancy. Thus, although only a few chemicals were tested, it can be seen that the predictive capacity of the BALB/c 3T3 CTA is satisfactory. On the basis of the outcome of this study, an improved protocol, incorporating some changes related to data

  18. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration

  19. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  20. Modelling of bulk superconductor magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  1. Concentrations and trends of Perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US

    Science.gov (United States)

    Certain perfluorinated chemicals in consumer products have been associated with developmental toxicity and other adverse health effects. Temporal trends in the concentrations of selected perfluorinated chemicals (PFCs), including perfluorooctanoic acid (PFOA) and other perfluoroc...

  2. REHABILITATION OF PATIENTS WITH ENCEPHALOPATHY CAUSED BY ACUTE CHEMICAL AGENTS POISONING. P300 OF AUDITORY EVENT RELATED POTENTIALS AND ELECTROENCEPHALOGRAPHY

    Directory of Open Access Journals (Sweden)

    I. U. Berezina

    2014-01-01

    Full Text Available RELEVANCE. Patients with encephalopathy due to acute chemical agents poisoning have some brain functioning changes and a cognitive impairment during the rehabilitation program. These changes require correction of appropriate diagnostic protocol and treatment.AIM. The aim of this study was to estimate changes of electroencephalography (EEG and the P3 component of the event related potential (P300 ERP that are observed in patients with encephalopathy due to acute chemical agents poisoning during stage of rehabilitation.MATERIAL AND METHODS. The study was included 25 patients (age 37 (32; 51 poisoned different kind of neurotoxic substances (drugs, ethanol and complicated by toxic and hypoxic encephalopathy. They have got the treatment of encephalopathy by mexidol intravenously, mesodiencephalic modulation (MDM and hyperbaric oxygen therapy (HBOT. All patients were recoded EEG (electroencephalograph of “MBN” company, Russia and P300 ERP (“Neuron-Spectrum-5/EP” of “Neurosoft”, Russia according to the international recommendations of clinical neurophysiologists. Neuropsychological testing was used for the assessment of cognitive functions.RESULTS. There were some disturbances in primary electroencephalograms of all subjects. The follow-up EEG recording showed the main group of patients who had got the treatment (mexidol, MDM, HBOT had more often (11 patients the EEG improvements compared to the controls (1 patient. The main group had more rarely the EEG impairments compared to the control group. 6 patients of main group and 3 patients of controls did not have EEG changes during the follow-up EEG recordings. All controls and 17 patients of the main group patients had different cognitive disturbances. After the treatment 15 patients of the main group had improved on neuropsychological tests (MMSE, Munsterberg test, Schulte table, Number Connecting Test. They also had a decrease in the N200, P300 peak latency and an increase in the N200, P300

  3. Experimental terrestrial soil-core microcosm test protocol. A method for measuring the potential ecological effects, fate, and transport of chemicals in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; Tolle, D.A.; Arthur, M.F.

    1985-06-01

    In order to protect the environment properly and have a realistic appraisal of how a chemical will act in the environment, tests of ecological effects and chemical fate must be performed on complex assemblages of biotic and abiotic components (i.e., microcosms) as well as single species. This protocol is one which could be added to a series of tests recently developed as guidelines for Section 4 of the Toxic Substances Control Act (P.L. 94-469; U.S.C., Section 2601-2629). The terrestrial soil-core microcosm is designed to supply site-specific and possibly regional information on the probable chemical fate and ecological effects resulting from release of a chemical substance to a terrestrial ecosystem. The EPA will use the data resulting from this test system to compare the potential hazards of a chemical with others that have been previously evaluated.

  4. Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD.

    Science.gov (United States)

    Chen, Huan; Carter, Kimberly E

    2017-05-01

    Various toxic chemicals used in hydraulic fracturing fluids may influence the inherent health risks associated with these operations. This study investigated the possible occupational inhalation exposures and potential risks related to the volatile organic compounds (VOCs) from chemical storage tanks and flowback pits used in hydraulic fracturing. Potential risks were evaluated based on radial distances between 5 m and 180 m from the wells for 23 contaminants with known inhalation reference concentration (RfC) or inhalation unit risks (IUR). Results show that chemicals used in 12.4% of the wells posed a potential acute non-cancer risks for exposure and 0.11% of the wells with may provide chronic non-cancer risks for exposure. Chemicals used in 7.5% of the wells were associated with potential acute cancer risks for exposure. Those chemicals used in 5.8% of the wells may be linked to chronic cancer risks for exposure. While eight organic compounds were associated with acute non-cancer risks for exposure (>1), methanol the major compound in the chemical storage tanks (1.00-45.49) in 7,282 hydraulic fracturing wells. Wells with chemicals additives containing formaldehyde exhibited both acute and chronic cancer risks for exposure with IUR greater than 10-6, suggesting formaldehyde was the dominant contributor to both types of risks for exposure in hydraulic fracturing. This study also found that due to other existing on-site emission sources of VOCs and the geographically compounded air concentrations from other surrounding wells, chemical emissions data from storage tanks and flowback pits used in this study were lower than reported concentrations from field measurements where higher occupational inhalation risks for exposure may be expected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chemical composition of the thermomineral waters of Jošanička Banja spa as an origin indicator, balneological valorization and geothermal potential

    OpenAIRE

    Milenić Dejan R.; Milanković Đuro D.; Vranješ Ana M.; Savić Nevena R.; Doroslovac Nenad M.

    2015-01-01

    The chemical composition of the groundwater is directly dependent on the geological structure, hydrogeological and hydrochemical characteristics and as such it represents an output result of all the factors and processes which take place in the environment within which they were formed. The chemical composition of thermomineral waters often represents a crucial factor in determining the origin, balneological valorization and geothermal potential of the reso...

  6. Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S., E-mail: john.mccloy@wsu.edu [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164 (United States); Materials Science and Engineering Program, Washington State University, PO Box 641030, Pullman, WA 99164 (United States); Bliss, Mary; Miller, Brian; Wang, Zheming; Stave, Sean [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2015-01-15

    ZnS:Ag is a well-known, extremely bright scintillator used in powder form for α-particle detection and, mixed with powdered LiF, for thermal neutron detection. Recently, we discovered some colorless and transparent commercial bulk single-crystal and polycrystalline (chemical vapor-deposited) ZnS forms that scintillate in response to α-particles. The scintillation light transmits through the sample thickness (millimeters), challenging the commonly held assumption that ZnS is opaque to its own scintillation light. Individual α-particle events were imaged in space and time using a charged-particle camera originally developed for medical imaging applications. Photoluminescence (PL) and PL excitation show that scintillating bulk ZnS likely depends on different electronic defects than commercial ZnS powder scintillators. These defects, associated with copper and oxygen, are discussed in relation to PL results and extensive literature assessment. Commercial transparent ZnS is routinely produced by chemical vapor deposition to sizes larger than square meters, enabling potentially novel radiation detection applications requiring large, thick apertures. - Highlights: • Colorless transparent chemical vapor deposited ZnS shows α-particle scintillation. • Scintillation in CVD ZnS has been imaged spatially and temporally. • Scintillation light transmitted through 1 to 5 mm thick samples. • Photoluminescence data suggests origin of scintillation behavior. • Copper and oxygen impurities likely linked to scintillation in CVD ZnS.

  7. Resolving the chemical structures of off-odorants and potentially harmful substances in toys-example of children's swords.

    Science.gov (United States)

    Denk, Philipp; Velasco-Schön, Cristina; Buettner, Andrea

    2017-09-01

    Most children's toys on the market are primarily made out of plastic and other complex composite materials. Consumer complaints about offensive odors or irritating effects associated with toy products have increased in recent years. One example is the strongly perceivable negative odor reported for a particular series of toy swords. Characterizing the presence of contaminants, including those that have the potential to be deleterious to health, in such products is a significant analytical challenge due to the high baseline abundance of chemical constituents of the materials used in the products. In the present study, the nature of offensive odorants associated with toy sword products was examined by gas chromatography (GC). After initial sensory evaluations, the volatile compounds from the toy products were recovered using solvent extraction and solvent-assisted flavor evaporation. The extracts were analyzed using GC-olfactometry (GC-O) and two-dimensional GC-O coupled with mass spectrometry (GC-GC-MS/O). A total of 26 odor-active compounds, including aromatic hydrocarbons and phenols, were identified among numerous non-odorous volatile by-products. These substances also included polycyclic aromatic hydrocarbons, which were analyzed by GC-MS. Representative substances were naphthalene and 1,2-dihydronaphthalene that exhibited moldy, mothball-like odor impressions, and phenol derivatives with leather-like, phenolic, horse-stable-like smells. The odorants detected correlated with the assigned attributes from the sensory analyses. This study clearly shows that the detection and identification of such odorous contaminants can provide key indications of potentially harmful yet unknown substances in everyday products such as toys. Graphical abstract ᅟ.

  8. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery.

    Science.gov (United States)

    Bertrand, Samuel; Bohni, Nadine; Schnee, Sylvain; Schumpp, Olivier; Gindro, Katia; Wolfender, Jean-Luc

    2014-11-01

    Microorganisms have a long track record as important sources of novel bioactive natural products, particularly in the field of drug discovery. While microbes have been shown to biosynthesize a wide array of molecules, recent advances in genome sequencing have revealed that such organisms have the potential to yield even more structurally diverse secondary metabolites. Thus, many microbial gene clusters may be silent under standard laboratory growth conditions. In the last ten years, several methods have been developed to aid in the activation of these cryptic biosynthetic pathways. In addition to the techniques that demand prior knowledge of the genome sequences of the studied microorganisms, several genome sequence-independent tools have been developed. One of these approaches is microorganism co-culture, involving the cultivation of two or more microorganisms in the same confined environment. Microorganism co-culture is inspired by the natural microbe communities that are omnipresent in nature. Within these communities, microbes interact through signaling or defense molecules. Such compounds, produced dynamically, are of potential interest as new leads for drug discovery. Microorganism co-culture can be achieved in either solid or liquid media and has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. Because of the complexity of microbial extracts, advanced analytical methods (e.g., mass spectrometry methods and metabolomics) are key for the successful detection and identification of co-culture-induced metabolites. This review focuses on co-culture studies that aim to increase the diversity of metabolites obtained from microbes. The various strategies are summarized with a special emphasis on the multiple methods of performing co-culture experiments. The analytical approaches for studying these interaction phenomena are discussed, and the chemical diversity and biological activity observed among the

  9. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Rana

    2016-07-01

    Full Text Available The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L. enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa extract (CMCE. CMCE (1 or 10 µg/mL; 14 h significantly decreased LPS (50-100 ng/mL induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100 and 300 mg/kg; 10 days p.o. pre-treated and LPS (10 mg/kg challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3 and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  10. Physico-chemical Properties and Assessment of Edible Oil Potential of Peanuts Grown in Kurram Agency, Parachinar

    Directory of Open Access Journals (Sweden)

    Rahib Hussain

    2015-06-01

    Full Text Available This study was carried out to investigate the oil potential of peanuts for domestic and commercial uses. Peanut oil yield and the physico-chemical properties of extracted oil were investigated on different temperatures (50, 55, 60 and 65 °C and sun drying. Results showed maximum oil yield of 47.2 % at sun drying and lowest values of 37.0 % at 65 °C. Highest and lowest acid values are 25.52 and 5.89 mg/KOH/g at 60 °C and 50 °C respectively. The Free Fatty Acid (FFA content were obtained 12.76 and 2.94 mg/g at 60 °C and 50 °C, while saponification values were 61.71 and 32.25 mg/KOH/g at 60 °C and 50 °C respectively. The highest Peroxide value of 92 mg/KOH/g was recorded at 55 °C which dropped to 43.4 mg/KOH/g at 65 °C. Refractive index (RI and density were not changed significantly (p≤0.05 on all temperatures, while pH was somewhat higher on 50 °C. The moisture content was found lowest up to 3.0 % on 65 °C while highest was 5 % on 50 °C.

  11. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment.

    Science.gov (United States)

    Tsai, Wen-Tien; Liu, Sii-Chew; Chen, Huei-Ru; Chang, Yuan-Ming; Tsai, Yi-Lin

    2012-09-01

    Biochars have received increasing attention in recent years because of their properties pertaining to soil fertility and contaminant immobilization as well as serving as carbon sinks. In this work, a series of biochars were produced from dried swine manure waste by slow pyrolysis at different temperatures (i.e., 673-1073 K). The characterization of the resulting biochars was examined for its relevance to its potential use as soil amendment. It was found that the pore properties, ash contents and pH values of all swine-manure-derived biochars basically increased as temperature increased, while the yield and nitrogen/oxygen contents decreased with increasing temperature as a result of pyrolytic volatilization during pyrolysis. From the organic and inorganic elements analyses, the manure-derived biochar was rich in soil nutrients such as N, P, Ca, Mg, and K. Furthermore, the pore, surface and chemical properties were also consistent with the observations of the SEM-EDS, XRD and FTIR. This result suggested that the mesoporous manure-derived biochar could be used as an excellent medium to soil environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Chiral phase transition of $N_f$=2+1 and 3 QCD at vanishing baryon chemical potential

    CERN Document Server

    Ding, Heng-Tong

    2015-01-01

    We present updated results on chiral phase structure in (2+1)-flavor ($N_f$=2+1) and 3-flavor ($N_f=3$) QCD based on the simulations using Highly Improved Staggered Quarks on lattices with temporal extent $N_\\tau$ =6 at vanishing baryon chemical potential. In $N_f$=2+1 QCD we have performed simulations with a strange quark fixed to its physical value and two degenerate light quarks whose values are adjusted to have 5 values of Goldstone pion masses in the region of 160 - 80 MeV in the continuum limit. The universal scaling behavior of chiral condensates as well as chiral susceptibilities is discussed and the tri-critical point is suggested to be located below the physical point, i.e. at smaller than physical strange quark mass. In $N_f$=3 QCD simulations with 6 different masses of 3 degenerate quarks corresponding to the Goldstone pion masses in the region of 230 - 80 MeV have also been performed. Our results suggest that the QCD transition with these values of quark masses is of crossover type and an upper b...

  13. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-01-01

    Full Text Available The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide (PLGA membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD, onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR. HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.

  14. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    Science.gov (United States)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  15. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions

    Directory of Open Access Journals (Sweden)

    Daljit Singh Arora

    2010-10-01

    Full Text Available The objective of this work was to screen fungi isolated from soil of different areas of Punjab, India for antioxidant activity by dot blot assay and around 45% of fungal isolates demonstrated antioxidant potential. Two selected strains of Aspergillus spp (Aspergillus PR78 and Aspergillus PR66 showing quantitatively best antioxidant activity by DPPH assay were further tested for their reducing power, ferrous ion and nitric oxide ion scavenging activity, FRAP assay and total phenolic content. Different physio-chemical parameters were optimized for enhancement of the activity. This revealed stationary culture grown for 10 days at 25ºC at pH 7 to be the best for antioxidant activity. Sucrose in the medium as carbon source resulted in highest antioxidant activity. Sodium nitrate, yeast extract, and peptone were good sources of nitrogen but sodium nitrate was the best among these. The extraction of the broth culture filtrates with different solvents revealed ethyl acetate extract to possess the best antioxidant activity. The activity as expressed by ethyl acetate extract of Aspergillus PR78 was equally effective as that of commonly used antioxidant standard, ascorbic acid.

  16. Survey of chemical quality and corrosion and scaling potential of drinking water distribution network of Bushehr city

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2015-05-01

    Full Text Available Background: Determination of water corrosion indexes is one of the affecting approaches on drinking water management. Corrosion can causes economical problems, reduce the useful life of water facilities, and health damages to consumers. The aim of this study was to survey of chemical quality and determination of the corrosion potential of the water distribution system in Bushehr city. Materials and Methods: In this cross sectional study, the sampling was carried out during one year from 7 stations. Values of Langelier, Ryznar, corrosivity and Puckorius indexes were calculated by using such parameters as pH, total dissolved solids, temperature, permanent and temporary hardness, and alkalinity. Results: The average values for pH, total dissolved solids, temperature, and alkalinity was obtained 7.5, 586.82 mg/L, 66.92 mg/L CaCO3. The corrosion indexes were calculated Langelier 0.28, Ryznar 7.24, corrosivity 12.02, and Puckorius 7.81. Conclusion: Bushehr city water is tends to be slightly scaling based on Ryznar index and corrosive based on other studied indexes. Overall, the water quality was tending to corrosive and, therefore, recommended to use corrosion resistance pipes in water transmission and network or lining the inner wall of pipes or correction the water quality.

  17. Chemical rules on the assessment of antioxidant potential in food and food additives aimed at reducing oxidative stress and neurodegeneration.

    Science.gov (United States)

    Franco, Rafael; Martínez-Pinilla, Eva

    2017-11-15

    Antioxidants (aOXs) enlarge the useful life of products consumed by humans. Life requires oxidation of glucose/fatty acids and, therefore, "antioxidant" becomes an oxymoron when trying to define benefits in organisms living in an oxygen-rich atmosphere. According to basic physico-chemical principles, the in vivo aOX potential of food supplements is negligible when compared with the main aOX molecules in the animal Kingdom: glucose and fatty acids. Thus, the aOX assumption to improve life-quality is misleading as oxidative stress and exacerbation occur when oxidant foods (e.g. fava beans) are consumed. Evolution produced potent detoxification mechanisms to handle these situations. When age/genetic/environmental factors negatively impact on detoxification mechanisms, nutrition helps on providing metabolites/precursors needed for boosting innate resources. Ambiguous techniques that attempt to measure in vivo aOX power, should give way to measuring the level of supplements and their metabolites in body fluids/tissues, and to measure the efficacy on antioxidant boosting REDOX pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  19. Bulk fields with brane terms

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales (CAFPE), Universidad de Granada, E-18071 Granada (Spain); Perez-Victoria, M. [Dipartimento di Fisica ' ' G. Galilei' ' , Universita di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); Santiago, J. [Institute for Particle Physics Phenomenology, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2004-07-01

    In theories with branes, bulk fields get in general divergent corrections localized on these defects. Hence, the corresponding brane terms are renormalized and should be included in the effective theory from the very beginning. We review the phenomenology associated to brane kinetic terms for different spins and backgrounds, and point out that renormalization is required already at the classical level. (orig.)

  20. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory

    Science.gov (United States)

    Jia, Weile; Lin, Lin

    2017-10-01

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  1. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  2. Native defects in bulk and monolayer MoS2 from first principles

    Science.gov (United States)

    Komsa, Hannu-Pekka; Krasheninnikov, Arkady V.

    2015-03-01

    We present an extensive first-principles study of a large set of native defects in MoS2 in order to find out the types and concentrations of the most important defects in this system. The calculations are carried out for both bulk and monolayer forms of MoS2, which allows us to study how defect properties change between these two limiting cases. We consider single- and few-atom vacancies, antisites, adatoms on monolayer, and interstitials between layers in the bulk material. We calculate the formation energies of neutral and charged defects, determine the charge transition levels, and from these self-consistently assess the concentration of defects at thermal equilibrium as well as the resulting positions of the Fermi level. The chemical potential values corresponding to different growth conditions are carefully accounted for, and for all values of chemical potentials relevant to the growth of MoS2, the S vacancies are found to be the most abundant defects. However, they are acceptors and cannot be the cause of the often observed n -type doping. At the same time, Re impurities, which are often present in natural MoS2 samples, naturally provide good n -type doping behavior. We also calculate migration barriers for adatoms and interstitials and discuss how they can affect the growth process.

  3. Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

    2007-10-01

    This report evaluates lignin’s role as a renewable raw material resource. Opportunities that arise from utilizing lignin fit into one of three categories: 1)power, fuel and syngas (generally near-term opportunities) 2) macromolecules (generally medium-term opportunities) 3) aromatics and miscellaneous monomers (long-term opportunities). Biorefineries will receive and process massive amounts of lignin. For this reason, how lignin can be best used to support the economic health of the biorefinery must be defined. An approach that only considers process heat would be shortsighted. Higher value products present economic opportunities and the potential to significantly increase the amount of liquid transportation fuel available from biomass. In this analysis a list of potential uses of lignin was compiled and sorted into “product types” which are broad classifications (listed above as power—fuel—syngas; macromolecules; and aromatics). In the first “product type” (power—fuel—gasification) lignin is used purely as a carbon source and aggressive means are employed to break down its polymeric structure. In the second “product type” (macromolecules) the opposite extreme is considered and advantage of the macromolecular structure imparted by nature is retained in high-molecular weight applications. The third “product type” (aromatics) lies somewhere between the two extremes and employs technologies that would break up lignin’s macromolecular structure but maintain the aromatic nature of the building block molecules. The individual opportunities were evaluated based on their technical difficulty, market, market risk, building block utility, and whether a pure material or a mixture would be produced. Unlike the “Sugars Top 10” report it was difficult to identify the ten best opportunities, however, the potential opportunities fell nicely into near-, medium- and long-term opportunities. Furthermore, the near-, medium- and long-term opportunities

  4. Chemical composition of the thermomineral waters of Josanicka Banja spa as an origin indicator, balneological valorization and geothermal potential

    National Research Council Canada - National Science Library

    Milenić Dejan R; Milanković Đuro D; Vranješ Ana M; Savić Nevena R; Doroslovac Nenad M

    2015-01-01

    The chemical composition of the groundwater is directly dependent on the geological structure, hydrogeological and hydrochemical characteristics and as such it represents an output result of all the...

  5. Physical and Chemical Properties of Pan-Derived Electrospun Activated Carbon Nanofibers and Their Potential for Use As An Adsorbent for Toxic Industrial Chemicals (Postprint)

    Science.gov (United States)

    2012-09-14

    carbon fiber cloth (ACFC) and Calgon BPL™ granular activated carbon (GAC) 2 Methods 2.1 Precursor selection and nonwoven nanofiber material preparation...respirators, re- generative filter systems that can protect against TICs, or perhaps smaller and more energy-efficient pressure-swing- adsorption systems...Peterson, G.W., Karwacki, C.: Novel collective protection filters for emerging TIC requirements: axial- and radial-flow filter de- signs. Edgewood Chemical

  6. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    cracks, and occur plastic deformation homogeneously. Keywords. Zr-based bulk metallic glasses; in situ composites; ductile phase; wear behaviours. 1. Introduction. Bulk metallic glasses (BMGs) with special short-range order and long-range disorder microstructure usually exhibit unique physical, chemical and mechanical ...

  7. Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    Drinking water free of chemical toxicants is important for people's health. A microbial fuel cell based biosensor can be used to detect the presence of toxic chemicals. The sensitivity of this type of biosensor for nickel was investigated. There was no delay in the response of the sensor and the

  8. Enhancing the Benefit of the Chemical Mixture Methodology: A Report on Methodology Testing and Potential Approaches for Improving Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Ying; Yao, Juan; He, Hua; Glantz, Clifford S.; Booth, Alexander E.

    2012-01-01

    Extensive testing shows that the current version of the Chemical Mixture Methodology (CMM) is meeting its intended mission to provide conservative estimates of the health effects from exposure to airborne chemical mixtures. However, the current version of the CMM could benefit from several enhancements that are designed to improve its application of Health Code Numbers (HCNs) and employ weighting factors to reduce over conservatism.

  9. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source.

    Science.gov (United States)

    Tabarsa, Mehdi; Rezaei, Masoud; Ramezanpour, Zohreh; Waaland, Joseph Robert

    2012-09-01

    The nutritional compositions of two edible red (Gracilaria salicornia) and green (Ulva lactuca) seaweeds were determined to evaluate their possible uses as potential food ingredients. In general, these species contained limited amounts of lipids ranging between 0.99 and 2.00 g 100 g(-1) dry weight) and considerably high amount of minerals, especially in G. salicornia (38.91 g 100 g(-1) d.w.). The crude protein values varied between 9.58 and 10.69 g 100 g(-1) d.w. Amounts for total amino acids were 889.78 ± 22.64 mg g(-1) protein d.w. in G. salicornia and 543.3 ± 15.14 mg g(-1) protein d.w. in U. lactuca. The most abundant fatty acids were C12:0, C16:0, C20:4 ω6 and C22:5 ω3, in addition to C18:1 in G. salicornia. Both seaweed species were balanced sources of ω3 and ω6 fatty acids with a ratio of ω6/ω3 that varied between 1.2 and 1.17. Between the seaweeds investigated, high levels of K (2414.02-11 380.06 mg 100 g(-1) d.w.) were observed and the amounts of Ca, Na and Fe were higher than those reported for land plants. Thus, G. salicornia and U. lactuca may be utilised as value-added products for human nutrition purposes. Copyright © 2012 Society of Chemical Industry.

  10. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-09-01

    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  11. Chemically modified ion-sensitive field-effect transistors: elimination of the liquid junction potential in a double sensor flow-injection analysis cell

    NARCIS (Netherlands)

    Cobben, P.L.H.M.; Cobben, Peter L.H.M.; Egberink, Richard J.M.; Bomer, Johan G.; Schouwenaar, Robert; Brzozka, Zbigniew; Bergveld, Piet; Reinhoudt, David; Bos, M.

    1993-01-01

    A flow-through cell was designed that can be used for flow-injection analysis with two chemically modified ion-sensitive field-effect transistors (CHEMFETs) in close proximity. This offers the possibility of a differential measurement without influence of the liquid junction potential. The

  12. POTENTIAL OF DESCRIPTIVE LINEAR DISCRIMINANT-ANALYSIS FOR STUDYING CLINICAL CHEMICAL AND HEMATOLOGICAL DATA FROM PERSONS WITH HETEROZYGOUS SICKLE-CELL DISEASE

    NARCIS (Netherlands)

    VOLMER, M; MUSKIET, FAJ; HINDRIKS, FR; VANDERSLIK, W

    To study the potential of multivariate classification methods in order to obtain more insight into abnormal laboratory data from patients with sickle cell disease, we investigated standard haematological and clinical chemical variables of 18 controls and 37 apparently healthy persons with

  13. Physico-chemical analysis and antimicrobial potential of A pis dorsata, A pis mellifera and Z iziphus jujube honey samples from Pakistan

    Directory of Open Access Journals (Sweden)

    Hira Fahim

    2014-08-01

    Conclusion: Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimentarius Commission. Evaluation of these honey samples confirms antimicrobial potential of particular types of honeys indigenous to Pakistan.

  14. APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FRYE JM; KUNKEL JM

    2009-03-05

    Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

  15. Confined linear carbon chains as a route to bulk carbyne

    Science.gov (United States)

    Shi, Lei; Rohringer, Philip; Suenaga, Kazu; Niimi, Yoshiko; Kotakoski, Jani; Meyer, Jannik C.; Peterlik, Herwig; Wanko, Marius; Cahangirov, Seymur; Rubio, Angel; Lapin, Zachary J.; Novotny, Lukas; Ayala, Paola; Pichler, Thomas

    2016-06-01

    Strong chemical activity and extreme instability in ambient conditions characterize carbyne, an infinite sp1 hybridized carbon chain. As a result, much less has been explored about carbyne as compared to other carbon allotropes such as fullerenes, nanotubes and graphene. Although end-capping groups can be used to stabilize carbon chains, length limitations are still a barrier for production, and even more so for application. We report a method for the bulk production of long acetylenic linear carbon chains protected by thin double-walled carbon nanotubes. The synthesis of very long arrangements is confirmed by a combination of transmission electron microscopy, X-ray diffraction and (near-field) resonance Raman spectroscopy. Our results establish a route for the bulk production of exceptionally long and stable chains composed of more than 6,000 carbon atoms, representing an elegant forerunner towards the final goal of carbyne’s bulk production.

  16. Bulk density of small meteoroids

    Science.gov (United States)

    Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.

    2011-06-01

    Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also

  17. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Boomer, Kayle D.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modeling needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.

  18. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed.

    Science.gov (United States)

    Biancarosa, Irene; Belghit, Ikram; Bruckner, Christian G; Liland, Nina S; Waagbø, Rune; Amlund, Heidi; Heesch, Svenja; Lock, Erik-Jan

    2017-11-28

    In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro- and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  19. Anionic or Cationic S-Doping in Bulk Anatase TiO 2 : Insights on Optical Absorption from First Principles Calculations

    KAUST Repository

    Harb, Moussab

    2013-05-02

    Using first principles calculations, we investigate the structural, electronic, optical, and energetic properties of S-doped anatase TiO2 bulk systems. To ensure accurate band gap predictions, we use the HSE06 exchange correlation functional, and the absorption spectra are obtained with density functional perturbation (DFPT) theory by employing HSE06. Various oxidation states (anionic and cationic) of sulfur are considered depending on the location in bulk TiO2: in interstitial position or in substitution for either oxygen or titanium atoms. Among the explored structures, two anionic and one cationic configurations induce an improved optical absorption response in the visible region as observed experimentally. Moreover, we undertake a thermodynamic analysis as a function of the chemical potential of oxygen and considering three relevant sulfur chemical doping agents (S 2, H2S, and thiourea). It highlights that cationic configurations (S4+ and S6+) are strongly stabilized in a wide range of oxygen chemical potential (including standard conditions), whereas anionic species are stabilized only at very low chemical potential of oxygen. The metastable cationic Ti(1-2x)O2S2x system involving the presence of S4+ species in substitution for Ti 4+, with the formation of SO2 units, should offer the best compromise between the thermodynamic conditions and the expected optical properties. © 2013 American Chemical Society.

  20. [Chemical composition of eggs of the Olive Ridley Lepidochelys olivacea (Testudines: Cheloniidae) and it's potential as a food source].

    Science.gov (United States)

    Castro-González, María Isabel; Pérez-Gil Romo, Fernando

    2011-12-01

    The Olive Ridley is a worldwide distributed species with high nesting production per season, and in La Escobilla Oaxaca, México, there is a 70% of non-hatched eggs that are lost. In order to evaluate their potential use as a source for human and animal food products, their chemical composition was analyzed. Lyophilized egg samples from 25 turtles were obtained and were analyzed following the analytical methods for fatty acids, protein, fat, ash, moisture, amino acids, vitamins, cholesterol and microbiological agents. The analytical composition obtained was (g/100g): moisture (4.7), ash (3.8), protein (53.7), and fat (47.4). The essential amino acid (g aa/100g protein) content was: Ile (4.4), Lys (6.6), Leu (7.4), Met+Cys (8.8), Phe+Tyr (10.8). The vitamin content was: retinol (340 microg/100g), cholecalciferol (5.91 microg/100g) and 8.6 mg/100 tocopherol, 0.3 mg/100g thiamine and 1.1 mg/100g riboflavin. The total lipid content (TL), fatty acids (FA), and cholesterol (Chol) were divided into three groups based on the weight of the turtle: (TL) (44.3-48.7-49.1g/100g) and (Chol) (518.4-522.5 mg/100g-728.7). A total of 17 Saturated FA (SFA), 8 Monounsaturated FA (MUFA) and 11 Polyunsaturated FA (PUFA) were identified. The most abundant SFA (mg/100g) were: C14:0 (445-772), C16:0 (485-1263); MUFA: C16:1 (456-716), C18:1n-9c (904-1754), and PUFA: C20:4n-6 (105-217); two n-3 fatty acids were identified EPA (48-103) and DHA (97-189).There were significant differences (Fisher, p olivacea eggs are an option for its inclusion in the development of food products as they can be used as a high quality biological protein and n-3 fatty acid source for fortification and enrichment.

  1. Applying quantitative metabolomics based on chemical isotope labeling LC-MS for detecting potential milk adulterant in human milk.

    Science.gov (United States)

    Mung, Dorothea; Li, Liang

    2018-02-25

    There is an increasing demand for donor human milk to feed infants for various reasons including that a mother may be unable to provide sufficient amounts of milk for their child or the milk is considered unsafe for the baby. Selling and buying human milk via the Internet has gained popularity. However, there is a risk of human milk sold containing other adulterants such as animal or plant milk. Analytical tools for rapid detection of adulterants in human milk are needed. We report a quantitative metabolomics method for detecting potential milk adulterants (soy, almond, cow, goat and infant formula milk) in human milk. It is based on the use of a high-performance chemical isotope labeling (CIL) LC-MS platform to profile the metabolome of an unknown milk sample, followed by multivariate or univariate comparison of the resultant metabolomic profile with that of human milk to determine the differences. Using dansylation LC-MS to profile the amine/phenol submetabolome, we could detect an average of 4129 ± 297 (n = 9) soy metabolites, 3080 ± 470 (n = 9) almond metabolites, 4256 ± 136 (n = 18) cow metabolites, 4318 ± 198 (n = 9) goat metabolites, 4444 ± 563 (n = 9) infant formula metabolites, and 4020 ± 375 (n = 30) human metabolites. This high level of coverage allowed us to readily differentiate the six different types of samples. From the analysis of binary mixtures of human milk containing 5, 10, 25, 50 and 75% other type of milk, we demonstrated that this method could be used to detect the presence of as low as 5% adulterant in human milk. We envisage that this method could be applied to detect contaminant or adulterant in other types of food or drinks. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A first-principles DFT study of UN bulk and (001) surface: comparative LCAO and PW calculations.

    Science.gov (United States)

    Evarestov, R A; Bandura, A V; Losev, M V; Kotomin, E A; Zhukovskii, Yu F; Bocharov, D

    2008-10-01

    LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic-covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches. (c) 2008 Wiley Periodicals, Inc.

  3. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    Science.gov (United States)

    Goodson, William H.; Lowe, Leroy; Carpenter, David O.; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K.; Collins, Andrew R.; Ward, Andrew; Salzberg, Anna C.; Colacci, Anna Maria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J.; Zhou, Binhua P.; Blanco-Aparicio, Carmen; Baglole, Carolyn J.; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C.; Yedjou, Clement; Curran, Colleen S.; Laird, Dale W.; Koch, Daniel C.; Carlin, Danielle J.; Felsher, Dean W.; Roy, Debasish; Brown, Dustin G.; Ratovitski, Edward; Ryan, Elizabeth P.; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L.; Van Schooten, Frederik J.; Goldberg, Gary S.; Wagemaker, Gerard; Nangami, Gladys N.; Calaf, Gloria M.; Williams, Graeme P.; Wolf, Gregory T.; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H. Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K.; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R.; Scovassi, A.Ivana; Klaunig, James E.; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R.; Woodrick, Jordan; Christopher, Joseph A.; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R.; Narayanan, Kannan Badri; Cohen-Solal, Karine A.; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D’Abronzo, Leandro S.; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J.; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A.; Wade, Mark; Manjili, Masoud H.; Lleonart, Matilde E.; Xia, Menghang; Gonzalez Guzman, Michael J.; Karamouzis, Michalis V.; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B.; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P.K.; Vadgama, Pankaj; Marignani, Paola A.; Ghosh, Paramita M.; Ostrosky-Wegman, Patricia; Thompson, Patricia A.; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Leung, Po Sing; Nangia-Makker, Pratima; Cheng, Qiang (Shawn); Robey, R.Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K.; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C.; Palorini, Roberta; Hamid, Roslida A.; Langie, Sabine A.S.; Eltom, Sakina E.; Brooks, Samira A.; Ryeom, Sandra; Wise, Sandra S.; Bay, Sarah N.; Harris, Shelley A.; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C.; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W.Kimryn; Engström, Wilhelm; Decker, William K.; Bisson, William H.; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-01-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  4. Reliability assessment of bulk electric systems containing large wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Wangdee, Wijarn [Regional System Planning, British Columbia Transmission Corporation, Vancouver (Canada); Billinton, Roy [Power System Research Group, University of Saskatchewan, Saskatoon (Canada)

    2007-12-15

    Wind power is an intermittent energy source that behaves quite differently than conventional energy sources. Bulk electric system reliability analysis associated with wind energy conversion systems (WECS) provides an opportunity to investigate the reliability benefits when large-scale wind power is injected at specified locations in a bulk electric system. Connecting the WECS to different locations in a bulk system can have different impacts on the overall system reliability depending on the system topology and conditions. Connecting a large-scale WECS to an area which has weak transmission could create system operating constraints and provide less system benefit than connecting it to an area with stronger transmission. This paper investigates bulk electric system transmission constraints associated with large-scale wind farms. The analyses presented in this paper can be used to determine the maximum WECS installed capacity that can be injected at specified locations in a bulk electric system, and assist system planners to create potential transmission reinforcement schemes to facilitate large-scale WECS additions to the bulk system. A sequential Monte Carlo simulation approach is used as this methodology can facilitate a time series modeling of wind speeds, and also provides accurate frequency and duration assessments. An auto-regressive moving average (ARMA) time series model is used to simulate hourly wind speeds. (author)

  5. Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Bliss, Mary; Miller, Brian W.; Wang, Zheming; Stave, Sean C.

    2015-01-01

    ZnS:Ag is a well-known extremely bright scintillator used in powder form for α-particle detection and, mixed with powdered LiF, for thermal neutron detection. Recently, we discovered some commercial bulk colorless and transparent, single-crystal and polycrystalline (chemical vapor-deposited) ZnS forms that scintillate in response to α-particles. The scintillation light transmits through the sample thickness (mm), challenging the commonly held assumption that ZnS is opaque to its own scintillation light. Individual α-particle events were imaged in space and time using a charged-particle camera originally developed for medical imaging applications. Photoluminescence (PL) and PL excitation show that scintillating bulk ZnS likely depends on different electronic defects than commercial ZnS powder scintillators. These defects, associated with copper and oxygen, are discussed in relation to PL results and extensive literature assessment. Commercial transparent ZnS is routinely produced by chemical vapor deposition to sizes larger than square meters, enabling potentially novel radiation detection applications requiring large, thick apertures.

  6. Bulk Moisture and Salinity Sensor

    Science.gov (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  7. Gold based bulk metallic glass

    OpenAIRE

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-01-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  8. Modelling the chemistry of Mn-doped MgO for bulk and (100) surfaces.

    Science.gov (United States)

    Logsdail, Andrew J; Downing, Christopher A; Keal, Thomas W; Sherwood, Paul; Sokol, Alexey A; Catlow, C Richard A

    2016-10-19

    We have investigated the energetic properties of Mn-doped MgO bulk and (100) surfaces using a QM/MM embedding computational method, calculating the formation energy for doped systems, as well as for surface defects, and the subsequent effect on chemical reactivity. Low-concentration Mn doping is endothermic for isovalent species in the bulk but exothermic for higher oxidation states under p-type conditions, and compensated by electrons going to the Fermi level rather than cation vacancies. The highest occupied dopant Mn 3d states are positioned in the MgO band gap, about 4.2 eV below the vacuum level. Surface Mn-doping is more favourable than subsurface doping, and marginally exothermic on a (100) surface at high O2 pressures. For both types of isovalent Mn-doped (100) surfaces, the formation energy for catalytically important oxygen defects is less than for pristine MgO, with F0 and F2+-centres favoured in n- and p-type conditions, respectively. In addition, F+-centres are stabilised by favourable exchange coupling between the Mn 3d states and the vacancy-localised electrons, as verified through calculation of the vertical ionisation potential. The adsorption of CO2 on to the pristine and defective (100) surface is used as a probe of chemical reactivity, with isovalent subsurface Mn dopants mildly affecting reactivity, whereas isovalent surface-positioned Mn strongly alters the chemical interactions between the substrate and adsorbate. The differing chemical reactivity, when compared to pristine MgO, justifies further detailed investigations for more varied oxidation states and dopant species.

  9. Bulk ordering and surface segregation in Ni50Pt50

    DEFF Research Database (Denmark)

    Pourovskii, L.P.; Ruban, Andrei; Abrikosov, I.A.

    2001-01-01

    in the bulk compare well with experimental data. The surface-alloy compositions for the (111) and (110) facets above the ordering transition temperature are also found to be in a good agreement with experiments. It is demonstrated that the segregation profile at the (110) surface of NiPt is mainly caused...... by the unusually strong segregation of Pt into the second layer and the interlayer ordering due to large chemical nearest-neighbor interactions....

  10. Chemical characterization by GC-MS and phytotoxic potential of non-polar and polar fractions of seeds of Dioteryx odorata (Aubl. Willd. from Venezuelan regions

    Directory of Open Access Journals (Sweden)

    Alberto de J. Oliveros-Bastidas

    2013-01-01

    Full Text Available Dipteryx odorata (Aubl. Willd. is a tall arboreal species native to Central and Northern South America. This paper describes the chemical characterization and phytotoxic potential of polar and non-polar extracts from D. odorata seeds. Structural determinations were accomplished by chemical derivatization and analyzed by GC/MS. The chemical composition of the non-polar fraction (hexane and dichloromethane presented fatty acids as major constituent. Medium polar and polar fractions (ethyl acetate and ethanol: water contained carboxylic acid and high 6,7-Dyhidroxycoumarin-β-D-glucopyranoside content, not previously reported for seeds of D. odorata. Extracts showed a significant level of phytotoxic activity, correlated to the content of coumarin derivatives, predominantly in the polar fraction.

  11. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part II

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre

    2012-01-01

    To identify specific cases, classes or specific use situations of chemicals for which 'safety thresholds' or 'safety limits' were set (in regulations, standards, in scientific research/clinical work, etc.) and critically review the scientific and methodological parameters used to set those limits....

  12. Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas

    Science.gov (United States)

    2004-08-01

    detergents, pharmaceuticals, suntan lotion, medical- dental products, disinfectants , aspirin Iso-synthesis products Fischer-Tropsch Liquids C3 C4 Aspartic...propionol, acrylate Pharma. Intermediates Polyvinyl acetate Polyvinyl alcohol Specialty chemical intermediate Polyethers Polypyrrolidones Resins ...via catalytic dehydrogenation ....... 14 Table 7 Dehydrative Transformation – 3-HPA to acrylic acid via catalytic dehydration .... 14 Table 8 Pathways

  13. Using Alternative Approaches to Prioritize Testing for the Universe of Chemicals with Potential for Human Exposure (WC9)

    Science.gov (United States)

    One use of alternative methods is to target animal use at only those chemicals and tests that are absolutely necessary. We discuss prioritization of testing based on high-throughput screening assays (HTS), QSAR modeling, high-throughput toxicokinetics (HTTK), and exposure modelin...

  14. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  15. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis

    Science.gov (United States)

    Hu, Zhiwei; Brooks, Samira A.; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W. Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Prudhomme, Kalan R.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Lowe, Leroy; Jensen, Lasse; Bisson, William H.; Kleinstreuer, Nicole

    2015-01-01

    One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. PMID:26106137

  16. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.

    Science.gov (United States)

    Almeida, Hanna N; Calixto, Guilherme Q; Chagas, Bruna M E; Melo, Dulce M A; Resende, Fabio M; Melo, Marcus A F; Braga, Renata Martins

    2017-06-01

    Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.

  17. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.

    1990-10-01

    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs.

  18. Interface control of bulk ferroelectric polarization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P [University of California, Berkeley; Luo, Weidong [ORNL; Yi, D. [University of California, Berkeley; Zhang, J.-X. [University of California, Berkeley; Rossell, M.D. [Lawrence Berkeley National Laboratory (LBNL); Yang, C.-H. [Korea Advanced Institute of Science and Technology; You, L. [University of California, Berkeley; Singh-Bhalla, G. B. [University of California, Berkeley & LBNL; Yang, S.Y [University of California, Berkeley; He, Q [University of California, Berkeley; Ramasse, Q. M. [Lawrence Berkeley National Laboratory (LBNL); Erni, R. [Lawrence Berkeley National Laboratory (LBNL); Martin, L. W. [University of Illinois, Urbana-Champaign; Chu, Y. H. [University of California, Berkeley; Pantelides, Sokrates T [ORNL; Pennycook, Stephen J [ORNL; Ramesh, R. [University of California, Berkeley

    2012-01-01

    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.

  19. How Many Bulk Metallic Glasses Are There?

    Science.gov (United States)

    Li, Yanglin; Zhao, Shaofan; Liu, Yanhui; Gong, Pan; Schroers, Jan

    2017-11-13

    Quantitative prediction of glass forming ability using a priori known parameters is highly desired in metallic glass development; however proven to be challenging because of the complexity of glass formation. Here, we estimate the number of potential metallic glasses (MGs) and bulk metallic glasses (BMGs) forming systems and alloys, from empirically determined alloy design rules based on a priori known parameters. Specifically, we take into account atomic size ratio, heat of mixing, and liquidus temperature, which we quantify on binary glasses and centimeter-sized BMGs. When expanding into higher order systems that can be formed among 32 practical elements, we reduce the composition space for BMG formation using developed criteria by 106 times and estimate ∼3 million binary, ternary, quaternary, and quinary BMGs alloys.

  20. Influence of external magnetic field, finite-size effects and chemical potential on the phase transition of a complex scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)

    2017-10-15

    A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)

  1. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage/disadvantage...

  2. Modelling dust liberation in bulk material handling systems

    NARCIS (Netherlands)

    Derakhshani, S.M.

    2016-01-01

    Dust has negative effects on the environmental conditions, human health as well as industrial equipment and processes. In this thesis, the transfer point of a belt conveyor as a bulk material handling system with a very high potential place for dust liberation is studied. This study is conducted

  3. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, LJA; Mihailetchi, VD; Blom, PWM

    2006-01-01

    We present model calculations to explore the potential of polymer/fullerene bulk heterojunction solar cells. As a starting point, devices based on poly(3-hexylthiophene) and 6,6-phenyl C-61-butyric acid methyl ester (PCBM), reaching 3.5% efficiency, are modeled. Lowering the polymeric band gap will

  4. Chemical potential shift and gap-state formation in SrTiO{sub 3−δ} revealed by photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Prabir, E-mail: palp@nplindia.org; Kumar, Pramod; Aswin, V.; Dogra, Anjana; Joshi, Amish G. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2014-08-07

    In this study, we report on investigations of the electronic structure of SrTiO{sub 3} annealed at temperature ranging between 550 and 840 °C in an ultrahigh vacuum. Annealing induced oxygen vacancies (O{sub vac}) impart considerable changes in the electronic structure of SrTiO{sub 3}. Using core-level photoemission spectroscopy, we have studied the chemical potential shift (Δμ) as a function of annealing temperature. The result shows that the chemical potential monotonously increases with electron doping in SrTiO{sub 3−δ}. The monotonous increase of the chemical potential rules out the existence of electronic phase separation in the sample. Using valence band photoemission, we have demonstrated the formation of a low density of states at the near Fermi level electronic spectrum of SrTiO{sub 3−δ}. The gap-states were observed by spectral weight transfer over a large energy scale of the stoichiometric band gap of SrTiO{sub 3} system leading finally to an insulator-metal transition. We have interpreted our results from the point of structural distortions induced by oxygen vacancies.

  5. Efficacy of Chemicals for the Potential Management of the Queensland Fruit Fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)

    OpenAIRE

    Reynolds, Olivia L.; Osborne, Terrence J.; Barchia, Idris

    2017-01-01

    This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt). Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted to oviposit on fruit dipped in insecticide and aged 0, 1, 3, or 5 days, plus the production of offspring. Bioassay 3 tested infested fruit sprayed with insecticide. The field bioassay...

  6. The oxidation states and chemical environments of iron and zinc as potential indicators of brain tumour malignancy grade - preliminary results.

    Science.gov (United States)

    Wandzilak, Aleksandra; Czyzycki, Mateusz; Wrobel, Pawel; Szczerbowska-Boruchowska, Magdalena; Radwanska, Edyta; Adamek, Dariusz; Lankosz, Marek

    2013-11-01

    Despite the enormous advances in medicine, brain tumours are still among the lesser-known types of tumours and carry the worst prognoses. Transition metals are believed to play an essential role in carcinogenesis. The aim of this study was to determine differences in the average oxidation state and trends in the changes in the chemical environment of iron and zinc contained in healthy and neoplastic tissues of the human brain. For this purpose, X-ray Absorption Spectroscopy was used, which enables the study of disordered matter. The samples were taken intraoperatively and then immediately frozen to slow down chemical processes. Sixteen tumour samples with various malignancy grades were studied as well as one control sample. For each sample four to eight spectra were recorded, with a shift between them not greater than 0.2 eV. In all of the samples, iron occurred in compounds with both Fe(2+) and Fe(3+). However, the ratio of Fe(ii) to Fe(iii) content in the tissue visibly increased with the tumour malignancy grade. The change in the oxidation state of iron did not correlate with the hypoxia level of the tissues. Analysis of EXAFS spectra of zinc atoms showed that the chemical environment of zinc atoms differed with the tumour malignancy grade. Additionally, cryogenic conditions were found to produce positive results in studies of biological samples, whose form under such conditions is close to their native state, without preparation-caused artefacts.

  7. Ab initio treatment of the chemical reaction precursor complex Br(2P)-HCN. 1. Adiabatic and diabatic potential surfaces

    NARCIS (Netherlands)

    Fishchuk, A.V.; Merritt, J.M.; Avoird, A. van der

    2007-01-01

    The three adiabatic potential surfaces of the Br(P-2)-HCN complex that correlate to the P-2 ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of

  8. Liquefaction Incidents of Mineral Cargoes on Board Bulk Carriers

    Directory of Open Access Journals (Sweden)

    Michael C. Munro

    2016-01-01

    Full Text Available Liquefaction is a frequently occurring problem taking place when transporting wet granular solid bulk cargoes on board bulk carriers. Liquefaction of a solid bulk cargo can occur when excessive dynamic loading, induced by rough seas and vessel vibrations, is transmitted to the cargo. From 1988 to 2015, there have been 24 suspected liquefaction incidents reported, which resulted in 164 casualties and the loss of 18 vessels. The objective of this study is to investigate the collective causes of liquefaction of solid bulk cargoes on board bulk carriers in order to make recommendations to prevent future incidents from occurring. This was achieved by analysing the seven available investigative reports relating to the incidents, focusing on the key findings and exploring the effect of excess moisture within the cargo. This study has placed significant emphasis on the importance of preventing ingress of water into the cargo during transportation, loading, and storage. Recommendations have been given, based on the key findings from the reports, to reduce the potential for liquefaction incidents to occur.

  9. Chemical characterization of an Ayurvedic herbo-mineral formulation - Vasantakusumākara Rasa: A potential tool for quality assurance

    Directory of Open Access Journals (Sweden)

    Sarada Ota

    2017-01-01

    Full Text Available Background: Herbo-mineral formulations of Ayurveda contain specified metals or minerals as composition, which have their beneficial effects on biological systems. These metals or minerals are transformed into non-toxic forms through meticulous procedures explained in Ayurveda. Though literature is available on quality aspects of such herbo-mineral formulations; contemporary science is raising concerns at regular intervals on such formulations. Thus, it becomes mandate to develop quality profiles of all formulations that contain metals or minerals in their composition. Considering this, it is planned to evaluate analytical profile of Vasantakusumākara Rasa. Objective: To prepare Vasantakusumākara Rasa as per Standard operating Procedures (SoP mentioned in classical text and to characterize it chemically using modern analytical techniques. Materials and Methods: The drug (Vasantakusumākara Rasa in three batches was prepared in GMP certified pharmacy. Physico-chemical analysis, Assay of elements and HPTLC were carried out as per API. XRD was conducted using Rigaku Ultima-IV X-ray diffractometer. Results: The analysis shown the presence of Mercury, Tin, Gold, Silver, Iron, Zinc and Calcium etc., and HPTLC revealed presence of organic constituents from plant material. The XRD indicated the presence of cinnabar (mercury sulphide from Rasa Sindhura, cassiterite (tin oxide from Vaṅga Bhasma, massicot (lead oxide from Nāga bhasma and Magnetite (di-iron oxide from Loha bhasma. Conclusion: The physico chemical analysis reveals that VKR prepared by following classical guidelines is very effective in converting the macro elements into therapeutically effective medicines in micro form. Well prepared herbo-mineral drugs offer many advantages over plant medicines due to their longer shelf life, lesser doses, easy storing facilities, better palatability etc. The inferences and the standards laid down in this study certainly can be utilized as baseline data

  10. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabio Salvatore [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Pitarresi, Giovanna, E-mail: giovanna.pitarresi@unipa.it [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo (Italy); Fiorica, Calogero [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Rigogliuso, Salvatrice; Ghersi, Giulio [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Biologia Cellulare, Università degli Studi di Palermo, Viale delle Scienze ed. 16, 90128, Palermo (Italy); Giammona, Gaetano [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); IBIM-CNR, Via Ugo La Malfa 153, 90146 Palermo (Italy)

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. - Highlights: ► Hyaluronic acid (HA) has been functionalized with ethylenediamine (EDA). ► Amino groups of HA-EDA allow the reaction with α-elastin and ethylene glycol diglycidyl ether (EGDGE). ► Chemical scaffolds of HA-EDA-graft-α-elastin/EGDGE have been characterized. ► The presence of α-elastin affects porosity, swelling and enzymatic degradation of scaffolds. ► The presence of α-elastin improves attachment, viability and proliferation of fibroblasts and smooth muscle cells.

  11. Potential Utilization of Fusel Oil: A Kinetic Approach for Production of Fusel Oil Esters Through Chemical Reaction

    OpenAIRE

    Küçük, Zeki; CEYLAN, Kadim

    2014-01-01

    Fusel oil is a by-product of the distillation of ethyl alcohol from the fermentation of molasses and contains mainly C3-C5 alcohols. Acetic acid and butyric acid esters of its major alcohol components have economic value as chemicals for flavor and fragrance manufacturing. This study presents some data regarding the uncatalyzed esterification of fusel oil with acetic acid, propionic acid and butyric acid. The reactions were carried out at two temperatures, i.e., 45\\circC and under the reflux ...

  12. Safer Chemicals Research

    Science.gov (United States)

    EPA's Chemical Safety research protects human health and the environment by evaluating chemicals for potential risk and providing tools and guidance for improved chemical production that supports a sustainable environment.

  13. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part I

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre

    2012-01-01

    To critically review currently available methods, or methods under development (in vivo, in vitro, in silico, etc.) used in the evaluation of skin sensitization potential and their applicability in the derivation of quantitative 'safety thresholds'.......To critically review currently available methods, or methods under development (in vivo, in vitro, in silico, etc.) used in the evaluation of skin sensitization potential and their applicability in the derivation of quantitative 'safety thresholds'....

  14. The potential of diffuse reflectance FTIR spectroscopy in the examination of small chemical changes in polyethylene and dry foods

    Science.gov (United States)

    Hrebičik, M.; Suchánek, M.; Volka, K.; Novák, P.; Scotter, C. N. G.

    1995-03-01

    Irradiation of some materials by low doses of gamma radiation, as a mean of disinfection or sterilization, has been increasingly used in the last few years. Food is usually irradiated with an absorbed dose up to 10 kGy; higher absorbed doses (25 kGy) are required for sterilization (the quantity of the absorbed dose is defined as the mean energy imparted by ionizing radiation to the matter in a volume element divided by the mass of the matter in that volume element. The unit gray (Gy) is defined as: 1 Gy = 1 J/kg = 100 rd = 6.24 × 10 18eV/kg). This paper addresses what chemical changes are caused by these doses and which method is most suitable for their monitoring. These questions are not only of interest to chemists but also to state organizations allowing or prohibiting this means of disinfection. The major chemical changes that are caused in polymers by ionizing radiation are [1]: simultaneous scission and cross-linking of the polymeric chains, formation of gases and low molecular weight radiolysis products and formation of unsaturated bonds. In the presence of oxygen, there is additional oxidative chain scission, and oxidation of the polymer, leading to the formation of peroxide, alcohol, and carbonyl functions, and of CO, CO 2, and various oxygen-containing low molecular weight compounds. Free radicals created by irradiation may remain trapped in the polymer and cause post-irradiation "aging".

  15. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering.

    Science.gov (United States)

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry.

    Science.gov (United States)

    Sahoo, G S; Paul, S; Tripathy, S P; Sharma, S C; Jena, S; Rout, S; Joshi, D S; Bandyopadhyay, T

    2014-12-01

    Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV-vis (Ultraviolet-Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735cm(-1) (C=O stretching), 1230cm(-1)(C-O-C stretching), and 783cm(-1)(=C-H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  18. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals

    NARCIS (Netherlands)

    Lammens, T.M.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    This review describes different potential sources for amino acids that could be used for the production of bulk chemicals in a biorefinery, such as agricultural byproduct streams. Volumes at which these sources and the amino acids therein are available were determined, and the most interesting amino

  19. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.M.; MacDonell, M.M.

    1990-08-01

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs.

  20. Potential of dispersion of Tecoma stans and chemical attributes of some soils of the Paraná state

    Directory of Open Access Journals (Sweden)

    Celina Wisniewski

    2009-03-01

    Full Text Available This work correlated invasiveness characteristic (potential dispersion of Tecoma stans (L. Jussieu ex. Kunth(BIGNONIACEAE known as a Yellow-Bell. Open field test was developed starting from stakes in vases with four different types soilsof the Paraná State, conduced to randomized block design with four treatments and five replications. The soils were analyzedregarding the pH, CTC, level of C, Al+³, macro and micronutrients, and content of sand, silt and clay. After 6 months the leaf area, dryweight of leaves and potential dispersion, calculated by given numeric values from 1 to 4 for phonological phases presented. Themacro and micronutrients content (except K and Fe were high in all the soils. The correlations between dispersion potential and pHand the V% were positive and significant and with effective CTC, the Fe and clay content were negative. It was not found significantcorrelations between the dispersion potential and biomass or leaf area. Positive and significant correlations of biomass and leaf areawith macro (except P and micronutrients (except Cu apparently indicate that if the evaluation had been accomplished at the end of theflowering period of the species, nutritional relationships with the dispersion potential would be clearer, although it can be concludedthat the species has a preference for less acid soils.

  1. Potential of Metarhizium anisopliae (Metsch.) Sorokin (Ascomycetes, hypocreales) in the control of Bonagota salubricola (Meyrick) (Lepidoptera, Tortricidae) and its compatibility with chemical insecticides.

    Science.gov (United States)

    Anhalt, F A; Azevedo, J L; Sugayama, R L; Specht, A; Barros, N M

    2010-11-01

    Several insects are harmful to apples grown in Brazil, especially the leafroller Bonagota salubricola (Lepidoptera, Tortricidae), usually controlled with chemical insecticides. The purpose of the present study was to investigate the use of Metarhizium anisopliae strains in the control of the apple leafroller, by assessing their virulence to B. salubricola larvae in bioassays with suspensions of 2 x 10⁵ to 2 x 10⁹ conidia/mL as well as their relationship with protease expression. The most effective strain underwent a compatibility test with chemical insecticides. The M. anisopliae E6 strain showed a good performance, with up to 88% mortality and a LT₅₀ of 1.66 days. The virulence was positively correlated with a higher enzymatic activity. The E6 strain was compatible with tebufenozide, evidencing its potential to control B. salubricola.

  2. Potential of Metarhizium anisopliae (Metsch. Sorokin (Ascomycetes, hypocreales in the control of Bonagota salubricola (Meyrick (Lepidoptera, Tortricidae and its compatibility with chemical insecticides

    Directory of Open Access Journals (Sweden)

    FA. Anhalt

    Full Text Available Several insects are harmful to apples grown in Brazil, especially the leafroller Bonagota salubricola (Lepidoptera, Tortricidae, usually controlled with chemical insecticides. The purpose of the present study was to investigate the use of Metarhizium anisopliae strains in the control of the apple leafroller, by assessing their virulence to B. salubricola larvae in bioassays with suspensions of 2 x 10(5 to 2 x 10(9 conidia/mL as well as their relationship with protease expression. The most effective strain underwent a compatibility test with chemical insecticides. The M. anisopliae E6 strain showed a good performance, with up to 88% mortality and a LT50 of 1.66 days. The virulence was positively correlated with a higher enzymatic activity. The E6 strain was compatible with tebufenozide, evidencing its potential to control B. salubricola.

  3. A chemical genomics approach to drug reprofiling in oncology: Antipsychotic drug risperidone as a potential adenocarcinoma treatment.

    Science.gov (United States)

    Dilly, Suzanne J; Clark, Andrew J; Marsh, Andrew; Mitchell, Daniel A; Cain, Ricky; Fishwick, Colin W G; Taylor, Paul C

    2017-05-01

    Drug reprofiling is emerging as an effective paradigm for discovery of cancer treatments. Herein, an antipsychotic drug is immobilised using the Magic Tag ® chemical genomics tool and screened against a T7 bacteriophage displayed library of polypeptides from Drosophila melanogaster, as a whole genome model, to uncover an interaction with a section of 17-β-HSD10, a proposed prostate cancer target. A computational study and enzyme inhibition assay with full length human 17-β-HSD10 identifies risperidone as a drug reprofiling candidate. When formulated with rumenic acid, risperidone slows proliferation of PC3 prostate cancer cells in vitro and retards PC3 prostate cancer tumour growth in vivo in xenografts in mice, presenting an opportunity to reprofile risperidone as a cancer treatment. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria.

    Science.gov (United States)

    Duggirala, Sridevi; Napoleon, John Victor; Nankar, Rakesh P; Senu Adeeba, V; Manheri, Muraleedharan K; Doble, Mukesh

    2016-11-10

    The dual effect of FtsZ inhibition and oxidative stress by a group of 1,2-dihydroquinolines that culminate in bactericidal effect on mycobacterium strains is demonstrated. They inhibited the non-pathogenic Mycobacterium smegmatis mc(2) 155 with MIC as low as 0.9 μg/mL and induced filamentation. Detailed studies revealed their ability to inhibit polymerization and GTPase activity of MtbFtsZ (Mycobacterial filamentous temperature sensitive Z) with an IC50 value of ∼40 μM. In addition to such target specific effects, these compounds exerted a global cellular effect by causing redox-imbalance that was evident from overproduction of ROS in treated cells. Such multi-targeting effect with one chemical scaffold has considerable significance in this era of emerging drug resistance and could offer promise in the development of new therapeutic agents against tuberculosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals.

    Science.gov (United States)

    Picataggio, Stephen

    2009-06-01

    Synthetic biology leverages advances in computational biology, molecular biology, protein engineering, and systems biology to design, synthesize, and assemble genetic elements for manipulating cell phenotypes. This emerging field is founded on a vast amount of gene sequence data available in public databases and our ability to rapidly and inexpensively synthesize DNA fragments of sufficient length to encode full-length genes, enzymes, metabolic pathways, and even entire genomes. Several thousand genetic elements encoding enzymes, reporters, repressors, activators, promoters, terminators, ribosome binding sites, signaling devices, and measurement systems are now available for engineering microbes. In addition to facilitating rational design, these new tools allow us to create and harness genetic diversity in combinatorial approaches to rapidly optimize metabolic pathways. As such, synthetic biology holds great promise for accelerating the development of microbial systems for the production of renewable fuels and chemicals.

  6. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: Chemical composition and study of their herbicidal potential

    Directory of Open Access Journals (Sweden)

    Ismail Amri

    2017-05-01

    Full Text Available The chemical composition of essential oils isolated by hydrodistillation from the needles of Tunisian Pinus nigra L. subsp. laricio was analyzed by GC and GC/MS. 27 compounds were identified, representing 97.9% of total oil, which was found to be rich in oxygenated diterpenes (38.5% particularly manool oxide (38% and sesquiterpene hydrocarbons (41.4% that included germacrene D (16.7%, δ-cadinene (9% and (E-caryophyllene (8.9%. Results of the herbicidal effects of the oil when tested on Phalaris canariensis L., Trifolium campestre Schreb. and Sinapis arvensis L., indicated that the oil completely inhibited germination and seedling growth at a high concentration (5 μL/mL−1, while at low doses the oil acted by decreasing germination and partially inhibiting seedling growth of all tested weeds.

  7. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  8. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    Science.gov (United States)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  9. Development of a risk-ranking framework to evaluate potential high-threat microorganisms, toxins, and chemicals in food.

    Science.gov (United States)

    Newsome, R; Tran, N; Paoli, G M; Jaykus, L A; Tompkin, B; Miliotis, M; Ruthman, T; Hartnett, E; Busta, F F; Petersen, B; Shank, F; McEntire, J; Hotchkiss, J; Wagner, M; Schaffner, D W

    2009-03-01

    Through a cooperative agreement with the U.S. Food and Drug Administration, the Institute of Food Technologists developed a risk-ranking framework prototype to enable comparison of microbiological and chemical hazards in foods and to assist policy makers, risk managers, risk analysts, and others in determining the relative public health impact of specific hazard-food combinations. The prototype is a bottom-up system based on assumptions that incorporate expert opinion/insight with a number of exposure and hazard-related risk criteria variables, which are propagated forward with food intake data to produce risk-ranking determinations. The prototype produces a semi-quantitative comparative assessment of food safety hazards and the impacts of hazard control measures. For a specific hazard-food combination the prototype can produce a single metric: a final risk value expressed as annual pseudo-disability adjusted life years (pDALY). The pDALY is a harmonization of the very different dose-response relationships observed for chemicals and microbes. The prototype was developed on 2 platforms, a web-based user interface and an Analytica(R) model (Lumina Decision Systems, Los Gatos, Calif., U.S.A.). Comprising visual basic language, the web-based platform facilitates data input and allows use concurrently from multiple locations. The Analytica model facilitates visualization of the logic flow, interrelationship of input and output variables, and calculations/algorithms comprising the prototype. A variety of sortable risk-ranking reports and summary information can be generated for hazard-food pairs, showing hazard and dose-response assumptions and data, per capita consumption by population group, and annual p-DALY.

  10. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  11. Bulk conductivity of soft surface layers : experimental measurement and electrokinetic implications

    NARCIS (Netherlands)

    Yezek, L.P.

    2005-01-01

    Conductivity measurements were carried out on a family of polyacrylamide-co-sodium acrylate gels cross-linked with N,N¿ -methylenebisacrylamide in a homemade electrokinetic cell. The conductivity data allowed the equilibrium Donnan potential difference between the bulk gel and the bulk electrolyte

  12. A simple model for calculating the bulk modulus of the mixed ionic ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 4. A simple model for calculating the bulk modulus of the mixed ionic ... in terms of the bulk modulus of the end members alone. The calculated values are comparable to those deduced from the three-body potential model (TDPM) by applying Vegard's law.

  13. Evaluation of Magnetic Cutting and Polishing with Superconducting Bulks

    Science.gov (United States)

    Hiramatsu, Y.; Takahashi, Y.; Otabe, E. S.; Suzuki, K.; Tanaka, Y.; Kiuchi, M.

    2017-07-01

    In this paper, magnetic levitation tool with superconducting bulks is introduced as a new hollow machining technology. Magnetic levitation tool is the machine that magnet levitates above superconducting bulks and driving force of rotating magnet shaves the object. This tool is expected to use for a grinding machine and machining device because of hollow machining and micromachining by strong fixing. For using magnetic levitation tool, the attractive force, the repulsive force and rotating torque are important for grinding machine, machining outer surface and both, respectively. These forces are calculated by FEM, and compared with experimental results. The experimental results are agreed well with calculated results. However, the attractive force is one order smaller than that required in chemical mechanical polishing.

  14. Internal rotation potential and structure of six fluorine substituted nitrobenzenes studied by microwave spectroscopy supported by quantum chemical calculations

    DEFF Research Database (Denmark)

    Larsen, Niels Wessel; Nielsen, Ole Vesterlund

    2014-01-01

    Microwave spectra of the vibrational ground state and several torsionally excited states were used to investigate the internal rotation potential and the structure of six fluorine substituted nitrobenzenes: 3-fluoro- and 4-fluoronitrobenzene were planar molecules just as nitrobenzene whereas 2...

  15. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence.

    Science.gov (United States)

    Karwacka, Anetta; Zamkowska, Dorota; Radwan, Michał; Jurewicz, Joanna

    2017-07-31

    Growing evidence indicates that exposure to widespread, environmental contaminants called endocrine disruptors (EDCs) negatively affects animal and human reproductive health and has been linked to several diseases including infertility. This review aims to evaluate the impact of environmental exposure to endocrine disrupting chemicals [phthalates, parabens, triclosan, bisphenol A (BPA), organochlorine (PCBs) and perfluorinated (PFCs) compounds] on the reproductive potential among women, by reviewing most recently published literature. Epidemiological studies focusing on EDCs exposure and reproductive potential among women for the last 16 years were identified by a search of the PUBMED, MEDLINE, EBSCO and TOXNET literature databases. The results of the presented studies show that exposure to EDCs impacts the reproductive potential in women, measured by ovarian reserve and by assisted reproductive technology outcomes. Exposure to environmental endocrine disrupting chemicals decrease: (i) oestradiol levels (BPA); (ii) anti-Müllerian hormone concentrations (PCBs); (iii) antral follicle count (BPA, parabens, phthalates); (iv) oocyte quality (BPA, triclosan, phthalates, PCBs); (v) fertilization rate (PFCs, PCBs); (vi) implantation (BPA, phthalates, PCBs); (vii) embryo quality (triclosan, PCBs, BPA); (viii) rate of clinical pregnancy and live births (parabens, phthalates). The studies were mostly well-designed and used prospective cohorts with the exposure assessment based on the biomarker of exposure. Considering the suggested health effects, more epidemiological data is urgently needed to confirm the presented findings.

  16. Chemical Composition of Artemisia annua L. Leaves and Antioxidant Potential of Extracts as a Function of Extraction Solvents

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2012-05-01

    Full Text Available This study was conducted to investigate the chemical and nutritional composition of Artemisia annua leaves in addition to determination of antioxidant potential of their extracts prepared in different solvents. Chemical composition was determined by quantifying fat, protein, carbohydrate, fiber, tocopherol, phytate, and tannin contents. Extraction of A. annua leaves, for antioxidant potential evaluation, was carried out using five solvents of different polarities, i.e., hexane, chloroform, ethyl acetate, methanol and water. Antioxidant potential was evaluated by estimating total phenolic (TPC, flavonoid (TFC contents, ferric reducing antioxidant power (FRAP, Trolox equivalent antioxidant capacity (TEAC, DPPH radical scavenging activity and lipid peroxidation. Efficiency of different solvents was compared for the yield of antioxidant extracts from leaf samples and a clear variation was observed. The highest TPC, TFC, TEAC, DPPH radical scavenging and lowest lipid peroxidation were observed in MeOH extracts, whereas aqueous extract exhibited high ferric reducing antioxidant power; suggesting MeOH to be the most favorable extractant.

  17. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  18. Inverted cucurbit[n]urils: density functional investigations on the electronic structure, electrostatic potential, and NMR chemical shifts.

    Science.gov (United States)

    Pinjari, Rahul V; Gejji, Shridhar P

    2009-02-19

    Inverted cucurbit[n]uril (i(x)CB[n], x = 1, 2; n = 6-8), the enantiomers of cucurbit[n]uril (CB[n]) comprising one or more inverted glycouril units, show distinct selectivity in recognition toward the guest by the virtue of shape and dimensions of its cavity. The iCB[n] (x = 1 and n = 6, 7) are isolated as intermediates during the synthesis of CB[n]. In this work, density functional theory using the hybrid B3LYP functional has been employed to derive the electronic structure and the NMR chemical shifts in the i(x)CB[n] hosts. The present calculations have shown that the inversion of the glycouril unit of CB[6] and CB[7] engenders a destabilization by 4.2 and 5.7 kJ mol(-1), respectively, and, as opposed to this, the iCB[8] is favored by 18.6 kJ mol(-1) over the corresponding CB[8] host. Likewise, i2CB[7] possessing two inverted glycourils are highly destabilized over CB[7]. A large separation of the inverted glycouril units reduces the repulsion between methine protons inside the cavity, rendering the 1,4-i2CB[n] (n = 7 or 8) to be of lowest energy. Stabilization energies from the self-consistent reaction field (SCRF) theory are calculated with water, ethanol, and tetrahydrofuran (THF) as solvents. Unlike in gas phase and other solvents, the stabilization hierarchy iCB[6] portals. The electron-rich region within the cavity explains the large affinity of CB[n] toward the electron deficient guests. The electronic distribution and shape and size of the cavity thus derived provide insights for the inclusion of guests of different shapes in a variety of i(x)CB[n] hosts. NMR chemical shifts have shown that the methylene protons near the inverted glycouril and the methine protons those are directing toward the cavity yield distinct signals, consistent with those observed in experiments. The protons within the cavity are less affected by solvation.

  19. Chemical-potential-dependent gap opening at the Dirac surface states of Bi2Se3 induced by aggregated substitutional Cr atoms.

    Science.gov (United States)

    Chang, Cui-Zu; Tang, Peizhe; Wang, Yi-Lin; Feng, Xiao; Li, Kang; Zhang, Zuocheng; Wang, Yayu; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Ma, Xu-Cun; Xue, Qi-Kun

    2014-02-07

    With angle-resolved photoemission spectroscopy, gap opening is resolved at up to room temperature in the Dirac surface states of molecular beam epitaxy grown Cr-doped Bi2Se3 topological insulator films, which, however, show no long-range ferromagnetic order down to 1.5 K. The gap size is found decreasing with increasing electron-doping level. Scanning tunneling microscopy and first-principles calculations demonstrate that substitutional Cr atoms aggregate into superparamagnetic multimers in the Bi2Se3 matrix, which contribute to the observed chemical-potential-dependent gap opening in the Dirac surface states without long-range ferromagnetic order.

  20. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.